DOT National Transportation Integrated Search
1986-12-01
The algorithms described in this report determine the differential corrections to be broadcast to users of the Global Positioning System (GPS) who require higher accuracy navigation or position information than the 30 to 100 meters that GPS normally ...
Helicopter flight test demonstration of differential GPS
NASA Technical Reports Server (NTRS)
Denaro, R. P.; Beser, J.
1985-01-01
An off-line post-mission processing facility is being established by NASA Ames Research Center to analyze differential GPS flight tests. The current and future differential systems are described, comprising an airborne segment in an SH-3 helicopter, a GPS ground reference station, and a tracking system. The post-mission processing system provides for extensive measurement analysis and differential computation. Both differential range residual corrections and navigation corrections are possible. Some preliminary flight tests were conducted in a landing approach scenario and statically. Initial findings indicate the possible need for filter matching between airborne and ground systems (if used in a navigation correction technique), the advisability of correction smoothing before airborne incorporation, and the insensitivity of accuracy to either of the differential techniques or to update rates.
NASA's global differential GPS system and the TDRSS augmentation service for satellites
NASA Technical Reports Server (NTRS)
Bar-Sever, Yoaz; Young, Larry; Stocklin, Frank; Rush, John
2004-01-01
NASA is planning to launch a new service for Earth satellites providing them with precise GPS differential corrections and other ancillary information enabling decimeter level orbit determination accuracy, and nanosecond time-transfer accuracy, onboard, in real-time. The TDRSS Augmentation Service for Satellites (TASS) will broadcast its message on the S-band multiple access channel of NASA's Tracking and Data Relay Satellite System (TDRSS). The satellite's phase array antenna has been configured to provide a wide beam, extending coverage up to 1000 km altitude over the poles. Global coverage will be ensured with broadcast from three or more TDRSS satellites. The GPS differential corrections are provided by the NASA Global Differential GPS (GDGPS) System, developed and operated by NASA's Jet Propulsion Laboratory. The GDGPS System employs a global ground network of more than 70 GPS receivers to monitor the GPS constellation in real time. The system provides real-time estimates of the GPS satellite states, as well as many other real-time products such as differential corrections, global ionospheric maps, and integrity monitoring. The unique multiply redundant architecture of the GDGPS System ensures very high reliability, with 99.999% demonstrated since the inception of the system in Early 2000. The estimated real time GPS orbit and clock states provided by the GDGPS system are accurate to better than 20 cm 3D RMS, and have been demonstrated to support sub-decimeter real time positioning and orbit determination for a variety of terrestrial, airborne, and spaceborne applications. In addition to the GPS differential corrections, TASS will provide real-time Earth orientation and solar flux information that enable precise onboard knowledge of the Earth-fixed position of the spacecraft, and precise orbit prediction and planning capabilities. TASS will also provide 5 seconds alarms for GPS integrity failures based on the unique GPS integrity monitoring service of the GDGPS System.
Medium-Frequency Data Link for Differential NAVSTAR/GPS Broadcasts
DOT National Transportation Integrated Search
1986-06-01
Differential GPS must communicate differential corrections to civilian users of the Global Positioning System. Modulation of existing marine radiobeacons can provide the needed communication link for DGPS, provided the operation of existing radiobeac...
Differential GPS/inertial navigation approach/landing flight test results
NASA Technical Reports Server (NTRS)
Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary
1992-01-01
In November of 1990 a joint Honeywell/NASA-Langley differential GPS/inertial flight test was conducted at Wallops Island, Virginia. The test objective was to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS (Global Positioning System/inertial navigation system) with barometric and radar altimeters. The flight test effort exceeded program objectives with over 120 landings, 36 of which were fully automatic differential GPS/inertial landings. Flight test results obtained from post-flight data analysis are discussed. These results include characteristics of differential GPS/inertial error, using the Wallops Island Laser Tracker as a reference. Data on the magnitude of the differential corrections and vertical channel performance with and without radar altimeter augmentation are provided.
Wagner, Chad R.; Mueller, David S.
2011-01-01
A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks.
Ge, Yulong; Zhou, Feng; Sun, Baoqi; Wang, Shengli; Shi, Bo
2017-01-01
We present quad-constellation (namely, GPS, GLONASS, BeiDou and Galileo) time group delay (TGD) and differential code bias (DCB) correction models to fully exploit the code observations of all the four global navigation satellite systems (GNSSs) for navigation and positioning. The relationship between TGDs and DCBs for multi-GNSS is clearly figured out, and the equivalence of TGD and DCB correction models combining theory with practice is demonstrated. Meanwhile, the TGD/DCB correction models have been extended to various standard point positioning (SPP) and precise point positioning (PPP) scenarios in a multi-GNSS and multi-frequency context. To evaluate the effectiveness and practicability of broadcast TGDs in the navigation message and DCBs provided by the Multi-GNSS Experiment (MGEX), both single-frequency GNSS ionosphere-corrected SPP and dual-frequency GNSS ionosphere-free SPP/PPP tests are carried out with quad-constellation signals. Furthermore, the author investigates the influence of differential code biases on GNSS positioning estimates. The experiments show that multi-constellation combination SPP performs better after DCB/TGD correction, for example, for GPS-only b1-based SPP, the positioning accuracies can be improved by 25.0%, 30.6% and 26.7%, respectively, in the N, E, and U components, after the differential code biases correction, while GPS/GLONASS/BDS b1-based SPP can be improved by 16.1%, 26.1% and 9.9%. For GPS/BDS/Galileo the 3rd frequency based SPP, the positioning accuracies are improved by 2.0%, 2.0% and 0.4%, respectively, in the N, E, and U components, after Galileo satellites DCB correction. The accuracy of Galileo-only b1-based SPP are improved about 48.6%, 34.7% and 40.6% with DCB correction, respectively, in the N, E, and U components. The estimates of multi-constellation PPP are subject to different degrees of influence. For multi-constellation combination SPP, the accuracy of single-frequency is slightly better than that of dual-frequency combinations. Dual-frequency combinations are more sensitive to the differential code biases, especially for the 2nd and 3rd frequency combination, such as for GPS/BDS SPP, accuracy improvements of 60.9%, 26.5% and 58.8% in the three coordinate components is achieved after DCB parameters correction. For multi-constellation PPP, the convergence time can be reduced significantly with differential code biases correction. And the accuracy of positioning is slightly better with TGD/DCB correction. PMID:28300787
Ge, Yulong; Zhou, Feng; Sun, Baoqi; Wang, Shengli; Shi, Bo
2017-03-16
We present quad-constellation (namely, GPS, GLONASS, BeiDou and Galileo) time group delay (TGD) and differential code bias (DCB) correction models to fully exploit the code observations of all the four global navigation satellite systems (GNSSs) for navigation and positioning. The relationship between TGDs and DCBs for multi-GNSS is clearly figured out, and the equivalence of TGD and DCB correction models combining theory with practice is demonstrated. Meanwhile, the TGD/DCB correction models have been extended to various standard point positioning (SPP) and precise point positioning (PPP) scenarios in a multi-GNSS and multi-frequency context. To evaluate the effectiveness and practicability of broadcast TGDs in the navigation message and DCBs provided by the Multi-GNSS Experiment (MGEX), both single-frequency GNSS ionosphere-corrected SPP and dual-frequency GNSS ionosphere-free SPP/PPP tests are carried out with quad-constellation signals. Furthermore, the author investigates the influence of differential code biases on GNSS positioning estimates. The experiments show that multi-constellation combination SPP performs better after DCB/TGD correction, for example, for GPS-only b1-based SPP, the positioning accuracies can be improved by 25.0%, 30.6% and 26.7%, respectively, in the N, E, and U components, after the differential code biases correction, while GPS/GLONASS/BDS b1-based SPP can be improved by 16.1%, 26.1% and 9.9%. For GPS/BDS/Galileo the 3rd frequency based SPP, the positioning accuracies are improved by 2.0%, 2.0% and 0.4%, respectively, in the N, E, and U components, after Galileo satellites DCB correction. The accuracy of Galileo-only b1-based SPP are improved about 48.6%, 34.7% and 40.6% with DCB correction, respectively, in the N, E, and U components. The estimates of multi-constellation PPP are subject to different degrees of influence. For multi-constellation combination SPP, the accuracy of single-frequency is slightly better than that of dual-frequency combinations. Dual-frequency combinations are more sensitive to the differential code biases, especially for the 2nd and 3rd frequency combination, such as for GPS/BDS SPP, accuracy improvements of 60.9%, 26.5% and 58.8% in the three coordinate components is achieved after DCB parameters correction. For multi-constellation PPP, the convergence time can be reduced significantly with differential code biases correction. And the accuracy of positioning is slightly better with TGD/DCB correction.
Robust Real-Time Wide-Area Differential GPS Navigation
NASA Technical Reports Server (NTRS)
Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)
1998-01-01
The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.
Networked differential GPS system
NASA Technical Reports Server (NTRS)
Sheynblat, Leonid (Inventor); Kalafus, Rudolph M. (Inventor); Loomis, Peter V. W. (Inventor); Mueller, K. Tysen (Inventor)
1994-01-01
An embodiment of the present invention relates to a worldwide network of differential GPS reference stations (NDGPS) that continually track the entire GPS satellite constellation and provide interpolations of reference station corrections tailored for particular user locations between the reference stations Each reference station takes real-time ionospheric measurements with codeless cross-correlating dual-frequency carrier GPS receivers and computes real-time orbit ephemerides independently. An absolute pseudorange correction (PRC) is defined for each satellite as a function of a particular user's location. A map of the function is constructed, with iso-PRC contours. The network measures the PRCs at a few points, so-called reference stations and constructs an iso-PRC map for each satellite. Corrections are interpolated for each user's site on a subscription basis. The data bandwidths are kept to a minimum by transmitting information that cannot be obtained directly by the user and by updating information by classes and according to how quickly each class of data goes stale given the realities of the GPS system. Sub-decimeter-level kinematic accuracy over a given area is accomplished by establishing a mini-fiducial network.
Differential GPS/inertial navigation approach/landing flight test results
NASA Technical Reports Server (NTRS)
Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary
1992-01-01
Results of a joint Honeywell/NASA-Langley differential GPS/inertial flight test conducted in November 1990 are discussed focusing on postflight data analysis. The test was aimed at acquiring a system performance database and demonstrating automatic landing based on an integrated differential GPS/INS with barometric and radar altimeters. Particular attention is given to characteristics of DGPS/inertial error and the magnitude of the differential corrections and vertical channel performance with and without altimeter augmentation. It is shown that DGPS/inertial integrated with a radar altimeter is capable of providing a precision approach and autoland guidance of manned return space vehicles within the Space Shuttle accuracy requirements.
Real-time differential GPS/GLONASS trials in Europe using all-in-view 20-channel receivers
NASA Astrophysics Data System (ADS)
Capaccio, S.; Lowe, D.; Walsh, D. M. A.; Daly, P.
Following the initial development of 20-channel, all-in-view Global Navigation Satellite System (GNSS), GPS/GLONASS/Inmarsat-3, receivers at the Institute of Satellite Navigation (ISN), University of Leeds, a modification programme has been undertaken to allow real-time differential corrections to be sent from one 20-channel receiver to another identical receiver using a serial link between them. The differential correction software incorporates the RTCM SC-104 and RTCA DO-217 format developed specifically for GPS and adjusted by the ISN to allow simultaneous GLONASS operation.After successful laboratory testing, real-time differential GNSS tests were successfully completed in static mode between Aberdeen and Leeds via the SkyFix differential data-link, and in dynamic mode at DTEO Boscombe Down using a C-band data-link between the ground and a receiver on board the DRA BAC 1-11 aircraft. The aims of the tests were, (i) to demonstrate real-time differential GNSS position-fixing, (ii) to establish the accuracy improvements brought about, and (iii) to examine the effects of data-link latency and satellite PDOP on the solution accuracy.
GPS-aided gravimetry at 30 km altitude from a balloon-borne platform
NASA Technical Reports Server (NTRS)
Lazarewicz, Andrew R.; Evans, Alan G.
1989-01-01
A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.
A simulation of GPS and differential GPS sensors
NASA Technical Reports Server (NTRS)
Rankin, James M.
1993-01-01
The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.
Ionospheric corrections to precise time transfer using GPS
NASA Technical Reports Server (NTRS)
Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.
1994-01-01
The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of ionospheric time delay in the northeastern U.S., and initial results with the ICS-4000Z, will be presented.
DOT National Transportation Integrated Search
2001-01-22
Federal Aviation Regulation (FAR) Part 36, Noise : Standards: Aircraft Type and Airworthiness : Certification, requires that measured aircraft noise : certification data be corrected to a nominal reference-day : condition. This correction process...
Group delay variations of GPS transmitting and receiving antennas
NASA Astrophysics Data System (ADS)
Wanninger, Lambert; Sumaya, Hael; Beer, Susanne
2017-09-01
GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne-Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.
Simulation and analysis of differential global positioning system for civil helicopter operations
NASA Technical Reports Server (NTRS)
Denaro, R. P.; Cabak, A. R.
1983-01-01
A Differential Global Positioning System (DGPS) computer simulation was developed, to provide a versatile tool for assessing DGPS referenced civil helicopter navigation. The civil helicopter community will probably be an early user of the GPS capability because of the unique mission requirements which include offshore exploration and low altitude transport into remote areas not currently served by ground based Navaids. The Monte Carlo simulation provided a sufficiently high fidelity dynamic motion and propagation environment to enable accurate comparisons of alternative differential GPS implementations and navigation filter tradeoffs. The analyst has provided the capability to adjust most aspects of the system, the helicopter flight profile, the receiver Kalman filter, and the signal propagation environment to assess differential GPS performance and parameter sensitivities. Preliminary analysis was conducted to evaluate alternative implementations of the differential navigation algorithm in both the position and measurement domain. Results are presented to show that significant performance gains are achieved when compared with conventional GPS but that differences due to DGPS implementation techniques were small. System performance was relatively insensitive to the update rates of the error correction information.
Airborne gravimetry, altimetry, and GPS navigation errors
NASA Technical Reports Server (NTRS)
Colombo, Oscar L.
1992-01-01
Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.
Evaluation of the EGNOS service for topographic profiling in field geosciences
NASA Astrophysics Data System (ADS)
Kromuszczyńska, Olga; Mège, Daniel; Castaldo, Luigi; Gurgurewicz, Joanna; Makowska, Magdalena; Dębniak, Krzysztof; Jelínek, Róbert
2016-09-01
Consumer grade Global Positioning System (GPS) receivers are commonly used as a tool for data collection in many fields, including geosciences. One of the methods for improving the GPS signal is provided by the Wide Area Differential GPS (WADGPS), which uses geostationary satellites to correct errors affecting the signal in real time. This study presents results of three experiments aiming at determining whether the precision of field measurements made by such a receiver (Garmin GPSMAP 62s) operating in either the non-differential and the WADGPS differential mode is suitable for characterizing geomorphological objects or landforms. It assumes in a typical field work situation, when time cannot be devoted in the field to long periods of stationary GPS measurements and the precision of topographic profile is at least as important as, if not more than, positioning of individual points. The results show that with maintaining some rules, the expected precision may meet the nominal precision. The repeatability (coherence) of topographic profiles conducted at low speed (0.5 m s- 1) in mountain terrain is good, and vertical precision is improved in the WADGPS mode. Horizontal precision is equivalent in both modes. The GPS receiver should be operating at least 30 min prior to measuring and should not be turned off between measurements that the user like to compare. If the GPS receiver needs to be reset between profiles to be compared, the measurement precision is higher in the non-differential GPS mode. Following these rules may result in improvement of measurement quality by 20% to 80%.
A Simple Method to Improve Autonomous GPS Positioning for Tractors
Gomez-Gil, Jaime; Alonso-Garcia, Sergio; Gómez-Gil, Francisco Javier; Stombaugh, Tim
2011-01-01
Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory. PMID:22163917
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
Worldwide differential GPS for Space Shuttle landing operations
NASA Technical Reports Server (NTRS)
Loomis, Peter V. W.; Denaro, Robert P.; Saunders, Penny
1990-01-01
Worldwide differential Global Positioning System (WWDGPS) is viewed as an effective method of offering continuous high-quality navigation worldwide. The concept utilizes a network with as few as 33 ground stations to observe most of the error sources of GPS and provide error corrections to users on a worldwide basis. The WWDGPS real-time GPS tracking concept promises a threefold or fourfold improvement in accuracy for authorized dual-frequency users, and in addition maintains an accurate and current ionosphere model for single-frequency users. A real-time global tracking network also has the potential to reverse declarations of poor health on marginal satellites, increasing the number of satellites in the constellation and lessening the probability of GPS navigation outage. For Space Shuttle operations, the use of WWDGPS-aided P-code equipment promises performance equal to or better than other current landing guidance systems in terms of accuracy and reliability. This performance comes at significantly less cost to NASA, which will participate as a customer in a system designed as a commercial operation serving the global civil navigation community.
The application of NAVSTAR Differential GPS to civil helicopter operations
NASA Technical Reports Server (NTRS)
Beser, J.; Parkinson, B. W.
1981-01-01
Principles concerning the operation of the NAVSTAR Global Positioning Systems (GPS) are discussed. Selective availability issues concerning NAVSTAR GPS and differential GPS concepts are analyzed. Civil support and market potential for differential GPS are outlined. It is concluded that differential GPS provides a variation on the baseline GPS system, and gives an assured, uninterrupted level of accuracy for the civilian community.
Elgethun, Kai; Yost, Michael G; Fitzpatrick, Cole T E; Nyerges, Timothy L; Fenske, Richard A
2007-03-01
Respondent error, low resolution, and study participant burden are known limitations of diary timelines used in exposure studies such as the National Human Exposure Assessment Survey (NHEXAS). Recent advances in global positioning system (GPS) technology have produced tracking devices sufficiently portable, functional and affordable to utilize in exposure assessment science. In this study, a differentially corrected GPS (dGPS) tracking device was compared to the NHEXAS diary timeline. The study also explored how GPS can be used to evaluate and improve such diary timelines by determining which location categories and which respondents are least likely to record "correct" time-location responses. A total of 31 children ages 3-5 years old wore a dGPS device for all waking hours on a weekend day while their parents completed the NHEXAS diary timeline to document the child's time-location pattern. Parents misclassified child time-location approximately 48% of the time using the NHEXAS timeline in comparison to dGPS. Overall concordance between methods was marginal (kappa=0.33-0.35). The dGPS device found that on average, children spent 76% of the 24-h study period in the home. The diary underestimated time the child spent in the home by 17%, while overestimating time spent inside other locations, outside at home, outside in other locations, and time spent in transit. Diary data for time spent outside at home and time in transit had the lowest response concordance with dGPS. The diaries of stay-at-home mothers and mothers working unskilled labor jobs had lower concordance with dGPS than did those of the other participants. The ability of dGPS tracking to collect continuous rather than categorical (ordinal) data was also demonstrated. It is concluded that automated GPS tracking measurements can improve the quality and collection efficiency of time-location data in exposure assessment studies, albeit for small cohorts.
NASA Technical Reports Server (NTRS)
Muellerschoen, Ronald J.; Iijima, Byron; Meyer, Robert; Bar-Sever, Yoaz; Accad, Elie
2004-01-01
This paper evaluates the performance of a single-frequency receiver using the 1-Hz differential corrections as provided by NASA's global differential GPS system. While the dual-frequency user has the ability to eliminate the ionosphere error by taking a linear combination of observables, the single-frequency user must remove or calibrate this error by other means. To remove the ionosphere error we take advantage of the fact that the magnitude of the group delay in range observable and the carrier phase advance have the same magnitude but are opposite in sign. A way to calibrate this error is to use a real-time database of grid points computed by JPL's RTI (Real-Time Ionosphere) software. In both cases we evaluate the positional accuracy of a kinematic carrier phase based point positioning method on a global extent.
Method for attitude determination using GPS carrier phase measurements from nonaligned antennas
NASA Technical Reports Server (NTRS)
Lightsey, Edgar Glenn (Inventor)
1999-01-01
A correction to a differential phase measurement used for vehicle attitude determination on nonaligned antenna arrays is determined by calculating a carrier phase angle of carrier signals received by each antenna, and correcting the measurement for the right-hand circular polarization effect on the nonaligned antennas. Accordingly, circular polarization effects of the carrier signals are removed from a nonaligned antenna array, allowing the nonaligned antenna array to be used for vehicle attitude determination.
NASA Astrophysics Data System (ADS)
Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.
2013-12-01
In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.
GPS/INS Sensor Fusion Using GPS Wind up Model
NASA Technical Reports Server (NTRS)
Williamson, Walton R. (Inventor)
2013-01-01
A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.
Testing the Dependence of Airborne Gravity Results on Three Variables in Kinematic GPS Processing
NASA Astrophysics Data System (ADS)
Weil, C.; Diehl, T. M.
2011-12-01
The National Geodetic Survey's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) program plans to collect airborne gravity data across the entire U.S. and its holdings over the next decade. The goal is to build a geoid accurate to 1-2 cm, for which the airborne gravity data is key. The first phase is underway, with > 13% of data collection completed in: parts of Alaska, parts of California, most of the Gulf Coast, Puerto Rico, and the Virgin Islands. Obtaining accurate airborne gravity survey results depends on the quality of the GPS/IMU position solution used in the processing. There are many factors that could have an influence on the positioning results. First, we will investigate how an increased data sampling rate for the GPS/IMU affects the position solution and accelerations derived from those positions. Second we will test the hypothesis that, for differential kinematic processing a better solution is obtained using both a base and a rover GPS unit that contain an additional rubidium clock that is reported to sync better with GPS time. Finally, we will look at a few different GPS+IMU processing methods available in commercial software. This includes comparing GPS-only solutions with loosely coupled GPS/IMU solutions from the Applanix POSAV-510 system and tightly coupled solutions with our newly-acquired NovAtel SPAN system (micro-IRS IMU). Differential solutions are compared with PPP (Precise Point Positioning) solutions along with multi-pass and advanced tropospheric corrections available with the NovAtel Inertial Explorer software. Based on preliminary research, we expect that the tightly-coupled solutions with either better troposphere and/or multi-pass solutions will provide superior position (and gravity) results.
NASA Astrophysics Data System (ADS)
Zerbini, S.; Prati, C.; Errico, M.; Novali, F.; Santi, E.
2012-12-01
Integrating and exploiting the synergetic combination of the InSAR and GPS techniques allows overcoming the limitations inherent in the use of each technique alone. GPS-based estimates of tropospheric delays may contribute in obtaining better corrections of the wet tropospheric path delay in InSAR signals. This will enhance the coherence and will allow the application of InSAR in a wider range of applications. The test area chosen for the comparison between InSAR and GPS data is in northeastern Italy, in particular, in the city of Bologna (urbanized area) and in the surroundings of Medicina (agricultural area). In these sites, two permanent GPS stations (EUREF EPN sites) of the University of Bologna are operational since mid 1999 (BOLG) and 1996 (MSEL) respectively. The InSAR data used are the COSMO-SkyMed (CSK) images made available by the Italian Space Agency (ASI). The Permanent Scatterers (PS) technique was applied to a number of repeated CSK strip map SAR images acquired over a 40x40 square km area encompassing the two towns mentioned above. The results of this work demonstrate, on the one hand, the CSK capabilities to operate in a repeated interferometric survey mode for measuring ground deformation with millimeter accuracy in different environments. On the other, the comparison of the differential height between the two stations derived with the GPS and the InSAR data, using both acquisition geometries, is satisfactory. Elevation, ground deformation and atmospheric artifacts were estimated in correspondence of the identified PS and compared with the GPS measurements carried out at the same acquisition time by the permanent stations at Bologna and Medicina. The comparison of the differential height between the two stations shows the sensitivity of the GPS height solution to the length of the observation interval. The vertical dispersion achieved by GPS is higher than that achieved by PS InSAR, as expected; however, a similar linear trend appears in the results of both techniques. For the comparison of differential tropospheric delays, two GPS solutions derived with different session length and data acquisition rate were considered. The InSAR results are those relevant to two PSs located at very close distance from the GPS stations. These are representative of the majority of PSs identified around the two stations. A similar behavior is present in the results achieved by both GPS and PS-InSAR techniques, despite of expected differences due to the almost instantaneous nature of the PS-InSAR estimates compared to the GPS 5-minute averaged results.
Observing crustal deformation and atmospheric signals from COSMO-SKYMED and GPS data
NASA Astrophysics Data System (ADS)
Zerbini, S.; Prati, C.; Cappello, G.; Errico, M.; Novali, F.
2012-04-01
The combined use of InSAR and GPS allows for the full exploitation of the complementary aspects of the two techniques by overcoming the limitations inherent in the use of each technique alone. Additionally, GPS-based estimates of tropospheric delays may contribute in obtaining better corrections of the wet tropospheric path delay in InSAR signals. This will enhance the coherence and will allow the application of InSAR in a wider range of applications. We have compared the InSAR and GPS data at Bologna (urbanized area) and Medicina (agricultural area), in northeastern Italy, where two permanent GPS stations of the University of Bologna are operational since mid 1999 and 1996 respectively. The InSAR data used are the COSMO-SkyMed (CSK) images made available by the Italian Space Agency (ASI) in the framework of the research contract AO-1140. The Permanent Scatterers (PS) technique was applied to a number of repeated CSK strip map SAR images acquired over a 40x40 square km area encompassing the two towns mentioned above. The results of this work demonstrate on the one hand the CSK capabilities to operate in a repeated interferometric survey mode for measuring ground deformation with millimeter accuracy in different environments. On the other, the comparison of the differential height between the two stations derived with the GPS and the InSAR data, using both acquisition geometries, is satisfactory. Elevation, ground deformation and atmospheric artifacts were estimated in correspondence of the identified PS and compared with the GPS measurements carried out at the same acquisition time by the permanent stations at Bologna and Medicina. The comparison of the differential height between the two stations shows the sensitivity of the GPS height solution to the length of the observation interval. The vertical dispersion achieved by GPS is higher than that achieved by PS InSAR, as expected; however, a similar linear trend appears in the results of both techniques. The comparison of differential tropospheric delays has been carried out. Two GPS solutions derived with different session length and data acquisition rate were considered. The InSAR results were those relevant to two PS located at a very close distance from the GPS stations. These are representative of the majority of PSs identified around the two stations. A similar behavior is present in the results achieved by both GPS and PS-InSAR techniques, despite of expected differences due to the almost instantaneous nature of the PS-InSAR estimates compared to the GPS 5-min averaged results.
NASA Technical Reports Server (NTRS)
Liu, Anthony S.
1990-01-01
Aerospace has routinely processed the Osborne Time Transfer Receiver (TTR) data for the purpose of monitoring the performance of ground and GPS atomic clocks in near real-time with on-line residual displays and characterizing clock stability with Allan Variance calculations. Recently, Aerospace added the ability to estimate the TTR's location by differentially correcting the TTR's location in the WGS84 reference system. This new feature is exercised on a set of TTR clock phase data and Sub-meter accurate station location estimates of the TTR at the Aerospace Electronic Research Lab (ERL) are obtained.
A study of ionospheric grid modification technique for BDS/GPS receiver
NASA Astrophysics Data System (ADS)
Liu, Xuelin; Li, Meina; Zhang, Lei
2017-07-01
For the single-frequency GPS receiver, ionospheric delay is an important factor affecting the positioning performance. There are many kinds of ionospheric correction methods, common models are Bent model, IRI model, Klobuchar model, Ne Quick model and so on. The US Global Positioning System (GPS) uses the Klobuchar coefficients transmitted in the satellite signal to correct the ionospheric delay error for a single frequency GPS receiver, but this model can only reduce the ionospheric error of about 50% in the mid-latitudes. In the Beidou system, the accuracy of the correction delay is higher. Therefore, this paper proposes a method that using BD grid information to correct GPS ionospheric delay to improve the ionospheric delay for the BDS/GPS compatible positioning receiver. In this paper, the principle of ionospheric grid algorithm is introduced in detail, and the positioning accuracy of GPS system and BDS/GPS compatible positioning system is compared and analyzed by the real measured data. The results show that the method can effectively improve the positioning accuracy of the receiver in a more concise way.
Performance Analysis of Several GPS/Galileo Precise Point Positioning Models
Afifi, Akram; El-Rabbany, Ahmed
2015-01-01
This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference. PMID:26102495
Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.
Afifi, Akram; El-Rabbany, Ahmed
2015-06-19
This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.
Differential Solutions Using Long-Range Dual-Frequency GPS Correction Data
2002-09-01
coordinates the network of CORS sites to provide range measurement data to users in the United States. The data is available, via the Internet , to...of 3-dimensional positioning activities throughout the United States (NGS, 2002). CORS data is posted daily on the Internet from which the user may...KING AZ Scottsdale COSA 1998/258 -------- 5 sec H CofS AZ Tolleson
Positioning performance of the NTCM model driven by GPS Klobuchar model parameters
NASA Astrophysics Data System (ADS)
Hoque, Mohammed Mainul; Jakowski, Norbert; Berdermann, Jens
2018-03-01
Users of the Global Positioning System (GPS) utilize the Ionospheric Correction Algorithm (ICA) also known as Klobuchar model for correcting ionospheric signal delay or range error. Recently, we developed an ionosphere correction algorithm called NTCM-Klobpar model for single frequency GNSS applications. The model is driven by a parameter computed from GPS Klobuchar model and consecutively can be used instead of the GPS Klobuchar model for ionospheric corrections. In the presented work we compare the positioning solutions obtained using NTCM-Klobpar with those using the Klobuchar model. Our investigation using worldwide ground GPS data from a quiet and a perturbed ionospheric and geomagnetic activity period of 17 days each shows that the 24-hour prediction performance of the NTCM-Klobpar is better than the GPS Klobuchar model in global average. The root mean squared deviation of the 3D position errors are found to be about 0.24 and 0.45 m less for the NTCM-Klobpar compared to the GPS Klobuchar model during quiet and perturbed condition, respectively. The presented algorithm has the potential to continuously improve the accuracy of GPS single frequency mass market devices with only little software modification.
General practitioners' knowledge and concern about electromagnetic fields.
Berg-Beckhoff, Gabriele; Breckenkamp, Jürgen; Larsen, Pia Veldt; Kowall, Bernd
2014-12-01
Our aim is to explore general practitioners' (GPs') knowledge about EMF, and to assess whether different knowledge structures are related to the GPs' concern about EMF. Random samples were drawn from lists of GPs in Germany in 2008. Knowledge about EMF was assessed by seven items. A latent class analysis was conducted to identify latent structures in GPs' knowledge. Further, the GPs' concern about EMF health risk was measured using a score comprising six items. The association between GPs' concern about EMF and their knowledge was analysed using multiple linear regression. In total 435 (response rate 23.3%) GPs participated in the study. Four groups were identified by the latent class analysis: 43.1% of the GPs gave mainly correct answers; 23.7% of the GPs answered low frequency EMF questions correctly; 19.2% answered only the questions relating EMF with health risks, and 14.0% answered mostly "don't know". There was no association between GPs' latent knowledge classes or between the number of correct answers given by the GPs and their EMF concern, whereas the number of incorrect answers was associated with EMF concern. Greater EMF concern in subjects with more incorrect answers suggests paying particular attention to misconceptions regarding EMF in risk communication.
Expansion and Differentiation of Germline-Derived Pluripotent Stem Cells on Biomaterials
Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R.; Zenke, Martin; Neuss, Sabine
2013-01-01
Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer® LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level. PMID:23234562
Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials.
Hoss, Mareike; Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R; Zenke, Martin; Neuss, Sabine
2013-05-01
Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.
NASA Astrophysics Data System (ADS)
Mylnikova, Anna; Yasyukevich, Yury; Yasyukevich, Anna
2017-04-01
We have developed a technique for vertical total electron content (TEC) and differential code biases (DCBs) estimation using data from a single GPS/GLONASS station. The algorithm is based on TEC expansion into Taylor series in space and time (TayAbsTEC). We perform the validation of the technique using Global Ionospheric Maps (GIM) computed by Center for Orbit Determination in Europe (CODE) and Jet Propulsion Laboratory (JPL). We compared differences between absolute vertical TEC (VTEC) from GIM and VTEC evaluated by TayAbsTEC for 2009 year (solar activity minimum - sunspot number about 0), and for 2014 year (solar activity maximum - sunspot number 110). Since there is difference between VTEC from CODE and VTEC from JPL, we compare TayAbsTEC VTEC with both of them. We found that TayAbsTEC VTEC is closer to CODE VTEC than to JPL VTEC. The difference between TayAbsTEC VTEC and GIM VTEC is more noticeable for solar activity maximum (2014) than for solar activity minimum (2009) for both CODE and JPL. The distribution of VTEC differences is close to Gaussian distribution, so we conclude that results of TayAbsTEC are in the agreement with GIM VTEC. We also compared DCBs evaluated by TayAbsTEC and DCBs from GIM, computed by CODE. The TayAbsTEC DCBs are in good agreement with CODE DCBs for GPS satellites, but differ noticeable for GLONASS. We used DCBs to correct slant TEC to find out which DCBs give better results. Slant TEC correction with CODE DCBs produces negative and nonphysical TEC values. Slant TEC correction with TayAbsTEC DCBs doesn't produce such artifacts. The technique we developed is used for VTEC and DCBs calculation given only local GPS/GLONASS networks data. The evaluated VTEC data are in GIM framework which is handy when various data analyses are made.
Flight evaluation of differential GPS aided inertial navigation systems
NASA Technical Reports Server (NTRS)
Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.
1992-01-01
Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)
47 CFR 87.151 - Special requirements for differential GPS receivers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Special requirements for differential GPS receivers. 87.151 Section 87.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... differential GPS receivers. (a) The receiver shall achieve a message failure rate less than or equal to one...
NASA Astrophysics Data System (ADS)
Bock, O.; Parracho, A. C.; Bastin, S.; Hourdin, F.
2016-12-01
A high-quality, consistent, global, long-term dataset of integrated water vapor (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) inter-comparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are inter-compared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.
Simulation and analysis of differential GPS
NASA Astrophysics Data System (ADS)
Denaro, R. P.
NASA is conducting a research program to evaluate differential Global Positioning System (GPS) concepts for civil helicopter navigation. It is pointed out that the civil helicopter community will probably be an early user of GPS because of the unique mission operations in areas where precise navigation aids are not available. However, many of these applications involve accuracy requirements which cannot be satisfied by conventional GPS. Such applications include remote area search and rescue, offshore oil platform approach, remote area precision landing, and other precise navigation operations. Differential GPS provides a promising approach for meeting very demanding accuracy requirements. The considered procedure eliminates some of the common bias errors experienced by conventional GPS. This is done by making use of a second GPS receiver. A simulation process is developed as a tool for analyzing various scenarios of GPS-referenced civil aircraft navigation.
NASA Astrophysics Data System (ADS)
Jose, L.; Bennett, R. A.; Harig, C.
2017-12-01
Currently, cGPS data is well suited to track vertical changes in the Earth's surface. However, there are annual, semi-annual, and interannual signals within cGPS time series that are not well constrained. We hypothesize that these signals are primarily due to water loading. If this is the case, the conventional method of modeling cGPS data as an annual or semiannual sinusoid falls short, as such models cannot accurately capture all variations in surface displacement, especially those due to extreme hydrologic events. We believe that we can better correct the cGPS time series with another method we are developing wherein we use a time series of surface displacement derived from the GRACE geopotential field instead of a sinusoidal model to correct the data. Currently, our analysis is constrained to the Amazon Basin, where the signal due to water loading is large enough to appear in both the GRACE and cGPS measurements. The vertical signal from cGPS stations across the Amazon Basin show an apparent spatial correlation, which further supports our idea that these signals are due to a regional water loading signal. In our preliminary research, we used tsview for Matlab to find that the WRMS of the corrected cGPS time series can be reduced as much as 30% from the model corrected data to the GRACE corrected data. The Amazon, like many places around the world, has experienced extreme drought, in 2005, 2010, and recently in 2015. In addition to making the cGPS vertical signal more robust, the method we are developing has the potential to help us understand the effects of these weather events and track trends in water loading.
Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data
NASA Technical Reports Server (NTRS)
Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.;
2013-01-01
Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data
Carrier-phase multipath corrections for GPS-based satellite attitude determination
NASA Technical Reports Server (NTRS)
Axelrad, A.; Reichert, P.
2001-01-01
This paper demonstrates the high degree of spatial repeatability of these errors for a spacecraft environment and describes a correction technique, termed the sky map method, which exploits the spatial correlation to correct measurements and improve the accuracy of GPS-based attitude solutions.
GPS Position Time Series @ JPL
NASA Technical Reports Server (NTRS)
Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen
2013-01-01
Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis
NASA Astrophysics Data System (ADS)
Bock, Olivier; Parracho, Ana; Bastin, Sophie; Hourdin, Frededic; Mellul, Lidia
2016-04-01
A high-quality, consistent, global, long-term dataset of integrated water vapour (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) intercomparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and are analysed in coherence with precipitation and surface temperature data (from observations and ERA-Interim reanalysis). These data are also used to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are intercompared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.
Site selection plan and installation guidelines for a nationwide differential GPS service
DOT National Transportation Integrated Search
1997-08-05
The Global Positioning System (GPS), in its current form, is used within the transportation industry for vehicle tracking and navigation. With the advent of a nationwide differential GPS (DGPS) service, this role will expand to include public safety,...
Study of the GPS inter-frequency calibration of timing receivers
NASA Astrophysics Data System (ADS)
Defraigne, P.; Huang, W.; Bertrand, B.; Rovera, D.
2018-02-01
When calibrating Global Positioning System (GPS) stations dedicated to timing, the hardware delays of P1 and P2, the P(Y)-codes on frequencies L1 and L2, are determined separately. In the international atomic time (TAI) network the GPS stations of the time laboratories are calibrated relatively against reference stations. This paper aims at determining the consistency between the P1 and P2 hardware delays (called dP1 and dP2) of these reference stations, and to look at the stability of the inter-signal hardware delays dP1-dP2 of all the stations in the network. The method consists of determining the dP1-dP2 directly from the GPS pseudorange measurements corrected for the frequency-dependent antenna phase center and the frequency-dependent ionosphere corrections, and then to compare these computed dP1-dP2 to the calibrated values. Our results show that the differences between the computed and calibrated dP1-dP2 are well inside the expected combined uncertainty of the two quantities. Furthermore, the consistency between the calibrated time transfer solution obtained from either single-frequency P1 or dual-frequency P3 for reference laboratories is shown to be about 1.0 ns, well inside the 2.1 ns uB uncertainty of a time transfer link based on GPS P3 or Precise Point Positioning. This demonstrates the good consistency between the P1 and P2 hardware delays of the reference stations used for calibration in the TAI network. The long-term stability of the inter-signal hardware delays is also analysed from the computed dP1-dP2. It is shown that only variations larger than 2 ns can be detected for a particular station, while variations of 200 ps can be detected when differentiating the results between two stations. Finally, we also show that in the differential calibration process as used in the TAI network, using the same antenna phase center or using different positions for L1 and L2 signals gives maximum differences of 200 ps on the hardware delays of the separate codes P1 and P2; however, the final impact on the P3 combination is less than 10 ps.
Use of Reference Frames for Interplanetary Navigation at JPL
NASA Technical Reports Server (NTRS)
Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue
2010-01-01
Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.
Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.
2006-01-01
We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media, Inc.
Estimate of higher order ionospheric errors in GNSS positioning
NASA Astrophysics Data System (ADS)
Hoque, M. Mainul; Jakowski, N.
2008-10-01
Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.
An alternative ionospheric correction model for global navigation satellite systems
NASA Astrophysics Data System (ADS)
Hoque, M. M.; Jakowski, N.
2015-04-01
The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.
NASA Astrophysics Data System (ADS)
Arabsahebi, Reza; Voosoghi, Behzad; Tourian, Mohammad J.
2018-05-01
Tropospheric correction is one of the most important corrections in satellite altimetry measurements. Tropospheric wet and dry path delays have strong dependence on temperature, pressure and humidity. Tropospheric layer has particularly high variability over coastal regions due to humidity, wind and temperature gradients. Depending on the extent of water body and wind conditions over an inland water, Wet Tropospheric Correction (WTC) is within the ranges from a few centimeters to tens of centimeters. Therefore, an extra care is needed to estimate tropospheric corrections on the altimetric measurements over inland waters. This study assesses the role of tropospheric correction on the altimetric measurements over the Urmia Lake in Iran. For this purpose, four types of tropospheric corrections have been used: (i) microwave radiometer (MWR) observations, (ii) tropospheric corrections computed from meteorological models, (iii) GPS observations and (iv) synoptic station data. They have been applied to Jason-2 track no. 133 and SARAL/AltiKa track no. 741 and 356 corresponding to 117-153 and the 23-34 cycles, respectively. In addition, the corresponding measurements of PISTACH and PEACHI, include new retracking method and an innovative wet tropospheric correction, have also been used. Our results show that GPS observation leads to the most accurate tropospheric correction. The results obtained from the PISTACH and PEACHI projects confirm those obtained with the standard SGDR, i.e., the role of GPS in improving the tropospheric corrections. It is inferred that the MWR data from Jason-2 mission is appropriate for the tropospheric corrections, however the SARAL/AltiKa one is not proper because Jason-2 possesses an enhanced WTC near the coast. Furthermore, virtual stations are defined for assessment of the results in terms of time series of Water Level Height (WLH). The results show that GPS tropospheric corrections lead to the most accurate WLH estimation for the selected virtual stations, which improves the accuracy of the obtained WLH time series by about 5%.
Zhao, Huaqing; Rebbeck, Timothy R; Mitra, Nandita
2009-12-01
Confounding due to population stratification (PS) arises when differences in both allele and disease frequencies exist in a population of mixed racial/ethnic subpopulations. Genomic control, structured association, principal components analysis (PCA), and multidimensional scaling (MDS) approaches have been proposed to address this bias using genetic markers. However, confounding due to PS can also be due to non-genetic factors. Propensity scores are widely used to address confounding in observational studies but have not been adapted to deal with PS in genetic association studies. We propose a genomic propensity score (GPS) approach to correct for bias due to PS that considers both genetic and non-genetic factors. We compare the GPS method with PCA and MDS using simulation studies. Our results show that GPS can adequately adjust and consistently correct for bias due to PS. Under no/mild, moderate, and severe PS, GPS yielded estimated with bias close to 0 (mean=-0.0044, standard error=0.0087). Under moderate or severe PS, the GPS method consistently outperforms the PCA method in terms of bias, coverage probability (CP), and type I error. Under moderate PS, the GPS method consistently outperforms the MDS method in terms of CP. PCA maintains relatively high power compared to both MDS and GPS methods under the simulated situations. GPS and MDS are comparable in terms of statistical properties such as bias, type I error, and power. The GPS method provides a novel and robust tool for obtaining less-biased estimates of genetic associations that can consider both genetic and non-genetic factors. 2009 Wiley-Liss, Inc.
Helicopter Approach Capability Using the Differential Global Positioning System
NASA Technical Reports Server (NTRS)
Kaufmann, David N.
1994-01-01
The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the Differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. The errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.
Flight-test evaluation of civil helicopter terminal approach operations using differential GPS
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Hegarty, D. M.
1989-01-01
A civil code differential Global Positioning System (DGPS) has been developed and flight-tested by the NASA Ames Research Center. The system was used to evaluate the performance of the DGPS for support of helicopter terminal approach operations. The airborne component of the DGPS was installed in a NASA helicopter. The ground-reference component was installed in a mobile van and equipped with a real-time VHF telemetry data link to transmit correction information to the aircraft system. An extensive series of tests was conducted to evaluate the performance of the system for several different configurations of the airborne navigation filter. This paper will describe the systems, the results of the flight tests, and the results of the posttest analysis.
NASA Astrophysics Data System (ADS)
Chen, Y.; Guo, L.; Wu, J. J.; Chen, Q.; Song, S.
2014-12-01
In Differential Interferometric Synthetic Aperture Radar (D-InSAR) atmosphere effect including troposphere and ionosphere is one of the dominant sources of error in most interferograms, which greatly reduced the accuracy of deformation monitoring. In recent years tropospheric correction especially Zwd in InSAR data processing has ever got widely investigated and got efficiently suppressed. And thus we focused our study on ionospheric correction using two different methods, which are split-spectrum technique and Nequick model, one of the three dimensional electron density models. We processed Wenchuan ALOS PALSAR images, and compared InSAR surface deformation after ionospheric modification using the two approaches mentioned above with ground GPS subsidence observations to validate the effect of split-spectrum method and NeQuick model, further discussed the performance and feasibility of external data and InSAR itself during the study of the elimination of InSAR ionospheric effect.
Handling cycle slips in GPS data during ionospheric plasma bubble events
NASA Astrophysics Data System (ADS)
Banville, S.; Langley, R. B.; Saito, S.; Yoshihara, T.
2010-12-01
During disturbed ionospheric conditions such as the occurrence of plasma bubbles, the phase and amplitude of the electromagnetic waves transmitted by GPS satellites undergo rapid fluctuations called scintillation. When this phenomenon is observed, GPS receivers are more prone to signal tracking interruptions, which prevent continuous measurement of the total electron content (TEC) between a satellite and the receiver. In order to improve TEC monitoring, a study was conducted with the goal of reducing the effects of signal tracking interruptions by correcting for "cycle slips," an integer number of carrier wavelengths not measured by the receiver during a loss of signal lock. In this paper, we review existing cycle-slip correction methods, showing that the characteristics associated with ionospheric plasma bubbles (rapid ionospheric delay fluctuations, data gaps, increased noise, etc.) prevent reliable correction of cycle slips. Then, a reformulation of the "geometry-free" model conventionally used for ionospheric studies with GPS is presented. Geometric information is used to obtain single-frequency estimates of TEC variations during momentary L2 signal interruptions, which also provides instantaneous cycle-slip correction capabilities. The performance of this approach is assessed using data collected on Okinawa Island in Japan during a plasma bubble event that occurred on 23 March 2004. While an improvement in the continuity of TEC time series is obtained, we question the reliability of any cycle-slip correction technique when discontinuities on both GPS legacy frequencies occur simultaneously for more than a few seconds.
NASA Technical Reports Server (NTRS)
Axelrad, P.; Cox, A. E.; Crumpton, K. S.
1997-01-01
An algorithm is presented which uses observations of Global Positioning System (GPS) signals reflected from the ocean surface and acquired by a GPS receiver onboard an altimetric satellite to compute the ionospheric delay present in the altimeter measurement. This eliminates the requirement for a dual frequency altimeter for many Earth observing missions. A ground-based experiment is described which confirms the presence of these ocean-bounced signals and demonstrates the potential for altimeter ionospheric correction at the centimeter level.
Differential GPS for air transport: Status
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.
1993-01-01
The presentation presents background on what the Global Navigation Satellite System (GNSS) is, desired target dates for initial GNSS capabilities for aircraft operations, and a description of differential GPS (Global Positioning System). The presentation also presents an overview of joint flight tests conducted by LaRC and Honeywell on an integrated differential GPS/inertial reference unit (IRU) navigation system. The overview describes the system tested and the results of the flight tests. The last item presented is an overview of a current grant with Ohio University from LaRC which has the goal of developing a precision DGPS navigation system based on interferometry techniques. The fundamentals of GPS interferometry are presented and its application to determine attitude and heading and precision positioning are shown. The presentation concludes with the current status of the grant.
NASA Technical Reports Server (NTRS)
Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary
1991-01-01
NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.
Biases in GNSS-Data Processing
NASA Astrophysics Data System (ADS)
Schaer, S. C.; Dach, R.; Lutz, S.; Meindl, M.; Beutler, G.
2010-12-01
Within the Global Positioning System (GPS) traditionally different types of pseudo-range measurements (P-code, C/A-code) are available on the first frequency that are tracked by the receivers with different technologies. For that reason, P1-C1 and P1-P2 Differential Code Biases (DCB) need to be considered in a GPS data processing with a mix of different receiver types. Since the Block IIR-M series of GPS satellites also provide C/A-code on the second frequency, P2-C2 DCB need to be added to the list of biases for maintenance. Potential quarter-cycle biases between different phase observables (specifically L2P and L2C) are another issue. When combining GNSS (currently GPS and GLONASS), careful consideration of inter-system biases (ISB) is indispensable, in particular when an adequate combination of individual GLONASS clock correction results from different sources (using, e.g., different software packages) is intended. Facing the GPS and GLONASS modernization programs and the upcoming GNSS, like the European Galileo and the Chinese Compass, an increasing number of types of biases is expected. The Center for Orbit Determination in Europe (CODE) is monitoring these GPS and GLONASS related biases for a long time based on RINEX files of the tracking network of the International GNSS Service (IGS) and in the frame of the data processing as one of the global analysis centers of the IGS. Within the presentation we give an overview on the stability of the biases based on the monitoring. Biases derived from different sources are compared. Finally, we give an outlook on the potential handling of such biases with the big variety of signals and systems expected in the future.
Monitoring and understanding crustal deformation by means of GPS and InSAR data
NASA Astrophysics Data System (ADS)
Zerbini, Susanna; Prati, Claudio; Bruni, Sara; Errico, Maddalena; Musicò, Elvira; Novali, Fabrizio; Santi, Efisio
2014-05-01
Monitoring deformation of the Earth's crust by using data acquired by both the GNSS and SAR techniques allows describing crustal movements with high spatial and temporal resolution. This is a key contribution for achieving a deeper and better insight of geodynamic processes. Combination of the two techniques provides a very powerful means, however, before combing the different data sets it is important to properly understand their respective contribution. For this purpose, strictly simultaneous and long time series would be necessary. This is not, in general, a common case due to the relatively long SAR satellites revisit time. A positive exception is represented by the data set of COSMO SKYMed (CSK) images made available for this study by the Italian Space Agency (ASI). The flyover area encompass the city of Bologna and the smaller nearby town of Medicina where permanent GPS stations are operational. At the times of the CSK flyovers, we compared the GPS and SAR Up and East coordinates of a few stations as well as differential tropospheric delays derived by both techniques. The GPS time series were carefully screened and corrected for the presence of discontinuities by adopting a dedicated statistical procedure. The comparisons of both the estimated deformation and the tropospheric delays are encouraging and highlight the need for having available a more evenly sampled SAR data set.
NASA Astrophysics Data System (ADS)
The Pierre Auger Collaboration
2016-01-01
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.
Aab, Alexander
2016-01-29
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independentmore » method used for cross-checks that indeed we reach nanosecond-scale timing accuracy by this correction. First, we operate a “beacon transmitter” which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.« less
47 CFR 87.151 - Special requirements for differential GPS receivers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for differential GPS receivers. 87.151 Section 87.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Technical Requirements § 87.151 Special requirements for...
Synopsis and Recommendations of the TSC Workshop on Differential Operation of NAVSTAR GPS
DOT National Transportation Integrated Search
1983-10-01
A workshop on Differential Operation of NAVSTAR GPS was held on June 9-10, 1983, at the Department of Transportation's Transportation Systems Center in Cambridge, Massachesetts. The primary purpose of the workship was to inititate the development of ...
Results of an Internet-Based Dual-Frequency Global Differential GPS System
NASA Technical Reports Server (NTRS)
Muellerschoen, R.; Bertiger, W.; Lough, M.
2000-01-01
Observables from a global network of 18 GPS receivers are returned in real-time to JPL over the open Internet. 30 - 40 cm RSS global GPS orbits and precise dual-frequency GPS clocks are computed in real-time with JPL's Real Time Gipsy (RTG) software.
33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.
Code of Federal Regulations, 2011 CFR
2011-07-01
...GPS) receiver; (2) Marine band Non-Directional Beacon receiver capable of receiving dGPS error... frequency; and (4) Control unit. (b) An AISSE must have the following capabilities: (1) Use dGPS to sense... Recommended Standards for Differential NAVSTAR GPS Service in determining the required information; (3...
GPS Eye-in-the-Sky Software Takes Closer Look Below
NASA Technical Reports Server (NTRS)
2006-01-01
At NASA, GPS is a vital resource for scientific research aimed at understanding and protecting Earth. The Agency employs the band of GPS satellites for such functions as mapping Earth s ionosphere and developing earthquake-prediction tools. Extending this worldly wisdom beyond Earth, NASA researchers are even discussing the possibility of developing global positioning satellites around Mars, in anticipation of future manned missions. Despite all of its terrestrial accomplishments, traditional GPS still has its limitations. The Space Agency is working to address these with many new advances, including a "Global Differential GPS" technology that instantaneously provides a position to within 4 inches horizontally and 8 inches vertically, anywhere on Earth. According to NASA's Jet Propulsion Laboratory, no other related system provides the same combination of accuracy and coverage. Furthermore, traditional GPS cannot communicate beyond latitudes of 75deg. That means that most of Greenland and Antarctica cannot receive GPS signals. The Global Differential GPS technology approaches this area of the world using several different GPS signals. These signals overlap to compensate for the gaps in coverage. Now, scientists working in the extreme northernmost and southernmost areas of the world can have access to the same GPS technology that other scientists around the world rely on.
Synchrophasor Data Correction under GPS Spoofing Attack: A State Estimation Based Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Xiaoyuan; Du, Liang; Duan, Dongliang
GPS spoofing attack (GSA) has been shown to be one of the most imminent threats to almost all cyber-physical systems incorporated with the civilian GPS signal. Specifically, for our current agenda of the modernization of the power grid, this may greatly jeopardize the benefits provided by the pervasively installed phasor measurement units (PMU). In this study, we consider the case where synchrophasor data from PMUs are compromised due to the presence of a single GSA, and show that it can be corrected by signal processing techniques. In particular, we introduce a statistical model for synchrophasorbased power system state estimation (SE),more » and then derive the spoofing-matched algorithms for synchrophasor data correction against GPS spoofing attack. Different testing scenarios in IEEE 14-, 30-, 57-, 118-bus systems are simulated to show the proposed algorithms’ performance on GSA detection and state estimation. Numerical results demonstrate that our proposed algorithms can consistently locate and correct the spoofed synchrophasor data with good accuracy as long as the system observability is satisfied. Finally, the accuracy of state estimation is significantly improved compared with the traditional weighted least square method and approaches the performance under the Genie-aided method.« less
Synchrophasor Data Correction under GPS Spoofing Attack: A State Estimation Based Approach
Fan, Xiaoyuan; Du, Liang; Duan, Dongliang
2017-02-01
GPS spoofing attack (GSA) has been shown to be one of the most imminent threats to almost all cyber-physical systems incorporated with the civilian GPS signal. Specifically, for our current agenda of the modernization of the power grid, this may greatly jeopardize the benefits provided by the pervasively installed phasor measurement units (PMU). In this study, we consider the case where synchrophasor data from PMUs are compromised due to the presence of a single GSA, and show that it can be corrected by signal processing techniques. In particular, we introduce a statistical model for synchrophasorbased power system state estimation (SE),more » and then derive the spoofing-matched algorithms for synchrophasor data correction against GPS spoofing attack. Different testing scenarios in IEEE 14-, 30-, 57-, 118-bus systems are simulated to show the proposed algorithms’ performance on GSA detection and state estimation. Numerical results demonstrate that our proposed algorithms can consistently locate and correct the spoofed synchrophasor data with good accuracy as long as the system observability is satisfied. Finally, the accuracy of state estimation is significantly improved compared with the traditional weighted least square method and approaches the performance under the Genie-aided method.« less
NASA Astrophysics Data System (ADS)
Murillo Feo, C. A.; Martnez Martinez, L. J.; Correa Muñoz, N. A.
2016-06-01
The accuracy of locating attributes on topographic surfaces when, using GPS in mountainous areas, is affected by obstacles to wave propagation. As part of this research on the semi-automatic detection of landslides, we evaluate the accuracy and spatial distribution of the horizontal error in GPS positioning in the tertiary road network of six municipalities located in mountainous areas in the department of Cauca, Colombia, using geo-referencing with GPS mapping equipment and static-fast and pseudo-kinematic methods. We obtained quality parameters for the GPS surveys with differential correction, using a post-processing method. The consolidated database underwent exploratory analyses to determine the statistical distribution, a multivariate analysis to establish relationships and partnerships between the variables, and an analysis of the spatial variability and calculus of accuracy, considering the effect of non-Gaussian distribution errors. The evaluation of the internal validity of the data provide metrics with a confidence level of 95% between 1.24 and 2.45 m in the static-fast mode and between 0.86 and 4.2 m in the pseudo-kinematic mode. The external validity had an absolute error of 4.69 m, indicating that this descriptor is more critical than precision. Based on the ASPRS standard, the scale obtained with the evaluated equipment was in the order of 1:20000, a level of detail expected in the landslide-mapping project. Modelling the spatial variability of the horizontal errors from the empirical semi-variogram analysis showed predictions errors close to the external validity of the devices.
Debris flow cartography using differential GNSS and Theodolite measurements
NASA Astrophysics Data System (ADS)
Khazaradze, Giorgi; Guinau, Marta; Calvet, Jaume; Furdada, Gloria; Victoriano, Ane; Génova, Mar; Suriñach, Emma
2016-04-01
The presented results form part of a CHARMA project, which pursues a broad objective of reducing damage caused by uncontrolled mass movements, such as rockfalls, snow avalanches and debris flows. Ultimate goal of the project is to contribute towards the establishment of new scientific knowledge and tools that can help in the design and creation of early warning systems. Here we present the specific results that deal with the application of differential GNSS and classical geodetic (e.g. theodolite) methods for mapping debris and torrential flows. Specifically, we investigate the Portainé stream located in the Pallars Sobirà region of Catalonia (Spain), in the eastern Pyrenees. In the last decade more than ten debris-flow type phenomena have affected the region, causing considerable economic losses. Since early 2014, we have conducted several field campaigns within the study area, where we have employed a multi-disciplinary approach, consisting of geomorphological, dendro-chronological and geodetic methods, in order to map the river bed and reconstruct the history of the extreme flooding and debris flow events. Geodetic studies included several approaches, using the classical and satellite based methods. The former consisted of angle and distance measurements between the Geodolite 502 total station and the reflecting prisms placed on top of the control points located within the riverbed. These type of measurements are precise, although present several disadvantages such as the lack of absolute coordinates that makes the geo-referencing difficult, as well as a relatively time-consuming process that involves two persons. For this reason, we have also measured the same control points using the differential GNSS system, in order to evaluate the feasibility of replacing the total station measurements with the GNSS. The latter measuring method is fast and can be conducted by one person. However, the fact that the study area is within the riverbed, often below the trees, limits the visibility of the satellites and thus, can result in meter-level errors while estimating the positions. We have conducted 2 measurements using various differential GNSS systems in March and in September of 2015. During these measurements we used Leica Viva GS14 receiver as a rover station, which was equipped with a GSM card to establish an internet connection in order to receive differential corrections from continuous GNSS networks. During the first campaign we have used the RTK positioning method using the SmartNet network (http://es.smartnet-eu.com) operated by Leica. This system had the advantage of transmitting differential corrections for GPS and GLONASS systems. During the second campaign, we have had an access to the ICGC (http://www.icc.cat) CatNet permanent GPS network, which only provides GPS satellite corrections. Here we present the analysis of the obtained precisions from these two RTK systems. Additionally, we have analyzed the geodetic data in a post-processing mode using the Leica Geo Office 8.4 software with IGS estimated final orbits. For this procedure, in addition to using the data from nearby CatNet CGPS stations, we have also used data from the base station(s) specifically setup near the study area during the campaign period. The work has been supported by the Spanish Ministry of Science and Innovation project CHARMA: CHAracterization and ContRol of MAss Movements. A Challenge for Geohazard Mitigation (CGL2013-40828-R) and RISKNAT group (2014GR/1243).
The influence of grounding on GPS receiver differential code biases
NASA Astrophysics Data System (ADS)
Choi, Byung-Kyu; Lee, Sang Jeong
2018-07-01
The Global Positioning System (GPS) has become an effective tool for estimating ionospheric total electron content (TEC). One of the critical factors affecting ionospheric TEC estimation from GPS data is the differential code biases (DCBs) inherent in both GPS receivers and satellites. To investigate the factor that affects the receiver DCB, we consider the relationship between the receiver DCB and the grounding of an antenna. GPS data from 9 stations in South Korea from three periods (the years 2009, 2014, and 2017) were used in the analysis. It was found that a significant jump (∼8-13 ns, or ∼ 23-37 TECU) in hourly DCB time series occurred simultaneously at the two different sites when an antenna is changed from a grounded to the non-grounded state. Thus, our study clearly identifies that the grounding of GPS equipment is a factor of the receiver DCB changes.
