Sample records for differentially expressed cdna

  1. Cloning, sequencing and expression in MEL cells of a cDNA encoding the mouse ribosomal protein S5.

    PubMed

    Vanegas, N; Castañeda, V; Santamaría, D; Hernández, P; Schvartzman, J B; Krimer, D B

    1997-06-05

    We describe the isolation and characterization of a cDNA encoding the mouse S5 ribosomal protein. It was isolated from a MEL (murine erythroleukemia) cell cDNA library by differential hybridization as a down regulated sequence during HMBA-induced differentiation. Northern series analysis showed that S5 mRNA expression is reduced 5-fold throughout the differentiation process. The mouse S5 mRNA is 760 bp long and encodes for a 204 amino acid protein with 94% homology with the human and rat S5.

  2. [Differentially expressed genes of cell signal transduction associated with benzene poisoning by cDNA microarray].

    PubMed

    Wang, Hong; Bi, Yongyi; Tao, Ning; Wang, Chunhong

    2005-08-01

    To detect the differential expression of cell signal transduction genes associated with benzene poisoning, and to explore the pathogenic mechanisms of blood system damage induced by benzene. Peripheral white blood cell gene expression profile of 7 benzene poisoning patients, including one aplastic anemia, was determined by cDNA microarray. Seven chips from normal workers were served as controls. Cluster analysis of gene expression profile was performed. Among the 4265 target genes, 176 genes associated with cell signal transduction were differentially expressed. 35 up-regulated genes including PTPRC, STAT4, IFITM1 etc were found in at least 6 pieces of microarray; 45 down-regulated genes including ARHB, PPP3CB, CDC37 etc were found in at least 5 pieces of microarray. cDNA microarray technology is an effective technique for screening the differentially expressed genes of cell signal transduction. Disorder in cell signal transduction may play certain role in the pathogenic mechanism of benzene poisoning.

  3. [Preparation of the cDNA microarray on the differential expressed cDNA of senescence-accelerated mouse's hippocampus].

    PubMed

    Cheng, Xiao-Rui; Zhou, Wen-Xia; Zhang, Yong-Xiang

    2006-05-01

    Alzheimer' s disease (AD) is the most common form of dementia in the elderly. AD is an invariably fatal neurodegenerative disorder with no effective treatment. Senescence-accelerated mouse prone 8 (SAMP8) is a model for studying age-related cognitive impairments and also is a good model to study brain aging and one of mouse model of AD. The technique of cDNA microarray can monitor the expression levels of thousands of genes simultaneously and can be used to study AD with the character of multi-mechanism, multi-targets and multi-pathway. In order to disclose the mechanism of AD and find the drug targets of AD, cDNA microarray containing 3136 cDNAs amplified from the suppression subtracted cDNA library of hippocampus of SAMP8 and SAMR1 was prepared with 16 blocks and 14 x 14 pins, the housekeeping gene beta-actin and G3PDH as inner conference. The background of this microarray was low and unanimous, and dots divided evenly. The conditions of hybridization and washing were optimized during the hybridization of probe and target molecule. After the data of hybridization analysis, the differential expressed cDNAs were sequenced and analyzed by the bioinformatics, and some of genes were quantified by the real time RT-PCR and the reliability of this cDNA microarray were validated. This cDNA microarray may be the good means to select the differential expressed genes and disclose the molecular mechanism of SAMP8's brain aging and AD.

  4. [Cloning and characterization of a novel rat gene RSD-7 differentially expressed in testis].

    PubMed

    Zhang, Xiao-dong; Gou, Da-wei; Miao, Shi-ying; Zhang, Jian-chao; Zong, Shu-dong; Wang, Lin-fang

    2003-06-01

    To isolate and identify the differentially expressed genes in spermatogenesis for the understanding molecular mechanism of spermatogenesis. Screening of the cDNA library, Northern blot, expression and purification in E. coli with GST expression system, immunocytochemical staining of testis sections were used. (1) A cDNA fragment designated as RSD-7 was isolated from rat testis cDNA library. It was 1,238 bp in length, coding a protein of 232 amino acids with the GenBank accession number AF315467. The encoding protein of RSD-7 cDNA had a Ubiquitin-like domain. (2) Northern blot indicated that RSD-7 was uniquely expressed in rat testis, and in the testis RSD-7 emerged on the 30th postnatal day and expressed until 120th postnatal day. (3) Expression and purification of RSD-7 protein in E. coli with GST expression system and were used to obtain anti-RSD-7 antibody. (4) Immunolocalization of RSD-7 in rat testis revealed that it is expressed only in Sertoli cells. Transcription pattern of RSD-7 and localization of RSD-7 protein in testis have been made, which established the base for the functional study of RSD-7.

  5. Identification of genes differentially expressed in association with acquired cisplatin resistance

    PubMed Central

    Johnsson, A; Zeelenberg, I; Min, Y; Hilinski, J; Berry, C; Howell, S B; Los, G

    2000-01-01

    The goal of this study was to identify genes whose mRNA levels are differentially expressed in human cells with acquired cisplatin (cDDP) resistance. Using the parental UMSCC10b head and neck carcinoma cell line and the 5.9-fold cDDP-resistant subline, UMSCC10b/Pt-S15, two suppressive subtraction hybridization (SSH) cDNA libraries were prepared. One library represented mRNAs whose levels were increased in the cDDP resistant variant (the UP library), the other one represented mRNAs whose levels were decreased in the resistant cells (the DOWN library). Arrays constructed with inserts recovered from these libraries were hybridized with SSH products to identify truly differentially expressed elements. A total of 51 cDNA fragments present in the UP library and 16 in the DOWN library met the criteria established for differential expression. The sequences of 87% of these cDNA fragments were identified in Genbank. Among the mRNAs in the UP library that were frequently isolated and that showed high levels of differential expression were cytochrome oxidase I, ribosomal protein 28S, elongation factor 1α, α-enolase, stathmin, and HSP70. The approach taken in this study permitted identification of many genes never before linked to the cDDP-resistant phenotype. © 2000 Cancer Research Campaign PMID:10993653

  6. Screening and identification of gastric adenocarcinoma metastasis-related genes by using cDNA microarray coupled to FDD-PCR.

    PubMed

    Wang, Jian-Hua; Chen, Shi-Shu

    2002-07-01

    To clone gastric adenocarcinoma metastasis related genes, RF-1 cell line (primary tumor of a gastric adenocarcinoma patient ) and RF-48 cell line (its metastatic counterpart) were used as a model for studying the molecular mechanism of tumor metastasis. Two fluorescent cDNA probes, labeled with Cy3 and Cy5 dyes, were prepared from RF-1 and RF-48 mRNA samples by reverse transcription method. The two color probes were then mixed and hybridized to the cDNA chip constructed by double-dots of 4 096 human genes, and scanned at two wavelengths. The experiment was repeated for 2 times. Differential expression genes from the above two cells were analyzed using the computer. 138 in all genes (3.4%) revealed differential expression in RF-48 cells compared with RF-1 cells: 81(2.1%) genes revealed apparent up-regulation, and 56(1.3%) genes revealed down-regulation. 45 genes involved in gastric adenocarcinoma metastasis were cloned using fluorescent differential display-PCR (FDD-PCR), including 3 novel genes. There were 7 differential expression genes that agreed with each other in two detection methods. The possible roles of some differential expressed genes, which maybe involved in the mechanism of tumor metastasis, were discussed. cDNA chip was used to analyze gene expression in a high-throughput and large scale manner, in combination with FDD-PCR for cloning unknown novel genes. In conclusion, some genes related to metastasis were preliminarily scanned, which would contribute to disclose the molecular mechanism of gastric adenocarcinoma metastasis.

  7. [Cloning and expressing of cyclophilin B gene from Schistosoma japonnicum and the analysis of immunoprotective effect].

    PubMed

    Peng, Jinbiao; Han, Hongxiao; Hong, Yang; Wang, Yan; Guo, Fanji; Shi, Yaojun; Fu, Zhiqiang; Liu, Jinming; Cheng, Guofeng; Lin, Jiaojiao

    2010-03-01

    The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.

  8. [Construction of fetal mesenchymal stem cell cDNA subtractive library].

    PubMed

    Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao

    2002-04-01

    To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.

  9. BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.

    1998-01-01

    We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.

  10. Screening and identification of gastric adenocarcinoma metastasis-related genes using cDNA microarray coupled to FDD-PCR.

    PubMed

    Wang, Jianhua; Chen, Shishu

    2002-10-01

    To identify certain gastric adenocarcinoma metastasis-related genes, an RF-1 cell line (primary tumor from a gastric adenocarcinoma patient) and an RF-48 cell line (its metastatic counterpart) were used as a model for studying the molecular mechanism of tumor metastasis. Two fluorescent cDNA probes, labeled with Cy3 and Cy5 dyes, were prepared from RF-1 and RF-48 mRNA samples by the reverse transcription method. The two color probes were then mixed and hybridized to a cDNA chip constructed with double-dots from 4,096 human genes, and scanned at two wavelengths. The experiment was repeated twice. Differentially expressedn genes from the above two cells were analyzed by use of computer. Of the total genes, 138 (3.4%) revealed differential expression in RF-48 cells compared with RF-1 cells: 81 (2.1%) genes revealed apparent up-regulation, and 56 (1.3%) genes revealed down-regulation. Forty-five genes involved in gastric adenocarcinoma metastasis were cloned using fluorescent differential display-PCR (FDD-PCR), including three novel genes. There were seven differentially expressed genes that presented the same behaviour under both detection methods. The possible roles of some differentially expressed genes, which may be involved in the mechanism of tumor metastasis, were discussed. cDNA chip was used to analyze gene expression in a high-throughput and large-scale manner in combination with FDD-PCR for cloning unknown novel genes. Some genes related to metastasis were preliminarily scanned, which would contribute to disclose the molecular mechanism of gastric adenocarcinoma metastasis and provide new targets for therapeutic intervention.

  11. Characterization of transformation related genes in oral cancer cells.

    PubMed

    Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M

    1998-04-16

    A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.

  12. Quantification of differential gene expression by multiplexed targeted resequencing of cDNA

    PubMed Central

    Arts, Peer; van der Raadt, Jori; van Gestel, Sebastianus H.C.; Steehouwer, Marloes; Shendure, Jay; Hoischen, Alexander; Albers, Cornelis A.

    2017-01-01

    Whole-transcriptome or RNA sequencing (RNA-Seq) is a powerful and versatile tool for functional analysis of different types of RNA molecules, but sample reagent and sequencing cost can be prohibitive for hypothesis-driven studies where the aim is to quantify differential expression of a limited number of genes. Here we present an approach for quantification of differential mRNA expression by targeted resequencing of complementary DNA using single-molecule molecular inversion probes (cDNA-smMIPs) that enable highly multiplexed resequencing of cDNA target regions of ∼100 nucleotides and counting of individual molecules. We show that accurate estimates of differential expression can be obtained from molecule counts for hundreds of smMIPs per reaction and that smMIPs are also suitable for quantification of relative gene expression and allele-specific expression. Compared with low-coverage RNA-Seq and a hybridization-based targeted RNA-Seq method, cDNA-smMIPs are a cost-effective high-throughput tool for hypothesis-driven expression analysis in large numbers of genes (10 to 500) and samples (hundreds to thousands). PMID:28474677

  13. Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture.

    PubMed

    Akao, Takeshi; Gomi, Katsuya; Goto, Kuniyasu; Okazaki, Naoto; Akita, Osamu

    2002-07-01

    In solid-state cultures (SC), Aspergillus oryzae shows characteristics such as high-level production and secretion of enzymes and hyphal differentiation with asexual development which are absent in liquid (submerged) culture (LC). It was predicted that many of the genes involved in the characteristics of A. oryzae in SC are differentially expressed between SC and LC. We generated two subtracted cDNA libraries with bi-directional cDNA subtractive hybridizations to isolate and identify such genes. Among them, we identified genes upregulated in or specific to SC, such as the AOS ( A. oryzae SC-specific gene) series, and those downregulated or not expressed in SC, such as the AOL ( A. oryzae LC-specific) series. Sequencing analyses revealed that the AOS series and the AOL series contain genes encoding extra- and intracellular enzymes and transport proteins. However, half were functionally unclassified by nucleotide sequences. Also, by expression profile, the AOS series comprised two groups. These gene products' molecular functions and physiological roles in SC await further investigation.

  14. Bovine mammary gene expression profiling during the onset of lactation.

    PubMed

    Gao, Yuanyuan; Lin, Xueyan; Shi, Kerong; Yan, Zhengui; Wang, Zhonghua

    2013-01-01

    Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE) on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d), day 7 before parturition (-7 d) and day 3 after parturition (+3 d)). Approximately 6.2 million (M), 5.8 million (M) and 6.1 million (M) 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d), respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR) of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I). Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II), and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  15. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni

    PubMed Central

    Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S

    2008-01-01

    Background Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. Results We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1α and EF-2. Conclusion Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination. PMID:19114004

  16. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni.

    PubMed

    Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S

    2008-12-29

    Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1alpha and EF-2. Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination.

  17. Differences in brain gene expression between sleep and waking as revealed by mRNA differential display and cDNA microarray technology.

    PubMed

    Cirelli, C; Tononi, G

    1999-06-01

    The consequences of sleep and sleep deprivation at the molecular level are largely unexplored. Knowledge of such molecular events is essential to understand the restorative processes occurring during sleep as well as the cellular mechanisms of sleep regulation. Here we review the available data about changes in neural gene expression across different behavioural states using candidate gene approaches such as in situ hybridization and immunocytochemistry. We then describe new techniques for systematic screening of gene expression in the brain, such as subtractive hybridization, mRNA differential display, and cDNA microarray technology, outlining advantages and disadvantages of these methods. Finally, we summarize our initial results of a systematic screening of gene expression in the rat brain across behavioural states using mRNA differential display and cDNA microarray technology. The expression pattern of approximately 7000 genes was analysed in the cerebral cortex of rats after 3 h of spontaneous sleep, 3 h of spontaneous waking, or 3 h of sleep deprivation. While the majority of transcripts were expressed at the same level among these three conditions, 14 mRNAs were modulated by sleep and waking. Six transcripts, four more expressed in waking and two more expressed in sleep, corresponded to novel genes. The eight known transcripts were all expressed at higher levels in waking than in sleep and included transcription factors and mitochondrial genes. A possible role for these known transcripts in mediating neural plasticity during waking is discussed.

  18. Isolation of stress responsive Psb A gene from rice (Oryza sativa l.) using differential display.

    PubMed

    Tyagi, Aruna; Chandra, Arti

    2006-08-01

    Differential display (DD) experiments were performed on drought-tolerant rice (Oryza sativa L.) genotype N22 to identify both upregulated and downregulated partial cDNAs with respect to moisture stress. DNA polymorphism was detected between drought-stressed and control leaf tissues on the DD gels. A partial cDNA showing differential expression, with respect to moisture stress was isolated from the gel. Northern blotting analysis was performed using this cDNA as a probe and it was observed that mRNA corresponding to this transcript was accumulated to high level in rice leaves under water deficit stress. At the DNA sequence level, the partial cDNA showed homology with psb A gene encoding for Dl protein.

  19. Differences in expression of retinal pigment epithelium mRNA between normal canines

    PubMed Central

    2004-01-01

    Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545

  20. A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.

    PubMed

    Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S

    2003-06-01

    The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.

  1. Distinct profiles of expressed sequence tags during intestinal regeneration in the sea cucumber Holothuria glaberrima

    PubMed Central

    Rojas-Cartagena, Carmencita; Ortíz-Pineda, Pablo; Ramírez-Gómez, Francisco; Suárez-Castillo, Edna C.; Matos-Cruz, Vanessa; Rodríguez, Carlos; Ortíz-Zuazaga, Humberto; García-Arrarás, José E.

    2010-01-01

    Repair and regeneration are key processes for tissue maintenance, and their disruption may lead to disease states. Little is known about the molecular mechanisms that underline the repair and regeneration of the digestive tract. The sea cucumber Holothuria glaberrima represents an excellent model to dissect and characterize the molecular events during intestinal regeneration. To study the gene expression profile, cDNA libraries were constructed from normal, 3-day, and 7-day regenerating intestines of H. glaberrima. Clones were randomly sequenced and queried against the nonredundant protein database at the National Center for Biotechnology Information. RT-PCR analyses were made of several genes to determine their expression profile during intestinal regeneration. A total of 5,173 sequences from three cDNA libraries were obtained. About 46.2, 35.6, and 26.2% of the sequences for the normal, 3-days, and 7-days cDNA libraries, respectively, shared significant similarity with known sequences in the protein database of GenBank but only present 10% of similarity among them. Analysis of the libraries in terms of functional processes, protein domains, and most common sequences suggests that a differential expression profile is taking place during the regeneration process. Further examination of the expressed sequence tag dataset revealed that 12 putative genes are differentially expressed at significant level (R > 6). Experimental validation by RT-PCR analysis reveals that at least three genes (unknown C-4677-1, melanotransferrin, and centaurin) present a differential expression during regeneration. These findings strongly suggest that the gene expression profile varies among regeneration stages and provide evidence for the existence of differential gene expression. PMID:17579180

  2. Fibrinolysis in Tumor Associated Angiogenesis

    DTIC Science & Technology

    2005-07-01

    tPA expression in mammary vessel assays and in animals with use of retroviral vectors to deliver antisense RNA . We still intend to use that strategy...pads of nude mice. RNA obtained from tumor- and mam- mary fat pad-associated endothelial cells was used to synthesize cDNA and cDNA libraries, which... RNA (mRNA) for tPA and MT1-MMP, with some upregulation of uPA expression. BODY 1. Confirm differential expression of tPA and MT1-MIP with GAPDH control

  3. [Identification of genes that are specifically/preferentially expressed in developing cotton fibers by mRNA fluorescence differential display (FDD)].

    PubMed

    Sun, Jie; Li, Yuan-Li; Wang, Ruo-Hai; Xia, Gui-Xian

    2004-01-01

    Fluorescence differential display (FDD) technique was used to identify genes that are specifically or preferentially expressed in different developmental stages of cotton fiber cells. One hundred and nine differentially displayed cDNA fragments were isolated using 9, 21 and 27 DPA (days postanthesis) fibers as experimental materials. By a combination of two rounds of reverse Northern hybridization and Northern blot analyses, a number of such cDNA fragments were proved to represent fiber-specific/preferential genes. Sequencing determination and database searching indicated that most of these genes are novel. This work is an important step towards cloning the full-length cDNAs and characterizing the cellular functions of aforementioned genes in fiber development.

  4. NHE10, a novel osteoclast-specific member of the Na{sup +}/H{sup +} exchanger family, regulates osteoclast differentiation and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seoung Hoon; Kim, Taesoo; Park, Eui-Soon

    2008-05-02

    Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functionalmore » roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na{sup +}/H{sup +} exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-{kappa}B ligand signaling and is required for OC differentiation and survival.« less

  5. Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Link.

    PubMed

    Vielle-Calzada, J P; Nuccio, M L; Budiman, M A; Thomas, T L; Burson, B L; Hussey, M A; Wing, R A

    1996-12-01

    Limited emphasis has been given to the molecular study of apomixis, an asexual method of reproduction where seeds are produced without fertilization. Most buffelgrass (Pennisetum ciliare (L.) Link syn = Cenchrus ciliaris L.) genotypes reproduce by obligate apomixis (apospory); however, rare sexual plants have been recovered. A modified differential display procedure was used to compare gene expression in unpollinated ovaries containing ovules with either sexual or apomictic female gametophytes. The modification incorporated end-labeled poly(A)+ anchored primers as the only isotopic source, and was a reliable and consistent approach for detecting differentially displayed transcripts. Using 20 different decamers and two anchor primers, 2268 cDNA fragments between 200 and 600 bp were displayed. From these, eight reproducible differentially displayed cDNAs were identified and cloned. Based on northern analysis, one cDNA was detected in only the sexual ovaries, two cDNAs in only apomictic ovaries and one cDNA was present in both types of ovaries. Three fragments could not be detected and one fragment was detected in ovaries, stems, and leaves. Comparison of gene expression during sexual and apomictic development in buffelgrass represents a new model system and a strategy for investigating female reproductive development in the angiosperms.

  6. Heterologous Array Analysis in Pinaceae: Hybridization of Pinus Taeda cDNA Arrays With cDNA From Needles and Embryogenic Cultures of P. Taeda, P. Sylvestris or Picea Abies

    PubMed Central

    van Zyl, Leonel; von Arnold, Sara; Bozhkov, Peter; Chen, Yongzhong; Egertsdotter, Ulrika; MacKay, John; Sederoff, Ronald R.; Shen, Jing; Zelena, Lyubov

    2002-01-01

    Hybridization of labelled cDNA from various cell types with high-density arrays of expressed sequence tags is a powerful technique for investigating gene expression. Few conifer cDNA libraries have been sequenced. Because of the high level of sequence conservation between Pinus and Picea we have investigated the use of arrays from one genus for studies of gene expression in the other. The partial cDNAs from 384 identifiable genes expressed in differentiating xylem of Pinus taeda were printed on nylon membranes in randomized replicates. These were hybridized with labelled cDNA from needles or embryogenic cultures of Pinus taeda, P. sylvestris and Picea abies, and with labelled cDNA from leaves of Nicotiana tabacum. The Spearman correlation of gene expression for pairs of conifer species was high for needles (r2 = 0.78 − 0.86), and somewhat lower for embryogenic cultures (r2 = 0.68 − 0.83). The correlation of gene expression for tobacco leaves and needles of each of the three conifer species was lower but sufficiently high (r2 = 0.52 − 0.63) to suggest that many partial gene sequences are conserved in angiosperms and gymnosperms. Heterologous probing was further used to identify tissue-specific gene expression over species boundaries. To evaluate the significance of differences in gene expression, conventional parametric tests were compared with permutation tests after four methods of normalization. Permutation tests after Z-normalization provide the highest degree of discrimination but may enhance the probability of type I errors. It is concluded that arrays of cDNA from loblolly pine are useful for studies of gene expression in other pines or spruces. PMID:18629264

  7. Differentially expressed genes of Coptotermes formosanus (Isoptera: Rhinotermitidae) challenged by chemical insecticides.

    PubMed

    Zhang, Yi; Zhao, Yuanyuan; Qiu, Xuehong; Han, Richou

    2013-08-01

    Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) termites are harmful social insects to wood constructions. The current control methods heavily depend on the chemical insecticides with increasing resistance. Analysis of the differentially expressed genes mediated by chemical insecticides will contribute to the understanding of the termite resistance to chemicals and to the establishment of alternative control measures. In the present article, a full-length cDNA library was constructed from the termites induced by a mixture of commonly used insecticides (0.01% sulfluramid and 0.01% triflumuron) for 24 h, by using the RNA ligase-mediated Rapid Amplification cDNA End method. Fifty-eight differentially expressed clones were obtained by polymerase chain reaction and confirmed by dot-blot hybridization. Forty-six known sequences were obtained, which clustered into 33 unique sequences grouped in 6 contigs and 27 singlets. Sixty-seven percent (22) of the sequences had counterpart genes from other organisms, whereas 33% (11) were undescribed. A Gene Ontology analysis classified 33 unique sequences into different functional categories. In general, most of the differential expression genes were involved in binding and catalytic activity.

  8. Molecular cloning and characterization of a new basic peroxidase cDNA from soybean hypocotyls infected with Phytophthora sojae f.sp. glycines.

    PubMed

    Yi, S Y; Hwang, B K

    1998-10-31

    Differential display techniques were used to isolate cDNA clones corresponding to genes which were expressed in soybean hypocotyls by Phytophthora sojae f.sp. glycines infection. With a partial cDNA clone C20CI4 from the differential display PCR as a probe, a new basic peroxidase cDNA clone, designated GMIPER1, was isolated from a cDNA library of soybean hypocotyls infected with P. sojae f.sp. glycines. Sequence analysis revealed that the peroxidase clone encodes a mature protein of 35,813 Da with a putative signal peptide of 27 amino acids in its N-terminus. The amino acid sequence of the soybean peroxidase GMIPER1 is between 54-75% identical to other plant peroxidases including a soybean seed coat peroxidase. Southern blot analysis indicated that multiple copies of sequences related to GMIPER1 exist in the soybean genome. The mRNAs corresponding to the GMIPER1 cDNA accumulated predominantly in the soybean hypocotyls infected with the incompatible race of P. sojae f.sp. glycines, but were expressed at low levels in the compatible interaction. Soybean GMIPER1 mRNAs were not expressed in hypocotyls, leaves, stems, and roots of soybean seedlings. However, treatments with ethephon, salicylic acid or methyl jasmonate induced the accumulation of the GMIPER1 mRNAs in the different organs of soybean. These results suggest that the GMIPER1 gene encoding a putative pathogen-induced peroxidase may play an important role in induced resistance of soybean to P. sojae f.sp. glycines and in response to various external stresses.

  9. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells.

    PubMed

    Kobayashi, Masakatsu; Taniura, Hideo; Yoshikawa, Kazuaki

    2002-11-01

    Necdin is expressed predominantly in postmitotic neurons, and ectopic expression of this protein strongly suppresses cell growth. Necdin has been implicated in the pathogenesis of Prader-Willi syndrome, a human neurodevelopmental disorder associated with genomic imprinting. Here we demonstrate that ectopic expression of necdin induces a neuronal phenotype in neuroblastoma cells. Necdin was undetectable in mouse neuroblastoma N1E-115 cells under undifferentiated and differentiated conditions. N1E-115 cells transfected with necdin cDNA showed morphological differentiation such as neurite outgrowth and expression of the synaptic marker proteins synaptotagmin and synaptophysin. In addition, Western blot analysis of the retinoblastoma protein (Rb) family members Rb, p130, and p107 revealed that necdin cDNA transfectants contained an increased level of p130 and a reduced level of p107, a pattern seen in differentiated G(0) cells. The transcription factors E2F1 and E2F4 physically interacted with necdin via their carboxyl-terminal transactivation domains, but only E2F1 abrogated necdin-induced growth arrest and neurite outgrowth of neuroblastoma cells. Overexpression of E2F1 in differentiated N1E-115 cells induced apoptosis, which was antagonized by co-expression of necdin. These results suggest that necdin promotes the differentiation and survival of neurons through its antagonistic interactions with E2F1.

  10. Differential gene expression for Curvularia eragrostidis pathogenic incidence in crabgrass (Digitaria sanguinalis) revealed by cDNA-AFLP analysis.

    PubMed

    Wang, Jianshu; Wang, Xuemin; Yuan, Bohua; Qiang, Sheng

    2013-01-01

    Gene expression profiles of Digitaria sanguinalis infected by Curvularia eragrostidis strain QZ-2000 at two concentrations of conidia and two dew durations were analyzed by cDNA amplified fragment length polymorphisms (cDNA-AFLP). Inoculum strength was more determinant of gene expression than dew duration. A total of 256 primer combinations were used for selective amplification and 1214 transcript-derived fragments (TDFs) were selected for their differential expression. Of these, 518 up-regulated differentially expressed TDFs were identified. Forty-six differential cDNA fragments were chosen to be cloned and 35 of them were successfully cloned and sequenced, of which 25 were homologous to genes of known function according to the GenBank database. Only 6 genes were up-regulated in Curvularia eragrostidis-inoculated D. sanguinalis, with functions involved in signal transduction, energy metabolism, cell growth and development, stress responses, abscisic acid biosynthesis and response. It appears that a few pathways may be important parts of the pathogenic strategy of C. eragrostidis strain QZ-2000 on D. sanguinalis. Our study provides the fundamentals to further study the pathogenic mechanism, screen for optimal C. eragrostidis strains as potential mycoherbicide and apply this product to control D. sanguinalis.

  11. Mutation spectrum and differential gene expression in cystic and solid vestibular schwannoma.

    PubMed

    Zhang, Zhihua; Wang, Zhaoyan; Sun, Lianhua; Li, Xiaohua; Huang, Qi; Yang, Tao; Wu, Hao

    2014-03-01

    We sought to characterize the mutation spectrum of NF2 and the differential gene expression in cystic and solid vestibular schwannomas. We collected tumor tissue and blood samples of 31 cystic vestibular schwannomas and 114 solid vestibular schwannomas. Mutation screening of NF2 was performed in both tumor and blood DNA samples of all patients. cDNA microarray was used to analyze the differential gene expression between 11 cystic vestibular schwannomas and 6 solid vestibular schwannomas. Expression levels of top candidate genes were verified by quantitative reverse transcription PCR. NF2 mutations were identified in 34.5% of sporadic vestibular schwannomas, with all mutations being exclusively somatic. No significant difference was found between the mutation detection rates of cystic vestibular schwannoma (35.5%) and solid vestibular schwannoma (34.2%). cDNA microarray analysis detected a total of 46 differentially expressed genes between the cystic vestibular schwannoma and solid vestibular schwannoma samples. The significantly decreased expression of four top candidate genes, C1orf130, CNTF, COL4A3, and COL4A4, was verified by quantitative reverse transcription PCR. NF2 mutations are not directly involved in the cystic formation of vestibular schwannoma. In addition, the differential gene expression of cystic vestibular schwannoma reported in our study may provide useful insights into the molecular mechanism underlying this process.

  12. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    PubMed Central

    2013-01-01

    Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. Conclusions The two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer-related gene. ERGIC3 may play an active role in the development and progression of lung cancer. PMID:23374247

  13. Normal uniform mixture differential gene expression detection for cDNA microarrays

    PubMed Central

    Dean, Nema; Raftery, Adrian E

    2005-01-01

    Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE) detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002) [1]. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM), and Empirical Bayes for microarrays (EBarrays) with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at . PMID:16011807

  14. Influence of age, sex, and strength training on human muscle gene expression determined by microarray

    PubMed Central

    ROTH, STEPHEN M.; FERRELL, ROBERT E.; PETERS, DAVID G.; METTER, E. JEFFREY; HURLEY, BEN F.; ROGERS, MARC A.

    2010-01-01

    The purpose of this study was to determine the influence of age, sex, and strength training (ST) on large-scale gene expression patterns in vastus lateralis muscle biopsies using high-density cDNA microarrays and quantitative PCR. Muscle samples from sedentary young (20–30 yr) and older (65–75 yr) men and women (5 per group) were obtained before and after a 9-wk unilateral heavy resistance ST program. RNA was hybridized to cDNA filter microarrays representing ~4,000 known human genes and comparisons were made among arrays to determine differential gene expression as a result of age and sex differences, and/or response to ST. Sex had the strongest influence on muscle gene expression, with differential expression (>1.7-fold) observed for ~200 genes between men and women (~75% with higher expression in men). Age contributed to differential expression as well, as ~50 genes were identified as differentially expressed (>1.7-fold) in relation to age, representing structural, metabolic, and regulatory gene classes. Sixty-nine genes were identified as being differentially expressed (>1.7-fold) in all groups in response to ST, and the majority of these were downregulated. Quantitative PCR was employed to validate expression levels for caldesmon, SWI/SNF (BAF60b), and four-and-a-half LIM domains 1. These significant differences suggest that in the analysis of skeletal muscle gene expression issues of sex, age, and habitual physical activity must be addressed, with sex being the most critical variable. PMID:12209020

  15. Optimization of cDNA microarrays procedures using criteria that do not rely on external standards.

    PubMed

    Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Laegreid, Astrid

    2007-10-18

    The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish.

  16. Optimization of cDNA microarrays procedures using criteria that do not rely on external standards

    PubMed Central

    Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Lægreid, Astrid

    2007-01-01

    Background The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. Results We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. Conclusion The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish. PMID:17949480

  17. Construction of a cDNA microarray derived from the ascidian Ciona intestinalis.

    PubMed

    Azumi, Kaoru; Takahashi, Hiroki; Miki, Yasufumi; Fujie, Manabu; Usami, Takeshi; Ishikawa, Hisayoshi; Kitayama, Atsusi; Satou, Yutaka; Ueno, Naoto; Satoh, Nori

    2003-10-01

    A cDNA microarray was constructed from a basal chordate, the ascidian Ciona intestinalis. The draft genome of Ciona has been read and inferred to contain approximately 16,000 protein-coding genes, and cDNAs for transcripts of 13,464 genes have been characterized and compiled as the "Ciona intestinalis Gene Collection Release I". In the present study, we constructed a cDNA microarray of these 13,464 Ciona genes. A preliminary experiment with Cy3- and Cy5-labeled probes showed extensive differential gene expression between fertilized eggs and larvae. In addition, there was a good correlation between results obtained by the present microarray analysis and those from previous EST analyses. This first microarray of a large collection of Ciona intestinalis cDNA clones should facilitate the analysis of global gene expression and gene networks during the embryogenesis of basal chordates.

  18. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE

    PubMed Central

    Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.

    2010-01-01

    Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258

  19. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  20. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray.

    PubMed

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-03-01

    To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.

  1. Identification of genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig.

    PubMed

    Komatsu, Yuuta; Sukegawa, Shin; Yamashita, Mai; Katsuda, Naoki; Tong, Bin; Ohta, Takeshi; Kose, Hiroyuki; Yamada, Takahisa

    2016-06-01

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from musculus longissimus muscle tissues of selected pigs with extreme expected breeding values at the age of 100 kg. Three upregulated genes (EEF1A2, TSG101 and TTN) and six downregulated genes (ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7) in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis confirmed difference in expression profiles of the identified genes in musculus longissimus muscle tissues between the two Landrace weanling pig groups with divergent genetic propensity for growth rate. Further, differential expression of the identified genes except for the TTN was validated by Western blot analysis. Additionally, the eight genes other than the ATP5C1 colocalized with the same chromosomal positions as QTLs that have been previously identified for growth rate traits. Finally, the changes of expression predicted from gene function suggested association of upregulation of expression of the EEF1A2, TSG101 and TTN genes and downregulation of the ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7 gene expression with increased growth rate. The identified genes will provide an important insight in understanding the molecular mechanism underlying growth rate in Landrace pig breed.

  2. Genomic resources for songbird research and their use in characterizing gene expression during brain development

    PubMed Central

    Li, XiaoChing; Wang, Xiu-Jie; Tannenhauser, Jonathan; Podell, Sheila; Mukherjee, Piali; Hertel, Moritz; Biane, Jeremy; Masuda, Shoko; Nottebohm, Fernando; Gaasterland, Terry

    2007-01-01

    Vocal learning and neuronal replacement have been studied extensively in songbirds, but until recently, few molecular and genomic tools for songbird research existed. Here we describe new molecular/genomic resources developed in our laboratory. We made cDNA libraries from zebra finch (Taeniopygia guttata) brains at different developmental stages. A total of 11,000 cDNA clones from these libraries, representing 5,866 unique gene transcripts, were randomly picked and sequenced from the 3′ ends. A web-based database was established for clone tracking, sequence analysis, and functional annotations. Our cDNA libraries were not normalized. Sequencing ESTs without normalization produced many developmental stage-specific sequences, yielding insights into patterns of gene expression at different stages of brain development. In particular, the cDNA library made from brains at posthatching day 30–50, corresponding to the period of rapid song system development and song learning, has the most diverse and richest set of genes expressed. We also identified five microRNAs whose sequences are highly conserved between zebra finch and other species. We printed cDNA microarrays and profiled gene expression in the high vocal center of both adult male zebra finches and canaries (Serinus canaria). Genes differentially expressed in the high vocal center were identified from the microarray hybridization results. Selected genes were validated by in situ hybridization. Networks among the regulated genes were also identified. These resources provide songbird biologists with tools for genome annotation, comparative genomics, and microarray gene expression analysis. PMID:17426146

  3. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Halloran, B. P.; Morey-Holton, E. R.; Bikle, D. D.