Tasking and control of a squad of robotic vehicles
NASA Astrophysics Data System (ADS)
Lewis, Christopher L.; Feddema, John T.; Klarer, Paul
2001-09-01
Sandia National Laboratories have developed a squad of robotic vehicles as a test-bed for investigating cooperative control strategies. The squad consists of eight RATLER vehicles and a command station. The RATLERs are medium-sized all-electric vehicles containing a PC104 stack for computation, control, and sensing. Three separate RF channels are used for communications; one for video, one for command and control, and one for differential GPS corrections. Using DGPS and IR proximity sensors, the vehicles are capable of autonomously traversing fairly rough terrain. The control station is a PC running Windows NT. A GUI has been developed that allows a single operator to task and monitor all eight vehicles. To date, the following mission capabilities have been demonstrated: 1. Way-Point Navigation, 2. Formation Following, 3. Perimeter Surveillance, 4. Surround and Diversion, and 5. DGPS Leap Frog. This paper describes the system and briefly outlines each mission capability. The DGPS Leap Frog capability is discussed in more detail. This capability is unique in that it demonstrates how cooperation allows the vehicles to accurately navigate beyond the RF communication range. One vehicle stops and uses its corrected GPS position to re-initialize its receiver to become the DGPS correction station for the other vehicles. Error in position accumulates each time a new vehicle takes over the DGPS duties. The accumulation in error is accurately modeled as a random walk phenomenon. This paper demonstrates how useful accuracy can be maintained beyond the vehicle's range.
van de Kamp, Julia; Kramann, Rafael; Anraths, Julia; Schöler, Hans R; Ko, Kinarm; Knüchel, Ruth; Zenke, Martin; Neuss, Sabine; Schneider, Rebekka K
2012-03-01
For tissue engineering, cultivation of pluripotent stem cells on three-dimensional scaffolds allows the generation of organ-like structures. Previously, we have established an organotypic culture system of skin to induce epidermal differentiation in adult stem cells. Multipotent stem cells are not able to differentiate across germinal boundaries. In contrast, pluripotent stem cells readily differentiate into tissues of all three germ layers. Germline-derived pluripotent stem cells (gPS cells) can be generated by induction of pluripotency in mouse unipotent germline stem cells without the introduction of exogenous transcription factors. In the current study, we analyzed the influence of organotypic culture conditions of skin on the epithelial differentiation of gPS cells in comparison to the well-established HM1 ES cell line. Quantitative RT-PCR data of the pluripotency gene Oct4 showed that gPS cells are characterized by an accelerated Oct4-downregulation compared to HM1 ES cells. When subjected to the organotypic culture conditions of skin, gPS cells formed tubulocystic structures lined by stratified (CK5/6(+), CK14(+), CK8/18(-)) epithelia. HM1 ES cells formed only small tubulocystic structures lined by simple, CK8/18(+) epithelia. BMP-4, an epidermal morphogen, significantly enhanced the expression of epithelial markers in HM1 ES cells, but did not significantly affect the formation of complex (squamous) epithelia in gPS cells. In HM1 ES cells the differentiation into squamous epithelium was only inducible in the presence of mature dermal fibroblasts. Both pluripotent stem cell types spontaneously differentiated into mesodermal, endodermal and into neuroectodermal cells at low frequency, underlining their pluripotent differentiation capacity. Concluding, the organotypic culture conditions of skin induce a multilayered, stratified epithelium in gPS cells, in HM1 ES cells only in the presence of dermal fibroblasts. Thus, our data show that differentiation protocols strongly depend on the stem cell type and have to be modified for each specific stem cell type. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Regional ionospheric model for improvement of navigation position with EGNOS
NASA Astrophysics Data System (ADS)
Swiatek, Anna; Tomasik, Lukasz; Jaworski, Leszek
The problem of insufficient accuracy of EGNOS correction for the territory of Poland, located at the edge of EGNOS range is well known. The EEI PECS project (EGNOS EUPOS Integration) assumed improving the EGNOS correction by using the GPS observations from Polish ASG-EUPOS stations. A ionospheric delay parameter is a part of EGNOS correction. The comparative analysis of TEC values obtained from EGNOS and regional permanent GNSS stations showed the systematic shift. The TEC from EGNOS correction is underestimated related to computed regional TEC value. The new-‘improved’ corrections computed based on regional model were substituted for the EGNOS correction for suitable message. Dynamic measurements managed using the Mobile GPS Laboratory (MGL), showed the improvement of navigation position with TEC regional model.
Consistent Long-Time Series of GPS Satellite Antenna Phase Center Corrections
NASA Astrophysics Data System (ADS)
Steigenberger, P.; Schmid, R.; Rothacher, M.
2004-12-01
The current IGS processing strategy disregards satellite antenna phase center variations (pcvs) depending on the nadir angle and applies block-specific phase center offsets only. However, the transition from relative to absolute receiver antenna corrections presently under discussion necessitates the consideration of satellite antenna pcvs. Moreover, studies of several groups have shown that the offsets are not homogeneous within a satellite block. Manufacturer specifications seem to confirm this assumption. In order to get best possible antenna corrections, consistent ten-year time series (1994-2004) of satellite-specific pcvs and offsets were generated. This challenging effort became possible as part of the reprocessing of a global GPS network currently performed by the Technical Universities of Munich and Dresden. The data of about 160 stations since the official start of the IGS in 1994 have been reprocessed, as today's GPS time series are mostly inhomogeneous and inconsistent due to continuous improvements in the processing strategies and modeling of global GPS solutions. An analysis of the signals contained in the time series of the phase center offsets demonstrates amplitudes on the decimeter level, at least one order of magnitude worse than the desired accuracy. The periods partly arise from the GPS orbit configuration, as the orientation of the orbit planes with regard to the inertial system repeats after about 350 days due to the rotation of the ascending nodes. In addition, the rms values of the X- and Y-offsets show a high correlation with the angle between the orbit plane and the direction to the sun. The time series of the pcvs mainly point at the correlation with the global terrestrial scale. Solutions with relative and absolute phase center corrections, with block- and satellite-specific satellite antenna corrections demonstrate the effect of this parameter group on other global GPS parameters such as the terrestrial scale, station velocities, the geocenter position or the tropospheric delays. Thus, deeper insight into the so-called `Bermuda triangle' of several highly correlated parameters is given.
GPS Auto-Navigation Design for Unmanned Air Vehicles
NASA Technical Reports Server (NTRS)
Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona
2003-01-01
A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.
NASA Astrophysics Data System (ADS)
Deng, Liansheng; Jiang, Weiping; Li, Zhao; Chen, Hua; Wang, Kaihua; Ma, Yifang
2017-02-01
Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China's (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.
A GPS measurement system for precise satellite tracking and geodesy
NASA Technical Reports Server (NTRS)
Yunck, T. P.; Wu, S.-C.; Lichten, S. M.
1985-01-01
NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.
NASA Astrophysics Data System (ADS)
Jaworski, Leszek; Swiatek, Anna; Zdunek, Ryszard
2013-09-01
The problem of insufficient accuracy of EGNOS correction for the territory of Poland, located at the edge of EGNOS range is well known. The EEI PECS project (EGNOS EUPOS Integration) assumes improving the EGNOS correction by using the GPS observations from Polish ASG-EUPOS stations. One of the EEI project tasks was the identification of EGNOS performance limitations over Poland and services for EGNOSS-EUPOS combination. The two sets of data were used for those goals: statistical, theoretical data obtained using the SBAS simulator software, real data obtained during the measurements. The real measurements were managed as two types of measurements: static and dynamic. Static measurements are continuously managing using Septentrio PolaRx2 receiver. The SRC permanent station works in IMAGE/PERFECT project. Dynamic measurements were managed using the Mobile GPS Laboratory (MGL). Receivers (geodetic and navigation) were working in two modes: determining navigation position from standalone GPS, determining navigation position from GPS plus EGNOS correction. The paper presents results of measurements' analyses and conclusions based on which the next tasks in EEI project are completed
NASA Technical Reports Server (NTRS)
Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine; Weiss, Marc A.
1990-01-01
Over intercontinental distances, the accuracy of The Global Positioning System (GPS) time transfers ranges from 10 to 20 ns. The principal error sources are the broadcast ionospheric model, the broadcast ephemerides and the local antenna coordinates. For the first time, the three major error sources for GPS time transfer can be reduced simultaneously for a particular time link. Ionospheric measurement systems of the National Institute of Standards and Technology (NIST) type are now operating on a regular basis at the National Institute of Standards and Technology in Boulder and at the Paris Observatory in Paris. Broadcast ephemerides are currently recorded for time-transfer tracks between these sites, this being necessary for using precise ephemerides. At last, corrected local GPS antenna coordinates are now introduced in GPS receivers at both sites. Shown here is the improvement in precision for this long-distance time comparison resulting from the reduction of these three error sources.
Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay
NASA Technical Reports Server (NTRS)
Webb, Frank H.; Fishbein, Evan F.; Moore, Angelyn W.; Owen, Susan E.; Fielding, Eric J.; Granger, Stephanie L.; Bjorndahl, Fredrik; Lofgren Johan
2011-01-01
To mitigate atmospheric errors caused by the troposphere, which is a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging, a tropospheric correction method has been developed using data from the European Centre for Medium- Range Weather Forecasts (ECMWF) and the Global Positioning System (GPS). The ECMWF data was interpolated using a Stretched Boundary Layer Model (SBLM), and ground-based GPS estimates of the tropospheric delay from the Southern California Integrated GPS Network were interpolated using modified Gaussian and inverse distance weighted interpolations. The resulting Zenith Total Delay (ZTD) correction maps have been evaluated, both separately and using a combination of the two data sets, for three short-interval InSAR pairs from Envisat during 2006 on an area stretching from northeast from the Los Angeles basin towards Death Valley. Results show that the root mean square (rms) in the InSAR images was greatly reduced, meaning a significant reduction in the atmospheric noise of up to 32 percent. However, for some of the images, the rms increased and large errors remained after applying the tropospheric correction. The residuals showed a constant gradient over the area, suggesting that a remaining orbit error from Envisat was present. The orbit reprocessing in ROI_pac and the plane fitting both require that the only remaining error in the InSAR image be the orbit error. If this is not fulfilled, the correction can be made anyway, but it will be done using all remaining errors assuming them to be orbit errors. By correcting for tropospheric noise, the biggest error source is removed, and the orbit error becomes apparent and can be corrected for
Effects on noise properties of GPS time series caused by higher-order ionospheric corrections
NASA Astrophysics Data System (ADS)
Jiang, Weiping; Deng, Liansheng; Li, Zhao; Zhou, Xiaohui; Liu, Hongfei
2014-04-01
Higher-order ionospheric (HOI) effects are one of the principal technique-specific error sources in precise global positioning system (GPS) analysis. These effects also influence the non-linear characteristics of GPS coordinate time series. In this paper, we investigate these effects on coordinate time series in terms of seasonal variations and noise amplitudes. Both power spectral techniques and maximum likelihood estimators (MLE) are used to evaluate these effects quantitatively and qualitatively. Our results show an overall improvement for the analysis of global sites if HOI effects are considered. We note that the noise spectral index that is used for the determination of the optimal noise models in our analysis ranged between -1 and 0 both with and without HOI corrections, implying that the coloured noise cannot be removed by these corrections. However, the corrections were found to have improved noise properties for global sites. After the corrections were applied, the noise amplitudes at most sites decreased, among which the white noise amplitudes decreased remarkably. The white noise amplitudes of up to 81.8% of the selected sites decreased in the up component, and the flicker noise of 67.5% of the sites decreased in the north component. Stacked periodogram results show that, no matter whether the HOI effects are considered or not, a common fundamental period of 1.04 cycles per year (cpy), together with the expected annual and semi-annual signals, can explain all peaks of the north and up components well. For the east component, however, reasonable results can be obtained only based on HOI corrections. HOI corrections are useful for better detecting the periodic signals in GPS coordinate time series. Moreover, the corrections contributed partly to the seasonal variations of the selected sites, especially for the up component. Statistically, HOI corrections reduced more than 50% and more than 65% of the annual and semi-annual amplitudes respectively at the selected sites.
Olssøn, Ingrid; Mykletun, Arnstein; Dahl, Alv A
2005-01-01
Background General practitioners' (GPs) diagnostic skills lead to underidentification of generalized anxiety disorders (GAD) and major depressive episodes (MDE). Supplement of brief questionnaires could improve the diagnostic accuracy of GPs for these common mental disorders. The aims of this study were to examine the usefulness of The Hospital Anxiety and Depression Rating Scale (HADS) for GPs by: 1) Examining its psychometrics in the GPs' setting; 2) Testing its case-finding properties compared to patient-rated GAD and MDE (DSM-IV); and 3) Comparing its case finding abilities to that of the GPs using Clinical Global Impression-Severity (CGI-S) rating. Methods In a cross-sectional survey study 1,781 patients in three consecutive days in September 2001 attended 141 GPs geographically spread in Norway. Sensitivity, specificity, optimal cut off score, and Area under the curve (AUC) for the HADS and the CGI-S were calculated with Generalized Anxiety Questionnaire (GAS-Q) as reference standard for GAD, and Depression Screening Questionnaire (DSQ) for MDE. Results The HADS-A had optimal cut off ≥8 (sensitivity 0.89, specificity 0.75), AUC 0.88 and 76% of patients were correctly classified in relation to GAD. The HADS-D had by optimal cut off ≥8 (sensitivity 0.80 and specificity 0.88) AUC 0.93 and 87% of the patients were correctly classified in relation to MDE. Proportions of the total correctly classified at the CGI-S optimal cut-off ≥3 were 83% of patients for GAD and 81% for MDE. Conclusion The results indicate that addition of the patients' HADS scores to GPs' information could improve their diagnostic accuracy of GAD and MDE. PMID:16351733
Crustal Deformation along San Andreas Fault System revealed by GPS and Sentinel-1 InSAR
NASA Astrophysics Data System (ADS)
Xu, X.; Sandwell, D. T.
2017-12-01
We present a crustal deformation velocity map along the San Andreas Fault System by combining measurements from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) velocity models (CGM V1). We assembled 5 tracks of descending Sentinel-1 InSAR data spanning 2014.11-2017.02, and produced 545 interferograms, each of which covers roughly 250km x 420km area ( 60 bursts). These interferograms are unwrapped using SNAPHU [Chen & Zebker, 2002], with the 2Npi unwrapping ambiguity corrected with a sparse recovery method. We used coherence-based small baseline subset (SBAS) method [Tong & Schmidt, 2016] together with atmospheric correction by common-point stacking [Tymofyeyeva and Fialko, 2015] to construct deformation time series [Xu et. al., 2017]. Then we project the horizontal GPS model and vertical GPS data into satellite line-of-sight directions separately. We first remove the horizontal GPS model from InSAR measurements and perform elevation-dependent atmospheric phase correction. Then we compute the discrepancy between the remaining InSAR measurements and vertical GPS data. We interpolate this discrepancy and remove it from the residual InSAR measurements. Finally, we restore the horizontal GPS model. Preliminary results show that fault creep over the San Jacinto fault, the Elsinore fault, and the San Andreas creeping section is clearly resolved. During the period of drought, the Central Valley of California was subsiding at a high rate (up to 40 cm/yr), while the city of San Jose is uplifting due to recharge, with a quaternary fault acting as a ground water barrier. These findings will be reported during the meeting.
Correction of clock errors in seismic data using noise cross-correlations
NASA Astrophysics Data System (ADS)
Hable, Sarah; Sigloch, Karin; Barruol, Guilhem; Hadziioannou, Céline
2017-04-01
Correct and verifiable timing of seismic records is crucial for most seismological applications. For seismic land stations, frequent synchronization of the internal station clock with a GPS signal should ensure accurate timing, but loss of GPS synchronization is a common occurrence, especially for remote, temporary stations. In such cases, retrieval of clock timing has been a long-standing problem. The same timing problem applies to Ocean Bottom Seismometers (OBS), where no GPS signal can be received during deployment and only two GPS synchronizations can be attempted upon deployment and recovery. If successful, a skew correction is usually applied, where the final timing deviation is interpolated linearly across the entire operation period. If GPS synchronization upon recovery fails, then even this simple and unverified, first-order correction is not possible. In recent years, the usage of cross-correlation functions (CCFs) of ambient seismic noise has been demonstrated as a clock-correction method for certain network geometries. We demonstrate the great potential of this technique for island stations and OBS that were installed in the course of the Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel (RHUM-RUM) project in the western Indian Ocean. Four stations on the island La Réunion were affected by clock errors of up to several minutes due to a missing GPS signal. CCFs are calculated for each day and compared with a reference cross-correlation function (RCF), which is usually the average of all CCFs. The clock error of each day is then determined from the measured shift between the daily CCFs and the RCF. To improve the accuracy of the method, CCFs are computed for several land stations and all three seismic components. Averaging over these station pairs and their 9 component pairs reduces the standard deviation of the clock errors by a factor of 4 (from 80 ms to 20 ms). This procedure permits a continuous monitoring of clock errors where small clock drifts (1 ms/day) as well as large clock jumps (6 min) are identified. The same method is applied to records of five OBS stations deployed within a radius of 150 km around La Réunion. The assumption of a linear clock drift is verified by correlating OBS for which GPS-based skew corrections were available with land stations. For two OBS stations without skew estimates, we find clock drifts of 0.9 ms/day and 0.4 ms/day. This study salvages expensive seismic records from remote regions that would be otherwise lost for seismicity or tomography studies.
Antibiotics for coughing in general practice: a qualitative decision analysis.
Coenen, S; Van Royen, P; Vermeire, E; Hermann, I; Denekens, J
2000-10-01
In family practice, medical decisions are prompted most often by complaints about coughing. There is no single yardstick for the differential diagnosis of respiratory tract infections (RTIs). In 80% of cases, the excessive use of antibiotics in the treatment of RTIs is caused by the prescription behaviour of GPs. Our aim was to explicate GPs' diagnostic (and therapeutic) decisions regarding adult patients who consult them with complaints about coughing, and to investigate what determines decision making. Exploratory, descriptive focus groups were held with GPs. Hypotheses were generated on the basis of 'qualitative content analysis'. Results. Twenty-four GPs participated in four semi-structured group discussions. In order to differentiate RTIs from other possible diagnoses, less likely diagnoses were not ruled out explicitly. In the case of suspected RTI, there was a low degree of certainty in the differentiation between RTIs (e.g. between bronchitis and pneumonia). Clinical signs and symptoms, which determine the probability of disease, often left GPs with reasonable diagnostic doubt. In the end, the decision whether or not to prescribe antibiotics was taken. GPs' prescription behaviour was also determined by doctor- and patient-related factors (e.g. having missed pneumonia once, patient expectations). The 'chagrin factor' explains why these factors lead to a shift in the action threshold, in favour of antibiotics. This inductive research method enabled the generation of meaningful hypotheses regarding the complex decision processes pursued by GPs. The authors are developing an educational intervention that builds on these findings, focusing on the prescribing decision.
Using Doppler Shifts of GPS Signals To Measure Angular Speed
NASA Technical Reports Server (NTRS)
Campbell, Charles E., Jr.
2006-01-01
A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.
The Stability of GPS Carrier-Phase Receivers
2010-11-01
Frequency Transfer ( TWSTFT ) method [2]. For both CP and TWSTFT , accuracy in time transfer is achieved through special calibration efforts that retain...View (CV) receivers and TWSTFT equipment. Many of these geodetic receivers operate continuously within the International GNSS Service (IGS), and...with TWSTFT , GPS CV, and GPS P3. If ionosphere-free measurements are used in combination with nominally compensated tropospheric corrections, a
Nearshore Sea Clutter Measurements from a Fixed Platform
2012-04-01
Water (MLL W) datum. 7. GPS Two differential GPS units, Magellan ProMark 3.0, were utilized to determine precise differences in position between the...8 Figure 8. (a) Trihedral configuration on the small boat and position of the GPS and IMU sensors. (b) Profile view of...SIO Miniature Directional Wave Buoys The Scripps Institution of Oceanography designs and manufactures GPS -based miniature directional wave buoys
NASA Astrophysics Data System (ADS)
Diehl, T. M.; Mader, G. L.; Preaux, S. A.; Weil, C.
2011-12-01
The National Geodetic Survey's (NGS's) Gravity for the Redefinition of the American Vertical Datum (GRAV-D) program plans to collect airborne gravity data across the entire U.S. and its holdings over the next decade. The goal is to build a geoid accurate to 1-2 cm, for which the airborne gravity data is key. The first phase is underway, with > 13% of data collection already completed across the U.S. To achieve the best airborne gravity data accuracy possible, the GPS position solutions must provide not just accurate positions, but also accurate velocities and accelerations to be used in calculating the gravity corrections. However, to our knowledge, no comparison has been done of available kinematic GPS processing techniques as they pertain to producing accurate airborne gravity results. So, in Fall 2010, NGS issued the "Kinematic GPS Challenge" to the GPS processing community, soliciting position solutions for GPS data of two GRAV-D airborne gravity flights done in Louisiana in 2008. Of the four lines on these two flights, one of the lines on the first flight was noisy (due to excessive turbulence) and was reflown on the second flight. These two flights of data allow the Challenge results to be tested on both good-quality and noisy data, as well as to be compared for repeatability along the reflown line, the assumption being that the solution producing the best fit between the reflown gravity data is the best. Fifteen position results from nine contributors were submitted from the GPS community for each of the two flights. We will present the results of the Kinematic GPS Challenge in an anonymous manner, to provide information to the airborne gravity community while protecting the identities of the GPS contributors while they incorporate the results into their research projects. Initial analyses show that the submitted position solutions are somewhat different, usually by +/- 0.25 m or less in X, Y, and Z. The shape and structure of these differences indicate significant differences in the derived velocities and accelerations. Those differences are easily identifiable in the gravity anomalies calculated with those solutions. Several gravity solutions computed produce differences from the ensemble average of 2-3 mGal in places, though most were within +/- 1 mGal. An additional comparison was done with the current preferred NGS GPS+IMU solution (a loosely-coupled differential GPS+IMU solution from commercial software) versus the Challenge GPS-only solutions. The loosely coupled solution fared better in the noisy flight than the GPS only, but there was less significant difference in the calm weather flight. Our presentation will provide a comprehensive analysis of the Challenge results.
NASA Astrophysics Data System (ADS)
Retscher, G.
2017-09-01
Positioning of mobile users in indoor environments with Wireless Fidelity (Wi-Fi) has become very popular whereby location fingerprinting and trilateration are the most commonly employed methods. In both the received signal strength (RSS) of the surrounding access points (APs) are scanned and used to estimate the user's position. Within the scope of this study the advantageous qualities of both methods are identified and selected to benefit their combination. By a fusion of these technologies a higher performance for Wi-Fi positioning is achievable. For that purpose, a novel approach based on the well-known Differential GPS (DGPS) principle of operation is developed and applied. This approach for user localization and tracking is termed Differential Wi-Fi (DWi-Fi) by analogy with DGPS. From reference stations deployed in the area of interest differential measurement corrections are derived and applied at the mobile user side. Hence, range or coordinate corrections can be estimated from a network of reference station observations as it is done in common CORS GNSS networks. A low-cost realization with Raspberry Pi units is employed for these reference stations. These units serve at the same time as APs broadcasting Wi-Fi signals as well as reference stations scanning the receivable Wi-Fi signals of the surrounding APs. As the RSS measurements are carried out continuously at the reference stations dynamically changing maps of RSS distributions, so-called radio maps, are derived. Similar as in location fingerprinting this radio maps represent the RSS fingerprints at certain locations. From the areal modelling of the correction parameters in combination with the dynamically updated radio maps the location of the user can be estimated in real-time. The novel approach is presented and its performance demonstrated in this paper.
GPS Usage in a Population of Low-Vision Drivers.
Cucuras, Maria; Chun, Robert; Lee, Patrick; Jay, Walter M; Pusateri, Gregg
2017-01-01
We surveyed bioptic and non-bioptic low-vision drivers in Illinois, USA, to determine their usage of global positioning system (GPS) devices. Low-vision patients completed an IRB-approved phone survey regarding driving demographics and usage of GPS while driving. Participants were required to be active drivers with an Illinois driver's license, and met one of the following criteria: best-corrected visual acuity (BCVA) less than or equal to 20/40, central or significant peripheral visual field defects, or a combination of both. Of 27 low-vision drivers, 10 (37%) used GPS while driving. The average age for GPS users was 54.3 and for non-users was 77.6. All 10 drivers who used GPS while driving reported increased comfort or safety level. Since non-GPS users were significantly older than GPS users, it is likely that older participants would benefit from GPS technology training from their low-vision eye care professionals.
Demonstration of an Enhanced Vertical Magnetic Gradient System for UXO
2008-04-01
flights were conducted and results evaluated. The cesium magnetometers , GPS systems (positioning and attitude), fluxgate magnetometers , data...makes a measurement and when it is time-stamped and recorded. This applies to the magnetometers , fluxgate and the GPS. Accurate positioning...requires a correction for this lag. Time lags between the magnetometers , fluxgate and GPS signals were measured by a proprietary utility. This utility
Advanced corrections for InSAR using GPS and numerical weather models
NASA Astrophysics Data System (ADS)
Foster, J. H.; Cossu, F.; Amelung, F.; Businger, S.; Cherubini, T.
2016-12-01
The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting Interferometric Synthetic Aperture Radar's (InSAR) potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We present preliminary results from an investigation into the application of GPS and numerical weather models for generating tropospheric correction fields. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric model covering the Big Island of Hawaii and an even higher, 300 m resolution grid over Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate information on atmospheric heterogeneity from the GPS data into the models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.
GPS location data enhancement in electronic traffic records.
DOT National Transportation Integrated Search
2013-01-01
In this project we developed a new GPS-based Geographical Information Exchange : Framework (GIEF) to improve the correctness and accuracy of location data reported on : electronic police forms in Oklahoma. A second major goal was to provide a base le...
Assessment Study of Using Online (CSRS) GPS-PPP Service for Mapping Applications in Egypt
NASA Astrophysics Data System (ADS)
Abd-Elazeem, Mohamed; Farah, Ashraf; Farrag, Farrag
2011-09-01
Many applications in navigation, land surveying, land title definitions and mapping have been made simpler and more precise due to accessibility of Global Positioning System (GPS) data, and thus the demand for using advanced GPS techniques in surveying applications has become essential. The differential technique was the only source of accurate positioning for many years, and remained in use despite of its cost. The precise point positioning (PPP) technique is a viable alternative to the differential positioning method in which a user with a single receiver can attain positioning accuracy at the centimeter or decimeter scale. In recent years, many organizations introduced online (GPS-PPP) processing services capable of determining accurate geocentric positions using GPS observations. These services provide the user with receiver coordinates in free and unlimited access formats via the internet. This paper investigates the accuracy of the Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) (CSRS-PPP) service supervised by the Geodetic Survey Division (GSD), Canada. Single frequency static GPS observations have been collected at three points covering time spans of 60, 90 and 120 minutes. These three observed sites form baselines of 1.6, 7, and 10 km, respectively. In order to assess the CSRS-PPP accuracy, the discrepancies between the CSRS-PPP estimates and the regular differential GPS solutions were computed. The obtained results illustrate that the PPP produces a horizontal error at the scale of a few decimeters; this is accurate enough to serve many mapping applications in developing countries with a savings in both cost and experienced labor.
Phase Correction for GPS Antenna with Nonunique Phase Center
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Dobbins, Justin
2005-01-01
A method of determining the position and attitude of a body equipped with a Global Positioning System (GPS) receiver includes an accounting for the location of the nonunique phase center of a distributed or wraparound GPS antenna. The method applies, more specifically, to the case in which (1) the GPS receiver utilizes measurements of the phases of GPS carrier signals in its position and attitude computations and (2) the body is axisymmetric (e.g., spherical or round cylindrical) and wrapped at its equator with a single- or multiple-element antenna, the radiation pattern of which is also axisymmetric with the same axis of symmetry as that of the body.
Alvard, Michael; Carlson, David; McGaffey, Ethan
2015-01-01
Foragers must often travel from a central place to exploit aggregations of prey. These patches can be identified behaviorally when a forager shifts from travel to area restricted search, identified by a decrease in speed and an increase in sinuosity of movement. Faster, more directed movement is associated with travel. Differentiating foraging behavior at patches from travel to patches is important for a variety of research questions and has now been made easier by the advent of small, GPS devices that can track forager movement with high resolution. In the summer and fall of 2012, movement data were collected from GPS devices placed on foraging trips originating in the artisanal fishing village of Desa Ikan (pseudonym), on the east coast of the Caribbean island nation of the Commonwealth Dominica. Moored FADs are human-made structures anchored to the ocean floor with fish attraction material on or near the surface designed to effectively create a resource patch. The ultimate goal of the research is to understand how property rights are emerging after the introduction of fish aggregating device (FAD) technology at the site in 1999. This paper reports on research to identify area-restricted search foraging behavior at FAD patches. For 22 foraging trips simultaneous behavioral observations were made to ground-truth the GPS movement data. Using a cumulative sum method, area restricted search was identified as negative deviations from the mean travel speed and the method was able to correctly identify FAD patches in every case.
Alvard, Michael; Carlson, David; McGaffey, Ethan
2015-01-01
Foragers must often travel from a central place to exploit aggregations of prey. These patches can be identified behaviorally when a forager shifts from travel to area restricted search, identified by a decrease in speed and an increase in sinuosity of movement. Faster, more directed movement is associated with travel. Differentiating foraging behavior at patches from travel to patches is important for a variety of research questions and has now been made easier by the advent of small, GPS devices that can track forager movement with high resolution. In the summer and fall of 2012, movement data were collected from GPS devices placed on foraging trips originating in the artisanal fishing village of Desa Ikan (pseudonym), on the east coast of the Caribbean island nation of the Commonwealth Dominica. Moored FADs are human-made structures anchored to the ocean floor with fish attraction material on or near the surface designed to effectively create a resource patch. The ultimate goal of the research is to understand how property rights are emerging after the introduction of fish aggregating device (FAD) technology at the site in 1999. This paper reports on research to identify area-restricted search foraging behavior at FAD patches. For 22 foraging trips simultaneous behavioral observations were made to ground-truth the GPS movement data. Using a cumulative sum method, area restricted search was identified as negative deviations from the mean travel speed and the method was able to correctly identify FAD patches in every case. PMID:25647288
Identification of underground mine workings with the use of global positioning system technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canty, G.A.; Everett, J.W.; Sharp, M.
1998-12-31
Identification of underground mine workings for well drilling is a difficult task given the limited resources available and lack of reliable information. Relic mine maps of questionable accuracy and difficulty in correlating the subsurface to the surface, make the process of locating wells arduous. With the development of global positioning system (GPS), specific locations on the earth can be identified with the aid of satellites. This technology can be applied to mine workings identification given a few necessary, precursory details. For an abandoned mine treatment project conducted by the University of Oklahoma, in conjunction with the Oklahoma Conservation Commission, amore » Trimble ProXL 8 channel GPS receiver was employed to locate specific points on the surface with respect to a mine map. A 1925 mine map was digitized into AutoCAD version 13 software. Surface features identified on the map, such as mine adits, were located and marked in the field using the GPS receiver. These features were than imported into AutoCAD and referenced with the same points drawn on the map. A rubber sheeting program, Multric, was used to tweak the points so the map features correlated with the surface points. The correlation of these features allowed the map to be geo-referenced with the surface. Specific drilling points were located on the digitized map and assigned a latitude and longitude. The GPS receiver, using real time differential correction, was used to locate these points in the field. This method was assumed to be relatively accurate, to within 5 to 15 feet.« less
Global Ionospheric Perturbations Monitored by the Worldwide GPS Network
NASA Technical Reports Server (NTRS)
Ho, C. M.; Mannucci, A. T.; Lindqwister, U. J.; Pi, X. Q.
1996-01-01
Based on the delays of these (Global Positioning System-GPS)signals, we have generated high resolution global ionospheric TEC (Total Electronic Changes) maps at 15-minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that the ionopshere during this time storm has increased significantly (the percentage change relative to quiet times is greater than 150 percent) ...These preliminary results (those mentioned above plus other in the paper)indicate that the differential maping method, which is based on GPS network measurements appears to be a useful tool for studying the global pattern and evolution process of the entire ionospheric perturbation.
International developments in revenues and incomes of general practitioners from 2000 to 2010
2013-01-01
Background The remuneration system of General Practitioners (GPs) has changed in several countries in the past decade. The aim of our study was: to establish the effect of these changes on the revenues and income of GPs in the first decade of the 21st century. Methods Annual GP revenue and practice costs were collected from national institutes in the eight countries included in our study (Belgium, Denmark, Finland, France, Germany, The Netherlands, Sweden, The United Kingdom (UK)) from 2000–2010. The data were corrected for inflation and purchasing power. Data on the remuneration systems and changes herein were collected from the European Observatory Health Systems Reviews and country experts. Results Comprehensive changes in the remuneration system of GPs were associated with considerable changes in GP income. Incremental changes mainly coincided with a gradual increase in income after correction for inflation. Average GP income was higher in countries with a strong primary care structure. Conclusions The gap between the countries where GPs have a lower income (Belgium, Sweden, France and Finland) and the countries where GPs have a higher income (Netherlands, Germany and the UK) continues to exist over time and appeared to be related to dimensions of primary care, such as governance and access. New payment forms, such as integrated care payment systems, and new health care professionals that are working for GPs, increasingly blur the line between practice costs and income, making it more and more important to clearly define expenditures on GPs, to remain sight on the actual income of GPs. PMID:24152337
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-02-24
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.
Static and kinematic positioning using WADGPS from geostationary satellites
NASA Astrophysics Data System (ADS)
Cefalo, R.; Gatti, M.
2003-04-01
STATIC AND KINEMATIC POSITIONING USING WADGPS CORRECTIONS FROM GEOSTATIONARY SATELLITES Cefalo R. (1), Gatti M (2) (1) Department of Civil Engineering, University of Trieste, P.le Europa 1, 34127 Trieste, Italy, cefalo@dic.univ.trieste.it, (2) Department of Engineering, University of Ferrara, via Saragat 1, 44100 Ferrara, Italy, mgatti@ing.unife.it ABSTRACT. Starting from February 2000, static and kinematic experiments have been performed at the Department of Civil Engineering of University of Trieste, Italy and the Department of Engineering of University of Ferrara, Italy, using the WADGPS (Wide Area Differential GPS) corrections up linked by Geostationary Satellites belonging to the American WAAS and European EGNOS. Recently, a prototypal service by ESA (European Space Agency) named SISNet (Signal In Space through Internet), has been introduced using Internet to diffuse the messages up linked through AOR-E and IOR Geostationary Satellites. This service will overcome the problems relative to the availability of the corrections in urban areas. This system is currently under tests by the authors in order to verify the latency of the message and the applicability and accuracies obtainable in particular in dynamic applications.
NASA Technical Reports Server (NTRS)
Park, Young W.; Montez, Moises N.
1994-01-01
A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.
NASA Astrophysics Data System (ADS)
Gu, Yanchao; Fan, Dongming; You, Wei
2017-07-01
Eleven GPS crustal vertical displacement (CVD) solutions for 110 IGS08/IGS14 core stations provided by the International Global Navigation Satellite Systems Service Analysis Centers are compared with seven Gravity Recovery and Climate Experiment (GRACE)-modeled CVD solutions. The results of the internal comparison of the GPS solutions from multiple institutions imply large uncertainty in the GPS postprocessing. There is also evidence that GRACE solutions from both different institutions and different processing approaches (mascon and traditional spherical harmonic coefficients) show similar results, suggesting that GRACE can provide CVD results of good internal consistency. When the uncertainty of the GPS data is accounted for, the GRACE data can explain as much as 50% of the actual signals and more than 80% of the GPS annual signals. Our study strongly indicates that GRACE data have great potential to correct the nontidal loading in GPS time series.
2007-08-01
GPS) antennas. A fluxgate magnetometer is mounted in the forward assembly to compensate for the magnetic signature of the aircraft. A laser...recorded digitally on the ORAGS™ console (Figure 5) inside the helicopter in a binary format. The magnetometers are sampled at a 1200-Hz sample rate and...GPS. Accurate positioning requires a correction for this lag. Time lags among the magnetometers , fluxgate , and GPS signals were measured by a
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, M.; Desai, S. D.; Butala, M. D.; Komjathy, A.
2013-12-01
This work evaluates various approaches to compute the second order ionospheric correction (SOIC) to Global Positioning System (GPS) measurements. When estimating the reference frame using GPS, applying this correction is known to primarily affect the realization of the origin of the Earth's reference frame along the spin axis (Z coordinate). Therefore, the Z translation relative to the International Terrestrial Reference Frame 2008 is used as the metric to evaluate various published approaches to determining the slant total electron content (TEC) for the SOIC: getting the slant TEC from GPS measurements, and using the vertical total electron content (TEC) given by a Global Ionospheric Model (GIM) to transform it to slant TEC via a mapping function. All of these approaches agree to 1 mm if the ionospheric shell height needed in GIM-based approaches is set to 600 km. The commonly used shell height of 450 km introduces an offset of 1 to 2 mm. When the SOIC is not applied, the Z axis translation can be reasonably modeled with a ratio of +0.23 mm/TEC units of the daily median GIM vertical TEC. Also, precise point positioning (PPP) solutions (positions and clocks) determined with and without SOIC differ by less than 1 mm only if they are based upon GPS orbit and clock solutions that have consistently applied or not applied the correction, respectively. Otherwise, deviations of few millimeters in the north component of the PPP solutions can arise due to inconsistencies with the satellite orbit and clock products, and those deviations exhibit a dependency on solar cycle conditions.
A Comparison of Off-Level Correction Techniques for Airborne Gravity using GRAV-D Re-Flights
NASA Astrophysics Data System (ADS)
Preaux, S. A.; Melachroinos, S.; Diehl, T. M.
2011-12-01
The airborne gravity data collected for the GRAV-D project contain a number of tracks which have been flown multiple times, either by design or due to data collection issues. Where viable data can be retrieved, these re-flights are a valuable resource not only for assessing the quality of the data but also for evaluating the relative effectiveness of various processing techniques. Correcting for the instantaneous misalignment of the gravimeter sensitive axis with local vertical has been a long standing challenge for stable platform airborne gravimetry. GRAV-D re-flights are used to compare the effectiveness of existing methods of computing this off-level correction (Valliant 1991, Peters and Brozena 1995, Swain 1996, etc.) and to assess the impact of possible modifications to these methods including pre-filtering accelerations, use of IMU horizontal accelerations in place of those derived from GPS positions and accurately compensating for GPS lever-arm and attitude effects prior to computing accelerations from the GPS positions (Melachroinos et al. 2010, B. de Saint-Jean, et al. 2005). The resulting corrected gravity profiles are compared to each other and to EGM08 in order to assess the accuracy and precision of each method. Preliminary results indicate that the methods presented in Peters & Brozena 1995 and Valliant 1991 completely correct the off-level error some of the time but only partially correct it others, while introducing an overall bias to the data of -0.5 to -2 mGal.
Conaway, Jeffrey S.
2005-01-01
Acoustic Doppler current profilers (ADCPs) have been in use in the riverine environment for nearly 20 years. Their application primarily has been focused on the measurement of streamflow discharge. ADCPs emit high-frequency sound pulses and receive reflected sound echoes from sediment particles in the water column. The Doppler shift between transmitted and return signals is resolved into a velocity component that is measured in three dimensions by simultaneously transmitting four independent acoustical pulses. To measure the absolute velocity magnitude and direction in the water column, the velocity magnitude and direction of the instrument must also be computed. Typically this is accomplished by ensonifying the streambed with an acoustical pulse that also provides a depth measurement for each of the four acoustic beams. Sediment transport on or near the streambed will bias these measurements and requires external positioning such as a differentially corrected Global Positioning Systems (GPS). Although the influence of hydraulic structures such as spur dikes and bridge piers is typically only measured and described in one or two dimensions, the use of differentially corrected GPS with ADCPs provides a fully three-dimensional measurement of the magnitude and direction of the water column at such structures. The measurement of these flow disturbances in a field setting also captures the natural pulsations of river flow that cannot be easily quantified or modeled by numerical simulations or flumes. Several examples of measured three-dimensional flow conditions at bridge sites throughout Alaska are presented. The bias introduced to the bottom-track measurement is being investigated as a surrogate measurement of bedload transport. By fixing the position of the ADCP for a known period of time the apparent velocity of the streambed at that position can be determined. Initial results and comparison to traditionally measured bedload values are presented. These initial results and those by other researchers are helping to determine a direction for further research of noncontact measurements of sediment transport. Copyright ASCE 2005.
47 CFR 87.139 - Emission limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GPS, the mean power of any emission must be attenuated below the mean power of the transmitter (pY) as... lines through the above points. (j) When using G7D for differential GPS in the 112-118 MHz band, the...
Impacts of Satellite Orbit and Clock on Real-Time GPS Point and Relative Positioning.
Shi, Junbo; Wang, Gaojing; Han, Xianquan; Guo, Jiming
2017-06-12
Satellite orbit and clock corrections are always treated as known quantities in GPS positioning models. Therefore, any error in the satellite orbit and clock products will probably cause significant consequences for GPS positioning, especially for real-time applications. Currently three types of satellite products have been made available for real-time positioning, including the broadcast ephemeris, the International GNSS Service (IGS) predicted ultra-rapid product, and the real-time product. In this study, these three predicted/real-time satellite orbit and clock products are first evaluated with respect to the post-mission IGS final product, which demonstrates cm to m level orbit accuracies and sub-ns to ns level clock accuracies. Impacts of real-time satellite orbit and clock products on GPS point and relative positioning are then investigated using the P3 and GAMIT software packages, respectively. Numerical results show that the real-time satellite clock corrections affect the point positioning more significantly than the orbit corrections. On the contrary, only the real-time orbit corrections impact the relative positioning. Compared with the positioning solution using the IGS final product with the nominal orbit accuracy of ~2.5 cm, the real-time broadcast ephemeris with ~2 m orbit accuracy provided <2 cm relative positioning error for baselines no longer than 216 km. As for the baselines ranging from 574 to 2982 km, the cm-dm level positioning error was identified for the relative positioning solution using the broadcast ephemeris. The real-time product could result in <5 mm relative positioning accuracy for baselines within 2982 km, slightly better than the predicted ultra-rapid product.
Height Accuracy Based on Different Rtk GPS Method for Ultralight Aircraft Images
NASA Astrophysics Data System (ADS)
Tahar, K. N.
2015-08-01
Height accuracy is one of the important elements in surveying work especially for control point's establishment which requires an accurate measurement. There are many methods can be used to acquire height value such as tacheometry, leveling and Global Positioning System (GPS). This study has investigated the effect on height accuracy based on different observations which are single based and network based GPS methods. The GPS network is acquired from the local network namely Iskandar network. This network has been setup to provide real-time correction data to rover GPS station while the single network is based on the known GPS station. Nine ground control points were established evenly at the study area. Each ground control points were observed about two and ten minutes. It was found that, the height accuracy give the different result for each observation.
Gilboa-Garber, Nechama; Lerrer, Batya; Lesman-Movshovich, Efrat; Dgani, Orly
2005-12-01
Human milk, serum, saliva, and seminal fluid glycoproteins (gps) nourish and protect newborn and adult tissues. Their saccharides, which resemble cell membrane components, may block pathogen adhesion and infection. In the present study, they were examined by a battery of lectins from plants, animals, and bacteria, using hemagglutination inhibition and Western blot analyses. The lectins included galactophilic ones from Aplysia gonad, Erythrina corallodendron, Maclura pomifera (MPL), peanut, and Pseudomonas aeruginosa (PA-IL); fucose-binding lectins from Pseudomonas aeruginosa (PA-IIL), Ralstonia solanacearum (RSL), and Ulex europaeus (UEA-I), and mannose/glucose-binding Con A. The results demonstrated the chosen lectin efficiency for differential analysis of human secreted gps as compared to CBB staining. They unveiled the diversity of these body fluid gp glycans (those of the milk and seminal fluid being highest): the milk gps interacted most strongly with PA-IIL, followed by RSL; the saliva gps with RSL, followed by PA-IIL and MPL; the serum gps with Con A and MPL, followed by PA-IIL and RSL, and the seminal plasma gps with RSL and MPL, followed by UEA-I and PA-IIL. The potential usage of these lectins as probes for scientific, industrial, and medical purposes, and for quality control of the desired gps is clearly indicated.
GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain
NASA Astrophysics Data System (ADS)
Wang, Ningbo; Li, Zishen; Li, Min; Yuan, Yunbin; Huo, Xingliang
2018-05-01
The performance of GPS Klobuchar (GPSKlob), BDS Klobuchar (BDSKlob) and NeQuick Galileo (NeQuickG) ionospheric correction models are evaluated in the range delay and position domains over China. The post-processed Klobuchar-style (CODKlob) coefficients provided by the Center for Orbit Determination in Europe (CODE) and our own fitted NeQuick coefficients (NeQuickC) are also included for comparison. In the range delay domain, BDS total electrons contents (TEC) derived from 20 international GNSS Monitoring and Assessment System (iGMAS) stations and GPS TEC obtained from 35 Crust Movement Observation Network of China (CMONC) stations are used as references. Compared to BDS TEC during the short period (doy 010-020, 2015), GPSKlob, BDSKlob and NeQuickG can correct 58.4, 66.7 and 54.7% of the ionospheric delay. Compared to GPS TEC for the long period (doy 001-180, 2015), the three ionospheric models can mitigate the ionospheric delay by 64.8, 65.4 and 68.1%, respectively. For the two comparison cases, CODKlob shows the worst performance, which only reduces 57.9% of the ionospheric range errors. NeQuickC exhibits the best performance, which outperforms GPSKlob, BDSKlob and NeQuickG by 6.7, 2.1 and 6.9%, respectively. In the position domain, single-frequency stand point positioning (SPP) was conducted at the selected 35 CMONC sites using GPS C/A pseudorange with and without ionospheric corrections. The vertical position error of the uncorrected case drops significantly from 10.3 m to 4.8, 4.6, 4.4 and 4.2 m for GPSKlob, CODKlob, BDSKlob and NeQuickG, however, the horizontal position error (3.2) merely decreases to 3.1, 2.7, 2.4 and 2.3 m, respectively. NeQuickG outperforms GPSKlob and BDSKlob by 5.8 and 1.9% in vertical component, and by 25.0 and 3.2% in horizontal component.
Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections
NASA Astrophysics Data System (ADS)
Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang
2016-04-01
Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric delay by 61.1% and 64.3% in 2002 and 2006, respectively.
GPS vertical axis performance enhancement for helicopter precision landing approach
NASA Technical Reports Server (NTRS)
Denaro, Robert P.; Beser, Jacques
1986-01-01
Several areas were investigated for improving vertical accuracy for a rotorcraft using the differential Global Positioning System (GPS) during a landing approach. Continuous deltaranging was studied and the potential improvement achieved by estimating acceleration was studied by comparing the performance on a constant acceleration turn and a rough landing profile of several filters: a position-velocity (PV) filter, a position-velocity-constant acceleration (PVAC) filter, and a position-velocity-turning acceleration (PVAT) filter. In overall statistics, the PVAC filter was found to be most efficient with the more complex PVAT performing equally well. Vertical performance was not significantly different among the filters. Satellite selection algorithms based on vertical errors only (vertical dilution of precision or VDOP) and even-weighted cross-track and vertical errors (XVDOP) were tested. The inclusion of an altimeter was studied by modifying the PVAC filter to include a baro bias estimate. Improved vertical accuracy during degraded DOP conditions resulted. Flight test results for raw differential results excluding filter effects indicated that the differential performance significantly improved overall navigation accuracy. A landing glidepath steering algorithm was devised which exploits the flexibility of GPS in determining precise relative position. A method for propagating the steering command over the GPS update interval was implemented.
Dual algebraic formulation of differential GPS
NASA Astrophysics Data System (ADS)
Lannes, A.; Dur, S.
2003-05-01
A new approach to differential GPS is presented. The corresponding theoretical framework calls on elementary concepts of algebraic graph theory. The notion of double difference, which is related to that of closure in the sense of Kirchhoff, is revisited in this context. The Moore-Penrose pseudo-inverse of the closure operator plays a key role in the corresponding dual formulation. This approach, which is very attractive from a conceptual point of view, sheds a new light on the Teunissen formulation.
Impact and Implementation of Higher-Order Ionospheric Effects on Precise GNSS Applications
NASA Astrophysics Data System (ADS)
Hadas, T.; Krypiak-Gregorczyk, A.; Hernández-Pajares, M.; Kaplon, J.; Paziewski, J.; Wielgosz, P.; Garcia-Rigo, A.; Kazmierski, K.; Sosnica, K.; Kwasniak, D.; Sierny, J.; Bosy, J.; Pucilowski, M.; Szyszko, R.; Portasiak, K.; Olivares-Pulido, G.; Gulyaeva, T.; Orus-Perez, R.
2017-11-01
High precision Global Navigation Satellite Systems (GNSS) positioning and time transfer require correcting signal delays, in particular higher-order ionospheric (I2+) terms. We present a consolidated model to correct second- and third-order terms, geometric bending and differential STEC bending effects in GNSS data. The model has been implemented in an online service correcting observations from submitted RINEX files for I2+ effects. We performed GNSS data processing with and without including I2+ corrections, in order to investigate the impact of I2+ corrections on GNSS products. We selected three time periods representing different ionospheric conditions. We used GPS and GLONASS observations from a global network and two regional networks in Poland and Brazil. We estimated satellite orbits, satellite clock corrections, Earth rotation parameters, troposphere delays, horizontal gradients, and receiver positions using global GNSS solution, Real-Time Kinematic (RTK), and Precise Point Positioning (PPP) techniques. The satellite-related products captured most of the impact of I2+ corrections, with the magnitude up to 2 cm for clock corrections, 1 cm for the along- and cross-track orbit components, and below 5 mm for the radial component. The impact of I2+ on troposphere products turned out to be insignificant in general. I2+ corrections had limited influence on the performance of ambiguity resolution and the reliability of RTK positioning. Finally, we found that I2+ corrections caused a systematic shift in the coordinate domain that was time- and region-dependent and reached up to -11 mm for the north component of the Brazilian stations during the most active ionospheric conditions.
Correction of Single Frequency Altimeter Measurements for Ionosphere Delay
NASA Technical Reports Server (NTRS)
Schreiner, William S.; Markin, Robert E.; Born, George H.
1997-01-01
This study is a preliminary analysis of the accuracy of various ionosphere models to correct single frequency altimeter height measurements for Ionospheric path delay. In particular, research focused on adjusting empirical and parameterized ionosphere models in the parameterized real-time ionospheric specification model (PRISM) 1.2 using total electron content (TEC) data from the global positioning system (GPS). The types of GPS data used to adjust PRISM included GPS line-of-sight (LOS) TEC data mapped to the vertical, and a grid of GPS derived TEC data in a sun-fixed longitude frame. The adjusted PRISM TEC values, as well as predictions by IRI-90, a climatotogical model, were compared to TOPEX/Poseidon (T/P) TEC measurements from the dual-frequency altimeter for a number of T/P tracks. When adjusted with GPS LOS data, the PRISM empirical model predicted TEC over 24 1 h data sets for a given local time to with in a global error of 8.60 TECU rms during a midnight centered ionosphere and 9.74 TECU rms during a noon centered ionosphere. Using GPS derived sun-fixed TEC data, the PRISM parameterized model predicted TEC within an error of 8.47 TECU rms centered at midnight and 12.83 TECU rms centered at noon. From these best results, it is clear that the proposed requirement of 3-4 TECU global rms for TOPEX/Poseidon Follow-On will be very difficult to meet, even with a substantial increase in the number of GPS ground stations, with any realizable combination of the aforementioned models or data assimilation schemes.
NASA Astrophysics Data System (ADS)
Materna, K.; Feng, L.; Lindsey, E. O.; Hill, E.; Burgmann, R.
2017-12-01
The elastic response of the lithosphere to surface mass redistributions produces significant deformation that can be observed in geodetic time series. This deformation is especially pronounced in Southeast Asia, where the annual monsoon produces large-amplitude hydrological loads. The MIBB network of 20 continuous GPS stations in Myanmar, India, Bangladesh, and Bhutan, operational since 2012, provides an opportunity to study the earth's response to these loads. In this study, we use GRACE gravity products as an estimate of surface water distribution, and input these estimates into an elastic loading calculation. We compare the predicted deformation with that observed with GPS. We find that elastic loading from the GRACE gravity field is able to explain the phase and the peak-to-peak amplitude (typically 2-3 cm) of the vertical GPS oscillations in northeast India and central Myanmar. GRACE-based corrections reduce the RMS scatter of the GPS data by 30%-45% in these regions. However, this approach does not capture all of the variation in central Bangladesh and southern Myanmar. Local hydrological effects, non-tidal ocean loads, poroelastic deformation, or differences in elastic properties may explain discrepancies between the GPS and GRACE signals in these places. The results of our calculations have practical implications for campaign GPS measurements in Myanmar, which make up the majority of geodetic measurements at this point. We may be able to reduce errors in campaign measurements and increase the accuracy of velocity estimates by correcting for hydrologic signals with GRACE data. The results also have potential implications for crustal rheology in Southeast Asia.
2002-12-01
radio and batteries. The procedures outlined in this CHETN will concentrate on the Magellan GPS ProMARK X-CP receiver as it was used to collect...The Magellan GPS ProMARK X-CP is a small robust light receiver that can log 9 hr of both pseudorange and carrier phase satellite data for post...post- processing software, pseudorange GPS data recorded by the ProMARK X-CP can be post-processed differential to achieve 1-3 m (3.3-9.8 ft) horizontal
NASA Astrophysics Data System (ADS)
Ding, Wenwu; Tan, Bingfeng; Chen, Yongchang; Teferle, Felix Norman; Yuan, Yunbin
2018-02-01
The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28 ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6 cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5 cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8 cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7 cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.
Comparing models of seasonal deformation to horizontal and vertical PBO GPS data
NASA Astrophysics Data System (ADS)
Bartlow, N. M.; Fialko, Y. A.; van Dam, T. M.
2015-12-01
GPS monuments around the world exhibit seasonal displacements in both the horizontal and vertical direction with amplitudes on the order of centimeters. For analysis of tectonic signals, researchers typically fit and remove a sine function with an annual period, and sometimes an additional sine function with a semiannual period. As interest grows in analyzing small-amplitude, long-period deformation signals it becomes more important to accurately correct for seasonal variations. It is well established that the vertical component of seasonal GPS signals is largely due to continental water storage cycles (e.g. van Dam et al., GRL, 2001). Other recognized sources of seasonal loading include atmospheric pressure loading and oceanic loading due to non-steric changes in ocean height (e.g. van Dam et al., J. Geodesy, 2012). Here we attempt to build a complete physical model of seasonal loading by considering all of these sources (continental water storage, atmospheric pressure, and oceanic loading) and comparing our model to horizontal and vertical GPS data in the Western US. Atmospheric loading effects are computed from the National Center for Environmental Prediction 6-hourly global reanalysis surface pressure fields; the terrestrial water loading and ocean loading models are generated using SPOTL (Some Programs for Ocean Tide Loading; Agnew, SIO Technical Report, 2012) and parameters from NASA's Land Data Assimilation Systems and the Estimating the Circulation and Climate of the Ocean model, version 4. We find that with a few exceptions, our seasonal loading model predicts the correct phases but underestimates the amplitudes of vertical seasonal loads, and is a generally poor fit to the observed horizontal seasonal signals. This implies that our understanding of the driving mechanisms behind seasonal variations in the GPS data is still incomplete and needs to be improved before physics-based models can be used as an effective correction tool for the GPS timeseries.
GPS Remote Sensing Measurements Using Aerosonde UAV
NASA Technical Reports Server (NTRS)
Grant, Michael S.; Katzberg, Stephen J.; Lawrence, R. W.
2005-01-01
In February 2004, a NASA-Langley GPS Remote Sensor (GPSRS) unit was flown on an Aerosonde unmanned aerial vehicle (UAV) from the Wallops Flight Facility (WFF) in Virginia. Using direct and surface-reflected 1.575 GHz coarse acquisition (C/A) coded GPS signals, remote sensing measurements were obtained over land and portions of open water. The strength of the surface-reflected GPS signal is proportional to the amount of moisture in the surface, and is also influenced by surface roughness. Amplitude and other characteristics of the reflected signal allow an estimate of wind speed over open water. In this paper we provide a synopsis of the instrument accommodation requirements, installation procedures, and preliminary results from what is likely the first-ever flight of a GPS remote sensing instrument on a UAV. The correct operation of the GPSRS unit on this flight indicates that Aerosonde-like UAV's can serve as platforms for future GPS remote sensing science missions.
Real-time estimation of ionospheric delay using GPS measurements
NASA Astrophysics Data System (ADS)
Lin, Lao-Sheng
1997-12-01
When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)
Bruno, Elizabeth A; Guthrie, James W; Ellwood, Stephen A; Mellanby, Richard J; Clements, Dylan N
2015-01-01
To assess the use of Global Positioning System receiver (GPS) derived performance measures for differentiating between: 1) different outdoor activities in healthy dogs; 2) healthy dogs and those with osteoarthritis; 3) osteoarthritic dogs before and after treatment with non-steroidal anti-inflammatory analgesia. Prospective study. Ten healthy dogs and seven dogs with osteoarthritis of the elbow joint (OA dogs). Healthy dogs were walked on a standard route on-lead, off-lead and subjected to playing activity (chasing a ball) whilst wearing a GPS collar. Each dog was walked for five consecutive days. Dogs with OA were subjected to a single off-lead walk whilst wearing a GPS collar, and then administered oral Carprofen analgesia daily for two weeks. OA dogs were then subjected to the same walk, again wearing a GPS collar. GPS derived measures of physical performance could differentiate between on-lead activity, off-lead activity and playing activity in healthy dogs, and between healthy dogs and OA dogs. Variation in the performance measures analysed was greater between individual dogs than for individual dogs on different days. Performance measures could differentiate healthy dogs from OA dogs. OA Dogs treated with Carprofen analgesia showed improvements in their physical performance, which returned to values indistinguishable from those of healthy dogs on nearly all the measures assessed. GPS derived measures of physical performance in dogs are objective, easy to quantify, and can be used to gauge the effects of disease and success of clinical treatments. Specific stimuli can be used to modulate physical performance beyond the self-governed boundaries that dogs will naturally express when allowed to exercise freely without stimulation.
Bruno, Elizabeth A.; Guthrie, James W.; Ellwood, Stephen A.; Mellanby, Richard J.; Clements, Dylan N.
2015-01-01
Objective To assess the use of Global Positioning System receiver (GPS) derived performance measures for differentiating between: 1) different outdoor activities in healthy dogs; 2) healthy dogs and those with osteoarthritis; 3) osteoarthritic dogs before and after treatment with non-steroidal anti-inflammatory analgesia. Design Prospective study. Animals Ten healthy dogs and seven dogs with osteoarthritis of the elbow joint (OA dogs). Procedure Healthy dogs were walked on a standard route on-lead, off-lead and subjected to playing activity (chasing a ball) whilst wearing a GPS collar. Each dog was walked for five consecutive days. Dogs with OA were subjected to a single off-lead walk whilst wearing a GPS collar, and then administered oral Carprofen analgesia daily for two weeks. OA dogs were then subjected to the same walk, again wearing a GPS collar. Results GPS derived measures of physical performance could differentiate between on-lead activity, off-lead activity and playing activity in healthy dogs, and between healthy dogs and OA dogs. Variation in the performance measures analysed was greater between individual dogs than for individual dogs on different days. Performance measures could differentiate healthy dogs from OA dogs. OA Dogs treated with Carprofen analgesia showed improvements in their physical performance, which returned to values indistinguishable from those of healthy dogs on nearly all the measures assessed. Conclusions and Clinical Relevance GPS derived measures of physical performance in dogs are objective, easy to quantify, and can be used to gauge the effects of disease and success of clinical treatments. Specific stimuli can be used to modulate physical performance beyond the self-governed boundaries that dogs will naturally express when allowed to exercise freely without stimulation. PMID:25692761
The limits of direct satellite tracking with the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Bertiger, W. I.; Yunck, T. P.
1988-01-01
Recent advances in high precision differential Global Positioning System-based satellite tracking can be applied to the more conventional direct tracking of low earth satellites. To properly evaluate the limiting accuracy of direct GPS-based tracking, it is necessary to account for the correlations between the a-priori errors in GPS states, Y-bias, and solar pressure parameters. These can be obtained by careful analysis of the GPS orbit determination process. The analysis indicates that sub-meter accuracy can be readily achieved for a user above 1000 km altitude, even when the user solution is obtained with data taken 12 hours after the data used in the GPS orbit solutions.
A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack
2001-01-01
The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.
US Coast Guard GPS Information Center (GPSIC) and its function within the Civil GPS Service (CGS)
NASA Technical Reports Server (NTRS)
1993-01-01
In 1987, the U.S. Department of Defense (DOD) formally requested that the U.S. Department of Transportation (DOT) take responsibility for providing an office that would respond to nonmilitary user needs for GPS information, data, and assistance. DOT accepted this responsibility and in February 1989, named the Coast Guard as their lead agency for the project. Since that time, the U.S. Coast Guard has worked with the U.S. Space Command to develop requirements and implement a plan for providing the requested interface with the civil GPS community. The Civil GPS Service (CGS) consists of four main elements: GPS Information Center (GPSIC) - provides GPS status information to civilian users of the system: Civil GPS Service Interface Committee (CGSIC) - established to identify civil GPS user technical information needs in support of the CGS program; Differential GPS (DGPS) - Coast Guard Research and Development Project; and PPS Program Office (PPSPO) - (Under development) will administer the program allowing qualified civil users to have access to the PPS signal. Details about the services these organizations provide are described.
Cemento-osseous dysplasia of the jaw bones: key radiographic features
Alsufyani, NA; Lam, EWN
2011-01-01
Objective The purpose of this study is to assess possible diagnostic differences between general dentists (GPs) and oral and maxillofacial radiologists (RGs) in the identification of pathognomonic radiographic features of cemento-osseous dysplasia (COD) and its interpretation. Methods Using a systematic objective survey instrument, 3 RGs and 3 GPs reviewed 50 image sets of COD and similarly appearing entities (dense bone island, cementoblastoma, cemento-ossifying fibroma, fibrous dysplasia, complex odontoma and sclerosing osteitis). Participants were asked to identify the presence or absence of radiographic features and then to make an interpretation of the images. Results RGs identified a well-defined border (odds ratio (OR) 6.67, P < 0.05); radiolucent periphery (OR 8.28, P < 0.005); bilateral occurrence (OR 10.23, P < 0.01); mixed radiolucent/radiopaque internal structure (OR 10.53, P < 0.01); the absence of non-concentric bony expansion (OR 7.63, P < 0.05); and the association with anterior and posterior teeth (OR 4.43, P < 0.05) as key features of COD. Consequently, RGs were able to correctly interpret 79.3% of COD cases. In contrast, GPs identified the absence of root resorption (OR 4.52, P < 0.05) and the association with anterior and posterior teeth (OR 3.22, P = 0.005) as the only key features of COD and were able to correctly interpret 38.7% of COD cases. Conclusions There are statistically significant differences between RGs and GPs in the identification and interpretation of the radiographic features associated with COD (P < 0.001). We conclude that COD is radiographically discernable from other similarly appearing entities only if the characteristic radiographic features are correctly identified and then correctly interpreted. PMID:21346079
Cemento-osseous dysplasia of the jaw bones: key radiographic features.
Alsufyani, N A; Lam, E W N
2011-03-01
The purpose of this study is to assess possible diagnostic differences between general dentists (GPs) and oral and maxillofacial radiologists (RGs) in the identification of pathognomonic radiographic features of cemento-osseous dysplasia (COD) and its interpretation. Using a systematic objective survey instrument, 3 RGs and 3 GPs reviewed 50 image sets of COD and similarly appearing entities (dense bone island, cementoblastoma, cemento-ossifying fibroma, fibrous dysplasia, complex odontoma and sclerosing osteitis). Participants were asked to identify the presence or absence of radiographic features and then to make an interpretation of the images. RGs identified a well-defined border (odds ratio (OR) 6.67, P < 0.05); radiolucent periphery (OR 8.28, P < 0.005); bilateral occurrence (OR 10.23, P < 0.01); mixed radiolucent/radiopaque internal structure (OR 10.53, P < 0.01); the absence of non-concentric bony expansion (OR 7.63, P < 0.05); and the association with anterior and posterior teeth (OR 4.43, P < 0.05) as key features of COD. Consequently, RGs were able to correctly interpret 79.3% of COD cases. In contrast, GPs identified the absence of root resorption (OR 4.52, P < 0.05) and the association with anterior and posterior teeth (OR 3.22, P = 0.005) as the only key features of COD and were able to correctly interpret 38.7% of COD cases. There are statistically significant differences between RGs and GPs in the identification and interpretation of the radiographic features associated with COD (P < 0.001). We conclude that COD is radiographically discernable from other similarly appearing entities only if the characteristic radiographic features are correctly identified and then correctly interpreted.
Real Time GPS- Satellite Clock Estimation Development of a RTIGS Web Service
NASA Astrophysics Data System (ADS)
Opitz, M.; Weber, R.; Caissy, M.
2006-12-01
Since 3 years the IGS (International GNSS Service) Real-Time Working Group disseminates via Internet raw observation data of a subset of stations of the IGS network. This observation data can be used to establish a real-time integrity monitoring of the IGS predicted orbits (Ultra Rapid (IGU-) Orbits) and clocks, according to the recommendations of the IGS Workshop 2004 in Bern. The Institute for "Geodesy and Geophysics" of the TU-Vienna develops in cooperation with the IGS Real-Time Working Group the software "RTR- Control", which currently provides a real-time integrity monitoring of predicted IGU Clock Corrections to GPS Time. Our poster presents the results of a prototype version which is in operation since August this year. Besides RTR-Control allows for the comparison of pseudoranges measured at any permanent station in the global network with theoretical pseudoranges calculated on basis of the IGU- orbits. Thus, the programme can diagnose incorrectly predicted satellite orbits and clocks as well as detect multi-path distorted pseudoranges in real- time. RTR- Control calculates every 15 seconds Satellite Clock Corrections with respect to the most recent IGU- clocks (updated in a 6 hours interval). The clock estimations are referenced to a stable station clock (H-maser) with a small offset to GPS- time. This real-time Satellite Clocks are corrected for individual outliers and modelling errors. The most recent GPS- Satellite Clock Corrections (updated every 60 seconds) are published in Real Time via the Internet. The user group interested in a rigorous integrity monitoring comprises on the one hand the components of IGS itself to qualify the issued orbital data and on the other hand all users of the IGS Ultra Rapid Products (e.g. for PPP in Real Time).
General practitioners' knowledge of ageing and attitudes towards older people in China.
Yang, Yanni; Xiao, Lily Dongxia; Ullah, Shahid; Deng, Lanlan
2015-06-01
To explore general practitioners (GPs)knowledge of ageing, attitudes towards older people and factors affecting their knowledge and attitudes in a Chinese context. Four hundred GPs were surveyed using the Chinese version of the Aging Semantic Differential (CASD) and the Chinese version of the Facts on Aging Quiz (CFAQ1) scale. The CASD scores indicated that GPs had a neutral attitude towards older people. The CFAQ1 scores indicated a low level of knowledge about ageing. GPs' awareness of the mental and social facts of ageing was poorer compared to that of physical facts. Male GPs had a significantly higher negative bias score than female GPs. No other variables had a statistically significant influence on knowledge and attitudes. The findings suggest the need for education interventions for GPs regarding knowledge of ageing and also provide evidence to guide future development of continuing medical programs for this group of medical doctors. © 2013 ACOTA.
Operation of a single-channel, sequential Navstar GPS receiver in a helicopter mission environment
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Hamlin, J. R.
1984-01-01
It is pointed out that the future utilization of the Navstar Global Positioning System (GPS) by civil helicopters will provide an enhanced performance not obtainable with current navigations systems. GPS will supply properly equipped users with extremely accurate three-dimensional position and velocity information anywhere in the world. Preliminary studies have been conducted to investigate differential GPS concept mechanizations and cost, and to theoretically predict navigation performance and the impact of degradation of the GPS C/A code for national security considerations. The obtained results are encouraging, but certain improvements are needed. As a second step in the program, a single-channel sequential GPS navigator was installed and operated in the NASA SH-3G helicopter. A series of flight tests were conducted. It is found that performance of the Navstar GPS Z-set is quite acceptable to support area navigation and nonprecision approach operations.
A theoretical study on the bottlenecks of GPS phase ambiguity resolution in a CORS RTK Network
NASA Astrophysics Data System (ADS)
Odijk, D.; Teunissen, P.
2011-01-01
Crucial to the performance of GPS Network RTK positioning is that a user receives and applies correction information from a CORS Network. These corrections are necessary for the user to account for the atmospheric (ionospheric and tropospheric) delays and possibly orbit errors between his approximate location and the locations of the CORS Network stations. In order to provide the most precise corrections to users, the CORS Network processing should be based on integer resolution of the carrier phase ambiguities between the network's CORS stations. One of the main challenges is to reduce the convergence time, thus being able to quickly resolve the integer carrier phase ambiguities between the network's reference stations. Ideally, the network ambiguity resolution should be conducted within one single observation epoch, thus truly in real time. Unfortunately, single-epoch CORS Network RTK ambiguity resolution is currently not feasible and in the present contribution we study the bottlenecks preventing this. For current dual-frequency GPS the primary cause of these CORS Network integer ambiguity initialization times is the lack of a sufficiently large number of visible satellites. Although an increase in satellite number shortens the ambiguity convergence times, instantaneous CORS Network RTK ambiguity resolution is not feasible even with 14 satellites. It is further shown that increasing the number of stations within the CORS Network itself does not help ambiguity resolution much, since every new station introduces new ambiguities. The problem with CORS Network RTK ambiguity resolution is the presence of the atmospheric (mainly ionospheric) delays themselves and the fact that there are no external corrections that are sufficiently precise. We also show that external satellite clock corrections hardly contribute to CORS Network RTK ambiguity resolution, despite their quality, since the network satellite clock parameters and the ambiguities are almost completely uncorrelated. One positive is that the foreseen modernized GPS will have a very beneficial effect on CORS ambiguity resolution, because of an additional frequency with improved code precision.
ULR Re-analysed Global GPS Solution for Vertical Land Motion Correction at Tide Gauges
NASA Astrophysics Data System (ADS)
Letetrel, C.; Wöppelmann, G.; Bouin, M.; Altamimi, Z.; Martine, F.; Santamaria, A.
2007-12-01
The presentation will review the recent results published by Wöppelmann et al. (2007) in Global and Planetary Change. Geocentric sea-level trend estimates were derived from the global GPS analyses conducted at ULR consortium to correct a set of relevant tide gauges from the vertical motion of the land upon which they are settled. The exercise proved worthwhile. The results showed a reduced dispersion of the estimated sea level trends, either regionally or globally, after application of the GPS corrections compared to the corrections derived from the glacio-isostatic adjustment models of Peltier (2004). Here we will focus on two important issues that were not addressed in Wöppelmann et al. (2007). The first issue concerns the noise content of our GPS solutions. Previous works have shown that GPS coordinate time series are subject to significant time-correlated (coloured) noise, with a large predominance of flicker noise (Zhang et al. 1997, Mao et al. 1999, Williams et al. 2004). The presence of coloured noise in a time series has a significant effect on the rate uncertainty, which may otherwise be underestimated by as much as an order of magnitude. We therefore carefully investigate the now 10-year long data set of reanalysed GPS solutions for noise content using the Allan variance technique (Feissel et al. 2007). Preliminary results show that the reanalysed solutions at ULR exhibit far less flicker noise than any other solution published so far in the literature available to us. The percentage of stations with flicker noise drops to only about 20%. These encouraging results advocate for a comprehensive reanalysis strategy with full coherent models over the entire observation data span. Moreover, the noise level reaches the best levels of other geodetic results recently published, namely the VLBI level in the horizontal component and the SLR level in the vertical component (Feissel et al. 2007). The second issue that we would like to address in the presentation relates to the reference frame realisation. This is indeed a long standing key issue in achieving the accuracy goal required by long term sea level studies from tide gauges. We investigate the impact of the recent transition from ITRF2000 to ITRF2005 in our previous and current sea level trend estimates.
High accuracy autonomous navigation using the global positioning system (GPS)
NASA Technical Reports Server (NTRS)
Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul
1997-01-01
The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.
NASA Technical Reports Server (NTRS)
Oaks, J.; Frank, A.; Falvey, S.; Lister, M.; Buisson, J.; Wardrip, C.; Warren, H.
1982-01-01
Time transfer equipment and techniques used with the Navigation Technology Satellites were modified and extended for use with the Global Positioning System (GPS) satellites. A prototype receiver was built and field tested. The receiver uses the GPS L1 link at 1575 MHz with C/A code only to resolve a measured range to the satellite. A theoretical range is computed from the satellite ephemeris transmitted in the data message and the user's coordinates. Results of user offset from GPS time are obtained by differencing the measured and theoretical ranges and applying calibration corrections. Results of the first field test evaluation of the receiver are presented.
METAS New Time Scale Generation System - A Progress Report
2007-01-01
and a TWSTFT station are used for remote T&F comparisons. The GPS TAI link is driven by one of the atomic clocks defined as the REF clock...UTC(CH.P) paper clock TA(CH.P) paper clock TWSTFT link GPS link CH00 WAB1 H-maser 1-PPS H-maser 1-PPS REF 1-PPS 5-MHz from all clocks UTC(CH.R) 1-PPS...lost, the only consequence would be a transient of UTC (CH.P), which can be corrected by a subsequent steering. The GPS and TWSTFT links can be
Spacecraft applications of advanced global positioning system technology
NASA Technical Reports Server (NTRS)
1988-01-01
This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.
2010-01-01
Background The intuitive early diagnostic guess could play an important role in reaching a final diagnosis. However, no study to date has attempted to quantify the importance of general practitioners' (GPs) ability to correctly appraise the origin of chest pain within the first minutes of an encounter. Methods The validation study was nested in a multicentre cohort study with a one year follow-up and included 626 successive patients who presented with chest pain and were attended by 58 GPs in Western Switzerland. The early diagnostic guess was assessed prior to a patient's history being taken by a GP and was then compared to a diagnosis of chest pain observed over the next year. Results Using summary measures clustered at the GP's level, the early diagnostic guess was confirmed by further investigation in 51.0% (CI 95%; 49.4% to 52.5%) of patients presenting with chest pain. The early diagnostic guess was more accurate in patients with a life threatening illness (65.4%; CI 95% 64.5% to 66.3%) and in patients who did not feel anxious (62.9%; CI 95% 62.5% to 63.3%). The predictive abilities of an early diagnostic guess were consistent among GPs. Conclusions The GPs early diagnostic guess was correct in one out of two patients presenting with chest pain. The probability of a correct guess was higher in patients with a life-threatening illness and in patients not feeling anxious about their pain. PMID:20170544
Verdon, François; Junod, Michel; Herzig, Lilli; Vaucher, Paul; Burnand, Bernard; Bischoff, Thomas; Pécoud, Alain; Favrat, Bernard
2010-02-21
The intuitive early diagnostic guess could play an important role in reaching a final diagnosis. However, no study to date has attempted to quantify the importance of general practitioners' (GPs) ability to correctly appraise the origin of chest pain within the first minutes of an encounter. The validation study was nested in a multicentre cohort study with a one year follow-up and included 626 successive patients who presented with chest pain and were attended by 58 GPs in Western Switzerland. The early diagnostic guess was assessed prior to a patient's history being taken by a GP and was then compared to a diagnosis of chest pain observed over the next year. Using summary measures clustered at the GP's level, the early diagnostic guess was confirmed by further investigation in 51.0% (CI 95%; 49.4% to 52.5%) of patients presenting with chest pain. The early diagnostic guess was more accurate in patients with a life threatening illness (65.4%; CI 95% 64.5% to 66.3%) and in patients who did not feel anxious (62.9%; CI 95% 62.5% to 63.3%). The predictive abilities of an early diagnostic guess were consistent among GPs. The GPs early diagnostic guess was correct in one out of two patients presenting with chest pain. The probability of a correct guess was higher in patients with a life-threatening illness and in patients not feeling anxious about their pain.
NASA Astrophysics Data System (ADS)
Belyaev, E. N.
2017-10-01
The paper investigates the method of applying mobile scanning systems (MSSs) with inertial navigators in the underground conditions for carrying out the surveying tasks. The available mobile laser scanning systems cannot be used in the underground environment since Global Positioning System (GPS) signals cannot be received in mines. This signal not only is necessary for space positioning, but also operates as the main corrective signal for the primary navigation system - the inertial navigation system. The idea of the method described in this paper consists in using MSSs with a different correction of the inertial system than GPS is.
DOT National Transportation Integrated Search
1993-11-01
Twelve general aviation pilots flew a Beechcraft Baron on 93 non-precision instrument approaches using a nondifferential : GPS receiver nodifled to satisfy selected functional requirements specified in TS0-C129. : The purposes of the effort were to d...
GPS-based satellite tracking system for precise positioning
NASA Technical Reports Server (NTRS)
Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.
1985-01-01
NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.
Near-optimal strategies for sub-decimeter satellite tracking with GPS
NASA Technical Reports Server (NTRS)
Yunck, Thomas P.; Wu, Sien-Chong; Wu, Jiun-Tsong
1986-01-01
Decimeter tracking of low Earth orbiters using differential Global Positioning System (GPS) techniques is discussed. A precisely known global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite orbits. Strategies include a purely geometric, a fully dynamic, and a hybrid strategy. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the hybrid strategy show the most promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a gravity adjustment method to exploit data from repeat ground tracks. These techniques promise to deliver subdecimeter accuracy down to the lowest satellite altitudes.
Generation of real-time mode high-resolution water vapor fields from GPS observations
NASA Astrophysics Data System (ADS)
Yu, Chen; Penna, Nigel T.; Li, Zhenhong
2017-02-01
Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.
The effect of geocenter motion on Jason-2 orbits and the mean sea level
NASA Astrophysics Data System (ADS)
Melachroinos, S. A.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Bordyugov, O.
2013-04-01
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards (Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC's SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a - 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.
The Effect of Geocenter Motion on Jason-2 Orbits and the Mean Sea Level
NASA Technical Reports Server (NTRS)
Melachroinos, S. A.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Bordyugov, O.
2012-01-01
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards (Lemoine et al. 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC's SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a 4.67 plus or minus 3.40 mm error in the Z-component of the orbit frame which creates 1.06 plus or minus 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.
NASA Astrophysics Data System (ADS)
Harima, Ken; Choy, Suelynn; Rizos, Chris; Kogure, Satoshi
2017-09-01
This paper presents an investigation into the performance of real-time Global Navigation Satellite Systems (GNSS) Precise Point Positioning (PPP) in New Zealand. The motivation of the research is to evaluate the feasibility of using PPP technique and a satellite based augmentation system such as the Japanese Quasi-Zenith Satellite System (QZSS) to deliver a real-time precise positioning solution in support of a nation-wide high accuracy GNSS positioning coverage in New Zealand. Two IGS real-time correction streams are evaluated alongside with the PPP correction messages transmitted by the QZSS satellite known as MDC1. MDC1 corrections stream is generated by Japan Aerospace Exploration Agency (JAXA) using the Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis (MADOCA) software and are currently transmitted in test mode by the QZSS satellite. The IGS real-time streams are the CLK9B real-time corrections stream generated by the French Centre National D'études Spatiales (CNES) using the PPP-Wizard software, and the CLK81 real-time corrections stream produced by GMV using their MagicGNSS software. GNSS data is collected from six New Zealand CORS stations operated by Land Information New Zealand (LINZ) over a one-week period in 2015. GPS and GLONASS measurements are processed in a real-time PPP mode using the satellite orbit and clock corrections from the real-time streams. The results show that positioning accuracies of 6 cm in horizontal component and 15 cm in vertical component can be achieved in real-time PPP. The real-time GPS+GLONASS PPP solution required 30 minutes to converge to within 10 cm horizontal positioning accuracy.
NASA Astrophysics Data System (ADS)
Jiang, Weiping; Deng, Liansheng; Zhou, Xiaohui; Ma, Yifang
2014-05-01
Higher-order ionospheric (HIO) corrections are proposed to become a standard part for precise GPS data analysis. For this study, we deeply investigate the impacts of the HIO corrections on the coordinate time series by implementing re-processing of the GPS data from Crustal Movement Observation Network of China (CMONOC). Nearly 13 year data are used in our three processing runs: (a) run NO, without HOI corrections, (b) run IG, both second- and third-order corrections are modeled using the International Geomagnetic Reference Field 11 (IGRF11) to model the magnetic field, (c) run ID, the same with IG but dipole magnetic model are applied. Both spectral analysis and noise analysis are adopted to investigate these effects. Results show that for CMONOC stations, HIO corrections are found to have brought an overall improvement. After the corrections are applied, the noise amplitudes decrease, with the white noise amplitudes showing a more remarkable variation. Low-latitude sites are more affected. For different coordinate components, the impacts vary. The results of an analysis of stacked periodograms show that there is a good match between the seasonal amplitudes and the HOI corrections, and the observed variations in the coordinate time series are related to HOI effects. HOI delays partially explain the seasonal amplitudes in the coordinate time series, especially for the U component. The annual amplitudes for all components are decreased for over one-half of the selected CMONOC sites. Additionally, the semi-annual amplitudes for the sites are much more strongly affected by the corrections. However, when diplole model is used, the results are not as optimistic as IGRF model. Analysis of dipole model indicate that HIO delay lead to the increase of noise amplitudes, and that HIO delays with dipole model can generate false periodic signals. When dipole model are used in modeling HIO terms, larger residual and noise are brought in rather than the effective improvements.
Accurate aircraft wind measurements using the global positioning system (GPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.
1996-11-01
High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.
NASA Astrophysics Data System (ADS)
Steiner, Ladina; Meindl, Michael; Geiger, Alain
2018-05-01
Observations from a submerged GNSS antenna underneath a snowpack need to be analyzed to investigate its potential for snowpack characterization. The magnitude of the main interaction processes involved in the GPS L1 signal propagation through different layers of snow, ice, or freshwater is examined theoretically in the present paper. For this purpose, the GPS signal penetration depth, attenuation, reflection, refraction as well as the excess path length are theoretically investigated. Liquid water exerts the largest influence on GPS signal propagation through a snowpack. An experiment is thus set up with a submerged geodetic GPS antenna to investigate the influence of liquid water on the GPS observations. The experimental results correspond well with theory and show that the GPS signal penetrates the liquid water up to three centimeters. The error in the height component due to the signal propagation delay in water can be corrected with a newly derived model. The water level above the submerged antenna could also be estimated.
NASA Astrophysics Data System (ADS)
Li, Zhen; Yue, Jianping; Li, Wang; Lu, Dekai; Li, Xiaogen
2017-08-01
The 0.5° × 0.5° gridded hydrological loading from Global Land Surface Discharge Model (LSDM) mass distributions is adopted for 32 GPS sites on the Eurasian plate from January 2010 to January 2014. When the heights of these sites that have been corrected for the effects of non-tidal atmospheric and ocean loading are adjusted by the hydrological loading deformation, more than one third of the root-mean-square (RMS) values of the GPS height variability become larger. After analyzing the results by continuous wavelet transform (CWT) and wavelet transform coherence (WTC), we confirm that hydrological loading primarily contributes to the annual variations in GPS heights. Further, the cross wavelet transform (XWT) is used to investigate the relative phase between the time series of GPS heights and hydrological deformation, and it is indicated that the annual oscillations in the two time series are physically related for some sites; other geophysical effect, GPS systematic errors and hydrological modeling errors could result in the phase asynchrony between GPS and hydrological loading signals for the other sites. Consequently, the phase asynchrony confirms that the annual fluctuations in GPS observations result from a combination of geophysical signals and systematic errors.
Benefit of Complete State Monitoring For GPS Realtime Applications With Geo++ Gnsmart
NASA Astrophysics Data System (ADS)
Wübbena, G.; Schmitz, M.; Bagge, A.
Today, the demand for precise positioning at the cm-level in realtime is worldwide growing. An indication for this is the number of operational RTK network installa- tions, which use permanent reference station networks to derive corrections for dis- tance dependent GPS errors and to supply corrections to RTK users in realtime. Gen- erally, the inter-station distances in RTK networks are selected at several tens of km in range and operational installations cover areas of up to 50000 km x km. However, the separation of the permanent reference stations can be increased to sev- eral hundred km, while a correct modeling of all error components is applied. Such networks can be termed as sparse RTK networks, which cover larger areas with a reduced number of stations. The undifferenced GPS observable is best suited for this task estimating the complete state of a permanent GPS network in a dynamic recursive Kalman filter. A rigorous adjustment of all simultaneous reference station data is re- quired. The sparse network design essentially supports the state estimation through its large spatial extension. The benefit of the approach and its state modeling of all GPS error components is a successful ambiguity resolution in realtime over long distances. The above concepts are implemented in the operational GNSMART (GNSS State Monitoring and Representation Technique) software of Geo++. It performs a state monitoring of all error components at the mm-level, because for RTK networks this accuracy is required to sufficiently represent the distance dependent errors for kine- matic applications. One key issue of the modeling is the estimation of clocks and hard- ware delays in the undifferenced approach. This pre-requisite subsequently allows for the precise separation and modeling of all other error components. Generally most of the estimated parameters are considered as nuisance parameters with respect to pure positioning tasks. As the complete state vector of GPS errors is available in a GPS realtime network, additional information besides position can be derived e.g. regional precise satellite clocks, orbits, total ionospheric electron content, tropospheric water vapor distribution, and also dynamic reference station movements. The models of GNSMART are designed to work with regional, continental or even global data. Results from GNSMART realtime networks with inter-station distances of several hundred km are presented to demonstrate the benefits of the operational implemented concepts.
NASA Astrophysics Data System (ADS)
Namie, Hiromune; Morishita, Hisashi
The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.
MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER
An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...
NASA Astrophysics Data System (ADS)
Petrov, L.
2017-12-01
Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.
APOLLO clock performance and normal point corrections
NASA Astrophysics Data System (ADS)
Liang, Y.; Murphy, T. W., Jr.; Colmenares, N. R.; Battat, J. B. R.
2017-12-01
The Apache point observatory lunar laser-ranging operation (APOLLO) has produced a large volume of high-quality lunar laser ranging (LLR) data since it began operating in 2006. For most of this period, APOLLO has relied on a GPS-disciplined, high-stability quartz oscillator as its frequency and time standard. The recent addition of a cesium clock as part of a timing calibration system initiated a comparison campaign between the two clocks. This has allowed correction of APOLLO range measurements—called normal points—during the overlap period, but also revealed a mechanism to correct for systematic range offsets due to clock errors in historical APOLLO data. Drift of the GPS clock on ∼1000 s timescales contributed typically 2.5 mm of range error to APOLLO measurements, and we find that this may be reduced to ∼1.6 mm on average. We present here a characterization of APOLLO clock errors, the method by which we correct historical data, and the resulting statistics.
Data processing for GPS common view time comparison between remote clocks
NASA Astrophysics Data System (ADS)
Li, Bian
2004-12-01
GPS CV method will play an important role in JATC (joint atomic time of China) system which is being rebuilt. The selection of common view data and the methods of filtering the random noise from the observed data are introduced. The methods to correct ionospheric delay and geometric delay for GPS CV comparison are expounded. The calculation results for the data of CV comparison between NTSC (National Time Service Conter, the Chinese Academy of Sciences) and CRL (Communications Research Laboratory, which has been renamed National Institute of Information and Communications Technology) are presented.
Stone, Louise
2015-04-01
To determine what diagnostic terms are utilized by general practitioners (GPs) when seeing patients with mixed emotional and physical symptoms. Prototype cases of depression, anxiety, hypochondriasis, somatization and undifferentiated somatoform disorders were sourced from the psychiatric literature and the author's clinical practice. These were presented, in paper form, to a sample of GPs and GP registrars who were asked to provide a written diagnosis. Fifty-two questionnaires were returned (30% response rate). The depression and anxiety cases were identified correctly by most participants. There was moderate identification of the hypochondriasis and somatization disorder cases, and poor identification of the undifferentiated somatoform case. Somatization and undifferentiated somatoform disorders were infrequently recognized as diagnostic categories by the GPs in this study. Future research into the language and diagnostic reasoning utilized by GPs may help develop better diagnostic classification systems for use in primary care in this important area of practice.
78 FR 22554 - Nationwide Differential Global Positioning System (NDGPS)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... developed by the Coast Guard in the 1990s to improve GPS-calculated positions for navigation, for positioning aids to navigation, in support of maritime safety requirements and to offset the error induced by..., maintain, and operate such aids to navigation is found in 14 U.S.C. 81. \\1\\ Initially, high quality GPS...
A mobile mapping system for spatial information based on DGPS/EGIS
NASA Astrophysics Data System (ADS)
Pei, Ling; Wang, Qing; Gu, Juan
2007-11-01
With the rapid developments of mobile device and wireless communication, it brings a new challenge for acquiring the spatial information. A mobile mapping system based on differential global position system (DGPS) integrated with embedded geographic information system (EGIS) is designed. A mobile terminal adapts to various GPS differential environments such as single base mode and network GPS mode like Virtual Reference Station (VRS) and Master- Auxiliary Concept (MAC) by the mobile communication technology. The spatial information collected through DGPS is organized in an EGIS running in the embedded device. A set of mobile terminal in real-time DGPS based on GPRS adopting multithreading technique of serial port in manner of simulating overlapped I/O operating is developed, further more, the GPS message analysis and checkout based on Strategy Pattern for various receivers are included in the process of development. A mobile terminal accesses to the GPS network successfully by NTRIP (Networked Transport of RTCM via Internet Protocol) compliance. Finally, the accuracy and reliability of the mobile mapping system are proved by a lot of testing in 9 provinces all over the country.
2002 Airborne Geophysical Survey at Pueblo of Laguna Bombing Targets, New Mexico. Revision 3
2005-10-01
conducted and results evaluated. The eight cesium magnetometers , GPS systems (positioning and attitude), fluxgate magnetometers , data recording...Accurate positioning requires a correction for this lag. Time lags between the magnetometers , fluxgate magnetometer , and GPS signals were measured by...between magnetometers and fluxgate ); An initial check flight after installation. Under the category of data QA/QC: An extensive test flight to
First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University.
Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao
2015-11-13
GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project "Crustal Movement Observation Network of China" (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level.
NASA Johnson Space Center: Mini AERCam Testing with GSS6560
NASA Technical Reports Server (NTRS)
Cryant, Scott P.
2004-01-01
This slide presentation reviews the testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) with the GPS/SBAS simulation system, GSS6560. There is a listing of several GPS based programs at NASA Johnson, including the testing of Shuttle testing of the GPS system. Including information about Space Integrated GPS/INS (SIGI) testing. There is also information about the standalone ISS SIGI test,and testing of the SIGI for the Crew Return Vehicle. The Mini AERCam is a small, free-flying camera for remote inspections of the ISS, it uses precise relative navigation with differential carrier phase GPS to provide situational awareness to operators. The closed loop orbital testing with and without the use of the GSS6550 system of the Mini AERCam system is reviewed.
Guidance simulation and test support for differential GPS flight experiment
NASA Technical Reports Server (NTRS)
Geier, G. J.; Loomis, P. V. W.; Cabak, A.
1987-01-01
Three separate tasks which supported the test preparation, test operations, and post test analysis of the NASA Ames flight test evaluation of the differential Global Positioning System (GPS) are presented. Task 1 consisted of a navigation filter design, coding, and testing to optimally make use of GPS in a differential mode. The filter can be configured to accept inputs from external censors such as an accelerometer and a barometric or radar altimeter. The filter runs in real time onboard a NASA helicopter. It processes raw pseudo and delta range measurements from a single channel sequential GPS receiver. The Kalman filter software interfaces are described in detail, followed by a description of the filter algorithm, including the basic propagation and measurement update equations. The performance during flight tests is reviewed and discussed. Task 2 describes a refinement performed on the lateral and vertical steering algorithms developed on a previous contract. The refinements include modification of the internal logic to allow more diverse inflight initialization procedures, further data smoothing and compensation for system induced time delays. Task 3 describes the TAU Corp participation in the analysis of the real time Kalman navigation filter. The performance was compared to that of the Z-set filter in flight and to the laser tracker position data during post test analysis. This analysis allowed a more optimum selection of the parameters of the filter.
NASA Technical Reports Server (NTRS)
Goad, Clyde C.; Chadwell, C. David
1993-01-01
GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial (FTN90) and variational (FTN80, V-matrix) files are generated. These two files along with a control statement file and a satellite identification and mass file are passed to the filter/smoother to estimate time-varying parameter states at each epoch, improved satellite initial elements, and improved estimates of constant parameters.
NASA Astrophysics Data System (ADS)
Shen, Z.; Liu, S.; Burgmann, R.
2015-12-01
The 1992 Mw 7.3 Landers and 1999 Mw7.1 Hector Mine earthquakes struck the Eastern California Shear Zone (ECSZ) in the Mojave Desert, Southern California. Coseismic and postseismic deformation from these events affect efforts to use Global Positioning System (GPS) observations collected since these events to establish a secular surface velocity field, especially in the near field of the coseismic ruptures. We devise block motion models constrained by both historical pre-Landers triangulation and trilateration observations and post-Landers GPS measurements to recover the secular deformation field and differentiate the postseismic transients in the Mojave region. Postseismic transients are found to remain in various "interseismic" GPS velocity solutions in the form of 2-3 mm/yr excess right-lateral shear across the Landers and Hector Mine coseismic ruptures [Liu et al., 2015 JGR]. Postseismic GPS time series differentiated from the secular velocity field reveal enduring late-stage transient motions in the near field of the coseismic ruptures. Using the postseismic time series data as model constraints, we develop postseismic deformation model invoking afterlip on faults and viscoelastic relaxation in the lower crust and upper mantle. A Burgers body material and a Maxwell material are assumed for the lower crust and upper mantle respectively. Our preliminary modeling result, constrained using GPS time series data from the SCEC Crustal Motion Map 4.0 (covering the time period of 1992-2004), reveals that both the long-term viscosities for the lower crust and upper mantle are on the order of e+19 Pa-s. This finding differs significantly from the "Crème Brulee" model predictions about the rheological structure of the lower crust and upper mantle, in which the lower crust has a substantially higher viscosity. We are incorporating more GPS time series data into our model, particularly the ones from continuous sites of the Plate Boundary Observatory network with post-2004 time span, and the modeling result will be presented at the meeting.
The Effect of Geocenter Motion on Jason-2 and Jason-1 Orbits and the Mean Sea Level
NASA Technical Reports Server (NTRS)
Melachroinos, Stavros A.; Beckley, Brian D.; Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.
2012-01-01
We have investigated the impact of geocenter motion on Jason-2 orbits. This was accomplished by computing a series of Jason-1, Jason-2 GPS-based and SLR/DORIS-based orbits using ITRF2008 and the IGS repro1 framework based on the most recent GSFC standards. From these orbits, we extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. The fitted annual and seasonal terms of these time-series are compared to two different geocenter motion models. Subsequently, we included the geocenter motion corrections in the POD process as a degree-1 loading displacement correction to the tracking network. The analysis suggested that the GSFC's Jason-2 std0905 GPS-based orbits are closely tied to the center of mass (CM) of the Earth whereas the SLR/DORIS std0905 orbits are tied to the center of figure (CF) of the ITRF2005 (Melachroinos et al., 2012). In this study we extend the investigation to the centering of the GPS constellation and the way those are tied in the Jason-1 and Jason-2 POD process. With a new set of standards, we quantify the GPS and SLR/DORIS-based orbit centering during the Jason-1 and Jason-2 inter-calibration period and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the full term of the geocenter motion correction.
NASA Astrophysics Data System (ADS)
Neely, W.; Borsa, A. A.; Silverii, F.
2017-12-01
Recent droughts have increased reliance on groundwater for agricultural production in California's Central Valley. Using Interferometric Synthetic Aperture Radar (InSAR), we observe upwards of 25 cm/yr of subsidence from November 2014 to February 2017 due to intense pumping. However, these observations are contaminated by atmospheric noise and orbital errors. We present a novel method for correcting long wavelength errors in InSAR deformation estimates using time series from continuous Global Positioning System (cGPS) stations within the SAR footprint, which we apply to C-band data from the Sentinel mission. We test our method using 49 SAR acquisitions from the Sentinel 1 satellites and 107 cGPS times series from the Geodesy Advancing Geoscience and EarthScope (GAGE) network in southern Central Valley. We correct each interferogram separately, implementing an intermittent Small Baseline Subset (ISBAS) technique to produce a time series of line-of-sight surface motion from 276 InSAR pairs. To estimate the vertical component of this motion, we remove horizontal tectonic displacements predicted by the Southern California Earthquake Center's (SCEC) Community Geodetic Model. We validate our method by comparing the corrected InSAR results with independent cGPS data and find a marked improvement in agreement between the two data sets, particularly in the deformation rates. Using this technique, we characterize the time evolution of surface vertical deformation in the southern Central Valley related to human exploitation of local groundwater resources. This methodology is applicable to data from other SAR satellites, including ALOS-2 and the upcoming US-India NISAR mission.
Baxter, Susan; McDermott, Christopher J
2017-05-08
The diagnosis of motor neurone disease (MND) is known to be challenging and there may be delay in patients receiving a correct diagnosis. This study investigated the referral process for patients who had been diagnosed with MND, and whether a newly-developed tool (The Red Flags checklist) might help General Practitioners (GPs) in making referral decisions. We carried out interviews with GPs who had recently referred a patient diagnosed with MND, and interviews/surveys with GPs who had not recently referred a patient with suspected MND. We collected data before the Red Flags checklist was introduced; and again one year later. We analysed the data to identify key recurring themes. Forty two GPs took part in the study. The presence of fasciculation was the clinical feature that most commonly led to consideration of a potential MND diagnosis. GPs perceived that their role was to make onward referrals rather than attempting to make a diagnosis, and delays in correct diagnosis tended to occur at the specialist level. A quarter of participants had some awareness of the newly-developed tool; most considered it useful, if incorporated into existing systems. While fasciculation is the most common symptom associated with MND, other bulbar, limb or respiratory features, together with progression should be considered. There is a need for further research into how decision-support tools should be designed and provided, in order to best assist GPs with referral decisions. There is also a need for further work at the level of secondary care, in order that referrals made are re-directed appropriately.
Kim, Miso; Park, Kwan-Dong
2017-01-01
We have developed a suite of real-time precise point positioning programs to process GPS pseudorange observables, and validated their performance through static and kinematic positioning tests. To correct inaccurate broadcast orbits and clocks, and account for signal delays occurring from the ionosphere and troposphere, we applied State Space Representation (SSR) error corrections provided by the Seoul Broadcasting System (SBS) in South Korea. Site displacements due to solid earth tide loading are also considered for the purpose of improving the positioning accuracy, particularly in the height direction. When the developed algorithm was tested under static positioning, Kalman-filtered solutions produced a root-mean-square error (RMSE) of 0.32 and 0.40 m in the horizontal and vertical directions, respectively. For the moving platform, the RMSE was found to be 0.53 and 0.69 m in the horizontal and vertical directions. PMID:28598403
Management of patients with sore throats in relation to guidelines: an interview study in Sweden.
Hedin, Katarina; Strandberg, Eva Lena; Gröndal, Hedvig; Brorsson, Annika; Thulesius, Hans; André, Malin
2014-12-01
To explore how a group of Swedish general practitioners (GPs) manage patients with a sore throat in relation to current guidelines as expressed in interviews. Qualitative content analysis was used to analyse semi-structured interviews. Swedish primary care. A strategic sample of 25 GPs. Perceived management of sore throat patients. It was found that nine of the interviewed GPs were adherent to current guidelines for sore throat and 16 were non-adherent. The two groups differed in terms of guideline knowledge, which was shared within the team for adherent GPs while idiosyncratic knowledge dominated for the non-adherent GPs. Adherent GPs had no or low concerns for bacterial infections and differential diagnosis whilst non-adherent GPs believed that in patients with a sore throat any bacterial infection should be identified and treated with antibiotics. Patient history and examination was mainly targeted by adherent GPs whilst for non-adherent GPs it was often redundant. Non-adherent GPs reported problems getting patients to abstain from antibiotics, whilst no such problems were reported in adherent GPs. This interview study of sore throat management in a strategically sampled group of Swedish GPs showed that while two-thirds were non-adherent and had a liberal attitude to antibiotics one-third were guideline adherent with a restricted view on antibiotics. Non-adherent GPs revealed significant knowledge gaps. Adherent GPs had discussed guidelines within the primary care team while non-adherent GPs had not. Guideline implementation thus seemed to be promoted by knowledge shared in team discussions.
Research in Application of Geodetic GPS Receivers in Time Synchronization
NASA Astrophysics Data System (ADS)
Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.
2018-04-01
In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least 2 common-view satellites for each tracking period when the elevation angle is 30°. Data processing used precise GPS satellite ephemeris, double-frequency P-code combination observations without ionosphere effects and the correction of the Black troposphere Delay Model. the weighted average of all common-viewed GPS satellites in the same tracking period is taken by weighting the root-mean-square error of each satellite, finally a time comparison data between two stations is obtained, and then the time synchronization result between the two stations (PTB and USNO) is obtained. It can be seen from the analysis of time synchronization result that the root mean square error of REFSV (the difference between the local frequency standard at the mid-point of the actual tracking length and the tracked satellite time in unit of 0.1 ns) shows a linear change within one day, However the jump occurs when jumping over the day which is mainly caused by satellites position being changed due to the interpolation of two-day precise satellite ephemeris across the day. the overall trend of time synchronization result is declining and tends to be stable within a week-long time. We compared the time synchronization results (without considering the hardware delay correction) with those published by the International Bureau of Weights and Measures (BIPM), and the comparing result from a week earlier shows that the trend is same but there is a systematic bias which was mainly caused by hardware delays of geodetic GPS receiver. Regardless of the hardware delay, the comparing result is about between 102 ns and 106 ns. the vast majority of the difference within 2 ns but the difference of individual moment does not exceed 4ns when taking into account the systemic bias which mainly caused by hardware delay. Therefore, it is feasible to use the geodetic GPS receiver to achieve the time synchronization result in nanosecond order between two stations which separated by thousands kilometers, and multi-channel geodetic GPS receivers have obvious advantages over single-channel geodetic GPS receivers in the number of common-viewing satellites. In order to obtain higher precision (e.g sub-nanosecond order) time synchronization results, we shall take account into carrier phase observations, hardware delay ,and more error-influencing factors should be considered such as troposphere delay correction, multipath effects, and hardware delays changes due to temperature changes.
Is there a "blind" strike-slip fault at the southern end of the San Jacinto Fault system?
NASA Astrophysics Data System (ADS)
Tymofyeyeva, E.; Fialko, Y. A.
2015-12-01
We have studied the interseismic deformation at the southern end of the San Jacinto fault system using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. To complement the continuous GPS measurements from the PBO network, we have conducted campaign-style GPS surveys of 19 benchmarks along Highway 78 in the years 2012, 2013, and 2014. We processed the campaign GPS data using GAMIT to obtain horizontal velocities. The data show high velocity gradients East of the surface trace of the Coyote Creek Fault. We also processed InSAR data from the ascending and descending tracks of the ENVISAT mission between the years 2003 and 2010. The InSAR data were corrected for atmospheric artifacts using an iterative common point stacking method. We combined average velocities from different look angles to isolate the fault-parallel velocity field, and used fault-parallel velocities to compute strain rate. We filtered the data over a range of wavelengths prior to numerical differentiation, to reduce the effects of noise and to investigate both shallow and deep sources of deformation. At spatial wavelengths less than 2km the strain rate data show prominent anomalies along the San Andreas and Superstition Hills faults, where shallow creep has been documented by previous studies. Similar anomalies are also observed along parts of the Coyote Creek Fault, San Felipe Fault, and an unmapped southern continuation of the Clark strand of the San Jacinto Fault. At wavelengths on the order of 20km, we observe elevated strain rates concentrated east of the Coyote Creek Fault. The long-wavelength strain anomaly east of the Coyote Creek Fault, and the localized shallow creep observed in the short-wavelength strain rate data over the same area suggest that there may be a "blind" segment of the Clark Fault that accommodates a significant portion of the deformation on the southern end of the San Jacinto Fault.
A Differential GPS Aided Ins for Aircraft Landings
1995-12-01
Pseudolite during the Landing A pproach .................................................................................................. 4-9 4.2.1...for precision approaches, areas associated with accuracy, coverage, integrity availability, and aircraft integration must be studied and 1-3...publications [13,20,27,30,57,59] suggests very few studies have been performed which use an integrated INS/GPS for precision approaches. The majority of
Advanced Corrections for InSAR Using GPS and Numerical Weather Models
NASA Astrophysics Data System (ADS)
Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.
2017-12-01
We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale meteorological processes allows us to assess under what conditions the technique works most effectively. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.
A global positioning measurement system for regional geodesy in the caribbean
NASA Astrophysics Data System (ADS)
Renzetti, N. A.
1986-11-01
Low cost, portable receivers using signals from satellites of the Global Positioning System (GPS) will enable precision geodetic observations to be made on a large scale. A number of important geophysical questions relating to plate-motion kinematics and dynamics can be addressed with this measurement capability. We describe a plan to design and validate a GPS-based geodetic system, and to demonstrate its capability in California, Mexico and the Caribbean region. The Caribbean program is a prototype for a number of regional geodetic networks to be globally distributed. In 1985, efforts will be concentrated on understanding and minimizing error sources. Two dominant sources of error are uncertainties in the orbit ephemeris of the GPS satellites, and uncertainties in the correction for signal delay due to variable tropospheric water vapor. Orbit ephemeris uncertainties can be minimized by performing simultaneous satellite observations with GPS receivers at known (fiducial) points. Water vapor corrections can be made by performing simultaneous line-of-sight measurements of integrated water vapor content with ground-based water vapor radiometers. Specific experiments to validate both concepts are outlined. Caribbean measurements will begin in late 1985 or early 1986. Key areas of measurement are the northern strike-slip boundary, and the western convergent boundary. Specific measurement plans in both regions are described.
Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai
2013-01-01
The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system. PMID:23955434
Feasibility of collision warning, precision approach and landing using GPS, volume 1
NASA Technical Reports Server (NTRS)
Ruedger, W. H.
1981-01-01
The use of GPS, with an appropriately configured data link, to enhance general aviation avionic functions encountered in the terminal area and on approach was investigated with emphasis on approach and landing guidance and collision warning. The feasibility of using differential GPS to obtain the precision navigation solutions required for landing was studied. Results show that the concept is sound. An experimental program was developed to demonstrate this concept. The collision avoidance/warning concept was examined through the development of a functional system specification.
Non-dynamic decimeter tracking of earth satellites using the Global Positioning System
NASA Technical Reports Server (NTRS)
Yunck, T. P.; Wu, S. C.
1986-01-01
A technique is described for employing the Global Positioning System (GPS) to determine the position of a low earth orbiter with decimeter accuracy without the need for user dynamic models. A differential observing strategy is used requiring a GPS receiver on the user vehicle and a network of six ground receivers. The technique uses the continuous record of position change obtained from GPS carrier phase to smooth position measurements made with pseudo-range. The result is a computationally efficient technique that can deliver decimeter accuracy down to the lowest altitude orbits.
Precise Point Positioning Using Triple GNSS Constellations in Various Modes
Afifi, Akram; El-Rabbany, Ahmed
2016-01-01
This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart. PMID:27240376
Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
Afifi, Akram; El-Rabbany, Ahmed
2016-05-28
This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada's GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart.
Preliminary GPS orbit determination results for the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Gold, Kenn; Bertiger, Willy; Wu, Sien; Yunck, Tom
1993-01-01
A single-frequency Motorola Global Positioning System (GPS) receiver was launched with the Extreme Ultraviolet Explorer mission in June 1992. The receiver utilizes dual GPS antennas placed on opposite sides of the satellite to obtain full GPS coverage as it rotates during its primary scanning mission. A data set from this GPS experiment has been processed at the Jet Propulsion Laboratory with the GIPSY-OASIS 2 software package. The single-frequency, dual antenna approach and the low altitude (approximately 500 km) orbit of the satellite create special problems for the GPS orbit determination analysis. The low orbit implies that the dynamics of the spacecraft will be difficult to model, and that atmospheric drag will be an important error source. A reduced-dynamic solution technique was investigated in which ad hoc accelerations were estimated at each time step to absorb dynamic model error. In addition, a single-frequency ionospheric correction was investigated, and a cycle-slip detector was written. Orbit accuracy is currently better than 5 m. Further optimization should improve this to about 1 m.
Position Accuracy Improvement by Implementing the DGNSS-CP Algorithm in Smartphones
Yoon, Donghwan; Kee, Changdon; Seo, Jiwon; Park, Byungwoon
2016-01-01
The position accuracy of Global Navigation Satellite System (GNSS) modules is one of the most significant factors in determining the feasibility of new location-based services for smartphones. Considering the structure of current smartphones, it is impossible to apply the ordinary range-domain Differential GNSS (DGNSS) method. Therefore, this paper describes and applies a DGNSS-correction projection method to a commercial smartphone. First, the local line-of-sight unit vector is calculated using the elevation and azimuth angle provided in the position-related output of Android’s LocationManager, and this is transformed to Earth-centered, Earth-fixed coordinates for use. To achieve position-domain correction for satellite systems other than GPS, such as GLONASS and BeiDou, the relevant line-of-sight unit vectors are used to construct an observation matrix suitable for multiple constellations. The results of static and dynamic tests show that the standalone GNSS accuracy is improved by about 30%–60%, thereby reducing the existing error of 3–4 m to just 1 m. The proposed algorithm enables the position error to be directly corrected via software, without the need to alter the hardware and infrastructure of the smartphone. This method of implementation and the subsequent improvement in performance are expected to be highly effective to portability and cost saving. PMID:27322284
Real-time synthetic vision cockpit display for general aviation
NASA Astrophysics Data System (ADS)
Hansen, Andrew J.; Smith, W. Garth; Rybacki, Richard M.
1999-07-01
Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95% positioning, sub degree pointing), high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight. This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the navigation/display interface, real-time 60 Hz rendering of terrain with multiple levels of detail under demand paging, and construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings of the navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as well as synchronized multiple display channels with different views from the same flight. PC-based solutions which integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.
Building resilience of the Global Positioning System to space weather
NASA Astrophysics Data System (ADS)
Fisher, Genene; Kunches, Joseph
2011-12-01
Almost every aspect of the global economy now depends on GPS. Worldwide, nations are working to create a robust Global Navigation Satellite System (GNSS), which will provide global positioning, navigation, and timing (PNT) services for applications such as aviation, electric power distribution, financial exchange, maritime navigation, and emergency management. The U.S. government is examining the vulnerabilities of GPS, and it is well known that space weather events, such as geomagnetic storms, contribute to errors in single-frequency GPS and are a significant factor for differential GPS. The GPS industry has lately begun to recognize that total electron content (TEC) signal delays, ionospheric scintillation, and solar radio bursts can also interfere with daily operations and that these threats grow with the approach of the next solar maximum, expected to occur in 2013. The key challenges raised by these circumstances are, first, to better understand the vulnerability of GPS technologies and services to space weather and, second, to develop policies that will build resilience and mitigate risk.
On Navigation Sensor Error Correction
NASA Astrophysics Data System (ADS)
Larin, V. B.
2016-01-01
The navigation problem for the simplest wheeled robotic vehicle is solved by just measuring kinematical parameters, doing without accelerometers and angular-rate sensors. It is supposed that the steerable-wheel angle sensor has a bias that must be corrected. The navigation parameters are corrected using the GPS. The approach proposed regards the wheeled robot as a system with nonholonomic constraints. The performance of such a navigation system is demonstrated by way of an example
New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data
NASA Astrophysics Data System (ADS)
Sun, B.; Reale, A.; Ballish, B.; Seidel, D. J.
2014-12-01
Conventional radiosonde observations (RAOBs), along with satellite and other in situ data, are assimilated in numerical weather prediction (NWP) models to generate a forecast. Radiosonde temperature observations, however, have solar and thermal radiation induced biases (typically a warm daytime bias from sunlight heating the sensor and a cold bias at night as the sensor emits longwave radiation). Radiation corrections made at stations based on algorithms provided by radiosonde manufacturers or national meteorological agencies may not be adequate, so biases remain. To adjust these biases, NWP centers may make additional adjustments to radiosonde data. However, the radiation correction (RADCOR) schemes used in the NOAA NCEP data assimilation and forecasting system is outdated and does not cover several widely-used contemporary radiosonde types. This study focuses on work whose objective is to improve these corrections and test their impacts on the NWP forecasting and analysis. GPS Radio Occultation (RO) dry temperature (Tdry) is considered to be highly accurate in the upper troposphere and low stratosphere where atmospheric water vapor is negligible. This study uses GPS RO Tdry from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) as the reference to quantify the radiation induced RAOB temperature errors by analyzing ~ 3-yr collocated RAOB and COSMIC GPS RO data compile by the NOAA Products Validation System (NPROVS). The new radiation adjustments are developed for different solar angle categories and for all common sonde types flown in the WMO global operational upper air network. Results for global and several commonly used sondes are presented in the context of NCEP Global Forecast System observation-minus-background analysis, indicating projected impacts in reducing forecast error. Dedicated NWP impact studies to quantify the impact of the new RADCOR schemes on the NCEP analyses and forecast are under consideration.
Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.
2016-01-01
Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.
A RLS-SVM Aided Fusion Methodology for INS during GPS Outages
Yao, Yiqing; Xu, Xiaosu
2017-01-01
In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS) outages, a novel robust least squares support vector machine (LS-SVM)-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS). The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics. PMID:28245549
A RLS-SVM Aided Fusion Methodology for INS during GPS Outages.
Yao, Yiqing; Xu, Xiaosu
2017-02-24
In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS) outages, a novel robust least squares support vector machine (LS-SVM)-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS). The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics.
Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Hart, R. C.; Long, A. C.; Lee, T.
1997-01-01
The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.
Rubidium atomic frequency standards for GPS Block IIR
NASA Technical Reports Server (NTRS)
Riley, William J.
1990-01-01
The Rubidium Atomic Frequency Standards (RAFS) were provided for the GPS Block IIR NAVSTAR satellites. These satellites will replenish and upgrade the space segment of the Global Positioning System in the mid 1990s. The GPS RAFS Rb clocks are the latest generation of the high-performance rubidium frequency standards. They offer an aging rate in the low pp 10(exp 14)/day range and a drift-corrected 1-day stability in the low pp 10(exp 14) range. The Block IIR version of these devices will have improved performance, higher reliability, smaller size, and greater radiation hardness. The GPS Block IIR atomic clocks have a natural frequency configuration whereby they output a frequency of about 13.4 MHz that is a submultiple of the atomic resonance of Rb (or Cs). The RAFS operates at a low, fixed C-field for increased stability. The GPS Block IIR RAFS design, including the changes and improvements made, and the test results obtained are described.
NASA Technical Reports Server (NTRS)
Mccall, D. L.
1984-01-01
The results of a simulation study to define the functional characteristics of a airborne and ground reference GPS receiver for use in a Differential GPS system are doumented. The operations of a variety of receiver types (sequential-single channel, continuous multi-channel, etc.) are evaluated for a typical civil helicopter mission scenario. The math model of each receiver type incorporated representative system errors including intentional degradation. The results include the discussion of the receiver relative performance, the spatial correlative properties of individual range error sources, and the navigation algorithm used to smooth the position data.
Estimating Total Electron Content Using 1,000+ GPS Receivers
NASA Technical Reports Server (NTRS)
Komjathy, Attila; Mannucci, Anthony
2006-01-01
A computer program uses data from more than 1,000 Global Positioning System (GPS) receivers in an Internet-accessible global network to generate daily estimates of the global distribution of vertical total electron content (VTEC) of the ionosphere. This program supersedes an older program capable of processing readings from only about 200 GPS receivers. This program downloads the data via the Internet, then processes the data in three stages. In the first stage, raw data from a global subnetwork of about 200 receivers are preprocessed, station by station, in a Kalman-filter-based least-squares estimation scheme that estimates satellite and receiver differential biases for these receivers and for satellites. In the second stage, an observation equation that incorporates the results from the first stage and the raw data from the remaining 800 receivers is solved to obtain the differential biases for these receivers. The only remaining error sources for which an account cannot be given are multipath and receiver noise contributions. The third stage is a postprocessing stage in which all the processed data are combined and used to generate new data products, including receiver differential biases and global and regional VTEC maps and animations.
InSAR tropospheric delay mitigation by GPS observations: A case study in Tokyo area
NASA Astrophysics Data System (ADS)
Xu, Caijun; Wang, Hua; Ge, Linlin; Yonezawa, Chinatsu; Cheng, Pu
2006-03-01
Like other space geodetic techniques, interferometric synthetic aperture radar (InSAR) is limited by the variations of tropospheric delay noise. In this paper, we analyze the double-difference (DD) feature of tropospheric delay noise in SAR interferogram. By processing the ERS-2 radar pair, we find some tropospheric delay fringes, which have similar patterns with the GMS-5 visible-channel images acquired at almost the same epoch. Thirty-five continuous GPS (CGPS) stations are distributed in the radar scene. We analyze the GPS data by GIPSY-OASIS (II) software and extract the wet zenith delay (WZD) parameters at each station at the same epoch with the master and the slave image, respectively. A cosine mapping function is applied to transform the WZD to wet slant delay (WSD) in line-of-sight direction. Based on the DD WSD parameters, we establish a two-dimensional (2D) semi-variogram model, with the parameters 35.2, 3.6 and 0.88. Then we predict the DD WSD parameters by the kriging algorithm for each pixel of the interferogram, and subtract it from the unwrapped phase. Comparisons between CGPS and InSAR range changes in LOS direction show that the root of mean squares (RMS) decreased from 1.33 cm before correction to 0.87 cm after correction. From the result, we can conclude that GPS WZD parameters can be effectively used to identify and mitigate the large-scale InSAR tropospheric delay noise if the spatial resolution of GPS stations is dense enough.
Determination of GPS orbits to submeter accuracy
NASA Technical Reports Server (NTRS)
Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.
1988-01-01
Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.
Heesch, Kristiann C; Langdon, Michael
2016-02-01
Issue addressed A key strategy to increase active travel is the construction of bicycle infrastructure. Tools to evaluate this strategy are limited. This study assessed the usefulness of a smartphone GPS tracking system for evaluating the impact of this strategy on cycling behaviour. Methods Cycling usage data were collected from Queenslanders who used a GPS tracking app on their smartphone from 2013-2014. 'Heat' and volume maps of the data were reviewed, and GPS bicycle counts were compared with surveillance data and bicycle counts from automatic traffic-monitoring devices. Results Heat maps broadly indicated that changes in cycling occurred near infrastructure improvements. Volume maps provided changes in counts of cyclists due to these improvements although errors were noted in geographic information system (GIS) geo-coding of some GPS data. Large variations were evident in the number of cyclists using the app in different locations. These variations limited the usefulness of GPS data for assessing differences in cycling across locations. Conclusion Smartphone GPS data are useful in evaluating the impact of improved bicycle infrastructure in one location. Using GPS data to evaluate differential changes in cycling across multiple locations is problematic when there is insufficient traffic-monitoring devices available to triangulate GPS data with bicycle traffic count data. So what? The use of smartphone GPS data with other data sources is recommended for assessing how infrastructure improvements influence cycling behaviour.
Comparison of two-way satellite time transfer and GPS common-view time transfer between OCA and TUG
NASA Technical Reports Server (NTRS)
Kirchner, Dieter; Thyr, U.; Ressler, H.; Robnik, R.; Grudler, P.; Baumont, Francoise S.; Veillet, Christian; Lewandowski, Wlodzimierz W.; Hanson, W.; Clements, A.
1992-01-01
For about one year the time scales UTC(OCA) and UTC(TUG) were compared by means of GPS and two-way satellite time transfer. At the end of the experiment both links were independently 'calibrated' by measuring the differential delays of the GPS receivers and of the satellite earth stations by transportation of a GPS receiver and of one of the satellite terminals. The results obtained by both methods differ by about 3 ns, but reveal a seasonal variation of about 8 ns peak-to-peak which is likely the result of a temperature-dependence of the delays of the GPS receivers used. For the comparison of both methods the stabilities of the timescales are of great importance. Unfortunately, during the last three months of the experiment a less stable clock had to be used for the generation of UTC(TUG).
First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University
Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao
2015-01-01
GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project “Crustal Movement Observation Network of China” (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level. PMID:26580616
Assessing the Impact of Vertical Land Motion on Twentieth Century Global Mean Sea Level Estimates
NASA Technical Reports Server (NTRS)
Hamlington, B. D.; Thompson, P.; Hammond, W. C.; Blewitt, G.; Ray, R. D.
2016-01-01
Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative sea level change not representative of ocean variability. To allow for comparisons to the satellite altimetry estimated global mean sea level (GMSL), typically the tide gauges are corrected using glacial isostatic adjustment (GIA) models. This approach, however, does not correct other sources of VLM that remain in the tide gauge record. Here we compare Global Positioning System (GPS) VLM estimates at the tide gauge locations to VLM estimates from GIA models, and assess the influence of non-GIA-related VLM on GMSL estimates. We find that the tide gauges, on average, are experiencing positive VLM (i.e., uplift) after removing the known effect of GIA, resulting in an increase of 0.2460.08 mm yr21 in GMSL trend estimates from 1900 to present when using GPS-based corrections. While this result is likely dependent on the subset of tide gauges used and the actual corrections used, it does suggest that non-GIA VLM plays a significant role in twentieth century estimates of GMSL. Given the relatively short GPS records used to obtain these VLM estimates, we also estimate the uncertainty in the GMSL trend that results from limited knowledge of non-GIA-related VLM.