    1997-01-01

    Loss of weight bearing in the growing rat decreases bone formation, osteoblast numbers, and bone maturation in unloaded bones. These responses suggest an impairment of osteoblast proliferation and differentiation. To test this assumption, we assessed the effects of skeletal unloading using an in vitro model of osteoprogenitor cell differentiation. Rats were hindlimb elevated for 0 (control), 2, or 5 days, after which their tibial bone marrow stromal cells (BMSCs) were harvested and cultured. Five days of hindlimb elevation led to significant decreases in proliferation, alkaline phosphatase (AP) enzyme activity, and mineralization of BMSC cultures. Differentiation of BMSCs was analyzed by quantitative competitive polymerase chain reaction of cDNA after 10, 15, 20, and 28 days of culture. cDNA pools were analyzed for the expression of c-fos (an index of proliferation), AP (an index of early osteoblast differentiation), and osteocalcin (a marker of late differentiation). BMSCs from 5-day unloaded rats expressed 50% less c-fos, 61% more AP, and 35% less osteocalcin mRNA compared with controls. These data demonstrate that cultured osteoprogenitor cells retain a memory of their in vivo loading history and indicate that skeletal unloading inhibits proliferation and differentiation of osteoprogenitor cells in vitro.

  4. Cloning of rat MLH1 and expression analysis of MSH2, MSH3, MSH6, and MLH1 during spermatogenesis.

    PubMed

    Geeta Vani, R; Varghese, C M; Rao, M R

    1999-12-15

    The mismatch repair system has been highly conserved in various species. In eukaryotic cells, the Mut S and Mut L homologues play crucial roles in both DNA mismatch repair and meiotic recombination. A full-length rat cDNA clone for rat MLH1 has been constructed using the RT-PCR method. The cDNA has an open reading frame of 2274 nucleotides for a protein of 757 amino acids. We have also obtained partial cDNA clones for MSH3 and MSH6. Northern blot analysis of rat MLH1, MSH2, MSH3, and MSH6 in the testes of rats of different ages showed differential expression of these genes as a function of developmental maturation of the testes. The expression analysis suggests that MSH3 may have a more predominant role in the meiotic recombination process. Copyright 1999 Academic Press.

  5. Differential display cloning of a novel rat cDNA (RNB6) that shows high expression in the neonatal brain revealed a member of Ena/VASP family.

    PubMed

    Ohta, S; Mineta, T; Kimoto, M; Tabuchi, K

    1997-08-18

    We have used the differential display method to identify genes that control the neural cell development in CNS. Screening of the differential display bands that showed higher expression at neonate than at adult age enabled us to identify a novel rat cDNA (RNB6) coding for a protein of 393 amino acid residues. Database search revealed this gene as a rat homologue of the murine EVL, a member of Ena/VASP protein family that is implicated to be involved in the control of cell motility through actin filament assembly by their GP5 motifs. Although the precise characterization of EVL was not reported, our Northern blot and immunoblot analyses demonstrated that RNB6 expression in the brain gradually increases during embryonic development, reaches maximum at postnatal day 1 and decreases thereafter. Studies of tissue distribution revealed the expression of RNB6 not only in the brain but also in the spleen, thymus and testis. Histochemical analyses showed that RNB6 protein is mainly expressed in neurons and may be expressed in neural fibers. Our analyses suggest that RNB6 is critically involved in the development of CNS probably through the control of neural cell motility and/or including neuronal fiber extension.

  6. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis.

    PubMed

    Fan, Qing-Jie; Yan, Feng-Xia; Qiao, Guang; Zhang, Bing-Xue; Wen, Xiao-Peng

    2014-01-01

    Drought is one of the most severe threats to the growth, development and yield of plant. In order to unravel the molecular basis underlying the high tolerance of pitaya (Hylocereus undatus) to drought stress, suppression subtractive hybridization (SSH) and cDNA microarray approaches were firstly combined to identify the potential important or novel genes involved in the plant responses to drought stress. The forward (drought over drought-free) and reverse (drought-free over drought) suppression subtractive cDNA libraries were constructed using in vitro shoots of cultivar 'Zihonglong' exposed to drought stress and drought-free (control). A total of 2112 clones, among which half were from either forward or reverse SSH library, were randomly picked up to construct a pitaya cDNA microarray. Microarray analysis was carried out to verify the expression fluctuations of this set of clones upon drought treatment compared with the controls. A total of 309 expressed sequence tags (ESTs), 153 from forward library and 156 from reverse library, were obtained, and 138 unique ESTs were identified after sequencing by clustering and blast analyses, which included genes that had been previously reported as responsive to water stress as well as some functionally unknown genes. Thirty six genes were mapped to 47 KEGG pathways, including carbohydrate metabolism, lipid metabolism, energy metabolism, nucleotide metabolism, and amino acid metabolism of pitaya. Expression analysis of the selected ESTs by reverse transcriptase polymerase chain reaction (RT-PCR) corroborated the results of differential screening. Moreover, time-course expression patterns of these selected ESTs further confirmed that they were closely responsive to drought treatment. Among the differentially expressed genes (DEGs), many are related to stress tolerances including drought tolerance. Thereby, the mechanism of drought tolerance of this pitaya genotype is a very complex physiological and biochemical process, in which multiple metabolism pathways and many genes were implicated. The data gained herein provide an insight into the mechanism underlying the drought stress tolerance of pitaya, as well as may facilitate the screening of candidate genes for drought tolerance. © 2013 Elsevier B.V. All rights reserved.

  7. Combining suppressive subtractive hybridization and cDNA microarrays to identify dietary phosphorus-responsive genes of the rainbow trout (Oncorhynchus mykiss) kidney.

    PubMed

    Lake, Jennifer; Gravel, Catherine; Koko, Gabriel Koffi D; Robert, Claude; Vandenberg, Grant W

    2010-03-01

    Phosphorus (P)-responsive genes and how they regulate renal adaptation to phosphorous-deficient diets in animals, including fish, are not well understood. RNA abundance profiling using cDNA microarrays is an efficient approach to study nutrient-gene interactions and identify these dietary P-responsive genes. To test the hypothesis that dietary P-responsive genes are differentially expressed in fish fed varying P levels, rainbow trout were fed a practical high-P diet (R20: 0.96% P) or a low-P diet (R0: 0.38% P) for 7 weeks. The differentially-expressed genes between dietary groups were identified and compared from the kidney by combining suppressive subtractive hybridization (SSH) with cDNA microarray analysis. A number of genes were confirmed by real-time PCR, and correlated with plasma and bone P concentrations. Approximately 54 genes were identified as potential dietary P-responsive after 7 weeks on a diet deficient in P according to cDNA microarray analysis. Of 18 selected genes, 13 genes were confirmed to be P-responsive at 7 weeks by real-time PCR analysis, including: iNOS, cytochrome b, cytochrome c oxidase subunit II , alpha-globin I, beta-globin, ATP synthase, hyperosmotic protein 21, COL1A3, Nkef, NDPK, glucose phosphate isomerase 1, Na+/H+ exchange protein and GDP dissociation inhibitor 2. Many of these dietary P-responsive genes responded in a moderate way (R0/R20 ratio: <2-3 or >0.5) and in a transient manner to dietary P limitation. In summary, renal adaptation to dietary P deficiency in trout involves changes in the expression of several genes, suggesting a profile of metabolic stress, since many of these differentially-expressed candidates are associated with the cellular adaptative responses. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  8. Differential cDNA cloning by enzymatic degrading subtraction (EDS).

    PubMed Central

    Zeng, J; Gorski, R A; Hamer, D

    1994-01-01

    We describe a new method, called enzymatic degrading subtraction (EDS), for the construction of subtractive libraries from PCR amplified cDNA. The novel features of this method are that i) the tester DNA is blocked by thionucleotide incorporation; ii) the rate of hybridization is accelerated by phenol-emulsion reassociation; and iii) the driver cDNA and hybrid molecules are enzymatically removed by digestion with exonucleases III and VII rather than by physical partitioning. We demonstrate the utility of EDS by constructing a subtractive library enriched for cDNAs expressed in adult but not in embryonic rat brains. Images PMID:7971268

  9. Identification of genes modulated in rheumatoid arthritis using complementary DNA microarray analysis of lymphoblastoid B cell lines from disease-discordant monozygotic twins.

    PubMed

    Haas, Christian S; Creighton, Chad J; Pi, Xiujun; Maine, Ira; Koch, Alisa E; Haines, G Kenneth; Ling, Song; Chinnaiyan, Arul M; Holoshitz, Joseph

    2006-07-01

    To identify disease-specific gene expression profiles in patients with rheumatoid arthritis (RA), using complementary DNA (cDNA) microarray analyses on lymphoblastoid B cell lines (LCLs) derived from RA-discordant monozygotic (MZ) twins. The cDNA was prepared from LCLs derived from the peripheral blood of 11 pairs of RA-discordant MZ twins. The RA twin cDNA was labeled with cy5 fluorescent dye, and the cDNA of the healthy co-twin was labeled with cy3. To determine relative expression profiles, cDNA from each twin pair was combined and hybridized on 20,000-element microarray chips. Immunohistochemistry and real-time polymerase chain reaction were used to detect the expression of selected gene products in synovial tissue from patients with RA compared with patients with osteoarthritis and normal healthy controls. In RA twin LCLs compared with healthy co-twin LCLs, 1,163 transcripts were significantly differentially expressed. Of these, 747 were overexpressed and 416 were underexpressed. Gene ontology analysis revealed many genes known to play a role in apoptosis, angiogenesis, proteolysis, and signaling. The 3 most significantly overexpressed genes were laeverin (a novel enzyme with sequence homology to CD13), 11beta-hydroxysteroid dehydrogenase type 2 (a steroid pathway enzyme), and cysteine-rich, angiogenic inducer 61 (a known angiogenic factor). The products of these genes, heretofore uncharacterized in RA, were all abundantly expressed in RA synovial tissues. Microarray cDNA analysis of peripheral blood-derived LCLs from well-controlled patient populations is a useful tool to detect RA-relevant genes and could help in identifying novel therapeutic targets.

  10. The heterogeneity of human mesenchymal stem cell preparations--evidence from simultaneous analysis of proteomes and transcriptomes.

    PubMed

    Wagner, Wolfgang; Feldmann, Robert E; Seckinger, Anja; Maurer, Martin H; Wein, Frederik; Blake, Jonathon; Krause, Ulf; Kalenka, Armin; Bürgers, Heinrich F; Saffrich, Rainer; Wuchter, Patrick; Kuschinsky, Wolfgang; Ho, Anthony D

    2006-04-01

    Mesenchymal stem cells (MSC) raise high hopes in clinical applications. However, the lack of common standards and a precise definition of MSC preparations remains a major obstacle in research and application of MSC. Whereas surface antigen markers have failed to precisely define this population, a combination of proteomic data and microarray data provides a new dimension for the definition of MSC preparations. In our continuing effort to characterize MSC, we have analyzed the differential transcriptome and proteome expression profiles of MSC preparations isolated from human bone marrow under two different expansion media (BM-MSC-M1 and BM-MSC-M2). In proteomics, 136 protein spots were unambiguously identified by MALDI-TOF-MS and corresponding cDNA spots were selected on our "Human Transcriptome cDNA Microarray." Combination of datasets revealed a correlation in differential gene expression and protein expression of BM-MSC-M1 vs BM-MSC-M2. Genes involved in metabolism were more highly expressed in BM-MSC-M1, whereas genes involved in development, morphogenesis, extracellular matrix, and differentiation were more highly expressed in BM-MSC-M2. Interchanging culture conditions for 8 days revealed that differential expression was retained in several genes whereas it was altered in others. Our results have provided evidence that homogeneous BM-MSC preparations can reproducibly be isolated under standardized conditions, whereas culture conditions exert a prominent impact on transcriptome, proteome, and cellular organization of BM-MSC.

  11. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses.

    PubMed

    Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G

    2003-07-22

    The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.

  12. Characterizing the stress/defense transcriptome of Arabidopsis

    PubMed Central

    Mahalingam, Ramamurthy; Gomez-Buitrago, AnaMaria; Eckardt, Nancy; Shah, Nigam; Guevara-Garcia, Angel; Day, Philip; Raina, Ramesh; Fedoroff, Nina V

    2003-01-01

    Background To understand the gene networks that underlie plant stress and defense responses, it is necessary to identify and characterize the genes that respond both initially and as the physiological response to the stress or pathogen develops. We used PCR-based suppression subtractive hybridization to identify Arabidopsis genes that are differentially expressed in response to ozone, bacterial and oomycete pathogens and the signaling molecules salicylic acid (SA) and jasmonic acid. Results We identified a total of 1,058 differentially expressed genes from eight stress cDNA libraries. Digital northern analysis revealed that 55% of the stress-inducible genes are rarely transcribed in unstressed plants and 17% of them were not previously represented in Arabidopsis expressed sequence tag databases. More than two-thirds of the genes in the stress cDNA collection have not been identified in previous studies as stress/defense response genes. Several stress-responsive cis-elements showed a statistically significant over-representation in the promoters of the genes in the stress cDNA collection. These include W- and G-boxes, the SA-inducible element, the abscisic acid response element and the TGA motif. Conclusions The stress cDNA collection comprises a broad repertoire of stress-responsive genes encoding proteins that are involved in both the initial and subsequent stages of the physiological response to abiotic stress and pathogens. This set of stress-, pathogen- and hormone-modulated genes is an important resource for understanding the genetic interactions underlying stress signaling and responses and may contribute to the characterization of the stress transcriptome through the construction of standardized specialized arrays. PMID:12620105

  13. Bioinformatics and expressional analysis of cDNA clones from floral buds

    NASA Astrophysics Data System (ADS)

    Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Cebula, Justyna; Hincha, Dirck; ZiÄ bska, Karolina; PlÄ der, Wojciech; Przybecki, Zbigniew

    2017-08-01

    The application of genomic approaches may serve as an initial step in understanding the complexity of biochemical network and cellular processes responsible for regulation and execution of many developmental tasks. The molecular mechanism of sex expression in cucumber is still not elucidated. A study of differential expression was conducted to identify genes involved in sex determination and floral organ morphogenesis. Herein, we present generation of expression sequence tags (EST) obtained by differential hybridization (DH) and subtraction technique (cDNA-DSC) and their characteristic features such as molecular function, involvement in biology processes, expression and mapping position on the genome.

  14. Differential gene expression related to Nora virus infection of Drosophila melanogaster

    PubMed Central

    Cordes, Ethan J.; Licking-Murray, Kellie D; Carlson, Kimberly A.

    2013-01-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. PMID:23603562

  15. Profiling differential gene expression of corals along a transect of waters adjacent to the Bermuda municipal dump.

    PubMed

    Morgan, Michael B; Edge, Sara E; Snell, Terry W

    2005-01-01

    A coral cDNA array containing 32 genes was used to examine the gene expression profiles of coral populations located at four sites that varied with distance from a semi-submerged municipal dump in Castle Harbour, Bermuda (previously identified as a point source of anthropogenic stressors). Genes on the array represent transcripts induced under controlled laboratory conditions to a variety of stressors both natural (temperature, sediment, salinity, darkness) and xenobiotic (heavy metals, pesticides, PAH) in origin. The gene expression profiles produced revealed information about the types of stressors. Consistent with other studies undertaken in Castle Harbour, the coral cDNA array detected responses to heavy metals, sedimentation, as well as oxidative stress.

  16. Molecular cloning and characterization of a cDNA encoding a novel apoplastic protein preferentially expressed in a shikonin-producing callus strain of Lithospermum erythrorhizon.

    PubMed

    Yamamura, Yoshimi; Sahin, F Pinar; Nagatsu, Akito; Mizukami, Hajime

    2003-04-01

    A cDNA (LEPS-2) encoding a novel cell wall protein was cloned from shikonin-producing callus tissues of Lithospermum erythrorhizon by differential display between a shikonin-producing culture strain and a non-producing strain. The LEPS-2 cDNA encoded a polypeptide of 184 amino acids. The deduced amino acid sequence exhibited no significant homology with known proteins. Expression of LEPS-2 gene as well as accumulation of LEPS-2 protein was highly correlated with shikonin production in L. erythrorhizon cells in culture. In the intact plant, expression of LEPS-2 was detected only in the roots where shikonin pigments accumulated. Cell fractionation experiments and immunocytochemical analysis showed that the protein was localized in the apoplast fraction of the cell walls. The shikonin pigments were also stored on the cell walls as oil droplets. These results indicate that expression of the LEPS-2 is closely linked with shikonin biosynthesis and the LEPS-2 protein may be involved in the intra-cell wall trapping of shikonin pigments.

  17. Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.

    PubMed

    Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo

    2003-02-13

    Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.

  18. cDNA microarray analysis of human keratinocytes cells of patients submitted to chemoradiotherapy and oral photobiomodulation therapy: pilot study.

    PubMed

    Antunes, Heliton S; Wajnberg, Gabriel; Pinho, Marcos B; Jorge, Natasha Andressa Nogueira; de Moraes, Joyce Luana Melo; Stefanoff, Claudio Gustavo; Herchenhorn, Daniel; Araújo, Carlos M M; Viégas, Celia Maria Pais; Rampini, Mariana P; Dias, Fernando L; de Araujo-Souza, Patricia Savio; Passetti, Fabio; Ferreira, Carlos G

    2018-01-01

    Oral mucositis is an acute toxicity that occurs in patients submitted to chemoradiotherapy to treat head and neck squamous cell carcinoma. In this study, we evaluated differences in gene expression in the keratinocytes of the oral mucosa of patients treated with photobiomodulation therapy and tried to associate the molecular mechanisms with clinical findings. From June 2009 to December 2010, 27 patients were included in a randomized double-blind pilot study. Buccal smears from 13 patients were obtained at days 1 and 10 of chemoradiotherapy, and overall gene expression of samples from both dates were analyzed by complementary DNA (cDNA) microarray. In addition, samples from other 14 patients were also collected at D1 and D10 of chemoradiotherapy for subsequent validation of cDNA microarray findings by qPCR. The expression array analysis identified 105 upregulated and 60 downregulated genes in our post-treatment samples when compared with controls. Among the upregulated genes with the highest fold change, it was interesting to observe the presence of genes related to keratinocyte differentiation. Among downregulated genes were observed genes related to cytotoxicity and immune response. The results indicate that genes known to be induced during differentiation of human epidermal keratinocytes were upregulated while genes associated with cytotoxicity and immune response were downregulated in the laser group. These results support previous clinical findings indicating that the lower incidence of oral mucositis associated with photobiomodulation therapy might be correlated to the activation of genes involved in keratinocyte differentiation.

  19. [Construction of forward and reverse subtracted cDNA libraries between muscle tissue of Meishan and Landrace pigs].

    PubMed

    Xu, De-Quan; Zhang, Yi-Bing; Xiong, Yuan-Zhu; Gui, Jian-Fang; Jiang, Si-Wen; Su, Yu-Hong

    2003-07-01

    Using suppression subtractive hybridization (SSH) technique, forward and reverse subtracted cDNA libraries were constructed between Longissimus muscles from Meishan and Landrace pigs. A housekeeping gene, G3PDH, was used to estimate the efficiency of subtractive cDNA. In two cDNA libraries, G3PDH was subtracted very efficiently at appropriate 2(10) and 2(5) folds, respectively, indicating that some differentially expressed genes were also enriched at the same folds and the two subtractive cDNA libraries were very successful. A total of 709 and 673 positive clones were isolated from forward and reverse subtracted cDNA libraries, respectively. Analysis of PCR showed that most of all plasmids in the clones contained 150-750 bp inserts. The construction of subtractive cDNA libraries between muscle tissue from different pig breeds laid solid foundations for isolating and identifying the genes determining muscle growth and meat quality, which will be important to understand the mechanism of muscle growth, determination of meat quality and practice of molecular breeding.

  20. Prediction of response to preoperative chemoradiotherapy and establishment of individualized therapy in advanced rectal cancer.

    PubMed

    Nakao, Toshihiro; Iwata, Takashi; Hotchi, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Nishi, Masaaki; Takasu, Chie; Eto, Shohei; Teraoku, Hiroki; Shimada, Mitsuo

    2015-10-01

    Preoperative chemoradiotherapy (CRT) has become the standard treatment for patients with locally advanced rectal cancer. However, no specific biomarker has been identified to predict a response to preoperative CRT. The aim of the present study was to assess the gene expression patterns of patients with advanced rectal cancer to predict their responses to preoperative CRT. Fifty-nine rectal cancer patients were subjected to preoperative CRT. Patients were randomly assigned to receive CRT with tegafur/gimeracil/oteracil (S-1 group, n=30) or tegafur-uracil (UFT group, n=29). Gene expression changes were studied with cDNA and miRNA microarray. The association between gene expression and response to CRT was evaluated. cDNA microarray showed that 184 genes were significantly differentially expressed between the responders and the non‑responders in the S-1 group. Comparatively, 193 genes were significantly differentially expressed in the responders in the UFT group. TBX18 upregulation was common to both groups whereas BTNL8, LOC375010, ADH1B, HRASLS2, LOC284232, GCNT3 and ALDH1A2 were significantly differentially lower in both groups when compared with the non-responders. Using miRNA microarray, we found that 7 and 16 genes were significantly differentially expressed between the responders and non-responders in the S-1 and UFT groups, respectively. miR-223 was significantly higher in the responders in the S-1 group and tended to be higher in the responders in the UFT group. The present study identified several genes likely to be useful for establishing individualized therapies for patients with rectal cancer.

  1. Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis

    PubMed Central

    Loftus, S. K.; Chen, Y.; Gooden, G.; Ryan, J. F.; Birznieks, G.; Hilliard, M.; Baxevanis, A. D.; Bittner, M.; Meltzer, P.; Trent, J.; Pavan, W.

    1999-01-01

    With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 × 10−9). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 × 10−8). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases. PMID:10430933

  2. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments.

    PubMed

    Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe

    2015-11-10

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.

  3. Comparison of global brain gene expression profiles between inbred long-sleep and inbred short-sleep mice by high-density gene array hybridization.

    PubMed

    Xu, Y; Ehringer, M; Yang, F; Sikela, J M

    2001-06-01

    Inbred long-sleep (ILS) and short-sleep (ISS) mice show significant central nervous system-mediated differences in sleep time for sedative dose of ethanol and are frequently used as a rodent model for ethanol sensitivity. In this study, we have used complementary DNA (cDNA) array hybridization methodology to identify genes that are differentially expressed between the brains of ILS and ISS mice. To carry out this analysis, we used both the gene discovery array (GDA) and the Mouse GEM 1 Microarray. GDA consists of 18,378 nonredundant mouse cDNA clones on a single nylon filter. Complex probes were prepared from total brain mRNA of ILS or ISS mice by using reverse transcription and 33P labeling. The labeled probes were hybridized in parallel to the gene array filters. Data from GDA experiments were analyzed with SQL-Plus and Oracle 8. The GEM microarray includes 8,730 sequence-verified clones on a glass chip. Two fluorescently labeled probes were used to hybridize a microarray simultaneously. Data from GEM experiments were analyzed by using the GEMTools software package (Incyte). Differentially expressed genes identified from each method were confirmed by relative quantitative reverse transcription-polymerase chain reaction (RT-PCR). A total of 41 genes or expressed sequence tags (ESTs) display significant expression level differences between brains of ILS and ISS mice after GDA, GEM1 hybridization, and quantitative RT-PCR confirmation. Among them, 18 clones were expressed higher in ILS mice, and 23 clones were expressed higher in ISS mice. The individual gene or EST's function and mapping information have been analyzed. This study identified 41 genes that are differentially expressed between brains of ILS and ISS mice. Some of them may have biological relevance in mediation of phenotypic variation between ILS and ISS mice for ethanol sensitivity. This study also demonstrates that parallel gene expression comparison with high-density cDNA arrays is a rapid and efficient way to discover potential genes and pathways involved in alcoholism and alcohol-related physiologic processes.

  4. MACF1 Overexpression by Transfecting the 21 kbp Large Plasmid PEGFP-C1A-ACF7 Promotes Osteoblast Differentiation and Bone Formation.

    PubMed

    Zhang, Yan; Yin, Chong; Hu, Lifang; Chen, Zhihao; Zhao, Fan; Li, Dijie; Ma, Jianhua; Ma, Xiaoli; Su, Peihong; Qiu, Wuxia; Yang, Chaofei; Wang, Pai; Li, Siyu; Zhang, Ge; Wang, Liping; Qian, Airong; Xian, Cory J

    2018-02-01

    Microtubule actin crosslinking factor 1 (MACF1) is a large spectraplakin protein known to have crucial roles in regulating cytoskeletal dynamics, cell migration, growth, and differentiation. However, its role and action mechanism in bone remain unclear. The present study investigated optimal conditions for effective transfection of the large plasmid PEGFP-C1A-ACF7 (∼21 kbp) containing full-length human MACF1 cDNA, as well as the potential role of MACF1 in bone formation. To enhance MACF1 expression, the plasmid was transfected into osteogenic cells by electroporation in vitro and into mouse calvaria with nanoparticles. Then, transfection efficiency, osteogenic marker expression, calvarial thickness, and bone formation were analyzed. Notably, MACF1 overexpression triggered a drastic increase in osteogenic gene expression, alkaline phosphatase activity, and matrix mineralization in vitro. Mouse calvarial thickness, mineral apposition rate, and osteogenic marker protein expression were significantly enhanced by local transfection. In addition, MACF1 overexpression promoted β-catenin expression and signaling. In conclusion, MACF1 overexpression by transfecting the large plasmid containing full-length MACF1 cDNA promotes osteoblast differentiation and bone formation via β-catenin signaling. Current data will provide useful experimental parameters for the transfection of large plasmids and a novel strategy based on promoting bone formation for prevention and therapy of bone disorders.

  5. Isolation and expression of homeobox genes from the embryonic chicken eye.

    PubMed

    Dhawan, R R; Schoen, T J; Beebe, D C

    1997-06-11

    To identify homeobox-containing genes that may play a role in the differentiation of ocular tissues. Total RNA was isolated from microdissected chicken embryo eye tissues at 3.5 days of development (embryonic day 3.5; E3.5). An "anchor-oligo-dT primer" was used for the synthesis of cDNA. Degenerate oligonucleotides designed from highly-conserved sequences in the third helix of the homeobox and the "anchor-primer" were used to amplify cDNAs by polymerase chain reaction (PCR). PCR products were cloned and sequenced. The spatial and temporal expression of selected transcripts was mapped by whole-mount in situ hybridization and northern blot analysis. After sequencing eighteen clones we identified a member of the distal-less family (dlx-3) in cDNA from presumptive neural retina and three chicken homologs of the Xenopus "anterior neural fold" (Xanf-1) in cDNA from anterior eye tissue. Dlx transcripts were mapped by in situ hybridization. Expression began at Hamburger and Hamilton stage 14 (E2.5) and was widely distributed in embryonic mesenchyme on E3 and E4. Expression increased in the retina during early development and persisted until after hatching. The one anf clone selected for further study was not detected by in situ or northern blot analysis. It is feasible to isolate homeobox cDNAs directly from microdissected embryonic tissues. Chicken dlx-3 mRNA has a wider distribution in the embryo than expected, based on the expression of the mouse homolog. Dlx-3 may play a role in establishing or maintaining the differentiation of the retina.

  6. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases.

    PubMed

    Dominguez-Puigjaner, E; LLop, I; Vendrell, M; Prat, S

    1997-07-01

    A cDNA clone (Ban17), encoding a protein homologous to pectate lyase, has been isolated from a cDNA library from climacteric banana fruit by means of differential screening. Northern analysis showed that Ban17 mRNA is first detected in early climacteric fruit, reaches a steady-state maximum at the climacteric peak, and declines thereafter in overripe fruit. Accumulation of the Ban17 transcript can be induced in green banana fruit by exogenous application of ethylene. The demonstrates that expression of this gene is under hormonal control, its induction being regulated by the rapid increase in ethylene production at the onset of ripening. The deduced amino acid sequence derived from the Ban17 cDNA shares significant identity with pectate lyases from pollen and plant pathogenic bacteria of the genus Erwinia. Similarity to bacterial pectate lyases that were proven to break down the pectic substances of the plant cell wall suggest that Ban17 might play a role in the loss of mesocarp firmness during fruit ripening.

  7. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    PubMed

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  8. Differential expression of a novel seven transmembrane domain protein in epididymal fat from aged and diabetic mice.

    PubMed

    Yang, H; Egan, J M; Rodgers, B D; Bernier, M; Montrose-Rafizadeh, C

    1999-06-01

    To identify novel seven transmembrane domain proteins from 3T3-L1 adipocytes, we used PCR to amplify 3T3-L1 adipocyte complementary DNA (cDNA) with primers homologous to the N- and C-termini of pancreatic glucagon-like peptide-1 (GLP-1) receptor. We screened a cDNA library prepared from fully differentiated 3T3-L1 adipocytes using a 500-bp cDNA PCR product probe. Herein describes the isolation and characterization of a 1.6-kb cDNA clone that encodes a novel 298-amino acid protein that we termed TPRA40 (transmembrane domain protein of 40 kDa regulated in adipocytes). TPRA40 has seven putative transmembrane domains and shows little homology with the known GLP-1 receptor or with other G protein-coupled receptors. The levels of TPRA40 mRNA and protein were higher in 3T3-L1 adipocytes than in 3T3-L1 fibroblasts. TPRA40 is present in a number of mouse and human tissues. Interestingly, TPRA40 mRNA levels were significantly increased by 2- to 3-fold in epididymal fat of 24-month-old mice vs. young controls as well as in db/db and ob/ob mice vs. nondiabetic control littermates. No difference in TPRA40 mRNA levels was observed in brain, heart, skeletal muscle, liver, or kidney. Furthermore, no difference in TPRA40 expression was detected in brown fat of ob/ob mice when compared with age-matched controls. Taken together, these data suggest that TPRA40 represents a novel membrane-associated protein whose expression in white adipose tissue is altered with aging and type 2 diabetes.

  9. Delayed expression of hpS2 and prolonged expression of CIP1/WAF1/SDI1 in human tumour cells irradiated with X-rays, fission neutrons or 1 GeV/nucleon Fe ions

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Harrison, G. H.; Zhou, X. J.; Vigneulle, R. M.; Ove, R.; McCready, W. A.; Xu, J. F.

    1999-01-01

    PURPOSE: Differences in gene expression underlie the phenotypic differences between irradiated and unirradiated cells. The goal was to identify late-transcribed genes following irradiations differing in quality, and to determine the RBE of 1 GeV/n Fe ions. MATERIALS AND METHODS: Clonogenic assay was used to determine the RBE of Fe ions. Differential hybridization to cDNA target clones was used to detect differences in expression of corresponding genes in mRNA samples isolated from MCF7 cells irradiated with iso-survival doses of Fe ions (0 or 2.5 Gy) or fission neutrons (0 or 1.2 Gy) 7 days earlier. Northern analysis was used to confirm differential expression of cDNA-specific mRNA and to examine expression kinetics up to 2 weeks after irradiation. RESULTS: Fe ion RBE values were between 2.2 and 2.6 in the lines examined. Two of 17 differentially expressed cDNA clones were characterized. hpS2 mRNA was elevated from 1 to 14 days after irradiation, whereas CIP1/WAF1/SDI1 remained elevated from 3 h to 14 days after irradiation. Induction of hpS2 mRNA by irradiation was independent of p53, whereas induction of CIP1/WAF1/SDI1 was observed only in wild-type p53 lines. CONCLUSIONS: A set of coordinately regulated genes, some of which are independent of p53, is associated with change in gene expression during the first 2 weeks post-irradiation.

  10. Differential gene expression related to Nora virus infection of Drosophila melanogaster.

    PubMed

    Cordes, Ethan J; Licking-Murray, Kellie D; Carlson, Kimberly A

    2013-08-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. Copyright © 2013. Published by Elsevier B.V.

  11. cDNA cloning of an intracellular form of the human interleukin 1 receptor antagonist associated with epithelium.

    PubMed Central

    Haskill, S; Martin, G; Van Le, L; Morris, J; Peace, A; Bigler, C F; Jaffe, G J; Hammerberg, C; Sporn, S A; Fong, S

    1991-01-01

    A cDNA encoding a receptor antagonist of interleukin 1 (IL-1ra), secreted from human monocytes, has recently been isolated and sequenced [Eisenberg, S. P., Evans, R. J., Arend, W. P., Verderber, E., Brewer, M. T., Hannum, C. H. & Thompson, R. C. (1990) Nature (London) 343, 341-346]. We have identified another version of this IL-1ra, which is predominantly expressed in epithelial cells. This IL-1ra lacks a leader sequence and, thus, is probably intracellular. Both proteins are derived from the same gene through use of an alternative transcriptional start site and internal splice-acceptor site. Expression of intracellular IL-1ra cDNA in COS cells demonstrated that the intracellular product specifically inhibited exogenous interleukin 1-dependent responses. Keratinocytes were shown to contain significant amounts of nonsecreted IL-1ra protein. Constitutive expression of the intracellular IL-1ra may be an intracellular defensive mechanism in exposed epithelial cells and/or may serve to regulate autocrine interleukin 1-mediated pathways of differentiation. Images PMID:1827201

  12. Development of FQ-PCR method to determine the level of ADD1 expression in fatty and lean pigs.

    PubMed

    Cui, J X; Chen, W; Zeng, Y Q

    2015-10-30

    To determine how adipocyte determination and differentiation factor 1 (ADD1), a gene involved in the determination of pork quality, is regulated in Laiwu and Large pigs, we used TaqMan fluorescence quantitative real-time polymerase chain reaction (FQ-PCR) to detect differential expression in the longissimus muscle of Laiwu (fatty) and Large White (lean) pigs. In this study, the ADD1 and GAPDH cDNA sequences were cloned using a T-A cloning assay, and the clone sequences were consistent with those deposited in GenBank. Thus, the target fragment was successfully recombined into the vector, and its integrity was maintained. The standard curve and regression equation were established through the optimized FQ-PCR protocol. The standard curve of porcine ADD1 and GAPDH cDNA was determined, and its linear range extension could reach seven orders of magnitudes. The results showed that this method was used to quantify ADD1 expression in the longissimus muscle of two breeds of pig, and was found to be accurate, sensitive, and convenient. These results provide information regarding porcine ADD1 mRNA expression and the mechanism of adipocyte differentiation, and this study could help in the effort to meet the demands of consumers interested in the maintenance of health and prevention of obesity. Furthermore, it could lead to new approaches in the prevention and clinical treatment of this disease.

  13. Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R).

    PubMed

    Sokolowska, Izabela; Woods, Alisa G; Gawinowicz, Mary Ann; Roy, Urmi; Darie, Costel C

    2013-08-01

    Tumor differentiation factor (TDF) is an under-investigated protein produced by the pituitary with no definitive function. TDF is secreted into the bloodstream and targets the breast and prostate, suggesting that it has an endocrine function. Initially, TDF was indirectly discovered based on the differentiation effect of alkaline pituitary extracts of the mammosomatotropic tumor MtTWlO on MTW9/PI rat mammary tumor cells. Years later, the cDNA clone responsible for this differentiation activity was isolated from a human pituitary cDNA library using expression cloning. The cDNA encoded a 108-amino-acid polypeptide that had differentiation activity on MCF7 breast cancer cells and on DU145 prostate cancer cells in vitro and in vivo. Recently, our group focused on identification of the TDF receptor (TDF-R). As potential TDF-R candidates, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. Here we review the current advances on TDF, with particular focus on the structural investigation of its receptor and on its functional effects on breast and prostate cells.