Improving the Quality of Low-Cost GPS Receiver Data for Monitoring Using Spatial Correlations
NASA Astrophysics Data System (ADS)
Zhang, Li; Schwieger, Volker
2016-06-01
The investigations on low-cost single frequency GPS receivers at the Institute of Engineering Geodesy (IIGS) show that u-blox LEA-6T GPS receivers combined with Trimble Bullet III GPS antennas containing self-constructed L1-optimized choke rings can already obtain an accuracy in the range of millimeters which meets the requirements of geodetic precise monitoring applications (see [
[Comfort and discomfort: the role of emotions in GPs' prescription practices].
Henriksen, Kristin; Hansen, Ebba Holme
2005-12-05
The role of emotions in GPs' prescribing has been ignored. The present article describes 20 GPs' reflections about what precedes comfort and discomfort in prescribing situations. In-depth interviews were done with 20 GPs who contributed with examples on an open comfort-discomfort scale. Analysis of the data was inspired by grounded theory. The GPs experienced a broad spectrum of emotions when prescribing. In every prescribing situation, conditions could pull towards both comfort and discomfort. Comfort appeared when the indication was correct and the patient's condition was serious, when the patient experienced the problem as serious, when the situation was acute and the medicine effective, and when the GP experienced himself as competent. Medicines were placed between comfort and discomfort when prescribing was perceived as indifferent, unproblematic and easy, when the GP was concerned about inflicting a sick role on the patients, and when patients were not convinced about the appropriateness of the medication. Discomfort appeared when there was a great risk of dependence, when GPs experienced and gave in to pressure, when they had to convince patients, and when they prescribed addictive medicine regularly. The totality of conditions in the situation determined the emotional state in the prescribing situation. The GPs' emotions reflected how they evaluated the appropriateness of their prescribing. This should be taken advantage of in rational pharmacotherapy. Future interventions should address both the rationality of GPs and their emotions.
NASA Astrophysics Data System (ADS)
Yang, C.-C.; Wu, Y.-H.; Chao, B. F.; Yu, S.-B.
2009-04-01
Present-day GPS network have been extensively used to monitor crustal deformation due to various geodynamic mechanisms. Situated among the Pacific Ring of Fire on the suture zone of Eurasian and Philippine Sea Plates, the island of Taiwan with a dense continuous GPS network since ~1996 and now over 300 stations sees plenty of geophysical phenomena including particularly prominent crustal motions. We assessed daily solution of each station's coordinate time series, and made the routine corrections, such as orbital, EOP, atmospheric and tidal corrections, using GAMIT/GLOBK software (with ITRF05). We then employ the Quasi-Observation Combination Analysis (QOCA) package to obtain the variability and trend after removing occasional earthquake "disruptions". Preliminary results show strong seasonal variations. We then utilize the numerical method of Empirical Orthogonal Function (EOF) to analysis the geophysical signals from the continuous and dense GPS vertical crustal motion observations. We wish to be able to characterize both the seasonal and non-seasonal variability in the vertical crustal motion, in terms of the EOF modes in the spatial domain over Taiwan (plus a few offshore islets) with time evolution spanning the entire period of time. Corraborating with time-variable gravity data from the geodetic satellite mission GRACE, we can further obtain vertical components of both mass-induced loading with respect to the precipitation minus evaporation and the crustal motion caused by the active tectonic processes on Taiwan.
Processing of Swarm Accelerometer Data into Thermospheric Neutral Densities
NASA Astrophysics Data System (ADS)
Doornbos, E.; Siemes, C.; Encarnacao, J.; Peřestý, R.; Grunwaldt, L.; Kraus, J.; Holmdahl Olsen, P. E.; van den IJssel, J.; Flury, J.; Apelbaum, G.
2015-12-01
The Swarm satellites were launched on 22 November 2013 and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers are not only used for locating the position and time of the magnetic measurements, but also for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities and potentially winds can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. These disturbances have caused a significant delay of the accelerometer data release. In this presentation, we describe the new three-stage processing that is required for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The third stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We describe the methods used in each stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set, which covers the geomagnetic storm on 17 March 2015.
Directional Networking in GPS Denied Environments - Time Synchronization
2016-03-14
RF-based measurements to synchronize time and measure node range. Satellite Doppler: Using Doppler measurements from multiple satellites along...with satellite catalog data to determine time and position. LTE : Use existing LTE base-stations for time and position. Differential GPS: A...Opportunistic Signals: Opportunistically take advantage of existing RF signals (i.e., FM radio, DTV, LTE , etc.) transmitted from known locations
NASA Astrophysics Data System (ADS)
van Dam, T.; Wahr, J.; LavalléE, David
2007-03-01
We compare approximately 3 years of GPS height residuals (with respect to the International Terrestrial Reference Frame) with predictions of vertical surface displacements derived from the Gravity Recovery and Climate Experiment (GRACE) gravity fields for stations in Europe. An annual signal fit to the residual monthly heights, corrected for atmospheric pressure and barotropic ocean loading effects, should primarily represent surface displacements due to long-wavelength variations in water storage. A comparison of the annual height signal from GPS and GRACE over Europe indicates that at most sites, the annual signals do not agree in amplitude or phase. We find that unlike the annual signal predicted from GRACE, the annual signal in the GPS heights is not coherent over the region, displaying significant variability from site to site. Confidence in the GRACE data and the unlikely possibility of large-amplitude small-scale features in the load field not captured by the GRACE data leads us to conclude that some of the discrepancy between the GPS and GRACE observations is due to technique errors in the GPS data processing. This is evidenced by the fact that the disagreement between GPS and GRACE is largest at coastal sites, where mismodeling of the semidiurnal ocean tidal loading signal can result in spurious annual signals.
Error modeling for differential GPS. M.S. Thesis - MIT, 12 May 1995
NASA Technical Reports Server (NTRS)
Blerman, Gregory S.
1995-01-01
Differential Global Positioning System (DGPS) positioning is used to accurately locate a GPS receiver based upon the well-known position of a reference site. In utilizing this technique, several error sources contribute to position inaccuracy. This thesis investigates the error in DGPS operation and attempts to develop a statistical model for the behavior of this error. The model for DGPS error is developed using GPS data collected by Draper Laboratory. The Marquardt method for nonlinear curve-fitting is used to find the parameters of a first order Markov process that models the average errors from the collected data. The results show that a first order Markov process can be used to model the DGPS error as a function of baseline distance and time delay. The model's time correlation constant is 3847.1 seconds (1.07 hours) for the mean square error. The distance correlation constant is 122.8 kilometers. The total process variance for the DGPS model is 3.73 sq meters.
High-precision coseismic displacement estimation with a single-frequency GPS receiver
NASA Astrophysics Data System (ADS)
Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing
2015-07-01
To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.
NASA Astrophysics Data System (ADS)
Guerova, G.; Bettems, J.-M.; Brockmann, E.; Matzler, Ch.
2006-01-01
Application of the GPS derived water vapor into Numerical Weather Prediction (NWP) models is one of the focuses of the COST Action 716 “Exploitation of Ground based GPS for climate and numerical weather prediction applications”. For this purpose the GPS data covering Europe have been collected within the Near-Real Time (NRT) demonstration project and provided for Observing System Experiments (OSE). For the experiments presented in this manuscript the operational NWP system of MeteoSwiss is used. The limited area nonhydrostatic aLpine Model (aLMo) of MeteoSwiss covers most of western Europe, has a horizontal resolution of 7 km, 45 layers in the vertical, and uses a data assimilation scheme based on the Newtonian relaxation (nudging) method. In total 17 days analyses and two 30 hours daily forecasts have been computed, with 100 GPS sites assimilated for three selected periods in autumn 2001, winter and summer 2002. It is to be noted that only in the last period data from 10 french sites, i.e. west of Switzerland are assimilated. The GPS NRT data quality has been compared with the Post-Processed data. Agreement within 3 mm level Zenith Total Delay bias and 8 mm standard deviation was found, corresponding to an Integrated Water Vapor (IWV) bias below 0.5 kg/m2. Most of the NRT data over aLMo domain are available within a prescribed time window of 1 h 45 min. In the nudging process the NRT data are successfully used by the model to correct the IWV deficiencies present in the reference analysis; stronger forcing with a shorter time scale could be however recommended. Comparing the GPS derived IWV with radiosonde observations, a dry radiosonde bias has been found over northern Italy. Through GPS data assimilation the aLMo analysis bias and standard deviation in the diurnal cycle has been reduced. The negative bias of 0.64 kg/m2 in the reference analysis has been reduced to 0.34 kg/m2 in GPS analysis. However, the diurnal cycle statistic from the forecast does show the characteristic negative bias only slightly reduced starting with the GPS analysis. The GPS IWV impact on aLMo is large in June 2002 and moderate in September 2001 OSE. January OSE is inconclusive due to inconsistent use of humidity data below the freezing point. In June 2002 OSE, a substantial IWV impact is seen up to the end of the forecast. Over Switzerland the dry bias in the reference analysis has been successfully corrected and the 2 m temperature and dew point have been slightly improved over the whole aLMo domain. The subjective verification of precipitation against radar data in autumn 2001 and summer 2002 gives mixed results. In the forecast the impact is limited to the first six hours and to strong precipitation events. A missing precipitation pattern has been recovered via GPS assimilation in June 20 2002 forecast. A negative impact on precipitation analysis on June 23 has been observed. The future operational use of GPS will depend on data availability; European GPS networks belong mainly to the geodetic community. A further increase of GPS network density in southern Europe is welcome. The GPS derived gradient and Slant Path estimates could possibly improve efficiency of IWV assimilation via the nudging technique.
Tan, Xiu Ling; Yap, Sae Cheong; Li, Xiang; Yip, Leonard W
2017-01-01
To compare the diagnostic accuracy of the 3 race-specific normative databases in Heidelberg Retina Tomography (HRT)-3, in differentiating between early glaucomatous and healthy normal Chinese eyes. 52 healthy volunteers and 25 glaucoma patients were recruited for this prospective cross-sectional study. All underwent standardized interviews, ophthalmic examination, perimetry and HRT optic disc imaging. Area under the curve (AUC) receiver operating characteristics, sensitivity and specificity were derived to assess the discriminating abilities of the 3 normative databases, for both Moorfields Regression Analysis (MRA) and Glaucoma Probability Score (GPS). A significantly higher percentage (65%) of patients were classified as "within normal limits" using the MRA-Indian database, as compared to the MRA-Caucasian and MRA-African-American databases. However, for GPS, this was observed using the African-American database. For MRA, the highest sensitivity was obtained with both Caucasian and African-American databases (68%), while the highest specificity was from the Indian database (94%). The AUC for discrimination between glaucomatous and normal eyes by MRA-Caucasian, MRA-African-American and MRA-Indian databases were 0.77 (95% CI, 0.67-0.88), 0.79 (0.69-0.89) and 0.73 (0.63-0.84) respectively. For GPS, the highest sensitivity was obtained using either Caucasian or Indian databases (68%). The highest specificity was seen with the African-American database (98%). The AUC for GPS-Caucasian, GPS-African-American and GPS-Indian databases were 0.76 (95% CI, 0.66-0.87), 0.77 (0.67-0.87) and 0.76 (0.66-0.87) respectively. Comparison of the 3 ethnic databases did not reveal significant differences to differentiate early glaucomatous from normal Chinese eyes.
A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning
Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin
2016-01-01
Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively. PMID:27222361
A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning.
Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin
2016-05-25
Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively.
Variation of Static-PPP Positioning Accuracy Using GPS-Single Frequency Observations (Aswan, Egypt)
NASA Astrophysics Data System (ADS)
Farah, Ashraf
2017-06-01
Precise Point Positioning (PPP) is a technique used for position computation with a high accuracy using only one GNSS receiver. It depends on highly accurate satellite position and clock data rather than broadcast ephemeries. PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of collected observations. PPP-(dual frequency receivers) offers comparable accuracy to differential GPS. PPP-single frequency receivers has many applications such as infrastructure, hydrography and precision agriculture. PPP using low cost GPS single-frequency receivers is an area of great interest for millions of users in developing countries such as Egypt. This research presents a study for the variability of single frequency static GPS-PPP precision based on different observation durations.
Subnanosecond GPS-based clock synchronization and precision deep-space tracking
NASA Technical Reports Server (NTRS)
Dunn, C. E.; Lichten, S. M.; Jefferson, D. C.; Border, J. S.
1992-01-01
Interferometric spacecraft tracking is accomplished by the Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals at ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3-nsec error in clock synchronization resulting in an 11-nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock offsets and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft tracking without near-simultaneous quasar-based calibrations. Solutions are presented for a worldwide network of Global Positioning System (GPS) receivers in which the formal errors for DSN clock offset parameters are less than 0.5 nsec. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry (VLBI), as well as the examination of clock closure, suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation-error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.
Banerjee, P.; Pollitz, F.; Nagarajan, B.; Burgmann, R.
2007-01-01
Static offsets produced by the 26 December 2004 M ???9 Sumatra-Andaman earthquake as measured by Global Positioning System (GPS) reveal a large amount of slip along the entire ???1300 km-long rupture. Most seismic slip inversions place little slip on the Andaman segment. whereas both near-field and far-field GPS offsets demand large slip on the Andaman segment. We compile available datasets of the static offset to render a more detailed picture of the static-slip distribution. We construct geodetic offsets such that postearthquake positions of continuous GPS sites are reckoned to a time 1 day after the earthquake and campaign GPS sites are similarly corrected for postseismic motions. The newly revised slip distribution (Mw 9.22) reveals substantial segmentation of slip along the Andaman Islands, with the southern quarter slipping ???15 m in unison with the adjacent Nicobar and northern Sumatran segments of length ???700 km. We infer a small excess of geodetic moment relative to the seismic moment. A similar compilation of GPS offsets from the 28 March 2005 Nias earthquake is well explained with dip slip averaging several meters (Mw = 8.66) distributed primarily at depths greater than 20 km.
Gao, Yanbin; Liu, Shifei; Atia, Mohamed M.; Noureldin, Aboelmagd
2015-01-01
This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory. PMID:26389906
Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd
2015-09-15
This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.
NASA Astrophysics Data System (ADS)
Farah, Ashraf
2018-03-01
Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, Landis
1998-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
Scanning Raman lidar for tropospheric water vapor profiling and GPS path delay correction
NASA Astrophysics Data System (ADS)
Tarniewicz, Jerome; Bock, Olivier; Pelon, Jacques R.; Thom, Christian
2002-01-01
The design of a ground based and transportable combined Raman elastic-backscatter lidar for the remote sensing of lower tropospheric water vapor and nitrogen concentration is described. This lidar is intended to be used for an external calibration of the wet path delay of GPS signals. A description of the method used to derive water vapor and nitrogen profiles in the lower troposphere is given. The instrument has been tested during the ESCOMPTE campaign in June 2001 and first measurements are presented.
Nondynamic Tracking Using The Global Positioning System
NASA Technical Reports Server (NTRS)
Yunck, T. P.; Wu, Sien-Chong
1988-01-01
Report describes technique for using Global Positioning System (GPS) to determine position of low Earth orbiter without need for dynamic models. Differential observing strategy requires GPS receiver on user vehicle and network of six ground receivers. Computationally efficient technique delivers decimeter accuracy on orbits down to lowest altitudes. New technique nondynamic long-arc strategy having potential for accuracy of best dynamic techniques while retaining much of computational simplicity of geometric techniques.
NASA Technical Reports Server (NTRS)
Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce
1999-01-01
GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the various systems. We will present the results of our calibration studies that relate to the accuracy the GPS positioning. We will discuss the effects these positioning, errors have on the resultant DEM products and imagery.
NASA Astrophysics Data System (ADS)
Herman, M. W.; Furlong, K. P.; Hayes, G. P.; Benz, H.
2014-12-01
Strong motion accelerometers can record large amplitude shaking on-scale in the near-field of large earthquake ruptures; however, numerical integration of such records to determine displacement is typically unstable due to baseline changes (i.e., distortions in the zero value) that occur during strong shaking. We use datasets from the 2011 Mw 9.0 Tohoku earthquake to assess whether a relatively simple empirical correction scheme (Boore et al., 2002) can return accurate displacement waveforms useful for constraining details of the fault slip. The coseismic deformation resulting from the Tohoku earthquake was recorded by the Kiban Kyoshin network (KiK-net) of strong motion instruments as well as by a dense network of high-rate (1 Hz) GPS instruments. After baseline correcting the KiK-net records and integrating to displacement, over 85% of the KiK-net borehole instrument waveforms and over 75% of the KiK-net surface instrument waveforms match collocated 1 Hz GPS displacement time series. Most of the records that do not match the GPS-derived displacements following the baseline correction have large, systematic drifts that can be automatically identified by examining the slopes in the first 5-10 seconds of the velocity time series. We apply the same scheme to strong motion records from the 2014 Mw 8.2 Iquique earthquake. Close correspondence in both direction and amplitude between coseismic static offsets derived from the integrated strong motion time series and those predicted from a teleseismically-derived finite fault model, as well as displacement amplitudes consistent with InSAR-derived results, suggest that the correction scheme works successfully for the Iquique event. In the absence of GPS displacements, these strong motion-derived offsets provide constraints on the overall distribution of slip on the fault. In addition, the coseismic strong motion-derived displacement time series (50-100 s long) contain a near-field record of the temporal evolution of the rupture, supplementing teleseismic data and improving resolution of the location and timing of moment in finite fault models.
Recruitment ad analysis offers new opportunities to attract GPs to short-staffed practices.
Hemphill, Elizabeth; Kulik, Carol T
2013-01-01
As baby-boomer practitioners exit the workforce, physician shortages present new recruitment challenges for practices seeking GPs. This article reports findings from two studies examining GP recruitment practice. GP recruitment ad content analysis (Study 1) demonstrated that both Internet and print ads emphasize job attributes but rarely present family or practice attributes. Contacts at these medical practices reported that their practices offer distinctive family and practice attributes that could be exploited in recruitment advertising (Study 2). Understaffed medical practices seeking to attract GPs may differentiate their job offerings in a crowded market by incorporating family and/or practice attributes into their ads.
NASA Astrophysics Data System (ADS)
Tancredi, U.; Renga, A.; Grassi, M.
2013-05-01
This paper describes a carrier-phase differential GPS approach for real-time relative navigation of LEO satellites flying in formation with large separations. These applications are characterized indeed by a highly varying number of GPS satellites in common view and large ionospheric differential errors, which significantly impact relative navigation performance and robustness. To achieve high relative positioning accuracy a navigation algorithm is proposed which processes double-difference code and carrier measurements on two frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter for improving the float estimate at successive time instants. The approach also benefits from the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical Total Electron Content of each satellite. The navigation algorithm performance is tested on actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and that centimeter-level accuracy can be achieved in real-time also with large separations.
Non-linear motions in reprocessed GPS station position time series
NASA Astrophysics Data System (ADS)
Rudenko, Sergei; Gendt, Gerd
2010-05-01
Global Positioning System (GPS) data of about 400 globally distributed stations obtained at time span from 1998 till 2007 were reprocessed using GFZ Potsdam EPOS (Earth Parameter and Orbit System) software within International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Pilot Project and IGS Data Reprocessing Campaign with the purpose to determine weekly precise coordinates of GPS stations located at or near tide gauges. Vertical motions of these stations are used to correct the vertical motions of tide gauges for local motions and to tie tide gauge measurements to the geocentric reference frame. Other estimated parameters include daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. The solution GT1 derived is based on using absolute phase center variation model, ITRF2005 as a priori reference frame, and other new models. The solution contributed also to ITRF2008. The time series of station positions are analyzed to identify non-linear motions caused by different effects. The paper presents the time series of GPS station coordinates and investigates apparent non-linear motions and their influence on GPS station height rates.
Method of steering the gain of a multiple antenna global positioning system receiver
NASA Astrophysics Data System (ADS)
Evans, Alan G.; Hermann, Bruce R.
1992-06-01
A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.
GPS System Specification for Shipboard TACAN Replacement.
1991-11-08
BE 0.4 uS 2II2I S FOR JTIDS INTEROPERAMILITY, OR 32 IaS FOR UNK4 OR LeAND LPiIAJ DATA LNK 64 AS MINIMUM SPACING Figure 3. Evolution of JTIDS Signal...the manufacturer of the equipment to prove that, if they receive the correct signal and the correct data, the equipment processes it properly to avoid
Meseck, Kristin; Jankowska, Marta M.; Schipperijn, Jasper; Natarajan, Loki; Godbole, Suneeta; Carlson, Jordan; Takemoto, Michelle; Crist, Katie; Kerr, Jacqueline
2016-01-01
The main purpose of the present study was to assess the impact of global positioning system (GPS) signal lapse on physical activity analyses, discover any existing associations between missing GPS data and environmental and demographics attributes, and to determine whether imputation is an accurate and viable method for correcting GPS data loss. Accelerometer and GPS data of 782 participants from 8 studies were pooled to represent a range of lifestyles and interactions with the built environment. Periods of GPS signal lapse were identified and extracted. Generalised linear mixed models were run with the number of lapses and the length of lapses as outcomes. The signal lapses were imputed using a simple ruleset, and imputation was validated against person-worn camera imagery. A final generalised linear mixed model was used to identify the difference between the amount of GPS minutes pre- and post-imputation for the activity categories of sedentary, light, and moderate-to-vigorous physical activity. Over 17% of the dataset was comprised of GPS data lapses. No strong associations were found between increasing lapse length and number of lapses and the demographic and built environment variables. A significant difference was found between the pre- and post-imputation minutes for each activity category. No demographic or environmental bias was found for length or number of lapses, but imputation of GPS data may make a significant difference for inclusion of physical activity data that occurred during a lapse. Imputing GPS data lapses is a viable technique for returning spatial context to accelerometer data and improving the completeness of the dataset. PMID:27245796
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-01-01
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108
Ziebolz, Dirk; Reiss, Lucie; Schmalz, Gerhard; Krause, Felix; Haak, Rainer; Mausberg, Rainer F
2018-06-01
The aim of this questionnaire-based study was to evaluate the views of dentists (Ds) and general medical practitioners (GPs) on different aspects of dental care for patients with diabetes mellitus (DM) or coronary heart disease (CHD). Reliable and comparable questionnaires for Ds and GPs, with 23 questions, were sent to 1,000 randomly selected Ds and 1,000 randomly selected GPs. Questions were asked about patients with DM or CHD regarding their dental care and potentially related issues (e.g. antibiotic prophylaxis). The responses received within 12 weeks were evaluated and statistically analysed using chi-square and Mann-Whitney U tests (P < 0.05). The response rate was 39% (n = 391) for Ds and 18% (n = 181) for GPs. Both groups stated that they used the medical history as well as patient interviews to assess patients. However, only 55% of Ds assumed correct identification of every at-risk patient compared with 100% of GPs (P < 0.01). Furthermore, Ds speculated that they inform their patients more often about their at-risk status than do GPs (P < 0.01). Neither Ds nor GPs appeared to be confident in their knowledge about adequate antibiotic prophylaxis. Interdisciplinary collaboration was considered insufficient, although Ds had a higher rate of regular collaboration (68% for Ds vs. 40% for GPs; P < 0.01). Ds and GPs have differing views on dental care of patients with DM or CHD, and Ds showed more interest in this issue. These results might partially explain the insufficient collaboration between Ds and GPs. © 2017 FDI World Dental Federation.
Application of GPS Measurements for Ionospheric and Tropospheric Modelling
NASA Astrophysics Data System (ADS)
Rajendra Prasad, P.; Abdu, M. A.; Furlan, Benedito. M. P.; Koiti Kuga, Hélio
military navigation. The DOD's primary purposes were to use the system in precision weapon delivery and providing a capability that would help reverse the proliferation of navigation systems in military. Subsequently, it was very quickly realized that civil use and scientific utility would far outstrip military use. A variety of scientific applications are uniquely suited to precise positioning capabilities. The relatively high precision, low cost, mobility and convenience of GPS receivers make positioning attractive. The other applications being precise time measurement, surveying and geodesy purposes apart from orbit and attitude determination along with many user services. The system operates by transmitting radio waves from satellites to receivers on the ground, aircraft, or other satellites. These signals are used to calculate location very accurately. Standard Positioning Services (SPS) which restricts access to Coarse/Access (C/A) code and carrier signals on the L1 frequency only. The accuracy thus provided by SPS fall short of most of the accuracy requirements of users. The upper atmosphere is ionized by the ultra violet radiation from the sun. The significant errors in positioning can result when the signals are refracted and slowed by ionospheric conditions, the parameter of the ionosphere that produces most effects on GPS signals is the total number of electrons in the ionospheric propagation path. This integrated number of electrons, called Total Electron Content (TEC) varies, not only from day to night, time of the year and solar flux cycle, but also with geomagnetic latitude and longitude. Being plasma the ionosphere affects the radio waves propagating through it. Effects of scintillation on GPS satellite navigation systems operating at L1 (1.5754 GHz), L2 (1.2276 GHz) frequencies have not been estimated accurately. It is generally recognized that GPS navigation systems are vulnerable in the polar and especially in the equatorial region during the solar maximum period. In the equatorial region the irregularity structures are highly elongated in the north-south direction and are discrete in the east-west direction with dimensions of several hundred km. With such spatial distribution of irregularities needs to determine how often the GPS receivers fails to provide navigation aid with the available constellation. The effects of scintillation on the performance of GPS navigation systems in the equatorial region can be analyzed through commissioning few ground receivers. Incidentally there are few GPS receivers near these latitudes. Despite the recent advances in the ionosphere and tropospheric delay modeling for geodetic applications of GPS, the models currently used are not very precise. The conventional and operational ionosphere models viz. Klobuchar, Bent, and IRI models have certain limitations in providing very precise accuracies at all latitudes. The troposphere delay modeling also suffers in accuracy. The advances made in both computing power and knowledge of the atmosphere leads to make an effort to upgrade some of these models for improving delay corrections in GPS navigation. The ionospheric group delay corrections for orbit determination can be minimized using duel frequency. However in single frequency measurements the group delay correction is an involved task. In this paper an investigation is carried out to estimate the model coefficients of ionosphere along with precise orbit determination modeling using GPS measurements. The locations of the ground-based receivers near equator are known very exactly. Measurements from these ground stations to a precisely known satellite carrying duel receiver is used for orbit determination. The ionosphere model parameters can be refined corresponding to spatially distributed GPS receivers spread over Brazil. The tropospheric delay effects are not significant for the satellites by choosing appropriate elevation angle. However it needs to be analyzed for user like aircraft for an effective use. In this paper brief description of GPS data utilization, Navigational message, orbit computation and precise orbit determination and Ionosphere and troposphere models are summarized. The methodology towards refining ionosphere model coefficients is presented. Some of the plots and results related to orbit determination are presented. The study demonstrated the feasibility of estimating ionosphere group delay at specific latitudes and could be improved through refining some of the model coefficients using GPS measurements. It is possible to accurately determine the tropospheric delay, which may be used for an aircraft in flight without access to real time meteorological information.
The work hours of GPs: survey of English GPs.
Gravelle, Hugh; Hole, Arne Risa
2007-02-01
There is no current information about the hours worked by English GPs. To compare the reported hours worked by GPs with that of other professions and to explain the variation in GP hours worked and on call. National postal survey of 1871 GPs in February 2004. English general practice. Multiple regression analyses of part-time versus full-time status, hours worked, and hours on call. Full-time male GPs report more hours worked (49.6; 95% CI [confidence interval] = 48.9 to 50.2) than males in other professional occupations (47.9; 95% CI = 47.6 to 48.1) and male managers (49.1; 95% CI = 48.8 to 49.5). Full-time female GPs report fewer hours (43.2; 95% CI = 42.0 to 44.3) than females in other professional occupations (44.7; 95% CI = 44.4 to 45.0) and female managers (44.1; 95% CI = 43.7 to 44.5). The number of hours worked decreased with practice list size, and increased with the number of patients per GP. GPs work longer hours in practices with older patients and with a higher proportion of patients in nursing homes. Fewer hours are worked in practices with higher 'additional needs' payments. Having children under 18 years of age increased the probability that female GPs work part-time but has no effect on the probability of male GPs working part-time. Given full-time/part-time status, having children under 18 years of age reduces the hours of male and female GPs. Male English GPs report longer hours worked than other professional groups and managers. The sex differences between GPs in hours worked are mostly attributable to the differential impact of family circumstances, particularly the number of children they have. Perversely, 'additional needs' payments are higher in practices where GPs work fewer hours.
Orbit determination performances using single- and double-differenced methods: SAC-C and KOMPSAT-2
NASA Astrophysics Data System (ADS)
Hwang, Yoola; Lee, Byoung-Sun; Kim, Haedong; Kim, Jaehoon
2011-01-01
In this paper, Global Positioning System-based (GPS) Orbit Determination (OD) for the KOrea-Multi-Purpose-SATellite (KOMPSAT)-2 using single- and double-differenced methods is studied. The requirement of KOMPSAT-2 orbit accuracy is to allow 1 m positioning error to generate 1-m panchromatic images. KOMPSAT-2 OD is computed using real on-board GPS data. However, the local time of the KOMPSAT-2 GPS receiver is not synchronized with the zero fractional seconds of the GPS time internally, and it continuously drifts according to the pseudorange epochs. In order to resolve this problem, an OD based on single-differenced GPS data from the KOMPSAT-2 uses the tagged time of the GPS receiver, and the accuracy of the OD result is assessed using the overlapping orbit solution between two adjacent days. The clock error of the GPS satellites in the KOMPSAT-2 single-differenced method is corrected using International GNSS Service (IGS) clock information at 5-min intervals. KOMPSAT-2 OD using both double- and single-differenced methods satisfies the requirement of 1-m accuracy in overlapping three dimensional orbit solutions. The results of the SAC-C OD compared with JPL’s POE (Precise Orbit Ephemeris) are also illustrated to demonstrate the implementation of the single- and double-differenced methods using a satellite that has independent orbit information available for validation.
DOT National Transportation Integrated Search
2000-07-01
This document is a users guide for the VolpeCenter AcousticsFacilitys(VCAF)Time-Space-Position-Information : (TSPI) System. The VCAF TSPI system is a differential global positioning system (dGPS) which may be utilized : for highly accurate vehi...
47 CFR 87.139 - Emission limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... lines through the above points. (j) When using G7D for differential GPS in the 112-118 MHz band, the... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES... in the frequency bands 1435-1535 MHz and 2310-2390 MHz or digital modulation (G7D) for differential...
47 CFR 87.139 - Emission limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lines through the above points. (j) When using G7D for differential GPS in the 112-118 MHz band, the... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES... in the frequency bands 1435-1535 MHz and 2310-2390 MHz or digital modulation (G7D) for differential...
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.
1996-01-01
Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.
Study of seasonal and long-term vertical deformation in Nepal based on GPS and GRACE observations
NASA Astrophysics Data System (ADS)
Zhang, Tengxu; Shen, WenBin; Pan, Yuanjin; Luan, Wei
2018-02-01
Lithospheric deformation signal can be detected by combining data from continuous global positioning system (CGPS) and satellite observations from the Gravity Recovery and Climate Experiment (GRACE). In this paper, we use 2.5- to 19-year-long time series from 35 CGPS stations to estimate vertical deformation rates in Nepal, which is located in the southern side of the Himalaya. GPS results were compared with GRACE observations. Principal component analysis was conducted to decompose the time series into three-dimensional principal components (PCs) and spatial eigenvectors. The top three high-order PCs were calculated to correct common mode errors. Both GPS and GRACE observations showed significant seasonal variations. The observed seasonal GPS vertical variations are in good agreement with those from the GRACE-derived results, particularly for changes in surface pressure, non-tidal oceanic mass loading, and hydrologic loading. The GPS-observed rates of vertical deformation obtained for the region suggest both tectonic impact and mass decrease. The rates of vertical crustal deformation were estimated by removing the GRACE-derived hydrological vertical rates from the GPS measurements. Most of the sites located in the southern part of the Main Himalayan Thrust subsided, whereas the northern part mostly showed an uplift. These results may contribute to the understanding of secular vertical crustal deformation in Nepal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malys, S.; Jensen, P.A.
1990-04-01
The Global Positioning System (GPS) carrier beat phase data collected by the TI4100 GPS receiver has been successfully utilized by the US Defense Mapping Agency in an algorithm which is designed to estimate individual absolute geodetic point positions from data collected over a few hours. The algorithm uses differenced data from one station and two to four GPS satellites at a series of epochs separated by 30 second intervals. The precise GPS ephemerides and satellite clock states, held fixed in the estimation process, are those estimated by the Naval Surface Warfare Center (NSWC). Broadcast ephemerides and clock states are alsomore » utilized for comparative purposes. An outline of the data corrections applied, the mathematical model and the estimation algorithm are presented. Point positioning results and statistics are presented for a globally-distributed set of stations which contributed to the CASA Uno experiment. Statistical assessment of 114 GPS point positions at 11 CASA Uno stations indicates that the overall standard deviation of a point position component, estimated from a few hours of data, is 73 centimeters. Solution of the long line geodetic inverse problem using repeated point positions such as these can potentially offer a new tool for those studying geodynamics on a global scale.« less
Space-geodetic Constraints on GIA Models with 3D Viscosity
NASA Astrophysics Data System (ADS)
Van Der Wal, W.; Xu, Z.
2012-12-01
Models for Glacial Isostatic Adjustment (GIA) are an important correction to observations of mass change in the polar regions. Inputs for GIA models include past ice thickness and deformation parameters of the Earth's mantle, both of which are imperfectly known. Here we focus on the latter by investigating GIA models with 3D viscosity and composite (linear and non-linear) flow laws. It was found recently that GIA models with a composite flow law result in a better fit to historic sea level data, but they predict too low present-day uplift rates and gravity rates. Here GIA models are fit to space-geodetic constraints in Fennoscandia and North America. The preferred models are used to calculate the magnitude of the GIA correction on mass change estimates in Greenland and Antarctica. The observations used are GRACE Release 4 solutions from CSR and GFZ and published GPS solutions for North America and Fennoscandia, as well as historic sea level data. The GIA simulations are performed with a finite element model of a spherical, self-gravitating, incompressible Earth with 2x2 degree elements. Parameters in the flow laws are taken from seismology, heatflow measurements and experimental constraints and the ice loading history is prescribed by ICE-5G. It was found that GRACE and GPS derived uplift rates agree at the level of 1 mm/year in North America and at a level of 0.5 mm/year in Fennoscandia, the difference between the two regions being due to larger GPS errors and under sampling in North America. It can be concluded that both GPS and GRACE see the same process and the effects of filtering, noise and non-GIA processes such as land hydrology are likely to be small. Two GIA models are found that bring present-day uplift rate close to observed values in North America and Fennoscandia. These models result in a GIA correction of -17 Gt/year and -26 Gt/year on Greenland mass balance estimates from GRACE.
Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning
NASA Astrophysics Data System (ADS)
Macalalad, E.; Tsai, L. C.; Wu, J.
2012-04-01
Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.
Global Ionosphere Perturbations Monitored by the Worldwide GPS Network
NASA Technical Reports Server (NTRS)
Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.
1996-01-01
For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).
GPS Monitor Station Upgrade Program at the Naval Research Laboratory
NASA Technical Reports Server (NTRS)
Galysh, Ivan J.; Craig, Dwin M.
1996-01-01
One of the measurements made by the Global Positioning System (GPS) monitor stations is to measure the continuous pseudo-range of all the passing GPS satellites. The pseudo-range contains GPS and monitor station clock errors as well as GPS satellite navigation errors. Currently the time at the GPS monitor station is obtained from the GPS constellation and has an inherent inaccuracy as a result. Improved timing accuracy at the GPS monitoring stations will improve GPS performance. The US Naval Research Laboratory (NRL) is developing hardware and software for the GPS monitor station upgrade program to improve the monitor station clock accuracy. This upgrade will allow a method independent of the GPS satellite constellation of measuring and correcting monitor station time to US Naval Observatory (USNO) time. THe hardware consists of a high performance atomic cesium frequency standard (CFS) and a computer which is used to ensemble the CFS with the two CFS's currently located at the monitor station by use of a dual-mixer system. The dual-mixer system achieves phase measurements between the high-performance CFS and the existing monitor station CFS's to within 400 femtoseconds. Time transfer between USNO and a given monitor station is achieved via a two way satellite time transfer modem. The computer at the monitor station disciplines the CFS based on a comparison of one pulse per second sent from the master site at USNO. The monitor station computer is also used to perform housekeeping functions, as well as recording the health status of all three CFS's. This information is sent to the USNO through the time transfer modem. Laboratory time synchronization results in the sub nanosecond range have been observed and the ability to maintain the monitor station CFS frequency to within 3.0 x 10 (sup minus 14) of the master site at USNO.
Review of current GPS methodologies for producing accurate time series and their error sources
NASA Astrophysics Data System (ADS)
He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping
2017-05-01
The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e.g., subsidence of the highway bridge) to the detection of particular geophysical signals.
Luo, Xiaomin; Gu, Shengfeng; Lou, Yidong; Xiong, Chao; Chen, Biyan; Jin, Xueyuan
2018-06-01
The geomagnetic storm, which is an abnormal space weather phenomenon, can sometimes severely affect GPS signal propagation, thereby impacting the performance of GPS precise point positioning (PPP). However, the investigation of GPS PPP accuracy over the global scale under different geomagnetic storm conditions is very limited. This paper for the first time presents the performance of GPS dual-frequency (DF) and single-frequency (SF) PPP under moderate, intense, and super storms conditions during solar cycle 24 using a large data set collected from about 500 international GNSS services (IGS) stations. The global root mean square (RMS) maps of GPS PPP results show that stations with degraded performance are mainly distributed at high-latitude, and the degradation level generally depends on the storm intensity. The three-dimensional (3D) RMS of GPS DF PPP for high-latitude during moderate, intense, and super storms are 0.393 m, 0.680 m and 1.051 m, respectively, with respect to only 0.163 m on quiet day. RMS errors of mid- and low-latitudes show less dependence on the storm intensities, with values less than 0.320 m, compared to 0.153 m on quiet day. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless of quiet or disturbed conditions. The degraded performance of GPS positioning during geomagnetic storms is attributed to the increased ionospheric disturbances, which have been confirmed by our global rate of TEC index (ROTI) maps. Ionospheric disturbances not only lead to the deteriorated ionospheric correction but also to the frequent cycle-slip occurrence. Statistical results show that, compared with that on quiet day, the increased cycle-slip occurrence are 13.04%, 56.52%, and 69.57% under moderate, intense, and super storms conditions, respectively.
Performance assessment of multi-GNSS real-time PPP over Iran
NASA Astrophysics Data System (ADS)
Abdi, Naser; Ardalan, Alireza A.; Karimi, Roohollah; Rezvani, Mohammad-Hadi
2017-06-01
With the advent of multi-GNSS constellations and thanks to providing the real-time precise products by IGS, multi-GNSS Real-Time PPP has been of special interest to the geodetic community. These products stream in the form of RTCM-SSR through NTRIP broadcaster. In this contribution, we aim at assessing the convergence time and positioning accuracy of Real-Time PPP over Iran by means of GPS, GPS + GLONASS, GPS + BeiDou, and GPS + GLONASS + BeiDou configurations. To this end, RINEX observations of six GNSS stations, within Iranian Permanent GNSS Network (IPGN), over consecutive sixteen days were processed via BKG NTRIP Client (BNC, v 2.12). In the processing steps, the IGS-MGEX broadcast ephemerides (BRDM, provided by TUM/DLR) and the pre-saved CLK93 broadcast corrections stream (provided by CNES) have been used as the satellites known information. The numerical results were compared against the station coordinates obtained from the double-difference solutions by Bernese GPS Software v 5.0. Accordingly, we have found that GPS + BeiDou combination can reduce the convergence time by 27%, 16% and 10% and improve the positioning accuracy by 22%, 18% and 2%, in the north, east and up components, respectively, as compared with the GPS PPP. Additionally, in comparison to the GPS + GLONASS results, GPS + GLONASS + BeiDou combination speeds up the convergence time by 9%, 8% and 9% and enhance the positioning accuracy by 8%, 5% and 6%, in the north, east and up components, respectively. Overall, thanks to the availability of the current BeiDou constellation observations, the considerable decrease in the convergence time on one hand, and the improvement in the positioning accuracy on the other, can verify the efficiency of utilizing multi-GNSS PPP for real-time applications over Iran.
Estimating maneuvers for precise relative orbit determination using GPS
NASA Astrophysics Data System (ADS)
Allende-Alba, Gerardo; Montenbruck, Oliver; Ardaens, Jean-Sébastien; Wermuth, Martin; Hugentobler, Urs
2017-01-01
Precise relative orbit determination is an essential element for the generation of science products from distributed instrumentation of formation flying satellites in low Earth orbit. According to the mission profile, the required formation is typically maintained and/or controlled by executing maneuvers. In order to generate consistent and precise orbit products, a strategy for maneuver handling is mandatory in order to avoid discontinuities or precision degradation before, after and during maneuver execution. Precise orbit determination offers the possibility of maneuver estimation in an adjustment of single-satellite trajectories using GPS measurements. However, a consistent formulation of a precise relative orbit determination scheme requires the implementation of a maneuver estimation strategy which can be used, in addition, to improve the precision of maneuver estimates by drawing upon the use of differential GPS measurements. The present study introduces a method for precise relative orbit determination based on a reduced-dynamic batch processing of differential GPS pseudorange and carrier phase measurements, which includes maneuver estimation as part of the relative orbit adjustment. The proposed method has been validated using flight data from space missions with different rates of maneuvering activity, including the GRACE, TanDEM-X and PRISMA missions. The results show the feasibility of obtaining precise relative orbits without degradation in the vicinity of maneuvers as well as improved maneuver estimates that can be used for better maneuver planning in flight dynamics operations.
Tectonic stressing in California modeled from GPS observations
Parsons, T.
2006-01-01
What happens in the crust as a result of geodetically observed secular motions? In this paper we find out by distorting a finite element model of California using GPS-derived displacements. A complex model was constructed using spatially varying crustal thickness, geothermal gradient, topography, and creeping faults. GPS velocity observations were interpolated and extrapolated across the model and boundary condition areas, and the model was loaded according to 5-year displacements. Results map highest differential stressing rates in a 200-km-wide band along the Pacific-North American plate boundary, coinciding with regions of greatest seismic energy release. Away from the plate boundary, GPS-derived crustal strain reduces modeled differential stress in some places, suggesting that some crustal motions are related to topographic collapse. Calculated stressing rates can be resolved onto fault planes: useful for addressing fault interactions and necessary for calculating earthquake advances or delays. As an example, I examine seismic quiescence on the Garlock fault despite a calculated minimum 0.1-0.4 MPa static stress increase from the 1857 M???7.8 Fort Tejon earthquake. Results from finite element modeling show very low to negative secular Coulomb stress growth on the Garlock fault, suggesting that the stress state may have been too low for large earthquake triggering. Thus the Garlock fault may only be stressed by San Andreas fault slip, a loading pattern that could explain its erratic rupture history.
Video consultation use by Australian general practitioners: video vignette study.
Jiwa, Moyez; Meng, Xingqiong
2013-06-19
There is unequal access to health care in Australia, particularly for the one-third of the population living in remote and rural areas. Video consultations delivered via the Internet present an opportunity to provide medical services to those who are underserviced, but this is not currently routine practice in Australia. There are advantages and shortcomings to using video consultations for diagnosis, and general practitioners (GPs) have varying opinions regarding their efficacy. The aim of this Internet-based study was to explore the attitudes of Australian GPs toward video consultation by using a range of patient scenarios presenting different clinical problems. Overall, 102 GPs were invited to view 6 video vignettes featuring patients presenting with acute and chronic illnesses. For each vignette, they were asked to offer a differential diagnosis and to complete a survey based on the theory of planned behavior documenting their views on the value of a video consultation. A total of 47 GPs participated in the study. The participants were younger than Australian GPs based on national data, and more likely to be working in a larger practice. Most participants (72%-100%) agreed on the differential diagnosis in all video scenarios. Approximately one-third of the study participants were positive about video consultations, one-third were ambivalent, and one-third were against them. In all, 91% opposed conducting a video consultation for the patient with symptoms of an acute myocardial infarction. Inability to examine the patient was most frequently cited as the reason for not conducting a video consultation. Australian GPs who were favorably inclined toward video consultations were more likely to work in larger practices, and were more established GPs, especially in rural areas. The survey results also suggest that the deployment of video technology will need to focus on follow-up consultations. Patients with minor self-limiting illnesses and those with medical emergencies are unlikely to be offered access to a GP by video. The process of establishing video consultations as routine practice will need to be endorsed by senior members of the profession and funding organizations. Video consultation techniques will also need to be taught in medical schools.
Practical method for estimating road curvatures using onboard GPS and IMU equipment
NASA Astrophysics Data System (ADS)
Zamfir, S.; Drosescu, R.; Gaiginschi, R.
2016-08-01
This paper describes an experimental method to determine with high accuracy the curvature of a road segment, the turning radius of a car, and the discomfort level perceived by the passengers in the vehicle cabin when passing through a curve. For these experiments we used professional equipment provided with two GPS active antennas with 13 dB gain featuring non-contact 100 Hz speed and distance measurement, and a ten degree Inertial Measurement Unit (IMU) with dynamic orientation outputs. The same experimental measurements also usedthe low cost GPS equipment available on smartphones, domestic vehicle GPS devices, as well as an Arduino GPS shield in order to compare the results generated by professional equipment. The purpose of these experiments was also to establish if certain road curve sections were correctly executed in order to ensure the safety and comfort of passengers. Another use of the proposed method relates to the road accident reconstruction field, providing experts and forensics with an accurate method of measuring the roadway curvature at accident scenes or traffic events. The research and equipment described in this paper have been acquired and developed under a PhD studyand a European funded project won and elaborated by the authors.
Jomrich, Gerd; Hollenstein, Marlene; John, Maximilian; Baierl, Andreas; Paireder, Matthias; Kristo, Ivan; Ilhan-Mutlu, Aysegül; Asari, Reza; Preusser, Matthias; Schoppmann, Sebastian F.
2018-01-01
The modified Glasgow Prognostic Score (mGPS) combines the indicators of decreased plasma albumin and elevated CRP. In a number of malignancies, elevated mGPS is associated with poor survival. Aim of this study was to investigate the prognostic role of mGPS in patients with neoadjuvantly treated adenocarcinomas of the esophagogastric junction 256 patients from a prospective database undergoing surgical resection after neoadjuvant treatment between 2003 and 2014 were evaluated. mGPS was scored as 0, 1, or 2 based on CRP (>1.0 mg/dl) and albumin (<35 g/L) from blood samples taken prior (preNT-mGPS) and after (postNT-mGPS) neoadjuvant therapy. Scores were correlated with clinicopathological patients’ characteristics. From 155 Patients, sufficient data was available. Median follow-up was 63.8 months (33.3–89.5 months). In univariate analysis, Cox proportional hazard model shows significant shorter patients OS (p = 0.04) and DFS (p = 0.02) for increased postNT-mGPS, preNT-hypoalbuminemia (OS: p = 0.003; DFS: p = 0.002) and post-NT-CRP (OS: p = 0.03; DFS: p = 0.04). Elevated postNT-mGPS and preNT-hypoalbuminemia remained significant prognostic factors in multivariate analysis for OS (p = 0.02; p = 0.005,) and DFS (p = 0.02, p = 0.004) with tumor differentiation and tumor staging as significant covariates. PostNT-mGPS and preNT-hypoalbuminemia are independent prognostic indicators in patients with neoadjuvantly treated adenocarcinomas of the esophagogastric junction and significantly associated with diminished OS and DFS. PMID:29467943
Use of RTIGS data streams for validating the performance of the IGS Ultra-Rapid products
NASA Astrophysics Data System (ADS)
Thaler, Gottfried; Weber, Robert
2010-05-01
The IGS (International GNSS Service) Real-Time Working Group (RTIGS) disseminates for several years raw observation data of a globally distributed steady growing station network in real-time via the internet. This observation data can be used for validating the performance of the IGS predicted orbits and clocks (Ultra-Rapid (IGU)). Therefore, based on pre-processed ITRF- station coordinates, clock corrections w.r.t GPS-Time for GPS-satellites and site-receivers as well as satellite orbits are calculated in quasi real-time and compared to the IGU solutions. The Institute for "Geodesy and Geophysics" of the Technical University of Vienna develops based on the software RTIGS Multicast Receive (RTIGSMR) provided by National Resources Canada (NRCan) the software RTIGU-Control. Using Code-smoothed observations RTIGU-Control calculates in a first step by means of a linear KALMAN-Filter and based on the orbit information of the IGUs real-time clock corrections and clock drifts w.r.t GPS-Time for the GPS-satellites and stations. The second extended KALMAN-Filter (kinematic approach) uses again the Code-smoothed observations corrected for the clock corrections of step 1 to calculate the positions and velocities of the satellites. The calculation interval is set to 30 seconds. The results and comparisons to IGU-products are displayed online but also stored as clock-RINEX- and SP3-files on the ftp-server of the institute, e.g. for validation of the performance of the IGU predicted products. A comparison to the more precise but delayed issued IGS Rapid products (IGR) allows also to validate the performance of RTIGU-Control. To carry out these comparisons the MatLab routine RTIGU-Analyse was established. This routine is for example able to import and process standard clock-RINEX-files of several sources and delivers a variety of comparisons both in graphical or numerical form. Results will become part of this presentation. Another way to analyse the quality and consistency of the RTIGU-Control products is to use them for positioning in post-processing mode. Preliminary results are already available and will also be presented. Further investigations will deal with upgrading RTIGU-Control to become independent of the IGU products. This means to initialize the KALMAN-Filter process using the orbits (and also clocks) from IGU but to use for all further calculation steps the own established orbits. This procedure results in totally independent satellite orbit and clock corrections which could be used for example instead of the broadcast ephemerides in a large number of real-time PPP applications.
Common mode error in Antarctic GPS coordinate time series on its effect on bedrock-uplift estimates
NASA Astrophysics Data System (ADS)
Liu, Bin; King, Matt; Dai, Wujiao
2018-05-01
Spatially-correlated common mode error always exists in regional, or-larger, GPS networks. We applied independent component analysis (ICA) to GPS vertical coordinate time series in Antarctica from 2010 to 2014 and made a comparison with the principal component analysis (PCA). Using PCA/ICA, the time series can be decomposed into a set of temporal components and their spatial responses. We assume the components with common spatial responses are common mode error (CME). An average reduction of ˜40% about the RMS values was achieved in both PCA and ICA filtering. However, the common mode components obtained from the two approaches have different spatial and temporal features. ICA time series present interesting correlations with modeled atmospheric and non-tidal ocean loading displacements. A white noise (WN) plus power law noise (PL) model was adopted in the GPS velocity estimation using maximum likelihood estimation (MLE) analysis, with ˜55% reduction of the velocity uncertainties after filtering using ICA. Meanwhile, spatiotemporal filtering reduces the amplitude of PL and periodic terms in the GPS time series. Finally, we compare the GPS uplift velocities, after correction for elastic effects, with recent models of glacial isostatic adjustment (GIA). The agreements of the GPS observed velocities and four GIA models are generally improved after the spatiotemporal filtering, with a mean reduction of ˜0.9 mm/yr of the WRMS values, possibly allowing for more confident separation of various GIA model predictions.
Magliano, Lorenza; Strino, Antonella; Punzo, Rosanna; Acone, Roberta; Affuso, Gaetana; Read, John
2017-05-01
General practitioners (GPs) play a key role in the care of somatic and psychiatric problems in people diagnosed with schizophrenia (PWS). It is probable that, like other health professionals, GPs are not all free of prejudices toward PWS. In clinical practice, GPs sometimes interact with clients diagnosed with schizophrenia by specialists, passively accepting this diagnosis. Other times, GPs interact with clients having symptoms of schizophrenia but who have not been diagnosed. In this case, GPs are expected to actively make a diagnosis. Giving the key role of GPs in the process of care, it is worthwhile examining whether passive acceptance and active usage of the diagnosis schizophrenia have differential effects on GPs' attitudes toward people with this disorder. To investigate GPs' views of schizophrenia and whether they were influenced by a 'schizophrenia' label, passively accepted or actively used. A total of 430 randomly selected GPs were invited to complete a questionnaire about their views of schizophrenia, either after reading a description of this disorder and making a diagnosis, or without being provided with a description but passively accepting the label 'schizophrenia' given in the questionnaire. The GPs who passively accepted the label schizophrenia ( n = 195) and those who actively identified schizophrenia from the description ( n = 127) had similar views. Compared to the GPs who did not identify schizophrenia in the description ( n = 65), those who used the diagnosis, actively or passively: more frequently reported heredity and less frequently psychosocial factors as causes of the disorder; were more skeptical about recovery; were more convinced of the need for long-term pharmacotherapies; believed more strongly that PWS should be discriminated against when in medical hospital; and perceived PWS as more dangerous and as kept at greater social distance. The diagnosis 'schizophrenia', however used, is associated with pessimistic views. Stigma education should be provided to GPs.
Real-time, autonomous precise satellite orbit determination using the global positioning system
NASA Astrophysics Data System (ADS)
Goldstein, David Ben
2000-10-01
The desire for autonomously generated, rapidly available, and highly accurate satellite ephemeris is growing with the proliferation of constellations of satellites and the cost and overhead of ground tracking resources. Autonomous Orbit Determination (OD) may be done on the ground in a post-processing mode or in real-time on board a satellite and may be accomplished days, hours or immediately after observations are processed. The Global Positioning System (GPS) is now widely used as an alternative to ground tracking resources to supply observation data for satellite positioning and navigation. GPS is accurate, inexpensive, provides continuous coverage, and is an excellent choice for autonomous systems. In an effort to estimate precise satellite ephemeris in real-time on board a satellite, the Goddard Space Flight Center (GSFC) created the GPS Enhanced OD Experiment (GEODE) flight navigation software. This dissertation offers alternative methods and improvements to GEODE to increase on board autonomy and real-time total position accuracy and precision without increasing computational burden. First, GEODE is modified to include a Gravity Acceleration Approximation Function (GAAF) to replace the traditional spherical harmonic representation of the gravity field. Next, an ionospheric correction method called Differenced Range Versus Integrated Doppler (DRVID) is applied to correct for ionospheric errors in the GPS measurements used in GEODE. Then, Dynamic Model Compensation (DMC) is added to estimate unmodeled and/or mismodeled forces in the dynamic model and to provide an alternative process noise variance-covariance formulation. Finally, a Genetic Algorithm (GA) is implemented in the form of Genetic Model Compensation (GMC) to optimize DMC forcing noise parameters. Application of GAAF, DRVID and DMC improved GEODE's position estimates by 28.3% when applied to GPS/MET data collected in the presence of Selective Availability (SA), 17.5% when SA is removed from the GPS/MET data and 10.8% on SA free TOPEX data. Position estimates with RSS errors below I meter are now achieved using SA free TOPEX data. DRVID causes an increase in computational burden while GAAF and DMC reduce computational burden. The net effect of applying GAAF, DRVID and DMC is an improvement in GEODE's accuracy/precision without an increase in computational burden.
Evaluation of 14 global GIA forward models using a novel GPS dataset and GRACE
NASA Astrophysics Data System (ADS)
Bamber, J. L.; Schumacher, M.; Sha, Z.; Rougier, J.; King, M. A.; Khan, S. A.; Shum, C. K.; Luthcke, S. B.
2017-12-01
Observed mass movement from GRACE and vertical land motion from a global network of permanent GPS stations are used in a data driven approach to estimate GIA signals without introducing any assumptions about Earth structure nor ice loading history. Satellite data and in-situ observations are combined using a multivariate spatiotemporal model within a Bayesian Hierarchical Modelling (BHM) framework. In this study, the GPS data set of the Nevada Geodetic Laboratory (NGL) is used as the starting point for providing an observational estimate of global GIA uplift rates. A novel fully automatic post-processing strategy is developed to correct for non-GIA artifacts, including: (i) outlier detection (e.g. due to icing of Choke Ring Antennas or the antenna being buried in snow); (ii) automatic removal of reported and unreported jumps due to geophysical and hardware issues (a refinement of the jump database provided by NGL); and (iii) filtering for GPS stations that observe primarily the GIA signal rather than unwanted local effects (e.g., unmodelled loading effects from land hydrology, atmosphere, or tides). In order to accurately account for the elastic response of the Earth's crust over Antarctica and Greenland, uplift rates in these regions were corrected for the contemporary ice mass loading impact on elastic deformation using high-resolution ice mass balance time series. The novel global GPS data set shows a clean GIA signal at all post-processed stations and is therefore suitable to investigate the behavior of global GIA forward models. In addition, NASA's GSFC GRACE global mascon solutions are employed. The equal area 1x1 degree gridded mascons are spatially aggregated for larger regions to account for their spatial error correlations. Both the GPS and GRACE datasets are combined with prior information about spatial wavelengths of GIA signals obtained from the ICE-6G model within the BHM framework to solve for GIA. The results are compared with 14 global GIA forward model solutions to identify statistically significant deviations between the forward and inverse solutions, which may be due to either uncertain mantle rheology and/or ice loading history/magnitude.
The Spring 1985 high precision baseline test of the JPL GPS-based geodetic system
NASA Technical Reports Server (NTRS)
Davidson, John M.; Thornton, Catherine L.; Stephens, Scott A.; Blewitt, Geoffrey; Lichten, Stephen M.; Sovers, Ojars J.; Kroger, Peter M.; Skrumeda, Lisa L.; Border, James S.; Neilan, Ruth E.
1987-01-01
The Spring 1985 High Precision Baseline Test (HPBT) was conducted. The HPBT was designed to meet a number of objectives. Foremost among these was the demonstration of a level of accuracy of 1 to 2:10 to the 7th power, or better, for baselines ranging in length up to several hundred kilometers. These objectives were all met with a high degree of success, with respect to the demonstration of system accuracy in particular. The results from six baselines ranging in length from 70 to 729 km were examined for repeatability and, in the case of three baselines, were compared to results from colocated VLBI systems. Repeatability was found to be 5:10 to the 8th power (RMS) for the north baseline coordinate, independent of baseline length, while for the east coordinate RMS repeatability was found to be larger than this by factors of 2 to 4. The GPS-based results were found to be in agreement with those from colocated VLBI measurements, when corrected for the physical separations of the VLBI and CPG antennas, at the level of 1 to 2:10 to the 7th power in all coordinates, independent of baseline length. The results for baseline repeatability are consistent with the current GPA error budget, but the GPS-VLBI intercomparisons disagree at a somewhat larger level than expected. It is hypothesized that these differences may result from errors in the local survey measurements used to correct for the separations of the GPS and VLBI antenna reference centers.
Autonomous formation flying based on GPS — PRISMA flight results
NASA Astrophysics Data System (ADS)
D'Amico, Simone; Ardaens, Jean-Sebastien; De Florio, Sergio
2013-01-01
This paper presents flight results from the early harvest of the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted in the frame of the Swedish PRISMA technology demonstration mission. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on differential GPS-based navigation and relative orbital elements control are validated and tuned in orbit to fulfill the typical requirements of future distributed scientific instruments for remote sensing.
NASA Astrophysics Data System (ADS)
Cao, C.; Lee, X.; Xu, J.
2017-12-01
Unmanned Aerial Vehicles (UAVs) or drones have been widely used in environmental, ecological and engineering applications in recent years. These applications require assessment of positional and dimensional accuracy. In this study, positional accuracy refers to the accuracy of the latitudinal and longitudinal coordinates of locations on the mosaicked image in reference to the coordinates of the same locations measured by a Global Positioning System (GPS) in a ground survey, and dimensional accuracy refers to length and height of a ground target. Here, we investigate the effects of the number of Ground Control Points (GCPs) and the accuracy of the GPS used to measure the GCPs on positional and dimensional accuracy of a drone 3D model. Results show that using on-board GPS and a hand-held GPS produce a positional accuracy on the order of 2-9 meters. In comparison, using a differential GPS with high accuracy (30 cm) improves the positional accuracy of the drone model by about 40 %. Increasing the number of GCPs can compensate for the uncertainty brought by the GPS equipment with low accuracy. In terms of the dimensional accuracy of the drone model, even with the use of a low resolution GPS onboard the vehicle, the mean absolute errors are only 0.04 m for height and 0.10 m for length, which are well suited for some applications in precision agriculture and in land survey studies.
NASA Astrophysics Data System (ADS)
Benahmed Daho, Sid Ahmed
2010-02-01
The main purpose of this article is to discuss the use of GPS positioning together with a gravimetrically determined geoid, for deriving orthometric heights in the North of Algeria, for which a limited number of GPS stations with known orthometric heights are available, and to check, by the same opportunity, the possibility of substituting the classical spirit levelling. For this work, 247 GPS stations which are homogeneously distributed and collected from the international TYRGEONET project, as well as the local GPS/Levelling surveys, have been used. The GPS/Levelling geoidal heights are obtained by connecting the points to the levelling network while gravimetric geoidal heights were interpolated from the geoid model computed by the Geodetic Laboratory of the National Centre of Spatial Techniques from gravity data supplied by BGI. However, and in order to minimise the discordances, systematic errors and datum inconsistencies between the available height data sets, we have tested two parametric models of corrector surface: a four parameter transformation and a third polynomial model are used to find the adequate functional representation of the correction that should be applied to the gravimetric geoid. The comparisons based on these GPS campaigns prove that a good fit between the geoid model and GPS/levelling data has been reached when the third order polynomial was used as corrector surface and that the orthometric heights can be deducted from GPS observations with an accuracy acceptable for the low order levelling network densification. In addition, the adopted methodology has been also applied for the altimetric auscultation of a storage reservoir situated at 40 km from the town of Oran. The comparison between the computed orthometric heights and observed ones allowed us to affirm that the alternative of levelling by GPS is attractive for this auscultation.
A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer
NASA Technical Reports Server (NTRS)
Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin
2007-01-01
In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.
Assessment of the Water Levels and Currents at the Mississippi Bight During Hurricane Katrina.
NASA Astrophysics Data System (ADS)
Nwankwo, U. C.; Howden, S. D.; Dodd, D.; Wells, D. E.
2017-12-01
In an effort to extend the length of GPS baselines further offshore, the Hydrographic Science Research Center at the University of Southern Mississippi deployed a buoy which had a survey grade GPS receiver, an ADPC and a motion sensor unit in the Mississippi Bight in late 2004. The GPS data were initially processed using the Post Processed Kinematic technique with data from a nearby GPS base station on Horn Island. This processing technique discontinued when the storm (Hurricane Katrina) destroyed the base station in late August of 2005. However, since then a stand-alone positioning technique termed Precise Point Positioning (PPP) matured and allowed for the reprocessing of the buoy GPS data throughout Katrina. The processed GPS data were corrected for buoy angular motions using Tait Bryan transformation model. Tidal datums (Epoch 1983-2001) were transferred from the National Oceanic and Atmospheric Administration (NOAA) National Water Level at Waveland, Mississippi (Station ID 8747766) to the buoy using the Modified Range Ratio method. The maximum water level during the storm was found to be about 3.578m, relative to the transferred Mean Sea Level datum. The storm surge built over more than 24 hours, but fell back to normal levels in less than 3 hours. The maximum speed of the current with respect to the seafloor was recorded to be about 4knots towards the southeast as the storm surge moved back offshore.
Assessing herbivore foraging behavior with GPS collars in a semiarid grassland.
Augustine, David J; Derner, Justin D
2013-03-15
Advances in global positioning system (GPS) technology have dramatically enhanced the ability to track and study distributions of free-ranging livestock. Understanding factors controlling the distribution of free-ranging livestock requires the ability to assess when and where they are foraging. For four years (2008-2011), we periodically collected GPS and activity sensor data together with direct observations of collared cattle grazing semiarid rangeland in eastern Colorado. From these data, we developed classification tree models that allowed us to discriminate between grazing and non-grazing activities. We evaluated: (1) which activity sensor measurements from the GPS collars were most valuable in predicting cattle foraging behavior, (2) the accuracy of binary (grazing, non-grazing) activity models vs. models with multiple activity categories (grazing, resting, traveling, mixed), and (3) the accuracy of models that are robust across years vs. models specific to a given year. A binary classification tree correctly removed 86.5% of the non-grazing locations, while correctly retaining 87.8% of the locations where the animal was grazing, for an overall misclassification rate of 12.9%. A classification tree that separated activity into four different categories yielded a greater misclassification rate of 16.0%. Distance travelled in a 5 minute interval and the proportion of the interval with the sensor indicating a head down position were the two most important variables predicting grazing activity. Fitting annual models of cattle foraging activity did not improve model accuracy compared to a single model based on all four years combined. This suggests that increased sample size was more valuable than accounting for interannual variation in foraging behavior associated with variation in forage production. Our models differ from previous assessments in semiarid rangeland of Israel and mesic pastures in the United States in terms of the value of different activity sensor measurements for identifying grazing activity, suggesting that the use of GPS collars to classify cattle grazing behavior will require calibrations specific to the environment and vegetation being studied.
Ringler, Max; Mangione, Rosanna; Pašukonis, Andrius; Rainer, Gerhard; Gyimesi, Kristin; Felling, Julia; Kronaus, Hannes; Réjou-Méchain, Maxime; Chave, Jérôme; Reiter, Karl; Ringler, Eva
2015-01-01
For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area. PMID:27053943
Baio, A; Cavallini Francolini, D; Corbella, F; De Vecchi, P; Ragone, L; Tinelli, C; Franchini, P
1999-11-01
We addressed the issue of the relationship between the general practitioner (GP) and the radiotherapist to improve the quality of care of cancer patients. The study consisted in evaluating medical requests and phone interviews, with a questionnaire with yes/no and multiple choice answers to the following 5 questions: 1) Do you think a cancer diagnosis is always a hopeless death sentence? 2) Is it professionally rewarding to cure a cancer patient? 3) Are you satisfied with your relationship, as a general practitioner, with oncologic reference centers? 4) Is it more wearing for a general practitioner to manage a cancer than a noncancer patient? 5) Would you answer a questionnaire about the relationship between the general practitioner, the cancer patient and the oncologist? We evaluated 1590 medical requests and made 401 phone interviews; 255 colleagues (70%) answered the questionnaire. Medical requests were correctly and completely formulated by GPs in 45% of cases. A cancer diagnosis was not considered a hopeless death sentence in 90.9% of cases and 76% of GPs considered it professionally rewarding to cure a cancer patient. 75.6% of GPs considered it more wearing to manage a cancer than a noncancer patient, and female GPs felt this more strongly than their male counterparts. Irrespective of gender, GPs over 50 years of age tend to consider cancer a hopeless and fatal disease. The relationship with oncologic centers was considered satisfactory in 86.2% of cases. However, since cancer patients need greater medical care, GPs would like a closer cooperation with oncologists. The great interest GPs took in this study encourages further investigation through a more in depth questionnaire designed with the help of GPs themselves and interested statisticians.
Identification of AR(I)MA processes for modelling temporal correlations of GPS observations
NASA Astrophysics Data System (ADS)
Luo, X.; Mayer, M.; Heck, B.
2009-04-01
In many geodetic applications observations of the Global Positioning System (GPS) are routinely processed by means of the least-squares method. However, this algorithm delivers reliable estimates of unknown parameters und realistic accuracy measures only if both the functional and stochastic models are appropriately defined within GPS data processing. One deficiency of the stochastic model used in many GPS software products consists in neglecting temporal correlations of GPS observations. In practice the knowledge of the temporal stochastic behaviour of GPS observations can be improved by analysing time series of residuals resulting from the least-squares evaluation. This paper presents an approach based on the theory of autoregressive (integrated) moving average (AR(I)MA) processes to model temporal correlations of GPS observations using time series of observation residuals. A practicable integration of AR(I)MA models in GPS data processing requires the determination of the order parameters of AR(I)MA processes at first. In case of GPS, the identification of AR(I)MA processes could be affected by various factors impacting GPS positioning results, e.g. baseline length, multipath effects, observation weighting, or weather variations. The influences of these factors on AR(I)MA identification are empirically analysed based on a large amount of representative residual time series resulting from differential GPS post-processing using 1-Hz observation data collected within the permanent SAPOS® (Satellite Positioning Service of the German State Survey) network. Both short and long time series are modelled by means of AR(I)MA processes. The final order parameters are determined based on the whole residual database; the corresponding empirical distribution functions illustrate that multipath and weather variations seem to affect the identification of AR(I)MA processes much more significantly than baseline length and observation weighting. Additionally, the modelling results of temporal correlations using high-order AR(I)MA processes are compared with those by means of first order autoregressive (AR(1)) processes and empirically estimated autocorrelation functions.
Coupled Gravity and Elevation Measurement of Ice Sheet Mass Change
NASA Technical Reports Server (NTRS)
Jezek, K. C.; Baumgartner, F.
2005-01-01
During June 2003, we measured surface gravity at six locations about a glaciological measurement site located on the South-central Greenland Ice. We operated a GPS unit for 90 minutes at each site -the unit was operated simultaneously with a base station unit in Sondrestrom Fjord so as to enable differential, post-processing of the data. We installed an aluminum, accumulation-rate-pole at each site. The base section of the pole also served as the mount for the GPS antenna. Two gravimeters were used simultaneously at each site. Measurements were repeated at each site with at time lapse of at least 50 minutes. We measured snow physical properties in two shallow pits The same measurement sites were occupied in 1981 and all were part of a hexagonal network of geodetic and glaciological measurements established by The Ohio State University in 1980. Additional gravity observations were acquired at three of the sites in 1993 and 1995. Gravity data were collected in conjunction with Doppler satellite measurements of position and elevation in 1981 and global positioning system measurements subsequently. The use of satellite navigation techniques permitted reoccupation of the same sites in each year to within a few 10 s of meters or better. After detrending the gravity data, making adjustments for tides and removing the residual effects of local spatial gradients in gravity, we observe an average secular decrease in gravity of about 0.01 milligal/year, but with tenths of milligal variations about the mean trend. The trend is consistent with a nearly linear increase in surface elevation of between 7 to 10 c d y r (depending on location) as measured by repeated airborne laser altimeter, surface Doppler satellite and GPS elevation measurements. Differences between the residual gravity anomalies after free air correction may be attributable to local mass changes. This project is a collaboration between the Byrd Polar Research Center of the Ohio State University and the Arctic Technology Center of the Danish Technical University.
Sub-nanosecond clock synchronization and precision deep space tracking
NASA Technical Reports Server (NTRS)
Dunn, Charles; Lichten, Stephen; Jefferson, David; Border, James S.
1992-01-01
Interferometric spacecraft tracking is accomplished at the NASA Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals to ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3 ns error in clock synchronization resulting in an 11 nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock synchronization and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft observations without near-simultaneous quasar-based calibrations. Solutions are presented for a global network of GPS receivers in which the formal errors in clock offset parameters are less than 0.5 ns. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry and the examination of clock closure suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.
Station-Keeping Strategies for Lead-Trail Formation Flying
NASA Astrophysics Data System (ADS)
Martinot, V.; Rozanes, P.
Numerous projects in the Science and Observation domains involve the use of formation flying to ensure the mission performance. The formation flying configurations proposed in some of them are quite complex with several satellites in different planes generating relative differential motions between the satellites like in case of circular projected formation-flying. However, more simple designs consisting of two satellites in a lead-trail formation appear to be sufficient for a wide range of applications (interferometry, geodesy,...). This article concentrates on the station- keeping phase of such formations in Low-Earth Orbits The station-keeping criterion for such formations can be expressed for example in terms of difference in argument of latitude between both satellites and at the altitudes considered, it evolves mainly under the differential effect of the atmospheric drag between the trailing and leading satellites. In the present paper, this differential effect is supposed to originate from the difference in the area-to-mass ratio between the satellites due to their different designs. A preliminary estimation of the navigation performance is first given assuming that on-board GPS receiver are mounted on each satellite of the formation to acquire pseudo-range measurements between the LEO satellites and the MEO GPS constellation. The distance between both satellites of the formation is derived from independent orbit restitution performed for each LEO satellite in a ground master control station processing the GPS measurements. A strategy for controlling the satellite formation disturbed by the differential effect of the drag is then proposed. Simulations are performed to assess the feasibility of the station-keeping with different types of engines. As by-products, the propellant budget and the frequency of the station-keeping manoeuvres are also given. A case study inspired from the ESA project Acechem/Metop is used for the simulations.
Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results
NASA Astrophysics Data System (ADS)
Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.
The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.
Dumesnil, Hélène; Apostolidis, Thémis; Verger, Pierre
2018-01-01
Background French general practitioners (GPs) refer their patients with major depression to psychiatrists or for psychotherapy at particularly low rates. Objectives This qualitative study aims to explore general practitioners' (GP) opinions about psychotherapy, their relationships with mental health professionals, their perceptions of their role and that of psychiatrists in treating depression, and the relations between these factors and the GPs' strategies for managing depression. Methods In 2011, in-depth interviews based on a semi-structured interview guide were conducted with 32 GPs practicing in southeastern France. Verbatim transcripts were examined by analyzing their thematic content. Results We identified three profiles of physicians according to their opinions and practices about treatment strategies for depression: pro-pharmacological treatment, pro-psychotherapy and those with mixed practices. Most participants considered their relationships with psychiatrists unsatisfactory, would like more and better collaboration with them and shared the same concept of management in general practice. This concept was based both on the values and principles of practice shared by GPs and on their strong differentiation of their management practices from those of psychiatrists, Conclusion Several attitudes and values common to GPs might contribute to their low rate of referrals for psychotherapy in France: strong occupational identity, substantial variations in GPs' attitudes and practices regarding depression treatment strategies, representations sometimes unfavorable toward psychiatrists. Actions to develop a common culture and improve cooperation between GPs and psychiatrists are essential. They include systems of collaborative care and the development of interdisciplinary training common to GPs and psychiatrists practicing in the same area. PMID:29385155
Chua, Gin Nie; Hassali, Mohamed Azmi; Shafie, Asrul Akmal; Awaisu, Ahmed
2010-05-01
The objective of this study was to evaluate the general practitioners' (GPs') knowledge and perceptions towards generic medicines in a northern state of Malaysia. A postal cross-sectional survey involving registered GPs in Penang, Malaysia was undertaken. A 23-item questionnaire was developed, validated and administered on the GPs. Eighty-seven GPs responded to the survey (response rate 26.8%). The majority of the respondents (85.1%) claimed that they actively prescribed generic medicines in their practice. On the other hand, only 4.6% of the respondents correctly identified the Malaysia's National Pharmaceutical Control Bureau's bioequivalence standard for generic products. There were misconceptions among the respondents about the concepts of "bioequivalence", "efficacy", "safety", and "manufacturing standards" of generic medicines. GPs in this survey believed that a standard guideline on brand substitution process, collaboration with pharmacists, patient education and information on safety and efficacy of generic medicines were necessary to ensure quality use of generics. Furthermore, advertisements and product bonuses offered by pharmaceutical companies, patient's socio-economic factors as well as credibility of manufacturers were factors reported to influence their choice of medicine. Although it appeared that GPs have largely accepted the use of generic medicines, they still have concerns regarding the reliability and quality of such products. GPs need to be educated and reassured about generic products approval system in Malaysia concerning bioequivalence, quality, and safety. The current findings have important implications in establishing generic medicines policy in Malaysia. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
General practitioner understanding of abbreviations used in hospital discharge letters.
Chemali, Mark; Hibbert, Emily J; Sheen, Adrian
2015-08-03
To determine the incidence of abbreviation use in electronic hospital discharge letters (eDLs) and general practitioner understanding of abbreviations used in eDLsDesign, setting and participants: Retrospective audit of abbreviation use in 200 sequential eDLs was conducted at Nepean Hospital, Sydney, a tertiary referral centre, from 18 December to 31 December 2012. The 15 most commonly used abbreviations and five clinically important abbreviations were identified from the audit. A survey questionnaire using these abbreviations in context was then mailed to 240 GPs in the area covered by the Nepean Blue Mountains Local Health District to determine their understanding of these abbreviations. Number of abbreviations and frequency of their use in eDLs, and GPs' understanding of abbreviations used in the survey. 321 abbreviations were identified in the eDL audit; 48.6% were used only once. Fifty five per cent of GPs (132) responded to the survey. No individual abbreviation was correctly interpreted by all GPs. Six abbreviations were misinterpreted by more than a quarter of GPs. These were SNT (soft non-tender), TTE (transthoracic echocardiogram), EST (exercise stress test), NKDA (no known drug allergies), CTPA (computed tomography pulmonary angiogram), ORIF (open reduction and internal fixation). These abbreviations were interpreted incorrectly by 47.0% (62), 33.3% (44), 33.3% (44) 32.6% (43), 31.1% (41) and 28.0% (37) of GPs, respectively. Abbreviations used in hospital eDLs are not well understood by the GPs who receive them. This has potential to adversely affect patient care in the transition from hospital to community care.
The application of GPS precise point positioning technology in aerial triangulation
NASA Astrophysics Data System (ADS)
Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles
In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS-supported bundle block adjustment. When four full GCPs are emplaced in the corners of the adjustment block, then the systematic error is compensated using a set of independent unknown parameters for each strip, the final result of the bundle block adjustment with airborne GPS controls from PPP is the same as that of bundle block adjustment with airborne GPS controls from DGPS. Although the accuracy of the former is a little lower than that of traditional bundle block adjustment with dense GCPs, it can still satisfy the accuracy requirement of photogrammetric point determination for topographic mapping at many scales.
Shelton, John M.
2009-01-01
Santee Cooper is planning to construct an electricity generating station in southeastern Florence County near the Kingsburg community. As part of this project, a water-intake structure will be constructed on the Pee Dee River near the Bostick Boat Landing, which is located east of the intersection of State secondary roads S-21-57 and S-21-66. Velocity, bathymetric, and dissolved oxygen data are needed to help determine the location for the water-intake structure. The U.S. Geological Survey (USGS), in cooperation with Santee Cooper, collected these data at three different flow regimes during the period of May through August 2007. Data were collected along 15 transects located at 50-foot intervals starting 400 feet upstream from the boat landing and continuing to 300 feet downstream from the boat landing. All data were geographically referenced using a differentially corrected global positioning system (GPS).
The Dunedin Dementia Risk Awareness Project: a convenience sample of general practitioners.
Barak, Yoram; Rapsey, Charlene; Fridman, Dana; Scott, Kate
2018-05-04
Recent recommendations of US and UK governmental and academic agencies suggest that up to 35% of dementia cases are preventable. We aimed to appraise general practitioners' (GPs) awareness of risk and protective factors associated with dementia and their intentions to act within the context of the Health Beliefs Model. We canvassed degree of dementia awareness, using the modified Lifestyle for Brain Health (LIBRA) scale among a convenience sample of local GPs. Thirty-five GPs, mean age 56.7 + 6.8 years (range: 43-72) participated. There were 19 women and 16 men, all New Zealand European. Genetics was the most commonly cited risk for dementia and exercise the most commonly cited protective factor. More than 80% of participants correctly identified 8/12 LIBRA factors. Factors not identified were: renal dysfunction, obesity, Mediterranean diet and high cognitive activity. The majority of participants felt they were at risk of suffering from dementia, that lifestyle changes will help reduce their risk and wished to start these changes soon. GPs are knowledgeable about dementia risk and protective factors. They reported optimism in their ability to modify their own risk factors through lifestyle interventions. This places GPs in a unique position to help disseminate this knowledge to their clients.
Microenvironment Tracker (MicroTrac) | Science Inventory ...
Epidemiologic studies have shown associations between air pollution concentrations measured at central-site ambient monitors and adverse health outcomes. Using central-site concentrations as exposure surrogates, however, can lead to exposure errors due to time spent in various indoor and outdoor microenvironments (ME) with pollutant concentrations that can be substantially different from central-site concentrations. These exposure errors can introduce bias and incorrect confidence intervals in health effect estimates, which diminish the power of such studies to establish correct conclusions about the exposure and health effects association. The significance of this issue was highlighted in the National Research Council (NRC) Report “Research Priorities for Airborne Particulate Matter”, which recommends that EPA address exposure error in health studies. To address this limitation, we developed MicroTrac, an automated classification model that estimates time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from personal global positioning system (GPS) data and geocoded boundaries of buildings (e.g., home, work, school). MicroTrac has several innovative design features: (1) using GPS signal quality to account for GPS signal loss inside certain buildings, (2) spatial buffering of building boundaries to account for the spatial inaccuracy of the GPS device, and (3) temporal buffering of GPS positi
Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas
Moreau, Julien; Ambellouis, Sébastien; Ruichek, Yassine
2017-01-01
A precise GNSS (Global Navigation Satellite System) localization is vital for autonomous road vehicles, especially in cluttered or urban environments where satellites are occluded, preventing accurate positioning. We propose to fuse GPS (Global Positioning System) data with fisheye stereovision to face this problem independently to additional data, possibly outdated, unavailable, and needing correlation with reality. Our stereoscope is sky-facing with 360° × 180° fisheye cameras to observe surrounding obstacles. We propose a 3D modelling and plane extraction through following steps: stereoscope self-calibration for decalibration robustness, stereo matching considering neighbours epipolar curves to compute 3D, and robust plane fitting based on generated cartography and Hough transform. We use these 3D data with GPS raw data to estimate NLOS (Non Line Of Sight) reflected signals pseudorange delay. We exploit extracted planes to build a visibility mask for NLOS detection. A simplified 3D canyon model allows to compute reflections pseudorange delays. In the end, GPS positioning is computed considering corrected pseudoranges. With experimentations on real fixed scenes, we show generated 3D models reaching metric accuracy and improvement of horizontal GPS positioning accuracy by more than 50%. The proposed procedure is effective, and the proposed NLOS detection outperforms CN0-based methods (Carrier-to-receiver Noise density). PMID:28106746
Sea level rise within the west of Arabian Gulf using tide gauge and continuous GPS measurements
NASA Astrophysics Data System (ADS)
Ayhan, M. E.; Alothman, A.
2009-04-01
Arabian Gulf is connected to Indian Ocean and located in the south-west of the Zagros Trust Belt. To investigate sea level variations within the west of Arabian Gulf, monthly means of sea level at 13 tide gauges along the coast of Saudi Arabia and Bahrain, available in the database of the Permanent Service for Mean Sea Level (PSMSL), are studied. We analyzed individually the monthly means at each station, and estimated secular sea level rate by a robust linear trend fitting. We computed the average relative sea level rise rate of 1.96 ± 0.21 mm/yr within the west of Arabian Gulf based on 4 stations spanning longer than 19 years. Vertical land motions are included into the relative sea level measurements at the tide gauges. Therefore sea level rates at the stations are corrected for vertical land motions using the ICE-5G v1.2 VM4 Glacial Isostatic Adjustment (GIA) model then we found the average sea level rise rate of 2.27 mm/yr. Bahrain International GPS Service (IGS) GPS station, which is close to the Mina Sulman tide gauge station in Bahrain, is the only continuous GPS station accessible in the region. The weekly GPS time series of vertical component at Bahrain IGS-GPS station referring to the ITRF97 from 1999.2 to 2008.6 are downloaded from http://www-gps.mit.edu/~tah/. We fitted a linear trend with an annual signal and one break to the GPS vertical time series and found a vertical land motion rate of 0.48 ± 0.11 mm/yr. Assuming the vertical rate at Bahrain IGS-GPS station represents the vertical rate at each of the other tide gauge stations studied here in the region, we computed average sea level rise rate of 2.44 ± 0.21 mm/yr within the west of Arabian Gulf.
Lamp reliability studies for improved satellite rubidium frequency standard
NASA Technical Reports Server (NTRS)
Frueholz, R. P.; Wun-Fogle, M.; Eckert, H. U.; Volk, C. H.; Jones, P. F.
1982-01-01
In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions.
NASA Astrophysics Data System (ADS)
Kiamehr, Ramin
2016-04-01
One arc-second high resolution version of the SRTM model recently published for the Iran by the US Geological Survey database. Digital Elevation Models (DEM) is widely used in different disciplines and applications by geoscientist. It is an essential data in geoid computation procedure, e.g., to determine the topographic, downward continuation (DWC) and atmospheric corrections. Also, it can be used in road location and design in civil engineering and hydrological analysis. However, a DEM is only a model of the elevation surface and it is subject to errors. The most important parts of errors could be comes from the bias in height datum. On the other hand, the accuracy of DEM is usually published in global sense and it is important to have estimation about the accuracy in the area of interest before using of it. One of the best methods to have a reasonable indication about the accuracy of DEM is obtained from the comparison of their height versus the precise national GPS/levelling data. It can be done by the determination of the Root-Mean-Square (RMS) of fitting between the DEM and leveling heights. The errors in the DEM can be approximated by different kinds of functions in order to fit the DEMs to a set of GPS/levelling data using the least squares adjustment. In the current study, several models ranging from a simple linear regression to seven parameter similarity transformation model are used in fitting procedure. However, the seven parameter model gives the best fitting with minimum standard division in all selected DEMs in the study area. Based on the 35 precise GPS/levelling data we obtain a RMS of 7 parameter fitting for SRTM DEM 5.5 m, The corrective surface model in generated based on the transformation parameters and included to the original SRTM model. The result of fitting in combined model is estimated again by independent GPS/leveling data. The result shows great improvement in absolute accuracy of the model with the standard deviation of 3.4 meter.
NASA Astrophysics Data System (ADS)
Murray, K. D.; Lohman, R.
2017-12-01
Areas of large-scale subsidence are observed over much of the San Joaquin Valley of California due to the extraction of groundwater and hydrocarbons from the subsurface.These signals span regions with spatial extents of up to 100 km and have rates of up to 45 cm/yr or more. InSAR and GPS are complementary methods commonly used to measure such ground displacements and can provide important constraints on crustal deformation models, support groundwater studies, and inform water resource management efforts. However, current standard methods for processing these data sets and creating displacement time series are suboptimal for the deformation observed in areas like the San Joaquin Valley because (1) the ground surface properties are constantly changing due largely to agricultural activity, resulting in low coherence in half or more of a SAR frame, and (2) the deformation signals are distributed throughout the SAR frames, and are comparable to the size of the frames themselves. Therefore, referencing areas of deformation to non-deforming areas and correcting for long wavelength signals (e.g. atmospheric delays, orbital errors) is particularly difficult. We address these challenges by exploiting pixels that are stable in space and time, and use them for weighted spatial averaging and selective filtering before unwrapping. We then compare a range of methods for both long wavelength corrections and referencing via automatic partitioning of non-deforming areas, then benchmark results against continuous GPS measurements. Our final time series consist of nearly 15 years of displacement measurements from continuous GPS data, and Envisat, ALOS-1, Sentinel SAR data, and show significant temporal and spatial variations. We find that the choice of reference and long wavelength corrections can significantly bias long-term rate and seasonal amplitude estimates, causing variations of as much as 100% of the mean estimate. As we enter an era with free and open data access and regular observations plans from missions such as NISAR and the Sentinel constellation, our approach will help users evaluate the significance of observed deformation at a range of spatial scales and in areas with challenging surface properties.
Effects of the 2011 Tohoku Earthquake on VLBI Geode- tic Measurements
NASA Astrophysics Data System (ADS)
MacMillan, D.; Behrend, D.; Kurihara, S.
2012-12-01
The VLBI antenna TSUKUB32 at Tsukuba, Japan observes in 24-hour observing sessions once per week with the R1 operational network and on additional days with other networks on a more irregular basis. Further, the antenna is an endpoint of the single-baseline, 1-hr Intensive Int2 sessions observed on the weekends for the determination of UT1. TSUKUB32 returned to normal operational observing one month after the earthquake. The antenna is 160 km west and 240 km south of the epicenter of the Tohoku earthquake. We looked at the transient behavior of the TSUKUB32 position time series following the earthquake and found that significant deformation is continuing. The eastward rate relative to the long-term rate prior to the earthquake was about 20 cm/yr four months after the earthquake and 9 cm/yr after one year. The VLBI series agrees closely with the corresponding JPL (Jet Propulsion Laboratory) GPS series measured by the co-located GPS antenna TSUK. The co-seismic UEN displacement at Tsukuba as determined by VLBI was (-90 mm, 640 mm, 44 mm). We examined the effect of the variation of the TSUKUB32 position on EOP estimates and then used the GPS data to correct its position for the estimation of UT1 in the Tsukuba-Wettzell Int2 Intensive experiments. For this purpose and to provide operational UT1, the IVS scheduled a series of weekend Intensive sessions observing on the Kokee-Wettzell baseline immediately before each of the two Tsukuba-Wettzell Intensive sessions. Comparisons between the UT1 estimates from these weekend sessions and the USNO (United States Naval Observatory) combination series were used to validate the GPS correction to the TSUKUB32 position.
NASA Astrophysics Data System (ADS)
Chander, Shard; Ganguly, Debojyoti
2017-01-01
Water level was estimated, using AltiKa radar altimeter onboard the SARAL satellite, over the Ukai reservoir using modified algorithms specifically for inland water bodies. The methodology was based on waveform classification, waveform retracking, and dedicated inland range corrections algorithms. The 40-Hz waveforms were classified based on linear discriminant analysis and Bayesian classifier. Waveforms were retracked using Brown, Ice-2, threshold, and offset center of gravity methods. Retracking algorithms were implemented on full waveform and subwaveforms (only one leading edge) for estimating the improvement in the retrieved range. European Centre for Medium-Range Weather Forecasts (ECMWF) operational, ECMWF re-analysis pressure fields, and global ionosphere maps were used to exactly estimate the range corrections. The microwave and optical images were used for estimating the extent of the water body and altimeter track location. Four global positioning system (GPS) field trips were conducted on same day as the SARAL pass using two dual frequency GPS. One GPS was mounted close to the dam in static mode and the other was used on a moving vehicle within the reservoir in Kinematic mode. In situ gauge dataset was provided by the Ukai dam authority for the time period January 1972 to March 2015. The altimeter retrieved water level results were then validated with the GPS survey and in situ gauge dataset. With good selection of virtual station (waveform classification, back scattering coefficient), Ice-2 retracker and subwaveform retracker both work better with an overall root-mean-square error <15 cm. The results support that the AltiKa dataset, due to a smaller foot-print and sharp trailing edge of the Ka-band waveform, can be utilized for more accurate water level information over inland water bodies.
Lessons Learned in over Two Decades of GPS/GNSS Data Center Support
NASA Astrophysics Data System (ADS)
Boler, F. M.; Estey, L. H.; Meertens, C. M.; Maggert, D.
2014-12-01
The UNAVCO Data Center in Boulder, Colorado, curates, archives, and distributes geodesy data and products, mainly GPS/GNSS data from 3,000 permanent stations and 10,000 campaign sites around the globe. Although now having core support from NSF and NASA, the archive began around 1992 as a grass-roots effort of a few UNAVCO staff and community members to preserve data going back to 1986. Open access to this data is generally desired, but the Data Center in fact operates under an evolving suite of data access policies ranging from open access to nondisclosure for special cases. Key to processing this data is having the correct equipment metadata; reliably obtaining this metadata continues to be a challenge, in spite of modern cyberinfrastructure and tools, mostly due to human errors or lack of consistent operator training. New metadata problems surface when trying to design and publish modern Digital Object Identifiers for data sets where PIs, funding sources, and historical project names now need to be corrected and verified for data sets going back almost three decades. Originally, the data was GPS-only based on three signals on two carrier frequencies. Modern GNSS covers GPS modernization (three more signals and one additional carrier) as well as open signals and carriers of additional systems such as GLONASS, Galileo, BeiDou, and QZSS, requiring ongoing adaptive strategies to assess the quality of modern datasets. Also, new scientific uses of these data benefit from higher data rates than was needed for early tectonic applications. In addition, there has been a migration from episodic campaign sites (hence sparse data) to continuously operating stations (hence dense data) over the last two decades. All of these factors make it difficult to realistically plan even simple data center functions such as on-line storage capacity.
Pond, C Dimity; Mate, Karen E; Phillips, Jill; Stocks, Nigel P; Magin, Parker J; Weaver, Natasha; Brodaty, Henry
2013-10-01
Dementia is a complex and variable condition which makes recognition of it particularly difficult in a low prevalence primary care setting. This study examined the factors associated with agreement between an objective measure of cognitive function (the revised Cambridge Cognitive Assessment, CAMCOG-R) and general practitioner (GP) clinical judgment of dementia. This was a cross-sectional study involving 165 GPs and 2,024 community-dwelling patients aged 75 years or older. GPs provided their clinical judgment in relation to each of their patient's dementia status. Each patient's cognitive function and depression status was measured by a research nurse using the CAMCOG-R and the 15-item Geriatric Depression Scale (GDS), respectively. GPs correctly identified 44.5% of patients with CAMCOG-R dementia and 90% of patients without CAMCOG-R dementia. In those patients with CAMCOG-R dementia, two patient-dependent factors were most important for predicting agreement between the CAMCOG-R and GP judgment: the CAMCOG-R score (p = 0.006) and patient's mention of subjective memory complaints (SMC) to the GP (p = 0.040). A higher CAMCOG-R (p < 0.001) score, female gender (p = 0.005), and larger practice size (p < 0.001) were positively associated with GP agreement that the patient did not have dementia. Subjective memory complaints (p < 0.001) were more likely to result in a false-positive diagnosis of dementia. Timely recognition of dementia is advocated for optimal dementia management, but early recognition of a possible dementia syndrome needs to be balanced with awareness of the likelihood of false positives in detection. Although GPs correctly agree with dimensions measured by the CAMCOG-R, improvements in sensitivity are required for earlier detection of dementia.
Zheng, Yongbin; Chen, Huimin; Zhou, Zongtan
2018-05-23
The accurate angle measurement of objects outside the linear field of view (FOV) is a challenging task for a strapdown semi-active laser seeker and is not yet well resolved. Considering the fact that the strapdown semi-active laser seeker is equipped with GPS and an inertial navigation system (INS) on a missile, in this work, we present an angle measurement method based on the fusion of the seeker’s data and GPS and INS data for a strapdown semi-active laser seeker. When an object is in the nonlinear FOV or outside the FOV, by solving the problems of space consistency and time consistency, the pitch angle and yaw angle of the object can be calculated via the fusion of the last valid angles measured by the seeker and the corresponding GPS and INS data. The numerical simulation results demonstrate the correctness and effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Colombo, Oscar L. (Editor)
1992-01-01
This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.
Performance Trials of an Integrated Loran/GPS/IMU Navigation System, Part 1
2005-01-27
differences are used to correct the grid values in the absence of a local ASF monitor station . Performance of the receiver using different ASF grids...United States is served by the North American Loran-C system made up of 29 stations organized into 10 chains (see Figure 1). Loran coverage is...the absence of a local ASF monitor station . Performance of the receiver using different ASF grids and interpolation techniques and corrected using the
Combining the Observations from Different GNSS (Invited)
NASA Astrophysics Data System (ADS)
Dach, R.; Lutz, S.; Schaer, S.; Bock, H.; Jäggi, A.; Meindl, M.; Ostini, L.; Thaller, D.; Steinbach, A.; Beutler, G.; Steigenberger, P.
2009-12-01
For a very long time GPS has clearly dominated the use of GNSS measurements for scientific purposes. This picture is changing: we are moving from a GPS-only to a multi-GNSS world. This is, e.g., reflected by changing the meaning of the abbreviation IGS in March 2005 from International GPS to GNSS Service. The current situation can be described as follows: GPS has the leading role in the GNSS because it has provided a very stable satellite constellation over many years. Some of the currently active GPS satellites are nearly 15 years old. These old satellites are expected to be decommissioned within the next years. On the other hand, due to the increasing number of active GLONASS satellites and the improved density of multi-GNSS tracking stations in the IGS network, the quality of the GLONASS orbits has drastically improved during the last years. The European Galileo system is under development: currently two test satellites (GIOVE-A and GIOVE-B) are in orbit. The IOV (in-orbit-validation phase) will start soon. Also the first test satellites for the Chinese Compass system are in space. For the maximum benefit the observations of these GNSS will be processed in a combined multi-GNSS analysis in future. CODE (Center for Orbit Determination in Europe) is a joint venture between the Astronomical Institute of the University Bern (AIUB, Bern, Switzerland), the Federal Office of Topography (swisstopo, Wabern, Switzerland), the Federal Agency for Cartography and Geodesy (BKG, Frankfurt am Main, Germany), and the Institut für Astronomische und Physikalische Geodäsie of the Technische Universität München (IAPG/TUM, Munich, Germany). It acts as one of the global analysis centers of the IGS and has started in May 2003 with a rigorous combined processing of GPS and GLONASS measurements for the final, rapid, and even ultra-rapid product lines. All contributions from CODE to the IGS are in fact multi-GNSS products -- the only exception is the satellite and receiver clock corrections. The procedure to derive the satellite and receiver clock corrections is under the transition from the currently operational GPS-only to the multi-GNSS mode including GPS and GLONASS. When CODE started with its multi-GNSS processing more than 6 years ago the network density and the number of active GLONASS satellites was very limited. Nowadays this situation has changed, which brings us into the position to review the strategy to combine the measurements from different GNSS in the data analysis. The presentation will discuss the advantages and disadvantages of the highest (only one constant inter-system bias) and lowest (a minimum number of common parameters) possible correlation between the observations of the individual GNSS.
Economic influences on GPs' decisions to provide out-of-hours care.
Geue, Claudia; Skåtun, Diane; Sutton, Matt
2009-01-01
Introduction of the new general medical services contract offered UK general practices the option to discontinue providing out-of-hours (OOH) care. This aimed to improve GP recruitment and retention by offering a better work-life balance, but put primary care organisations under pressure to ensure sustainable delivery of these services. Many organisations arranged this by re-purchasing provision from individual GPs. To analyse which factors influence an individual GP's decision to re-provide OOH care when their practice has opted out. Cross-sectional questionnaire survey. Rural and urban general practices in Scotland, UK. A postal survey was sent to all GPs working in Scotland in 2006, with analyses weighted for differential response rates. Analysis included logistic regression of individuals' decisions to re-provide OOH care based on personal characteristics, work and non-work time commitments, income from other sources, and contracting primary care organisation. Of the 1707 GPs in Scotland whose practice had opted out, 40.6% participated in OOH provision. Participation rates of GPs within primary care organisations varied from 16.7% to 74.7%. Males with young children were substantially more likely to participate than males without children (odds ratio [OR] 2.44, 95% confidence interval [CI] = 1.36 to 4.40). GPs with higher-earning spouses were less likely to participate. This effect was reinforced if GPs had spouses who were also GPs (OR 0.52, 95% CI = 0.37 to 0.74). GPs with training responsibilities (OR 1.36, 95% CI = 1.09 to 1.71) and other medical posts (OR 1.38, 95% CI = 1.09 to 1.75) were more likely to re-provide OOH services. The opportunity to opt out of OOH care has provided flexibility for GPs to raise additional income, although primary care organisations vary in the extent to which they offer these opportunities. Examining intrinsic motivation is an area for future study.
Mobility assessment of a rural population in the Netherlands using GPS measurements.
Klous, Gijs; Smit, Lidwien A M; Borlée, Floor; Coutinho, Roel A; Kretzschmar, Mirjam E E; Heederik, Dick J J; Huss, Anke
2017-08-09
The home address is a common spatial proxy for exposure assessment in epidemiological studies but mobility may introduce exposure misclassification. Mobility can be assessed using self-reports or objectively measured using GPS logging but self-reports may not assess the same information as measured mobility. We aimed to assess mobility patterns of a rural population in the Netherlands using GPS measurements and self-reports and to compare GPS measured to self-reported data, and to evaluate correlates of differences in mobility patterns. In total 870 participants filled in a questionnaire regarding their transport modes and carried a GPS-logger for 7 consecutive days. Transport modes were assigned to GPS-tracks based on speed patterns. Correlates of measured mobility data were evaluated using multiple linear regression. We calculated walking, biking and motorised transport durations based on GPS and self-reported data and compared outcomes. We used Cohen's kappa analyses to compare categorised self-reported and GPS measured data for time spent outdoors. Self-reported time spent walking and biking was strongly overestimated when compared to GPS measurements. Participants estimated their time spent in motorised transport accurately. Several variables were associated with differences in mobility patterns, we found for instance that obese people (BMI > 30 kg/m 2 ) spent less time in non-motorised transport (GMR 0.69-0.74) and people with COPD tended to travel longer distances from home in motorised transport (GMR 1.42-1.51). If time spent walking outdoors and biking is relevant for the exposure to environmental factors, then relying on the home address as a proxy for exposure location may introduce misclassification. In addition, this misclassification is potentially differential, and specific groups of people will show stronger misclassification of exposure than others. Performing GPS measurements and identifying explanatory factors of mobility patterns may assist in regression calibration of self-reports in other studies.
The influence of workload and health behavior on job satisfaction of general practitioners.
Goetz, Katja; Musselmann, Berthold; Szecsenyi, Joachim; Joos, Stefanie
2013-02-01
Workload, personal health behavior, and job satisfaction of the physicians are crucial aspects for the quality of care they provide. The aim of our study was to identify influencing factors on job satisfaction with regard to general practitioners' (GPs) characteristics such as age, gender, health behavior, body mass index (BMI), and workload. A cross-sectional survey with a sample of 1,027 German GPs was used. Job satisfaction was measured according to a modified version of the Warr-Cook-Wall job satisfaction scale. Further, we collected data about health behavior and BMI of GPs and demographic data. Group comparison was evaluated using ANOVA with Bonferroni correction for post-hoc tests. A linear regression analysis was performed in which each of the job satisfaction items were handled as a dependent variable. The response rate was 34.0%. GPs were rather satisfied with their job with the exception of "hours of work," "physical working condition," and "income." GPs working in cities had less working hours per week, less number of patients per day, longer consultation times, and a higher proportion of privately insured patients compared to GPs working in rural areas. Being female, a higher age, a good health behavior, a lower BMI, and a high proportion of privately insured patients were positively associated with job satisfaction. Our results suggest that job satisfaction depends on different aspects of working conditions and individual characteristics. Therefore, strategies to improve job satisfaction should target improving working conditions and activating physicians' health resources.
Reliable positioning in a sparse GPS network, eastern Ontario
NASA Astrophysics Data System (ADS)
Samadi Alinia, H.; Tiampo, K.; Atkinson, G. M.
2013-12-01
Canada hosts two regions that are prone to large earthquakes: western British Columbia, and the St. Lawrence River region in eastern Canada. Although eastern Ontario is not as seismically active as other areas of eastern Canada, such as the Charlevoix/Ottawa Valley seismic zone, it experiences ongoing moderate seismicity. In historic times, potentially damaging events have occurred in New York State (Attica, 1929, M=5.7; Plattsburg, 2002, M=5.0), north-central Ontario (Temiskaming, 1935, M=6.2; North Bay, 2000, M=5.0), eastern Ontario (Cornwall, 1944, M=5.8), Georgian Bay (2005, MN=4.3), and western Quebec (Val-Des-Bois,2010, M=5.0, MN=5.8). In eastern Canada, the analysis of detailed, high-precision measurements of surface deformation is a key component in our efforts to better characterize the associated seismic hazard. The data from precise, continuous GPS stations is necessary to adequately characterize surface velocities from which patterns and rates of stress accumulation on faults can be estimated (Mazzotti and Adams, 2005; Mazzotti et al., 2005). Monitoring of these displacements requires employing high accuracy GPS positioning techniques. Detailed strain measurements can determine whether the regional strain everywhere is commensurate with a large event occurring every few hundred years anywhere within this general area or whether large earthquakes are limited to specific areas (Adams and Halchuck, 2003; Mazzotti and Adams, 2005). In many parts of southeastern Ontario and western Québec, GPS stations are distributed quite sparsely, with spacings of approximately 100 km or more. The challenge is to provide accurate solutions for these sparse networks with an approach that is capable of achieving high-accuracy positioning. Here, various reduction techniques are applied to a sparse network installed with the Southern Ontario Seismic Network in eastern Ontario. Recent developments include the implementation of precise point positioning processing on acquired GPS raw data. These are based on precise GPS orbit and clock data products with centimeter accuracy computed beforehand. Here, the analysis of 1Hz GPS data is conducted in order to find the most reliable regional network from eight stations (STCO, TYNO, ACTO, INUQ, IVKQ, KLBO, MATQ and ALGO) that cover the study area in eastern Ontario. In this way, the estimated parameters are the total number of ambiguities and resolved ambiguities, posteriori rms of each baseline and the coordinates for each station and their differences with the known coordinates. The positioning accuracy, the corrections and the accuracy of interpolated corrections, and the initialization time required for precise positioning are presented for the various applications.
Precise Point Positioning Based on BDS and GPS Observations
NASA Astrophysics Data System (ADS)
Gao, ZhouZheng; Zhang, Hongping; Shen, Wenbin
2014-05-01
BeiDou Navigation Satellite System (BDS) has obtained the ability applying initial navigation and precise point services for the Asian-Pacific regions at the end of 2012 with the constellation of 5 Geostationary Earth Orbit (GEO), 5 Inclined Geosynchronous Orbit (IGSO) and 4 Medium Earth Orbit (MEO). Till 2020, it will consist with 5 GEO, 3 IGSO and 27 MEO, and apply global navigation service similar to GPS and GLONASS. As we known, GPS precise point positioning (PPP) is a powerful tool for crustal deformation monitoring, GPS meteorology, orbit determination of low earth orbit satellites, high accuracy kinematic positioning et al. However, it accuracy and convergence time are influenced by the quality of pseudo-range observations and the observing geometry between user and Global navigation satellites system (GNSS) satellites. Usually, it takes more than 30 minutes even hours to obtain centimeter level position accuracy for PPP while using GPS dual-frequency observations only. In recent years, many researches have been done to solve this problem. One of the approaches is smooth pseudo-range by carrier-phase observations to improve pseudo-range accuracy. By which can improve PPP initial position accuracy and shorten PPP convergence time. Another sachems is to change position dilution of precision (PDOP) with multi-GNSS observations. Now, BDS has the ability to service whole Asian-Pacific regions, which make it possible to use GPS and BDS for precise positioning. In addition, according to researches on GNSS PDOP distribution, BDS can improve PDOP obviously. Therefore, it necessary to do some researches on PPP performance using both GPS observations and BDS observations, especially in Asian-Pacific regions currently. In this paper, we focus on the influences of BDS to GPS PPP mainly in three terms including BDS PPP accuracy, PDOP improvement and convergence time of PPP based on GPS and BDS observations. Here, the GPS and BDS two-constellation data are collected from BeiDou experimental tracking stations (BETS) built by Wuhan University. And BDS precise orbit and precise clock products are applied by GNSS center, Wuhan University. After an introduction about GPS+BDS PPP mathematical and the error correction modes, we analyze the influence of BDS to GPS PPP carefully with calculating results. The statistics results show that BDS PPP can reach centimeter level and BDS can improve PDOP obviously. Moreover, the convergence time and position stability of GPS+BDS PPP is better than that of GPS PPP.
Measurement and interpretation of crustal deformation rates associated with postglacial rebound
NASA Technical Reports Server (NTRS)
Davis, James L.
1993-01-01
This project involves obtaining Global Positioning System (GPS) measurements in Scandinavia, and using the measurements to estimate the viscosity profile of the Earth's mantle and to correct tide-gage measurements for the rebound effect. Several aspects of this project are reported.
Secondary prevention at 360°: the important role of diagnostic imaging.
Ciarrapico, Anna Micaela; Manenti, Guglielmo; Pistolese, Chiara; Fabiano, Sebastiano; Fiori, Roberto; Romagnoli, Andrea; Sergiacomi, Gianluigi; Stefanini, Matteo; Simonetti, Giovanni
2015-06-01
The aim of this paper is to underline the importance of the role of general practitioners (GPs) in distributing vital information about prevention to citizens, to highlight the importance of the so-called voluntary prevention programmes, both for conditions for which no organised screening programmes exist and for those for which they do exist but may well be obsolete or inefficient. Nowadays, voluntary prevention is made more effective thanks to the new sophisticated diagnostic technologies applied worldwide by diagnostic imaging. Epidemiological data about the incidence and causes of death among the Italian population have shown that screening programmes should be aimed first at fighting the following diseases: prostatic carcinoma, lung cancer, colorectal carcinoma, breast cancer, cardiovascular disease, cerebrovascular disease, aortic and peripheral vascular disease. GPs do not generally give good or adequate instructions concerning voluntary prevention programmes; GPs may not even be aware of this type of prevention which could represent a valuable option together with the existing mass screening programmes. Therefore, in the following analysis, we aim to outline the correct diagnostic pathway for the prevention of diseases having the highest incidence in our country and which represent the most frequent causes of death. If used correctly, these screening programmes may contribute to the success of secondary prevention, limiting the use of tertiary prevention and thus producing savings for the Italian National Health System.
Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations
NASA Astrophysics Data System (ADS)
Ning, Yafei; Tang, Jun
2018-01-01
Ionospheric disturbances constitute the main restriction factor for precise positioning techniques based on global positioning system (GPS) measurements. Simultaneously, GPS observations are widely used to determine ionospheric disturbances with total electron content (TEC). In this paper, we present an analysis of ionospheric disturbances over China mid- and low-latitude area before and during the magnetic storm on 17 March 2015. The work analyses the variation of magnetic indices, the amplitude of ionospheric irregularities observed with four arrays of GPS stations and the influence of geomagnetic storm on GPS positioning. The results show that significant ionospheric TEC disturbances occurred between 10:30 and 12:00 UT during the main phase of the large storm, and the static position reliability for this period are little affected by these disturbances. It is observed that the positive and negative disturbances propagate southward along the meridian from mid-latitude to low-latitude regions. The propagation velocity is from about 200 to 700 m s-1 and the amplitude of ionospheric disturbances is from about 0.2 to 0.9 TECU min-1. Moreover, the position dilution of precession (PDOP) with static precise point positioning (PPP) on storm and quiet days is 1.8 and 0.9 cm, respectively. This study is based on the analysis of ionospheric variability with differential rate of vertical TEC (DROVT) and impact of ionospheric storm on positioning with technique of GPS PPP.
Cryospheric monitoring with new low power RTK dGPS systems
NASA Astrophysics Data System (ADS)
Martinez, K.; Hart, J. K.; Bragg, G. M.; Curry, J. S.
2017-12-01
Differential GPS is often used to measure the movement of glaciers. It requires data to be recorded at a fixed base station as well as the moving rover unit, followed by post-processing in order to compute the rover's positions. The typical dGPS units used consume considerable power and the recording times are often around one hour per reading. While this provides very precise (typically millimetre) precision it comes at a cost of power used and the data is rather large to send offsite regularly. Real-time kinematic modes of dGPS are typically used for rapid mapping and autonomous vehicles. New devices are lower cost and smaller size. They also provide a fix within a few minutes, which can be transmitted home. We describe the design, deployment and preliminary results of two tracking systems to monitor ice movement. The first used a normal GPS and Iridium satellite messaging to track the movement of a Greenland iceberg which calved from the Nattivit Apusiiat glacier (south west Greenland). This system followed the iceberg as it flowed 660 km south along the coast of Greenland. The second system was installed in Iceland to track the movement of glaciers using 2 different dGPS systems. A low power ARM Cortex M4-based controller ran Python code to schedule dGPS activity periodically and gather fixes. An Iridium short messaging unit (Rockblock) was used to transmit RTK location fixes. The aim was to experiment with the use of RTK dGPS as an alternative to recordings to measure how the glaciers responded to small scale changes in temperature and precipitation throughout the year.
Magliano, Lorenza; Punzo, Rosanna; Strino, Antonella; Acone, Roberta; Affuso, Gaetana; Read, John
2017-01-01
This study explored the relationships between General Practitioners' (GPs) beliefs about People With Schizophrenia (PWS) and GPs' recommendations regarding restrictions for such people when in medical (nonpsychiatric) hospital, and whether these relationships were mediated by dangerousness perception. There were 322 randomly selected Italian GPs who completed a questionnaire measuring beliefs about PWS. Structural Equation Model (SEM) was used to explore the effects of these beliefs on the GPs' views about the need for restrictive rules in hospital. Thirty-1 percent of GPs firmly believed that, in medical wards, PWS should be supervised and 18% that they should be separated from other patients. SEM revealed that belief in such differential treatment was positively related to a belief that PWS need medication for the rest of their lives, and to perceptions of others' need for social distance, and of dangerousness. Dangerousness was, in turn, positively related to the belief that PWS need medication for their lives, and to a perception of the need for social distance, but negatively related to perceived capacity to report health problems. Analyses of indirect effects showed that the relationships of belief in discriminatory treatment with belief in medication for life and with perceived social distance were mediated by perceived dangerousness. GPs' attitudes about PWS appear closely with their beliefs on discriminatory behaviors in hospital, and the mediating role of dangerousness perceptions. Providing GPs with education about schizophrenia treatments and prognosis, and countering stereotypes about dangerousness, could be helpful to reduce GPs' beliefs in the need for discriminatory treatment of PWS. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Ebinger, Michael R.; Haroldson, Mark A.; van Manen, Frank T.; Costello, Cecily M.; Bjornlie, Daniel D.; Thompson, Daniel J.; Gunther, Kerry A.; Fortin, Jennifer K.; Teisberg, Justin E.; Pils, Shannon R; White, P J; Cain, Steven L.; Cross, Paul C.
2016-01-01
Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88%, whereas the false-positive rate was 18–24%. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.
Rigidity of Major Plates and Microplates Estimated From GPS Solution GPS2006.0
NASA Astrophysics Data System (ADS)
Kogan, M. G.; Steblov, G. M.
2006-05-01
Here we analyze the rigidity of eight major lithospheric plates using our global GPS solution GPS2006.0. We included all daily observations in interval 1995.0 to 2006.0 collected at IGS stations, as well as observations at many important stations not included in IGS. Loose multiyear solution GPS2006.0 is based on daily solutions by GAMIT software, performed at SOPAC and at Columbia University; those daily solutions were combined by Kalman filter (GLOBK software) into a loose multiyear solution. The constrained solution for station positions and velocities was obtained without a conventional reference frame; instead, we applied translation and rotation in order to best fit the zero velocities of 76 stations in stable plate cores excluding the regions of postglacial rebound. Simultaneously, we estimated relative plate rotation vectors (RV) and the origin translation rate (OTR), and then corrected station velocities for it. Therefore, the velocities in GPS2006.0 are unaffected by the OTR error of ITRF2000 conventionally used to constrain a loose solution. The 1-sigma plate-residual velocity in a stable plate core is less than 1 mm/yr for the plates: Eurasia, Pacific, North and South Americas, Nubia, Australia, and Antarctica; it is 1.4 mm/yr for the Indian plate, most probably because of poorer data quality. Plate-residuals at other established plates (Arabia, Nazca, Caribbean, Philippine) were not assessed for lack of observations. From our analysis, an upper bound for the mobility of the plate inner area is 1 mm/yr. Plate- residual GPS velocities for several hypothesized microplates in east Asia, such as Okhotsk, Amuria, South China, are 3-4 times higher; corresponding strain rates for these microplates are an order of magnitude higher than for Eurasia, North America, and other large plates.
Ebinger, Michael R; Haroldson, Mark A; van Manen, Frank T; Costello, Cecily M; Bjornlie, Daniel D; Thompson, Daniel J; Gunther, Kerry A; Fortin, Jennifer K; Teisberg, Justin E; Pils, Shannon R; White, P J; Cain, Steven L; Cross, Paul C
2016-07-01
Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004-2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods-leaving out individual clusters, or leaving out individual bears-showed that correct prediction of bear visitation to large-biomass carcasses was 78-88 %, whereas the false-positive rate was 18-24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002-2011) and examined trends in carcass visitation during fall hyperphagia (September-October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.
Selman, Lucy Ellen; Brighton, Lisa Jane; Robinson, Vicky; George, Rob; Khan, Shaheen A; Burman, Rachel; Koffman, Jonathan
2017-03-09
Primary care physicians (General Practitioners (GPs)) play a pivotal role in providing end of life care (EoLC). However, many lack confidence in this area, and the quality of EoLC by GPs can be problematic. Evidence regarding educational needs, learning preferences and the acceptability of evaluation methods is needed to inform the development and testing of EoLC education. This study therefore aimed to explore GPs' EoLC educational needs and preferences for learning and evaluation. A qualitative focus group study was conducted with qualified GPs and GP trainees in the UK. Audio recordings were transcribed and analysed thematically. Expert review of the coding frame and dual coding of transcripts maximised rigour. Twenty-eight GPs (10 fully qualified, 18 trainees) participated in five focus groups. Four major themes emerged: (1) why education is needed, (2) perceived educational needs, (3) learning preferences, and (4) evaluation preferences. EoLC was perceived as emotionally and clinically challenging. Educational needs included: identifying patients for palliative care; responsibilities and teamwork; out-of-hours care; having difficult conversations; symptom management; non-malignant conditions; and paediatric palliative care. Participants preferred learning through experience, working alongside specialist palliative care staff, and discussion of real cases, to didactic methods and e-learning. 360° appraisals and behavioural assessment using videoing or simulated interactions were considered problematic. Self-assessment questionnaires and patient and family outcome measures were acceptable, if used and interpreted correctly. GPs require education and support in EoLC, particularly the management of complex clinical care and counselling. GPs value mentoring, peer-support, and experiential learning alongside EoLC specialists over formal training.
76 FR 69608 - Modification of Class E Airspace; Blythe, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... Blythe, CA, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at Blythe Airport. This action also corrects geographic coordinates in the regulatory text. This improves the safety and management of Instrument Flight Rules (IFR) operations at the...
78 FR 22417 - Modification of Class E Airspace; Lakeview, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... Lakeview, OR, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at Lakeview County Airport. This improves the safety and management of Instrument Flight Rules (IFR) operations at the airport. This action also corrects the airport name. DATES...
NASA Astrophysics Data System (ADS)
Tu, Rui; Wang, Rongjiang; Zhang, Yong; Walter, Thomas R.
2014-06-01
The description of static displacements associated with earthquakes is traditionally achieved using GPS, EDM or InSAR data. In addition, displacement histories can be derived from strong-motion records, allowing an improvement of geodetic networks at a high sampling rate and a better physical understanding of earthquake processes. Strong-motion records require a correction procedure appropriate for baseline shifts that may be caused by rotational motion, tilting and other instrumental effects. Common methods use an empirical bilinear correction on the velocity seismograms integrated from the strong-motion records. In this study, we overcome the weaknesses of an empirically based bilinear baseline correction scheme by using a net-based criterion to select the timing parameters. This idea is based on the physical principle that low-frequency seismic waveforms at neighbouring stations are coherent if the interstation distance is much smaller than the distance to the seismic source. For a dense strong-motion network, it is plausible to select the timing parameters so that the correlation coefficient between the velocity seismograms of two neighbouring stations is maximized after the baseline correction. We applied this new concept to the KiK-Net and K-Net strong-motion data available for the 2011 Mw 9.0 Tohoku earthquake. We compared the derived coseismic static displacement with high-quality GPS data, and with the results obtained using empirical methods. The results show that the proposed net-based approach is feasible and more robust than the individual empirical approaches. The outliers caused by unknown problems in the measurement system can be easily detected and quantified.
GPS receiver CODE bias estimation: A comparison of two methods
NASA Astrophysics Data System (ADS)
McCaffrey, Anthony M.; Jayachandran, P. T.; Themens, D. R.; Langley, R. B.
2017-04-01
The Global Positioning System (GPS) is a valuable tool in the measurement and monitoring of ionospheric total electron content (TEC). To obtain accurate GPS-derived TEC, satellite and receiver hardware biases, known as differential code biases (DCBs), must be estimated and removed. The Center for Orbit Determination in Europe (CODE) provides monthly averages of receiver DCBs for a significant number of stations in the International Global Navigation Satellite Systems Service (IGS) network. A comparison of the monthly receiver DCBs provided by CODE with DCBs estimated using the minimization of standard deviations (MSD) method on both daily and monthly time intervals, is presented. Calibrated TEC obtained using CODE-derived DCBs, is accurate to within 0.74 TEC units (TECU) in differenced slant TEC (sTEC), while calibrated sTEC using MSD-derived DCBs results in an accuracy of 1.48 TECU.
NASA Astrophysics Data System (ADS)
Lee, J.
2013-12-01
Ground-Based Augmentation Systems (GBAS) support aircraft precision approach and landing by providing differential GPS corrections to aviation users. For GBAS applications, most of ionospheric errors are removed by applying the differential corrections. However, ionospheric correction errors may exist due to ionosphere spatial decorrelation between GBAS ground facility and users. Thus, the standard deviation of ionosphere spatial decorrelation (σvig) is estimated and included in the computation of error bounds on user position solution. The σvig of 4mm/km, derived for the Conterminous United States (CONUS), bounds one-sigma ionospheric spatial gradients under nominal conditions (including active, but not stormy condition) with an adequate safety margin [1]. The conservatism residing in the current σvig by fixing it to a constant value for all non-stormy conditions could be mitigated by subdividing ionospheric conditions into several classes and using different σvig for each class. This new concept, real-time σvig adaptation, will be possible if the level of ionospheric activity can be well classified based on space weather intensity. This paper studies correlation between the statistics of nominal ionospheric spatial gradients and space weather indices. The analysis was carried out using two sets of data collected from Continuous Operating Reference Station (CORS) Network; 9 consecutive (nominal and ionospherically active) days in 2004 and 19 consecutive (relatively 'quiet') days in 2010. Precise ionospheric delay estimates are obtained using the simplified truth processing method and vertical ionospheric gradients are computed using the well-known 'station pair method' [2]. The remaining biases which include carrier-phase leveling errors and Inter-frequency Bias (IFB) calibration errors are reduced by applying linear slip detection thresholds. The σvig was inflated to overbound the distribution of vertical ionospheric gradients with the required confidence level. Using the daily maximum values of σvig, day-to-day variations of spatial gradients are compared to those of two space weather indices; Disturbance, Storm Time (Dst) index and Interplanetary Magnetic Field Bz (IMF Bz). The day-to-day variations of both space weather indices showed a good agreement with those of daily maximum σvig. The results demonstrate that ionospheric gradient statistics are highly correlated with space weather indices on nominal and off-nominal days. Further investigation on this relationship would facilitate prediction of upcoming ionospheric behavior based on space weather information and adjusting σvig in real time. Consequently it will improve GBAS availability by adding external information to operation. [1] Lee, J., S. Pullen, S. Datta-Barua, and P. Enge (2007), Assessment of ionosphere spatial decorrelation for GPS-based aircraft landing systems, J. Aircraft, 44(5), 1662-1669, doi:10.2514/1.28199. [2] Jung, S., and J. Lee (2012), Long-term ionospheric anomaly monitoring for ground based augmentation systems, Radio Sci., 47, RS4006, doi:10.1029/2012RS005016.