  14. Molecular Differentiation of Risk for Disease Progression: Delineating Stage-Specific Therapeutic Targets for Disease Management in Breast Cancer

    DTIC Science & Technology

    2006-07-01

    Jeffrey S. S., Botstein D ., Brown P . O. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet., 23: 41-46, 1999 3...Duggan D . J., Bittner M., Chen Y., Meltzer P ., Trent J. M. Expression profiling using cDNA microarrays. Nat. Genet., 21: 10-14, 1999 4. Oh J. M...1999 5. Golub T. R., Slonim D . K., Tamayo P ., Huard C., Gaasenbeek M., Mesirov J. P ., Coller H., Loh M. L., Downing J. R., Caligiuri M. A

  15. Triazophos up-regulated gene expression in the female brown planthopper, Nilaparvata lugens.

    PubMed

    Bao, Yan-Yuan; Li, Bao-Ling; Liu, Zhao-Bu; Xue, Jian; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi

    2010-09-01

    The widespread use of insecticides has caused the resurgence of the brown planthopper, Nilaparvata lugens, in Asia. In this study, we investigated an organo-phosphorous insecticide, triazophos, and its ability to induce gene expression variation in female N. lugens nymphs just before emergence. By using the suppression subtractive hybridization method, a triazophos-induced cDNA library was constructed. In total, 402 differentially expressed cDNA clones were obtained. Real-time qPCR analysis confirmed that triazophos up-regulated the expression of six candidate genes at the transcript level in nymphs on day 3 of the 5th instar. These genes encode N. lugens vitellogenin, bystin, multidrug resistance protein (MRP), purine nucleoside phosphorylase (PNP), pyrroline-5-carboxylate reductase (P5CR) and carboxylesterase. Our results imply that the up-regulation of these genes may be involved in the induction of N. lugens female reproduction or resistance to insecticides.

  16. Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae)

    PubMed Central

    Miura, Toru; Kamikouchi, Azusa; Sawata, Miyuki; Takeuchi, Hideaki; Natori, Syunji; Kubo, Takeo; Matsumoto, Tadao

    1999-01-01

    Although “polymorphic castes” in social insects are well known as one of the most important phenomena of polyphenism, few studies of caste-specific gene expressions have been performed in social insects. To identify genes specifically expressed in the soldier caste of the Japanese damp-wood termite Hodotermopsis japonica, we employed the differential-display method using oligo(dT) and arbitrary primers, compared mRNA from the heads of mature soldiers and pseudergates (worker caste), and identified a clone (PCR product) 329 bp in length termed SOL1. Northern blot analysis showed that the SOL1 mRNA is about 1.0 kb in length and is expressed specifically in mature soldiers, but not in pseudergates, even in the presoldier induction by juvenile hormone analogue, suggesting that the product is specific for terminally differentiated soldiers. By using the method of 5′- and 3′-rapid amplification of cDNA ends, we isolated the full length of SOL1 cDNA, which contained an ORF with a putative signal peptide at the N terminus. The sequence showed no significant homology with any other known protein sequences. In situ hybridization analysis showed that SOL1 is expressed specifically in the mandibular glands. These results strongly suggest that the SOL1 gene encodes a secretory protein specifically synthesized in the mandibular glands of the soldiers. Histological observations revealed that the gland actually develops during the differentiation into the soldier caste. PMID:10570166

  17. Construction and analysis of the cDNA subtraction library of yeast and mycelial phases of Sporothrix globosa isolated in China: identification of differentially expressed genes*

    PubMed Central

    Hu, Qing-bi; He, Yu; Zhou, Xun

    2015-01-01

    Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China. PMID:26642182

  18. [DNA microarray reveals changes in gene expression of endothelial cells under shear stress].

    PubMed

    Cheng, Min; Zhang, Wensheng; Chen, Huaiqing; Wu, Wenchao; Huang, Hua

    2004-04-01

    cDNA microarray technology is used as a powerful tool for rapid, comprehensive, and quantitative analysis of gene profiles of cultured human umbilical vein endothelial cells(HUVECs) in the normal static group and the shear stressed (4.20 dyne/cm2, 2 h) group. The total RNA from normal static cultured HUVECs was labeled by Cy3-dCTP, and total RNA of HUVECs from the paired shear stressed experiment was labeled by Cy5-dCTP. The expression ratios reported are the average from the two separate experiments. After bioinformatics analysis, we identified a total of 108 genes (approximately 0.026%) revealing differential expression. Of these 53 genes expressions were up-regulated, the most enhanced ones being human homolog of yeast IPP isomerase, human low density lipoprotein receptor gene, Squalene epoxidase gene, 7-dehydrocholesterol reductase, and 55 were down-regulated, the most decreased ones being heat shock 70 kD protein 1, TCB gene encoding cytosolic thyroid hormone-binding protein in HUVECs exposed to low shear stress. These results indicate that the cDNA microarray technique is effective in screening the differentially expressed genes in endothelial cells induced by various experimental conditions and the data may serve as stimuli to further researches.

  19. cDNA microarray analyses reveal candidate marker genes for the detection of ascidian disease in Korea.

    PubMed

    Azumi, Kaoru; Usami, Takeshi; Kamimura, Akiko; Sabau, Sorin V; Miki, Yasufumi; Fujie, Manabu; Jung, Sung-Ju; Kitamura, Shin-Ichi; Suzuki, Satoru; Yokosawa, Hideyoshi

    2007-12-01

    A serious disease of the ascidian Halocynthia roretzi has been spread extensively among Korean aquaculture sites. To reveal the cause of the disease and establish a monitoring system for it, we constructed a cDNA microarray spotted with 2,688 cDNAs derived from H. roretzi hemocyte cDNA libraries to detect genes differentially expressed in hemocytes between diseased and non-diseased ascidians. We detected 21 genes showing increased expression and 16 genes showing decreased expression in hemocytes from diseased ascidians compared with those from non-diseased ascidians. RT-PCR analyses confirmed that the expression levels of genes encoding astacin, lysozyme, ribosomal protein PO, and ubiquitin-ribosomal protein L40e fusion protein were increased in hemocytes from diseased ascidians, while those of genes encoding HSP40, HSP70, fibronectin, carboxypeptidase and lactate dehydrogenase were decreased. These genes were expressed not only in hemocytes but also in various other tissues in ascidians. Furthermore, the expression of glutathione-S transferase omega, which is known to be up-regulated in H. roretzi hemocytes during inflammatory responses, was strongly increased in hemocytes from diseased ascidians. These gene expression profiles suggest that immune and inflammatory reactions occur in the hemocytes of diseased ascidians. These genes will be good markers for detecting and monitoring this disease of ascidians in Korean aquaculture sites.

  20. Striated muscle preferentially expressed genes alpha and beta are two serine/threonine protein kinases derived from the same gene as the aortic preferentially expressed gene-1.

    PubMed

    Hsieh, C M; Fukumoto, S; Layne, M D; Maemura, K; Charles, H; Patel, A; Perrella, M A; Lee, M E

    2000-11-24

    Aortic preferentially expressed gene (APEG)-1 is a 1.4-kilobase pair (kb) mRNA expressed in vascular smooth muscle cells and is down-regulated by vascular injury. An APEG-1 5'-end cDNA probe identified three additional isoforms. The 9-kb striated preferentially expressed gene (SPEG)alpha and the 11-kb SPEGbeta were found in skeletal muscle and heart. The 4-kb brain preferentially expressed gene was detected in the brain and aorta. We report here cloning of the 11-kb SPEGbeta cDNA. SPEGbeta encodes a 355-kDa protein that contains two serine/threonine kinase domains and is homologous to proteins of the myosin light chain kinase family. At least one kinase domain is active and capable of autophosphorylation. In the genome, all four isoforms share the middle three of the five exons of APEG-1, and they differ from each other by using different 5'- and 3'-ends and alternative splicing. We show that the expression of SPEGalpha and SPEGbeta is developmentally regulated in the striated muscle during C2C12 myoblast to myotube differentiation in vitro and cardiomyocyte maturation in vivo. This developmental regulation suggests that both SPEGalpha and SPEGbeta can serve as sensitive markers for striated muscle differentiation and that they may be important for adult striated muscle function.

  1. Identification of drought-responsive genes in roots of upland rice (Oryza sativa L)

    PubMed Central

    Rabello, Aline R; Guimarães, Cléber M; Rangel, Paulo HN; da Silva, Felipe R; Seixas, Daniela; de Souza, Emanuel; Brasileiro, Ana CM; Spehar, Carlos R; Ferreira, Márcio E; Mehta, Ângela

    2008-01-01

    Background Rice (Oryza sativa L.) germplasm represents an extraordinary source of genes that control traits of agronomic importance such as drought tolerance. This diversity is the basis for the development of new cultivars better adapted to water restriction conditions, in particular for upland rice, which is grown under rainfall. The analyses of subtractive cDNA libraries and differential protein expression of drought tolerant and susceptible genotypes can contribute to the understanding of the genetic control of water use efficiency in rice. Results Two subtractive libraries were constructed using cDNA of drought susceptible and tolerant genotypes submitted to stress against cDNA of well-watered plants. In silico analysis revealed 463 reads, which were grouped into 282 clusters. Several genes expressed exclusively in the tolerant or susceptible genotypes were identified. Additionally, proteome analysis of roots from stressed plants was performed and 22 proteins putatively associated to drought tolerance were identified by mass spectrometry. Conclusion Several genes and proteins involved in drought-response, as well as genes with no described homologs were identified. Genes exclusively expressed in the tolerant genotype were, in general, related to maintenance of turgor and cell integrity. In contrast, in the susceptible genotype, expression of genes involved in protection against cell damage was not detected. Several protein families identified in the proteomic analysis were not detected in the cDNA analysis. There is an indication that the mechanisms of susceptibility to drought in upland rice are similar to those of lowland varieties. PMID:18922162

  2. Ethylene-induced differential gene expression during abscission of citrus leaves

    PubMed Central

    Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R.; Talón, Manuel

    2008-01-01

    The main objective of this work was to identify and classify genes involved in the process of leaf abscission in Clementina de Nules (Citrus clementina Hort. Ex Tan.). A 7 K unigene citrus cDNA microarray containing 12 K spots was used to characterize the transcriptome of the ethylene-induced abscission process in laminar abscission zone-enriched tissues and the petiole of debladed leaf explants. In these conditions, ethylene induced 100% leaf explant abscission in 72 h while, in air-treated samples, the abscission period started later and took 240 h. Gene expression monitored during the first 36 h of ethylene treatment showed that out of the 12 672 cDNA microarray probes, ethylene differentially induced 725 probes distributed as follows: 216 (29.8%) probes in the laminar abscission zone and 509 (70.2%) in the petiole. Functional MIPS classification and manual annotation of differentially expressed genes highlighted key processes regulating the activation and progress of the cell separation that brings about abscission. These included cell-wall modification, lipid transport, protein biosynthesis and degradation, and differential activation of signal transduction and transcription control pathways. Expression data associated with the petiole indicated the occurrence of a double defensive strategy mediated by the activation of a biochemical programme including scavenging ROS, defence and PR genes, and a physical response mostly based on lignin biosynthesis and deposition. This work identifies new genes probably involved in the onset and development of the leaf abscission process and suggests a different but co-ordinated and complementary role for the laminar abscission zone and the petiole during the process of abscission. PMID:18515267

  3. The potential role of ribosomal protein S5 on cell cycle arrest and initiation of murine erythroleukemia cell differentiation.

    PubMed

    Matragkou, Christina N; Papachristou, Eleni T; Tezias, Sotirios S; Tsiftsoglou, Asterios S; Choli-Papadopoulou, Theodora; Vizirianakis, Ioannis S

    2008-07-01

    Evidence now exists to indicate that some ribosomal proteins besides being structural components of the ribosomal subunits are involved in the regulation of cell differentiation and apoptosis. As we have shown earlier, initiation of erythroid differentiation of murine erythroleukemia (MEL) cells is associated with transcriptional inactivation of genes encoding ribosomal RNAs and ribosomal proteins S5 (RPS5) and L35a. In this study, we extended these observations and investigated whether transfection of MEL cells with RPS5 cDNA affects the onset of initiation of erythroid maturation and their entrance in cell cycle arrest. Stably transfected MEL cloned cells (MEL-C14 and MEL-C56) were established and assessed for their capacity to produce RPS5 RNA transcript and its translated product. The impact of RPS5 cDNA transfection on the RPS5 gene expression patterns and the accumulation of RPS5 protein in inducible transfected MEL cells were correlated with their ability to: (a) initiate differentiation, (b) enter cell cycle arrest at G(1)/G(0) phase, and (c) modulate the level of cyclin-dependent kinases CDK2, CDK4, and CDK6. The data presented indicate that deregulation of RPS5 gene expression (constitutive expression) affects RPS5 protein level and delays both the onset of initiation of erythroid maturation and entrance in cell cycle arrest in inducer-treated MEL cells. 2008 Wiley-Liss, Inc.

  4. Identifying differentially expressed genes in leaves of Glycine tomentella in the presence of the fungal pathogen Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    Transcription profiles of Glycine tomentella genotypes having different responses to soybean rust, caused by the fungal pathogen Phakopsora pachyrhizi, were compared using suppression subtractive hybridization (SSH). Four cDNA libraries were constructed from infected and non-infected leaves of resis...

  5. Soybean defense responses to the soybean aphid.

    PubMed

    Li, Yan; Zou, Jijun; Li, Min; Bilgin, Damla D; Vodkin, Lila O; Hartman, Glen L; Clough, Steven J

    2008-01-01

    Transcript profiles in aphid (Aphis glycines)-resistant (cv. Dowling) and -susceptible (cv. Williams 82) soybean (Glycine max) cultivars using soybean cDNA microarrays were investigated. Large-scale soybean cDNA microarrays representing approx. 18 000 genes or c. 30% of the soybean genome were compared at 6 and 12 h post-application of aphids. In a separate experiment utilizing clip cages, expression of three defense-related genes were examined at 6, 12, 24, 48, and 72 h in both cultivars by quantitative real-time PCR. One hundred and forty genes showed specific responses for resistance; these included genes related to cell wall, defense, DNA/RNA, secondary metabolism, signaling and other processes. When an extended time period of sampling was investigated, earlier and greater induction of three defense-related genes was observed in the resistant cultivar; however, the induction declined after 24 or 48 h in the resistant cultivar but continued to increase in the susceptible cultivar after 24 h. Aphid-challenged resistant plants showed rapid differential gene expression patterns similar to the incompatible response induced by avirulent Pseudomonas syringae. Five genes were identified as differentially expressed between the two genotypes in the absence of aphids.

  6. Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88.

    PubMed

    Yao, Lin; Yang, Qian; Song, Jinzhu; Tan, Chong; Guo, Changhong; Wang, Li; Qu, Lianhai; Wang, Yun

    2013-04-01

    Trichoderma harzianum 88, a filamentous soil fungus, is an effective biocontrol agent against several plant pathogens. High-throughput sequencing was used here to study the mycoparasitism mechanisms of T. harzianum 88. Plate confrontation tests of T. harzianum 88 against plant pathogens were conducted, and a cDNA library was constructed from T. harzianum 88 mycelia in the presence of plant pathogen cell walls. Randomly selected transcripts from the cDNA library were compared with eukaryotic plant and fungal genomes. Of the 1,386 transcripts sequenced, the most abundant Gene Ontology (GO) classification group was "physiological process". Differential expression of 19 genes was confirmed by real-time RT-PCR at different mycoparasitism stages against plant pathogens. Gene expression analysis revealed the transcription of various genes involved in mycoparasitism of T. harzianum 88. Our study provides helpful insights into the mechanisms of T. harzianum 88-plant pathogen interactions.

  7. New potential markers of in vitro tomato morphogenesis identified by mRNA differential display.

    PubMed

    Torelli, A; Soragni, E; Bolchi, A; Petrucco, S; Ottonello, S; Branca, C

    1996-12-01

    The identification of plant genes involved in early phases of in vitro morphogenesis can not only contribute to our understanding of the processes underlying growth regulator-controlled determination, but also provide novel markers for evaluating the outcome of in vitro regeneration experiments. To search for such genes and to monitor changes in gene expression accompanying in vitro regeneration, we have adapted the mRNA differential display technique to the comparative analysis of a model system of tomato cotyledons that can be driven selectively toward either shoot or callus formation by means of previously determined growth regulator supplementations. Hormone-independent transcriptional modulation (mainly down-regulation) has been found to be the most common event, indicating that a non-specific reprogramming of gene expression quantitatively predominates during the early phases of in vitro culture. However, cDNA fragments representative of genes that are either down-regulated or induced in a programme-specific manner could also be identified, and two of them (G35, G36) were further characterized. One of these cDNA fragments, G35, corresponds to an mRNA that is down-regulated much earlier in callus- (day 2) than in shoot-determined explants (day 6). The other, G36, identifies an mRNA that is transiently expressed in shoot-determined explants only, well before any macroscopic signs of differentiation become apparent, and thus exhibits typical features of a morphogenetic marker.

  8. Transcriptome analysis of zebrafish embryos exposed to deltamethrin.

    PubMed

    Chueh, Tsung-Cheng; Hsu, Li-Sung; Kao, Chin-Ming; Hsu, Tung-Wei; Liao, Hung-Yu; Wang, Kuan-Yi; Chen, Ssu Ching

    2017-05-01

    Deltamethrin (DTM), a type II pyrethroid, is one of the most commonly used insecticides. The increased use of pyrethroid leads to potential adverse effects, particularly in sensitive populations such as children and pregnant women. None of the related studies was focused on the transcriptome responses in zebrafish embryos after treatment with DTM; therefore, RNA-seq, a high-throughput method, was performed to analyze the global expression of differential expressed genes (DEGs) in zebrafish embryos treated with DTM (40 and 80 μg/L) from fertilization to 48 h postfertilization (hpf) as compared with that in the control group (without DTM treatment). Two cDNA libraries were generated from treated embryos and one cDNA library from nontreated embryos, respectively. Over 92% of reads mapped to the reference in these three libraries. It was observed that many differential genes were expressed in comparison with embryos before and after DTM. The 20 most differentially expressed upregulated or downregulated genes were majorly involved in the signaling transduction. Validation of selected nine genes expression using qRT-PCR confirmed RNA-seq results. The transcriptome sequences were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, showing G-protein-coupled receptor signaling pathway and neuroactive ligand-receptor interaction, respectively, were most enriched. The data from this study contributed to a better understanding of the potential consequences of fish exposed to DTM, to an evaluation of the potential threat of DTM to fish populations in aquatic environments. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1548-1557, 2017. © 2016 Wiley Periodicals, Inc.

  9. Sorghum Expressed Sequence Tags Identify Signature Genes for Drought, Pathogenesis, and Skotomorphogenesis from a Milestone Set of 16,801 Unique Transcripts1[w

    PubMed Central

    Pratt, Lee H.; Liang, Chun; Shah, Manish; Sun, Feng; Wang, Haiming; Reid, St. Patrick; Gingle, Alan R.; Paterson, Andrew H.; Wing, Rod; Dean, Ralph; Klein, Robert; Nguyen, Henry T.; Ma, Hong-mei; Zhao, Xin; Morishige, Daryl T.; Mullet, John E.; Cordonnier-Pratt, Marie-Michèle

    2005-01-01

    Improved knowledge of the sorghum transcriptome will enhance basic understanding of how plants respond to stresses and serve as a source of genes of value to agriculture. Toward this goal, Sorghum bicolor L. Moench cDNA libraries were prepared from light- and dark-grown seedlings, drought-stressed plants, Colletotrichum-infected seedlings and plants, ovaries, embryos, and immature panicles. Other libraries were prepared with meristems from Sorghum propinquum (Kunth) Hitchc. that had been photoperiodically induced to flower, and with rhizomes from S. propinquum and johnsongrass (Sorghum halepense L. Pers.). A total of 117,682 expressed sequence tags (ESTs) were obtained representing both 3′ and 5′ sequences from about half that number of cDNA clones. A total of 16,801 unique transcripts, representing tentative UniScripts (TUs), were identified from 55,783 3′ ESTs. Of these TUs, 9,032 are represented by two or more ESTs. Collectively, these libraries were predicted to contain a total of approximately 31,000 TUs. Individual libraries, however, were predicted to contain no more than about 6,000 to 9,000, with the exception of light-grown seedlings, which yielded an estimate of close to 13,000. In addition, each library exhibits about the same level of complexity with respect to both the number of TUs preferentially expressed in that library and the frequency with which two or more ESTs is found in only that library. These results indicate that the sorghum genome is expressed in highly selective fashion in the individual organs and in response to the environmental conditions surveyed here. Close to 2,000 differentially expressed TUs were identified among the cDNA libraries examined, of which 775 were differentially expressed at a confidence level of 98%. From these 775 TUs, signature genes were identified defining drought, Colletotrichum infection, skotomorphogenesis (etiolation), ovary, immature panicle, and embryo. PMID:16169961

  10. ECM1 and TMPRSS4 Are Diagnostic Markers of Malignant Thyroid Neoplasms and Improve the Accuracy of Fine Needle Aspiration Biopsy

    PubMed Central

    Kebebew, Electron; Peng, Miao; Reiff, Emily; Duh, Quan-Yang; Clark, Orlo H.; McMillan, Alex

    2005-01-01

    Objective: The objective of this study was to determine whether genes that regulate cellular invasion and metastasis are differentially expressed and could serve as diagnostic markers of malignant thyroid nodules. Summary and Background Data: Patients whose thyroid nodules have indeterminate or suspicious cytologic features on fine needle aspiration (FNA) biopsy require thyroidectomy because of a 20% to 30% risk of thyroid cancer. Cell invasion and metastasis is a hallmark of malignant phenotype; therefore, genes that regulate these processes might be differentially expressed and could serve as diagnostic markers of malignancy. Methods: Differentially expressed genes (2-fold higher or lower) in malignant versus benign thyroid neoplasms were identified by extracellular matrix and adhesion molecule cDNA array analysis and confirmed by real-time quantitative polymerase chain reaction (PCR). The area under the receiver operating characteristic (AUC) curve was calculated to determine diagnostic accuracy of gene expression level cutoffs established by logistic regression analysis. Results: By cDNA array analysis, ADAMTS8, ECM1, MMP8, PLAU, SELP, and TMPRSS4 were upregulated, and by quantitative PCR, ECM1, SELP, and TMPRSS4 mRNA expression was higher in malignant (n = 57) than in benign (n = 38) thyroid neoplasms (P< 0.002). ECM1 and TMPRSS4 mRNA expression levels were independent predictors of a malignant thyroid neoplasm (P < 0.003). The AUC was 0.956 for ECM1 and 0.926 for TMPRSS4. Combining both markers improved their diagnostic use (AUC 0.985; sensitivity, 91.7%; specificity, 89.8%; positive predictive value, 85.7%; negative predictive value, 82.8%). ECM1 and TMPRSS4 expression analysis improved the diagnostic accuracy of FNA biopsy in 35 of 38 indeterminate or suspicious results. The level of ECM1 mRNA expression was higher in TNM stage I differentiated thyroid cancers than in stage II and III tumors (P ≤ 0.031). Conclusions: ECM1 and TMPRSS4 are excellent diagnostic markers of malignant thyroid nodules and may be used to improve the diagnostic accuracy of FNA biopsy. ECM1 is also a marker of the extent of disease in differentiated thyroid cancers. PMID:16135921

  11. Male specific genes from dioecious white campion identified by fluorescent differential display.

    PubMed

    Scutt, Charles P; Jenkins, Tom; Furuya, Masaki; Gilmartin, Philip M

    2002-05-01

    Fluorescent differential display (FDD) has been used to screen for cDNAs that are differentially up-regulated in male flowers of the dioecious plant Silene latifolia in which an X/Y chromosome system of sex determination operates. To adapt FDD to the cloning of large numbers of differential cDNAs, a novel method of confirming the differential expression of these has been devised. FDD gels were Southern electro-blotted and probed with mixtures of individual cDNA clones derived from different FDD product ligation reactions. These Southern blots were then stripped and re-probed with further mixtures of individual cloned FDD products to identify the maximum number of recombinant clones carrying the true differential amplification products. Of 135 differential bands identified by FDD, 56 differential amplification products were confirmed; these represent 23 unique differentially expressed genes as determined by virtual Northern analysis and two genes expressed at or below the level of detection by virtual Northern analysis. These two low expressed genes show bands of hybridization on genomic Southern blots that are specific to male plants, indicating that they are derived from, or closely related to, Y chromosome genes.

  12. A novel cytochrome P450 gene (CYP4G25) of the silkmoth Antheraea yamamai: cloning and expression pattern in pharate first instar larvae in relation to diapause.

    PubMed

    Yang, Ping; Tanaka, Hiromasa; Kuwano, Eiichi; Suzuki, Koichi

    2008-03-01

    A new cytochrome P450 gene, CYP4G25, was identified as a differentially expressed gene between the diapausing and post-diapausing pharate first instar larvae of the wild silkmoth Antheraea yamamai, using subtractive cDNA hybridization. The cDNA sequence of CYP4G25 has an open reading frame of 1674 nucleotides encoding 557 amino acid residues. Sequence analysis of the putative CYP4G25 protein disclosed the motif FXXGXRXCXG that is essential for heme binding in P450 cytochromes. Hybridization in situ demonstrated predominant expression of CYP4G25 in the integument of pharate first instar larvae. Northern blotting analysis showed an intensive signal after the initiation of diapause and no or weak expression throughout the periods of pre-diapause and post-diapause, including larval development. These results indicate that CYP4G25 is strongly associated with diapause in pharate first instar larvae.

  13. Cloning and expression analysis of a gene that shows developmental regulation upon tuberization in potato.

    PubMed

    Jackson, S; Gascón, J; Carrera, E; Monte, E; Prat, S

    1997-01-01

    Differential screening of a potato leaf cDNA library with cDNA probes made from tuberizing and non-tuberizing Solanum demissum plants led to the identification of a clone that is upregulated in leaves and other tissues upon tuberization. This clone was also shown to have a high level of expression in green tomato fruit, its expression falling off as the fruit turns red. No sucrose or hormonal regulation of the expression of this clone was observed and it did not respond to wounding or heat stress. Clone 32B is 532 bp long and contains an open reading frame encoding a small protein of 98 amino acids. The deduced protein sequence has a putative signal peptide for ER transport and a 10 amino acid domain in the C-terminal region of the protein, both of which are also found in the cotton LEA5, Arabidopsis Di21 and the mungbean Arg2 proteins.

  14. A beta-galactosidase gene is expressed during mature fruit abscission of 'Valencia' orange (Citrus sinensis).

    PubMed

    Wu, Zhencai; Burns, Jacqueline K

    2004-07-01

    beta-galactosidases have been detected in a wide range of plants and are characterized by their ability to hydrolyse terminal non-reducing beta-D-galactosyl residues from beta-D-galactosides. These enzymes have been detected in a wide range of plant organs and tissues. In a search for differentially expressed genes during the abscission process in citrus, sequences encoding beta-galactosidase were identified. Three cDNA fragments of a beta-galactosidase gene were isolated from a cDNA subtraction library constructed from mature fruit abscission zones 48 h after the application of a mature fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMN-pyrazole). Based on sequence information derived from these fragments, a full-length cDNA of 2847 nucleotides (GenBank accession number AY029198) encoding beta-galactosidase was isolated from mature fruit abscission zones by 5'- and 3'-RACE approaches. The beta-galactosidase cDNA encoded a protein of 737 amino acid residues with a calculated molecular weight of 82 kDa. The deduced protein was highly homologous to plant beta-galactosidases expressed in fruit ripening. Southern blot analysis demonstrated that at least two closely related beta-galactosidase genes were present in 'Valencia' orange. Temporal expression patterns in mature fruit abscission zones indicated beta-galactosidase mRNA was detected 48 h after treatment of CMN-pyrazole and ethephon in mature fruit abscission zones. beta-galactosidase transcripts were detected in leaf abscission zones only after ethephon application. The citrus beta-galactosidase was expressed in stamens and petals of fully opened flowers and young fruitlets. The results suggest that this beta-galactosidase may play a role during abscission as well as early growth and development processes in flowers and fruitlets.

  15. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags

    PubMed Central

    Gorodkin, Jan; Cirera, Susanna; Hedegaard, Jakob; Gilchrist, Michael J; Panitz, Frank; Jørgensen, Claus; Scheibye-Knudsen, Karsten; Arvin, Troels; Lumholdt, Steen; Sawera, Milena; Green, Trine; Nielsen, Bente J; Havgaard, Jakob H; Rosenkilde, Carina; Wang, Jun; Li, Heng; Li, Ruiqiang; Liu, Bin; Hu, Songnian; Dong, Wei; Li, Wei; Yu, Jun; Wang, Jian; Stærfeldt, Hans-Henrik; Wernersson, Rasmus; Madsen, Lone B; Thomsen, Bo; Hornshøj, Henrik; Bujie, Zhan; Wang, Xuegang; Wang, Xuefei; Bolund, Lars; Brunak, Søren; Yang, Huanming; Bendixen, Christian; Fredholm, Merete

    2007-01-01

    Background Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages. Results Using the Distiller package, the ESTs were assembled to roughly 48,000 contigs and 73,000 singletons, of which approximately 25% have a high confidence match to UniProt. Approximately 6,000 new porcine gene clusters were identified. Expression analysis based on the non-normalized libraries resulted in the following findings. The distribution of cluster sizes is scaling invariant. Brain and testes are among the tissues with the greatest number of different expressed genes, whereas tissues with more specialized function, such as developing liver, have fewer expressed genes. There are at least 65 high confidence housekeeping gene candidates and 876 cDNA library-specific gene candidates. We identified differential expression of genes between different tissues, in particular brain/spinal cord, and found patterns of correlation between genes that share expression in pairs of libraries. Finally, there was remarkable agreement in expression between specialized tissues according to Gene Ontology categories. Conclusion This EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies. PMID:17407547

  16. Differential gene expression during conidiation in the grape powdery mildew pathogen, Erysiphe necator.

    PubMed

    Wakefield, Laura; Gadoury, David M; Seem, Robert C; Milgroom, Michael G; Sun, Qi; Cadle-Davidson, Lance

    2011-07-01

    Asexual sporulation (conidiation) is coordinately regulated in the grape powdery mildew pathogen Erysiphe necator but nothing is known about its genetic regulation. We hypothesized that genes required for conidiation in other fungi would be upregulated at conidiophore initiation or full conidiation (relative to preconidiation vegetative growth and development of mature ascocarps), and that the obligate biotrophic lifestyle of E. necator would necessitate some novel gene regulation. cDNA amplified fragment length polymorphism analysis with 45 selective primer combinations produced ≈1,600 transcript-derived fragments (TDFs), of which 620 (39%) showed differential expression. TDF sequences were annotated using BLAST analysis of GenBank and of a reference transcriptome for E. necator developed by 454-FLX pyrosequencing of a normalized cDNA library. One-fourth of the differentially expressed, annotated sequences had similarity to fungal genes of unknown function. The remaining genes had annotated function in metabolism, signaling, transcription, transport, and protein fate. As expected, a portion of orthologs known in other fungi to be involved in developmental regulation was upregulated immediately prior to or during conidiation; particularly noteworthy were several genes associated with the light-dependent VeA regulatory system, G-protein signaling (Pth11 and a kelch repeat), and nuclear transport (importin-β and Ran). This work represents the first investigation into differential gene expression during morphogenesis in E. necator and identifies candidate genes and hypotheses for characterization in powdery mildews. Our results indicate that, although control of conidiation in powdery mildews may share some basic elements with established systems, there are significant points of divergence as well, perhaps due, in part, to the obligate biotrophic lifestyle of powdery mildews.

  17. Caste- and development-associated gene expression in a lower termite

    PubMed Central

    Scharf, Michael E; Wu-Scharf, Dancia; Pittendrigh, Barry R; Bennett, Gary W

    2003-01-01

    Background Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes. Results We identified differentially expressed genes from nine ontogenic categories. Quantitative PCR was used to quantify precise differences in gene expression between castes and between intermediary developmental stages. We found worker and nymph-biased expression of transcripts encoding termite and endosymbiont cellulases; presoldier-biased expression of transcripts encoding the storage/hormone-binding protein vitellogenin; and soldier-biased expression of gene transcripts encoding two transcription/translation factors, two signal transduction factors and four cytoskeletal/muscle proteins. The two transcription/translation factors showed significant homology to the bicaudal and bric-a-brac developmental genes of Drosophila. Conclusions Our results show differential expression of regulatory, structural and enzyme-coding genes in association with termite castes and their developmental precursor stages. They also provide the first glimpse into how insect endosymbiont cellulase gene expression can vary in association with the caste of a host. These findings shed light on molecular processes associated with termite biology, polyphenism, caste differentiation and development and highlight potentially interesting variations in developmental themes between termites, other insects, and higher animals. PMID:14519197

  18. Human retina-specific amine oxidase (RAO): cDNA cloning, tissue expression, and chromosomal mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, Yutaka; Kubota, Ryo; Wang, Yimin

    In search of candidate genes for hereditary retinal disease, we have employed a subtractive and differential cDNA cloning strategy and isolated a novel retina-specific cDNA. Nucleotide sequence analysis revealed an open reading frame of 2187 bp, which encodes a 729-amino-acid protein with a calculated molecular mass of 80,644 Da. The putative protein contained a conserved domain of copper amine oxidase, which is found in various species from bacteria to mammals. It showed the highest homology to bovine serum amine oxidase, which is believed to control the level of serum biogenic amines. Northern blot analysis of human adult and fetal tissuesmore » revealed that the protein is expressed abundantly and specifically in retina as a 2.7-kb transcript. Thus, we considered this protein a human retina-specific amine oxidase (RAO). The RAO gene (AOC2) was mapped by fluorescence in situ hybridization to human chromosome 17q21. We propose that AOC2 may be a candidate gene for hereditary ocular diseases. 38 refs., 4 figs.« less

  19. Differential display RT PCR of total RNA from human foreskin fibroblasts for investigation of androgen-dependent gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, E.M.; Moquin, A.; Adams, P.S.

    1996-05-03

    Male sexual differentiation is a process that involves androgen action via the androgen receptor. Defects in the androgen receptor, many resulting from point mutations in the androgen receptor gene, lead to varying degrees of impaired masculinization in chromosomally male individuals. To date no specific androgen regulated morphogens involved in this process have been identified and no marker genes are known that would help to predict further virilization in infants with partial androgen insensitivity. In the present study we first show data on androgen regulated gene expression investigated by differential display reverse transcription PCR (dd RT PCR) on total RNA frommore » human neonatal genital skin fibroblasts cultured in the presence or absence of 100 nM testosterone. Using three different primer combinations, 54 cDNAs appeared to be regulated by androgens. Most of these sequences show the characteristics of expressed mRNAs but showed no homology to sequences in the database. However 15 clones with significant homology to previously cloned sequences were identified. Seven cDNAs appear to be induced by androgen withdrawal. Of these, five are similar to ETS (expression tagged sequences) from unknown genes; the other two show significant homology to the cDNAs of ubiquitin and human guanylate binding protein 2 (GBP-2). In addition, we have identified 8 cDNA clones which show homologies to other sequences in the database and appear to be upregulated in the presence of testosterone. Three differential expressed sequences show significant homology to the cDNAs of L-plastin and one to the cDNA of testican. This latter gene codes for a proteoglycan involved in cell social behavior and therefore of special interest in this context. The results of this study are of interest in further investigation of normal and disturbed androgen-dependent gene expression. 49 refs., 2 figs., 5 tabs.« less

  20. Differential expression of copper-zinc superoxide dismutase gene of Polygonum sibiricum leaves, stems and underground stems, subjected to high-salt stress.

    PubMed

    Qu, Chun-Pu; Xu, Zhi-Ru; Liu, Guan-Jun; Liu, Chun; Li, Yang; Wei, Zhi-Gang; Liu, Gui-Feng

    2010-01-01

    In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as copper-zinc superoxide dismutase. In this work, a cDNA clone which encodes a copper-zinc superoxide dismutase gene, named PS-CuZnSOD, has been identified from P. sibiricum Laxm. by the rapid amplification of cDNA ends method (RACE). Analysis of the nucleotide sequence reveals that the PS-CuZnSOD gene cDNA clone consists of 669 bp, containing 87 bp in the 5' untranslated region; 459 bp in the open reading frame (ORF) encoding 152 amino acids; and 123 bp in 3' untranslated region. The gene accession nucleotide sequence number in GenBank is GQ472846. Sequence analysis indicates that the protein, like most plant superoxide dismutases (SOD), includes two conserved ecCuZnSOD signatures that are from the amino acids 43 to 51, and from the amino acids 137 to 148, and it has a signal peptide extension in the front of the N-terminus (1-16 aa). Expression analysis by real-time quantitative PCR reveals that the PS-CuZnSOD gene is expressed in leaves, stems and underground stems. PS-CuZnSOD gene expression can be induced by 3% NaHCO(3). The different mRNA levels' expression of PS-CuZnSOD show the gene's different expression modes in leaves, stems and underground stems under the salinity-alkalinity stress.

  1. A pituitary gene encodes a protein that produces differentiation of breast and prostate cancer cells.

    PubMed

    Platica, Micsunica; Ivan, Elena; Holland, James F; Ionescu, Alin; Chen, Sheryl; Mandeli, John; Unger, Pamela D; Platica, Ovidiu

    2004-02-10

    A cDNA clone of 1.1 kb encoding a 108-aa polypeptide was isolated from a human pituitary cDNA library by expression cloning. This protein was named tumor differentiation factor (TDF). The recombinant TDF protein and a 20-aa peptide, P1, selected from the ORF of the gene, induced morphological and biochemical changes consistent with differentiation of human breast and prostate cancer cells. Fibroblast, kidney, hepatoma, and leukemic lymphocytic cell lines were unaffected. Breast and prostate cancer cells aggregated in spheroid-like structures within 24 h of exposure to TDF. This effect was abrogated by a specific affinity-purified rabbit polyclonal anti-P1 Ab. E-cadherin expression was increased in a dose-dependent manner by TDF. Treatment of MCF7 cells with TDF led to production of a lactalbumin-related protein. Peptide P1 significantly decreased the growth of androgen-independent DU145 prostate cancer in severe combined immunodeficient mice. The presence of TDF protein in human sera was detected by the anti-P1 Ab, suggesting a role of TDF in endocrine metabolism. The fact that all activities of TDF can be mimicked by a peptide derived from the encoding TDF sequence opens the possibility of therapeutic applications.

  2. Complexities and sequence similarities of mRNA populations of cholinergic (NS20-Y) and adrenergic (N1E-115) murine neuroblastoma cell lines.

    PubMed

    Strauss, W L

    1990-07-01

    The clonal murine neuroblastoma cell lines NS20-Y and N1E-115 have been proposed as models for examining the commitment of neural crest cells to either the cholinergic or adrenergic phenotype, respectively. The validity of this model depends in part on the extent to which these two cell lines have diverged as a result of their transformed, rather than neuronal properties. In order to quantitate differences in gene expression between NS20-Y and N1E-115 cells, the mRNA complexity of each cell type was determined. An analysis of the kinetics of hybridization of NS20-Y cell mRNA with cDNA prepared from NS20-Y cell mRNA demonstrated the presence of approximately 11,700 mRNA species assuming an average length of 1900 nucleotides. A similar analysis using mRNA isolated from N1E-115 cells and cDNA prepared from N1E-115 cell mRNA demonstrated that the adrenergic cell line expressed approximately 11,600 mRNA species. The species of mRNA expressed by each cell line were resolved into high, intermediate, and low abundance populations. In order to determine whether mRNAs were expressed by the cholinergic, but not by the adrenergic cell line, NS20-Y cDNA was hybridized to an excess of N1E-115 cell mRNA. An analysis of the solution hybridization kinetics from this procedure demonstrated that the two cell lines do not differ significantly in the nucleotide complexity of their mRNA populations. The extensive similarity between the two mRNA populations suggests that only a small number of genes are expressed differentially between the two cell lines and supports their use as models for the differentiation of cholinergic and adrenergic neurons.

  3. Gene expression pattern recognition algorithm inferences to classify samples exposed to chemical agents

    NASA Astrophysics Data System (ADS)

    Bushel, Pierre R.; Bennett, Lee; Hamadeh, Hisham; Green, James; Ableson, Alan; Misener, Steve; Paules, Richard; Afshari, Cynthia

    2002-06-01

    We present an analysis of pattern recognition procedures used to predict the classes of samples exposed to pharmacologic agents by comparing gene expression patterns from samples treated with two classes of compounds. Rat liver mRNA samples following exposure for 24 hours with phenobarbital or peroxisome proliferators were analyzed using a 1700 rat cDNA microarray platform. Sets of genes that were consistently differentially expressed in the rat liver samples following treatment were stored in the MicroArray Project System (MAPS) database. MAPS identified 238 genes in common that possessed a low probability (P < 0.01) of being randomly detected as differentially expressed at the 95% confidence level. Hierarchical cluster analysis on the 238 genes clustered specific gene expression profiles that separated samples based on exposure to a particular class of compound.

  4. Integrating De Novo Transcriptome Assembly and Cloning to Obtain Chicken Ovocleidin-17 Full-Length cDNA

    PubMed Central

    Ning, ZhongHua; Hincke, Maxwell T.; Yang, Ning; Hou, ZhuoCheng

    2014-01-01

    Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not ‘finished’. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences. PMID:24676480

  5. Integrating de novo transcriptome assembly and cloning to obtain chicken Ovocleidin-17 full-length cDNA.

    PubMed

    Zhang, Quan; Liu, Long; Zhu, Feng; Ning, ZhongHua; Hincke, Maxwell T; Yang, Ning; Hou, ZhuoCheng

    2014-01-01

    Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not 'finished'. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences.

  6. A Novel Approach to the Elucidation of the Mechanism of Development of Androgen-Independent Growth of Prostate Cancer

    DTIC Science & Technology

    2001-01-01

    with 1.0 with differential hybridization to the two probes. Phage plaques corresponding ml of RIPA buffer with protease inhibitors (PBS, 1% NP40, 0.5...hybridized to radiolabeled probe prepared from plaque-purified phage . at 10,000 X g for 20 min; supernatants were collected and centrifuged again to...Screening. Lambda phage plaques from the primary unamplified Differential expression screening of cDNA libraries constructed CWR22 library were plated

  7. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  8. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    BACKGROUND: Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. MATERIALS AND METHODS: Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. RESULTS: After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for ILG1. CONCLUSIONS: In the course of our studies using cDNA RDA, we have isolated and identified ILG1, a likely active site-specific recombinase and new member of the bacteriophage P4 family of integrases. This family of integrases is implicated in the horizontal DNA transfer of pathogenic genes between bacterial species, such as those found in pathogenic strains of E. coli, Shigella, Yersinia, and Vibrio cholera. Using ILG1 as a marker of our laboratory E. coli strain TOP10F', our evidence suggests that contaminating bacterial DNA in our subtraction experiment is due to this laboratory bacterial strain, which colonized exposed surfaces of the laboratory worker. Thus, identification of differentially expressed genes between normal and diseased states could be dramatically improved by using extra precaution to prevent bacterial contamination of samples. PMID:12393938

  9. Analysis of differentially expressed genes in two immunologically distinct strains of Eimeria maxima using suppression subtractive hybridization and dot-blot hybridization

    PubMed Central

    2014-01-01

    Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis. PMID:24894832

  10. Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline-alkali stress.

    PubMed

    Wang, Yucheng; Yang, Chuanping; Liu, Guifeng; Jiang, Jing

    2007-08-01

    Puccinellia tenuiflora is the main grass species growing in the saline-alkali soil of the Songnen plain in northeastern China, suggesting it has a high tolerance to saline stress. In this study, cDNA microarrays containing 1067 clones of P. tenuiflora were constructed to investigate gene expression patterns resulting from saline-alkali (NaHCO(3)) stress. RNA was extracted from P. tenuiflora treated with 400 mmol L(-1) NaHCO(3) for 6, 12, 24 and 48 h. Untreated (no saline-alkali stress) samples were used as control. A total of 95 transcripts were differentially regulated under the conditions studied, and 38, 35, 25 and 49 genes were differentially expressed with NaHCO(3) stress for 6, 12, 24 and 48h, respectively. Among these, approximately 40% were putative novel or functionally unknown genes, and the remainder function in photosynthesis, cell rescue, defense, transport, metabolism, transcription regulation and protein destination, etc. Analysis of the P. tenuiflora genes demonstrated the complexity of, and differences in, gene expression patterns resulting from different NaHCO(3) stress times. The genetic relationship between P. tenuiflora and other plants was investigated by BlastN analysis. The results showed nearly 20% of the expressed sequence tags from P. tenuiflora shared significant similarities with rice Oryza sativa, an important food crop. The close genetic relationship between these two species suggests that P. tenuiflora may be a good plant model for studying saline-alkali tolerance mechanisms in O. sativa.

  11. Comparison of the Predictive Accuracy of DNA Array-Based Multigene Classifiers across cDNA Arrays and Affymetrix GeneChips

    PubMed Central

    Stec, James; Wang, Jing; Coombes, Kevin; Ayers, Mark; Hoersch, Sebastian; Gold, David L.; Ross, Jeffrey S; Hess, Kenneth R.; Tirrell, Stephen; Linette, Gerald; Hortobagyi, Gabriel N.; Symmans, W. Fraser; Pusztai, Lajos

    2005-01-01

    We examined how well differentially expressed genes and multigene outcome classifiers retain their class-discriminating values when tested on data generated by different transcriptional profiling platforms. RNA from 33 stage I-III breast cancers was hybridized to both Affymetrix GeneChip and Millennium Pharmaceuticals cDNA arrays. Only 30% of all corresponding gene expression measurements on the two platforms had Pearson correlation coefficient r ≥ 0.7 when UniGene was used to match probes. There was substantial variation in correlation between different Affymetrix probe sets matched to the same cDNA probe. When cDNA and Affymetrix probes were matched by basic local alignment tool (BLAST) sequence identity, the correlation increased substantially. We identified 182 genes in the Affymetrix and 45 in the cDNA data (including 17 common genes) that accurately separated 91% of cases in supervised hierarchical clustering in each data set. Cross-platform testing of these informative genes resulted in lower clustering accuracy of 45 and 79%, respectively. Several sets of accurate five-gene classifiers were developed on each platform using linear discriminant analysis. The best 100 classifiers showed average misclassification error rate of 2% on the original data that rose to 19.5% when tested on data from the other platform. Random five-gene classifiers showed misclassification error rate of 33%. We conclude that multigene predictors optimized for one platform lose accuracy when applied to data from another platform due to missing genes and sequence differences in probes that result in differing measurements for the same gene. PMID:16049308

  12. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia.

    PubMed

    Bove, Jérôme; Lucas, Philippe; Godin, Béatrice; Ogé, Laurent; Jullien, Marc; Grappin, Philippe

    2005-03-01

    Seed dormancy in Nicotiana plumbaginifolia is characterized by an abscisic acid accumulation linked to a pronounced germination delay. Dormancy can be released by 1 year after-ripening treatment. Using a cDNA-amplified fragment length polymorphism (cDNA-AFLP) approach we compared the gene expression patterns of dormant and after-ripened seeds, air-dry or during one day imbibition and analyzed 15,000 cDNA fragments. Among them 1020 were found to be differentially regulated by dormancy. Of 412 sequenced cDNA fragments, 83 were assigned to a known function by search similarities to public databases. The functional categories of the identified dormancy maintenance and breaking responsive genes, give evidence that after-ripening turns in the air-dry seed to a new developmental program that modulates, at the RNA level, components of translational control, signaling networks, transcriptional control and regulated proteolysis.

  13. A Novel mRNA Level Subtraction Method for Quick Identification of Target-Orientated Uniquely Expressed Genes Between Peanut Immature Pod and Leaf

    PubMed Central

    2010-01-01

    Subtraction technique has been broadly applied for target gene discovery. However, most current protocols apply relative differential subtraction and result in great amount clone mixtures of unique and differentially expressed genes. This makes it more difficult to identify unique or target-orientated expressed genes. In this study, we developed a novel method for subtraction at mRNA level by integrating magnetic particle technology into driver preparation and tester–driver hybridization to facilitate uniquely expressed gene discovery between peanut immature pod and leaf through a single round subtraction. The resulting target clones were further validated through polymerase chain reaction screening using peanut immature pod and leaf cDNA libraries as templates. This study has resulted in identifying several genes expressed uniquely in immature peanut pod. These target genes can be used for future peanut functional genome and genetic engineering research. PMID:21406066

  14. Transcription profiling using RNA-Seq demonstrates expression differences in the body walls of juvenile albino and normal sea cucumbers Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Ma, Deyou; Yang, Hongsheng; Sun, Lina; Chen, Muyan

    2014-01-01

    Sea cucumbers Apostichopus japonicus are one of the most important aquaculture species in China. Their normal body color is black to fit their surroundings. Wild albinos are rare and hard to breed. To understand the differences between albino and normal (control) sea cucumbers at the transcriptional level, we sequenced the transcriptomes in their body-wall tissues using RNA-Seq high-throughput sequencing. Approximately 4.876 million (M) and 4.884 M 200-nucleotide-long cDNA reads were produced in the cDNA libraries derived from the body walls of albino and control samples, respectively. A total of 9 561 (46.89%) putative genes were identified from among the RNA-Seq reads in both libraries. After filtering, 837 significantly differentially regulated genes were identified in the albino library compared with in the control library, and 3.6% of the differentially expressed genes (DEGs) were found to have changed those more than five-fold. The expression levels of 10 DEGs were checked by real-time PCR and the results were in full accord with the RNA-Seq expression trends, although the amplitude of the differences in expression levels was lower in all cases. A series of pathways were significantly enriched for the DEGs. These pathways were closely related to phagocytosis, the complement and coagulation cascades, apoptosis-related diseases, cytokine-cytokine receptor interaction, and cell adhesion. The differences in gene expression and enriched pathways between the albino and control sea cucumbers offer control targets for cultivating excellent albino A. japonicus strains in the future.

  15. Microarray-Based Mapping for the Detection of Molecular Markers in Response to Aspergillus flavus Infection in Susceptible and Resistant Maize Lines

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were (1) to evaluate differential gene expression levels for resistance to A. flavus kernel infection in susceptible (Va35) and resistant (Mp313E) maize lines using Oligonucleotide and cDNA microarray analysis, (2) to evaluate differences in A. flavus accumulation betwee...

  16. Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR.

    PubMed

    Alonso, Pablo; Cortizo, Millán; Cantón, Francisco R; Fernández, Belén; Rodríguez, Ana; Centeno, Maria L; Cánovas, Francisco M; Ordás, Ricardo J

    2007-12-01

    As part of a study aimed at understanding the physiological and molecular mechanisms involved in adventitious shoot bud formation in pine cotyledons, we conducted a transcriptome analysis to identify early-induced genes during the first phases of adventitious caulogenesis in Pinus pinea L. cotyledons cultured in the presence of benzyladenine. A subtractive cDNA library with more than 700 clones was constructed. Of these clones, 393 were sequenced, analyzed and grouped according to their putative function. Quantitative real-time PCR analysis was performed to confirm the differential expression of 30 candidate genes. Results are contrasted with available data for other species.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, Poupak; Chiu, Sally; Bowlus, Christopher L.

    Obesity is a complex disease. To date, over 100 chromosomal loci for body weight, body fat, regional white adipose tissue weight, and other obesity-related traits have been identified in humans and in animal models. For most loci, the underlying genes are not yet identified; some of these chromosomal loci will be alleles of known obesity genes, whereas many will represent alleles of unknown genes. Microarray analysis allows simultaneous multiple gene and pathway discovery. cDNA and oligonucleotide arrays are commonly used to identify differentially expressed genes by surveys of large numbers of known and unnamed genes. Two papers previously identified genesmore » differentially expressed in adipose tissue of mouse models of obesity and diabetes by analysis of hybridization to Affymetrix oligonucleotide chips.« less

  18. Isolation of genes negatively or positively co-expressed with human recombination activating gene 1 (RAG1) by differential display PCR (DD RT-PCR).

    PubMed

    Verkoczy, L K; Berinstein, N L

    1998-10-01

    Differential display PCR (DD RT-PCR) has been extensively used for analysis of differential gene expression, but continues to be hampered by technical limitations that impair its effectiveness. In order to isolate novel genes co-expressing with human RAG1, we have developed an effective, multi-tiered screening/purification approach which effectively complements the standard DD RT-PCR methodology. In 'primary' screens, standard DD RT-PCR was used, detecting 22 reproducible differentially expressed amplicons between clonally related cell variants with differential constitutive expression of RAG mRNAs. 'Secondary' screens used differential display (DD) amplicons as probes in low and high stringency northern blotting. Eight of 22 independent DD amplicons detected nine independent differentially expressed transcripts. 'Tertiary' screens used reconfirmed amplicons as probes in northern analysis of multiple RAG-and RAG+sources. Reconfirmed DD amplicons detected six independent RAG co-expressing transcripts. All DD amplicons reconfirmed by northern blot were a heterogeneous mixture of cDNAs, necessitating further purification to isolate single cDNAs prior to subcloning and sequencing. To effectively select the appropriate cDNAs from DD amplicons, we excised and eluted the cDNA(s) directly from regions of prior northern blots in which differentially expressed transcripts were detected. Sequences of six purified cDNA clones specifically detecting RAG co-expressing transcripts included matches to portions of the human RAG2 and BSAP regions and to four novel partial cDNAs (three with homologies to human ESTs). Overall, our results also suggest that even when using clonally related variants from the same cell line in addition to all appropriate internal controls previously reported, further screening and purification steps are still required in order to efficiently and specifically isolate differentially expressed genes by DD RT-PCR.

  19. Involvement of H-ras in erythroid differentiation of TF1 and human umbilical cord blood CD34 cells.

    PubMed

    Ge, Y; Li, Z H; Marshall, M S; Broxmeyer, H E; Lu, L

    1998-06-01

    To investigate the role of the ras gene in erythroid differentiation, a human erythroleukemic cell line, TF1, was transduced with a selectable retroviral vector carrying a mammalian wild type H-ras gene or a cytoplasmic dominant negative RAS1 gene. Transduction of TF1 cells with the wild type H-ras gene resulted in changes of cell types and up-regulation of erythroid-specific gene expression similar to that seen in differentiating erythroid cells. The number of red blood cell containing colonies derived from TF1 cells transduced with wild type H-ras cDNA was significantly increased and the cells in the colonies were more hemoglobinized as estimated by a deeper red color compared to those colony cells from mock or dominant negative RAS1 gene transduced TF1 cells, suggesting increased erythroid differentiation of TF1 cells after transduction of wild type H-ras in vitro. The mRNA levels of beta- and gamma-, but not alpha-, globin genes were significantly higher in H-ras transduced TF1 cells than those in TF1 cells transduced with mock or dominant negative RAS1 gene. Moreover, a 4kb pre-mRNA of the Erythropoietin receptor (EpoR) was highly expressed only in H-ras transduced TF1 cells. Additionally, human umbilical cord blood (CB) CD34 cells which are highly enriched for hematopoietic stem/progenitor cells were transduced with the same retroviral vectors to evaluate in normal primary cells the activities of H-ras in erythroid differentiation. Increased numbers of erythroid cell containing colonies (BFU-E and CFU-GEMM) were observed in CD34 cells transduced with the H-ras cDNA, compared to that from mock transduced cells. These data suggest a possible role for ras in erythroid differentiation.

  20. Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize.

    PubMed Central

    Wu, S; Kriz, A L; Widholm, J M

    1994-01-01

    The cloning and analysis of two different cDNA clones encoding putative maize (Zea mays L.) chitinases obtained by polymerase chain reaction (PCR) and cDNA library screening is described. The cDNA library was made from poly(A)+ RNA from leaves challenged with mercuric chloride for 2 d. The two clones, pCh2 and pCh11, appear to encode class I chitinase isoforms with cysteine-rich domains (not found in pCh11 due to the incomplete sequence) and proline-/glycine-rich or proline-rich hinge domains, respectively. The pCh11 clone resembles a previously reported maize seed chitinase; however, the deduced proteins were found to have acidic isoelectric points. Analysis of all monocot chitinase sequences available to date shows that not all class I chitinases possess the basic isoelectric points usually found in dicotyledonous plants and that monocot class II chitinases do not necessarily exhibit acidic isoelectric points. Based on sequence analysis, the pCh2 protein is apparently synthesized as a precursor polypeptide with a signal peptide. Although these two clones belong to class I chitinases, they share only about 70% amino acid homology in the catalytic domain region. Southern blot analysis showed that pCh2 may be encoded by a small gene family, whereas pCh11 was single copy. Northern blot analysis demonstrated that these genes are differentially regulated by mercuric chloride treatment. Mercuric chloride treatment caused rapid induction of pCh2 from 6 to 48 h, whereas pCh11 responded only slightly to the same treatment. During seed germination, embryos constitutively expressed both chitinase genes and the phytohormone abscisic acid had no effect on the expression. The fungus Aspergillus flavus was able to induce both genes to comparable levels in aleurone layers and embryos but not in endosperm tissue. Maize callus growth on the same plate with A. flavus for 1 week showed induction of the transcripts corresponding to pCh2 but not to pCh11. These studies indicate that the different chitinase isoforms in maize might have different functions in the plant, since they show differential expression patterns under different conditions. PMID:7972490

  1. Transduction of human IL-9 receptor cDNA into TF1 cells induces IL-9 dependency and erythroid differentiation.

    PubMed

    Xiao, M; Luo, Z; Mantel, C; Broxmeyer, H E; Lu, L

    2000-02-01

    Human growth factor-dependent cell line TF1, which lacks interleukin (IL)-9 receptors (R) and does not grow in IL-9, was transduced with a retroviral vector containing human IL-9R cDNA and a selection marker. An IL-9-dependent TF1 cell line, which could also grow in other cytokines, was established after selection in G418 and could produce mature RBC in response to cytokine stimulation. TF1 cells transduced with the same viral vector without the IL-9R insert cDNA (mock control) and then selected responded the same as nontransduced TF1 cells. They failed to grow in response to IL-9 and did not generate RBC. An increased number and size of burst-forming units-erythroid (BFU-E)-like colonies were detected from IL-9R-transduced TF1 cells, compared with mock-transduced cells, in response to erythropoietin (EPO) and IL-9. To evaluate self-renewal and differentiation capacity, colony-replating assays were performed in the presence of IL-3, GM-CSF, IL-9, and EPO. After four replatings, the cloning efficiency of IL-9R-transduced TF1 cells decreased from 98% to 38%, most likely due to terminal erythroid cell differentiation. In contrast, no change in replating efficiency was detected in mock-transduced cells. TF1 cells stably expressing IL-9R and responding to IL-9 can serve as a cell line model to study the intracellular signals mediating IL-9-induced erythroid cell proliferation and differentiation.

  2. Transcriptional profiling of the parr–smolt transformation in Atlantic salmon

    USGS Publications Warehouse

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of smolts compared to parr. Smolts had higher levels of gill Na+/K+-ATPase activity, plasma cortisol and plasma thyroid hormones relative to parr. Across all five tissues, stringent microarray analyses identified 48 features that were differentially expressed in smolts compared to parr. Using a less stringent method we found 477 features that were differentially expressed at least 1.2-fold in smolts, including 172 features in the gill. Smolts had higher mRNA levels of genes involved in transcription, protein biosynthesis and folding, electron transport, oxygen transport, and sensory perception and lower mRNA levels for genes involved in proteolysis. Quantitative RT-PCR was used to confirm differential expression in select genes identified by microarray analyses and to quantify expression of other genes known to be involved in smolting. This study expands our understanding of the molecular processes that underlie smolting in Atlantic salmon and identifies genes for further investigation.

  3. cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation.

    PubMed

    Vandorpe, D H; Shmukler, B E; Jiang, L; Lim, B; Maylie, J; Adelman, J P; de Franceschi, L; Cappellini, M D; Brugnara, C; Alper, S L

    1998-08-21

    We have cloned from murine erythroleukemia (MEL) cells, thymus, and stomach the cDNA encoding the Ca2+-gated K+ (KCa) channel, mIK1, the mouse homolog of hIK1 (Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P., and Maylie, J. (1997) Proc. Natl. Acad. Sci.(U. S. A. 94, 11651-11656). mIK1 mRNA was detected at varied levels in many tissue types. mIK1 KCa channel activity expressed in Xenopus oocytes closely resembled the Kca of red cells (Gardos channel) and MEL cells in its single channel conductance, lack of voltage-sensitivity of activation, inward rectification, and Ca2+ concentration dependence. mIK1 also resembled the erythroid channel in its pharmacological properties, mediating whole cell and unitary currents sensitive to low nM concentrations of both clotrimazole (CLT) and its des-imidazolyl metabolite, 2-chlorophenyl-bisphenyl-methanol, and to low nM concentrations of iodocharybdotoxin. Whereas control oocytes subjected to hypotonic swelling remained swollen, mIK1 expression conferred on oocytes a novel, Ca2+-dependent, CLT-sensitive regulatory volume decrease response. Hypotonic swelling of voltage-clamped mIK1-expressing oocytes increased outward currents that were Ca2+-dependent, CLT-sensitive, and reversed near the K+ equilibrium potential. mIK1 mRNA levels in ES cells increased steadily during erythroid differentiation in culture, in contrast to other KCa mRNAs examined. Low nanomolar concentrations of CLT inhibited proliferation and erythroid differentiation of peripheral blood stem cells in liquid culture.

  4. Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae)

    PubMed Central

    Ziegenhagen, Birgit; Liepelt, Sascha

    2015-01-01

    Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer a valuable tool to reduce the complexity of the analysis and the amount of sequencing work and costs. For this study we combined an improved drought stress phenotyping of needles via a novel terahertz water monitoring technique with Massive Analysis of cDNA Ends to identify candidate genes for drought stress response in European silver fir (Abies alba Mill.). A pooled cDNA library was constructed from the cotyledons of six drought stressed and six well-watered silver fir seedlings, respectively. Differential expression analyses of these libraries revealed 296 candidate genes for drought stress response in silver fir (247 up- and 49 down-regulated) of which a subset was validated by RT-qPCR of the twelve individual cotyledons. A majority of these genes code for currently uncharacterized proteins and hint on new genomic resources to be explored in conifers. Furthermore, we could show that some traditional reference genes from model plant species (GAPDH and eIF4A2) are not suitable for differential analysis and we propose a new reference gene, TPC1, for drought stress expression profiling in needles of conifer seedlings. PMID:25924061

  5. Networking Senescence-Regulating Pathways by Using Arabidopsis Enhancer Trap Lines1

    PubMed Central

    He, Yuehui; Tang, Weining; Swain, Johnnie D.; Green, Anthony L.; Jack, Thomas P.; Gan, Susheng

    2001-01-01

    The last phase of leaf development, generally referred to as leaf senescence, is an integral part of plant development that involves massive programmed cell death. Due to a sharp decline of photosynthetic capacity in a leaf, senescence limits crop yield and forest plant biomass production. However, the biochemical components and regulatory mechanisms underlying leaf senescence are poorly characterized. Although several approaches such as differential cDNA screening, differential display, and cDNA subtraction have been employed to isolate senescence-associated genes (SAGs), only a limited number of SAGs have been identified, and information regarding the regulation of these genes is fragmentary. Here we report on the utilization of enhancer trap approach toward the identification and analysis of SAGs. We have developed a sensitive large-scale screening method and have screened 1,300 Arabidopsis enhancer trap lines and have identified 147 lines in which the reporter gene GUS (β-glucuronidase) is expressed in senescing leaves but not in non-senescing ones. We have systematically analyzed the regulation of β-glucuronidase expression in 125 lines (genetically, each contains single T-DNA insertion) by six senescence-promoting factors, namely abscisic acid, ethylene, jasmonic acid, brassinosteroid, darkness, and dehydration. This analysis not only reveals the complexity of the regulatory circuitry but also allows us to postulate the existence of a network of senescence-promoting pathways. We have also cloned three SAGs from randomly selected enhancer trap lines, demonstrating that reporter expression pattern reflects the expression pattern of the endogenous gene. PMID:11402199

  6. Transcriptome analysis of Schistosoma mansoni larval development using serial analysis of gene expression (SAGE).

    PubMed

    Taft, A S; Vermeire, J J; Bernier, J; Birkeland, S R; Cipriano, M J; Papa, A R; McArthur, A G; Yoshino, T P

    2009-04-01

    Infection of the snail, Biomphalaria glabrata, by the free-swimming miracidial stage of the human blood fluke, Schistosoma mansoni, and its subsequent development to the parasitic sporocyst stage is critical to establishment of viable infections and continued human transmission. We performed a genome-wide expression analysis of the S. mansoni miracidia and developing sporocyst using Long Serial Analysis of Gene Expression (LongSAGE). Five cDNA libraries were constructed from miracidia and in vitro cultured 6- and 20-day-old sporocysts maintained in sporocyst medium (SM) or in SM conditioned by previous cultivation with cells of the B. glabrata embryonic (Bge) cell line. We generated 21 440 SAGE tags and mapped 13 381 to the S. mansoni gene predictions (v4.0e) either by estimating theoretical 3' UTR lengths or using existing 3' EST sequence data. Overall, 432 transcripts were found to be differentially expressed amongst all 5 libraries. In total, 172 tags were differentially expressed between miracidia and 6-day conditioned sporocysts and 152 were differentially expressed between miracidia and 6-day unconditioned sporocysts. In addition, 53 and 45 tags, respectively, were differentially expressed in 6-day and 20-day cultured sporocysts, due to the effects of exposure to Bge cell-conditioned medium.

  7. Estrogen regulation of uterine genes in vivo detected by complementary DNA array.

    PubMed

    Andrade, P M; Silva, I D C G; Borra, R C; de Lima, G R; Baracat, E C

    2002-05-01

    In the present study, our aim was to identify differentially expressed genes involved in estrogen actions at the endometrium level in rats. Thirty adult rats were ovariectomized four days prior to drug administration for 48 days. Rats were divided in 2 groups: I, control and II, conjugated equine estrogens (CCE). Total RNA was isolated from uterus, and differential expression was analyzed by array technology and RT-PCR. A total of 32 candidate genes were shown to be upregulated or downregulated in groups I or II. Among them, differential expression was already confirmed by RT-PCR for IGFBP5, S12, c-kit, and VEGF, genes whose expression was up regulated during CCE therapy, and casein kinase II and serine kinase expression was the same level in both groups. We have demonstrated that cDNA array represents a powerful approach to identify key molecules in the estrogens therapy. A number of the candidates reported here should provide new markers that may contribute to the detection of target estrogen receptor. This information may also aid the development of new approaches to therapeutic intervention.

  8. Expression of receptor protein tyrosine kinase tif is regulated during leukemia cell differentiation.

    PubMed

    Dai, W; Pan, H Q; Ouyang, B; Greenberg, J M; Means, R T; Li, B; Cardie, J

    1996-06-01

    tif is a recently cloned and characterized cDNA predicting a transmembrane protein with a putative tyrosine kinase structure in its cytoplasmic domain. By analysis of the purified tif cytoplasmic domain expressed in Escherichia coli, we have demonstrated that tif is an active protein tyrosine kinase capable of autophosphorylation on tyrosine residues and this phosphorylation is inhibited by a tyrosine-specific inhibitor genistein. Northern blot analyses of various leukemia cell lines have revealed that tif mRNA expression is primarily confined to those bearing erythroid and megakaryocytic phenotypes. Megakaryocytic differentiation of K562 and HEL cells induced by phorbol 12-myristate 13-acetate is accompanied by down-regulation of tif mRNA expression. In addition, treatment of K562 and HEL with hexamethylene bis-acetamide, but not with hemin, decreases the steady-state level of tif mRNA. These combined results suggest that the receptor tyrosine kinase tif is involved in hematopoietic development.

  9. Comparative Analysis of Expressed Genes from Cacao Meristems Infected by Moniliophthora perniciosa

    PubMed Central

    Gesteira, Abelmon S.; Micheli, Fabienne; Carels, Nicolas; Da Silva, Aline C.; Gramacho, Karina P.; Schuster, Ivan; Macêdo, Joci N.; Pereira, Gonçalo A. G.; Cascardo, Júlio C. M.

    2007-01-01

    Background and Aims Witches' broom disease is caused by the hemibiotrophic basidiomycete Moniliophthora perniciosa, and is one of the most important diseases of cacao in the western hemisphere. Because very little is known about the global process of such disease development, expressed sequence tags (ESTs) were used to identify genes expressed during the Theobroma cacao–Moniliophthora perniciosa interaction. Methods Two cDNA libraries corresponding to the resistant (RT) and susceptible (SP) cacao–M. perniciosa interactions were constructed from total RNA, using the DB SMART Creator cDNA library kit (Clontech). Clones were randomly selected, sequenced from the 5′ end and analysed using bioinformatics tools including in silico analysis of the differential gene expression. Key Results A total of 6884 ESTs were generated from the RT and SP cDNA libraries. These ESTs were composed of 2585 singlets and 341 contigs for a total of 2926 non-redundant sequences. The redundancy of the libraries was low and their specificity high when compared with the few other cacao libraries already published. Sequence analysis allowed the assignment of a putative functional category for 54 % of sequences, whereas approx. 22 % of sequences corresponded to unknown function and approx. 24 % of sequences did not show any significant similarity with other proteins present in the database. Despite the similar overall distribution of the sequences in functional categories between the two libraries, qualitative differences were observed. Genes involved during the defence response to pathogen infection or in programmed cell death were identified, such as pathogenesis related-proteins, trypsin inhibitor or oxalate oxidase, and some of them showed an in silico differential expression between the resistant and the susceptible interactions. Conclusions As far as is known this is the first EST resource from the cacao–M. perniciosa interaction and it is believed that it will provide a significant contribution to the understanding of the molecular mechanisms of the resistance and susceptibility of cacao to M. perniciosa, to develop strategies to control witches broom, and as a source of polymorphism for molecular marker development and marker-assisted selection. PMID:17557832

  10. Characterization of a full-length infectious cDNA clone and a GFP reporter derivative of the oncolytic picornavirus SVV-001.

    PubMed

    Poirier, John T; Reddy, P Seshidhar; Idamakanti, Neeraja; Li, Shawn S; Stump, Kristine L; Burroughs, Kevin D; Hallenbeck, Paul L; Rudin, Charles M

    2012-12-01

    Seneca Valley virus (SVV-001) is an oncolytic picornavirus with selective tropism for a subset of human cancers with neuroendocrine differentiation. To characterize further the specificity of SVV-001 and its patterns and kinetics of intratumoral spread, bacterial plasmids encoding a cDNA clone of the full-length wild-type virus and a derivative virus expressing GFP were generated. The full-length cDNA of the SVV-001 RNA genome was cloned into a bacterial plasmid under the control of the T7 core promoter sequence to create an infectious cDNA clone, pNTX-09. A GFP reporter virus cDNA clone, pNTX-11, was then generated by cloning a fusion protein of GFP and the 2A protein from foot-and-mouth disease virus immediately following the native SVV-001 2A sequence. Recombinant GFP-expressing reporter virus, SVV-GFP, was rescued from cells transfected with in vitro RNA transcripts from pNTX-11 and propagated in cell culture. The proliferation kinetics of SVV-001 and SVV-GFP were indistinguishable. The SVV-GFP reporter virus was used to determine that a subpopulation of permissive cells is present in small-cell lung cancer cell lines previously thought to lack permissivity to SVV-001. Finally, it was shown that SVV-GFP administered to tumour-bearing animals homes in to and infects tumours whilst having no detectable tropism for normal mouse tissues at 1×10(11) viral particles kg(-1), a dose equivalent to that administered in ongoing clinical trials. These infectious clones will be of substantial value in further characterizing the biology of this virus and as a backbone for the generation of additional oncolytic derivatives.