Rosewell, Alexander; Patel, Mahomed; Viney, Kerri; Marich, Andrew; Lawrence, Glenda L
2010-03-01
The NSW Department of Health (NSW Health) faxed health alerts to general medical practitioners during measles outbreaks in March and May 2006. We conducted a retrospective cohort study of randomly selected general practitioners (GPs) (1 per medical practice) in New South Wales to investigate the effectiveness of faxing health alerts to GPs during a communicable disease outbreak. Fax transmission data allowed comparison of GPs sent and not sent the measles alert for self-reported awareness and practice actions aimed at the prevention and control of measles. A total of 328 GPs participated in the study. GPs who were sent the alert were more likely to be aware of the measles outbreak (RR 1.18, 95% CI 1.02, 1.38). When analysed by whether a fax had been received from either NSW Health or the Australian General Practice Network, GPs who reported receiving a faxed measles alert were more likely to be aware of the outbreak (RR 2.56, 95% CI 1.84, 3.56), to offer vaccination to susceptible staff (RR 6.46, 95% CI 2.49, 16.78), and be aware of other infection control recommendations. Respondents reported that the faxed alerts were useful with 65% reporting that the alerts had reminded them to consider measles in the differential diagnosis. This study shows that faxed health alerts were useful for preparing GPs to respond effectively to a communicable disease outbreak. The fax alert system could be improved by ensuring that all general practices in New South Wales are included in the faxstream database and that their contact details are updated regularly.
Integrated INS/GPS Navigation from a Popular Perspective
NASA Technical Reports Server (NTRS)
Omerbashich, Mensur
2002-01-01
Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.
NASA Astrophysics Data System (ADS)
Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie
2017-12-01
An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.
Wakeshield WSF-02 GPS Experiment
NASA Technical Reports Server (NTRS)
Schutz, B. E.; Abusali, P. A. M.; Schroeder, Christine; Tapley, Byron; Exner, Michael; Mccloskey, rick; Carpenter, Russell; Cooke, Michael; Mcdonald, samantha; Combs, Nick;
1995-01-01
Shuttle mission STS-69 was launched on September 7, 1995, 10:09 CDT, carrying the Wake Shield Facility (WSF-02). The WSF-02 spacecraft included a set of payloads provided by the Texas Space Grant Consortium, known as TexasSat. One of the TexasSat payloads was a GPS TurboRogue receiver loaned by the University Corporation for Atmospheric Research. On September 11, the WSF-02 was unberthed from the Endeavour payload bay using the remote manipulator system. The GPS receiver was powered on prior to release and the WSF-02 remained in free-flight for three days before being retrieved on September 14. All WSF-02 GPS data, which includes dual frequency pseudorange and carrier phase, were stored in an on-board recorder for post-flight analysis, but "snap- shots" of data were transmitted for 2-3 minutes at intervals of several hours, when permitted by the telemetry band- widdl The GPS experiment goals were: (1) an evaluation of precision orbit determination in a low altitude environment (400 km) where perturbations due to atmospheric drag and the Earth's gravity field are more pronounced than for higher altitude satellites with high precision orbit requirements, such as TOPEX/POSEIDON; (2) an assessment of relative positioning using the WSF GPS receiver and the Endeavour Collins receiver; and (3) determination of atmospheric temperature profiles using GPS signals passing through the atmosphere. Analysis of snap-shot telemetry data indicate that 24 hours of continuous data were stored on board, which includes high rate (50 Hz) data for atmosphere temperature profiles. Examination of the limited number of real-time navigation solutions show that at least 7 GPS satellites were tracked simultaneously and the on-board clock corrections were at the microsec level, as expected. Furthermore, a dynamical consistency test provided a further validation of the on-board navigation solutions. Complete analysis will be conducted in post-flight using the data recorded on-board.
Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration
NASA Astrophysics Data System (ADS)
Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu
Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field test data is processed to evaluate the performance of the proposed approach.
Badertscher, Nina; Rosemann, Thomas; Tandjung, Ryan; Braun, Ralph P
2011-06-30
In Switzerland, skin cancer is one of the most common neoplasms. Melanoma is the most aggressive one and can be lethal if not detected and removed on time. Nonmelanoma skin cancer is more frequent as melanoma; it is seldom lethal but can disfigure patients in advanced stages. General practitioners (GPs) are often faced with suspicious skin lesions of their patients. Randomised controlled trial (RCT). 60 GPs, randomised into intervention group and control group. GPs get a Lumio loupe, a digital camera and continuous feedback based on pictures of skin lesions they send to the Dermatologist. Competence in the diagnosis of skin cancer by GPs, measured as the percentage of correctly classified pictures of skin lesions. At baseline, and prior to any intervention (T0), GPs will be asked to rate 36 pictures of skin lesions according to their likelihood of malignancy on a visual analogue scale (VAS). After a full day training course with both groups (T1) and after one year of continuous feedback (T2) with the intervention group, we will repeat the picture scoring session with both groups, using new pictures. We want to determine whether a multifaceted intervention (including technical equipment and a continuous feedback on skin lesions) leads to an improved competence in the diagnosis of skin cancer by GPs. This study addresses the hypothesis that an additional feedback loop, based on pictures performed in daily practice by GPs is superior to a simple educational intervention regarding diagnostic competence. We expect an improvement of the competence in skin cancer diagnosis by GPs in both groups after the full day training course. Beside this immediate effect, we also expect a long term effect in the intervention group because of the continuous problem based feedback. ISRCTN29854485.
Pan, Yuanjin; Shen, Wen-Bin; Hwang, Cheinway; Liao, Chaoming; Zhang, Tengxu; Zhang, Guoqing
2016-01-01
Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS) stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs), in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE) mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA) contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet. PMID:27490550
NASA Astrophysics Data System (ADS)
Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.
2017-12-01
Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.
Sylvain, Chantal; Durand, Marie-José; Maillette, Pascale; Lamothe, Lise
2016-06-07
Depression is a major cause of work absenteeism that general practitioners (GPs) face directly since they are responsible for sickness certification and for supervising the return to work (RTW). These activities give GPs a key role in preventing long-term work disability, yet their practices in this regard remain poorly documented. The objectives of this study were therefore to describe GPs' practices with people experiencing work disability due to depressive disorders and explore how GPs' work context may impact on their practices. We conducted semi-structured individual interviews with 13 GPs and six mental healthcare professionals in two sub-regions of Quebec. The sub-regions differed in terms of availability of specialized resources offering public mental health services. Data were anonymized and transcribed verbatim. Thematic analysis was performed to identify patterns in the GPs' practices and highlight impacting factors in their work context. Our results identified a set of practices common to all the GPs and other practices that differentiated them. Two profiles were defined on the basis of the various practices documented. The first is characterized by the integration of the RTW goal into the treatment goal right from sickness certification and by interventions that include the workplace, albeit indirectly. The second is characterized by a lack of early RTW-oriented action and by interventions that include little workplace involvement. Regardless of the practice profile, actions intended to improve collaboration with key stakeholders remain the exception. However, two characteristics of the work context appear to have an impact: the availability of a dedicated mental health nurse and the regular provision of clinical information by psychotherapists. These conditions are rarely present but tend to make a significant difference for the GPs. Our results highlight the significant role of GPs in the prevention of long-term work disability and their need for support through the organization of mental health services at the primary care level.
What determines the income gap between French male and female GPs - the role of medical practices
2012-01-01
Background In many OECD countries, the gender differences in physicians’ pay favour male doctors. Due to the feminisation of the doctor profession, it is essential to measure this income gap in the French context of Fee-for-service payment (FFS) and then to precisely identify its determinants. The objective of this study is to measure and analyse the 2008 income gap between males and females general practitioners (GPs). This paper focuses on the role of gender medical practices differentials among GPs working in private practice in the southwest region of France. Methods Using data from 339 private-practice GPs, we measured an average gender income gap of approximately 26% in favour of men. Using the decomposition method, we examined the factors that could explain gender disparities in income. Results The analysis showed that 73% of the income gap can be explained by the average differences in doctors’ characteristics; for example, 61% of the gender income gap is explained by the gender differences in workload, i.e., number of consultations and visits, which is on average significantly lower for female GPs than for male GPs. Furthermore, the decomposition method allowed us to highlight the differences in the marginal returns of doctors’ characteristics and variables contributing to income, such as GP workload; we found that female GPs have a higher marginal return in terms of earnings when performing an additional medical service. Conclusions The findings of this study help to understand the determinants of the income gap between male and female GPs. Even though workload is clearly an essential determinant of income, FFS does not reduce the gender income gap, and there is an imperfect relationship between the provision of medical services and income. In the context of feminisation, it appears that female GPs receive a lower income but attain higher marginal returns when performing an additional consultation. PMID:22998173
NASA Astrophysics Data System (ADS)
Gomez, F.; Jaafar, R.; Abdallah, C.; Karam, G.
2012-12-01
The Lebanese Restraining Bend (LRB) is a ~200-km-long bend in the central part of the Dead Sea Fault system (DSFS). As with other large restraining bends, this part of the transform is characterized by more complicated structure than other parts. Additionally, results from recent GPS studies have documented slower velocities north of the LRB than are observed along the southern DSFS to the south. In an effort to understand how strain is transferred through the LRB, this study analyzes improved GPS velocities within the central DSFS based on new data and additional stations. Despite relatively modest rates of seismicity, the Dead Sea Fault system (DSFS) has a historically documented record of producing large and devastating earthquakes. Hence, geodetic measurements of crustal deformation may provide key constraints on processes of strain accumulation that may not be evident in instrumentally recorded seismicity. Within the LRB, the transform splays into two prominent strike-slip faults: The through-going Yammouneh fault and the Serghaya fault. The latter appears to terminate in the Anti-Lebanon Mountains. Additionally, some oblique plate motion is accommodated by thrusting along the coast of Lebanon. This study used GPS observations from survey-mode GPS sites, as well as continuous GPS stations in the region. In total, 22 GPS survey sites have been measured in Lebanon between 2002 and 2010, along with GPS data from the adjacent area. Elastic models are used for initial assessment of fault slip rates. Incorporating two major strike-slip faults, as well as an offshore thrust fault, this modeling suggests left-lateral slip rates of 3.8 mm/yr and 1.1 mm/yr for the Yammouneh and Serghaya faults, respectively. The GPS survey network has sufficient density for analyzing velocity gradients in an effort to quantify tectonic strains and rotations. The velocity gradients suggest that differential rotations play a role in accommodating some plate motion.
What determines the income gap between French male and female GPs - the role of medical practices.
Dumontet, Magali; Le Vaillant, Marc; Franc, Carine
2012-09-21
In many OECD countries, the gender differences in physicians' pay favour male doctors. Due to the feminisation of the doctor profession, it is essential to measure this income gap in the French context of Fee-for-service payment (FFS) and then to precisely identify its determinants. The objective of this study is to measure and analyse the 2008 income gap between males and females general practitioners (GPs). This paper focuses on the role of gender medical practices differentials among GPs working in private practice in the southwest region of France. Using data from 339 private-practice GPs, we measured an average gender income gap of approximately 26% in favour of men. Using the decomposition method, we examined the factors that could explain gender disparities in income. The analysis showed that 73% of the income gap can be explained by the average differences in doctors' characteristics; for example, 61% of the gender income gap is explained by the gender differences in workload, i.e., number of consultations and visits, which is on average significantly lower for female GPs than for male GPs. Furthermore, the decomposition method allowed us to highlight the differences in the marginal returns of doctors' characteristics and variables contributing to income, such as GP workload; we found that female GPs have a higher marginal return in terms of earnings when performing an additional medical service. The findings of this study help to understand the determinants of the income gap between male and female GPs. Even though workload is clearly an essential determinant of income, FFS does not reduce the gender income gap, and there is an imperfect relationship between the provision of medical services and income. In the context of feminisation, it appears that female GPs receive a lower income but attain higher marginal returns when performing an additional consultation.
NASA Astrophysics Data System (ADS)
Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.
2008-01-01
A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.
75 FR 50694 - Modification of Class E Airspace; Astoria, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-17
... Astoria, OR, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS... airport name from Port of Astoria Airport, and makes minor adjustments to the legal description of the... minor correction to the legal description for Class E airspace extending upward from 700 feet above the...
75 FR 59934 - Amendment to Class E Airspace; Smithfield, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Class E airspace at Johnston County Airport, Smithfield, NC, by correcting an omission of the geographic coordinates of the Area Navigation (RNAV) Global Positioning System (GPS) Special Standard Instrument Approach... System. DATES: Effective 0901 UTC, January 13, 2011. The Director of the Federal Register approves this...
Wan, Neng; Lin, Ge
2016-12-01
Smartphones have emerged as a promising type of equipment for monitoring human activities in environmental health studies. However, degraded location accuracy and inconsistency of smartphone-measured GPS data have limited its effectiveness for classifying human activity patterns. This study proposes a fuzzy classification scheme for differentiating human activity patterns from smartphone-collected GPS data. Specifically, a fuzzy logic reasoning was adopted to overcome the influence of location uncertainty by estimating the probability of different activity types for single GPS points. Based on that approach, a segment aggregation method was developed to infer activity patterns, while adjusting for uncertainties of point attributes. Validations of the proposed methods were carried out based on a convenient sample of three subjects with different types of smartphones. The results indicate desirable accuracy (e.g., up to 96% in activity identification) with use of this method. Two examples were provided in the appendix to illustrate how the proposed methods could be applied in environmental health studies. Researchers could tailor this scheme to fit a variety of research topics.
GPS measurements of strain accumulation across the Imperial Valley, California: 1986-1989
NASA Technical Reports Server (NTRS)
Larsen, Shawn; Reilinger, Robert
1989-01-01
The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 +/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 +/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.
da Silva, Jacqueline Braga; Maurício, Sílvia Fernandes; Bering, Tatiana; Correia, Maria Isabel T D
2013-01-01
A relationship between weight loss and inflammation has been described in patients with cancer. In the present study, the relationship between subjective global assessment (SGA) and the severity of inflammation, as defined by Glasgow prognostic score (GPS), as well as the relationship of both of these measures with the presence of complications and survival time, was assessed. In addition, we compared the diagnosis given by SGA with parameters of nutritional assessment, such as body mass index, triceps skinfold, midarm circumference (MAC), midarm muscle circumference (MAMC), phase angle (PA), adductor pollicis muscle thickness (APMT), and handgrip strength (HGS). According to the SGA, the nutritional status was associated with the GPS (P < 0.05), and both the SGA and GPS were associated with the presence of complications. However, the GPS [area under the curve (AUC): 0.77, P < 0.05, confidence interval (CI) = 0.580, 0.956] seems to be more accurate in identifying complications than the SGA (AUC: 0.679, P < 0.05, CI = 0.426, 0.931). Only GPS was associated with survival time. Comparing the different nutritional assessment methods with the SGA suggested that the MAC, MAMC, APMT, PA, and HGS parameters may be helpful in differentiating between nourished and malnourished patients, if new cutoffs are adopted.
Comparison of GPS receiver DCB estimation methods using a GPS network
NASA Astrophysics Data System (ADS)
Choi, Byung-Kyu; Park, Jong-Uk; Min Roh, Kyoung; Lee, Sang-Jeong
2013-07-01
Two approaches for receiver differential code biases (DCB) estimation using the GPS data obtained from the Korean GPS network (KGN) in South Korea are suggested: the relative and single (absolute) methods. The relative method uses a GPS network, while the single method determines DCBs from a single station only. Their performance was assessed by comparing the receiver DCB values obtained from the relative method with those estimated by the single method. The daily averaged receiver DCBs obtained from the two different approaches showed good agreement for 7 days. The root mean square (RMS) value of those differences is 0.83 nanoseconds (ns). The standard deviation of the receiver DCBs estimated by the relative method was smaller than that of the single method. From these results, it is clear that the relative method can obtain more stable receiver DCBs compared with the single method over a short-term period. Additionally, the comparison between the receiver DCBs obtained by the Korea Astronomy and Space Science Institute (KASI) and those of the IGS Global Ionosphere Maps (GIM) showed a good agreement at 0.3 ns. As the accuracy of DCB values significantly affects the accuracy of ionospheric total electron content (TEC), more studies are needed to ensure the reliability and stability of the estimated receiver DCBs.
A Novel Sensor for Attitude Determination Using Global Positioning System Signals
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Quinn, David A.; Markley, F. Landis; McCullough, Jon D.
1998-01-01
An entirely new sensor approach for attitude determination using Global Positioning System (GPS) signals is developed. The concept involves the use of multiple GPS antenna elements arrayed on a single sensor head to provide maximum GPS space vehicle availability. A number of sensor element configurations are discussed. In addition to the navigation function, the array is used to find which GPS space vehicles are within the field-of-view of each antenna element. Attitude determination is performed by considering the sightline vectors of the found GPS space vehicles together with the fixed boresight vectors of the individual antenna elements. This approach has clear advantages over the standard differential carrier-phase approach. First, errors induced by multipath effects can be significantly reduced or eliminated altogether. Also, integer ambiguity resolution is not required, nor do line biases need to be determined through costly and cumbersome self-surveys. Furthermore, the new sensor does not require individual antennas to be physically separated to form interferometric baselines to determine attitude. Finally, development potential of the new sensor is limited only by antenna and receiver technology development unlike the physical limitations of the current interferometric attitude determination scheme. Simulation results indicate that accuracies of about 1 degree (3 omega) are possible.
Tucker, Rod; Patel, Mahendra; Layton, Alison L; Walton, Shernaz
2014-04-01
To compare the diagnostic ability of pharmacists, nurses and general practitioners (GPs) for a range of skin conditions. An online study comprising 10 specifically developed dermatological case studies containing a digital image of the skin condition and a short case history. A total of 60 participants (20 representing each of pharmacists, GPs and primary care nurses) were required to identify the skin condition as well as the features in the case history that supported the diagnosis and the recommended first-line management approach for the condition. The mean diagnostic scores for each group were GPs = 8.8 (95% confidence interval, CI, 7.9-9.6), pharmacists = 6.2 (95% CI, 5.4-6.9) and nurses = 7.0 (95% CI, 6.1-7.9). Post hoc analysis revealed that the difference in mean diagnostic scores was significant (P < 0.05) between GPs and both pharmacists and nurses. However, pharmacists' diagnostic accuracy was similar to GPs' for some skin conditions such as tinea corporis, scabies and plantar warts and overall at least 40% of pharmacists correctly identified all conditions. This small study has demonstrated that for all of the skin conditions considered, pharmacists' overall diagnostic scores were significantly different from those of GPs but similar to those of nurses for the conditions assessed. However, further work with a larger sample is required to determine the accuracy of these preliminary findings and to establish whether advice given by pharmacists in practice results in the appropriate course of action being taken. © 2013 Royal Pharmaceutical Society.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.
2006-01-01
This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric TRANsmittance) radiative transport software to separate out the atmospheric component of measured top of atmosphere radiance. Simulated water bodies across a variety of MODTRAN model atmospheres including desert, mid-latitude, tropical and sub-artic conditions provide test bed conditions. Atmospherically corrected radiance and surface temperature results were compared to those obtained using traditional radiosonde balloon data and models. In general, differences between the different techniques were less than 2 percent indicating the potential value satellite derived atmospheric profiles have to atmospherically correct thermal imagery.
NASA Astrophysics Data System (ADS)
Melachroinos, S. A.; Biancale, R.; Menard, Y.; Sarrailh, M.
2008-12-01
The Drake campaign which took place from Jan 14, 2006 - 08 Feb, 2006 has been a very successful mission in collecting a wide range of GPS and marine gravity data all along JASON altimetry ground track n° 104. The same campaign will be repeated in 2009 along 028 and 104 JASON-2 ground track. The Drake Passage (DP) chokepoint is not only well suited geographically, as the Antarctic Circumpolar Current (ACC) is constricted to its narrowest extent of 700 km, but observations and models suggest that dynamical balances are particular effective in this area. Furthermore the space geodesy observations and their products provided from several altimetry missions (currently operating ENVISAT, JASON 1 and 2, GFO, ERS and other plannified for the future such as Altika, SWOT) require the cross comparison with independent geodetic techniques at the DP. The current experiment comprises a kinematic GPS and marine gravimetry Cal/Val geodetic approach and it aims to : validate with respect to altimetry data and surface models such a kinematic high frequency GPS technique for measuring sea state and sea surface height (SSH), compare the GPS SSH profiles with altimetry mean dynamic topography (MDT) and mean sea surface (MSS) models, give recommendations for future "offshore" Cal/Val activities on the ground tracks of altimeter satellites such as JASON-2, GFO, Altika using the GNSS technology etc. The GPS observations are collected from GPS antennas installed on a wave-rider buoy , aboard the R/V "Polarstern" and from continuous geodetic reference stations in the proximity. We also analyse problems related to the ship's attitude variations in roll, pitch and yaw and a way to correct them. We also give emphasis on the impact of the ship's acceleration profiles on the so called "squat effect" and ways to deal with it. The project will in particular benefit the GOCE mission by proposing to integrate GOCE in the ocean circulation study and validate GOCE products with our independent geodetic data set. The high rate GPS SSH solutions are derived using two different GPS kinematic software, GINS (CNES) and TRACK (MIT).
Toward Continuous GPS Carrier-Phase Time Transfer: Eliminating the Time Discontinuity at an Anomaly
Yao, Jian; Levine, Judah; Weiss, Marc
2015-01-01
The wide application of Global Positioning System (GPS) carrier-phase (CP) time transfer is limited by the problem of boundary discontinuity (BD). The discontinuity has two categories. One is “day boundary discontinuity,” which has been studied extensively and can be solved by multiple methods [1–8]. The other category of discontinuity, called “anomaly boundary discontinuity (anomaly-BD),” comes from a GPS data anomaly. The anomaly can be a data gap (i.e., missing data), a GPS measurement error (i.e., bad data), or a cycle slip. Initial study of the anomaly-BD shows that we can fix the discontinuity if the anomaly lasts no more than 20 min, using the polynomial curve-fitting strategy to repair the anomaly [9]. However, sometimes, the data anomaly lasts longer than 20 min. Thus, a better curve-fitting strategy is in need. Besides, a cycle slip, as another type of data anomaly, can occur and lead to an anomaly-BD. To solve these problems, this paper proposes a new strategy, i.e., the satellite-clock-aided curve fitting strategy with the function of cycle slip detection. Basically, this new strategy applies the satellite clock correction to the GPS data. After that, we do the polynomial curve fitting for the code and phase data, as before. Our study shows that the phase-data residual is only ~3 mm for all GPS satellites. The new strategy also detects and finds the number of cycle slips by searching the minimum curve-fitting residual. Extensive examples show that this new strategy enables us to repair up to a 40-min GPS data anomaly, regardless of whether the anomaly is due to a data gap, a cycle slip, or a combination of the two. We also find that interference of the GPS signal, known as “jamming”, can possibly lead to a time-transfer error, and that this new strategy can compensate for jamming outages. Thus, the new strategy can eliminate the impact of jamming on time transfer. As a whole, we greatly improve the robustness of the GPS CP time transfer. PMID:26958451
Chan, Woei-Leong; Hsiao, Fei-Bin
2011-01-01
This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly. PMID:22163819
Chan, Woei-Leong; Hsiao, Fei-Bin
2011-01-01
This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly.
Qibla Finder and Sholat Times Based on Digital Compass, GPS and Microprocessor
NASA Astrophysics Data System (ADS)
Sanjaya, W. S. M.; Anggraeni, D.; Nurrahman, F. I.; Kresnadjaja, W. G.; Dewi, I. P.; Mira; Aliah, H.; Marlina, L.
2018-01-01
To performing Sholat, Muslims around the world are required to pay attention to the requirements of Sholat, such as; determining the direction of the Qibla (Kaaba) and the time of Sholat. In this research will be made a real time Qibla Finder and Sholat Times named Q-Bot Ver3 to help Muslims find a Qibla direction and Time of Sholat anywhere. This Qibla Finder and Sholat Times are developed with robotic technology based on Digital Compass, GPS and Microcontroller. To determine the Qibla direction and Sholat times, latitude and longitude data form GPS module processed used spherical triangle trigonometry method, while the compass module used to show the Qibla direction. Moreover, this system has a buzzer which can sound if the device facing to the Qibla. This system is reliable and accurate in determining the Qibla Finder and Sholat Times. Thus, the advantage of the system is can correct the Qibla of Masjid and can help blind people to facing Qibla around the world.
NASA Technical Reports Server (NTRS)
Voo, Justin K.; Garrison, James L.; Yueh, Simon H.; Grant, Michael S.; Fore, Alexander G.; Haase, Jennifer S.; Clauss, Bryan
2010-01-01
In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals.
Fusion of Imaging and Inertial Sensors for Navigation
2006-09-01
combat operations. The Global Positioning System (GPS) was fielded in the 1980’s and first used for precision navigation and targeting in combat...equations [37]. Consider the homogeneous nonlinear differential equation ẋ(t) = f [x(t),u(t), t] ; x(t0) = x0 (2.4) For a given input function , u0(t...differential equation is a time-varying probability density function . The Kalman filter derivation assumes Gaussian distributions for all random
NASA Astrophysics Data System (ADS)
Guglielmino, F.; Nunnari, G.; Puglisi, G.; Spata, A.
2009-04-01
We propose a new technique, based on the elastic theory, to efficiently produce an estimate of three-dimensional surface displacement maps by integrating sparse Global Position System (GPS) measurements of deformations and Differential Interferometric Synthetic Aperture Radar (DInSAR) maps of movements of the Earth's surface. The previous methodologies known in literature, for combining data from GPS and DInSAR surveys, require two steps: the first, in which sparse GPS measurements are interpolated in order to fill in GPS displacements at the DInSAR grid, and the second, to estimate the three-dimensional surface displacement maps by using a suitable optimization technique. One of the advantages of the proposed approach is that both these steps are unified. We propose a linear matrix equation which accounts for both GPS and DInSAR data whose solution provide simultaneously the strain tensor, the displacement field and the rigid body rotation tensor throughout the entire investigated area. The mentioned linear matrix equation is solved by using the Weighted Least Square (WLS) thus assuring both numerical robustness and high computation efficiency. The proposed methodology was tested on both synthetic and experimental data, these last from GPS and DInSAR measurements carried out on Mt. Etna. The goodness of the results has been evaluated by using standard errors. These tests also allow optimising the choice of specific parameters of this algorithm. This "open" structure of the method will allow in the near future to take account of other available data sets, such as additional interferograms, or other geodetic data (e.g. levelling, tilt, etc.), in order to achieve even higher accuracy.
NASA Astrophysics Data System (ADS)
Bonforte, A.; Casu, F.; de Martino, P.; Guglielmino, F.; Lanari, R.; Manzo, M.; Obrizzo, F.; Puglisi, G.; Sansosti, E.; Tammaro, U.
2009-04-01
Differential Synthetic Aperture Radar Interferometry (DInSAR) is a methodology able to measure ground deformation rates and time series of relatively large areas. Several different approaches have been developed over the past few years: they all have in common the capability to measure deformations on a relatively wide area (say 100 km by 100 km) with a high density of the measuring points. For these reasons, DInSAR represents a very useful tool for investigating geophysical phenomena, with particular reference to volcanic areas. As for any measuring technique, the knowledge of the attainable accuracy is of fundamental importance. In the case of DInSAR technology, we have several error sources, such as orbital inaccuracies, phase unwrapping errors, atmospheric artifacts, effects related to the reference point selection, thus making very difficult to define a theoretical error model. A practical way to obtain assess the accuracy is to compare DInSAR results with independent measurements, such as GPS or levelling. Here we present an in-deep comparison between the deformation measurement obtained by exploiting the DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm and by continuous GPS stations. The selected volcanic test-sites are Etna, Vesuvio and Campi Flegrei, in Italy. From continuous GPS data, solutions are computed at the same days SAR data are acquired for direct comparison. Moreover, three dimensional GPS displacement vectors are projected along the radar line of sight of both ascending and descending acquisition orbits. GPS data are then compared with the coherent DInSAR pixels closest to the GPS station. Relevant statistics of the differences between the two measurements are computed and correlated to some scene parameter that may affect DInSAR accuracy (altitude, terrain slope, etc.).
Veneziani, Federica; Panza, Francesco; Solfrizzi, Vincenzo; Capozzo, Rosa; Barulli, Maria Rosaria; Leo, Antonio; Lozupone, Madia; Fontana, Andrea; Arcuti, Simona; Copetti, Massimiliano; Cardinali, Valentina; Grasso, Alessandra; Tursi, Marianna; Iurillo, Annalisa; Imbimbo, Bruno Pietro; Seripa, Davide; Logroscino, Giancarlo
2016-07-01
We detected the general level of knowledge about the early diagnosis of Alzheimer's disease (AD) and subsequent care in general practitioners (GPs) from Southern Italy. We explored also the GP perception about their knowledge and training on diagnosis and management of AD. On a sample of 131 GPs, we administered two questionnaires: the GP-Knowledge, evaluating GPs' expertise about AD epidemiology, differential diagnosis, and available treatments, and the GP-QUestionnaire on Awareness of Dementia (GP-QUAD), assessing the GPs' attitudes, awareness, and practice regarding early diagnosis of dementia. Specific screening tests or protocols to diagnose and manage dementia were not used by 53% of our GPs. The training on the recognition of early AD signs and symptoms was considered inadequate by 55% of the participants. Females were more likely to consider their training insufficient (58%) compared to males (53%). Female GPs were less likely to prescribe antipsychotic drugs to control neuropsychiatric symptoms (NPS) and suggest specialist advice in late stage of cognitive impairment. Multiple Correspondence Analysis (MCA) performed only on GP-QUAD suggested two dimensions explaining 26.1% ("GP attitude") and 20.1% ("GP knowledge") of the inertia for a total of 46.2%, In our survey on GP clinical practice, several problems in properly recognizing early AD symptoms and subsequently screening patients to be referred to secondary/tertiary care centers for diagnosis confirmation have emerged. In the future, specific training programs and educational projects for GPs should be implemented also in Italy to improve detection rates and management of dementia in primary care.
NASA Astrophysics Data System (ADS)
Perler, D.; Geiger, A.; Rothacher, M.
2011-12-01
Water vapor is involved in many atmospheric processes and is therefore a crucial quantity in numerical weather prediction (NWP). Recent flood events in Switzerland have pointed out several deficiencies in planning and prediction methods used for flood risk mitigation. Investigations have shown that one of the limiting factors to forecast such events with NWP models is the insufficient knowledge of the water vapor distribution in the atmosphere. Global Navigation Satellite System (GNSS) ground-based tomography is a technique to monitor the 4D distribution of water vapor in the troposphere and has the potential to considerably improve the initial water vapor field used in NWP. We developed a GNSS tomography software called AWATOS-2 which is based on the Kalman filter technique and provides different parameterizations of the tropospheric wet refractivity field (Perler et al., 2010; Perler et al., 2011). The software can be used for the assimilation of different observations such as GNSS zero-differences, GNSS double-differences and any kind of point observations (e.g. balloons, aircrafts). In this talk, we present the results of a long-term study where GPS double-difference delays have been processed. The tomographic solutions have been investigated in view of their assimilation into local NWP models. The data set comprises observations from 46 GPS stations collected during 1 year. The core area of the investigation is located in Central Europe. We analyzed the performance of different voxel parameterizations used in the tomographic reconstruction of the troposphere and developed a new bias correction model which minimizes systematic differences. The correction model reduces the root-mean-square error (RMSE) with respected to the NWP model from 4.6 ppm to 3.0 ppm. After bias correction, high-elevation stations still show high RMSEs. In the presentation, we will discuss the treatment of such stations in terms of assimilation into NWP models and will show how sophisticated voxel parameterizations improve the accuracy. Perler, D.; Hurter, F.; Brockmann, E.; Leuenberger, D.; Ruffieux, D.; Geiger, A. and Rothacher, M. (2010). In Proceedings of the 7th Management Committee (MC7) and Working Group (WG) Meeting, Colone (Germany), 8 pp. Perler, D.; Geiger, A. and Hurter, F. (2011). 4D GPS water vapor tomography: new parameterized approaches. J. Geodesy 85(8), pp. 539-550, DOI 10.1007/s00190-011-0454-2.
Array-based satellite phase bias sensing: theory and GPS/BeiDou/QZSS results
NASA Astrophysics Data System (ADS)
Khodabandeh, A.; Teunissen, P. J. G.
2014-09-01
Single-receiver integer ambiguity resolution (IAR) is a measurement concept that makes use of network-derived non-integer satellite phase biases (SPBs), among other corrections, to recover and resolve the integer ambiguities of the carrier-phase data of a single GNSS receiver. If it is realized, the very precise integer ambiguity-resolved carrier-phase data would then contribute to the estimation of the receiver’s position, thus making (near) real-time precise point positioning feasible. Proper definition and determination of the SPBs take a leading part in developing the idea of single-receiver IAR. In this contribution, the concept of array-based between-satellite single-differenced (SD) SPB determination is introduced, which is aimed to reduce the code-dominated precision of the SD-SPB corrections. The underlying model is realized by giving the role of the local reference network to an array of antennas, mounted on rigid platforms, that are separated by short distances so that the same ionospheric delay is assumed to be experienced by all the antennas. To that end, a closed-form expression of the array-aided SD-SPB corrections is presented, thereby proposing a simple strategy to compute the SD-SPBs. After resolving double-differenced ambiguities of the array’s data, the variance of the SD-SPB corrections is shown to be reduced by a factor equal to the number of antennas. This improvement in precision is also affirmed by numerical results of the three GNSSs GPS, BeiDou and QZSS. Experimental results demonstrate that the integer-recovered ambiguities converge to integers faster, upon increasing the number of antennas aiding the SD-SPB corrections.
NASA Astrophysics Data System (ADS)
Blume, F.; Berglund, H.; Estey, L.
2012-12-01
In December 2005, the L2C signal was introduced to improve the accuracy, tracking and redundancy of the GPS system for civilian users. The L2C signal also provides improved SNR data when compared with the L2P(Y) legacy signal. However, GNSS network operators have been hesitant to use the new signal as it is not well determined how positions derived from L2 carrier phase measurements are affected. L2C carrier phase is in quadrature with L2P(Y); some manufacturers correct for this when logging L2C phase while others do not. In cases where both L2C and L2P(Y) are logged simultaneously, translation software must be used carefully in order to select which phase is used in positioning. Modifications were made to UNAVCO's teqc pre-processing software to eliminate confusion, however GNSS networks such as the IGS still suffer occasional data loss due to improperly configured GPS receivers or data flow routines. To date L2C analyses have been restricted to special applications such as snow depth and soil moisture using SNR data, as some high-precision data analysis packages are not compatible with L2C. We use several different methods to determine the effect that tracking and logging L2C has on carrier phase measurements and positioning for various receiver models and configurations. Twenty-four hour zero-length baseline solutions using L2 show sub- millimeter differences in mean positions for both horizontal and vertical components. Direct comparisons of the L2 phase observable from RINEX files with and without the L2C observable show sub-millicycle differences. The magnitude of the variations increased at low elevations. The behavior of the L2P(Y) phase observations or positions from a given receiver were not affected by the enabling of L2C tracking. We find that the use of the L2C-derived carrier phase in real-time applications can be disastrous in cases where receiver brands are mixed between those that correct for quadrature and those that do not (Figure 1). Until standards are implemented for universal phase corrections in either receivers or software the use of L2C should be avoided by real-time network operators. The complexity involved in the adoption of a single new signal on an existing GPS frequency over a period of 7 years has implications for the use of multi-GNSS systems and modernized GPS in geodetic networks.
Cloud Absorption Radiometer Autonomous Navigation System - CANS
NASA Technical Reports Server (NTRS)
Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan
2013-01-01
CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode, the software aligns the precision navigation sensors and initializes the communications interfaces with the sensor and the remote computing system. It also monitors the navigation data state for quality and ensures that the system maintains the required fidelity for attitude and positional information. In the operational mode, the software runs at 12.5 Hz and gathers the required navigation/attitude data, computes the required sensor correction values, and then commands the sensor to the required roll correction. In this manner, the sensor will stay very near to vertical at all times, greatly improving the resulting collected data and imagery. CANS greatly improves quality of resulting imagery and data collected. In addition, the software component of the system outputs a concisely formatted, high-speed data stream that can be used for further science data processing. This precision, time-stamped data also can benefit other instruments on the same aircraft platform by providing extra information from the mission flight.
Wang, Zhipeng; Wang, Shujing; Zhu, Yanbo; Xin, Pumin
2017-01-01
Ionospheric delay is one of the largest and most variable sources of error for Ground-Based Augmentation System (GBAS) users because inospheric activity is unpredictable. Under normal conditions, GBAS eliminates ionospheric delays, but during extreme ionospheric storms, GBAS users and GBAS ground facilities may experience different ionospheric delays, leading to considerable differential errors and threatening the safety of users. Therefore, ionospheric monitoring and assessment are important parts of GBAS integrity monitoring. To study the effects of the ionosphere on the GBAS of Guangdong Province, China, GPS data collected from 65 reference stations were processed using the improved “Simple Truth” algorithm. In addition, the ionospheric characteristics of Guangdong Province were calculated and an ionospheric threat model was established. Finally, we evaluated the influence of the standard deviation and maximum ionospheric gradient on GBAS. The results show that, under normal ionospheric conditions, the vertical protection level of GBAS was increased by 0.8 m for the largest over bound σvig (sigma of vertical ionospheric gradient), and in the case of the maximum ionospheric gradient conditions, the differential correction error may reach 5 m. From an airworthiness perspective, when the satellite is at a low elevation, this interference does not cause airworthiness risks, but when the satellite is at a high elevation, this interference can cause airworthiness risks. PMID:29019953
Wang, Zhipeng; Wang, Shujing; Zhu, Yanbo; Xin, Pumin
2017-10-11
Ionospheric delay is one of the largest and most variable sources of error for Ground-Based Augmentation System (GBAS) users because inospheric activity is unpredictable. Under normal conditions, GBAS eliminates ionospheric delays, but during extreme ionospheric storms, GBAS users and GBAS ground facilities may experience different ionospheric delays, leading to considerable differential errors and threatening the safety of users. Therefore, ionospheric monitoring and assessment are important parts of GBAS integrity monitoring. To study the effects of the ionosphere on the GBAS of Guangdong Province, China, GPS data collected from 65 reference stations were processed using the improved "Simple Truth" algorithm. In addition, the ionospheric characteristics of Guangdong Province were calculated and an ionospheric threat model was established. Finally, we evaluated the influence of the standard deviation and maximum ionospheric gradient on GBAS. The results show that, under normal ionospheric conditions, the vertical protection level of GBAS was increased by 0.8 m for the largest over bound σ v i g (sigma of vertical ionospheric gradient), and in the case of the maximum ionospheric gradient conditions, the differential correction error may reach 5 m. From an airworthiness perspective, when the satellite is at a low elevation, this interference does not cause airworthiness risks, but when the satellite is at a high elevation, this interference can cause airworthiness risks.
A Real Time Differential GPS Tracking System for NASA Sounding Rockets
NASA Technical Reports Server (NTRS)
Bull, Barton; Bauer, Frank (Technical Monitor)
2000-01-01
Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.
Impact of GNSS orbit modeling on LEO orbit and gravity field determination
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Meyer, Ulrich; Sušnik, Andreja; Dach, Rolf; Jäggi, Adrian
2017-04-01
On January 4, 2015 the Center for Orbit Determination in Europe (CODE) changed the solar radiation pressure modeling for GNSS satellites to an updated version of the empirical CODE orbit model (ECOM). Furthermore, since September 2012 CODE operationally computes satellite clock corrections not only for the 3-day long-arc solutions, but also for the non-overlapping 1-day GNSS orbits. This provides different sets of GNSS products for Precise Point Positioning, as employed, e.g., in the GNSS-based precise orbit determination of low Earth orbiters (LEOs) and the subsequent Earth gravity field recovery from kinematic LEO orbits. While the impact of the mentioned changes in orbit modeling and solution strategy on the GNSS orbits and geophysical parameters was studied in detail, their implications on the LEO orbits were not yet analyzed. We discuss the impact of the update of the ECOM and the influence of 1-day and 3-day GNSS orbit solutions on zero-difference LEO orbit and gravity field determination, where the GNSS orbits and clock corrections, as well as the Earth rotation parameters are introduced as fixed external products. Several years of kinematic and reduced-dynamic orbits for the two GRACE LEOs are computed with GNSS products based on both the old and the updated ECOM, as well as with 1- and 3-day GNSS products. The GRACE orbits are compared by means of standard validation measures. Furthermore, monthly and long-term GPS-only and combined GPS/K-band gravity field solutions are derived from the different sets of kinematic LEO orbits. GPS-only fields are validated by comparison to combined GPS/K-band solutions, while the combined solutions are validated by analysis of the formal errors, as well as by comparing them to the combined GRACE solutions of the European Gravity Service for Improved Emergency Management (EGSIEM) project.
NASA Astrophysics Data System (ADS)
Muramoto, T.; Ito, Y.; Inazu, D.; Henrys, S. A.; Wallace, L.; Bannister, S. C.; Mochizuki, K.; Hino, R.; Suzuki, S.
2016-12-01
The Pacific Plate subducts westward beneath the eastern North Island of New Zealand along the Hikurangi Trough at 3 to 6 cm per year. Slow slip events (SSE) occur at the northern Hikurangi margin, offshore Gisborne, New Zealand, every 18 to 24 months (Wallace et al., 2010). Recently, the SSEs have been observed by offshore ocean bottom pressure recorders (OBPR) as well as on the onshore c-GPS network (www.geonet.org.nz). OBPR data spanning from May 2014 to June 2015 show that a SSE which occurred in September-October 2014 possibly extended updip to the trench. The best-fitting slip model for that SSE reveals the major slip (10 to 20 cm slip) was focused between 7 and 4 km depth (Wallace et al., 2016). Here we report on the OBPR data from June 2015 to June 2016, covering a time period where onshore-c-GPS stations observed at least one SSE in early June 2016, just before the offshore OBPR instruments were recovered. In addition, a small SSE may also have been observed in August and October 2015. In order to precisely evaluate the crustal deformation using OBPR, we need to correct other components in the OBPR. Ocean tides were primarily estimated using BAYTAP-G (Tamura et al. 1991). Non-tial components were calculated and removed using a numerical ocean model forced by air pressure and wind on the sea surface (Inazu et al. 2012). Finally, we take the difference between the corrected OBPR at two observation points. Comparing the OBPR data to onshore c-GPS data, we detect the vertical deformation due to the SSE. We also identify whether other possible SSEs occur near the trench, which were not observed by onshore c-GPS sites. Our rolling network of OBPR provides a feasible method of detecting shallow SSE events and recovery of the frictional conditions on the plate interface near the trench.
NASA Astrophysics Data System (ADS)
Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René
2018-01-01
The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll estimation error and gyroscope bias are only observable if attitude reference sensors are present.
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Materna, K.; Burgmann, R.; Fu, Y.; Bekaert, D. P.; Moore, A. W.; Adhikari, S.
2017-12-01
The Global Positioning System (GPS) measures elastic ground motions due to variations in terrestrial water mass. Such measurements have been used to successfully study variations of hydrological loading over monthly-to-yearly timescales; e.g., seasonal changes in water storage in California (Argus et al., 2014), 3-year drought of Western US (Borsa et al., 2014) and monthly water storage change in the Pacific Northwest (Fu et al., 2015). However, inferring water storage variations from single loading events over daily-to-weekly timescales presents a major challenge, due to the relatively higher level of noise and systematic errors, such as common mode errors (CME). This makes geodetic investigations of transient hydrologic events, such as major hurricanes, particularly difficult. By using daily vertical GPS timeseries we resolve the spatial and temporal evolution of water loading from Hurricane Harvey across the Gulf coast by applying multiple network correction methods, which helps to isolate the hydrological loading signal. Using 340 GPS stations distributed across the southern US, we mitigate for the effects of spatially correlated CME by firstly removing vertical contributions from atmospheric and non-ocean tidal loading, and secondly correcting the residual positions for changes in translation, rotation and scaling using a Helmert transformation. Our results show a maximum subsidence of 1.8 cm occurring around Houston, and a clear migration of land subsidence from Corpus Christi to western Louisiana over a 7-day period, consistent with the movement of Harvey itself. We also present preliminary results using the Network Inversion Filter (Bekaert et al., 2016), in which we use a Kalman filter approach to describe the time-varying water mass in a stochastic sense. Although our results are preliminary, we find removal of systematic sources of noise can help reveal hydrological loading signals due to extreme, transient events, that would typically go missed by other spatially and temporally coarser methods (e.g., GRACE), providing valuable constraints on large and sudden changes to the hydrosphere.
Ranging airport pseudolite for local area augmentation using the global positioning system
NASA Astrophysics Data System (ADS)
Bartone, Chris Gregory
The Local Area Augmentation System (LAAS) is being developed to support precision approach and landing operations in and about the local area surrounding an airport. The LAAS Program is currently under development by the Federal Aviation Administration (FAA) with Minimum Aviation System Performance Standards for the LAAS being developed by RTCA, Incorporated. The LAAS uses differential Global Positioning System (DGPS) and includes one or more airport pseudolites (APL) to increase the availability for certain installations. This dissertation addresses the addition of a differentially corrected, ranging APL into a LAAS. Prior to this work, no ranging APL has been integrated into a prototype LAAS and demonstrated in a real-time flight environment showing that an increase in LAAS availability is feasible. The APL requirements resulted in a prototype APL transmitting and receiving subsystem with a coarse-acquisition (C/A) code format that could be operated at any frequency within the L1± 10.0 MHz band. To investigate the major APL error the developmental approach was performed in two phases. Phase I implemented an APL operating at a center frequency off-L1 and concentrated on multipath limiting. The Phase II on-L1 APL architecture implemented a unique pulsing, automatic gain control (AGC) and GPS Blanker technique in the common reception path to maximize APL signal tracking and minimize electromagnetic interference to DGPS. To minimize ground multipath for the APL geometry, which is more severe than for GPS, a multipath limiting antenna (MLA) was designed, fabricated, and tested within a 4-month period. The implementation of this MLA concept was a first for APL applications and also contributed to the successful multipath limiting of ground multipath at the DGPS LAAS Ground Station. This effort successfully demonstrated that ground multipath can be limited (with low variance and no long-term bias) for the APL geometry and that suitable precision approach performance can be achieved. For this effort a total of 11 flight tests with three test aircraft (Piper Saratoga, FAA Boeing 727, and Ohio University DC-3) and 14 distinct laboratory tests were conducted to produce the APL Subsystem Architecture, data, and system performance documented in this document.
Developing accreditation for community based surgery: the Irish experience.
Ní Riain, Ailís; Collins, Claire; O'Sullivan, Tony
2018-02-05
Purpose Carrying out minor surgery procedures in the primary care setting is popular with patients, cost effective and delivers at least as good outcomes as those performed in the hospital setting. This paper aims to describe the central role of clinical leadership in developing an accreditation system for general practitioners (GPs) undertaking community-based surgery in the Irish national setting where no mandatory accreditation process currently exists. Design/methodology/approach In all, 24 GPs were recruited to the GP network. Ten pilot standards were developed addressing GPs' experience and training, clinical activity and practice supporting infrastructure and tested, using information and document review, prospective collection of clinical data and a practice inspection visit. Two additional components were incorporated into the project (patient satisfaction survey and self-audit). A multi-modal evaluation was undertaken. A majority of GPs was included at all stages of the project, in line with the principles of action learning. The steering group had a majority of GPs with relevant expertise and representation of all other actors in the minor surgery arena. The GP research network contributed to each stage of the project. The project lead was a GP with minor surgery experience. Quantitative data collected were analysed using Predictive Analytic SoftWare. Krueger's framework analysis approach was used to analyse the qualitative data. Findings A total of 9 GPs achieved all standards at initial review, 14 successfully completed corrective actions and 1 GP did not achieve the required standard. Standards were then amended to reflect findings and a supporting framework was developed. Originality/value The flexibility of the action-learning approach and the clinical leadership design allowed for the development of robust quality standards in a short timeframe.
Llor, Carles; Moragas, Ana; Cots, Josep M; López-Valcárcel, Beatriz González
General practitioners (GP) in Spain do not have access to rapid tests and adherence to guidelines is usually suboptimal. The aim of the study is to evaluate the estimated number of antibiotics that could have been saved if GPs had appropriately used these tests and had followed the guidelines. Observational study. Primary care centres from eight Autonomous Communities in Spain. GPs who had not participated in previous studies on rational use of antibiotics. GPs registered all the cases of pharyngitis and lower respiratory tract infections (LRTI) during 15 working days in 2015, by means of a 47-item audit. Actual GPs' antibiotic prescription and estimated number of antibiotics that could have been saved according to recent guidelines. A total of 126 GPs registered 1012 episodes of pharyngitis and 1928 LRTIs. Antibiotics were given or patients were referred in 497 patients with pharyngitis (49.1%) and 963 patients with LRTI (49.9%). If GPs had appropriately used rapid antigen detection tests and C-reactive protein tests and had strictly followed current guidelines, antibiotics would have been given to 7.6% and 15.1%, respectively, with an estimated saving of 420 antibiotics in patients with sore throat (estimated saving of 84.5%; 95% CI: 81.1-87.4%) and 672 antibiotics in LRTIs (estimated saving of 69.8%,95% CI: 67.1-72.5%). GP adherence to guidelines and a correct introduction of rapid tests in clinical practice in Spain could result in a considerable saving of unnecessary prescription of antibiotics in pharyngitis and LRTIs. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
NASA Technical Reports Server (NTRS)
Katzberg, Stephen J.; Torres, Omar; Grant, Michael S.; Masters, Dallas
2006-01-01
Extensive reflected GPS data was collected using a GPS reflectometer installed on an HC130 aircraft during the Soil Moisture Experiment 2002 (SMEX02) near Ames, Iowa. At the same time, widespread surface truth data was acquired in the form of point soil moisture profiles, areal sampling of near-surface soil moisture, total green biomass and precipitation history, among others. Previously, there have been no reported efforts to calibrate reflected GPS data sets acquired over land. This paper reports the results of two approaches to calibration of the data that yield consistent results. It is shown that estimating the strength of the reflected signals by either (1) assuming an approximately specular surface reflection or (2) inferring the surface slope probability density and associated normalization constants give essentially the same results for the conditions encountered in SMEX02. The corrected data is converted to surface reflectivity and then to dielectric constant as a test of the calibration approaches. Utilizing the extensive in-situ soil moisture related data this paper also presents the results of comparing the GPS-inferred relative dielectric constant with the Wang-Schmugge model frequently used to relate volume moisture content to dielectric constant. It is shown that the calibrated GPS reflectivity estimates follow the expected dependence of permittivity with volume moisture, but with the following qualification: The soil moisture value governing the reflectivity appears to come from only the top 1-2 centimeters of soil, a result consistent with results found for other microwave techniques operating at L-band. Nevertheless, the experimentally derived dielectric constant is generally lower than predicted. Possible explanations are presented to explain this result.
On-Orbit Autonomous Assembly from Nanosatellites
NASA Technical Reports Server (NTRS)
Murchison, Luke S.; Martinez, Andres; Petro, Andrew
2015-01-01
The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.
Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
NASA Astrophysics Data System (ADS)
Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.
2014-09-01
A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.
Sea level rise at Honolulu and Hilo, Hawaii: GPS estimates of differential land motion
NASA Astrophysics Data System (ADS)
Caccamise, Dana J.; Merrifield, Mark A.; Bevis, Michael; Foster, James; Firing, Yvonne L.; Schenewerk, Mark S.; Taylor, Frederick W.; Thomas, Donald A.
2005-02-01
Since 1946, sea level at Hilo on the Big Island of Hawaii has risen an average of 1.8 +/- 0.4 mm/yr faster than at Honolulu on the island of Oahu. This difference has been attributed to subsidence of the Big Island. However, GPS measurements indicate that Hilo is sinking relative to Honolulu at a rate of -0.4 +/- 0.5 mm/yr, which is too small to account for the difference in sea level trends. In the past 30 years, there has been a statistically significant reduction in the relative sea level trend. While it is possible that the rates of land motion have changed over this time period, the available hydrographic data suggest that interdecadal variations in upper ocean temperature account for much of the differential sea level signal between the two stations, including the recent trend change. These results highlight the challenges involved in estimating secular sea level trends in the presence of significant low frequency variability.
Accuracy and coverage of the modernized Polish Maritime differential GPS system
NASA Astrophysics Data System (ADS)
Specht, Cezary
2011-01-01
The DGPS navigation service augments The NAVSTAR Global Positioning System by providing localized pseudorange correction factors and ancillary information which are broadcast over selected marine reference stations. The DGPS service position and integrity information satisfy requirements in coastal navigation and hydrographic surveys. Polish Maritime DGPS system has been established in 1994 and modernized (in 2009) to meet the requirements set out in IMO resolution for a future GNSS, but also to preserve backward signal compatibility of user equipment. Having finalized installation of the new technology L1, L2 reference equipment performance tests were performed.The paper presents results of the coverage modeling and accuracy measuring campaign based on long-term signal analyses of the DGPS reference station Rozewie, which was performed for 26 days in July 2009. Final results allowed to verify the coverage area of the differential signal from reference station and calculated repeatable and absolute accuracy of the system, after the technical modernization. Obtained field strength level area and position statistics (215,000 fixes) were compared to past measurements performed in 2002 (coverage) and 2005 (accuracy), when previous system infrastructure was in operation.So far, no campaigns were performed on differential Galileo. However, as signals, signal processing and receiver techniques are comparable to those know from DGPS. Because all satellite differential GNSS systems use the same transmission standard (RTCM), maritime DGPS Radiobeacons are standardized in all radio communication aspects (frequency, binary rate, modulation), then the accuracy results of differential Galileo can be expected as a similar to DGPS.Coverage of the reference station was calculated based on unique software, which calculate the signal strength level based on transmitter parameters or field signal strength measurement campaign, done in the representative points. The software works based on Baltic sea vector map, ground electric parameters and models atmospheric noise level in the transmission band.
The role of a low Earth orbiter in intercontinental time synchronization via GPS satellites
NASA Technical Reports Server (NTRS)
Wu, S. C.; Ondrasik, V. J.
1985-01-01
Time synchronization between two sites using differential GPS has been investigated by a number of researchers. When the two sites are widely separated, the common view period of any GPS satellite becomes shorter; low elevation observations are inevitable. This increase the corrupting effects of the atmospheric delay and, at the same time, narrows the window for such time synchronization. This difficulty can be alleviated by synchronization. This difficulty can be alleviated by using a transit site located midway between the two main sites. The main sites can now look at different GPS satellites which are also in view at the transit site. However, a ground transit site may not always be conveniently available, especially across the Pacific Ocean; also, the inclusion of a ground transit site introduce additional errors due to its location error and local atmospheric delay. An alternative is to use a low Earth orbiter (LEO) as the transit site. A LEO is superior to a ground transit site in three ways: (1) It covers a large part of the Earth in a short period of time and, hence, a single LEO provides worldwide transit services; (2) it is above the troposphere and thus its inclusion does not introduce additional tropospheric delay error; and (3) it provides strong dynamics needed to improve GPS satellite positions which are of importance to ultraprecise time synchronization.
Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.
Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing
2016-09-15
The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas.
Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS
Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing
2016-01-01
The emergence of China’s Beidou, Europe’s Galileo and Russia’s GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas. PMID:27629988
General practitioner turnover and migration in England 1990-94.
Taylor, D H; Leese, B
1998-01-01
BACKGROUND: In tandem with fears about a GP workforce crisis, increasing attention is being focused on the supply and distribution of primary care services: on general practitioners in particular. Differential turnover and migration across health authority boundaries could lead to a maldistribution of GPs, yet comprehensive studies of GP turnover are non-existent. AIM: To quantify general practitioner (GP) turnover and migration in England from 1990 to 1994. METHOD: Yearly data from 1 October 1990 to 1 October 1994 were collected on GPs in England practising full time, including average yearly turnover, rates of entry to and exit from general practice, and net migration among GPs. All were calculated at the family health service authority (now the new health authorities) level. RESULTS: Average yearly GP turnover ranges from 2.9% in Shropshire to 7.8% in Kensington, Chelsea and Westminster; turnover is associated with deprivation and high-need areas. Migration of GPs across health authority borders was rare. Entry and exit rates were also positively related to measures of deprivation and need. Relatively underprovided health authorities lost 23 GPs over the study period as a result of migration; relatively overprovided ones gained three. CONCLUSION: Turnover is driven primarily by exits from general practice and is related to deprivation and high need. Retention appears to be the main problem in ensuring an adequate GP supply in relatively deprived and underprovided health authorities. PMID:9624750
Assessment of GPS Reflectometry from TechDemoSat-1 for Scatterometry and Altimetry Applications
NASA Astrophysics Data System (ADS)
Shah, R.; Hajj, G. A.
2015-12-01
The value of GPS reflectometry for scatterometry and altimetry applications has been a topic of investigation for the past two decades. TechDemoSat-1 (TDS-1), a technology demonstration satellite launched in July of 2014, with an instrument to collect GPS reflections from 4 GPS satellites simultaneously, provide the first extensive data that allows for validation and evaluation of GPS reflectometry from space against more established techniques. TDS-1 uses a high gain (~13 dBi) L1 antenna pointing 6 degrees off nadir with a 60ohalf-beam width. Reflected GPS L1 signals are processed into Delay Doppler Maps (DDMs) inside the receiver and made available (through Level-1b) along with metadata describing the bistatic geometry, antenna gain, etc., on a second-by-second basis for each of the 4 GPS tracks recorded at any given time. In this paper we examine level-1b data from TDS-1 for thousands of tracks collected over the span of Jan.-Feb., 2015. This data corresponds to reflections from various types of surfaces throughout the globe including ice, deserts, forests, oceans, lakes, wetlands, etc. Our analysis will consider how the surface type manifests itself in the DDMs (e.g., coherence vs. non-coherence reflection) and derivable physical quantities. We will consider questions regarding footprint resolution, waveform rise time and corresponding bistatic range accuracy, and level of precision for altimetry (sea surface height) and scatterometry (significant wave height and sea surface wind). Tracks from TDS-1 that coincide with Jason-1 or 2 tracks will be analyzed, where the latter can be used as truth for comparison and validation. Where coincidences are found, vertical delay introduced by the media as measured by Jason will be mapped to bistatic propagation path to correct for neutral atmospheric and ionospheric delays.
Global distortion of GPS networks associated with satellite antenna model errors
NASA Astrophysics Data System (ADS)
Cardellach, E.; Elósegui, P.; Davis, J. L.
2007-07-01
Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by ˜1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PCO errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm yr-1 level, which will impact high-precision crustal deformation studies.
Global Distortion of GPS Networks Associated with Satellite Antenna Model Errors
NASA Technical Reports Server (NTRS)
Cardellach, E.; Elosequi, P.; Davis, J. L.
2007-01-01
Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by approx.1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PC0 errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm/yr level, which will impact high-precision crustal deformation studies.
GPS Data Filtration Method for Drive Cycle Analysis Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, A.; Earleywine, M.
2013-02-01
When employing GPS data acquisition systems to capture vehicle drive-cycle information, a number of errors often appear in the raw data samples, such as sudden signal loss, extraneous or outlying data points, speed drifting, and signal white noise, all of which limit the quality of field data for use in downstream applications. Unaddressed, these errors significantly impact the reliability of source data and limit the effectiveness of traditional drive-cycle analysis approaches and vehicle simulation software. Without reliable speed and time information, the validity of derived metrics for drive cycles, such as acceleration, power, and distance, become questionable. This study exploresmore » some of the common sources of error present in raw onboard GPS data and presents a detailed filtering process designed to correct for these issues. Test data from both light and medium/heavy duty applications are examined to illustrate the effectiveness of the proposed filtration process across the range of vehicle vocations. Graphical comparisons of raw and filtered cycles are presented, and statistical analyses are performed to determine the effects of the proposed filtration process on raw data. Finally, an evaluation of the overall benefits of data filtration on raw GPS data and present potential areas for continued research is presented.« less
NASA Astrophysics Data System (ADS)
Crossley, D. J.; Borsa, A. A.; Murphy, T.