  11. Evaluation and Adaptation of a Laboratory-Based cDNA Library Preparation Protocol for Retrospective Sequencing of Archived MicroRNAs from up to 35-Year-Old Clinical FFPE Specimens

    PubMed Central

    Loudig, Olivier; Wang, Tao; Ye, Kenny; Lin, Juan; Wang, Yihong; Ramnauth, Andrew; Liu, Christina; Stark, Azadeh; Chitale, Dhananjay; Greenlee, Robert; Multerer, Deborah; Honda, Stacey; Daida, Yihe; Spencer Feigelson, Heather; Glass, Andrew; Couch, Fergus J.; Rohan, Thomas; Ben-Dov, Iddo Z.

    2017-01-01

    Formalin-fixed paraffin-embedded (FFPE) specimens, when used in conjunction with patient clinical data history, represent an invaluable resource for molecular studies of cancer. Even though nucleic acids extracted from archived FFPE tissues are degraded, their molecular analysis has become possible. In this study, we optimized a laboratory-based next-generation sequencing barcoded cDNA library preparation protocol for analysis of small RNAs recovered from archived FFPE tissues. Using matched fresh and FFPE specimens, we evaluated the robustness and reproducibility of our optimized approach, as well as its applicability to archived clinical specimens stored for up to 35 years. We then evaluated this cDNA library preparation protocol by performing a miRNA expression analysis of archived breast ductal carcinoma in situ (DCIS) specimens, selected for their relation to the risk of subsequent breast cancer development and obtained from six different institutions. Our analyses identified six miRNAs (miR-29a, miR-221, miR-375, miR-184, miR-363, miR-455-5p) differentially expressed between DCIS lesions from women who subsequently developed an invasive breast cancer (cases) and women who did not develop invasive breast cancer within the same time interval (control). Our thorough evaluation and application of this laboratory-based miRNA sequencing analysis indicates that the preparation of small RNA cDNA libraries can reliably be performed on older, archived, clinically-classified specimens. PMID:28335433

  12. Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis.

    PubMed

    Luo, Jun; Dunn, Thomas; Ewing, Charles; Sauvageot, Jurga; Chen, Yidong; Trent, Jeffrey; Isaacs, William

    2002-05-15

    Despite the high prevalence of benign prostatic hyperplasia (BPH) in the aging male, little is known regarding the etiology of this disease. A better understanding of the molecular etiology of BPH would be facilitated by a comprehensive analysis of gene expression patterns that are characteristic of benign growth in the prostate gland. Since genes differentially expressed between BPH and normal prostate tissues are likely to reflect underlying pathogenic mechanisms involved in the development of BPH, we performed comparative gene expression analysis using cDNA microarray technology to identify candidate genes associated with BPH. Total RNA was extracted from a set of 9 BPH specimens from men with extensive hyperplasia and a set of 12 histologically normal prostate tissues excised from radical prostatectomy specimens. Each of these 21 RNA samples was labeled with Cy3 in a reverse transcription reaction and cohybridized with a Cy5 labeled common reference sample to a cDNA microarray containing 6,500 human genes. Normalized fluorescent intensity ratios from each hybridization experiment were extracted to represent the relative mRNA abundance for each gene in each sample. Weighted gene and random permutation analyses were performed to generate a subset of genes with statistically significant differences in expression between BPH and normal prostate tissues. Semi-quantitative PCR analysis was performed to validate differential expression. A subset of 76 genes involved in a wide range of cellular functions was identified to be differentially expressed between BPH and normal prostate tissues. Semi-quantitative PCR was performed on 10 genes and 8 were validated. Genes consistently upregulated in BPH when compared to normal prostate tissues included: a restricted set of growth factors and their binding proteins (e.g. IGF-1 and -2, TGF-beta3, BMP5, latent TGF-beta binding protein 1 and -2); hydrolases, proteases, and protease inhibitors (e.g. neuropathy target esterase, MMP2, alpha-2-macroglobulin); stress response enzymes (e.g. COX2, GSTM5); and extracellular matrix molecules (e.g. laminin alpha 4 and beta 1, chondroitin sulfate proteoglycan 2, lumican). Genes consistently expressing less mRNA in BPH than in normal prostate tissues were less commonly observed and included the transcription factor KLF4, thrombospondin 4, nitric oxide synthase 2A, transglutaminase 3, and gastrin releasing peptide. We identified a diverse set of genes that are potentially related to benign prostatic hyperplasia, including genes both previously implicated in BPH pathogenesis as well as others not previously linked to this disease. Further targeted validation and investigations of these genes at the DNA, mRNA, and protein levels are warranted to determine the clinical relevance and possible therapeutic utility of these genes. Copyright 2002 Wiley-Liss, Inc.

  13. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that is not expressed in mature tissues -- the embryonic genes. In the last two years, using cDNA clones, we have isolated 22 cDNA clones, and characterized the expression pattern of their corresponding RNA. At least 4 cDNA clones detect RNAs of embryonic genes. These cDNA clones detect RNAs expressed in somatic as well as zygotic embryos of carrot. Using the cDNA clones, we screened the genomic library of carrot embryo DNA, and isolatedmore » genomic clones for three genes. The structure and function of two genes DC 8 and DC 59 have been characterized and are reported in this paper.« less

  14. Identification of genes differentially expressed during ripening of banana.

    PubMed

    Manrique-Trujillo, Sandra Mabel; Ramírez-López, Ana Cecilia; Ibarra-Laclette, Enrique; Gómez-Lim, Miguel Angel

    2007-08-01

    The banana (Musa acuminata, subgroup Cavendish 'Grand Nain') is a climacteric fruit of economic importance. A better understanding of the banana ripening process is needed to improve fruit quality and to extend shelf life. Eighty-four up-regulated unigenes were identified by differential screening of a banana fruit cDNA subtraction library at a late ripening stage. The ripening stages in this study were defined according to the peel color index (PCI). Unigene sequences were analyzed with different databases to assign a putative identification. The expression patterns of 36 transcripts confirmed as positive by differential screening were analyzed comparing the PCI 1, PCI 5 and PCI 7 ripening stages. Expression profiles were obtained for unigenes annotated as orcinol O-methyltransferase, putative alcohol dehydrogenase, ubiquitin-protein ligase, chorismate mutase and two unigenes with non-significant matches with any reported sequence. Similar expression profiles were observed in banana pulp and peel. Our results show differential expression of a group of genes involved in processes associated with fruit ripening, such as stress, detoxification, cytoskeleton and biosynthesis of volatile compounds. Some of the identified genes had not been characterized in banana fruit. Besides providing an overview of gene expression programs and metabolic pathways at late stages of banana fruit ripening, this study contributes to increasing the information available on banana fruit ESTs.

  15. Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi.

    PubMed

    Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou

    2013-09-01

    Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Differential Expression of MicroRNAs in Breast Cancers from Four Different Ethnicities.

    PubMed

    Pollard, Jennifer; Burns, Phil A; Hughes, Tom A; Ho-Yen, Colan; Jones, J Louise; Mukherjee, Geetashree; Omoniyi-Esan, Ganiat O; Titloye, Nicholas Akinwale; Speirs, Valerie; Shaaban, Abeer M

    2018-05-23

    Breast cancer outcomes vary across different ethnic groups. MicroRNAs (miRs) are small non-coding RNA molecules that regulate gene expression across a range of pathologies, including breast cancer. The aim of this study was to evaluate the presence and expression of miRs in breast cancer samples from different ethnic groups. Breast cancer tissue from 4 ethnic groups, i.e., British Caucasian, British Black, Nigerian, and Indian, were identified and matched for patients' age, tumour grade/type, and 10 × 10 µm sections taken. Tumour areas were macrodissected, total RNA was extracted, and cDNA was synthesised. cDNA was applied to human miScript PCR arrays allowing the quantification of 84 of the most abundantly expressed/best-characterised miRs. Differential expression of 9 miRs was seen across the 4 groups. Significantly higher levels of miR-140-5p, miR-194 and miR-423-5p (the last of which harbours the single-nucleotide polymorphism rs6505162) were seen in the breast tumours of Nigerian patients when compared with other ethnic groups (all p < 0.0001). miR-101 was overexpressed in breast cancers in the Indian patients. An in silico analysis of miR-423-5p showed that the AC genotype is mainly associated with Europeans (57%), while Asians display mostly CC (approx. 60%), and Africans mainly AA (approx. 60%). This study shows divergence in miR expression in breast cancers from different ethnic groups, and suggests that specific genetic variants in miR genes may affect breast cancer risk in these groups. Predicted targets of these miRs may uncover useful biomarkers that could have clinical value in breast cancers in different ethnic groups. © 2018 S. Karger AG, Basel.

  17. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, butmore » F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.« less

  18. Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare).

    PubMed

    Singh, Manjit; Burson, Byron L; Finlayson, Scott A

    2007-08-01

    Asexual reproduction through seeds, or apomixis, is a process that holds much promise for agricultural advances. However, the molecular mechanisms underlying apomixis are currently poorly understood. To identify genes related to female gametophyte development in apomictic ovaries of buffelgrass (Pennisetum ciliare (L.) Link), Suppression Subtractive Hybridization of ovary cDNA with leaf cDNA was performed. Through macroarray screening of subtracted cDNAs two genes were identified, Pca21 and Pca24, that showed differential expression between apomictic and sexual ovaries. Sequence analysis showed that both Pca21 and Pca24 are novel genes not previously characterized in plants. Pca21 shows homology to two wheat genes that are also expressed during reproductive development. Pca24 has similarity to coiled-coil-helix-coiled-coil-helix (CHCH) domain containing proteins from maize and sugarcane. Northern blot analysis revealed that both of these genes are expressed throughout female gametophyte development in apomictic ovaries. In situ hybridizations localized the transcript of these two genes to the developing embryo sacs in the apomictic ovaries. Based on the expression patterns it was concluded that Pca21 and Pca24 likely play a role during apomictic development in buffelgrass.

  19. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    PubMed

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  20. A New Transgenic Approach to Target Tumor Vasculature

    DTIC Science & Technology

    2006-06-01

    to the new vasculature, and any cDNA of interest can be selectively delivered to growing blood vessels using the RCAS virus as a delivery agent ...Flk1 promoter/enhancer was therefore expected to selectively drive TVA receptor expression in endothelial cells of newly forming blood vessels in the...therefore, promising targets for anti -cancer and anti - angiogenic therapies. The mice are also suitable to study proteins involved in the differentiation

  1. Stress and transcriptional regulation of tick ferritin HC.

    PubMed

    Mulenga, A; Simser, J A; Macaluso, K R; Azad, A F

    2004-08-01

    We previously identified a partial Dermacentor variabilis cDNA encoding ferritin HC (HC) subunit homolog (DVFER) that was differentially upregulated in Rickettsia montanensis infected ticks (Mulenga et al., 2003a). We have used rapid amplification of cDNA ends to clone full-length DVFER cDNA and its apparent ortholog from the wood tick, D. andersoni (DAFER), both of which show high sequence similarity to vertebrate than insect ferritin. Both DVFER and DAFER contain the stem-loop structure of a putative iron responsive element in the 5' untranslated region (nucleotide positions, 16-42) and the feroxidase centre loop typical for vertebrate ferritin HC subunits. Quantitative Western and Northern blotting analyses of protein and RNA from unfed and partially fed whole tick as well as dissected tick tissues demonstrated that DVFER is constitutively and ubiquitously expressed. Based on densitometric analysis of detected protein and mRNA bands, DVFER is predominantly expressed in the midgut, and to a lesser extent in the salivary glands, ovary and fatbody. Sham treatment (mechanical injury) and Escherichia coli challenge of D. variabilis ticks stimulated statistically significant (approximately 1.5- and approximately 3.0-fold, respectively) increases in DVFER mRNA abundance over time point matched naive control ticks. These data suggest that DVFER mRNA is nonspecifically up regulated in response to mechanical injury or bacterial infection induced stress.

  2. Tenascin-W inhibits proliferation and differentiation of preosteoblasts during endochondral bone formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Hiroaki; Akiyama, Haruhiko; Nakamura, Takashi

    We identified a cDNA encoding mouse Tenascin-W (TN-W) upregulated by bone morphogenetic protein (Bmp)2 in ATDC5 osteo-chondroprogenitors. In adult mice, TN-W was markedly expressed in bone. In mouse embryos, during endochondral bone formation TN-W was localized in perichondrium/periosteum, but not in trabecular and cortical bones. During bone fracture repair, cells in the newly formed perichondrium/periosteum surrounding the cartilaginous callus expressed TN-W. Furthermore, TN-W was detectable in perichondrium/periosteum of Runx2-null and Osterix-null embryos, indicating that TN-W is expressed in preosteoblasts. In CFU-F and -O cells, TN-W had no effect on initiation of osteogenesis of bone marrow cells, and in MC3T3-E1 osteoblasticmore » cells TN-W inhibited cell proliferation and Col1a1 expression. In addition, TN-W suppressed canonical Wnt signaling which stimulates osteoblastic differentiation. Our results indicate that TN-W is a novel marker of preosteoblasts in early stage of osteogenesis, and that TN-W inhibits cell proliferation and differentiation of preosteoblasts mediated by canonical Wnt signaling.« less

  3. Neurite differentiation is modulated in neuroblastoma cells engineered for altered acetylcholinesterase expression.

    PubMed

    Koenigsberger, C; Chiappa, S; Brimijoin, S

    1997-10-01

    Previous observations from several groups suggest that acetylcholinesterase (AChE) may have a role in neural morphogenesis, but not solely by virtue of its ability to hydrolyze acetylcholine. We tested the possibility that AChE influences neurite outgrowth in nonenzymatic ways. With this aim, antisense oligonucleotides were used to decrease AChE levels transiently, and N1E.115 cell lines were engineered for permanently altered AChE protein expression. Cells stably transfected with a sense AChE cDNA construct increased their AChE expression 2.5-fold over the wild type and displayed significantly increased neurite outgrowth. Levels of the differentiation marker, tau, also rose. In contrast, AChE expression in cell lines containing an antisense construct was half of that observed in the wild type. Significant reductions in neurite outgrowth and tau protein accompanied this effect. Overall, these measures correlated statistically with the AChE level (p < 0.01). Furthermore, treatment of AChE-overexpressing cells with a polyclonal antibody against AChE decreased neurite outgrowth by 43%. We conclude that AChE may have a novel, noncholinergic role in neuronal differentiation.

  4. Upregulated Genes In Sporadic, Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Edgar, Alasdair J; Chacón, Matilde R; Bishop, Anne E; Yacoub, Magdi H; Polak, Julia M

    2006-01-01

    Background To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH). Methods Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test. Results We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase. Conclusion Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively. PMID:16390543

  5. DIFFERENTIATING THE TOXICITY OF CARCINOGENIC ALDEHYDES FROM NONCARCINOGENIC ALDEHYDES IN THE RAT NOSE USING CDNA ARRAYS

    EPA Science Inventory

    Differentiating the Toxicity of Carcinogenic Aldehydes from Noncarcinogenic Aldehydes in the Rat Nose Using cDNA Arrays.

    Formaldehyde is a widely used aldehyde in many industrial settings, the tanning process, household products, and is a contaminant in cigarette smoke. H...

  6. Expression of cardiac neural crest and heart genes isolated by modified differential display.

    PubMed

    Martinsen, Brad J; Groebner, Nathan J; Frasier, Allison J; Lohr, Jamie L

    2003-08-01

    The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent outflow tract septation are critical events during vertebrate heart development. We have performed four modified differential display screens in the chick embryo to identify genes that may be involved in CNC, OFT, secondary heart field, and heart development. The screens included differential display of RNA isolated from three different axial segments containing premigratory cranial neural crest cells; of RNA from distal outflow tract, proximal outflow tract, and atrioventricular tissue of embryonic chick hearts; and of RNA isolated from left and right cranial tissues, including the early heart fields. These screens have resulted in the identification of the five cDNA clones presented here, which are expressed in the cardiac neural crest, outflow tract and developing heart in patterns that are unique in heart development.

  7. Neuroglian is expressed on cells destined to form the prothoracic glands of Manduca embryos as they segregate from surrounding cells and rearrange during morphogenesis.

    PubMed

    Chen, C L; Lampe, D J; Robertson, H M; Nardi, J B

    1997-01-01

    A cell surface protein (3B11) is differentially expressed in the embryonic labial segment of Manduca as two circular monolayers of epithelial cells invaginate and segregate from surrounding epithelial cells. The cells that invaginate and preferentially express 3B11 represent the presumptive prothoracic glands. These cells continue to express protein 3B11 as they rearrange to form first a three-dimensional aggregate and later anastomosing filaments of cells. In the differentiated prothoracic gland, expression of 3B11 is restricted to sites of cell-cell contact. Cloning and sequencing of the cDNA for protein 3B11 revealed that this protein is the Manduca counterpart of Drosophila neuroglian and mouse L1. These surface proteins are known to function as adhesion/recognition molecules during development. Manduca neuroglian shares 58 and 31% identity respectively with the Drosophila and mouse proteins and has a cytoplasmic domain of over 100 amino acids.

  8. Genes involved in nonpermissive temperature-induced cell differentiation in Sertoli TTE3 cells bearing temperature-sensitive simian virus 40 large T-antigen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabuchi, Yoshiaki; Kondo, Takashi; Suzuki, Yoshihisa

    2005-04-15

    Sertoli TTE3 cells, derived from transgenic mice bearing temperature-sensitive simian virus 40 large T (tsSV40LT)-antigen, proliferated continuously at a permissive temperature (33 deg C) whereas inactivation of the large T-antigen by a nonpermissive temperature (39 deg C) led to differentiation as judged by elevation of transferrin. To clarify the detailed mechanisms of differentiation, we investigated the time course of changes in gene expression using cDNA microarrays. Of the 865 genes analyzed, 14 genes showed increased levels of expression. Real-time quantitative PCR revealed that the mRNA levels of p21{sup waf1}, milk fat globule membrane protein E8, heat-responsive protein 12, and selenoproteinmore » P were markedly elevated. Moreover, the differentiated condition induced by the nonpermissive temperature significantly increased mRNA levels of these four genes in several cell lines from the transgenic mice bearing the oncogene. The present results regarding changes in gene expression will provide a basis for a further understanding of molecular mechanisms of differentiation in both Sertoli cells and cell lines transformed by tsSV40LT-antigen.« less

  9. Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization.

    PubMed

    Dalla Valle, Luisa; Nardi, Alessia; Belvedere, Paola; Toni, Mattia; Alibardi, Lorenzo

    2007-07-01

    Beta-keratins of reptilian scales have been recently cloned and characterized in some lizards. Here we report for the first time the sequence of some beta-keratins from the snake Elaphe guttata. Five different cDNAs were obtained using 5'- and 3'-RACE analyses. Four sequences differ by only few nucleotides in the coding region, whereas the last cDNA shows, in this region, only 84% of identity. The gene corresponding to one of the cDNA sequences has a single intron present in the 5'-untranslated region. This genomic organization is similar to that of birds' beta-keratins. Cloning and Southern blotting analysis suggest that snake beta-keratins belong to a family of high-related genes as for geckos. PCR analysis suggests a head-to-tail orientation of genes in the same chromosome. In situ hybridization detected beta-keratin transcripts almost exclusively in differentiating oberhautchen and beta-cells of the snake epidermis in renewal phase. This is confirmed by Northern blotting that showed, in this phase, a high expression of two different transcripts whereas only the longer transcript is expressed at a much lower level in resting skin. The cDNA coding sequences encoded putative glycine-proline-serine rich proteins containing 137-139 amino acids, with apparent isoelectric point at 7.5 and 8.2. A central region, rich in proline, shows over 50% homology with avian scale, claw, and feather keratins. The prediction of secondary structure shows mainly a random coil conformation and few beta-strand regions in the central region, likely involved in the formation of a fibrous framework of beta-keratins. This region was possibly present in basic reptiles that originated reptiles and birds. Copyright 2007 Wiley-Liss, Inc.

  10. cDNA cloning and expression analysis of two distinct Sox8 genes in Paramisgurnus dabryanus (Cypriniformes).

    PubMed

    Xia, Xiaohua; Zhao, Jie; Du, Qiyan; Chang, Zhongjie

    2010-08-01

    The Sox9 gene attracts a lot of attention because of its connection with gonadal development and differentiation. However, Sox8, belonging to the same subgroup SoxE, has rarely been studied. To investigate the function as well as the evolutionary origin of SOXE subgroup, we amplified the genomic DNA of Paramisgurnus dabryanu using a pair of degenerate primers. Using rapid amplification of the cDNA ends (RACE), it was discovered that P. dabryanu has two duplicates: Sox8a and Sox8b. Each has an intron of different length in the conserved HMG-box region. The overall sequence similarity of the deduced amino acid of PdSox8a and PdSox8b was 46.26%, and only two amino acids changed in the HMG-box. This is the first evidence showing that there are two distinct duplications of Sox8 genes in Cypriniformes. Southern blot analysis showed only one hybrid band, with lengths 7.4 or 9.2 kb. Both semi-quantitative RT-PCR and real-time quantitative PCR assay displayed that both PdSox8a and PdSox8b are downregulated during early embryonic development. In adult tissues, the two Sox8 genes expressed ubiquitously, and expression levels are particularly high in the gonads and brain. In gonads, both PdSox8a and PdSox8b are expressed at a higher level in the tesis than in the ovary. PdSox8a and PdSox8b may have functional overlaps and are essential for the neuronal development and differentiation of gonads.

  11. Inhibition of laminin alpha 1-chain expression leads to alteration of basement membrane assembly and cell differentiation

    PubMed Central

    1996-01-01

    The expression of the constituent alpha 1 chain of laminin-1, a major component of basement membranes, is markedly regulated during development and differentiation. We have designed an antisense RNA strategy to analyze the direct involvement of the alpha 1 chain in laminin assembly, basement membrane formation, and cell differentiation. We report that the absence of alpha 1-chain expression, resulting from the stable transfection of the human colonic cancer Caco2 cells with an eukaryotic expression vector comprising a cDNA fragment of the alpha 1 chain inserted in an antisense orientation, led to (a) an incorrect secretion of the two other constituent chains of laminin-1, the beta 1/gamma 1 chains, (b) the lack of basement membrane assembly when Caco2-deficient cells were cultured on top of fibroblasts, assessed by the absence of collagen IV and nidogen deposition, and (c) changes in the structural polarity of cells accompanied by the inhibition of an apical digestive enzyme, sucrase-isomaltase. The results demonstrate that the alpha 1 chain is required for secretion of laminin-1 and for the assembly of basement membrane network. Furthermore, expression of the laminin alpha 1-chain gene may be a regulatory element in determining cell differentiation. PMID:8609173

  12. Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini1

    PubMed Central

    Carpin, Sabine; Crèvecoeur, Michèle; Greppin, Hubert; Penel, Claude

    1999-01-01

    A calcium-pectate-binding anionic isoperoxidase (APRX) from zucchini (Cucurbita pepo) was purified and subjected to N-terminal amino acid microsequencing. The cDNA encoding this enzyme was obtained by reverse transcriptase polymerase chain reaction from a cDNA library. It encoded a mature protein of 309 amino acids exhibiting all of the sequence characteristics of a plant peroxidase. Despite the presence of a C-terminal propeptide, APRX was found in the apoplast. APRX protein and mRNA were found in the root, hypocotyls, and cotyledons. In situ hybridization showed that the APRX-encoding gene was expressed in many different tissues. The strongest expression was observed in root epidermis and in some cells of the stele, in differentiating tracheary elements of hypocotyl, in the lower and upper epidermis, in the palisade parenchyma of cotyledons, and in lateral and adventitious root primordia. In the hypocotyl hook there was an asymmetric expression, with the inner part containing more transcripts than the outer part. Treatment with 2,3,5-triiodobenzoic acid reduced the expression of the APRX-encoding gene in the lower part of the hypocotyl. Our observations suggest that APRX could be involved in lignin formation and that the transcription of its gene was related to auxin level. PMID:10398715

  13. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    PubMed

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  14. A receptor tyrosine kinase, UFO/Axl, and other genes isolated by a modified differential display PCR are overexpressed in metastatic prostatic carcinoma cell line DU145.

    PubMed

    Jacob, A N; Kalapurakal, J; Davidson, W R; Kandpal, G; Dunson, N; Prashar, Y; Kandpal, R P

    1999-01-01

    We have used a modified differential display PCR protocol for isolating 3' restriction fragments of cDNAs specifically expressed or overexpressed in metastatic prostate carcinoma cell line DU145. Several cDNA fragments were identified that matched to milk fat globule protein, UFO/Axl, a receptor tyrosine kinase, human homologue of a Xenopus maternal transcript, laminin and laminin receptor, human carcinoma-associated antigen, and some expressed sequence tags. The transcript for milk fat globule protein, a marker protein shown to be overexpressed in breast tumors, was elevated in DU145 cells. The expression of UFO/Axl, a receptor tyrosine kinase, was considerably higher in DU145 cells as compared to normal prostate cells and prostatic carcinoma cell line PC-3. The overexpression of UFO oncogene in DU145 cells is discussed in the context of prostate cancer metastasis.

  15. Characterizing the Grape Transcriptome. Analysis of Expressed Sequence Tags from Multiple Vitis Species and Development of a Compendium of Gene Expression during Berry Development1[w

    PubMed Central

    Silva, Francisco Goes da; Iandolino, Alberto; Al-Kayal, Fadi; Bohlmann, Marlene C.; Cushman, Mary Ann; Lim, Hyunju; Ergul, Ali; Figueroa, Rubi; Kabuloglu, Elif K.; Osborne, Craig; Rowe, Joan; Tattersall, Elizabeth; Leslie, Anna; Xu, Jane; Baek, JongMin; Cramer, Grant R.; Cushman, John C.; Cook, Douglas R.

    2005-01-01

    We report the analysis and annotation of 146,075 expressed sequence tags from Vitis species. The majority of these sequences were derived from different cultivars of Vitis vinifera, comprising an estimated 25,746 unique contig and singleton sequences that survey transcription in various tissues and developmental stages and during biotic and abiotic stress. Putatively homologous proteins were identified for over 17,752 of the transcripts, with 1,962 transcripts further subdivided into one or more Gene Ontology categories. A simple structured vocabulary, with modules for plant genotype, plant development, and stress, was developed to describe the relationship between individual expressed sequence tags and cDNA libraries; the resulting vocabulary provides query terms to facilitate data mining within the context of a relational database. As a measure of the extent to which characterized metabolic pathways were encompassed by the data set, we searched for homologs of the enzymes leading from glycolysis, through the oxidative/nonoxidative pentose phosphate pathway, and into the general phenylpropanoid pathway. Homologs were identified for 65 of these 77 enzymes, with 86% of enzymatic steps represented by paralogous genes. Differentially expressed transcripts were identified by means of a stringent believability index cutoff of ≥98.4%. Correlation analysis and two-dimensional hierarchical clustering grouped these transcripts according to similarity of expression. In the broadest analysis, 665 differentially expressed transcripts were identified across 29 cDNA libraries, representing a range of developmental and stress conditions. The groupings revealed expected associations between plant developmental stages and tissue types, with the notable exception of abiotic stress treatments. A more focused analysis of flower and berry development identified 87 differentially expressed transcripts and provides the basis for a compendium that relates gene expression and annotation to previously characterized aspects of berry development and physiology. Comparison with published results for select genes, as well as correlation analysis between independent data sets, suggests that the inferred in silico patterns of expression are likely to be an accurate representation of transcript abundance for the conditions surveyed. Thus, the combined data set reveals the in silico expression patterns for hundreds of genes in V. vinifera, the majority of which have not been previously studied within this species. PMID:16219919

  16. TSH Receptor Function Is Required for Normal Thyroid Differentiation in Zebrafish

    PubMed Central

    Opitz, Robert; Maquet, Emilie; Zoenen, Maxime; Dadhich, Rajesh

    2011-01-01

    TSH is the primary physiological regulator of thyroid gland function. The effects of TSH on thyroid cells are mediated via activation of its membrane receptor [TSH receptor (TSHR)]. In this study, we examined functional thyroid differentiation in zebrafish and characterized the role of TSHR signaling during thyroid organogenesis. Cloning of a cDNA encoding zebrafish Tshr showed conservation of primary structure and functional properties between zebrafish and mammalian TSHR. In situ hybridization confirmed that the thyroid is the major site of tshr expression during zebrafish development. In addition, we identified tpo, iyd, duox, and duoxa as novel thyroid differentiation markers in zebrafish. Temporal analyses of differentiation marker expression demonstrated the induction of an early thyroid differentiation program along with thyroid budding, followed by a delayed onset of duox and duoxa expression coincident with thyroid hormone synthesis. Furthermore, comparative analyses in mouse and zebrafish revealed for the first time a thyroid-enriched expression of cell death regulators of the B-cell lymphoma 2 family during early thyroid morphogenesis. Knockdown of tshr function by morpholino microinjection into embryos did not affect early thyroid morphogenesis but caused defects in later functional differentiation. The thyroid phenotype observed in tshr morphants at later stages comprised a reduction in number and size of functional follicles, down-regulation of differentiation markers, as well as reduced thyroid transcription factor expression. A comparison of our results with phenotypes observed in mouse models of defective TSHR and cAMP signaling highlights the value of zebrafish as a model to enhance the understanding of functional differentiation in the vertebrate thyroid. PMID:21737742

  17. Gluten affects epithelial differentiation-associated genes in small intestinal mucosa of coeliac patients

    PubMed Central

    Juuti-Uusitalo, K; Mäki, M; Kainulainen, H; Isola, J; Kaukinen, K

    2007-01-01

    In coeliac disease gluten induces an immunological reaction in genetically susceptible patients, and influences on epithelial cell proliferation and differentiation in the small-bowel mucosa. Our aim was to find novel genes which operate similarly in epithelial proliferation and differentiation in an epithelial cell differentiation model and in coeliac disease patient small-bowel mucosal biopsy samples. The combination of cDNA microarray data originating from a three-dimensional T84 epithelial cell differentiation model and small-bowel mucosal biopsy samples from untreated and treated coeliac disease patients and healthy controls resulted in 30 genes whose mRNA expression was similarly affected. Nine of 30 were located directly or indirectly in the receptor tyrosine kinase pathway starting from the epithelial growth factor receptor. Removal of gluten from the diet resulted in a reversion in the expression of 29 of the 30 genes in the small-bowel mucosal biopsy samples. Further characterization by blotting and labelling revealed increased epidermal growth factor receptor and beta-catenin protein expression in the small-bowel mucosal epithelium in untreated coeliac disease patients compared to healthy controls and treated coeliac patients. We found 30 genes whose mRNA expression was affected similarly in the epithelial cell differentiation model and in the coeliac disease patient small-bowel mucosal biopsy samples. In particular, those genes involved in the epithelial growth factor-mediated signalling pathways may be involved in epithelial cell differentiation and coeliac disease pathogenesis. The epithelial cell differentiation model is a useful tool for studying gene expression changes in the crypt–villus axis. PMID:17888028

  18. Transcript profiling of Wilms tumors reveals connections to kidney morphogenesis and expression patterns associated with anaplasia.

    PubMed

    Li, Wenliang; Kessler, Patricia; Williams, Bryan R G

    2005-01-13

    Anaplasia (unfavorable histology) is associated with therapy resistance and poor prognosis of Wilms tumor, but the molecular basis for this phenotype is unclear. Here, we used a cDNA array with 9240 clones relevant to cancer biology and/or kidney development to examine the expression profiles of 54 Wilms tumors, five normal kidneys and fetal kidney. By linking genes differentially expressed between fetal kidney and Wilms tumors to kidney morphogenesis, we found that genes expressed at a higher level in Wilms tumors tend to be expressed more in uninduced metanephrogenic mesenchyme or blastema than in their differentiated structures. Conversely, genes expressed at a lower level in Wilms tumors tend to be expressed less in uninduced metanephrogenic mesenchyme or blastema. We also identified 97 clones representing 76 Unigenes or unclustered ESTs that clearly separate anaplastic Wilms tumors from tumors with favorable histology. Genes in this set provide insight into the nature of the abnormal nuclear morphology of anaplastic tumors and may facilitate identification of molecular targets to improve their responsiveness to treatment.

  19. Construction and application of a bovine immune-endocrine cDNA microarray.

    PubMed

    Tao, Wenjing; Mallard, Bonnie; Karrow, Niel; Bridle, Byram

    2004-09-01

    A variety of commercial DNA arrays specific for humans and rodents are widely available; however, microarrays containing well-characterized genes to study pathway-specific gene expression are not as accessible for domestic animals, such as cattle, sheep and pigs. Therefore, a small-scale application-targeted bovine immune-endocrine cDNA array was developed to evaluate genetic pathways involved in the immune-endocrine axis of cattle during periods of altered homeostasis provoked by physiological or environmental stressors, such as infection, vaccination or disease. For this purpose, 167 cDNA sequences corresponding to immune, endocrine and inflammatory response genes were collected and categorized. Positive controls included 5 housekeeping genes (glyceraldehydes-3-phosphate dehydrogenase, hypoxanthine phosphoribosyltransferase, ribosomal protein L19, beta-actin, beta2-microglobulin) and bovine genomic DNA. Negative controls were a bacterial gene (Rhodococcus equi 17-kDa virulence-associated protein) and a partial sequence of the plasmid pACYC177. In addition, RNA extracted from un-stimulated, as well as superantigen (Staphylococcus aureus enterotoxin-A, S. aureus Cowan Pansorbin Cells) and mitogen-stimulated (LPS, ConA) bovine blood leukocytes was mixed, reverse transcribed and PCR amplified using gene-specific primers. The endocrine-associated genes were amplified from cDNA derived from un-stimulated bovine hypothalamus, pituitary, adrenal and thyroid gland tissues. The array was constructed in 4 repeating grids of 180 duplicated spots by coupling the PCR amplified 213-630 bp gene fragments onto poly-l-lysine coated glass slides. The bovine immune-endocrine arrays were standardized and preliminary gene expression profiles generated using Cy3 and Cy5 labelled cDNA from un-stimulated and ConA (5 microg/ml) stimulated PBMC of 4 healthy Holstein cows (2-4 replicate arrays/cow) in a time course study. Mononuclear cell-derived cytokine and chemokine (IL-2, IL-1alpha, TNFalpha, IFN-gamma, TGFbeta-1, MCP-1, MCP-2 and MIP-3alpha) mRNA exhibited a repeatable and consistently low expression in un-stimulated cells and at least a two-fold increased expression following 6 and 24 h ConA stimulation as compared to 0 h un-stimulated controls. In contrast, expression of antigen presenting molecules, MHC-DR, MHC-DQ and MHC-DY, were consistently at least two-fold lower following 6 and 24 h ConA stimulation. The only endocrine gene with differential expression following ConA stimulation was prolactin. Additionally, due to the high level of genetic homology between ovine, swine and bovine genes, RNA similarly acquired from sheep and pigs was evaluated and similar gene expression patterns were noted. These data demonstrate that this application-targeted array containing a set of well characterized genes can be used to determine the relative gene expression corresponding to immune-endocrine responses of cattle and related species, sheep and pigs.

  20. In-vitro analysis of Quantum Molecular Resonance effects on human mesenchymal stromal cells

    PubMed Central

    Sella, Sabrina; Adami, Valentina; Amati, Eliana; Bernardi, Martina; Chieregato, Katia; Gatto, Pamela; Menarin, Martina; Pozzato, Alessandro; Pozzato, Gianantonio; Astori, Giuseppe

    2018-01-01

    Electromagnetic fields play an essential role in cellular functions interfering with cellular pathways and tissue physiology. In this context, Quantum Molecular Resonance (QMR) produces waves with a specific form at high-frequencies (4–64 MHz) and low intensity through electric fields. We evaluated the effects of QMR stimulation on bone marrow derived mesenchymal stromal cells (MSC). MSC were treated with QMR for 10 minutes for 4 consecutive days for 2 weeks at different nominal powers. Cell morphology, phenotype, multilineage differentiation, viability and proliferation were investigated. QMR effects were further investigated by cDNA microarray validated by real-time PCR. After 1 and 2 weeks of QMR treatment morphology, phenotype and multilineage differentiation were maintained and no alteration of cellular viability and proliferation were observed between treated MSC samples and controls. cDNA microarray analysis evidenced more transcriptional changes on cells treated at 40 nominal power than 80 ones. The main enrichment lists belonged to development processes, regulation of phosphorylation, regulation of cellular pathways including metabolism, kinase activity and cellular organization. Real-time PCR confirmed significant increased expression of MMP1, PLAT and ARHGAP22 genes while A2M gene showed decreased expression in treated cells compared to controls. Interestingly, differentially regulated MMP1, PLAT and A2M genes are involved in the extracellular matrix (ECM) remodelling through the fibrinolytic system that is also implicated in embryogenesis, wound healing and angiogenesis. In our model QMR-treated MSC maintained unaltered cell phenotype, viability, proliferation and the ability to differentiate into bone, cartilage and adipose tissue. Microarray analysis may suggest an involvement of QMR treatment in angiogenesis and in tissue regeneration probably through ECM remodelling. PMID:29293552

  1. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons.