2017-12-01
We continue the analysis of superconducting gravimeter (SG) and GPS data at Apache Point Observatory (APO) as part of the astrophysical effort to reduce LLR errors to the mm level. With 8 years of data accumulated, the main impediment to getting benefit from the SG data is the assessment of the hydrology signal that arises mainly from the attraction of local water masses close to the site. Traditional SG processing attempts to remove as much signal as possible from the loading and attraction contributions, but we are limited at APO because here is no hydrology ground truth. Nevertheless, we produce a gravity residual that corresponds to some extent with the rather noisy vertical GPS data from Plate Boundary Site PB07 close to Sunspot observatory 2 km from APO. The main goal of this paper, apart from updating the gravity and GPS correction using recent models, is to construct simulated SG and GPS time series from the synthetic source functions - ground uplift, hydrology attraction and loading - and to perform an inversion to see what can be recovered of the vertical ground motion. The simulation will also include a first look at the effect of this synthetic local data on the current Planetary Ephemeris Program solution for the lunar distance.
Simultaneous total electron content and all-sky camera measurements of an auroral arc
NASA Astrophysics Data System (ADS)
Kintner, P. M.; Kil, H.; Deehr, C.; Schuck, P.
2002-07-01
We present an example of Global Positioning System (GPS) derived total electron content (TEC) and all-sky camera (ASC) images that show increases of TEC by ~10 × 1016 electrons m-2 (10 TEC units) occurring simultaneously with auroral light in ASC images. The TEC example appears to be an E region density enhancement produced by two discrete auroral arcs occurring in the late morning auroral oval at 1000 LT. This suggests that GPS signal TEC measurements can be used to detect individual auroral arcs and that individual discrete auroral arcs are responsible for some high-latitude phase scintillations. The specific auroral feature detected was a poleward moving auroral form believed to occur in the polar cap where the ionosphere is convecting antisunward. The magnitude of the rate of change of TEC (dTEC/dt) is comparable to that previously reported. However, the timescales associated with the event, the order of 1 min, suggest that the data sampling technique commonly used by chain GPS TEC receivers (averaging and time decimation) will undersample E region TEC perturbations produced by active auroral displays. The localized nature of this example implies that L1 ranging errors of at least 1.6 m will be introduced by auroral arcs into systems relying on differential GPS for navigation or augmentation. Although the TEC and auroral arcs presented herein occurred in the late morning auroral oval, we expect that the effects of discrete auroral arcs on GPS TEC and subsequent ranging errors should occur at all local times. Furthermore, GPS receivers can be used to detect individual discrete arcs.
New approaches for tracking earth orbiters using modified GPS ground receivers
NASA Technical Reports Server (NTRS)
Lichten, S. M.; Young, L. E.; Nandi, S.; Haines, B. J.; Dunn, C. E.; Edwards, C. D.
1993-01-01
A Global Positioning System (GPS) flight receiver provides a means to precisely determine orbits for satellites in low to moderate altitude orbits. Above a 5000-km altitude, however, relatively few GPS satellites are visible. New approaches to orbit determination for satellites at higher altitudes could reduce DSN antenna time needed to provide navigation and orbit determination support to future missions. Modification of GPS ground receivers enables a beacon from the orbiter to be tracked simultaneously with GPS data. The orbit accuracy expected from this GPS-like tracking (GLT) technique is expected to be in the range of a few meters or better for altitudes up to 100,000 km with a global ground network. For geosynchronous satellites, however, there are unique challenges due to geometrical limitations and to the lack of strong dynamical signature in tracking data. We examine two approaches for tracking the Tracking and Data Relay Satellite System (TDRSS) geostationary orbiters. One uses GLT with a global network; the other relies on a small 'connected element' ground network with a distributed clock for short-baseline differential carrier phase (SB Delta Phi). We describe an experiment planned for late 1993, which will combine aspects of both GLT and SB Delta Phi, to demonstrate a new approach for tracking the Tracking and Data Relay Satellites (TDRSs) that offers a number of operationally convenient and attractive features. The TDRS demonstration will be in effect a proof-of-concept experiment for a new approach to tracking spacecraft which could be applied more generally to deep-space as well as near-Earth regimes.
A drifting GPS buoy for retrieving effective riverbed bathymetry
NASA Astrophysics Data System (ADS)
Hostache, R.; Matgen, P.; Giustarini, L.; Teferle, F. N.; Tailliez, C.; Iffly, J.-F.; Corato, G.
2015-01-01
Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation systems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation measurements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were generated assuming a 30 cm average error of Water Surface Elevation (WSE) measurements. By assimilating the synthetic observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good agreement with the synthetic "truth", exhibiting an RMSE of 27 cm.
A method of estimating GPS instrumental biases with a convolution algorithm
NASA Astrophysics Data System (ADS)
Li, Qi; Ma, Guanyi; Lu, Weijun; Wan, Qingtao; Fan, Jiangtao; Wang, Xiaolan; Li, Jinghua; Li, Changhua
2018-03-01
This paper presents a method of deriving the instrumental differential code biases (DCBs) of GPS satellites and dual frequency receivers. Considering that the total electron content (TEC) varies smoothly over a small area, one ionospheric pierce point (IPP) and four more nearby IPPs were selected to build an equation with a convolution algorithm. In addition, unknown DCB parameters were arranged into a set of equations with GPS observations in a day unit by assuming that DCBs do not vary within a day. Then, the DCBs of satellites and receivers were determined by solving the equation set with the least-squares fitting technique. The performance of this method is examined by applying it to 361 days in 2014 using the observation data from 1311 GPS Earth Observation Network (GEONET) receivers. The result was crosswise-compared with the DCB estimated by the mesh method and the IONEX products from the Center for Orbit Determination in Europe (CODE). The DCB values derived by this method agree with those of the mesh method and the CODE products, with biases of 0.091 ns and 0.321 ns, respectively. The convolution method's accuracy and stability were quite good and showed improvements over the mesh method.
NASA Astrophysics Data System (ADS)
Villiger, Arturo; Schaer, Stefan; Dach, Rolf; Prange, Lars; Jäggi, Adrian
2017-04-01
It is common to handle code biases in the Global Navigation Satellite System (GNSS) data analysis as conventional differential code biases (DCBs): P1-C1, P1-P2, and P2-C2. Due to the increasing number of signals and systems in conjunction with various tracking modes for the different signals (as defined in RINEX3 format), the number of DCBs would increase drastically and the bookkeeping becomes almost unbearable. The Center for Orbit Determination in Europe (CODE) has thus changed its processing scheme to observable-specific signal biases (OSB). This means that for each observation involved all related satellite and receiver biases are considered. The OSB contributions from various ionosphere analyses (geometry-free linear combination) using different observables and frequencies and from clock analyses (ionosphere-free linear combination) are then combined on normal equation level. By this, one consistent set of OSB values per satellite and receiver can be obtained that contains all information needed for GNSS-related processing. This advanced procedure of code bias handling is now also applied to the IGS (International GNSS Service) MGEX (Multi-GNSS Experiment) procedure at CODE. Results for the biases from the legacy IGS solution as well as the CODE MGEX processing (considering GPS, GLONASS, Galileo, BeiDou, and QZSS) are presented. The consistency with the traditional method is confirmed and the new results are discussed regarding the long-term stability. When processing code data, it is essential to know the true observable types in order to correct for the associated biases. CODE has been verifying the receiver tracking technologies for GPS based on estimated DCB multipliers (for the RINEX 2 case). With the change to OSB, the original verification approach was extended to search for the best fitting observable types based on known OSB values. In essence, a multiplier parameter is estimated for each involved GNSS observable type. This implies that we could recover, for receivers tracking a combination of signals, even the factors of these combinations. The verification of the observable types is crucial to identify the correct observable types of RINEX 2 data (which does not contain the signal modulation in comparison to RINEX 3). The correct information of the used observable types is essential for precise point positioning (PPP) applications and GNSS ambiguity resolution. Multi-GNSS OSBs and verified receiver tracking modes are essential to get best possible multi-GNSS solutions for geodynamic purposes and other applications.
Cutting through the Paleo hype: The evidence for the Palaeolithic diet.
Pitt, Christopher E
2016-01-01
General practitioners (GPs) are commonly asked about popular diets. The Palaeolithic diet is both highly popular and controversial. This article reviews the published literature to establish the evidence for and against the Palaeolithic diet. The Palaeolithic diet remains controversial because of exaggerated claims for it by wellness bloggers and celebrity chefs, and the contentious evolutionary discordance hypothesis on which it is based. However, a number of underpowered trials have suggested there may be some benefit to the Palaeolithic diet, especially in weight loss and the correction of metabolic dysfunction. Further research is warranted to test these early findings. GPs should caution patients who are on the Palaeolithic diet about adequate calcium intake, especially those at higher risk of osteoporosis.
[Regional network for patients with dementia--carrying out Kumamoto model for dementia].
Ikeda, Manabu
2014-01-01
The Japanese government has tried to establish 150 Medical Centers for Dementia (MCDs) since 2008 to overcome the dementia medical service shortage. MCDs are required to provide special medical services for dementia and connect with other community resources in order to contribute to building a comprehensive support network for demented patients. The main specific needs are as follows: 1) special medical consultation; 2) differential diagnosis and early intervention; 3) medical treatment for the acute stage of BPSD; 4) corresponding to serious physical complications of dementia; 5) education for general physicians (GPs) and other community professionals. According to the population rate, two dementia medical centers were planned in Kumamoto Prefecture. However, it seemed to be too few to cover the vast Kumamoto area. Therefore, the local government and I proposed to the Japanese government that we build up networks that consist of one core MCD in our university hospital and several regional MCDs in local mental hospitals. The local government selected seven (nine at present) centers according to the area balance and condition of equipment. The Japanese government has recommended and funded such networks between core and regional centers since 2010. The main roles of the core centers are as follows: 1) early diagnosis such as Mild cognitive impairment, very mild Alzheimer's disease, Dementia with Lewy bodies, and Frontotemporal lobar degeneration using comprehensive neuropsychological batteries and neuroimagings, such as MRI and SPECT scans; 2) education for GPs; 3) training for young consultants. The core center opens case conferences at least every one or two months for all staff of regional centers to maintain the quality of all centers and give training opportunities for standardized international assessment scales. While the main roles of the regional centers are differential diagnosis, intervention for BPSD, and management of general medical problems using local networks with general hospitals and GPs, and organizing local networks for dementia with GPs and care staff In short, the regional centers take responsibility for ordinal clinical work for dementia. To construct a more extensive network, each regional center must hold regional case conferences and lectures on dementia for care staff and GPs sharing knowledge and skills acquired from case conferences by the core center.
[Gallbladder polyps: how should they be treated and when?].
Matos, Ana Sofia Bento de; Baptista, Hamilton Neves; Pinheiro, Carlos; Martinho, Fernando
2010-01-01
The objective of this study was to determine the correct therapeutic management for patients with gallbladder polyps (GPs), what type of surveillance should be employed and how to differentiate between benign and malignant polyps in addition to also to providing reassurance in cases of "cancerophobia". This was a 5-years retrospective study. The study was conducted at a Surgery Department at the Hospitais da Universidade de Coimbra. We analyzed all patients operated on at the Surgery Service II from January 2003 to December 2007 who had had a preoperative diagnosis of GP. Clinicopathological correlations were traced for all patients. The following were analyzed: demographic data, clinical presentation, principal symptoms, associated pathologies, supplementary tests and diagnoses. We studied 93 patients, 91 of whom had benign polyps and two of whom had malignant polyps. Of the 91 benign polyps, 73 (78.5%) were cholesterol polyps, 14 (15%) were hyperplastic and two (2.2%) were adenomas. Two (2.2%) patients had malignant polyps, both adenogallbladder carcinomas. The mean diameter of benign polyps was 6 mm and 40 (43%) patients had multiple lesions. The mean diameter of malignant and premalignant polyps taken together was 18.8 mm, all were single polyps and the mean age of this patient subset was 57.7 years. It was concluded that the surgical option for GPs is cholecystectomy and that this should only be undertaken in cases where there are clinical signs of GP; polyps with diameters greater than 10 mm; fast-growing polyps; sessile polyps or wide-based polyps; polyps with long pedicles; patient aged over 50; concurrent gallstones; polyps of the gallbladder infundibulum or abnormal gallbladder wall ultrasound.
LF/MF Propagation Modeling for D-Region Ionospheric Remote Sensing
NASA Astrophysics Data System (ADS)
Higginson-Rollins, M. A.; Cohen, M.
2017-12-01
The D-region of the ionosphere is highly inaccessible because it is too high for continuous in-situ measurement techniques and too low for satellite measurements. Very-Low Frequency (VLF) signals have been developed and used as a diagnostic tool for this region of the ionosphere and are favorable because of the low ionospheric attenuation rates, allowing global propagation - but this also creates an ill-posed multi-mode propagation problem. As an alternative, Low-Frequency (LF) and Medium-Frequency (MF) signals could be used as a diagnostic tool of the D-region. These higher frequencies have a higher attenuation rate, and thus only a few modes propagate in the Earth-ionosphere waveguide, creating a much simpler problem to analyze. The United States Coast Guard (USCG) operates a national network of radio transmitters that serve as an enhancement to the Global Positioning System (GPS). This network is termed Differential Global Positioning System (DGPS) and uses fixed reference stations as a method of determining the error in received GPS satellite signals and transmits the correction value using low frequency and medium frequency radio signals between 285 kHz and 385 kHz. Using sensitive receivers, we can detect this signal many hundreds of km away. We present modeling of the propagation of these transmitters' signals for use as a diagnostic tool for characterizing the D-region. The Finite-Difference Time-Domain (FDTD) method is implemented to model the groundwave radiated by the DGPS beacons and account for environmental effects, such as changing soil conductivities and terrain. A full wave numerical solver is used to model the skywave component of the propagating signal and specifically to ascertain the reflection coefficients for various ionospheric conditions. Preliminary results are shown and discussed, and comparisons with collected data are presented.
The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning
NASA Astrophysics Data System (ADS)
Guo, Fei; Li, Xingxing; Zhang, Xiaohong; Wang, Jinling
2017-06-01
In response to the changing world of GNSS, the International GNSS Service (IGS) has initiated the Multi-GNSS Experiment (MGEX). As part of the MGEX project, initial precise orbit and clock products have been released for public use, which are the key prerequisites for multi-GNSS precise point positioning (PPP). In particular, precise orbits and clocks at intervals of 5 min and 30 s are presently available for the new emerging systems. This paper investigates the benefits of multi-GNSS for PPP. Firstly, orbit and clock consistency tests (between different providers) were performed for GPS, GLONASS, Galileo and BeiDou. In general, the differences of GPS are, respectively, 1.0-1.5 cm for orbit and 0.1 ns for clock. The consistency of GLONASS is worse than GPS by a factor of 2-3, i.e. 2-4 cm for orbit and 0.2 ns for clock. However, the corresponding differences of Galileo and BeiDou are significantly larger than those of GPS and GLONASS, particularly for the BeiDou GEO satellites. Galileo as well as BeiDou IGSO/MEO products have a consistency of 0.1-0.2 m for orbit, and 0.2-0.3 ns for clock. As to BeiDou GEO satellites, the difference of their orbits reaches 3-4 m in along-track, 0.5-0.6 m in cross-track, and 0.2-0.3 m in the radial directions, together with an average RMS of 0.6 ns for clock. Furthermore, the short-term stability of multi-GNSS clocks was analyzed by Allan deviation. Results show that clock stability of the onboard GNSS is highly dependent on the satellites generations, operational lifetime, orbit types, and frequency standards. Finally, kinematic PPP tests were conducted to investigate the contribution of multi-GNSS and higher rate clock corrections. As expected, the positioning accuracy as well as convergence speed benefit from the fusion of multi-GNSS and higher rate of precise clock corrections. The multi-GNSS PPP improves the positioning accuracy by 10-20%, 40-60%, and 60-80% relative to the GPS-, GLONASS-, and BeiDou-only PPP. The usage of 30 s interval clock products decreases interpolation errors, and the positioning accuracy is improved by an average of 30-50% for the all the cases except for the BeiDou-only PPP.
Insights into the dynamics of Etna volcano from 20-year time span microgravity and GPS observations
NASA Astrophysics Data System (ADS)
Bonforte, Alessandro; Fanizza, Giovanni; Greco, Filippo; Matera, Alfredo; Sulpizio, Roberto
2016-04-01
A common ground deformation and microgravity array of benchmarks lies on the southern slope of Mt. Etna volcano and is routinely measured by GPS and relative gravimetry methods. The array was installed for monitoring the ground motion and underground mass changes along the southern rift of the volcano and data are usually processed and interpreted independently. The benchmarks have been installed mainly along a main road crossing the southern side of the volcano with an E-W direction and reaching 2000 m of altitude. The gravity array covers the entire path of the road, while the ground deformation one only the upper one, due to the woods at lower altitude preventing good GPS measurements. Furthermore, microgravity surveys are usually carried out more frequently with respect to the GPS ones. In this work, an integrated analysis of microgravity and ground deformation is performed over a 20-year time span (1994-2014). Gravity variations have been first corrected for the free-air effect using the GPS observed vertical deformation and the theoretical vertical gravity gradient (-308.6 μGal/m). The free-air corrected gravity changes were then reduced from the high frequency variations (noise) and the seasonal fluctuations, mainly due to water-table fluctuations. This long-term dataset constitutes a unique opportunity to examine the behavior of Etna in a period in which the volcano exhibited different styles of activity characterized by recharging phases, flank eruptions and fountaining episodes. The gravity and deformation data allow investigating the response of the volcano in a wider perspective providing insights into the definition of its dynamic behavior and posing the basis to track the unrest evolution and to forecast the style of the eruption. The joint analysis highlights common periods, in which the signals underwent contemporaneous changes occurring mainly in the central and eastern stations. On the other hand, no significant changes in the behavior of deformation and gravity signals have been observed in the westernmost stations. Specifically, we observed at least four periods characterized by different correlation between the two time series. Indeed, the integrated analysis of the spatio-temporal variations of the gravity and the ground deformation data highlights different volcanic processes controlling the dynamical behavior of Etna volcano in this sector.
Magnetometer-enhanced personal locator for tunnels and GPS-denied outdoor environments
NASA Astrophysics Data System (ADS)
Kwanmuang, Surat; Ojeda, Lauro; Borenstein, Johann
2011-06-01
This paper describes recent advances with our earlier developed Personal Dead-reckoning (PDR) system for GPS-denied environments. The PDR system uses a foot-mounted Inertial Measurement Unit (IMU) that also houses a three axismagnetometer. In earlier work we developed methods for correcting the drift errors in the accelerometers, thereby allowing very accurate measurements of distance traveled. In addition, we developed a powerful heuristic method for correcting heading errors caused by gyro drift. The heuristics exploit the rectilinear features found in almost all manmade structures and therefore limit this technology to indoor use only. Most recently we integrated a three-axis magnetometer with the IMU, using a Kalman Filter. While it is well known that the ubiquitous magnetic disturbances found in most modern buildings render magnetometers almost completely useless indoors, these sensors are nonetheless very effective in pristine outdoor environments as well as in some tunnels and caves. The present paper describes the integrated magnetometer/IMU system and presents detailed experimental results. Specifically, the paper reports results of an objective test conducted by Firefighters of California's CAL-FIRE. In this particular test, two firefighters in full operational gear and one civilian hiked up a two-mile long mountain trail over rocky, sometimes steeply inclined terrain, each wearing one of our magnetometer-enhanced PDR systems but not using any GPS. During the hour-long hike the average position error was about 20 meters and the maximum error was less than 45 meters, which is about 1.4% of distance traveled for all three PDR systems.
Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun
2018-02-01
Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.
Liu, Wanke; Wu, Mingkui; Hu, Jie; Wu, Yun
2018-01-01
Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data. PMID:29389879
Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun
2008-10-21
The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the DInSAR in studying the Chi-Chi earthquake. Another advantage of the method is that the displacement in the hanging wall of the fault that is un-measurable with DInSAR due to severe signal decorrelation can almost completely retrieved in this research. This makes the whole co-seismic displacements field clearly visible and the location of the rupture identifiable. Using displacements measured at 15 independent GPS stations for validation, we found that the RMS values of the differences between the two types of results were 6.9 cm and 5.7 cm respectively in the azimuth and the range directions.
Characterizing and Controlling the Effects of Differential Drag on Satellite Formations
2006-03-01
known as Hill’s equations or the Clohessy - Wiltshire equations (Chlohessy and Wiltshire , 1960) to examine satellite formation design. They examined...Flying,” Proceedings of the ION-GPS-97 Conference, (September 1997). Clohessy W.H. and R.S. Wiltshire . “Terminal Guidance System for Satellite
47 CFR 87.171 - Class of station symbols.
Code of Federal Regulations, 2014 CFR
2014-10-01
... systems AXO—Aeronautical operational fixed DGP—Differential GPS DLT—Aircraft data link land test FA...—Radionavigation land test RLW—Microwave landing system RNV—Radio Navigation Land/DME RPC—Ramp Control TJ—Aircraft earth station in the Aeronautical Mobile-Satellite Service UAT—Universal Access Transceiver [53 FR 28940...
Song, Bing; Fan, Yong; He, Wenyin; Zhu, Detu; Niu, Xiaohua; Wang, Ding; Ou, Zhanhui; Luo, Min; Sun, Xiaofang
2015-05-01
The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.
Determinants of general practitioners' wages in England.
Morris, Stephen; Goudie, Rosalind; Sutton, Matt; Gravelle, Hugh; Elliott, Robert; Hole, Arne Risa; Ma, Ada; Sibbald, Bonnie; Skåtun, Diane
2011-02-01
We analyse the determinants of annual net income and wages (net income/hours) of general practitioners (GPs) using data for 2271 GPs in England recorded during Autumn 2008. The average GP had an annual net income of £97,500 and worked 43 h per week. The mean wage was £51 per h. Net income and wages depended on gender, experience, list size, partnership size, whether or not the GP worked in a dispensing practice, whether they were salaried of self-employed, whether they worked in a practice with a nationally or locally negotiated contract, and the characteristics of the local population (proportion from ethnic minorities, rurality, and income deprivation). The findings have implications for pay discrimination by GP gender and ethnicity, GP preferences for partnership size, incentives for competition for patients, and compensating differentials for local population characteristics. They also shed light on the attractiveness to GPs in England of locally negotiated (personal medical services) versus nationally negotiated (general medical services) contracts.
NASA Astrophysics Data System (ADS)
Nardo, A.; Li, B.; Teunissen, P. J. G.
2016-01-01
Integer Ambiguity Resolution (IAR) is the key to fast and precise GNSS positioning. The proper diagnostic metric for successful IAR is provided by the ambiguity success rate being the probability of correct integer estimation. In this contribution we analyse the performance of different GPS+Galileo models in terms of number of epochs needed to reach a pre-determined success rate, for various ground and space-based applications. The simulation-based controlled model environment enables us to gain insight into the factors contributing to the ambiguity resolution strength of the different GPS+Galileo models. Different scenarios of modernized GPS+Galileo are studied, encompassing the long baseline ground case as well as the medium dynamics case (airplane) and the space-based Low Earth Orbiter (LEO) case. In our analyses of these models the capabilities of partial ambiguity resolution (PAR) are demonstrated and compared to the limitations of full ambiguity resolution (FAR). The results show that PAR is generally a more efficient way than FAR to reduce the time needed to achieve centimetre-level positioning precision. For long single baselines, PAR can achieve time reductions of fifty percent to achieve such precision levels, while for multiple baselines it even becomes more effective, reaching reductions up to eighty percent for four station networks. For a LEO, the rapidly changing observation geometry does not even allow FAR, while PAR is then still possible for both dual- and triple-frequency scenarios. With the triple-frequency GPS+Galileo model the availability of precise positioning improves by fifteen percent with respect to the dual-frequency scenario.
GPs views and understanding of PSA testing, screening and early detection; survey.
Sutton, J; Melia, J; Kirby, M; Graffy, J; Moss, S
2016-05-01
There is currently no national prostate cancer screening programme in the UK. However, patients 50 years and older are entitled to a prostate specific antigen (PSA) test, if informed on the advantages and disadvantages of testing and their risk of cancer. The Prostate Cancer Risk Management Programme (PCRMP) provides this guidance. The aim of this study was to access GPs' views and understanding of PSA testing, prostate cancer screening and early detection. A total of 708 questionnaires were returned by GPs across two English regions in 2013 and the GP questionnaire responses were quantitatively analysed. In the 699 completed questionnaires, the majority of GPs were well informed about PSA testing, screening and early detection. Only 32% used guidelines for referral, 14% knew all age-specific PSA referral levels, 71% that Black men have a higher prostate cancer risk than White men (22% correctly answered threefold increase) and 82% that family history is a risk factor. A further 78% thought electronic prompts during consultation would encourage PCRMP guideline usage and 75% had never been offered a PSA test and prostate cancer educational course, of which 73% would like to attend a course. Only 23% were aware of the latest PSA screening evidence and 94% would like an update. Participating GPs seem to be well informed but need more information and tools to help follow recommended guidance. In particular, increased awareness of PCRMP guidelines especially by automated methods, further educational courses and evidence updates would be beneficial. © 2016 John Wiley & Sons Ltd.
Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts
Page, M.T.; Custodio, S.; Archuleta, R.J.; Carlson, J.M.
2009-01-01
We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0 Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which provides for a truly coseismic data set that can be used to infer the static slip field. We find that the resolution of our inverted slip model is poor at depth and near the edges of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the model resolution in the static field inversion leads to artifacts in poorly resolved areas of the fault plane. These artifacts look qualitatively similar to asperities commonly seen in the final slip models of earthquake source inversions, but in this inversion they are caused by a surplus of free parameters. The location of the artifacts depends on the station geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding of model parameters on the fault can remove these artifacts from the inversion. We generate a nonuniform grid with a grid spacing that matches the local resolution length on the fault and show that it outperforms uniform grids, which either generate spurious structure in poorly resolved regions or lose recoverable information in well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly resolved areas of the fault while recovering small-scale structure near the surface. Finally, we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze the errors in the final model. Copyright 2009 by the American Geophysical Union.
A method for remote sounding of a bottom relief of water objects with using GPS
NASA Astrophysics Data System (ADS)
Mamontova, L. S.
2014-12-01
The no-fly automated system of small rivers' depth's measurement which is based on a combination of a differential method GPS-definition of the pro-measured vessel's coordinates both the method of depth's measurement with sonic depth finder and the method of the vessel's management was examined in this article.On the central station the digital card with a relief for a pro-measured zone of the reservoir is formed and the position of a pro-measured vessel on the tacks is controlled thanks to the coordinates of a pro-measured vessel and depth's measurements with sonic depth finder.The offered system allows to raise the level of depth's pro-measured works.
Helicopter approach capability using the differential global positioning system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kaufmann, David N.
1993-01-01
The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the differential mode (DGPS) to provide high accuracy, precision navigation, and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. Both standard (3 deg) and steep (6 deg and 9 deg) glideslope straight-in approaches were flown. DGPS positioning accuracy based on a time history analysis of the entire approach was 0.2 m (mean) +/- 1.8 m (2 sigma) laterally and -2.0 m (mean) +/- 3.5 m (2 sigma) vertically for 3 deg glideslope approaches, -0.1 m (mean) +/- 1.5 m (2 sigma) laterally and -1.1 m (mean) +/- 3.5 m (2 sigma) vertically for 6 deg glideslope approaches and 0.2 m (mean) +/- 1.3 m (2 sigma) laterally and -1.0 m (mean) +/- 2.8 m (2 sigma) vertically for 9 deg glideslope approaches. DGPS positioning accuracy at the 200 ft decision height (DH) on a standard 3 deg slideslope approach was 0.3 m (mean) +/- 1.5 m (2 sigma) laterally and -2.3 m (mean) +/- 1.6 m (2 sigma) vertically. These errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.
Helicopter approach capability using the differential Global Positioning System
NASA Technical Reports Server (NTRS)
Kaufmann, David N.
1993-01-01
The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. Both standard (3 degrees) and steep (6 degrees and 9 degrees) glidescope straight-in approaches were flown. DGPS positioning accuracy based on a time history analysis of the entire approach was 0.2 m (mean) +/- 1.8 m (2 sigma) laterally and -2.0 m (mean) +/- 3.5 m (2 sigma) vertically for 3 degree glidescope approaches, -0.1 m (mean) +/- 1.5 m (2 sigma) laterally and -1.1 m (mean) +/- 3.5 m (2 sigma) vertically for 6 degree glidescope approaches, and 0.2 m (mean) +/- 1.3 m (2 sigma) laterally and -1.0 m (mean) +/- 2.8 (2 sigma) vertically for 9 degree glidescope approaches. DGPS positioning accuracy at the 200 ft decision height on a standard 3 degree glidescope approach was 0.3 m (mean) +/- 1.5 m (2 sigma) laterally and -2.3 m (mean) +/- 1.6 m (2 sigma) vertically. These errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization Category 1 lateral and vertical accuracy requirements.
Geodetic deformation monitoring at Pendidikan Diponegoro Dam
NASA Astrophysics Data System (ADS)
Yuwono, Bambang Darmo; Awaluddin, Moehammad; Yusuf, M. A.; Fadillah, Rizki
2017-07-01
Deformation monitoring is one indicator to assess the feasibility of Dam. In order to get the correct result of the deformation, it is necessary to determine appropriate deformation monitoring network and the observation data should be analyse and evaluated carefully. Measurement and analysis of deformation requires relatively accurate data and the precision is high enough, one of the observation method that used is GPS (Global Positioning System). The research was conducted at Pendidikan Undip Dams is Dam which is located in Tembang. Diponegoro Dam was built in 2013 and a volume of 50.86 m3 of water, inundation normal width of up to 13,500 m2. The main purpose of these building is not only for drainage but also for education and micro hydro power plant etc. The main goal of this reasearch was to monitor and analyze the deformation at Pendidikan Undip Dam and to determaine whether GPS measurement could meet accuracy requirement for dam deformation measurements. Measurements were made 2 times over 2 years, 2015 and 2016 using dual frequency GPS receivers with static methods and processed by Scientific Software GAMIT 10.6
Breen, Michael S.; Long, Thomas C.; Schultz, Bradley D.; Crooks, James; Breen, Miyuki; Langstaff, John E.; Isaacs, Kristin K.; Tan, Yu-Mei; Williams, Ronald W.; Cao, Ye; Geller, Andrew M.; Devlin, Robert B.; Batterman, Stuart A.; Buckley, Timothy J.
2014-01-01
A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time–location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. PMID:24619294
Pointing Knowledge for SPARCLE and Space-Based Doppler Wind Lidars in General
NASA Technical Reports Server (NTRS)
Emmitt, G. D.; Miller, T.; Spiers, G.
1999-01-01
The SPAce Readiness Coherent Lidar Experiment (SPARCLE) will fly on a space shuttle to demonstrate the use of a coherent Doppler wind lidar to accurately measure global tropospheric winds. To achieve the LOS (Line of Sight) accuracy goal of approx. m/s, the lidar system must be able to account for the orbiter's velocity (approx. 7750 m/s) and the rotational component of the earth's surface motion (approx. 450 m/s). For SPARCLE this requires knowledge of the attitude (roll, pitch and yaw) of the laser beam axis within an accuracy of 80 microradians. (approx. 15 arcsec). Since SPARCLE can not use a dedicated star tracker from its earth-viewing orbiter bay location, a dedicated GPS/INS (Global Positioning System/Inertial Navigation System) will be attached to the lidar instrument rack. Since even the GPS/INS has unacceptable drifts in attitude information, the SPARCLE team has developed a way to periodically scan the instrument itself to obtain less than 10 microradian (2 arcsec) attitude knowledge accuracy that can then be used to correct the GPS/INS output on a 30 minute basis.
NASA Technical Reports Server (NTRS)
Mccaskill, T. B.; Buisson, J. A.; Reid, W. G.
1984-01-01
An on-orbit frequency stability performance analysis of the GPS NAVSTAR-1 quartz clock and the NAVSTARs-6 and -8 rubidium clocks is presented. The clock offsets were obtained from measurements taken at the GPS monitor stations which use high performance cesium standards as a reference. Clock performance is characterized through the use of the Allan variance, which is evaluated for sample times of 15 minutes to two hours, and from one day to 10 days. The quartz and rubidium clocks' offsets were corrected for aging rate before computing the frequency stability. The effect of small errors in aging rate is presented for the NAVSTAR-8 rubidium clock's stability analysis. The analysis includes presentation of time and frequency residuals with respect to linear and quadratic models, which aid in obtaining aging rate values and identifying systematic and random effects. The frequency stability values were further processed with a time domain noise process analysis, which is used to classify random noise process and modulation type.
Rotman, Oren Moshe; Weiss, Dar; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel
2015-09-18
High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes. The purpose of the present study was to test the feasibility of this correction method inside compliant tubes, which effectively simulate arteries. Two tubes with varying compliance were tested under dynamic flow and pressure conditions to cover the physiological range of radial distensibility in coronary arteries. A third, compliant model, with a 70% stenosis severity was additionally tested. Differential pressure measurements were acquired over a 3 cm tube length using a fluid-filled double-lumen catheter, and were corrected using the proposed CMP correction method. Validation of the corrected differential pressure signals was performed by comparison to differential pressure recordings taken via a direct connection to the compliant tubes, and by comparison to predicted differential pressure readings of matching fluid-structure interaction (FSI) computational simulations. The results show excellent agreement between the experimentally acquired and computationally determined differential pressure signals. This validates the application of the CMP correction method in compliant tubes of the physiological range for up to intermediate size stenosis severity of 70%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saving Space and Time: The Tractor That Einstein Built
NASA Technical Reports Server (NTRS)
2006-01-01
In 1984, NASA initiated the Gravity Probe B (GP-B) program to test two unverified predictions of Albert Einstein s theory of general relativity, hypotheses about the ways space, time, light, and gravity relate to each other. To test these predictions, the Space Agency and researchers at Stanford University developed an experiment that would check, with extreme precision, tiny changes in the spin direction of four gyroscopes contained in an Earth satellite orbiting at a 400-mile altitude directly over the Earth s poles. When the program first began, the researchers assessed using Global Positioning System (GPS) technology to control the attitude of the GP-B spacecraft accurately. At that time, the best GPS receivers could only provide accuracy to nearly 1 meter, but the GP-B spacecraft required a system 100 times more accurate. To address this concern, researchers at Stanford designed high-performance, attitude-determining hardware that used GPS signals, perfecting a high-precision form of GPS called Carrier-Phase Differential GPS that could provide continuous real-time position, velocity, time, and attitude sensor information for all axes of a vehicle. The researchers came to the realization that controlling the GP-B spacecraft with this new system was essentially no different than controlling an airplane. Their thinking took a new direction: If this technology proved successful, the airlines and the Federal Aviation Administration (FAA) were ready commercial markets. They set out to test the new technology, the "Integrity Beacon Landing System," using it to automatically land a commercial Boeing 737 over 100 times successfully through Real-Time Kinematic (RTK) GPS technology. The thinking of the researchers shifted again, from automatically landing aircraft, to automating precision farming and construction equipment.
Ungar, Eugene D.; Schoenbaum, Iris; Henkin, Zalmen; Dolev, Amit; Yehuda, Yehuda; Brosh, Arieh
2011-01-01
The advent of the Global Positioning System (GPS) has transformed our ability to track livestock on rangelands. However, GPS data use would be greatly enhanced if we could also infer the activity timeline of an animal. We tested how well animal activity could be inferred from data provided by Lotek GPS collars, alone or in conjunction with IceRobotics IceTag pedometers. The collars provide motion and head position data, as well as location. The pedometers count steps, measure activity levels, and differentiate between standing and lying positions. We gathered synchronized data at 5-min resolution, from GPS collars, pedometers, and human observers, for free-grazing cattle (n = 9) at the Hatal Research Station in northern Israel. Equations for inferring activity during 5-min intervals (n = 1,475), classified as Graze, Rest (or Lie and Stand separately), and Travel were derived by discriminant and partition (classification tree) analysis of data from each device separately and from both together. When activity was classified as Graze, Rest and Travel, the lowest overall misclassification rate (10%) was obtained when data from both devices together were subjected to partition analysis; separate misclassification rates were 8, 12, and 3% for Graze, Rest and Travel, respectively. When Rest was subdivided into Lie and Stand, the lowest overall misclassification rate (10%) was again obtained when data from both devices together were subjected to partition analysis; misclassification rates were 6, 1, 26, and 17% for Graze, Lie, Stand, and Travel, respectively. The primary problem was confusion between Rest (or Stand) and Graze. Overall, the combination of Lotek GPS collars with IceRobotics IceTag pedometers was found superior to either device alone in inferring animal activity. PMID:22346582
Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio
2016-12-17
Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.
NASA Technical Reports Server (NTRS)
Rundle, John
1998-01-01
A consortium of investigators from several universities and Government agencies have conducted a series of aircraft topographic surveys over the Long Valley caldera, California. The region has a geologic history of extensive volcanism, and its central dome has recently been undergoing resurgent uplift episodes of up to 4 cm per year, a deformation rate that is still continuing. These surveys were conducted from the NASA WFF T39 jet aircraft, outfitted with a nadir-profiling altimetric laser (ATLAS), a GPS guidance system for in-flight precision navigation, two P-code GPS receivers, a Litton LTN92 inertial unit for attitude determination, and both video and still-frame aerial cameras. In addition, two base-station GPS receivers were deployed for post-flight differential navigation, complementing the permanent GPS station operated on the resurgent dome by JPL, and a kinematic automobile survey of roads crossing the area was conducted, thereby complementing the JPL kinematic GPS surveys of some of the same roads. Precision flying yielded multiple profiles along nearly identical paths, including crossing profiles over selected locations within the caidera and calibration flights over Mono Lake, and Lake Crowley. Data from the most recent survey in 1995 are at this time still being reduced, but the standard error of the mean is very low (< 3 mm), due to the high number of crossover points. We thus intend to evaluate the technique for measuring systematic changes in the dome height over time.
2008-09-04
mospheric correction. volume 3756, pages 348–353. SPIE, 1999. Daniel Birkenheuer and Seth Gutman. A Comparison of GOES Moisture-Derived Product and GPS...pages 417–428. SPIE, 2001. E. J. Ientilucci and S. D. Brown. Advances in wide-area hyperspectral image sim- ulation. In W. R. Watkins , D. Clement
76 FR 40797 - Establishment of Class E Airspace; Lincoln City, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
...This action establishes Class E airspace at Lincoln City, OR, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at Samaritan North Lincoln Hospital Heliport. This action also corrects the name of the city were the Heliport is located. This improves the safety and management of Instrument Flight Rules (IFR) operations.
Measurement and Interpretation of Crustal Deformation Rates Associated with Postglacial Rebound
NASA Technical Reports Server (NTRS)
Davis, James L.
1998-01-01
This project involves obtaining GPS measurements in Scandinavia, and using the measurements to estimate the viscosity profile of the Earth's mantle and to correct tide-gauge measurements for the rebound effect. Many aspects of this project have been reported in the literature (see Section III). In Section II, we report on the primary geodetic results from this project.
NASA Technical Reports Server (NTRS)
Komjathy, Attila; Sparks, Lawrence; Mannucci, Anthony J.; Pi, Xiaoqing
2003-01-01
The Ionospheric correction algorithms have been characterized extensively for the mid-latitude region of the ionosphere where benign conditions usually exist. The United States Federal Aviation Administration's (FAA) Wide Area Augmentation System (WAAS) for civil aircraft navigation is focused primarily on the Conterminous United States (CONUS). Other Satellite-based Augmentation Systems (SBAS) include the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Global Navigation Satellite System (MSAS). Researchers are facing a more serious challenge in addressing the ionospheric impact on navigation using SBAS in other parts of the world such as the South American region on India. At equatorial latitudes, geophysical conditions lead to the so-called Appleton-Hartree (equatorial) anomaly phenomenon, which results in significantly larger ionospheric range delays and range delay spatial gradients than is observed in the CONUS or European sectors. In this paper, we use GPS measurements of geomagnetic storm days to perform a quantitative assessment of WAAS-type ionospheric correction algorithms in other parts of the world such as the low-latitude Brazil and mid-latitude Europe. For the study, we access a world-wide network of 400+ dual frequency GPS receivers.
Quality assessment of multi-GNSS real-time orbits and clocks
NASA Astrophysics Data System (ADS)
Kaźmierski, Kamil; Sośnica, Krzysztof; Hadaś, Tomasz
2017-04-01
A continuously increasing number of satellites of Global Navigation Satellites Systems (GNSS) and their constant modernization allow improving the positioning accuracy and enables performing the GNSS measurements in challenging environments. The constant development of GNSS, among which GPS, GLONASS, Galileo and BeiDou can be distinguished, contributes to improvements in GNSS usage in areas desired by common users or GNSS community. The Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS) has been established for tracking, collating and analyzing all available GNSS signals. Provided precise orbits and clocks do not allow users to process data in real-time due to the significant latency of provided products which may reach up to even 18 days. In order to satisfy needs of real-time users IGS Real-Time Service (RTS) was launched in 2013. The service is currently insufficient for Multi-GNSS applications as it provides products for GPS and GLONASS only. One of the publicly available real-time corrections for the all GNSS, including the new systems, are those provided by the Centre National d'etudes Spatiales (CNES). Presented works evaluate clocks and orbit corrections, i.e., the availability and quality of real-time products provided by CNES (mountpoint CLK93). As a decoder of the RTCM streams the BNC software v2.12 is used. All computations are performed using the GNSS-WARP software which is developed by Institute of Geodesy and Geoinformatics (IGG) at Wroclaw University of Environmental and Life Sciences (WUELS). The final products provided by the Center of Orbit Determination in Europe (CODE) are used for the evaluation of the real-time CNES orbits and clocks. Moreover, the Satellite Laser Ranging (SLR) data are employed as an independent way of the orbit quality assessment. The availability of the real-time corrections is at the level of about 90%, when excluding BeiDou, for which the availability is at the level of about 80%. The obtained results with reference to CODE products indicate that satellites' position quality is different for different systems. The best performance is obtained for GPS (about 3 cm) and the worst for BeiDou (about 30 cm). A similar situation occurred for GPS clocks with the clock residues RMSE at the level of 15 cm. The greatest clock residues RMSE was obtained for GLONASS and reached up to 1 m. Conducted works allow us to perform a further study related to the real-time GNSS data processing, e.g., using the system-specific observation weighting. Keywords: Multi-GNSS, real-time processing, clocks, orbits
Observation model and parameter partials for the JPL geodetic GPS modeling software GPSOMC
NASA Technical Reports Server (NTRS)
Sovers, O. J.; Border, J. S.
1988-01-01
The physical models employed in GPSOMC and the modeling module of the GIPSY software system developed at JPL for analysis of geodetic Global Positioning Satellite (GPS) measurements are described. Details of the various contributions to range and phase observables are given, as well as the partial derivatives of the observed quantities with respect to model parameters. A glossary of parameters is provided to enable persons doing data analysis to identify quantities in the current report with their counterparts in the computer programs. There are no basic model revisions, with the exceptions of an improved ocean loading model and some new options for handling clock parametrization. Such misprints as were discovered were corrected. Further revisions include modeling improvements and assurances that the model description is in accord with the current software.
Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin
2004-01-01
A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.
Henninger, Judith
2009-12-01
General practitioners (GP) and practice nurses (PN) perform the majority of cervical screening in Christchurch and will have a key role in influencing uptake of human papillomavirus (HPV) immunisation. To assess and compare GP and PN knowledge about HPV disease, attitudes concerning adolescent sexual behaviour and intentions to recommend HPV immunisation. A self-administered, anonymous questionnaire was distributed to GPs and PNs in Christchurch, New Zealand who attended peer-led small group meetings hosted by Pegasus Health Independent Provider Association in May 2008. Participation rate was 39%. Overall, 94% of respondents knew that HPV immunisation will not replace cervical cancer screening; 73% knew that HPV is the cause of cervical cancer; 48% knew that most HPV infections will clear without medical treatment; 20% correctly reported that anogenital warts are not cervical cancer precursors. More GPs reported comfort discussing sexual behaviour with adolescents than PNs (p < .008). While 95% of participants intend to recommend immunisation for 13-15-year-old girls, PNs were more likely than GPs to recommend HPV immunisation to older female adolescents and more often indicated that HPV vaccination may lead to risky sexual behaviour (p < .0001). This is the first New Zealand study to assess primary care knowledge and attitudes about HPV and HPV immunisations. The results are encouraging, provide a baseline for future research and may guide the development of training materials for GPs and PNs.
Aldasouqi, Saleh A; Reed, Amy J
2014-11-01
The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients' visits, and should remind their patients to always verify these settings. © 2014 Diabetes Technology Society.
Pitfalls of Insulin Pump Clocks
Reed, Amy J.
2014-01-01
The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713
NASA Technical Reports Server (NTRS)
Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.
2017-01-01
A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.
Fassaert, Thijs; van Dulmen, Sandra; Schellevis, François; Bensing, Jozien
2007-11-01
Active listening is a prerequisite for a successful healthcare encounter, bearing potential therapeutic value especially in clinical situations that require no specific medical intervention. Although generally acknowledged as such, active listening has not been studied in depth. This paper describes the development of the Active Listening Observation Scale (ALOS-global), an observation instrument measuring active listening and its validation in a sample of general practice consultations for minor ailments. Five hundred and twenty-four videotaped general practice consultations involving minor ailments were observed with the ALOS-global. Hypotheses were tested to determine validity, incorporating patients' perception of GPs' affective performance, GPs' verbal attention, patients' self-reported anxiety level and gender differences. The final 7-item ALOS-global had acceptable inter- and intra-observer agreement. Factor analysis revealed one homogeneous dimension. The scalescore was positively related to verbal attention measured by RIAS, to patients' perception of GPs' performance and to their pre-visit anxiety level. Female GPs received higher active listening scores. The results of this study are promising concerning the psychometric properties of the ALOS-global. More research is needed to confirm these preliminary findings. After establishing how active listening differentiates between health professionals, the ALOS-global may become a valuable tool in feedback and training aimed at increasing listening skills.
Application of Seasonal Trend Loess to GPS data in Cascadia
NASA Astrophysics Data System (ADS)
Bal, A.; Bartlow, N. M.
2016-12-01
Plate Boundary Observatory GPS stations provide crucial data for the study of slow slip events and volcanic hazards in the Cascadia region. However, these GPS stations also record seasonal changes in deformation caused by hydrologic, atmospheric, and other seasonal loading. Removing these signals is necessary for accurately modeling the tectonic sources of deformation. Traditionally, seasonal trends in data been accounted for by fitting and removing sine curves from the data. However, not all seasonal trends follow a sinusoidal shape. Seasonal Trend Loess, or STL, is a filtering procedure for a decomposing a time series into trend, seasonal, and remainder components (Cleveland et. al, Journal of Official Statistics, 1990). STL has a simple design that consists of a sequence of applications of the loess smoother which allows for fast computation of large amounts of trend and seasonal smoothing. STL allows for non-sinusoidal shapes in seasonal deformation signals, and allows for evolution of seasonal signals over time. We applied Seasonal Trend Loess to GPS data from the Cascadia region. We compared our results to a traditional sine wave fit for seasonal removal at selected stations, including stations with slow slip event and volcanic signals. We hope that the STL method may be able to more accurately differentiate seasonal and tectonic deformation signals.
NASA Astrophysics Data System (ADS)
Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.
2017-03-01
A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.
Evaluation of airborne topographic lidar for quantifying beach changes
2003-01-01
A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based mea- surements-1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ≃15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ≃15cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells com- prising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future, be widely used in beach su
Evaluation of airborne topographic lidar for quantifying beach changes
Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; Morgan, K.; Yunkel, J.K.; Frederick, E.B.; Stockdon, H.
2003-01-01
A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based measurements - 1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ??? 15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ??? 15 cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells comprising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future, be widely used in beach surveying.
GPS Vertical Land Motion Corrections to Sea-Level Rise Estimates in the Pacific Northwest
NASA Astrophysics Data System (ADS)
Montillet, J.-P.; Melbourne, T. I.; Szeliga, W. M.
2018-02-01
We construct coastal Pacific Northwest profiles of vertical land motion (VLM) known to bias long-term tide-gauge measurements of sea-level rise (SLR) and use them to estimate absolute sea-level rise with respect to Earth's center of mass. Multidecade GPS measurements at 47 coastal stations along the Cascadia subduction zone show VLM varies regionally but smoothly along the Pacific coast and inland Puget Sound with rates ranging from + 4.9 to -1.2 mm/yr. Puget Sound VLM is characterized by uniform subsidence at relatively slow rates of -0.1 to -0.3 mm/yr. Uplift rates of 4.5 mm/yr persist along the western Olympic Peninsula of northwestern Washington State and decrease southward becoming nearly 0 mm/yr south of central coastal Washington through Cape Blanco, Oregon. South of Cape Blanco, uplift increases to 1-2 mm/yr, peaks at 4 mm/yr near Crescent City, California, and returns to zero at Cape Mendocino, California. Using various stochastic noise models, we estimate long-term (˜50 -100 yr) relative sea-level rise rates at 18 coastal Cascadia tide gauges and correct them for VLM. Uncorrected SLR rates are scattered, ranging between -2 mm/yr and + 5 mm/yr with mean 0.52 ± 1.59 mm/yr, whereas correcting for VLM increases the mean value to 1.99 mm/yr and reduces the uncertainty to ± 1.18 mm/yr, commensurate with, but approximately 17% higher than, twentieth century global mean.
33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (AISSE) system consisting of a: (1) Twelve-channel all-in-view Differential Global Positioning System (d... to indicate to shipboard personnel that the U.S. Coast Guard dGPS system cannot provide the required... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Automatic Identification System...
SGA-WZ: A New Strapdown Airborne Gravimeter
Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong
2012-01-01
Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given. PMID:23012545
NASA Astrophysics Data System (ADS)
Zhang, Baocheng; Liu, Teng; Yuan, Yunbin
2017-11-01
The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.
GRACE RL03-v2 monthly time series of solutions from CNES/GRGS
NASA Astrophysics Data System (ADS)
Lemoine, Jean-Michel; Bourgogne, Stéphane; Bruinsma, Sean; Gégout, Pascal; Reinquin, Franck; Biancale, Richard
2015-04-01
Based on GRACE GPS and KBR Level-1B.v2 data, as well as on LAGEOS-1/2 SLR data, CNES/GRGS has published in 2014 the third full re-iteration of its GRACE gravity field solutions. This monthly time series of solutions, named RL03-v1, complete to spherical harmonics degree/order 80, has displayed interesting performances in terms of spatial resolution and signal amplitude compared to JPL/GFZ/CSR RL05. This is due to a careful selection of the background models (FES2014 ocean tides, ECMWF ERA-interim (atmosphere) and TUGO (non IB-ocean) "dealiasing" models every 3 hours) and to the choice of an original method for gravity field inversion : truncated SVD. Identically to the previous CNES/GRGS releases, no additional filtering of the solutions is necessary before using them. Some problems have however been identified in CNES/GRGS RL03-v1: - an erroneous mass signal located in two small circular rings close to the Earth's poles, leading to the recommendation not to use RL03-v1 above 82° latitudes North and South; - a weakness in the sectorials due to an excessive downweighting of the GRACE GPS observations. These two problems have been understood and addressed, leading to the computation of a corrected time series of solutions, RL03-v2. The corrective steps have been: - to strengthen the determination of the very low degrees by adding Starlette and Stella SLR data to the normal equations; - to increase the weight of the GRACE GPS observations; - to adopt a two steps approach for the computation of the solutions: first a Choleski inversion for the low degrees, followed by a truncated SVD solution. The identification of these problems will be discussed and the performance of the new time series evaluated.
NASA Astrophysics Data System (ADS)
Zhang, Baocheng; Liu, Teng; Yuan, Yunbin
2018-06-01
The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.
NASA Astrophysics Data System (ADS)
Yamamoto, R.; Hino, R.; Kido, M.; Osada, Y.; Honsho, C.
2017-12-01
Since postseismic deformation across 2011 Tohoku-oki Earthquake is strongly affected by viscoelastic relaxation, it is difficult to identify postseismic slip from onshore (e.g. GNSS) and offshore (e.g. GPS-Acoustic: GPS-A) observations. To track postseismic slip directly, we installed acoustic ranging instruments across the axis of the central Japan Trench, off-Miyagi, near the region of large coseismic motion (>50 m) happened during 2011 Tohoku-oki Earthquake.Direct Path Ranging (DPR) measures two-way travel time between a pair of transponders settled on the seafloor. Baseline length can be obtained from calculating travel time and sound velocity which is corrected for time-varying temperature and pressure beforehand. We further made correction for the motion of acoustic elements due to attitude changes of the instruments. Baseline changes can be detected precisely by periodic ranging during observation.We have conducted observations during three times (2013, 2014 - 2015, and 2015 - 2016), and revealed that no significant shortenings across the trench axis took place. It follows that no shallow postseismic slip had occurred off-Miyagi, at least from 2013 to 2016. We examined the accuracy of baseline length measurements and can observed 1.0 ppm (1.0 mm for 1 km baseline) errors, which is small enough. Our results are consistent with the postseismic slip distribution model based on GPS-A observations.Acknowledgements: This research is supported by JSPS KAKENHI (26000002). The installation and recovery of instruments were executed during R/V Kairei (KR13-09; KR15-15), R/V Hakuho-maru (KH-13-05; KH-17-J02), R/V Shinsei-maru (KS-14-17; KS-15-03; KS-16-14).
Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier
2017-04-01
The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
Study on UKF based federal integrated navigation for high dynamic aviation
NASA Astrophysics Data System (ADS)
Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie
2011-08-01
High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is superior than EKF based integrated scheme, in which has smaller estimation error and quickly convergence rate.
NASA Astrophysics Data System (ADS)
Fuller-Rowell, Tim; Araujo-Pradere, Eduardo; Minter, Cliff; Codrescu, Mihail; Spencer, Paul; Robertson, Doug; Jacobson, Abram R.
2006-12-01
The potential of data assimilation for operational numerical weather forecasting has been appreciated for many years. For space weather it is a new path that we are just beginning to explore. With the emergence of satellite constellations and the networks of ground-based observations, sufficient data sources are now available to make the application of data assimilation techniques a viable option. The first space weather product at Space Environment Center (SEC) utilizing data assimilation techniques, US-TEC, was launched as a test operational product in November 2004. US-TEC characterizes the ionospheric total electron content (TEC) over the continental United States (CONUS) every 15 min with about a 15-min latency. US-TEC is based on a Kalman filter data assimilation scheme driven by a ground-based network of real-time GPS stations. The product includes a map of the vertical TEC, an estimate of the uncertainty in the map, and the departure of the TEC from a 10-day average at that particular universal time. In addition, data files are provided for vertical TEC and the line-of-sight electron content to all GPS satellites in view over the CONUS at that time. The information can be used to improve single-frequency GPS positioning by providing more accurate corrections for the ionospheric signal delay, or it can be used to initialize rapid integer ambiguity resolution schemes for dual-frequency GPS systems. Validation of US-TEC indicates an accuracy of the line-of-sight electron content of between 2 and 3 TEC units (1 TECU = 1016 el m-2), equivalent to less than 50 cm signal delay at L1 frequencies, which promises value for GPS users. This is the first step along a path that will likely lead to major improvement in space weather forecasting, paralleling the advances achieved in meteorological weather forecasting.
Intercontinental height datum connection with GOCE and GPS-levelling data
NASA Astrophysics Data System (ADS)
Gruber, T.; Gerlach, C.; Haagmans, R.
2012-12-01
In this study an attempt is made to establish height system datum connections based upon a gravity field and steady-state ocean circulation explorer (GOCE) gravity field model and a set of global positioning system (GPS) and levelling data. The procedure applied in principle is straightforward. First local geoid heights are obtained point wise from GPS and levelling data. Then the mean of these geoid heights is computed for regions nominally referring to the same height datum. Subsequently, these local mean geoid heights are compared with a mean global geoid from GOCE for the same region. This way one can identify an offset of the local to the global geoid per region. This procedure is applied to a number of regions distributed worldwide. Results show that the vertical datum offset estimates strongly depend on the nature of the omission error, i.e. the signal not represented in the GOCE model. For a smooth gravity field the commission error of GOCE, the quality of the GPS and levelling data and the averaging control the accuracy of the vertical datum offset estimates. In case the omission error does not cancel out in the mean value computation, because of a sub-optimal point distribution or a characteristic behaviour of the omitted part of the geoid signal, one needs to estimate a correction for the omission error from other sources. For areas with dense and high quality ground observations the EGM2008 global model is a good choice to estimate the omission error correction in theses cases. Relative intercontinental height datum offsets are estimated by applying this procedure between the United State of America (USA), Australia and Germany. These are compared to historical values provided in the literature and computed with the same procedure. The results obtained in this study agree on a level of 10 cm to the historical results. The changes mainly can be attributed to the new global geoid information from GOCE, rather than to the ellipsoidal heights or the levelled heights. These historical levelling data are still in use in many countries. This conclusion is supported by other results on the validation of the GOCE models.
Real-Time GNSS Positioning with JPL's new GIPSYx Software
NASA Astrophysics Data System (ADS)
Bar-Sever, Y. E.
2016-12-01
The JPL Global Differential GPS (GDGPS) System is now producing real-time orbit and clock solutions for GPS, GLONASS, BeiDou, and Galileo. The operations are based on JPL's next generation geodetic analysis and data processing software, GIPSYx (also known at RTGx). We will examine the impact of the nascent GNSS constellations on real-time kinematic positioning for earthquake monitoring, and assess the marginal benefits from each constellation. We will discus the options for signal selection, inter-signal bias modeling, and estimation strategies in the context of real-time point positioning. We will provide a brief overview of the key features and attributes of GIPSYx. Finally we will describe the current natural hazard monitoring services from the GDGPS System.
NASA Astrophysics Data System (ADS)
Gu, Defeng; Ju, Bing; Liu, Junhong; Tu, Jia
2017-09-01
Precise relative position determination is a prerequisite for radar interferometry by formation flying satellites. It has been shown that this can be achieved by high-quality, dual-frequency GPS receivers that provide precise carrier-phase observations. The precise baseline determination between satellites flying in formation can significantly improve the accuracy of interferometric products, and has become a research interest. The key technologies of baseline determination using spaceborne dual-frequency GPS for gravity recovery and climate experiment (GRACE) formation are presented, including zero-difference (ZD) reduced dynamic orbit determination, double-difference (DD) reduced dynamic relative orbit determination, integer ambiguity resolution and relative receiver antenna phase center variation (PCV) estimation. We propose an independent baseline determination method based on a new strategy of integer ambiguity resolution and correction of relative receiver antenna PCVs, and implement the method in the NUDTTK software package. The algorithms have been tested using flight data over a period of 120 days from GRACE. With the original strategy of integer ambiguity resolution based on Melbourne-Wübbena (M-W) combinations, the average success rate is 85.6%, and the baseline precision is 1.13 mm. With the new strategy of integer ambiguity resolution based on a priori relative orbit, the average success rate and baseline precision are improved by 5.8% and 0.11 mm respectively. A relative ionosphere-free phase pattern estimation result is given in this study, and with correction of relative receiver antenna PCVs, the baseline precision is further significantly improved by 0.34 mm. For ZD reduced dynamic orbit determination, the orbit precision for each GRACE satellite A or B in three dimensions (3D) is about 2.5 cm compared to Jet Propulsion Laboratory (JPL) post science orbits. For DD reduced dynamic relative orbit determination, the final baseline precision for two GRACE satellites formation is 0.68 mm validated by K-Band Ranging (KBR) observations, and average ambiguity success rate of about 91.4% could be achieved.
NASA Astrophysics Data System (ADS)
Jahncke, Raymond; Leblon, Brigitte; Bush, Peter; LaRocque, Armand
2018-06-01
Wetland maps currently in use by the Province of Nova Scotia, namely the Department of Natural Resources (DNR) wetland inventory map and the swamp wetland classes of the DNR forest map, need to be updated. In this study, wetlands were mapped in an area southwest of Halifax, Nova Scotia by classifying a combination of multi-date and multi-beam RADARSAT-2 C-band polarimetric SAR (polSAR) images with spring Lidar, and fall QuickBird optical data using the Random Forests (RF) classifier. The resulting map has five wetland classes (open-water/marsh complex, open bog, open fen, shrub/treed fen/bog, swamp), plus lakes and various upland classes. Its accuracy was assessed using data from 156 GPS wetland sites collected in 2012 and compared to the one obtained with the current wetland map of Nova Scotia. The best overall classification was obtained using a combination of Lidar, RADARSAT-2 HH, HV, VH, VV intensity with polarimetric variables, and QuickBird multispectral (89.2%). The classified image was compared to GPS validation sites to assess the mapping accuracy of the wetlands. It was first done considering a group consisting of all wetland classes including lakes. This showed that only 69.9% of the wetland sites were correctly identified when only the QuickBird classified image was used in the classification. With the addition of variables derived from lidar, the number of correctly identified wetlands increased to 88.5%. The accuracy remained the same with the addition of RADARSAT-2 (88.5%). When we tested the accuracy for identifying wetland classes (e.g. marsh complex vs. open bog) instead of grouped wetlands, the resulting wetland map performed best with either QuickBird and Lidar, or QuickBird, Lidar, and RADARSAT-2 (66%). The Province of Nova Scotia's current wetland inventory and its associated wetland classes (aerial-photo interpreted) were also assessed against the GPS wetland sites. This provincial inventory correctly identified 62.2% of the grouped wetlands and only 18.6% of the wetland classes. The current inventory's poor performance demonstrates the value of incorporating a combination of new data sources into the provincial wetland mapping.