    PubMed

    Burgess, D; Penton, A; Dunsmuir, P; Dooner, H

    1997-02-01

    Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.

  2. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Qingwen; Agrawal, Lokesh; Walther Cancer Institute, Indianapolis, IN 46208

    2006-09-15

    The human glucose transporter protein 1 (GLUT-1) functions as a receptor for human T cell leukemia virus (HTLV). GLUT-1 is a twelve-transmembrane cell surface receptor with six extracellular (ECL) and seven intracellular domains. To analyze HTLV-1 cytotropism, we utilized polyclonal antibodies to a synthetic peptide corresponding to the large extracellular domain of GLUT-1. The antibodies caused significant blocking of envelope (Env)-mediated fusion and pseudotyped virus infection of HeLa cells but had no significant effect on infection of U87 cells. This differential effect correlated with the detection of high-level surface expression of GLUT-1 on HeLa cells and very weak staining ofmore » U87 cells. To investigate this in terms of viral cytotropism, we cloned GLUT-1 cDNA from U87 cells and isolated two different versions of cDNA clones: the wild-type sequence (encoding 492 residues) and a mutant cDNA with a 5-base pair deletion (GLUT-1{delta}5) between nucleotides 1329 and 1333. The deletion, also detected in genomic DNA, resulted in a frame-shift and premature termination producing a truncated protein of 463 residues. Transfection of the wild-type GLUT-1 but not GLUT-1{delta}5 cDNA into CHO cells resulted in efficient surface expression of the human GLUT-1. Co-expression of GLUT-1 with GLUT-1{delta}5 produces a trans-inhibition by GLUT-1{delta}5 of GLUT-1-mediated HTLV-1 envelope (Env)-mediated fusion. Co-immunoprecipitation experiments demonstrated physical interaction of the wild-type and mutant proteins. Northern blot and RT-PCR analyses demonstrated lower GLUT-1 RNA expression in U87 cells. We propose two mechanisms to account for the impaired cell surface expression of GLUT-1 on U87 cells: low GLUT-1 RNA expression and the formation of GLUT-1/GLUT-1{delta}5 heterodimers that are retained intracellularly. Significant RNAi-mediated reduction of endogenous GLUT-1 expression impaired HTLV-1 Env-mediated fusion with HeLa cells but not with U87 cells. We propose a GLUT-1-independent mechanism of HTLV-1 infection of U87 cells. The results may have important implications for HTLV-1 neurotropism and pathogenesis.« less

  3. Oncogene GAEC1 regulates CAPN10 expression which predicts survival in esophageal squamous cell carcinoma

    PubMed Central

    Chan, Dessy; Tsoi, Miriam Yuen-Tung; Liu, Christina Di; Chan, Sau-Hing; Law, Simon Ying-Kit; Chan, Kwok-Wah; Chan, Yuen-Piu; Gopalan, Vinod; Lam, Alfred King-Yin; Tang, Johnny Cheuk-On

    2013-01-01

    AIM: To identify the downstream regulated genes of GAEC1 oncogene in esophageal squamous cell carcinoma and their clinicopathological significance. METHODS: The anti-proliferative effect of knocking down the expression of GAEC1 oncogene was studied by using the RNA interference (RNAi) approach through transfecting the GAEC1-overexpressed esophageal carcinoma cell line KYSE150 with the pSilencer vector cloned with a GAEC1-targeted sequence, followed by MTS cell proliferation assay and cell cycle analysis using flow cytometry. RNA was then extracted from the parental, pSilencer-GAEC1-targeted sequence transfected and pSilencer negative control vector transfected KYSE150 cells for further analysis of different patterns in gene expression. Genes differentially expressed with suppressed GAEC1 expression were then determined using Human Genome U133 Plus 2.0 cDNA microarray analysis by comparing with the parental cells and normalized with the pSilencer negative control vector transfected cells. The most prominently regulated genes were then studied by immunohistochemical staining using tissue microarrays to determine their clinicopathological correlations in esophageal squamous cell carcinoma by statistical analyses. RESULTS: The RNAi approach of knocking down gene expression showed the effective suppression of GAEC1 expression in esophageal squamous cell carcinoma cell line KYSE150 that resulted in the inhibition of cell proliferation and increase of apoptotic population. cDNA microarray analysis for identifying differentially expressed genes detected the greatest levels of downregulation of calpain 10 (CAPN10) and upregulation of trinucleotide repeat containing 6C (TNRC6C) transcripts when GAEC1 expression was suppressed. At the tissue level, the high level expression of calpain 10 protein was significantly associated with longer patient survival (month) of esophageal squamous cell carcinoma compared to the patients with low level of calpain 10 expression (37.73 ± 16.33 vs 12.62 ± 12.44, P = 0.032). No significant correction was observed among the TNRC6C protein expression level and the clinocopathologcial features of esophageal squamous cell carcinoma. CONCLUSION: GAEC1 regulates the expression of CAPN10 and TNRC6C downstream. Calpain 10 expression is a potential prognostic marker in patients with esophageal squamous cell carcinoma. PMID:23687414

  4. Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography.

    PubMed

    Trujillo-Esquivel, Elías; Franco, Bernardo; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Mora-Montes, Héctor M

    2016-08-02

    Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii.

  5. A comparative cDNA microarray analysis reveals a spectrum of genes regulated by Pax6 in mouse lens

    PubMed Central

    Chauhan, Bharesh K.; Reed, Nathan A.; Yang, Ying; Čermák, Lukáš; Reneker, Lixing; Duncan, Melinda K.; Cvekl, Aleš

    2007-01-01

    Background Pax6 is a transcription factor that is required for induction, growth, and maintenance of the lens; however, few direct target genes of Pax6 are known. Results In this report, we describe the results of a cDNA microarray analysis of lens transcripts from transgenic mice over-expressing Pax6 in lens fibre cells in order to narrow the field of potential direct Pax6 target genes. This study revealed that the transcript levels were significantly altered for 508 of the 9700 genes analysed, including five genes encoding the cell adhesion molecules β1-integrin, JAM1, L1 CAM, NCAM-140 and neogenin. Notably, comparisons between the genes differentially expressed in Pax6 heterozygous and Pax6 over-expressing lenses identified 13 common genes, including paralemmin, GDIβ, ATF1, Hrp12 and Brg1. Immunohistochemistry and Western blotting demonstrated that Brg1 is expressed in the embryonic and neonatal (2-week-old) but not in 14-week adult lenses, and confirmed altered expression in transgenic lenses over-expressing Pax6. Furthermore, EMSA demonstrated that the BRG1 promoter contains Pax6 binding sites, further supporting the proposition that it is directly regulated by Pax6. Conclusions These results provide a list of genes with possible roles in lens biology and cataracts that are directly or indirectly regulated by Pax6. PMID:12485166

  6. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies.

    PubMed

    Jochim, Ryan C; Teixeira, Clarissa R; Laughinghouse, Andre; Mu, Jianbing; Oliveira, Fabiano; Gomes, Regis B; Elnaiem, Dia-Eldin; Valenzuela, Jesus G

    2008-01-14

    In the life cycle of Leishmania within the alimentary canal of sand flies the parasites have to survive the hostile environment of blood meal digestion, escape the blood bolus and attach to the midgut epithelium before differentiating into the infective metacyclic stages. The molecular interactions between the Leishmania parasites and the gut of the sand fly are poorly understood. In the present work we sequenced five cDNA libraries constructed from midgut tissue from the sand fly Lutzomyia longipalpis and analyzed the transcripts present following sugar feeding, blood feeding and after the blood meal has been processed and excreted, both in the presence and absence of Leishmania infantum chagasi. Comparative analysis of the transcripts from sugar-fed and blood-fed cDNA libraries resulted in the identification of transcripts differentially expressed during blood feeding. This included upregulated transcripts such as four distinct microvillar-like proteins (LuloMVP1, 2, 4 and 5), two peritrophin like proteins, a trypsin like protein (Lltryp1), two chymotrypsin like proteins (LuloChym1A and 2) and an unknown protein. Downregulated transcripts by blood feeding were a microvillar-like protein (LuloMVP3), a trypsin like protein (Lltryp2) and an astacin-like metalloprotease (LuloAstacin). Furthermore, a comparative analysis between blood-fed and Leishmania infected midgut cDNA libraries resulted in the identification of the transcripts that were differentially expressed due to the presence of Leishmania in the gut of the sand fly. This included down regulated transcripts such as four microvillar-like proteins (LuloMVP1,2, 4 and 5), a Chymotrypsin (LuloChym1A) and a carboxypeptidase (LuloCpepA1), among others. Upregulated midgut transcripts in the presence of Leishmania were a peritrophin like protein (LuloPer1), a trypsin-like protein (Lltryp2) and an unknown protein. This transcriptome analysis represents the largest set of sequence data reported from a specific sand fly tissue and provides further information of the transcripts present in the sand fly Lutzomyia longipalpis. This analysis provides the detailed information of molecules present in the midgut of this sand fly and the transcripts potentially modulated by blood feeding and by the presence of the Leishmania parasite. More importantly, this analysis suggests that Leishmania infantum chagasi alters the expression profile of certain midgut transcripts in the sand fly during blood meal digestion and that this modulation may be relevant for the survival and establishment of the parasite in the gut of the fly. Moreover, this analysis suggests that these changes may be occurring during the digestion of the blood meal and not afterwards.

  7. Complementary DNA libraries: an overview.

    PubMed

    Ying, Shao-Yao

    2004-07-01

    The generation of complete and full-length cDNA libraries for potential functional assays of specific gene sequences is essential for most molecules in biotechnology and biomedical research. The field of cDNA library generation has changed rapidly in the past 10 yr. This review presents an overview of the method available for the basic information of generating cDNA libraries, including the definition of the cDNA library, different kinds of cDNA libraries, difference between methods for cDNA library generation using conventional approaches and a novel strategy, and the quality of cDNA libraries. It is anticipated that the high-quality cDNA libraries so generated would facilitate studies involving genechips and the microarray, differential display, subtractive hybridization, gene cloning, and peptide library generation.

  8. Ephrin-B2 is differentially expressed in the intestinal epithelium in Crohn’s disease and contributes to accelerated epithelial wound healing in vitro

    PubMed Central

    Hafner, Christian; Meyer, Stefanie; Langmann, Thomas; Schmitz, Gerd; Bataille, Frauke; Hagen, Ilja; Becker, Bernd; Roesch, Alexander; Rogler, Gerhard; Landthaler, Michael; Vogt, Thomas

    2005-01-01

    AIM: Eph receptor tyrosine kinases and their membrane bound receptor-like ligands, the ephrins, represent a bi-directional cell-cell contact signaling system that directs epithelial movements in development. The meaning of this system in the adult human gut is unknown. We investigated the Eph/ephrin mRNA expression in the intestinal epithelium of healthy controls and patients with inflammatory bowel disease (IBD). METHODS: mRNA expression profiles of all Eph/ephrin family members in normal small intestine and colon were established by real-time RT-PCR. In addition, differential expression in IBD was investigated by cDNA array technology, and validated by both real-time RT-PCR and immunohistochemistry. Potential effects of enhanced EphB/ephrin-B signaling were analyzed in an in vitro IEC-6 cell scratch wound model. RESULTS: Human adult intestinal mucosa exhibits a complex pattern of Eph receptors and ephrins. Beside the known prominent co-expression of EphA2 and ephrinA1, we found abundantly co-expressed EphB2 and ephrin-B1/2. Interestingly, cDNA array data, validated by real-time PCR and immunohistochemistry, showed upregulation of ephrin-B2 in both perilesional and lesional intestinal epithelial cells of IBD patients, suggesting a role in epithelial homeostasis. Stimulation of ephrin-B signaling in ephrin-B1/2 expressing rat IEC-6-cells with recombinant EphB1-Fc resulted in a significant dose-dependent acceleration of wound closure. Furthermore, fluorescence microscopy showed that EphB1-Fc induced coordinated migration of wound edge cells is associated with enhanced formation of lamellipodial protrusions into the wound, increased actin stress fiber assembly and production of laminin at the wound edge. CONCLUSION: EphB/ephrin-B signaling might represent a novel protective mechanism that promotes intestinal epithelial wound healing, with potential impact on epithelial restitution in IBD. PMID:15996027

  9. Errors in CGAP xProfiler and cDNA DGED: the importance of library parsing and gene selection algorithms.

    PubMed

    Milnthorpe, Andrew T; Soloviev, Mikhail

    2011-04-15

    The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used.

  10. Errors in CGAP xProfiler and cDNA DGED: the importance of library parsing and gene selection algorithms

    PubMed Central

    2011-01-01

    Background The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. Results We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Conclusion Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used. PMID:21496233

  11. cDNA microarrays as a tool for identification of biomineralization proteins in the coccolithophorid Emiliania huxleyi (Haptophyta).

    PubMed

    Quinn, Patrick; Bowers, Robert M; Zhang, Xiaoyu; Wahlund, Thomas M; Fanelli, Michael A; Olszova, Daniela; Read, Betsy A

    2006-08-01

    Marine unicellular coccolithophore algae produce species-specific calcite scales otherwise known as coccoliths. While the coccoliths and their elaborate architecture have attracted the attention of investigators from various scientific disciplines, our knowledge of the underpinnings of the process of biomineralization in this alga is still in its infancy. The processes of calcification and coccolithogenesis are highly regulated and likely to be complex, requiring coordinated expression of many genes and pathways. In this study, we have employed cDNA microarrays to investigate changes in gene expression associated with biomineralization in the most abundant coccolithophorid, Emiliania huxleyi. Expression profiling of cultures grown under calcifying and noncalcifying conditions has been carried out using cDNA microarrays corresponding to approximately 2,300 expressed sequence tags. A total of 127 significantly up- or down-regulated transcripts were identified using a P value of 0.01 and a change of >2.0-fold. Real-time reverse transcriptase PCR was used to test the overall validity of the microarray data, as well as the relevance of many of the proteins predicted to be associated with biomineralization, including a novel gamma-class carbonic anhydrase (A. R. Soto, H. Zheng, D. Shoemaker, J. Rodriguez, B. A. Read, and T. M. Wahlund, Appl. Environ. Microbiol. 72:5500-5511, 2006). Differentially regulated genes include those related to cellular metabolism, ion channels, transport proteins, vesicular trafficking, and cell signaling. The putative function of the vast majority of candidate transcripts could not be defined. Nonetheless, the data described herein represent profiles of the transcription changes associated with biomineralization-related pathways in E. huxleyi and have identified novel and potentially useful targets for more detailed analysis.

  12. cDNA Microarrays as a Tool for Identification of Biomineralization Proteins in the Coccolithophorid Emiliania huxleyi (Haptophyta)

    PubMed Central

    Quinn, Patrick; Bowers, Robert M.; Zhang, Xiaoyu; Wahlund, Thomas M.; Fanelli, Michael A.; Olszova, Daniela; Read, Betsy A.

    2006-01-01

    Marine unicellular coccolithophore algae produce species-specific calcite scales otherwise known as coccoliths. While the coccoliths and their elaborate architecture have attracted the attention of investigators from various scientific disciplines, our knowledge of the underpinnings of the process of biomineralization in this alga is still in its infancy. The processes of calcification and coccolithogenesis are highly regulated and likely to be complex, requiring coordinated expression of many genes and pathways. In this study, we have employed cDNA microarrays to investigate changes in gene expression associated with biomineralization in the most abundant coccolithophorid, Emiliania huxleyi. Expression profiling of cultures grown under calcifying and noncalcifying conditions has been carried out using cDNA microarrays corresponding to approximately 2,300 expressed sequence tags. A total of 127 significantly up- or down-regulated transcripts were identified using a P value of 0.01 and a change of >2.0-fold. Real-time reverse transcriptase PCR was used to test the overall validity of the microarray data, as well as the relevance of many of the proteins predicted to be associated with biomineralization, including a novel gamma-class carbonic anhydrase (A. R. Soto, H. Zheng, D. Shoemaker, J. Rodriguez, B. A. Read, and T. M. Wahlund, Appl. Environ. Microbiol. 72:5500-5511, 2006). Differentially regulated genes include those related to cellular metabolism, ion channels, transport proteins, vesicular trafficking, and cell signaling. The putative function of the vast majority of candidate transcripts could not be defined. Nonetheless, the data described herein represent profiles of the transcription changes associated with biomineralization-related pathways in E. huxleyi and have identified novel and potentially useful targets for more detailed analysis. PMID:16885305

  13. Cloning of a cDNA encoding rat aldehyde dehydrogenase with high activity for retinal oxidation.

    PubMed

    Bhat, P V; Labrecque, J; Boutin, J M; Lacroix, A; Yoshida, A

    1995-12-12

    Retinoic acid (RA), an important regulator of cell differentiation, is biosynthesized from retinol via retinal by a two-step oxidation process. We previously reported the purification and partial amino acid (aa) sequence of a rat kidney aldehyde dehydrogenase (ALDH) isozyme that catalyzed the oxidation of 9-cis and all-trans retinal to corresponding RA with high efficiency [Labrecque et al. Biochem. J. 305 (1995) 681-684]. A rat kidney cDNA library was screened using a 291-bp PCR product generated from total kidney RNA using a pair of oligodeoxyribonucleotide primers matched with the aa sequence. The full-length rat kidney ALDH cDNA contains a 2315-bp (501 aa) open reading frame (ORF). The aa sequence of rat kidney ALDH is 89, 96 and 87% identical to that of the rat cytosolic ALDH, the mouse cytosolic ALDH and human cytosolic ALDH, respectively. Northern blot and RT-PCR-mediated analysis demonstrated that rat kidney ALDH is strongly expressed in kidney, lung, testis, intestine, stomach and trachea, but weakly in the liver.

  14. Cloning, sequencing, and expression of cDNA for human. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-02-01

    The authors report here the cDNA sequence for human placental ..beta..-glucuronidase (..beta..-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH/sub 2/-terminal amino acid sequence determined for human spleen ..beta..-glucuronidase agreed with that inferred from the DNAmore » sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human ..beta..-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human ..beta..-glucuronidase, demonstrate the existence of two populations of mRNA for ..beta..-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.« less

  15. Molecular cloning and expression of the calmodulin gene from guinea pig hearts.

    PubMed

    Feng, Rui; Liu, Yan; Sun, Xuefei; Wang, Yan; Hu, Huiyuan; Guo, Feng; Zhao, Jinsheng; Hao, Liying

    2015-06-01

    The aim of the present study was to isolate and characterize a complementary DNA (cDNA) clone encoding the calmodulin (CaM; GenBank accession no. FJ012165) gene from guinea pig hearts. The CaM gene was amplified from cDNA collected from guinea pig hearts and inserted into a pGEM®-T Easy vector. Subsequently, CaM nucleotide and protein sequence similarity analysis was conducted between guinea pigs and other species. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to investigate the CaM 3 expression patterns in different guinea pig tissues. Sequence analysis revealed that the CaM gene isolated from the guinea pig heart had ∼90% sequence identity with the CaM 3 genes in humans, mice and rats. Furthermore, the deduced peptide sequences of CaM 3 in the guinea pig showed 100% homology to the CaM proteins from other species. In addition, the RT-PCR results indicated that CaM 3 was widely and differentially expressed in guinea pigs. In conclusion, the current study provided valuable information with regard to the cloning and expression of CaM 3 in guinea pig hearts. These findings may be helpful for understanding the function of CaM3 and the possible role of CaM3 in cardiovascular diseases.

  16. Leucocyte protein Trojan, a possible regulator of apoptosis.

    PubMed

    Petrov, Petar; Syrjänen, Riikka; Uchida, Tatsuya; Vainio, Olli

    2017-02-01

    Trojan is a leucocyte-specific protein, cloned from chicken embryonic thymocyte cDNA library. The molecule is a type I transmembrane protein with an extracellular CCP domain, followed by two FN3 domains. Its cytoplasmic tail is predicted to possess a MAPK docking and a PKA phosphorylation sites. Trojan has been proposed to have an anti-apoptotic role based on its differential expression on developing thymocyte subpopulations. Using a chicken cell line, our in vitro studies showed that upon apoptosis induction, Trojan expression rises dramatically on the surface of surviving cells and gradually decreases towards its normal levels as cells recover. When sorted based on their expression levels of Trojan, cells with high expression appeared less susceptible to apoptotic induction than those bearing no or low levels of Trojan on their surface. The mechanism by which the molecule exerts its function is yet to be discovered. We found that cells overexpressing Trojan from a cDNA plasmid show elevated steady-state levels of intracellular calcium, suggesting the molecule is able to transmit cytoplasmic signals. The mechanistic nature of Trojan-induced signalling is a target of future investigation. In this article, we conducted a series of experiments that suggest Trojan as an anti-apoptotic regulator. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  17. Brachyury downstream notochord differentiation in the ascidian embryo

    PubMed Central

    Takahashi, Hiroki; Hotta, Kohji; Erives, Albert; Di Gregorio, Anna; Zeller, Robert W.; Levine, Michael; Satoh, Nori

    1999-01-01

    The ascidian tadpole represents the most simplified chordate body plan. It contains a notochord composed of just 40 cells, but as in vertebrates Brachyury is essential for notochord differentiation. Here, we show that the misexpression of the Brachyury gene (Ci-Bra) of Ciona intestinalis is sufficient to transform endoderm into notochord. Subtractive hybridization screens were conducted to identify potential Brachyury target genes that are induced upon Ci-Bra misexpression. Of 501 independent cDNA clones that were surveyed, 38 were specifically expressed in notochord cells. These potential Ci-Bra downstream genes appear to encode a broad spectrum of divergent proteins associated with notochord formation. PMID:10385620

  18. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I.

    PubMed Central

    Takeshita, S; Kikuno, R; Tezuka, K; Amann, E

    1993-01-01

    A cDNA library prepared from the mouse osteoblastic cell line MC3T3-E1 was screened for the presence of specifically expressed genes by employing a combined subtraction hybridization/differential screening approach. A cDNA was identified and sequenced which encodes a protein designated osteoblast-specific factor 2 (OSF-2) comprising 811 amino acids. OSF-2 has a typical signal sequence, followed by a cysteine-rich domain, a fourfold repeated domain and a C-terminal domain. The protein lacks a typical transmembrane region. The fourfold repeated domain of OSF-2 shows homology with the insect protein fasciclin I. RNA analyses revealed that OSF-2 is expressed in bone and to a lesser extent in lung, but not in other tissues. Mouse OSF-2 cDNA was subsequently used as a probe to clone the human counterpart. Mouse and human OSF-2 show a high amino acid sequence conservation except for the signal sequence and two regions in the C-terminal domain in which 'in-frame' insertions or deletions are observed, implying alternative splicing events. On the basis of the amino acid sequence homology with fasciclin I, we suggest that OSF-2 functions as a homophilic adhesion molecule in bone formation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8363580

  19. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.

    PubMed

    Daurelio, Lucas D; Romero, María S; Petrocelli, Silvana; Merelo, Paz; Cortadi, Adriana A; Talón, Manuel; Tadeo, Francisco R; Orellano, Elena G

    2013-07-01

    Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Transcriptomic data analysis and differential gene expression of antioxidant pathways in king penguin juveniles (Aptenodytes patagonicus) before and after acclimatization to marine life.

    PubMed

    Rey, Benjamin; Dégletagne, Cyril; Duchamp, Claude

    2016-12-01

    In this article, we present differentially expressed gene profiles in the pectoralis muscle of wild juvenile king penguins that were either naturally acclimated to cold marine environment or experimentally immersed in cold water as compared with penguin juveniles that never experienced cold water immersion. Transcriptomic data were obtained by hybridizing penguins total cDNA on Affymetrix GeneChip Chicken Genome arrays and analyzed using maxRS algorithm , " Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays " (Dégletagne et al., 2010) [1] . We focused on genes involved in multiple antioxidant pathways. For better clarity, these differentially expressed genes were clustered into six functional groups according to their role in controlling redox homeostasis. The data are related to a comprehensive research study on the ontogeny of antioxidant functions in king penguins, "Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus)" (Rey et al., 2016) [2] . The raw microarray dataset supporting the present analyses has been deposited at the Gene Expression Omnibus (GEO) repository under accessions GEO: GSE17725 and GEO: GSE82344.

  1. Analysis of Differentially Expressed Genes Associated with Coronatine-Induced Laticifer Differentiation in the Rubber Tree by Subtractive Hybridization Suppression

    PubMed Central

    Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min

    2015-01-01

    The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree. PMID:26147807

  2. Identification of sexually dimorphic gene expression in brain tissue of the fish Leporinus macrocephalus through mRNA differential display and real time PCR analyses.

    PubMed

    Alves-Costa, Fernanda A; Wasko, A P

    2010-03-01

    Differentially expressed genes in males and females of vertebrate species generally have been investigated in gonads and, to a lesser extent, in other tissues. Therefore, we attempted to identify sexually dimorphic gene expression in the brains of adult males and females of Leporinus macrocephalus, a gonochoristic fish species that presents a ZZ/ZW sex determination system, throughout a comparative analysis using differential display reverse transcriptase-PCR and real-time PCR. Four cDNA fragments were characterized, representing candidate genes with differential expression between the samples. Two of these fragments presented no significant identity with previously reported gene sequences. The other two fragments, isolated from male specimens, were associated to the gene that codes for the protein APBA2 (amyloid beta (A4) precursor protein-binding, family A, member 2) and to the Rab 37 gene, a member of the Ras oncogene family. The overexpression of these genes has been associated to a greater production of the beta-amyloid protein which, in turns, is the major factor that leads to Alzheimer's disease, and to the development of brain-tumors, respectively. Quantitative RT-PCR analyses revealed a higher Apba2 gene expression in males, thus validating the previous data on differential display. L. macrocephalus may represent an interesting animal model to the understanding of the function of several vertebrate genes, including those involved in neurodegenerative and cancer diseases.

  3. Molecular characterization of Coriolus versicolor PSP-induced apoptosis in human promyelotic leukemic HL-60 cells using cDNA microarray.

    PubMed

    Zeng, Fanya; Hon, Chung-Chau; Sit, Wai-Hung; Chow, Ken Yan-Ching; Hui, Raymond Kin-Hi; Law, Ivy Ka-Man; Ng, Victor Wai-Lap; Yang, Xiao-Tong; Leung, Frederick Chi-Ching; Wan, Jennifer Man-Fan

    2005-08-01

    Proteins and peptide bound polysaccharides (PSP) extracted from Basidiomycetous fungi are widely used in cancer immunotherapy and recently demonstrated to induce apoptosis in cancer cells in vitro. In order to provide the molecular pharmacological mechanisms of PSP on human cancer cells, we investigated the gene expression profiles of PSP-treated apoptotic human promyelotic leukemic HL-60 cells using ResGen 40k IMAGE printed cDNA microarray. In total 378 and 111 transcripts were identified as differentially expressed in the apoptotic cells by at least a factor of 2 or 3, respectively. Our data show that PSP-induced apoptosis in HL-60 cells might be mediated by up-regulation of early transcription factors such as AP-1, EGR1, IER2 and IER5, and down-regulation of NF-kappaB transcription pathways. Other gene expression changes, including the increase of several apoptotic or anti-proliferation genes, such as GADD45A/B and TUSC2, and the decrease of a batch of phosphatase and kinase genes, may also provide further evidences in supporting the process of PSP induced apoptosis in cancer cells. Some of the well-characterized carcinogenesis-related gene transcripts such as SAT, DCT, Melan-A, uPA and cyclin E1 were also alternated by PSP in the HL-60 cells. These transcripts can be employed as markers for quality control of PSP products on functional levels. The present study provides new insight into the molecular mechanisms involved in PSP-induced apoptosis in leukemic HL-60 cells analyzed by cDNA microarray.

  4. Multiplex cDNA quantification method that facilitates the standardization of gene expression data

    PubMed Central

    Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira

    2011-01-01

    Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008

  5. Identification of a differentially-expressed gene in fatty liver of overfeeding geese.

    PubMed

    Zhao, Ayong; Tang, Huachun; Lu, Sufang; He, Ruiguo

    2007-09-01

    In response to overfeeding, geese develop fatty liver. To understand the fattening mechanism, mRNA differential display reverse transcription PCR was used to study the gene expression differences between French Landes grey geese and Xupu white geese in conditions of overfeeding and normal feeding. One gene was found to be up-regulated in the fatty liver in both breeds, and it has a 1797 bp cDNA with 83% identity to chicken SELENBP1. The sequence analysis revealed that its open reading frame of 1413 bp encodes a protein of 471 amino acids, which contains a putative conserved domain of 56 kDa selenium binding protein with high homology to its homologues of chicken (95%), rat (86%), mouse (84%), human (86%), monkey (86%), dog (86%), and cattle (86%). The function of this protein has been briefly reviewed based on published information. In tissue expression analysis, the expression of geese SELENBP1 mRNA was found to be higher in liver or kidney than in other tested tissues. The results showed that overfeeding could increase the mRNA expression level of geese SELENBP1.

  6. Expression of ayu (Plecoglossus altivelis) Pit-1 in Escherichia coli: its purification and immunohistochemical detection using monoclonal antibody.

    PubMed

    Chiu, Chi-Chien; John, Joseph Abraham Christopher; Hseu, Tzong-Hsiung; Chang, Chi-Yao

    2002-03-01

    The pituitary-specific transcription factor Pit-1 belongs to the family of POU-domain proteins and is known to play an important role in the differentiation of pituitary cells. Here we report the complete nucleotide sequence of cDNA encoding Pit-1 from the brackish water fish, ayu (Plecoglossus altivelis). Nucleotide sequence analysis of 1910 bp of ayu Pit-1 cDNA revealed an open reading frame of 1074 bp that encodes a protein of 358 amino acids containing a POU-specific domain, POU homeodomain, and an STA (Ser/Thr-rich activation) transactivation domain. We inserted the coding region of Pit-1 cDNA, obtained by PCR, into a pET-20b(+) plasmid to produce recombinant Pit-1 in Escherichia coli BL21 (DE3) pLysS cells. Upon induction with isopropyl beta-D-thiogalactopyranoside, Pit-1 was expressed and accumulated as inclusion bodies in E. coli. The protein was then purified in one step by affinity chromatography on a nickel-nitrilotriacetic acid agarose column under denaturing conditions. This method yielded 0.7 mg of highly pure and stable protein per 200 ml of bacterial culture. A band of 40 kDa, resolved as recombinant ayu Pit-1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, agrees well with the molecular mass calculated from the translated cDNA sequence. The purified recombinant Pit-1 was confirmed in vitro through Western blot analysis, using its monoclonal antibody. This monoclonal antibody detected Pit-1 in the nuclei of ayu developing pituitary by immunohistochemical reaction. It serves as a good reagent for the detection of ayu Pit-1 in situ. Copyright 2002 Elsevier Science (USA).

  7. A robust two-way semi-linear model for normalization of cDNA microarray data

    PubMed Central

    Wang, Deli; Huang, Jian; Xie, Hehuang; Manzella, Liliana; Soares, Marcelo Bento

    2005-01-01

    Background Normalization is a basic step in microarray data analysis. A proper normalization procedure ensures that the intensity ratios provide meaningful measures of relative expression values. Methods We propose a robust semiparametric method in a two-way semi-linear model (TW-SLM) for normalization of cDNA microarray data. This method does not make the usual assumptions underlying some of the existing methods. For example, it does not assume that: (i) the percentage of differentially expressed genes is small; or (ii) the numbers of up- and down-regulated genes are about the same, as required in the LOWESS normalization method. We conduct simulation studies to evaluate the proposed method and use a real data set from a specially designed microarray experiment to compare the performance of the proposed method with that of the LOWESS normalization approach. Results The simulation results show that the proposed method performs better than the LOWESS normalization method in terms of mean square errors for estimated gene effects. The results of analysis of the real data set also show that the proposed method yields more consistent results between the direct and the indirect comparisons and also can detect more differentially expressed genes than the LOWESS method. Conclusions Our simulation studies and the real data example indicate that the proposed robust TW-SLM method works at least as well as the LOWESS method and works better when the underlying assumptions for the LOWESS method are not satisfied. Therefore, it is a powerful alternative to the existing normalization methods. PMID:15663789

  8. Synergistic Effect of Combinatorial Treatment with Curcumin and Mitomycin C on the Induction of Apoptosis of Breast Cancer Cells: A cDNA Microarray Analysis

    PubMed Central

    Zhou, Qian-Mei; Chen, Qi-Long; Du, Jia; Wang, Xiu-Feng; Lu, Yi-Yu; Zhang, Hui; Su, Shi-Bing

    2014-01-01

    In order to explore the synergistic mechanisms of combinatorial treatment using curcumin and mitomycin C (MMC) for breast cancer, MCF-7 breast cancer xenografts were conducted to observe the synergistic effect of combinatorial treatment using curcumin and MMC at various dosages. The synergistic mechanisms of combinatorial treatment using curcumin and MMC on the inhibition of tumor growth were explored by differential gene expression profile, gene ontology (GO), ingenuity pathway analysis (IPA) and Signal–Net network analysis. The expression levels of selected genes identified by cDNA microarray expression profiling were validated by quantitative RT-PCR (qRT-PCR) and Western blot analysis. Effect of combinatorial treatment on the inhibition of cell growth was observed by MTT assay. Apoptosis was detected by flow cytometric analysis and Hoechst 33258 staining. The combinatorial treatment of 100 mg/kg curcumin and 1.5 mg/kg MMC revealed synergistic inhibition on tumor growth. Among 1501 differentially expressed genes, the expression of 25 genes exhibited an obvious change and a significant difference in 27 signal pathways was observed (p < 0.05). In addition, Mapk1 (ERK) and Mapk14 (MAPK p38) had more cross-interactions with other genes and revealed an increase in expression by 8.14- and 11.84-fold, respectively during the combinatorial treatment by curcumin and MMC when compared with the control. Moreover, curcumin can synergistically improve tumoricidal effect of MMC in another human breast cancer MDA-MB-231 cells. Apoptosis was significantly induced by the combinatorial treatment (p < 0.05) and significantly inhibited by ERK inhibitor (PD98059) in MCF-7 cells (p < 0.05). The synergistic effect of combinatorial treatment by curcumin and MMC on the induction of apoptosis in breast cancer cells may be via the ERK pathway. PMID:25226537

  9. A novel protein involved in heart development in Ambystoma mexicanum is localized in endoplasmic reticulum.

    PubMed

    Jia, P; Zhang, C; Huang, X P; Poda, M; Akbas, F; Lemanski, S L; Erginel-Unaltuna, N; Lemanski, L F

    2008-11-01

    The discovery of the naturally occurring cardiac non-function (c) animal strain in Ambystoma mexicanum (axolotl) provides a valuable animal model to study cardiomyocyte differentiation. In homozygous mutant animals (c/c), rhythmic contractions of the embryonic heart are absent due to a lack of organized myofibrils. We have previously cloned a partial sequence of a peptide cDNA (N1) from an anterior-endoderm-conditioned-medium RNA library that had been shown to be able to rescue the mutant phenotype. In the current studies we have fully cloned the N1 full length cDNA sequence from the library. N1 protein has been detected in both adult heart and skeletal muscle but not in any other adult tissues. GFP-tagged expression of the N1 protein has revealed localization of the N1 protein in the endoplasmic reticulum (ER). Results from in situ hybridization experiments have confirmed the dramatic decrease of expression of N1 mRNA in mutant (c/c) embryos indicating that the N1 gene is involved in heart development.

  10. Construction of a cDNA library for sea cucumber Acaudina leucoprocta and differential expression of ferritin peptide

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Hou, Fujing; Li, Ye; Su, Xiurong; Li, Taiwu; Jin, Chunhua

    2016-07-01

    Acaudina leucoprocta is an edible sea cucumber of economic interest that is widely distributed in China. Little information is available concerning the molecular genetics of this species although such knowledge would contribute to a better understanding of the optimal conditions for its aquaculture and its mechanisms of defense against disease. Therefore, we constructed a cDNA library and, based on bioinformatics analysis of the sequences, the functions of 75% of the cDNAs were identified, including those involved in cell structure, energy metabolism, mitochondrial function, and signal transduction pathways. Approximately 25% of genes in the library were unmatched. The gene for A. leucoprocta ferritin was also cloned. The predicted amino-acid sequence of ferritin displayed significant homology with other sea-cucumber counterparts but indicated that it was a new member of the ferritin family. Semiquantitative real-time RT-PCR indicated the highest levels of ferritin mRNA expression in the intestine. A polyclonal antibody of ferritin was also produced. These data provide a set of molecular tools essential for further studies of the functions of ferritin protein in A. leucoprocta.

  11. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development

    PubMed Central

    Alagna, Fiammetta; D'Agostino, Nunzio; Torchia, Laura; Servili, Maurizio; Rao, Rosa; Pietrella, Marco; Giuliano, Giovanni; Chiusano, Maria Luisa; Baldoni, Luciana; Perrotta, Gaetano

    2009-01-01

    Background Despite its primary economic importance, genomic information on olive tree is still lacking. 454 pyrosequencing was used to enrich the very few sequence data currently available for the Olea europaea species and to identify genes involved in expression of fruit quality traits. Results Fruits of Coratina, a widely cultivated variety characterized by a very high phenolic content, and Tendellone, an oleuropein-lacking natural variant, were used as starting material for monitoring the transcriptome. Four different cDNA libraries were sequenced, respectively at the beginning and at the end of drupe development. A total of 261,485 reads were obtained, for an output of about 58 Mb. Raw sequence data were processed using a four step pipeline procedure and data were stored in a relational database with a web interface. Conclusion Massively parallel sequencing of different fruit cDNA collections has provided large scale information about the structure and putative function of gene transcripts accumulated during fruit development. Comparative transcript profiling allowed the identification of differentially expressed genes with potential relevance in regulating the fruit metabolism and phenolic content during ripening. PMID:19709400

  12. The Role of CYP3A4 mRNA Transcript with Shortened 3′-Untranslated Region in Hepatocyte Differentiation, Liver Development, and Response to Drug InductionS⃞

    PubMed Central

    Li, Dan; Gaedigk, Roger; Hart, Steven N.; Leeder, J. Steven

    2012-01-01

    Cytochrome P450 3A4 (CYP3A4) metabolizes more than 50% of prescribed drugs. The expression of CYP3A4 changes during liver development and may be affected by the administration of some drugs. Alternative mRNA transcripts occur in more than 90% of human genes and are frequently observed in cells responding to developmental and environmental signals. Different mRNA transcripts may encode functionally distinct proteins or contribute to variability of mRNA stability or protein translation efficiency. The purpose of this study was to examine expression of alternative CYP3A4 mRNA transcripts in hepatocytes in response to developmental signals and drugs. cDNA cloning and RNA sequencing (RNA-Seq) were used to identify CYP3A4 mRNA transcripts. Three transcripts were found in HepaRG cells and liver tissues: one represented a canonical mRNA with full-length 3′-untranslated region (UTR), one had a shorter 3′-UTR, and one contained partial intron-6 retention. The alternative mRNA transcripts were validated by either rapid amplification of cDNA 3′-end or endpoint polymerase chain reaction (PCR). Quantification of the transcripts by RNA-Seq and real time quantitative PCR revealed that the CYP3A4 transcript with shorter 3′-UTR was preferentially expressed in developed livers, differentiated hepatocytes, and in rifampicin- and phenobarbital-induced hepatocytes. The CYP3A4 transcript with shorter 3′-UTR was more stable and produced more protein compared with the CYP3A4 transcript with canonical 3′-UTR. We conclude that the 3′-end processing of CYP3A4 contributes to the quantitative regulation of CYP3A4 gene expression through alternative polyadenylation, which may serve as a regulatory mechanism explaining changes of CYP3A4 expression and activity during hepatocyte differentiation and liver development and in response to drug induction. PMID:21998292

  13. Differentially Expressed Genes in Hirudo medicinalis Ganglia after Acetyl-L-Carnitine Treatment

    PubMed Central

    Federighi, Giuseppe; Macchi, Monica; Bernardi, Rodolfo; Scuri, Rossana; Brunelli, Marcello; Durante, Mauro; Traina, Giovanna

    2013-01-01

    Acetyl-l-carnitine (ALC) is a naturally occurring substance that, when administered at supra-physiological concentration, is neuroprotective. It is involved in membrane stabilization and in enhancement of mitochondrial functions. It is a molecule of considerable interest for its clinical application in various neural disorders, including Alzheimer’s disease and painful neuropathies. ALC is known to improve the cognitive capability of aged animals chronically treated with the drug and, recently, it has been reported that it impairs forms of non-associative learning in the leech. In the present study the effects of ALC on gene expression have been analyzed in the leech Hirudo medicinalis. The suppression subtractive hybridisation methodology was used for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts in the leech nervous system after ALC treatment. The method detects differentially but also little expressed transcripts of genes whose sequence or identity is still unknown. We report that a single administration of ALC is able to modulate positively the expression of genes coding for functions that reveal a lasting effect of ALC on the invertebrate, and confirm the neuroprotective and neuromodulative role of the substance. In addition an important finding is the modulation of genes of vegetal origin. This might be considered an instance of ectosymbiotic mutualism. PMID:23308261

  14. Gene expression profile analysis of rat cerebellum under acute alcohol intoxication.

    PubMed

    Zhang, Yu; Wei, Guangkuan; Wang, Yuehong; Jing, Ling; Zhao, Qingjie

    2015-02-25

    Acute alcohol intoxication, a common disease causing damage to the central nervous system (CNS) has been primarily studied on the aspects of alcohol addiction and chronic alcohol exposure. The understanding of gene expression change in the CNS during acute alcohol intoxication is still lacking. We established a model for acute alcohol intoxication in SD rats by oral gavage. A rat cDNA microarray was used to profile mRNA expression in the cerebella of alcohol-intoxicated rats (experimental group) and saline-treated rats (control group). A total of 251 differentially expressed genes were identified in response to acute alcohol intoxication, in which 208 of them were up-regulated and 43 were down-regulated. Gene ontology (GO) term enrichment analysis and pathway analysis revealed that the genes involved in the biological processes of immune response and endothelial integrity are among the most severely affected in response to acute alcohol intoxication. We discovered five transcription factors whose consensus binding motifs are overrepresented in the promoter region of differentially expressed genes. Additionally, we identified 20 highly connected hub genes by co-expression analysis, and validated the differential expression of these genes by real-time quantitative PCR. By determining novel biological pathways and transcription factors that have functional implication to acute alcohol intoxication, our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of acute alcoholism. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Screening differentially expressed genes in an amphipod (Hyalella azteca) exposed to fungicide vinclozolin by suppression subtractive hybridization.

    PubMed

    Wu, Yun H; Wu, Tsung M; Hong, Chwan Y; Wang, Yei S; Yen, Jui H

    2014-01-01

    Vinclozolin, a dicarboximide fungicide, is an endocrine disrupting chemical that competes with an androgenic endocrine disruptor compound. Most research has focused on the epigenetic effect of vinclozolin in humans. In terms of ecotoxicology, understanding the effect of vinclozolin on non-target organisms is important. The expression profile of a comprehensive set of genes in the amphipod Hyalella azteca exposed to vinclozolin was examined. The expressed sequence tags in low-dose vinclozolin-treated and -untreated amphipods were isolated and identified by suppression subtractive hybridization. DNA dot blotting was used to confirm the results and establish a subtracted cDNA library for comparing all differentially expressed sequences with and without vinclozolin treatment. In total, 494 differentially expressed genes, including hemocyanin, heatshock protein, cytochrome, cytochrome oxidase and NADH dehydrogenase were detected. Hemocyanin was the most abundant gene. DNA dot blotting revealed 55 genes with significant differential expression. These genes included larval serum protein 1 alpha, E3 ubiquitin-protein ligase, mitochondrial cytochrome c oxidase, mitochondrial protein, proteasome inhibitor, hemocyanin, zinc-finger-containing protein, mitochondrial NADH-ubiquinone oxidoreductase and epididymal sperm-binding protein. Vinclozolin appears to upregulate stress-related genes and hemocyanin, related to immunity. Moreover, vinclozolin downregulated NADH dehydrogenase, related to respiration. Thus, even a non-lethal concentration of vinclozolin still has an effect at the genetic level in H. azteca and presents a potential risk, especially as it would affect non-target organism hormone metabolism.

  16. STUDIES OF NORMAL GENE EXPRESSION IN THE RAT NASAL EPITHELIUM USNG CDNA ARRAY TECHNOLOGY

    EPA Science Inventory


    Studies of Normal Gene Expression in the Rat Nasal Epithelium Using cDNA Array

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity .Gene expression data are being used increasingly for studies of such conditions. In or...

  17. Differential Expression of Zinc Transporters in Prostate Epithelia of Racial Groups

    DTIC Science & Technology

    2010-09-01

    mitochondria inhibits terminal oxidation, truncating the Krebs cycle , hence decreasing the ATP-based energy production and resulting in less growth...as a major component of prostatic fluid [7,10]. In addition, high Zn levels in the mitochondria inhibits terminal oxidation, truncat- ing the Krebs ...PCR (MJR/Bio-Rod – Twin Tower, PTC 200, Waltham, MA). The two cycles were programmed for 30 min at 50 C, then 95 C for 5 min (for cDNA step), and

  18. Differential expression of neuroleukin in osseous tissues and its involvement in mineralization during osteoblast differentiation

    NASA Technical Reports Server (NTRS)

    Zhi, J.; Sommerfeldt, D. W.; Rubin, C. T.; Hadjiargyrou, M.

    2001-01-01

    Osteoblast differentiation is a multistep process that involves critical spatial and temporal regulation of cellular processes marked by the presence of a large number of differentially expressed molecules. To identify key functional molecules, we used differential messenger RNA (mRNA) display and compared RNA populations isolated from the defined transition phases (proliferation, matrix formation, and mineralization) of the MC3T3-E1 osteoblast-like cell line. Using this approach, a complementary DNA (cDNA) fragment was isolated and identified as neuroleukin (NLK), a multifunctional cytokine also known as autocrine motility factor (AMF), phosphoglucose isomerase (PGI; phosphohexose isomerase [PHI]), and maturation factor (MF). Northern analysis showed NLK temporal expression during MC3T3-E1 cell differentiation with a 3.5-fold increase during matrix formation and mineralization. Immunocytochemical studies revealed the presence of NLK in MC3T3-E1 cells as well as in the surrounding matrix, consistent with a secreted molecule. In contrast, the NLK receptor protein was detected primarily on the cell membrane. In subsequent studies, a high level of NLK expression was identified in osteoblasts and superficial articular chondrocytes in bone of 1-, 4-, and 8-month-old normal mice, as well as in fibroblasts, proliferating chondrocytes, and osteoblasts within a fracture callus. However, NLK was not evident in hypertrophic chondrocytes or osteocytes. In addition, treatment of MC3T3 cells with 6-phosphogluconic acid (6PGA; a NLK inhibitor) resulted in diminishing alkaline phosphatase (ALP) activity and mineralization in MC3T3-E1 cells, especially during the matrix formation stage of differentiating cells. Taken together, these data show specific expression of NLK in discrete populations of bone and cartilage cells and suggest a possible role for this secreted protein in bone development and regeneration.

  19. Evaluation of gene expression profiles and pathways underlying postnatal development in mouse sclera.

    PubMed

    Lim, Wan'E; Kwan, Jia Lin; Goh, Liang Kee; Beuerman, Roger W; Barathi, Veluchamy A

    2012-01-01

    The aim of this study was to identify the genes and pathways underlying the growth of the mouse sclera during postnatal development. Total RNA was isolated from each of 30 single mouse sclera (n=30, 6 sclera each from 1-, 2-, 3-, 6-, and 8-week-old mice) and reverse-transcribed into cDNA using a T7-N(6) primer. The resulting cDNA was fragmented, labeled with biotin, and hybridized to a Mouse Gene 1.0 ST Array. ANOVA analysis was then performed using Partek Genomic Suite 6.5 beta and differentially expressed transcript clusters were filtered based on a selection criterion of ≥ 2 relative fold change at a false discovery rate of ≤ 5%. Genes identified as involved in the main biologic processes during postnatal scleral development were further confirmed using qPCR. A possible pathway that contributes to the postnatal development of the sclera was investigated using Ingenuity Pathway Analysis software. The hierarchical clustering of all time points showed that they did not cluster according to age. The highest number of differentially expressed transcript clusters was found when week 1 and week 2 old scleral tissues were compared. The peroxisome proliferator- activated receptor gamma coactivator 1-alpha (Ppargc1a) gene was found to be involved in the networks generated using Ingenuity Pathway Studio (IPA) from the differentially expressed transcript cluster lists of week 2 versus 1, week 3 versus 2, week 6 versus 3, and week 8 versus 6. The gene expression of Ppargc1a varied during scleral growth from week 1 to 2, week 2 to 3, week 3 to 6, and week 6 to 8 and was found to interact with a different set of genes at different scleral growth stages. Therefore, this indicated that Ppargc1a might play a role in scleral growth during postnatal weeks 1 to 8. Gene expression of eye diseases should be studied as early as postnatal weeks 1-2 to ensure that any changes in gene expression pattern during disease development are detected. In addition, we propose that Ppargc1a might play a role in regulating postnatal scleral development by interacting with a different set of genes at different scleral growth stages.

  20. Evaluation of gene expression profiles and pathways underlying postnatal development in mouse sclera

    PubMed Central

    Lim, Wan’E.; Kwan, Jia Lin; Goh, Liang Kee; Beuerman, Roger W.

    2012-01-01

    Purpose The aim of this study was to identify the genes and pathways underlying the growth of the mouse sclera during postnatal development. Methods Total RNA was isolated from each of 30 single mouse sclera (n=30, 6 sclera each from 1-, 2-, 3-, 6-, and 8-week-old mice) and reverse-transcribed into cDNA using a T7-N6 primer. The resulting cDNA was fragmented, labeled with biotin, and hybridized to a Mouse Gene 1.0 ST Array. ANOVA analysis was then performed using Partek Genomic Suite 6.5 beta and differentially expressed transcript clusters were filtered based on a selection criterion of ≥2 relative fold change at a false discovery rate of ≤5%. Genes identified as involved in the main biologic processes during postnatal scleral development were further confirmed using qPCR. A possible pathway that contributes to the postnatal development of the sclera was investigated using Ingenuity Pathway Analysis software. Results The hierarchical clustering of all time points showed that they did not cluster according to age. The highest number of differentially expressed transcript clusters was found when week 1 and week 2 old scleral tissues were compared. The peroxisome proliferator- activated receptor gamma coactivator 1-alpha (Ppargc1a) gene was found to be involved in the networks generated using Ingenuity Pathway Studio (IPA) from the differentially expressed transcript cluster lists of week 2 versus 1, week 3 versus 2, week 6 versus 3, and week 8 versus 6. The gene expression of Ppargc1a varied during scleral growth from week 1 to 2, week 2 to 3, week 3 to 6, and week 6 to 8 and was found to interact with a different set of genes at different scleral growth stages. Therefore, this indicated that Ppargc1a might play a role in scleral growth during postnatal weeks 1 to 8. Conclusions Gene expression of eye diseases should be studied as early as postnatal weeks 1–2 to ensure that any changes in gene expression pattern during disease development are detected. In addition, we propose that Ppargc1a might play a role in regulating postnatal scleral development by interacting with a different set of genes at different scleral growth stages. PMID:22736935

  1. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)

    PubMed Central

    2011-01-01

    Background Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10-30) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the genes identified are known to be up-regulated in response to osmotic stress in pine and other plant species and encode proteins involved in both signal transduction and stress tolerance. Gene expression levels returned to control values within a 48-hour recovery period in all but 76 transcripts. Correlation network analysis indicates a scale-free network topology for the pine root transcriptome and identifies central nodes that may serve as drivers of drought-responsive transcriptome dynamics in the roots of loblolly pine. PMID:21609476

  2. Identification of differentially expressed genes in the zebrafish hypothalamus - pituitary axis

    PubMed Central

    Toro, Sabrina; Wegner, Jeremy; Muller, Marc; Westerfield, Monte; Varga, Zoltan M.

    2009-01-01

    The vertebrate hypothalamic-pituitary axis (HP) is the main link between the central nervous system and endocrine system. Although several signal pathways and regulatory genes have been implicated in adenohypophysis ontogenesis, little is known about hypothalamic and neurohypophysial development or when the HP matures and becomes functional. To identify markers of the HP, we constructed subtractive cDNA libraries between adult zebrafish hypothalamus and pituitary. We identified previously published genes and ESTs and novel zebrafish genes, some of which were predicted by genomic database analysis. We also analyzed expression patterns of these genes and found that several are expressed in the embryonic and larval hypothalamus, neurohypophysis, and/or adenohypophysis. Expression at these stages makes these genes useful markers to study HP maturation and function. PMID:19166982

  3. Cloning and characterization of full length of a novel zebrafish gene Zsrg abundantly expressed in the germline stem cells.

    PubMed

    Lv, Daoyuan; Song, Ping; Chen, Yungui; Gong, Wuming; Mo, Saijun

    2005-04-08

    Using the digital differential display program of the National Center for Biotechnology Information, we identified a contig of expression sequence tags (ESTs) (Accession No. BM316936), which came from zebrafish ovary and testis libraries. The full-length cDNA of this transcript was cloned and further confirmed by polymerase chain reaction and sequencing. The full-length cDNA of the novel gene is 807bp and encodes a novel protein of 187 amino acids, which shares no significant homology with any other known proteins. Characterization of genomic sequences of the gene revealed that it spans 6kb on the linkage group 3 and is composed of five exons and four introns. RT-PCR analysis showed that it was expressed in mature oocytes and one-cell stage, and persisted until 24h of development. RT-PCR also revealed that it is expressed in gonad and kidney, with the highest level of expression in the testis. The expression sites of the novel gene in adult gonad were further localized by in situ hybridization to oogonia and growing oocytes in ovary and to spermatogonia, spermatocytes but not to spermatids in testis. Based on its abundance in testis and the germline stem cell-spermatogonia and oogonia, we hypothesize that it may function as a testicular development and gametogenesis related gene that plays important roles in spermatogenesis, and named it Zsrg (zebrafish testis spermatogenesis related gene, Zsrg).

  4. Characterization of constitutive and putative differentially expressed mRNAs by means of expressed sequence tags, differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR from the sand fly vector Lutzomyia longipalpis.

    PubMed

    Ramalho-Ortigão, J M; Temporal, P; de Oliveira , S M; Barbosa, A F; Vilela, M L; Rangel, E F; Brazil, R P; Traub-Cseko, Y M

    2001-01-01

    Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.

  5. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    PubMed

    Bellantuono, Anthony J; Granados-Cifuentes, Camila; Miller, David J; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.

  6. Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress

    PubMed Central

    Bellantuono, Anthony J.; Granados-Cifuentes, Camila; Miller, David J.; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios. PMID:23226355

  7. Characteristics and Expression Profile of KRT71 Screened by Suppression Subtractive Hybridization cDNA Library in Curly Fleece Chinese Tan Sheep.

    PubMed

    Kang, Xiaolong; Liu, Yufang; Zhang, Jibin; Xu, Qinqin; Liu, Chengkun; Fang, Meiying

    2017-07-01

    As an important commercial trait for sheep, curly fleece has a great economic impact on production costs and efficiency in sheep industry. To identify genes that are important for curly fleece formation in mammals, a suppression subtractive hybridization analysis was performed on the shoulder skin tissues exposed to two different growth stages of Chinese Tan sheep with different phenotypes (curly fleece and noncurling fleece). BLAST analysis identified 67 differentially expressed genes, of which 31 were expressed lower and 36 were expressed higher in lambs than in adult sheep. Differential expressions of seven randomly selected genes were verified using quantitative real-time polymerase chain reaction (qRT-PCR). KRT71 gene was selected for further study due to its high correlation with the curly hair phenotype in various mammal species. Semi-qPCR showed distinctively high expression of KRT71 in skin tissues. Moreover, qPCR result showed a significantly higher expression of KRT71 in curly fleece than noncurling Tan sheep. The luciferase assay and electrophoresis mobility shift assay showed that there were transcription factor binding sites in the promoter region of KRT71 related to the differential expression of KRT71 at the two growth stages of Tan sheep. Online bioinformation tools predicted MFZ1 as a transcriptional factor that regulates the expression of KRT71. These studies on KRT71 gene revealed some mechanisms underlying the relationship between the KRT71 gene and the curly fleece phenotype of Tan sheep.

  8. Expression of leukemia inhibitory factor and leukemia inhibitory factor receptor in the canine pituitary gland and corticotrope adenomas.

    PubMed

    Hanson, J M; Mol, J A; Meij, B P

    2010-05-01

    Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the IL-6 family that activates the hypothalamic-pituitary-adrenal axis and promotes corticotrope cell differentiation during development. The aim of this study was to investigate the expression of LIF and its receptor (LIFR) in the canine pituitary gland and in corticotrope adenomas, and to perform a mutation analysis of LIFR. Using immunohistochemistry, immunofluorescence, and quantitative expression analysis, LIF and LIFR expression were studied in pituitary glands of control dogs and in specimens of corticotrope adenoma tissue collected through hypophysectomy in dogs with pituitary-dependent hypercortisolism (PDH, Cushing's disease). Using sequence analysis, cDNA was screened for mutations in the LIFR. In the control pituitary tissues and corticotrope adenomas, there was a low magnitude of LIF expression. The LIFR, however, was highly expressed and co-localized with ACTH(1-24) expression. Cytoplasmatic immunoreactivity of LIFR was preserved in corticotrope adenomas and adjacent nontumorous cells of pars intermedia. No mutation was found on mutation analysis of the complete LIFR cDNA. Surprisingly, nuclear to perinuclear immunoreactivity for LIFR was present in nontumorous pituitary cells of the pars distalis in 10 of 12 tissue specimens from PDH dogs. These data show that LIFR is highly co-expressed with adrenocorticotropic hormone (ACTH) and alpha-melanocyte-stimulating hormone (alpha-MSH) in the canine pituitary gland and in corticotrope adenomas. Nuclear immunoreactivity for LIFR in nontumorous cells of the pars distalis may indicate the presence of a corticotrope adenoma. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  9. cDNA cloning, functional expression and cellular localization of rat liver mitochondrial electron-transfer flavoprotein-ubiquinone oxidoreductase protein.

    PubMed

    Huang, Shengbing; Song, Wei; Lin, Qishui

    2005-08-01

    A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-QOp. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.

  10. Cell cycle, differentiation and tissue-independent expression of ribosomal protein L37.

    PubMed

    Su, S; Bird, R C

    1995-09-15

    A unique human cDNA (hG1.16) that encodes a mRNA of 450 nucleotides was isolated from a subtractive library derived from HeLa cells. The relative expression level of hG1.16 during different cell-cycle phases was determined by Northern-blot analysis of cells synchronized by double-thymidine block and serum deprivation/refeeding. hG1.16 was constitutively expressed during all phases of the cell cycle, including the quiescent phase when even most constitutively expressed genes experience some suppression of expression. The expression level of hG1.16 did not change during terminal differentiation of myoblasts to myotubes, during which cells become permanently post-mitotic. Examination of other tissues revealed that the relative expression level of hG1.16 was constitutive in all embryonic mouse tissues examined, including brain, eye, heart, kidney, liver, lung and skeletal muscle. This was unusual in that expression was not down-modulated during differentiation and did not vary appreciably between tissue types. Analysis by inter-species Northern-blot analysis revealed that hG1.16 was highly conserved among all vertebrates studied (from fish to humans but not in insects). DNA sequence analysis of hG1.16 revealed a high level of similarity to rat ribosomal protein L37, identifying hG1.16 as a new member of this multigene family. The deduced amino acid sequence of hG1.16 was identical to rat ribosomal protein L37 that contained 97 amino acids, many of which are highly positively charged (15 arginine and 14 lysine residues with a predicted M(r) of 11,065). hG1.16 protein has a single C2-C2 zinc-finger-like motif which is also present in rat ribosomal protein L37. Using primers designed from the sequence of hG1.16, unique bovine and rat cDNAs were also isolated by 5'-rapid-amplification of cDNA ends. DNA sequences of bovine and rat G1.16, clones were 92.8% and 92.2% similar to human G1.16 while the deduced amino acid sequences derived from bovine and rat cDNAs each differed by a single amino acid from the sequence of hG1.16 and the published rat L37 sequence. Southern-blot analysis revealed that hG1.16 exists in multiple copies in human, rat and mouse genomes. These G1.16 clones encode unique human, rat and bovine members of the ribosomal protein L37 gene family, which are constitutively expressed even during transitions from quiescence to active cell proliferation or terminal differentiation, in all tissues and all vertebrates investigated.

  11. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis].

    PubMed

    Rao, J; Liu, D; Zhang, N; He, H; Ge, F; Chen, C

    2014-01-01

    Fusarium wilt, caused by a soilborne pathogen Fusarium oxysporum f. sp. lilii, is the major disease of lily (Lilium L.). In order to isolate the genes differentially expressed in a resistant reaction to F. oxysporum in L. regale Wilson, a cDNA library was constructed with L. regale root during F. oxysporum infection using the suppression subtractive hybridization (SSH), and a total of 585 unique expressed sequence tags (ESTs) were obtained. Furthermore, the gene expression profiles in the incompatible interaction between L. regale and F. oxysporum were revealed by oligonucleotide microarray analysis of 585 unique ESTs comparison to the compatible interaction between a susceptible Lilium Oriental Hybrid 'Siberia' and F. oxysporum. The result of expression profile analysis indicated that the genes encoding pathogenesis-related proteins (PRs), antioxidative stress enzymes, secondary metabolism enzymes, transcription factors, signal transduction proteins as well as a large number of unknown genes were involved in early defense response of L. regale to F. oxysporum infection. Moreover, the following quantitative reverse transcription PCR (QRT-PCR) analysis confirmed reliability of the oligonucleotide microarray data. In the present study, isolation of differentially expressed genes in L. regale during response to F. oxysporum helped to uncover the molecular mechanism associated with the resistance of L. regale against F. oxysporum.

  12. Differential gene expression between African American and European American colorectal cancer patients.

    PubMed

    Jovov, Biljana; Araujo-Perez, Felix; Sigel, Carlie S; Stratford, Jeran K; McCoy, Amber N; Yeh, Jen Jen; Keku, Temitope

    2012-01-01

    The incidence and mortality of colorectal cancer (CRC) is higher in African Americans (AAs) than other ethnic groups in the U. S., but reasons for the disparities are unknown. We performed gene expression profiling of sporadic CRCs from AAs vs. European Americans (EAs) to assess the contribution to CRC disparities. We evaluated the gene expression of 43 AA and 43 EA CRC tumors matched by stage and 40 matching normal colorectal tissues using the Agilent human whole genome 4x44K cDNA arrays. Gene and pathway analyses were performed using Significance Analysis of Microarrays (SAM), Ten-fold cross validation, and Ingenuity Pathway Analysis (IPA). SAM revealed that 95 genes were differentially expressed between AA and EA patients at a false discovery rate of ≤5%. Using IPA we determined that most prominent disease and pathway associations of differentially expressed genes were related to inflammation and immune response. Ten-fold cross validation demonstrated that following 10 genes can predict ethnicity with an accuracy of 94%: CRYBB2, PSPH, ADAL, VSIG10L, C17orf81, ANKRD36B, ZNF835, ARHGAP6, TRNT1 and WDR8. Expression of these 10 genes was validated by qRT-PCR in an independent test set of 28 patients (10 AA, 18 EA). Our results are the first to implicate differential gene expression in CRC racial disparities and indicate prominent difference in CRC inflammation between AA and EA patients. Differences in susceptibility to inflammation support the existence of distinct tumor microenvironments in these two patient populations.

  13. Differential Gene Expression between African American and European American Colorectal Cancer Patients

    PubMed Central

    Jovov, Biljana; Araujo-Perez, Felix; Sigel, Carlie S.; Stratford, Jeran K.; McCoy, Amber N.; Yeh, Jen Jen; Keku, Temitope

    2012-01-01

    The incidence and mortality of colorectal cancer (CRC) is higher in African Americans (AAs) than other ethnic groups in the U. S., but reasons for the disparities are unknown. We performed gene expression profiling of sporadic CRCs from AAs vs. European Americans (EAs) to assess the contribution to CRC disparities. We evaluated the gene expression of 43 AA and 43 EA CRC tumors matched by stage and 40 matching normal colorectal tissues using the Agilent human whole genome 4x44K cDNA arrays. Gene and pathway analyses were performed using Significance Analysis of Microarrays (SAM), Ten-fold cross validation, and Ingenuity Pathway Analysis (IPA). SAM revealed that 95 genes were differentially expressed between AA and EA patients at a false discovery rate of ≤5%. Using IPA we determined that most prominent disease and pathway associations of differentially expressed genes were related to inflammation and immune response. Ten-fold cross validation demonstrated that following 10 genes can predict ethnicity with an accuracy of 94%: CRYBB2, PSPH, ADAL, VSIG10L, C17orf81, ANKRD36B, ZNF835, ARHGAP6, TRNT1 and WDR8. Expression of these 10 genes was validated by qRT-PCR in an independent test set of 28 patients (10 AA, 18 EA). Our results are the first to implicate differential gene expression in CRC racial disparities and indicate prominent difference in CRC inflammation between AA and EA patients. Differences in susceptibility to inflammation support the existence of distinct tumor microenvironments in these two patient populations. PMID:22276153

  14. Extensive alternative splicing and dual promoter usage generate Tcf-1 protein isoforms with differential transcription control properties.

    PubMed Central

    Van de Wetering, M; Castrop, J; Korinek, V; Clevers, H

    1996-01-01

    Previously, we reported the isolation of cDNA clones representing four alternative splice forms of TCF-1, a T-cell-specific transcription factor. In the present study, Western blotting (immunoblotting) yielded a multitude of TCF-1 proteins ranging from 25-55 kDa, a pattern not simply explained from the known splice alternatives. Subsequent cDNA cloning, PCR amplification, and analysis by rapid amplification of 5' cDNA ends revealed (i) the presence of an alternative upstream promoter, which extended the known N terminus by 116 amino acids, (ii) the presence of four alternative exons, and (iii) the existence of a second reading frame in the last exon encoding an extended C terminus. Inclusion of the extended N terminus into the originally reported protein resulted in a striking similarity to the lymphoid factor Lef-1. Several of the TCF-1 isoforms, although less potent, mimicked Lef-1 in transactivating transcription through the T-cell receptor alpha-chain (TCR-alpha) enhancer. These data provide a molecular basis for the complexity of the expressed TCF-1 proteins and establish the existence of functional differences between these isoforms. Furthermore, the functional redundancy between Tcf-1 and Lef-1 explains the apparently normal TCR-alpha expression in single Tcf-1 or Lef-1 knockout mice despite the firm in vitro evidence for the importance of the Tcf/Lef site in the TCR-alpha enhancer. PMID:8622675

  15. Molecular cloning of a murine homologue of membrane cofactor protein (CD46): preferential expression in testicular germ cells.

    PubMed Central

    Tsujimura, A; Shida, K; Kitamura, M; Nomura, M; Takeda, J; Tanaka, H; Matsumoto, M; Matsumiya, K; Okuyama, A; Nishimune, Y; Okabe, M; Seya, T

    1998-01-01

    Human membrane cofactor protein (MCP, CD46) has been suggested, although no convincing evidence has been proposed, to be a fertilization-associated protein, in addition to its primary functions as a complement regulator and a measles virus receptor. We have cloned a cDNA encoding the murine homologue of MCP. This cDNA showed 45% identity in deduced protein sequence and 62% identity in nucleotide sequence with human MCP. Its ectodomains were four short consensus repeats and a serine/threonine-rich domain, and it appeared to be a type 1 membrane protein with a 23-amino acid transmembrane domain and a short cytoplasmic tail. The protein expressed on Chinese hamster ovary cell transfectants was 47 kDa on SDS/PAGE immunoblotting, approximately 6 kDa larger than the murine testis MCP. It served as a cofactor for factor I-mediated inactivation of the complement protein C3b in a homologous system and, to a lesser extent, in a human system. Strikingly, the major message of murine MCP was 1.5 kb and was expressed predominantly in the testis. It was not detected in mice defective in spermatogenesis or with immature germ cells (until 23 days old). Thus, murine MCP may be a sperm-dominant protein the message of which is expressed selectively in spermatids during germ-cell differentiation. PMID:9461505

  16. CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE

    PubMed Central

    Cuetara, Bethany L. V.; Crotti, Tania N.; O'Donoghue, Anthony J.

    2006-01-01

    SUMMARY Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell culture, which are poorly suited to molecular and transgene studies due to the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP) positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP positive multinuclear cells. Clones capable of forming large TRAP positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation. PMID:16948499

  17. Identification of Differentially Expressed Thyroid Hormone Responsive Genes from the Brain of the Mexican Axolotl (Ambystoma mexicanum) ✧

    PubMed Central

    Huggins, P; Johnson, CK; Schoergendorfer, A; Putta, S; Bathke, AC; Stromberg, AJ; Voss, SR

    2011-01-01

    The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5,884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p < 0.05, fold change > 1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian. PMID:21457787

  18. Identification of differentially expressed thyroid hormone responsive genes from the brain of the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Huggins, P; Johnson, C K; Schoergendorfer, A; Putta, S; Bathke, A C; Stromberg, A J; Voss, S R

    2012-01-01

    The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p<0.05, fold change >1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Isolation and Identification of miRNAs in Jatropha curcas

    PubMed Central

    Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887

  20. Gene expression profile of the plant pathogen Fusarium graminearum under the antagonistic effect of Pantoea agglomerans.

    PubMed

    Pandolfi, V; Jorge, E C; Melo, C M R; Albuquerque, A C S; Carrer, H

    2010-07-06

    The pathogenic fungus Fusarium graminearum is an ongoing threat to agriculture, causing losses in grain yield and quality in diverse crops. Substantial progress has been made in the identification of genes involved in the suppression of phytopathogens by antagonistic microorganisms; however, limited information regarding responses of plant pathogens to these biocontrol agents is available. Gene expression analysis was used to identify differentially expressed transcripts of the fungal plant pathogen F. graminearum under antagonistic effect of the bacterium Pantoea agglomerans. A macroarray was constructed, using 1014 transcripts from an F. graminearum cDNA library. Probes consisted of the cDNA of F. graminearum grown in the presence and in the absence of P. agglomerans. Twenty-nine genes were either up (19) or down (10) regulated during interaction with the antagonist bacterium. Genes encoding proteins associated with fungal defense and/or virulence or with nutritional and oxidative stress responses were induced. The repressed genes coded for a zinc finger protein associated with cell division, proteins containing cellular signaling domains, respiratory chain proteins, and chaperone-type proteins. These data give molecular and biochemical evidence of response of F. graminearum to an antagonist and could help develop effective biocontrol procedures for pathogenic plant fungi.