The Calibration and error analysis of Shallow water (less than 100m) Multibeam Echo-Sounding System
NASA Astrophysics Data System (ADS)
Lin, M.
2016-12-01
Multibeam echo-sounders(MBES) have been developed to gather bathymetric and acoustic data for more efficient and more exact mapping of the oceans. This gain in efficiency does not come without drawbacks. Indeed, the finer the resolution of remote sensing instruments, the harder they are to calibrate. This is the case for multibeam echo-sounding systems (MBES). We are no longer dealing with sounding lines where the bathymetry must be interpolated between them to engender consistent representations of the seafloor. We now need to match together strips (swaths) of totally ensonified seabed. As a consequence, misalignment and time lag problems emerge as artifacts in the bathymetry from adjacent or overlapping swaths, particularly when operating in shallow water. More importantly, one must still verify that bathymetric data meet the accuracy requirements. This paper aims to summarize the system integration involved with MBES and identify the various source of error pertaining to shallow water survey (100m and less). A systematic method for the calibration of shallow water MBES is proposed and presented as a set of field procedures. The procedures aim at detecting, quantifying and correcting systematic instrumental and installation errors. Hence, calibrating for variations of the speed of sound in the water column, which is natural in origin, is not addressed in this document. The data which used in calibration will reference International Hydrographic Organization(IHO) and other related standards to compare. This paper aims to set a model in the specific area which can calibrate the error due to instruments. We will construct a procedure in patch test and figure out all the possibilities may make sounding data with error then calculate the error value to compensate. In general, the problems which have to be solved is the patch test's 4 correction in the Hypack system 1.Roll 2.GPS Latency 3.Pitch 4.Yaw. Cause These 4 correction affect each others, we run each survey line to calibrate. GPS Latency is synchronized GPS to echo sounder. Future studies concerning any shallower portion of an area, by this procedure can be more accurate sounding value and can do more detailed research.
Katulanda, Prasad; Constantine, Godwin R; Weerakkody, Muditha I; Perera, Yashasvi S; Jayawardena, Mahesh G; Wijegoonawardena, Preethi; Matthews, David R; Sheriff, Mohamed Hr
2011-11-24
Diabetes mellitus is becoming a serious public health problem in Sri Lanka and many other developing countries in the region. It is well known that effective management of diabetes reduces the incidence and progression of many diabetes related complications, thus it is important that General Practitioners (GPs) have sound knowledge and positive attitudes towards all aspects of its management. This study aims to assess knowledge, awareness and practices relating to management of Diabetes Mellitus among Sri Lankan GPs. A cross-sectional study was conducted among all 246 GPs registered with the Ceylon College of General Practitioners using a pre-validated self-administered questionnaire. 205 responded to the questionnaire(response rate 83.3%). Their mean duration of practice was 28.7 ± 11.2 years. On average, each GP had 27 ± 25 diabetic-patient consultations per-week. 96% managed diabetic patients and 24% invariably sought specialist opinion. 99.2% used blood glucose to diagnose diabetes but correct diagnostic cut-off values were known by only 48.8%. Appropriate use of HbA1c and urine microalbumin was known by 15.2% and 39.2% respectively. 84% used HbA1c to monitor glyceamic control, while 90.4% relied on fasting blood glucose to monitor glyceamic control. Knowledge on target control levels was poor.Nearly 90% correctly selected the oral hypoglyceamic treatment for obese as well as thin type 2 diabetic patients. Knowledge on the management of diabetes in pregnancy was poor. Only 23.2% knew the correct threshold for starting lipid-lowering therapy. The concept of strict glycaemic control in preference to symptom control was appreciated only by 68%. The skills for comprehensive care in subjects with multiple risk factors were unsatisfactory. The study was done among experienced members of the only professional college dedicated to the specialty. However, we found that there is room for improvement in their knowledge and practices related to diabetes. We recommend continuing medical education and training programs to update GP's knowledge in order to improve health outcomes in this group of patients.
Elgethun, Kai; Fenske, Richard A; Yost, Michael G; Palcisko, Gary J
2003-01-01
Global positioning system (GPS) technology is used widely for business and leisure activities and offers promise for human time-location studies to evaluate potential exposure to environmental contaminants. In this article we describe the development of a novel GPS instrument suitable for tracking the movements of young children. Eleven children in the Seattle area (2-8 years old) wore custom-designed data-logging GPS units integrated into clothing. Location data were transferred into geographic information systems software for map overlay, visualization, and tabular analysis. Data were grouped into five location categories (in vehicle, inside house, inside school, inside business, and outside) to determine time spent and percentage reception in each location. Additional experiments focused on spatial resolution, reception efficiency in typical environments, and sources of signal interference. Significant signal interference occurred only inside concrete/steel-frame buildings and inside a power substation. The GPS instruments provided adequate spatial resolution (typically about 2-3 m outdoors and 4-5 m indoors) to locate subjects within distinct microenvironments and distinguish a variety of human activities. Reception experiments showed that location could be tracked outside, proximal to buildings, and inside some buildings. Specific location information could identify movement in a single room inside a home, on a playground, or along a fence line. The instrument, worn in a vest or in bib overalls, was accepted by children and parents. Durability of the wiring was improved early in the study to correct breakage problems. The use of GPS technology offers a new level of accuracy for direct quantification of time-location activity patterns in exposure assessment studies. PMID:12515689
NASA Astrophysics Data System (ADS)
Yu, C.; Li, Z.; Penna, N. T.
2016-12-01
Precipitable water vapour (PWV) can be routinely retrieved from ground-based GPS arrays in all-weather conditions and also in real-time. But to provide dense spatial coverage maps, for example for calibrating SAR images, for correcting atmospheric effects in Network RTK GPS positioning and which may be used for numerical weather prediction, the pointwise GPS PWV measurements must be interpolated. Several previous interpolation studies have addressed the importance of the elevation dependency of water vapour, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. We present a tropospheric turbulence iterative decomposition model that decouples the total PWV into (i) a stratified component highly correlated with topography which therefore delineates the vertical troposphere profile, and (ii) a turbulent component resulting from disturbance processes (e.g., severe weather) in the troposphere which trigger uncertain patterns in space and time. We will demonstrate that the iterative decoupled interpolation model generates improved dense tropospheric water vapour fields compared with elevation dependent models, with similar accuracies obtained over both flat and mountainous terrain, as well as for both inland and coastal areas. We will also show that our GPS-based model may be enhanced with ECMWF zenith tropospheric delay and MODIS PWV, producing multi-data sources high temporal-spatial resolution PWV fields. These fields were applied to Sentinel-1 SAR interferograms over the Los Angeles region, for which a maximum noise reduction due to atmosphere artifacts reached 85%. The results reveal that the turbulent troposphere noise, especially those in a SAR image, often occupy more than 50% of the total zenith tropospheric delay and exert systematic, rather than random patterns.
Modeling Horizontal GPS Seasonal Signals Caused by Ocean Loading
NASA Astrophysics Data System (ADS)
Bartlow, N. M.; Fialko, Y. A.
2014-12-01
GPS monuments around the world exhibit seasonal signals in both the horizontal and vertical components with amplitudes on the order of centimeters. For analysis of tectonic signals, researchers typically fit and remove a sine wave with an annual period, and sometimes an additional sine wave with a semiannual period. As interest grows in analyzing smaller, slower signals it becomes more important to correct for these seasonal signals accurately. It is well established that the vertical component of seasonal GPS signals is largely due to continental water storage cycles (e.g. van Dam et al., GRL, 2001). Horizontal seasonal signals however are not well explained by continental water storage. We examine horizontal seasonal signals across western North America and find that the horizontal component is coherent at very large spatial scales and is in general oriented perpendicular to the nearest coastline, indicating an oceanic origin. Additionally, horizontal and vertical annual signals are out of phase by approximately 2 months indicating different physical origins. Studies of GRACE and ocean bottom pressure data indicate an annual variation of non-steric, non-tidal ocean height with an average amplitude of 1 cm globally (e.g. Ponte et al., GRL, 2007). We use Some Programs for Ocean Tide Loading (SPOTL; Agnew, SIO Technical Report, 2012) to model predicted displacements due to these (non-tidal) ocean loads and find general agreement with observed horizontal GPS seasonal signals. In the future, this may lead to a more accurate way to predict and remove the seasonal component of GPS displacement time-series, leading to better discrimination of the true tectonic signal. Modeling this long wavelength signal also provides a potential opportunity to probe the structure of the Earth.
Ironside, Kirsten E.; Mattson, David J.; Choate, David; Stoner, David; Arundel, Terry; Hansen, Jered R.; Theimer, Tad; Holton, Brandon; Jansen, Brian; Sexton, Joseph O.; Longshore, Kathleen M.; Edwards, Thomas C.; Peters, Michael
2017-01-01
Studies using global positioning system (GPS) telemetry rarely result in 100% fix success rates (FSR), which may bias datasets because data loss is systematic rather than a random process. Previous spatially explicit models developed to correct for sampling bias have been limited to small study areas, a small range of data loss, or were study-area specific. We modeled environmental effects on FSR from desert to alpine biomes, investigated the full range of potential data loss (0–100% FSR), and evaluated whether animal body position can contribute to lower FSR because of changes in antenna orientation based on GPS detection rates for 4 focal species: cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus nelsoni), and mule deer (Odocoileus hemionus). Terrain exposure and height of over story vegetation were the most influential factors affecting FSR. Model evaluation showed a strong correlation (0.88) between observed and predicted FSR and no significant differences between predicted and observed FSRs using 2 independent validation datasets. We found that cougars and canyon-dwelling bighorn sheep may select for environmental features that influence their detectability by GPS technology, mule deer may select against these features, and elk appear to be nonselective. We observed temporal patterns in missed fixes only for cougars. We provide a model for cougars, predicting fix success by time of day that is likely due to circadian changes in collar orientation and selection of daybed sites. We also provide a model predicting the probability of GPS fix acquisitions given environmental conditions, which had a strong relationship (r 2 = 0.82) with deployed collar FSRs across species.
Evaluation of the Vienna APL corrections using reprocessed GNSS series
NASA Astrophysics Data System (ADS)
Steigenberger, P.; Dach, R.
2011-12-01
The Institute of Geodesy and Geophysics of the Vienna University of Technology recently started an operational service to provide non-tidal atmospheric pressure loading (APL) corrections. As the series is based on European Centre for Medium-Range Weather Forecasts (ECMWF) pressure data, it is fully consistent with the Vienna Mapping Function 1 (VMF1) atmospheric delay correction model for microwave measurements. Whereas VMF1 is widely used for, e.g., observations of Global Navigation Satellite Systems (GNSS), applying APL corrections is not yet a standard nowadays. The Center for Orbit Determination in Europe (CODE) - a joint venture between the Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland), the Federal Office of Topography (swisstopo, Wabern, Switzerland), the Federal Office for Cartography and Geodesy (BKG, Frankfurt am Main, Germany), and the Insitute for Astronomical and Physical Geodesy, TU Muenchen (IAPG, Munich, Germany) - uses a recently generated series of reprocessed multi-GNSS data (considering GPS and GLONASS) to evaluate the APL corrections provided by the Vienna group. The results are also used to investigate the propagation of the APL effect in GNSS-derived results if no corrections are applied.
Air traffic management system design using satellite based geo-positioning and communications assets
NASA Technical Reports Server (NTRS)
Horkin, Phil
1995-01-01
The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.
Christian, Josef; Kröll, Josef; Schwameder, Hermann
2017-06-01
Common summary measures of gait quality such as the Gait Profile Score (GPS) are based on the principle of measuring a distance from the mean pattern of a healthy reference group in a gait pattern vector space. The recently introduced Classifier Oriented Gait Score (COGS) is a pathology specific score that measures this distance in a unique direction, which is indicated by a linear classifier. This approach has potentially improved the discriminatory power to detect subtle changes in gait patterns but does not incorporate a profile of interpretable sub-scores like the GPS. The main aims of this study were to extend the COGS by decomposing it into interpretable sub-scores as realized in the GPS and to compare the discriminative power of the GPS and COGS. Two types of gait impairments were imitated to enable a high level of control of the gait patterns. Imitated impairments were realized by restricting knee extension and inducing leg length discrepancy. The results showed increased discriminatory power of the COGS for differentiating diverse levels of impairment. Comparison of the GPS and COGS sub-scores and their ability to indicate changes in specific variables supports the validity of both scores. The COGS is an overall measure of gait quality with increased power to detect subtle changes in gait patterns and might be well suited for tracing the effect of a therapeutic treatment over time. The newly introduced sub-scores improved the interpretability of the COGS, which is helpful for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of the gene expression profiles between gallstones and gallbladder polyps.
Li, Quanfu; Ge, Xin; Xu, Xu; Zhong, Yonggang; Qie, Zengwang
2014-01-01
Gallstones and gallbladder polyps (GPs) are two major types of gallbladder diseases that share multiple common symptoms. However, their pathological mechanism remains largely unknown. The aim of our study is to identify gallstones and GPs related-genes and gain an insight into the underlying genetic basis of these diseases. We enrolled 7 patients with gallstones and 2 patients with GP for RNA-Seq and we conducted functional enrichment analysis and protein-protein interaction (PPI) networks analysis for identified differentially expressed genes (DEGs). RNA-Seq produced 41.7 million in gallstones and 32.1 million pairs in GPs. A total of 147 DEGs was identified between gallstones and GPs. We found GO terms for molecular functions significantly enriched in antigen binding (GO:0003823, P=5.9E-11), while for biological processes, the enriched GO terms were immune response (GO:0006955, P=2.6E-15), and for cellular component, the enriched GO terms were extracellular region (GO:0005576, P=2.7E-15). To further evaluate the biological significance for the DEGs, we also performed the KEGG pathway enrichment analysis. The most significant pathway in our KEGG analysis was Cytokine-cytokine receptor interaction (P=7.5E-06). PPI network analysis indicated that the significant hub proteins containing S100A9 (S100 calcium binding protein A9, Degree=94) and CR2 (complement component receptor 2, Degree=8). This present study suggests some promising genes and may provide a clue to the role of these genes playing in the development of gallstones and GPs.
NASA Astrophysics Data System (ADS)
Svehla, D.; Rothacher, M.
2016-12-01
Is it possible to process Lunar Laser Ranging (LLR) measurements in the geocentric frame in a similar way SLR measurements are modelled for GPS satellites and estimate all global reference frame parameters like in the case of GPS? The answer is yes. We managed to process Lunar laser measurements to Apollo and Luna retro-reflectors on the Moon in a similar way we are processing SLR measurements to GPS satellites. We make use of the latest Lunar libration models and DE430 ephemerides given in the Solar system baricentric frame and model uplink and downlink Lunar laser ranges in the geocentric frame as one way measurements, similar to SLR measurements to GPS satellites. In the first part of this contribution we present the estimation of the Lunar orbit as well as the Earth orientation parameters (including UT1 or UT0) with this new formulation. In the second part, we form common-view double-difference LLR measurements between two Lunar retro-reflectors and two LLR telescopes to show the actual noise of the LLR measurements. Since, by forming double-differences of LLR measurements, all range biases are removed and orbit errors are significantly reduced (the Lunar orbit is much farther away than the GPS orbits), one can consider double-difference LLR as an "orbit-free" and "bias-free" differential approach. In the end, we make a comparison with the SLR double-difference approach with Galileo satellites, where we already demonstrated submillimeter precision, and discuss possible combination of LLR and SLR to GNSS satellites using double-difference approach.
Multi Sensor Fusion Framework for Indoor-Outdoor Localization of Limited Resource Mobile Robots
Marín, Leonardo; Vallés, Marina; Soriano, Ángel; Valera, Ángel; Albertos, Pedro
2013-01-01
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments. PMID:24152933
Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots.
Marín, Leonardo; Vallés, Marina; Soriano, Ángel; Valera, Ángel; Albertos, Pedro
2013-10-21
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments.
NASA Astrophysics Data System (ADS)
Orus, R.; Prieto-Cerdeira, R.
2012-12-01
As the next Solar Maximum peak is approaching, forecasted for the late 2013, it is a good opportunity to study the ionospheric behaviour in such conditions and how this behaviour can be estimated and corrected by existing climatological models - e.g.. NeQuick, International Reference Ionosphere (IRI)- , as well as, GNSS driven models, such as Klobuchar, NeQuick Galileo, SBAS MOPS (EGNOS and WAAS corrections) and Near Real Time Global Ionospheric Maps (GIM) or regional Maps computed by different institutions. In this framework, technology advances allow to increase the computational and radio frequency channels capabilities of low-cost receivers embedded in handheld devices (such mobile phones, pads, trekking clocks, photo-cameras, etc). This may enable the active use of received ionospheric data or correction parameters from different data sources. The study is centred in understanding the ionosphere but focusing on its impact on the position error for low-cost single-frequency receivers. This study tests optimal ways to take advantage of a big amount of Real or Near Real Time ionospheric information and the way to combine various corrections in order to reach a better navigation solution. In this context, the use of real time estimation vTEC data coming from EGNOS or WAAS or near real time GIMs are used to feed the standard GPS single-frequency ionospheric correction models (Klobuchar) and get enhanced Ionospheric corrections with minor changes on the navigation software. This is done by using a Taylor expansion over the 8 coefficients send by GPS. Moreover, the same datasets are used to assimilate it in NeQuick, for broadcast coefficients, as well as, for grid assimilation. As a side product, electron density profiles in Near Real Time could be estimated with data assimilated from different ionospheric sources. Finally, the ionospheric delay estimation for multi-constellation receivers could take benefit from a common and more accurate ionospheric model being able to reduce the position error due to ionosphere. Therefore, a performance study of the different models to navigate with GNSS will be presented in different ionospheric conditions and using different sources for the model adjustment, keeping the real time capability of the receivers.
Russian State Time and Earth Rotation Service: Observations, Eop Series, Prediction
NASA Astrophysics Data System (ADS)
Kaufman, M.; Pasynok, S.
2010-01-01
Russian State Time, Frequency and Earth Rotation Service provides the official EOP data and time for use in scientific, technical and metrological works in Russia. The observations of GLONASS and GPS on 30 stations in Russia, and also the Russian and worldwide observations data of VLBI (35 stations) and SLR (20 stations) are used now. To these three series of EOP the data calculated in two other Russian analysis centers are added: IAA (VLBI, GPS and SLR series) and MCC (SLR). Joint processing of these 7 series is carried out every day (the operational EOP data for the last day and the predicted values for 50 days). The EOP values are weekly refined and systematic errors of every individual series are corrected. The combined results become accessible on the VNIIFTRI server (ftp.imvp.ru) approximately at 6h UT daily.
NASA Astrophysics Data System (ADS)
Mitra, Joydeep; Torres, Andres; Ma, Yuansheng; Pan, David Z.
2018-01-01
Directed self-assembly (DSA) has emerged as one of the most compelling next-generation patterning techniques for sub 7 nm via or contact layers. A key issue in enabling DSA as a mainstream patterning technique is the generation of grapho-epitaxy-based guiding pattern (GP) shapes to assemble the contact patterns on target with high fidelity and resolution. Current GP generation is mostly empirical, and limited to a very small number of via configurations. We propose the first model-based GP synthesis algorithm and methodology for on-target and robust DSA, on general via pattern configurations. The final postoptical proximity correction-printed GPs derived from our original synthesized GPs are resilient to process variations and continue to maintain the same DSA fidelity in terms of placement error and target shape.
Measurement and Interpretation of Crustal Deformation Rates Associated with Postglacial Rebound
NASA Technical Reports Server (NTRS)
Davis, James L.
1993-01-01
This project involves obtaining GPS measurements in Scandinavia, and using the measurements to estimate the viscosity profile of the Earth's mantle and to correct tide-gauge measurements for the rebound effect. Below, we report on several aspects of this project. The DSGS was occupied in August 1993. This campaign also inaugurated SWEPOS, the Swedish permanent GPS network. Initial results are presented in Johansson et al., a copy of which is contained in Appendix A. An important technical advance we intend for this project is to use the full three dimensional site velocity information for inferring geophysical parameters. To this end, we have investigated using VLBI determined baseline length rates in North America to constraining proposed combinations of ice history and earth rheology, and presented this work in Mitrovica et al., a copy of which is contained in Appendix B.
NASA Astrophysics Data System (ADS)
Walls, C.; Blume, F.; Meertens, C.; Arnitz, E.; Lawrence, S.; Miller, S.; Bradley, W.; Jackson, M.; Feaux, K.
2007-12-01
The ultra-stable GPS monument design developed by Southern California Geodetic Network (SCIGN) in the late 1990s demonstrates sub-millimeter errors on long time series where there are a high percentage of observations and low multipath. Following SCIGN, other networks such as PANGA and BARGEN have adopted the monument design for both deep drilled braced monuments (DDBM = 5 legs grouted 10.7 meters into bedrock/stratigraphy) and short drilled braced monuments (SDBM = 4 legs epoxied 2 meters into bedrock). A Plate Boundary Observatory (PBO) GPS station consists of a "SCIGN" style monument and state of the art NetRS receiver and IP based communications. Between the years 2003-2008 875 permanent PBO GPS stations are being built throughout the United States. Concomitant with construction of the PBO the majority of pre-existing GPS stations that meet stability specifications are being upgraded with Trimble NetRS and IP based communications to PBO standards under the EarthScope PBO Nucleus project. In 2008, with completed construction of the Plate Boundary Observatory, more than 1100 GPS stations will share common design specifications and have identical receivers with common communications making it the most homogenous geodetic network in the World. Of the 875 total Plate Boundary Observatory GPS stations, 211 proposed sites are distributed throughout the Southern California region. As of August 2007 the production status is: 174 stations built (81 short braced monuments, 93 deep drilled braced monuments), 181 permits signed, 211 permits submitted and 211 station reconnaissance reports. The balance of 37 stations (19 SDBM and 18 DDBM) will be built over the next year from Long Valley to the Mexico border in order of priority as recommended by the PBO Transform, Extension and Magmatic working groups. Fifteen second data is archived for each station and 1 Hz as well as 5 Hz data is buffered to be triggered for download in the event of an earthquake. Communications equipment includes CDMA Proxicast modems, Hughes Vsat, Intuicom 900 MHz Ethernet bridge radios and several "real-time" sites use 2.4 GHz Wilan radios. Ultimately, 125 of the existing former-SCIGN GPS stations will be integrated into the So Cal region of PBO, of which 25 have real-time data streams. At the time of this publication the total combined Southern California region has over 40 stations streaming real-time data using both radios and CDMA modems. The real-time GPS sites provide specific benefits beyond the standard GPS station: they can provide a live correction for local surveyors and can be used to trigger an alarm if large displacements are recorded. The cross fault spatial distribution of these 336 GPS stations in the seismically active southern California region has the grand potential of augmenting a strong motion earthquake early warning system.
Toh, Cheng Hong; Wei, Kuo-Chen; Chang, Chen-Nen; Ng, Shu-Hang; Wong, Ho-Fai; Lin, Ching-Po
2014-01-01
To compare the diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MRI before and after mathematic contrast leakage correction in differentiating pyogenic brain abscesses from glioblastomas and/or metastatic brain tumors. Cerebral blood volume (CBV), leakage-corrected CBV and leakage coefficient K2 were measured in enhancing rims, perifocal edema and contralateral normal appearing white matter (NAWM) of 17 abscesses, 19 glioblastomas and 20 metastases, respectively. The CBV and corrected CBV were normalized by dividing the values in the enhancing rims or edema to those of contralateral NAWM. For each study group, a paired t test was used to compare the K2 of the enhancing rims or edema with those of NAWM, as well as between CBV and corrected CBV of the enhancing rims or edema. ANOVA was used to compare CBV, corrected CBV and K2 among three lesion types. The diagnostic performance of CBV and corrected CBV was assessed with receiver operating characteristic (ROC) curve analysis. The CBV and correction CBV of enhancing rim were 1.45±1.17 and 1.97±1.01 for abscesses, 3.85±2.19 and 4.39±2.33 for glioblastomas, and 2.39±0.90 and 2.97±0.78 for metastases, respectively. The CBV and corrected CBV in the enhancing rim of abscesses were significantly lower than those of glioblastomas and metastases (P = 0.001 and P = 0.007, respectively). In differentiating abscesses from glioblastomas and metastases, the AUC values of corrected CBV (0.822) were slightly higher than those of CBV (0.792). Mathematic leakage correction slightly increases the diagnostic performance of CBV in differentiating pyogenic abscesses from necrotic glioblastomas and cystic metastases. Clinically, DSC perfusion MRI may not need mathematic leakage correction in differentiating abscesses from glioblastomas and/or metastases.
Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio
2016-01-01
Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information. PMID:27999318
Mass balance assessment using GPS
NASA Technical Reports Server (NTRS)
Hulbe, Christina L.
1993-01-01
Mass balance is an integral part of any comprehensive glaciological investigation. Unfortunately, it is hard to determine at remote locations where there is no fixed reference. The Global Positioning System (GPS) offers a solution. Simultaneous GPS observations at a known location and the remote field site, processed differentially, will accurately position the camp site. From there, a monument planted in the firn atop the ice can also be accurately positioned. Change in the monument's vertical position is a direct indicator of ice thickness change. Because the monument is not connected to the ice, its motion is due to both mass balance change and to the settling of firn as it densifies into ice. Observations of relative position change between the monument and anchors at various depths within the firn are used to remove the settling effect. An experiment to test this method has begun at Byrd Station on the West Antarctic Ice Sheet and the first epoch of observations was made. Analysis indicates that positioning errors will be very small. It appears likely that the largest errors involved with this technique will arise from ancillary data needed to determine firn settling.
Earth's Surface Displacements from the GPS Time Series
NASA Astrophysics Data System (ADS)
Haritonova, D.; Balodis, J.; Janpaule, I.; Morozova, K.
2015-11-01
The GPS observations of both Latvian permanent GNSS networks - EUPOS®-Riga and LatPos, have been collected for a period of 8 years - from 2007 to 2014. Local surface displacements have been derived from the obtained coordinate time series eliminating different impact sources. The Bernese software is used for data processing. The EUREF Permanent Network (EPN) stations in the surroundings of Latvia are selected as fiducial stations. The results have shown a positive tendency of vertical displacements in the western part of Latvia - station heights are increasing, and negative velocities are observed in the central and eastern parts. Station vertical velocities are ranging in diapason of 4 mm/year. In the case of horizontal displacements, site velocities are up to 1 mm/year and mostly oriented to the south. The comparison of the obtained results with data from the deformation model NKG_RF03vel has been made. Additionally, the purpose of this study is to analyse GPS time series obtained using two different data processing strategies: Precise Point Positioning (PPP) and estimation of station coordinates relatively to the positions of fiducial stations also known as Differential GNSS.
NASA Technical Reports Server (NTRS)
Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.;
2000-01-01
Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.
NASA Astrophysics Data System (ADS)
Sakkas, Vassilis; Lagios, Evangelos
2017-03-01
The implications of the earthquakes that took place in the central Ionian Islands in 2014 (Cephalonia, M w6.1, M w5.9) and 2015 (Lefkas, M w6.4) are described based on repeat measurements of the local GPS networks in Cephalonia and Ithaca, and the available continuous GPS stations in the broader area. The Lefkas earthquake occurred on a branch of the Cephalonia Transform Fault, affecting Cephalonia with SE displacements gradually decreasing from north ( 100 mm) to south ( 10 mm). This earthquake revealed a near N-S dislocation boundary separating Paliki Peninsula in western Cephalonia from the rest of the island, as well as another NW-SE trending fault that separates kinematically the northern and southern parts of Paliki. Strain field calculations during the interseismic period (2014-2015) indicate compression between Ithaca and Cephalonia, while extension appears during the following co-seismic period (2015-2016) including the 2015 Lefkas earthquake. Additional tectonically active zones with differential kinematic characteristics were also identified locally.
Navigation Architecture For A Space Mobile Network
NASA Technical Reports Server (NTRS)
Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell
2016-01-01
The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.
Evaluation of a GPS used in conjunction with aerial telemetry
Olexa, E.M.; Gogan, P.J.P.; Podruzny, K.M.; Eiler, John; Alcorn, Doris J.; Neuman, Michael R.
2001-01-01
We investigated the use of a non-correctable Global Positioning System (NGPS) in association with aerial telemetry to determine animal locations. Average error was determined for 3 components of the location process: use of a NGPS receiver on the ground, use of a NGPS receiver in a aircraft while flying over a visual marker, and use of the same receiver while flying over a location determined by standard aerial telemetry. Average errors were 45.3, 88.1 and 137.4 m, respectively. A directional bias of <35 m was present for the telemetry component only. Tests indicated that use of NGPS to determine aircraft, and thereby animal, location is an efficient alternative to interpolation from topographic maps. This method was more accurate than previously reported Long-Range Navigation system, version C (LORAN-C) and Argos satellite telemetry. It has utility in areas where animal-borne GPS receivers are not practical due to a combination of topography, canopy coverage, weight or cost of animal-borne GPS units. Use of NGPS technology in conjunction with aerial telemetry will provide the location accuracy required for identification of gross movement patterns and coarse-grained habitat use.
Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing
NASA Astrophysics Data System (ADS)
Paziewski, Jacek; Sieradzki, Rafał; Wielgosz, Paweł
2015-09-01
Two overlapping frequencies—L1/E1 and L5/E5a—in GPS and Galileo systems support the creation of mixed double-differences in a tightly combined relative positioning model. On the other hand, a tightly combined model makes it necessary to take into account receiver intersystem bias, which is the difference in receiver hardware delays. This bias is present in both carrier-phase and pseudorange observations. Earlier research showed that using a priori knowledge of earlier-calibrated ISB to correct GNSS observations has significant impact on ambiguity resolution and, therefore, precise positioning results. In previous research concerning ISB estimation conducted by the authors, small oscillations in phase ISB time series were detected. This paper investigates this effect present in the GPS-Galileo-IOV ISB time series. In particular, ISB short-term temporal stability and its dependence on the number of Galileo satellites used in the ISB estimation was examined. In this contribution we investigate the amplitude and frequency of the detected ISB time series oscillations as well as their potential source. The presented results are based on real observational data collected on a zero baseline with the use of different sets of GNSS receivers.
Establishment of a high accuracy geoid correction model and geodata edge match
NASA Astrophysics Data System (ADS)
Xi, Ruifeng
This research has developed a theoretical and practical methodology for efficiently and accurately determining sub-decimeter level regional geoids and centimeter level local geoids to meet regional surveying and local engineering requirements. This research also provides a highly accurate static DGPS network data pre-processing, post-processing and adjustment method and a procedure for a large GPS network like the state level HRAN project. The research also developed an efficient and accurate methodology to join soil coverages in GIS ARE/INFO. A total of 181 GPS stations has been pre-processed and post-processed to obtain an absolute accuracy better than 1.5cm at 95% of the stations, and at all stations having a 0.5 ppm average relative accuracy. A total of 167 GPS stations in Iowa and around Iowa have been included in the adjustment. After evaluating GEOID96 and GEOID99, a more accurate and suitable geoid model has been established in Iowa. This new Iowa regional geoid model improved the accuracy from a sub-decimeter 10˜20 centimeter to 5˜10 centimeter. The local kinematic geoid model, developed using Kalman filtering, gives results better than third order leveling accuracy requirement with 1.5 cm standard deviation.
Conical-Domain Model for Estimating GPS Ionospheric Delays
NASA Technical Reports Server (NTRS)
Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony
2009-01-01
The conical-domain model is a computational model, now undergoing development, for estimating ionospheric delays of Global Positioning System (GPS) signals. Relative to the standard ionospheric delay model described below, the conical-domain model offers improved accuracy. In the absence of selective availability, the ionosphere is the largest source of error for single-frequency users of GPS. Because ionospheric signal delays contribute to errors in GPS position and time measurements, satellite-based augmentation systems (SBASs) have been designed to estimate these delays and broadcast corrections. Several national and international SBASs are currently in various stages of development to enhance the integrity and accuracy of GPS measurements for airline navigation. In the Wide Area Augmentation System (WAAS) of the United States, slant ionospheric delay errors and confidence bounds are derived from estimates of vertical ionospheric delay modeled on a grid at regularly spaced intervals of latitude and longitude. The estimate of vertical delay at each ionospheric grid point (IGP) is calculated from a planar fit of neighboring slant delay measurements, projected to vertical using a standard, thin-shell model of the ionosphere. Interpolation on the WAAS grid enables estimation of the vertical delay at the ionospheric pierce point (IPP) corresponding to any arbitrary measurement of a user. (The IPP of a given user s measurement is the point where the GPS signal ray path intersects a reference ionospheric height.) The product of the interpolated value and the user s thin-shell obliquity factor provides an estimate of the user s ionospheric slant delay. Two types of error that restrict the accuracy of the thin-shell model are absent in the conical domain model: (1) error due to the implicit assumption that the electron density is independent of the azimuthal angle at the IPP and (2) error arising from the slant-to-vertical conversion. At low latitudes or at mid-latitudes under disturbed conditions, the accuracy of SBAS systems based upon the thin-shell model suffers due to the presence of complex ionospheric structure, high delay values, and large electron density gradients. Interpolation on the vertical delay grid serves as an additional source of delay error. The conical-domain model permits direct computation of the user s slant delay estimate without the intervening use of a vertical delay grid. The key is to restrict each fit of GPS measurements to a spatial domain encompassing signals from only one satellite. The conical domain model is so named because each fit involves a group of GPS receivers that all receive signals from the same GPS satellite (see figure); the receiver and satellite positions define a cone, the satellite position being the vertex. A user within a given cone evaluates the delay to the satellite directly, using (1) the IPP coordinates of the line of sight to the satellite and (2) broadcast fit parameters associated with the cone. The conical-domain model partly resembles the thin-shell model in that both models reduce an inherently four-dimensional problem to two dimensions. However, unlike the thin-shell model, the conical domain model does not involve any potentially erroneous simplifying assumptions about the structure of the ionosphere. In the conical domain model, the initially four-dimensional problem becomes truly two-dimensional in the sense that once a satellite location has been specified, any signal path emanating from a satellite can be identified by only two coordinates; for example, the IPP coordinates. As a consequence, a user s slant-delay estimate converges to the correct value in the limit that the receivers converge to the user s location (or, equivalently, in the limit that the measurement IPPs converge to the user s IPP).
Battaglia, Maurizio; Dzurisin, Daniel; Langbein, John; Svarc, Jerry; Hill, David P.
2008-01-01
A GPS survey of leveling benchmarks done in Long Valley Caldera in 1999 showed that the application of the National Geodetic Survey (NGS) geoid model GEOID99 to tie GPS heights to historical leveling measurements would significantly underestimate the caldera ground deformation (known from other geodetic measurements). The NGS geoid model was able to correctly reproduce the shape of the deformation, but required a local adjustment to give a realistic estimate of the magnitude of the uplift. In summer 2006, the U.S. Geological Survey conducted a new leveling survey along two major routes crossing the Long Valley region from north to south (Hwy 395) and from east to west (Hwy 203 - Benton Crossing). At the same time, 25 leveling bench marks were occupied with dual frequency GPS receivers to provide a measurement of the ellipsoid heights. Using the heights from these two surveys, we were able to compute a precise geoid height model (LVGEOID) for the Long Valley volcanic region. Our results show that although the LVGEOID and the latest NGS GEOID03 model practically coincide in areas outside the caldera, there is a difference of up to 0.2 m between the two models within the caldera. Accounting for this difference is critical when using the geoid height model to estimate the ground deformation due to magmatic or tectonic activity in the caldera.
ERP-Variations on Time Scales Between Hours and Months Derived From GNSS Observations
NASA Astrophysics Data System (ADS)
Weber, R.; Englich, S.; Mendes Cerveira, P.
2007-05-01
Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Rotation Parameters (ERPs - polar motion, UT1/LOD) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the ERP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the year 2005. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 113 fairly stable stations out of the IGS05 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed.
NASA Astrophysics Data System (ADS)
Cabral, João; Mendes, Virgílio Brito; Figueiredo, Paula; Silveira, António Brum da; Pagarete, Joaquim; Ribeiro, António; Dias, Ruben; Ressurreição, Ricardo
2017-12-01
A GPS-based crustal velocity field for the SW Portuguese territory (Algarve region, SW Iberia) was estimated from the analysis of data from a network of campaign-style GPS stations set up in the region since 1998, complemented with permanent stations, covering an overall period of 16.5 years. The GPS monitoring sites were chosen attending to the display of the regional active faults, in an attempt to detect and monitor any related crustal straining. The residual horizontal velocities relative to Eurasia unveil a relatively consistent pattern towards WNW, with magnitudes that noticeably increase from NNE to SSW. Although the obtained velocity field does not evidence a sharp velocity gradient it suggests the presence of a NW-SE trending crustal shear zone separating two domains, which may be slowly accumulating a slightly transtensional right-lateral shear strain. Based on the WNW velocity differential between the northeastern block and the southwestern block, a shear strain rate accumulation across the shear zone is estimated. This ongoing crustal deformation is taken as evidence that a nearby major active structure, the São Marcos - Quarteira fault, may be presently accumulating strain, therefore being potentially loaded for seismic rupture and the generation of a large magnitude earthquake. Further inferences are made concerning the interseismic dynamic loading of other major onshore and offshore active structures located to the west.
EGNOS Monitoring Prepared in Space Research Centre P.A.S. for SPMS Project
NASA Astrophysics Data System (ADS)
Swiatek, Anna; Jaworski, Leszek; Tomasik, Lukasz
2017-12-01
The European Geostationary Overlay Service (EGNOS) augments Global Positioning System (GPS) by providing correction data and integrity information for improving positioning over Europe. EGNOS Service Performance Monitoring Support (SPMS) project has assumed establishment, maintenance and implementation of an EGNOS performance monitoring network. The paper presents preliminary results of analyses prepared in Space Research Centre, Polish Academy of Sciences (Warsaw), as one of partners in SPMS project.
The measurement of atmospheric water vapor - Radiometer comparison and spatial variations
NASA Technical Reports Server (NTRS)
Rocken, C.; Johnson, J. M.; Ware, R. H.; Neilan, R. E.; Cerezo, M.; Jordan, J. R.; Falls, M. J..; Nelson, L. D.; Hayes, M.
1991-01-01
Two water vapor radiometer (WVR) experiments were conducted to evaluate whether such instruments are both suitable and necessary to correct for propagation effects that are induced by precipitable water vapor (PWV) on signals from GPS and VLBI. WVRs are suitable for these corrections if they provide wet path delays to better than 0.5 cm. They are needed if spatial variations of PWV result in complicated, direction-dependent propagation effects that are too complex to be parametrized in the GPS or VLBI geodetic solution. The suitability of radiometers was first addressed by comparing six airport WVRs for two weeks. While two WVRs showed an average wet path delay bias of only 0.1 cm, others were biased by 1-3 cm relative to each other and relative to radiosondes. The second experiment addressed the question whether radiometers are needed for the detection of inhomogeneities in the wet delay. Three JPL D-series radiometers were operated at three sites 50 km apart. The WVRs simultaneously sampled PWV at different azimuths and elevations in search of spatial variations of PWV. On one day of this second experiment evidence was found for spatial variations of the wet path delay as high as 20 percent of the total wet path delay.
Evaluation of the Klobuchar model in TaiWan
NASA Astrophysics Data System (ADS)
Li, Jinghua; Wan, Qingtao; Ma, Guanyi; Zhang, Jie; Wang, Xiaolan; Fan, Jiangtao
2017-09-01
Ionospheric delay is the mainly error source in Global Navigation Satellite System (GNSS). Ionospheric model is one of the ways to correct the ionospheric delay. The single-frequency GNSS users modify the ionospheric delay by receiving the correction parameters broadcasted by satellites. Klobuchar model is widely used in Global Positioning System (GPS) and COMPASS because it is simple and convenient for real-time calculation. This model is established on the observations mainly from Europe and USA. It does not describe the equatorial anomaly region. South of China is located near the north crest of the equatorial anomaly, where the ionosphere has complex spatial and temporal variation. The assessment on the validation of Klobuchar model in this area is important to improve this model. Eleven years (2003-2014) data from one GPS receiver located at Taoyuan Taiwan (121°E, 25°N) are used to assess the validation of Klobuchar model in Taiwan. Total electron content (TEC) from the dual-frequency GPS observations is calculated and used as the reference, and TEC based on the Klobuchar model is compared with the reference. The residual is defined as the difference between the TEC from Klobuchar model and the reference. It is a parameter to reflect the absolute correction of the model. RMS correction percentage presents the validation of the model relative to the observations. The residuals' long-term variation, the RMS correction percentage, and their changes with the latitudes are analyzed respectively to access the model. In some months the RMS correction did not reach the goal of 50% purposed by Klobuchar, especially in the winter of the low solar activity years and at nighttime. RMS correction did not depend on the 11-years solar activity, neither the latitudes. Different from RMS correction, the residuals changed with the solar activity, similar to the variation of TEC. The residuals were large in the daytime, during the equinox seasons and in the high solar activity years; they are small at night, during the solstice seasons, and in the low activity years. During 1300-1500 BJT in the high solar activity years, the mean bias was negative, implying the model underestimated TEC on average. The maximum mean bias was 33TECU in April 2014, and the maximum underestimation reached 97TECU in October 2011. During 0000-0200 BJT, the residuals had small mean bias, small variation range and small standard deviation. It suggested that the model could describe the TEC of the ionosphere better than that in the daytime. Besides the variation with the solar activity, the residuals also vary with the latitudes. The means bias reached the maximum at 20-22°N, corresponding to the north crest of the equatorial anomaly. At this latitude, the maximum mean bias was 47TECU lower than the observation in the high activity years, and 12TECU lower in the low activity years. The minimum variation range appeared at 30-32°N in high and low activity years. But the minimum mean bias was at different latitudes in the high and low activity years. In the high activity years, it appeared at 30-32°N, and in the low years it was at 24-26°N. For an ideal model, the residuals should have small mean bias and small variation range. Further study is needed to learn the distribution of the residuals and to improve the model.
Zhang, Yaofeng; Zhang, Dongqing; Yu, Huasheng; Lin, Baogang; Fu, Ying; Hua, Shuijin
2016-01-01
In Brassica napus, floral development is a decisive factor in silique formation, and it is influenced by many cultivation practices including planting date. However, the effect of planting date on floral initiation in canola is poorly understood at present. A field experiment was conducted using a split plot design, in which three planting dates (early, 15 September, middle, 1 October, and late, 15 October) served as main plot and five varieties differing in maturity (1358, J22, Zhongshuang 11, Zheshuang 8, and Zheyou 50) employed as subplot. The purpose of this study was to shed light on the process of floral meristem (FM) differentiation, the influence of planting date on growth period (GP) and floral initiation, and silique formation. The main stages of FM developments can be divided into four stages: first, the transition from shoot apical meristem to FM; second, flower initiation; third, gynoecium and androecium differentiation; and fourth, bud formation. Our results showed that all genotypes had increased GPs from sowing to FM differentiation as planting date was delayed while the GPs from FM differentiation to budding varied year by year except the very early variety, 1358. Based on the number of flowers present at the different reproductive stages, the flowers produced from FM differentiation to budding closely approximated the final silique even though the FM differentiated continuously after budding and peaked generally at the middle flowering stage. The ratio of siliques to maximum flower number ranged from 48 to 80%. These results suggest that (1) the period from FM differentiation to budding is vital for effective flower and silique formation although there was no significant correlation between the length of the period and effective flowers and siliques, and (2) the increased number of flowers from budding were generally ineffective. Therefore, maximizing flower numbers prior to budding will improve silique numbers, and reducing FM degeneration should also increase final silique formation. From the results of our study, we offer guidelines for planting canola varieties that differ in maturity in order to maximize effective flower numbers.
A Closed-Loop Hardware Simulation of Decentralized Satellite Formation Control
NASA Technical Reports Server (NTRS)
Ebimuma, Takuji; Lightsey, E. Glenn; Baur, Frank (Technical Monitor)
2002-01-01
In recent years, there has been significant interest in the use of formation flying spacecraft for a variety of earth and space science missions. Formation flying may provide smaller and cheaper satellites that, working together, have more capability than larger and more expensive satellites. Several decentralized architectures have been proposed for autonomous establishment and maintenance of satellite formations. In such architectures, each satellite cooperatively maintains the shape of the formation without a central supervisor, and processing only local measurement information. The Global Positioning System (GPS) sensors are ideally suited to provide such local position and velocity measurements to the individual satellites. An investigation of the feasibility of a decentralized approach to satellite formation flying was originally presented by Carpenter. He extended a decentralized linear-quadratic-Gaussian (LQG) framework proposed by Speyer in a fashion similar to an extended Kalman filter (EKE) which processed GPS position fix solutions. The new decentralized LQG architecture was demonstrated in a numerical simulation for a realistic scenario that is similar to missions that have been proposed by NASA and the U.S. Air Force. Another decentralized architecture was proposed by Park et al. using carrier differential-phase GPS (CDGPS). Recently, Busse et al demonstrated the decentralized CDGPS architecture in a hardware-in-the-loop simulation on the Formation Flying TestBed (FFTB) at Goddard Space Flight Center (GSFC), which features two Spirent Cox 16 channel GPS signal generator. Although representing a step forward by utilizing GPS signal simulators for a spacecraft formation flying simulation, only an open-loop performance, in which no maneuvers were executed based on the real-time state estimates, was considered. In this research, hardware experimentation has been extended to include closed-loop integrated guidance and navigation of multiple spacecraft formations using GPS receivers and real-time vehicle telemetry. A hardware closed-loop simulation has been performed using the decentralized LQG architecture proposed by Carpenter in the GPS test facility at the Center for Space Research (CSR). This is the first presentation using this type of hardware for demonstration of closed-loop spacecraft formation flying.
Hrisos, Susan; Eccles, Martin; Johnston, Marie; Francis, Jill; Kaner, Eileen FS; Steen, Nick; Grimshaw, Jeremy
2008-01-01
Background Psychological theories of behaviour may provide a framework to guide the design of interventions to change professional behaviour. Behaviour change interventions, designed using psychological theory and targeting important motivational beliefs, were experimentally evaluated for effects on the behavioural intention and simulated behaviour of GPs in the management of uncomplicated upper respiratory tract infection (URTI). Methods The design was a 2 × 2 factorial randomised controlled trial. A postal questionnaire was developed based on three theories of human behaviour: Theory of Planned Behaviour; Social Cognitive Theory and Operant Learning Theory. The beliefs and attitudes of GPs regarding the management of URTI without antibiotics and rates of prescribing on eight patient scenarios were measured at baseline and post-intervention. Two theory-based interventions, a "graded task" with "action planning" and a "persuasive communication", were incorporated into the post-intervention questionnaire. Trial groups were compared using co-variate analyses. Results Post-intervention questionnaires were returned for 340/397 (86%) GPs who responded to the baseline survey. Each intervention had a significant effect on its targeted behavioural belief: compared to those not receiving the intervention GPs completing Intervention 1 reported stronger self-efficacy scores (Beta = 1.41, 95% CI: 0.64 to 2.25) and GPs completing Intervention 2 had more positive anticipated consequences scores (Beta = 0.98, 95% CI = 0.46 to 1.98). Intervention 2 had a significant effect on intention (Beta = 0.90, 95% CI = 0.41 to 1.38) and simulated behaviour (Beta = 0.47, 95% CI = 0.19 to 0.74). Conclusion GPs' intended management of URTI was significantly influenced by their confidence in their ability to manage URTI without antibiotics and the consequences they anticipated as a result of doing so. Two targeted behaviour change interventions differentially affected these beliefs. One intervention also significantly enhanced GPs' intentions not to prescribe antibiotics for URTI and resulted in lower rates of prescribing on patient scenarios compared to a control group. The theoretical frameworks utilised provide a scientific rationale for understanding how and why the interventions had these effects, improving the reproducibility and generalisability of these findings and offering a sound basis for an intervention in a "real world" trial. Trial registration Clinicaltrials.gov NCT00376142 PMID:18194526
Improved GIA Correction and Antarctic Contribution to Sea-level Rise Observed by GRACE
NASA Astrophysics Data System (ADS)
Ivins, Erik; James, Thomas; Wahr, John; Schrama, Ernst; Landerer, Felix; Simon, Karen
2013-04-01
Measurement of continent-wide glacial isostatic adjustment (GIA) is needed to interpret satellite-based trends for the grounded ice mass change of the Antarctic ice sheet (AIS). This is especially true for trends determined from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Three data sets have matured to the point where they can be used to shrink the range of possible GIA models for Antarctica: the glacial geological record has expanded to include exposure ages using 10Be,26Al measurements that constrain past thickness of the ice sheet, modelled ice core records now better constrain the temporal variation in past rates of snow accumulation, and Global Positioning System (GPS) vertical rate trends from across the continent are now available. The volume changes associated with Antarctic ice loading and unloading during the past 21 thousand years (21 ka) are smaller than previously thought, generating model present-day uplift rates that are consistent with GPS observations. We construct an ice sheet history that is designed to predict maximum volume changes, and in particular, maximum Holocene change. This ice sheet model drives a forward model prediction of GIA gravity signal, that in turn, should give maximum GIA response predictions. The apparent surface mass change component of GIA is re-evaluated to be +55 ± 13 Gt/yr by considering a revised ice history model and a parameter search for vertical motion predictions that best-fit the GPS observations at 18 high-quality stations. Although the GIA model spans a wide range of possible earth rheological structure values, the data are not yet sufficient for solving for a preferred value of upper and lower mantle viscosity, nor for a preferred lithospheric thickness. GRACE monthly solutions from CSR-RL04 release time series from Jan. 2003 through the beginning of Jan. 2012, uncorrected for GIA, yield an ice mass rate of +2.9 ± 34 Gt/yr. A new rough upper bound to the GIA correction is about 60-65 Gt/yr. The new correction increases the solved-for ice mass imbalance of Antarctica to -57 ± 34 Gt/yr. The revised GIA correction is smaller than past GRACE estimates by about 50 to 90 Gt/yr. The new upper bound to sea-level rise from AIS mass loss averaged over the time span 2003.0 - 2012.0 is about 0.16 ± 0.09 mm/yr. We discuss the differences in spatio-temporal character of the gain-loss regimes of Antarctica over the observing period.
A GRFa2/Prop1/stem (GPS) cell niche in the pituitary.
Garcia-Lavandeira, Montse; Quereda, Víctor; Flores, Ignacio; Saez, Carmen; Diaz-Rodriguez, Esther; Japon, Miguel A; Ryan, Aymee K; Blasco, Maria A; Dieguez, Carlos; Malumbres, Marcos; Alvarez, Clara V
2009-01-01
The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease.
A GRFa2/Prop1/Stem (GPS) Cell Niche in the Pituitary
Garcia-Lavandeira, Montse; Quereda, Víctor; Flores, Ignacio; Saez, Carmen; Diaz-Rodriguez, Esther; Japon, Miguel A.; Ryan, Aymee K.; Blasco, Maria A.; Dieguez, Carlos; Malumbres, Marcos; Alvarez, Clara V.
2009-01-01
Background The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. Principal Findings We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. Significance Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease. PMID:19283075
A Gaia-PS1-SDSS (GPS1) Proper Motion Catalog Covering 3/4 of the Sky
NASA Astrophysics Data System (ADS)
Tian, Hai-Jun; Gupta, Prashansa; Sesar, Branimir; Rix, Hans-Walter; Martin, Nicolas F.; Liu, Chao; Goldman, Bertrand; Platais, Imants; Kudritzki, Rolf-Peter; Waters, Christopher Z.
2017-09-01
We combine Gaia DR1, PS1, Sloan Digital Sky Survey (SDSS), and 2MASS astrometry to measure proper motions for 350 million sources across three-fourths of the sky down to a magnitude of {m}r˜ 20. Using positions of galaxies from PS1, we build a common reference frame for the multi-epoch PS1, single-epoch SDSS and 2MASS data, and calibrate the data in small angular patches to this frame. As the Gaia DR1 excludes resolved galaxy images, we choose a different approach to calibrate its positions to this reference frame: we exploit the fact that the proper motions of stars in these patches are linear. By simultaneously fitting the positions of stars at different epochs of—Gaia DR1, PS1, SDSS, and 2MASS—we construct an extensive catalog of proper motions dubbed GPS1. GPS1 has a characteristic systematic error of less than 0.3 {mas} {{yr}}-1 and a typical precision of 1.5-2.0 {mas} {{yr}}-1. The proper motions have been validated using galaxies, open clusters, distant giant stars, and QSOs. In comparison with other published faint proper motion catalogs, GPS1's systematic error (< 0.3 {mas} {{yr}}-1) should be nearly an order of magnitude better than that of PPMXL and UCAC4 (> 2.0 {mas} {{yr}}-1). Similarly, its precision (˜1.5 {mas} {{yr}}-1) is a four-fold improvement relative to PPMXL and UCAC4 (˜6.0 {mas} {{yr}}-1). For QSOs, the precision of GPS1 is found to be worse (˜2.0-3.0 {mas} {{yr}}-1), possibly due to their particular differential chromatic refraction. The GPS1 catalog will be released online and be available via the VizieR Service and VO Service.
State estimation for autopilot control of small unmanned aerial vehicles in windy conditions
NASA Astrophysics Data System (ADS)
Poorman, David Paul
The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non-zero mean error that increases when gyro bias is increased. The second method is shown to not exhibit any steady state error in the tested scenarios that is inherent to its design. The second method can correct for attitude errors that arise from both integration error and gyro bias states, but it suffers from lack of attitude error observability. The attitude errors are shown to be more observable in wind, but increased integration error in wind outweighs the increase in attitude corrections that such increased observability brings, resulting in larger attitude errors in wind. Overall, this work highlights many technical deficiencies of both of these methods of state estimation that could be improved upon in the future to enhance state estimation for small UAVs in windy conditions.
Neural Global Pattern Similarity Underlies True and False Memories.
Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui
2016-06-22
The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.
Risk stratification of gallbladder polyps (1-2 cm) for surgical intervention with 18F-FDG PET/CT.
Lee, Jaehoon; Yun, Mijin; Kim, Kyoung-Sik; Lee, Jong-Doo; Kim, Chun K
2012-03-01
We assessed the value of (18)F-FDG uptake in the gallbladder polyp (GP) in risk stratification for surgical intervention and the optimal cutoff level of the parameters derived from GP (18)F-FDG uptake for differentiating malignant from benign etiologies in a select, homogeneous group of patients with 1- to 2-cm GPs. Fifty patients with 1- to 2-cm GPs incidentally found on the CT portion of PET/CT were retrospectively analyzed. All patients had histologic diagnoses. GP (18)F-FDG activity was visually scored positive (≥liver) or negative (
Lempp, Thomas; Heinzel-Gutenbrunner, Monika; Bachmann, Christian
2016-04-01
Primary care physicians (PCPs) play a key role in the initial assessment and management of children and adolescents with mental health problems. However, it is unclear whether current medical education curricula sufficiently equip PCPs for this task. The aim of this study was to investigate, which child and adolescent psychiatry (CAP)-related skills and knowledge PCPs say they require in their daily practice. A questionnaire was generated, employing a modified two-step Delphi approach. Besides socio-demographic items, the questionnaire contained 17 CAP-related knowledge items and 13 CAP-related skills items, which had to be rated by importance in daily practice. The questionnaire was distributed to 348 office-based paediatricians and 500 general practitioners (GPs) in Germany. The overall return rate was 51.3% (435/848). Regarding CAP-related knowledge, both paediatricians and GPs rated somatoform disorders and obesity as highly important for daily practice. Moreover, paediatricians also deemed regulatory disorders during infancy (e.g. crying, sleep disorders) as important, while GPs assessed knowledge on paediatric depression as relevant. For paediatricians and GPs, the most relevant CAP-related skills were communicating with children and adolescents and their parents. Additionally, paediatricians rated differentiating between non-pathologic and clinically relevant behaviour problems very relevant, while GPs considered basic psychotherapeutic skills essential. The CAP-related knowledge and skills perceived relevant for doctors in primary care differ from the majority of current medical school CAP curricula, which cover mainly typical, epitomic CAP disorders and are predominantly knowledge-oriented. Therefore, medical education in CAP should be amended to reflect the needs of PCPs to improve healthcare for children and adolescents with mental health problems.
Ionospheric threats to the integrity of airborne GPS users
NASA Astrophysics Data System (ADS)
Datta-Barua, Seebany
The Global Positioning System (GPS) has both revolutionized and entwined the worlds of aviation and atmospheric science. As the largest and most unpredictable source of GPS positioning error, the ionospheric layer of the atmosphere, if left unchecked, can endanger the safety, or "integrity," of the single frequency airborne user. An augmentation system is a differential-GPS-based navigation system that provides integrity through independent ionospheric monitoring by reference stations. However, the monitor stations are not in general colocated with the user's GPS receiver. The augmentation system must protect users from possible ionosphere density variations occurring between its measurements and the user's. This study analyzes observations from ionospherically active periods to identify what types of ionospheric disturbances may cause threats to user safety if left unmitigated. This work identifies when such disturbances may occur using a geomagnetic measure of activity and then considers two disturbances as case studies. The first case study indicates the need for a non-trivial threat model for the Federal Aviation Administration's Local Area Augmentation System (LAAS) that was not known prior to the work. The second case study uses ground- and space-based data to model an ionospheric disturbance of interest to the Federal Aviation Administration's Wide Area Augmentation System (WAAS). This work is a step in the justification for, and possible future refinement of, one of the WAAS integrity algorithms. For both WAAS and LAAS, integrity threats are basically caused by events that may be occurring but are unobservable. Prior to the data available in this solar cycle, events of such magnitude were not known to be possible. This work serves as evidence that the ionospheric threat models developed for WARS and LAAS are warranted and that they are sufficiently conservative to maintain user integrity even under extreme ionospheric behavior.
Sindall, Paul; Lenton, John P.; Whytock, Katie; Tolfrey, Keith; Oyster, Michelle L.; Cooper, Rory A.; Goosey-Tolfrey, Victoria L.
2013-01-01
Purpose To compare the criterion validity and accuracy of a 1 Hz non-differential global positioning system (GPS) and data logger device (DL) for the measurement of wheelchair tennis court movement variables. Methods Initial validation of the DL device was performed. GPS and DL were fitted to the wheelchair and used to record distance (m) and speed (m/second) during (a) tennis field (b) linear track, and (c) match-play test scenarios. Fifteen participants were monitored at the Wheelchair British Tennis Open. Results Data logging validation showed underestimations for distance in right (DLR) and left (DLL) logging devices at speeds >2.5 m/second. In tennis-field tests, GPS underestimated distance in five drills. DLL was lower than both (a) criterion and (b) DLR in drills moving forward. Reversing drill direction showed that DLR was lower than (a) criterion and (b) DLL. GPS values for distance and average speed for match play were significantly lower than equivalent values obtained by DL (distance: 2816 (844) vs. 3952 (1109) m, P = 0.0001; average speed: 0.7 (0.2) vs. 1.0 (0.2) m/second, P = 0.0001). Higher peak speeds were observed in DL (3.4 (0.4) vs. 3.1 (0.5) m/second, P = 0.004) during tennis match play. Conclusions Sampling frequencies of 1 Hz are too low to accurately measure distance and speed during wheelchair tennis. GPS units with a higher sampling rate should be advocated in further studies. Modifications to existing DL devices may be required to increase measurement precision. Further research into the validity of movement devices during match play will further inform the demands and movement patterns associated with wheelchair tennis. PMID:23820154
Quantifying Uncertainties in Navigation and Orbit Propagation Analyses
NASA Technical Reports Server (NTRS)
Krieger, Andrew W.; Welch, Bryan W.
2017-01-01
A tool used to calculate dilution of precision (DOP) was created in order to assist the Space Communications and Navigation (SCaN) program to analyze current and future user missions. The SCaN Center for Engineering, Networks, Integration, and Communication (SCENIC) is developing a new user interface (UI) to augment and replace the capabilities of currently used commercial software, such as Systems Tool Kit (STK). The DOP tool will be integrated in the SCENIC UI and will be used to analyze the accuracy of navigation solutions. This tool was developed using MATLAB and free and open-source tools to save cost and to use already existing orbital software libraries. GPS DOP data was collected and used for validation purposes. The similarities between the DOP tool results and GPS data show that the DOP tool is performing correctly. Additional improvements can be made in the DOP tool to improve its accuracy and performance in analyzing navigation solutions.