  1. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.

    PubMed

    Journet, Etienne-Pascal; van Tuinen, Diederik; Gouzy, Jérome; Crespeau, Hervé; Carreau, Véronique; Farmer, Mary-Jo; Niebel, Andreas; Schiex, Thomas; Jaillon, Olivier; Chatagnier, Odile; Godiard, Laurence; Micheli, Fabienne; Kahn, Daniel; Gianinazzi-Pearson, Vivienne; Gamas, Pascal

    2002-12-15

    We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5'- and 3'-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.truncatula ESTs available in the dbEST (NCBI) database that were recruited in the process. These clusters were manually annotated, using a specifically developed annotation interface. Analysis of EST cluster distribution in various M.truncatula cDNA libraries, supported by a refined R test to evaluate statistical significance and by 'electronic northern' representation, enabled us to identify a large number of novel genes predicted to be up- or down-regulated during either symbiotic root interaction. These in silico analyses provide a first global view of the genetic programs for root symbioses in M.truncatula. A searchable database has been built and can be accessed through a public interface.

  2. Under the influence of the active deodorant ingredient 4-hydroxy-3-methoxybenzyl alcohol, the skin bacterium Corynebacterium jeikeium moderately responds with differential gene expression.

    PubMed

    Brune, Iris; Becker, Anke; Paarmann, Daniel; Albersmeier, Andreas; Kalinowski, Jörn; Pühler, Alfred; Tauch, Andreas

    2006-12-15

    A 70mer oligonucleotide microarray was constructed to analyze genome-wide expression profiles of Corynebacterium jeikeium, a skin bacterium that is predominantly present in the human axilla and involved in axillary odor formation. Oligonucleotides representing 100% of the predicted coding regions of the C. jeikeium K411 genome were designed and spotted in quadruplicate onto epoxy-coated glass slides. The quality of the printed microarray was demonstrated by co-hybridization with fluorescently labeled cDNA probes obtained from exponentially growing C. jeikeium cultures. Accordingly, genes detected with different intensities resulting in log(2) transformed ratios greater than 0.8 or smaller than -0.8 can be regarded as differentially expressed with a confidence level greater than 99%. In an application example, we measured global changes of gene expression during growth of C. jeikeium in the presence of different concentrations of the deodorant component 4-hydroxy-3-methoxybenzyl alcohol that is active in preventing body odor formation. Global expression profiling revealed that low concentrations of 4-hydroxy-3-methoxybenzyl alcohol (0.5 and 2.5mg/ml) had almost no detectable effect on the transcriptome of C. jeikeium. A slightly higher concentration of 4-hydroxy-3-methoxybenzyl alcohol (5mg/ml) resulted in differential expression of 95 genes, 86 of which showed an enhanced expression when compared to a control culture. Besides many genes encoding proteins that apparently participate in transcription and translation, the drug resistance determinant cmx and the predicted virulence factors sapA and sapD showed significantly enhanced expression levels. Differential expression of relevant genes was validated by real-time reverse transcription PCR assays.

  3. Isolation and Expression Profile of the Ca2+-Activated Chloride Channel-like Membrane Protein 6 Gene in Xenopus laevis

    PubMed Central

    Lee, Ra Mi; Ryu, Rae Hyung; Jeong, Seong Won; Oh, Soo Jin; Huang, Hue; Han, Jin Soo; Lee, Chi Ho; Lee, C. Justin; Jan, Lily Yeh

    2011-01-01

    To clone the first anion channel from Xenopus laevis (X. laevis), we isolated a calcium-activated chloride channel (CLCA)-like membrane protein 6 gene (CMP6) in X. laevis. As a first step in gene isolation, an expressed sequence tags database was screened to find the partial cDNA fragment. A putative partial cDNA sequence was obtained by comparison with rat CLCAs identified in our laboratory. First stranded cDNA was synthesized by reverse transcription polymerase-chain reaction (RT-PCR) using a specific primer designed for the target cDNA. Repeating the 5' and 3' rapid amplification of cDNA ends, full-length cDNA was constructed from the cDNA pool. The full-length CMP6 cDNA completed via 5'- and 3'-RACE was 2,940 bp long and had an open reading frame (ORF) of 940 amino acids. The predicted 940 polypeptides have four major transmembrane domains and showed about 50% identity with that of rat brain CLCAs in our previously published data. Semi-quantification analysis revealed that CMP6 was most abundantly expressed in small intestine, colon and liver. However, all tissues except small intestine, colon and liver had undetectable levels. This result became more credible after we did real-time PCR quantification for the target gene. In view of all CLCA studies focused on human or murine channels, this finding suggests a hypothetical protein as an ion channel, an X. laevis CLCA. PMID:21826170

  4. Cryptic splice site in the complementary DNA of glucocerebrosidase causes inefficient expression.

    PubMed

    Bukovac, Scott W; Bagshaw, Richard D; Rigat, Brigitte A; Callahan, John W; Clarke, Joe T R; Mahuran, Don J

    2008-10-15

    The low levels of human lysosomal glucocerebrosidase activity expressed in transiently transfected Chinese hamster ovary (CHO) cells were investigated. Reverse transcription PCR (RT-PCR) demonstrated that a significant portion of the transcribed RNA was misspliced owing to the presence of a cryptic splice site in the complementary DNA (cDNA). Missplicing results in the deletion of 179 bp of coding sequence and a premature stop codon. A repaired cDNA was constructed abolishing the splice site without changing the amino acid sequence. The level of glucocerebrosidase expression was increased sixfold. These data demonstrate that for maximum expression of any cDNA construct, the transcription products should be examined.

  5. Differential gene expression in response to juvenile hormone analog treatment in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Archotermopsidae).

    PubMed

    Cornette, Richard; Hayashi, Yoshinobu; Koshikawa, Shigeyuki; Miura, Toru

    2013-04-01

    Termite societies are characterized by a highly organized division of labor among conspicuous castes, groups of individuals with various morphological specializations. Termite caste differentiation is under control of juvenile hormone (JH), but the molecular mechanism underlying the response to JH and early events triggering caste differentiation are still poorly understood. In order to profile candidate gene expression during early soldier caste differentiation of the damp-wood termite, Hodotermopsis sjostedti, we treated pseudergates (workers) with a juvenile hormone analog (JHA) to induce soldier caste differentiation. We then used Suppressive Subtractive Hybridization to create two cDNA libraries enriched for transcripts that were either up- or downregulated at 24h after treatment. Finally, we used quantitative PCR to confirm temporal expression patterns. Hexamerins represent a large proportion of the genes upregulated following JHA treatment and have an expression pattern that shows roughly an inverse correlation to intrinsic JH titers. This data is consistent with the role of a JH "sink", which was demonstrated for hexamerins in another termite, Reticulitermes flavipes. A putative nuclear protein was also upregulated a few hours after JHA treatment, which suggests a role in the early response to JH and subsequent regulation of transcriptional events associated with soldier caste differentiation. Some digestive enzymes, such as endogenous beta-endoglucanase and chymotrypsin, as well as a protein associated to digestion were identified among genes downregulated after JHA treatment. This suggests that JH may directly influence the pseudergate-specific digestive system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Gene Discovery in Bladder Cancer Progression using cDNA Microarrays

    PubMed Central

    Sanchez-Carbayo, Marta; Socci, Nicholas D.; Lozano, Juan Jose; Li, Wentian; Charytonowicz, Elizabeth; Belbin, Thomas J.; Prystowsky, Michael B.; Ortiz, Angel R.; Childs, Geoffrey; Cordon-Cardo, Carlos

    2003-01-01

    To identify gene expression changes along progression of bladder cancer, we compared the expression profiles of early-stage and advanced bladder tumors using cDNA microarrays containing 17,842 known genes and expressed sequence tags. The application of bootstrapping techniques to hierarchical clustering segregated early-stage and invasive transitional carcinomas into two main clusters. Multidimensional analysis confirmed these clusters and more importantly, it separated carcinoma in situ from papillary superficial lesions and subgroups within early-stage and invasive tumors displaying different overall survival. Additionally, it recognized early-stage tumors showing gene profiles similar to invasive disease. Different techniques including standard t-test, single-gene logistic regression, and support vector machine algorithms were applied to identify relevant genes involved in bladder cancer progression. Cytokeratin 20, neuropilin-2, p21, and p33ING1 were selected among the top ranked molecular targets differentially expressed and validated by immunohistochemistry using tissue microarrays (n = 173). Their expression patterns were significantly associated with pathological stage, tumor grade, and altered retinoblastoma (RB) expression. Moreover, p33ING1 expression levels were significantly associated with overall survival. Analysis of the annotation of the most significant genes revealed the relevance of critical genes and pathways during bladder cancer progression, including the overexpression of oncogenic genes such as DEK in superficial tumors or immune response genes such as Cd86 antigen in invasive disease. Gene profiling successfully classified bladder tumors based on their progression and clinical outcome. The present study has identified molecular biomarkers of potential clinical significance and critical molecular targets associated with bladder cancer progression. PMID:12875971

  7. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions

    PubMed Central

    Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin

    2015-01-01

    Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future. PMID:26403200

  8. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions.

    PubMed

    Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin

    2015-09-25

    Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future.

  9. Differential effects of intermittent and continuous administration of parathyroid hormone on bone histomorphometry and gene expression

    NASA Technical Reports Server (NTRS)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2002-01-01

    A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.

  10. Transcriptome Analysis of Kiwifruit (Actinidia chinensis) Bark in Response to Armoured Scale Insect (Hemiberlesia lataniae) Feeding

    PubMed Central

    Hill, M. Garry; Wurms, Kirstin V.; Davy, Marcus W.; Gould, Elaine; Allan, Andrew; Mauchline, Nicola A.; Luo, Zhiwei; Ah Chee, Annette; Stannard, Kate; Storey, Roy D.; Rikkerink, Erik H.

    2015-01-01

    The kiwifruit cultivar Actinidia chinensis ‘Hort16A’ is resistant to the polyphagous armoured scale insect pest Hemiberlesia lataniae (Hemiptera: Diaspididae). A cDNA microarray consisting of 17,512 unigenes selected from over 132,000 expressed sequence tags (ESTs) was used to measure the transcriptomic profile of the A. chinensis ‘Hort16A’ canes in response to a controlled infestation of H. lataniae. After 2 days, 272 transcripts were differentially expressed. After 7 days, 5,284 (30%) transcripts were differentially expressed. The transcripts were grouped into 22 major functional categories using MapMan software. After 7 days, transcripts associated with photosynthesis (photosystem II) were significantly down-regulated, while those associated with secondary metabolism were significantly up-regulated. A total of 643 transcripts associated with response to stress were differentially expressed. This included biotic stress-related transcripts orthologous with pathogenesis related proteins, the phenylpropanoid pathway, NBS-LRR (R) genes, and receptor-like kinase–leucine rich repeat signalling proteins. While transcriptional studies are not conclusive in their own right, results were suggestive of a defence response involving both ETI and PTI, with predominance of the SA signalling pathway. Exogenous application of an SA-mimic decreased H. lataniae growth on A. chinensis ‘Hort16A’ plants in two laboratory experiments. PMID:26571404

  11. Identification of differentially expressed genes in brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae) responding to host plant resistance.

    PubMed

    Yang, Zhifan; Zhang, Futie; Zhu, Lili; He, Guangcun

    2006-02-01

    The brown planthopper Nilaparvata lugens Stål is one of the major insect pests of rice Oryza sativa L. The host resistance exhibits profound effects on growth, development and propagation of N. lugens. To investigate the molecular response of N. lugens to host resistance, a cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was employed to identify the differentially expressed genes in the nymphs feeding on three rice varieties. Of the 2,800 cDNA bands analysed, 54 were up-regulated and seven down-regulated qualitatively in N. lugens when the ingestion sources were changed from susceptible rice plants to resistant ones. Sequence analysis of the differential transcript-derived fragments showed that the genes involved in signalling, stress response, gene expression regulation, detoxification and metabolism were regulated by host resistance. Four of the transcript-derived fragments corresponding to genes encoding for a putative B subunit of phosphatase PP2A, a nemo kinase, a cytochrome P450 monooxygenase and a prolyl endopeptidase were further characterized in detail. Northern blot analysis confirmed that the expression of the four genes was enhanced in N. lugens feeding on resistant rice plants. The roles of these genes in the defensive response of N. lugens to host plant resistance were discussed.

  12. o-p′-DDT-mediated uterotrophy and gene expression in immature C57BL/6 mice and Sprague–Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwekel, Joshua C.; Forgacs, Agnes L.; Center for Integrative Toxicology, Michigan State University, East Lansing, MI

    1,1,1-Trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)ethane (o,p′-DDT) is an organochlorine pesticide and endocrine disruptor known to activate the estrogen receptor. Comprehensive ligand- and species-comparative dose- and time-dependent studies were conducted to systematically assess the uterine physiological, morphological and gene expression responses elicited by o,p′-DDT and ethynyl estradiol (EE) in immature ovariectomized C57BL/6 mice and Sprague–Dawley rats. Custom cDNA microarrays were used to identify conserved and divergent differential gene expression responses. A total of 1256 genes were differentially expressed by both ligands in both species, 559 of which exhibited similar temporal expression profiles suggesting that o,p′-DDT elicits estrogenic effects at high doses when compared to EE.more » However, 51 genes exhibited species-specific uterine expression elicited by o,p′-DDT. For example, carbonic anhydrase 2 exhibited species- and ligand-divergent expression as confirmed by quantitative real-time PCR. The identification of comparable temporal phenotypic responses linked to gene expression demonstrates that systematic comparative gene expression assessments are valuable for elucidating conserved and divergent estrogen signaling mechanisms in rodent uterotrophy. - Highlights: • o,p′-DDT and enthynyl estradiol (EE) both elicit uterotrophy in mice and rats. • o,p′-DDT and EE have different kinetics in uterine wet weight induction. • o,p′-DDT elicited stromal hypertrophy in rats but myometrial hypertrophy in mice. • 1256 genes were differentially expressed by both ligands in both species. • Only 51 genes had species-specific uterine expression.« less

  13. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).

    PubMed

    Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E

    2005-12-02

    cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.

  14. [Hydroxyproline: Rich glycoproteins of the plant and cell wall]. Annual technical progress report, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1993-06-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H{sub 2}O{sub 2} production reinforce the earlier ideas of others that H{sub 2}O{sub 2} is involved in normal lignification.« less

  15. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.« less

  16. Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in 'Valencia' orange during abscission.

    PubMed

    Wu, Zhencai; Burns, Jacqueline K

    2003-04-01

    The genetics and expression of a lipid transfer protein (LTP) gene was examined during abscission of mature fruit of 'Valencia' orange. A cDNA encoding an LTP, CsLTP, was isolated from a cDNA subtraction library constructed from mature fruit abscission zones 48 h after application of a mature fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-pyrazole (CMN-pyrazole). A full-length cDNA clone of 652 nucleotides was isolated using 5' and 3' RACE followed by cDNA library screening and PCR amplification. The cDNA clone encoded a protein of 155 amino acid residues with a molecular mass and isoelectric point of 9.18 kDa and 9.12, respectively. A partial genomic clone of 505 nucleotides containing one intron of 101 base pairs was amplified from leaf genomic DNA. Southern blot hybridization demonstrated that at least two closely related CsLTP genes are present in 'Valencia' orange. Temporal expression patterns in mature fruit abscission zones were examined by northern hybridization. Increased expression of CsLTP mRNA was detected in RNA of mature fruit abscission zones 6, 24, 48, and 72 h after application of a non-specific abscission agent, ethephon. Low expression of CsLTP transcripts was observed after treatment of CMN-pyrazole until 24 h after application. After this time, expression markedly increased. The results suggest that CsLTP has a role in the abscission process, possibly by assisting transport of cutin monomers to the fracture plane of the abscission zone or through its anti-microbial activity by reducing the potential of microbial attack.

  17. A role for p21 (WAF1) in the cAMP-dependent differentiation of F9 teratocarcinoma cells into parietal endoderm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drdova, Blanka; Vachtenheim, Jiri

    2005-03-10

    Combined treatment of teratocarcinoma F9 cells with retinoic acid and dibutyryl-cAMP induces the differentiation into cells with a phenotype resembling parietal endoderm. We show that the levels of cyclin-dependent kinase inhibitor p21/WAF1/Cip1 (p21) protein and mRNA are dramatically elevated at the end of this differentiation, concomitantly with the appearance of p21 in the immunoprecipitated CDK2-cyclin E complex. The induction of differentiation markers could not be achieved by expression of ectopic p21 alone and still required treatment with differentiation agents. Clones of F9 cells transfected with sense or antisense p21 cDNA constructs revealed, upon differentiation, upregulated levels of mRNA for thrombomodulin,more » a parietal endoderm-specific marker, or increased fraction of cells in sub-G1 phase of the cell cycle, respectively. Consistent with this observation, whereas p21 was strictly nuclear in undifferentiated cells, a large proportion of differentiated cells had p21 localized also in the cytoplasm, a site associated with the antiapoptotic function of p21. Furthermore, p21 activated the thrombomodulin promoter in transient reporter assays and the p21 mutant defective in binding to cyclin E was equally efficient in activation. The promoter activity in differentiated cells was reduced by cotransfection of p21-specific siRNA or antisense cDNA. Coexpression of p21 increased the activity of the GAL-p300(1-1303) fusion protein on the GAL sites-containing TM promoter. This implies that p21 might act through a derepression of the p300 N-terminal-residing repression domain, thereby enhancing the p300 coactivator function. As differentiation of F9 cells into parietal endoderm-like cells requires the cAMP signaling, the results together suggest that the cyclin-dependent kinase inhibitor p21 may promote specifically this pathway in F9 cells.« less

  18. Non-biased and efficient global amplification of a single-cell cDNA library

    PubMed Central

    Huang, Huan; Goto, Mari; Tsunoda, Hiroyuki; Sun, Lizhou; Taniguchi, Kiyomi; Matsunaga, Hiroko; Kambara, Hideki

    2014-01-01

    Analysis of single-cell gene expression promises a more precise understanding of molecular mechanisms of a living system. Most techniques only allow studies of the expressions for limited numbers of gene species. When amplification of cDNA was carried out for analysing more genes, amplification biases were frequently reported. A non-biased and efficient global-amplification method, which uses a single-cell cDNA library immobilized on beads, was developed for analysing entire gene expressions for single cells. Every step in this analysis from reverse transcription to cDNA amplification was optimized. By removing degrading excess primers, the bias due to the digestion of cDNA was prevented. Since the residual reagents, which affect the efficiency of each subsequent reaction, could be removed by washing beads, the conditions for uniform and maximized amplification of cDNAs were achieved. The differences in the amplification rates for randomly selected eight genes were within 1.5-folds, which could be negligible for most of the applications of single-cell analysis. The global amplification gives a large amount of amplified cDNA (>100 μg) from a single cell (2-pg mRNA), and that amount is enough for downstream analysis. The proposed global-amplification method was used to analyse transcript ratios of multiple cDNA targets (from several copies to several thousand copies) quantitatively. PMID:24141095

  19. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15.

    PubMed Central

    Phaneuf, D; Labelle, Y; Bérubé, D; Arden, K; Cavenee, W; Gagné, R; Tanguay, R M

    1991-01-01

    Type 1 hereditary tyrosinemia (HT) is an autosomal recessive disease characterized by a deficiency of the enzyme fumarylacetoacetate hydrolase (FAH; E.C.3.7.1.2). We have isolated human FAH cDNA clones by screening a liver cDNA expression library using specific antibodies and plaque hybridization with a rat FAH cDNA probe. A 1,477-bp cDNA was sequenced and shown to code for FAH by an in vitro transcription-translation assay and sequence homology with tryptic fragments of purified FAH. Transient expression of this FAH cDNA in transfected CV-1 mammalian cells resulted in the synthesis of an immunoreactive protein comigrating with purified human liver FAH on SDS-PAGE and having enzymatic activity as shown by the hydrolysis of the natural substrate fumarylacetoacetate. This indicates that the single polypeptide chain encoded by the FAH gene contains all the genetic information required for functional activity, suggesting that the dimer found in vivo is a homodimer. The human FAH cDNA was used as a probe to determine the gene's chromosomal localization using somatic cell hybrids and in situ hybridization. The human FAH gene maps to the long arm of chromosome 15 in the region q23-q25. Images Figure 1 Figure 3 Figure 4 Figure 6 Figure 8 PMID:1998338

  20. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs.

    PubMed Central

    Travis, G H; Sutcliffe, J G

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033

  1. Conditional Expression of Wnt4 during Chondrogenesis Leads to Dwarfism in Mice

    PubMed Central

    Lee, Hu-Hui; Behringer, Richard R.

    2007-01-01

    Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26) locus by gene targeting in embryonic stem (ES) cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo) that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF). These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype. PMID:17505543

  2. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.

    PubMed

    Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin

    2016-01-01

    In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba.

  3. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.

    PubMed Central

    Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin

    2016-01-01

    In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba. PMID:27379148

  4. The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons.

    PubMed

    Uchida, Okiko; Nakano, Hiroyuki; Koga, Makoto; Ohshima, Yasumi

    2003-04-01

    Chemotaxis to water-soluble chemicals such as NaCl is an important behavior of C. elegans when seeking food. ASE chemosensory neurons have a major role in this behavior. We show that che-1, defined by chemotaxis defects, encodes a zinc-finger protein similar to the GLASS transcription factor required for photoreceptor cell differentiation in Drosophila, and that che-1 is essential for specification and function of ASE neurons. Expression of a che-1::gfp fusion construct was predominant in ASE. In che-1 mutants, expression of genes characterizing ASE such as seven-transmembrane receptors, guanylate cyclases and a cyclic-nucleotide gated channel is lost. Ectopic expression of che-1 cDNA induced expression of ASE-specific marker genes, a dye-filling defect in neurons other than ASE and dauer formation.

  5. NORMAL NASAL GENE EXPRESSION LEVELS USING CDNA ARRAY TECHNOLOGY

    EPA Science Inventory

    Normal Nasal Gene Expression Levels Using cDNA Array Technology.

    The nasal epithelium is a target site for chemically-induced toxicity and carcinogenicity. To detect and analyze genetic events which contribute to nasal tumor development, we first defined the gene expressi...

  6. Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries

    PubMed Central

    Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans

    2000-01-01

    We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641

  7. Identification of differentially expressed genes in pistils from self-incompatible Citrus reticulata by suppression subtractive hybridization.

    PubMed

    Miao, Hongxia; Qin, Yonghua; da Silva, Jaime A Teixeira; Ye, Zixing; Hu, Guibing

    2013-01-01

    Self-incompatibility (SI) is one important factor that can result in Citrus seedlessness. However, the molecular mechanism of SI in Citrus is not clear yet. To isolate the pistil's SI-related genes, a suppression subtractive hybridization library was constructed using mature pistils of 'Wuzishatangju' mandarin (SI) as the tester and mature pistils of 'Shatangju' mandarin (self-compatibility, SC) as the driver. 229 differentially expressed cDNA clones from 967 positive clones were sequenced and identified. Differentially expressed ESTs are possibly involved in the SI reaction of 'Wuzishatangju' through a regulating signaling pathway, serine/threonine phosphatase activity, receptor kinase, embryonic development, gibberellin stimulus, or transcription. 11 out of 36 SI candidate genes displayed different expression patterns in various tissues and stages after self- and cross-pollination of 'Wuzishatangju'. The expression of CaBP (WY65), a senescence-protease (WY372), an unknown gene (WY283), and a WRKY (WY17) were up-regulated in the styles of 'Wuzishatangju' while higher expression of WY190 was observed in styles of 'Shatangju'. Highest expression levels of WY65, WY372, an annexin (WY598), the zinc-finger protein (WY376), a C2-protein (WY291), and an unknown gene (WY318) were detected in styles at 3 days after self-pollination of 'Wuzishatangju' while lowest levels were observed in styles at 3 days after cross-pollination of 'Wuzishatangju' × 'Shatangju'. The potential involvement of these genes in the SI reaction is discussed.

  8. PM19, a barley (Hordeum vulgare L.) gene encoding a putative plasma membrane protein, is expressed during embryo development and dormancy.

    PubMed

    Ranford, Julia C; Bryce, James H; Morris, Peter C

    2002-01-01

    A barley (Hordeum vulgare L.) cDNA, PM19, encoding a putative plasma membrane protein was isolated through differential screening of a dormant wild oat embryo library. PM19 is expressed in barley embryos from mid-embryogenesis up to maturity. PM19 mRNA levels decline upon germination, whereas dormant embryos retained high levels of message for up to 72 h of imbibition. PM19 mRNA levels also remained high or were reinduced in non-dormant embryos by treatments that prevented germination (250 mm NaCl, 10% sorbitol, or 50 microm ABA). The PM19 protein sequence is highly conserved in monocotyledonous and dicotyledonous plants.

  9. Molecular identification of an androgen receptor and its changes in mRNA levels during 17α-methyltestosterone-induced sex reversal in the orange-spotted grouper Epinephelus coioides.

    PubMed

    Shi, Yu; Liu, Xiaochun; Zhang, Haifa; Zhang, Yong; Lu, Danqi; Lin, Haoran

    2012-09-01

    Androgens play a crucial role in sex differentiation, sexual maturation, and spermatogenesis in vertebrates. The action of androgens is mediated via androgen receptors (ARs). The present study reports the cloning of the cDNA sequence of the ar in the orange-spotted grouper, with high expression in testis and relatively low in subdivision of brain areas. The cDNA sequence of ar was 2358 bp, encoding a protein of 759 amino acids (aa). Phylogenetic analysis showed that the ar cDNA sequence was closely related to that of threespot wrasse (Halichoeres trimaculatus) and medaka (Oryzias latipes) arβ. As deduced from the phylogenetic tree and the high amino acid identity with the ARβ subtype of other teleosts, grouper ar seems to be more closely related to the beta than the alpha subtype cloned to date. In the first week after 17α-methyltestosterone (MT) implantation, the transcript levels of ar in the hypothalamus declined significantly, and consistently stayed at low level expression to the second week, but increased back to the control levels in the third and fourth week. In the gonad, the mRNA expression of ar was not changed in the first week compared with the control, but increased significantly in the second week, consistently reached the highest level in the third week, dropped slightly but still higher than that of the control in the fourth week. The expression pattern of ar in hypothalamus and gonad during MT-induced sex reversal suggests the involvement of ar in regulating this process in the orange-spotted grouper. The present study provides the data of the changes in the mRNA levels of ar during MT-induced sex reversal in detail to help understand the complicated signals under sex reversal. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A HIF-1alpha-related gene involved in cell protection from hypoxia by suppression of mitochondrial function.

    PubMed

    Kakinuma, Yoshihiko; Katare, Rajesh G; Arikawa, Mikihiko; Muramoto, Kazuyo; Yamasaki, Fumiyasu; Sato, Takayuki

    2008-01-23

    Recently, we reported that acetylcholine-induced hypoxia-inducible factor-1alpha protects cardiomyocytes from hypoxia; however, the downstream factors reducing hypoxic stress are unknown. We identified apoptosis inhibitor (AI) gene as being differentially expressed between von Hippel Lindau (VHL) protein-positive cells with high levels of GRP78 expression and VHL-negative cells with lower GRP levels, using cDNA subtraction. AI decreased GRP78 level, suppressed mitochondrial function, reduced oxygen consumption and, ultimately, suppressed hypoxia-induced apoptosis. By contrast, knockdown of the AI gene increased mitochondrial function. Hypoxic cardiomyocytes and ischemic myocardium showed increased AI mRNA expression. These findings suggest that AI is involved in suppressing mitochondrial function, thereby leading to cellular stress eradication and consequently to protection during hypoxia.

  11. Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis.

    PubMed

    Eichmann, Ruth; Biemelt, Sophia; Schäfer, Patrick; Scholz, Uwe; Jansen, Carin; Felk, Angelika; Schäfer, Wilhelm; Langen, Gregor; Sonnewald, Uwe; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2006-04-01

    Different formae speciales of the grass powdery mildew fungus Blumeria graminis undergo basic-compatible or basic-incompatible (nonhost) interactions with barley. Background resistance in compatible interactions and nonhost resistance require common genetic and mechanistic elements of plant defense. To build resources for differential screening for genes that potentially distinguish a compatible from an incompatible interaction on the level of differential gene expression of the plant, we constructed eight dedicated cDNA libraries, established 13.000 expressed sequence tag (EST) sequences and designed DNA macroarrays. Using macroarrays based on cDNAs derived from epidermal peels of plants pretreated with the chemical resistance activating compound acibenzolar-S-methyl, we compared the expression of barley gene transcripts in the early host interaction with B. graminis f.sp. hordei or the nonhost pathogen B. graminis f.sp. tritici, respectively. We identified 102 spots corresponding to 94 genes on the macroarray that gave significant B. graminis-responsive signals at 12 and/or 24 h after inoculation. In independent expression analyses, we confirmed the macroarray results for 11 selected genes. Although the majority of genes showed a similar expression profile in compatible versus incompatible interactions, about 30 of the 94 genes were expressed on slightly different levels in compatible versus incompatible interactions.

  12. Cloning and identification of a cDNA that encodes a novel human protein with thrombospondin type I repeat domain, hPWTSR.

    PubMed

    Chen, Jin-Zhong; Wang, Shu; Tang, Rong; Yang, Quan-Sheng; Zhao, Enpeng; Chao, Yaoqiong; Ying, Kang; Xie, Yi; Mao, Yu-Min

    2002-09-01

    A cDNA was isolated from the fetal brain cDNA library by high throughput cDNA sequencing. The 2390 bp cDNA with an open reading fragment (ORF) of 816 bp encodes a 272 amino acids putative protein with a thrombospondin type I repeat (TSR) domain and a cysteine-rich region at the N-terminus, so it is named hPWTSR. We used Northern blot detected two bands with length of about 3 kb and 4 kb respectively, which expressed in human adult tissues with different intensities. The expression pattern was verified by RT-PCR, revealing that the transcripts were expressed ubiquitously in fetal tissues and human tumor tissues too. However, the transcript was detected neither in ovarian carcinoma GI-102 nor in lung carcinoma LX-1. Blast analysis against NCBI database revealed that the new gene contained at least 5 exons and located in human chromosome 6q22.33. Our results demonstrate that the gene is a novel member of TSR supergene family.

  13. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Z.R.

    1988-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that are not expressed in mature tissues -- the embryogenic genes. In order to isolate these genes, we immunized a rabbit with total extracts of somatic embryos of carrot, and enriched the anti-embryo antiserum for antibodies reacting with extracts of carrot somatic embryos. Using this enriched antiserum, we screened a lambda gt11 cDNA library constructed from embryo poly A{sup +} RNA, and isolated 10 cDNA clones that detect embryogenic mRNAs. Monospecific antibodies have beenmore » purified for proteins corresponding to each cDNA sequence. Four cDNA clones were further characterized in terms of the expression of their corresponding mRNA and protein in somatic embryos of carrot. In some cases, comparable gene sequences or products have been detected in somatic and zygotic embryos of other plant species. The characteristics of these 4 cDNA clones -- clone Nos. 8, 59, and 66 -- are described in this report. 3 figs.« less

  14. Cloning and expression analysis of a transformer gene in Daphnia pulex during different reproduction stages.

    PubMed

    Chen, Ping; Xu, Shan-Liang; Zhou, Wei; Guo, Xiao-Ge; Wang, Chun-Lin; Wang, Dan-Li; Zhao, Yun-Long

    2014-05-01

    The full-length cDNA of a transformer gene (Dptra) was cloned from the cladoceran Daphnia pulex using RACE. Dptra expression was assessed by qPCR and whole-mount in situ hybridization in different reproductive stages. The Dptra cDNA, 1652bp in length, has a 1158-bp open reading frame that encodes a 385 amino acid polypeptide containing one Sex determination protein N terminal (SDP_N) superfamily, eight putative phosphorylation sites, and an arginine-serine (RS)-rich domain at the N-terminus. Dptra showed 81%, 53%, 51% and 45% identity to orthologous genes in Daphnia magna, Apis mellifera, Apis cerana and Bombus terrestris, respectively. Phylogenetic analysis based on deduced amino acid sequences revealed that Dptra clustered in the hymenopteran clade and was most closely related to D. magna and A. mellifera. qPCR showed that Dptra expression increased significantly (P<0.05) in different reproductive stages in the following order: male, ephippial female, parthenogenetic female, resting egg and juvenile female. Dptra expression is significantly different between males and females and it is significantly greater in ephippial females and males than in parthenogenetic D. pulex (with summer eggs). Whole-mount in situ hybridization revealed that Dptra was expressed at different levels between males and females. In males, hybridization signals were found in the first antennae, second antennae and thoracic limb, whereas expression levels in the corresponding sites of parthenogenetic and ephippial females were relatively weak. This suggests that the Dptra gene plays significant roles in switching modes of reproduction and in sexual differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis

    PubMed Central

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    Abstract China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production. PMID:28981563

  16. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis.

    PubMed

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.

  17. Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation

    PubMed Central

    Koloušková, Pavla; Stone, James D.

    2017-01-01

    Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not. PMID:28817728

  18. Differential splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities

    DTIC Science & Technology

    2017-12-01

    exhibited enhanced activation of the PI3K/AKT pathway compared to the same lines over-expressing the CA- enriched long (-L) variant PIK3CD-L (retains...demonstrate that FGFR3-S: i) encodes a more aggressive oncogenic signaling protein compared to CA-enriched FGFR3-L (retains exon 14) as defined by in vitro...into PCa cell lines for in vitro and in vivo investigations completed in Year 1 (see description below). 3 FIGURE 1. Full-length cDNA

  19. Cloning and expression of cDNA coding for bouganin.

    PubMed

    den Hartog, Marcel T; Lubelli, Chiara; Boon, Louis; Heerkens, Sijmie; Ortiz Buijsse, Antonio P; de Boer, Mark; Stirpe, Fiorenzo

    2002-03-01

    Bouganin is a ribosome-inactivating protein that recently was isolated from Bougainvillea spectabilis Willd. In this work, the cloning and expression of the cDNA encoding for bouganin is described. From the cDNA, the amino-acid sequence was deduced, which correlated with the primary sequence data obtained by amino-acid sequencing on the native protein. Bouganin is synthesized as a pro-peptide consisting of 305 amino acids, the first 26 of which act as a leader signal while the 29 C-terminal amino acids are cleaved during processing of the molecule. The mature protein consists of 250 amino acids. Using the cDNA sequence encoding the mature protein of 250 amino acids, a recombinant protein was expressed, purified and characterized. The recombinant molecule had similar activity in a cell-free protein synthesis assay and had comparable toxicity on living cells as compared to the isolated native bouganin.

  20. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets

    PubMed Central

    2011-01-01

    Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389

  1. Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase

    PubMed Central

    Colby, Sheila M.; Crock, John; Dowdle-Rizzo, Barbara; Lemaux, Peggy G.; Croteau, Rodney

    1998-01-01

    Germacrene C was found by GC-MS and NMR analysis to be the most abundant sesquiterpene in the leaf oil of Lycopersicon esculentum cv. VFNT Cherry, with lesser amounts of germacrene A, guaia-6,9-diene, germacrene B, β-caryophyllene, α-humulene, and germacrene D. Soluble enzyme preparations from leaves catalyzed the divalent metal ion-dependent cyclization of [1-3H]farnesyl diphosphate to these same sesquiterpene olefins, as determined by radio-GC. To obtain a germacrene synthase cDNA, a set of degenerate primers was constructed based on conserved amino acid sequences of related terpenoid cyclases. With cDNA prepared from leaf epidermis-enriched mRNA, these primers amplified a 767-bp fragment that was used as a hybridization probe to screen the cDNA library. Thirty-one clones were evaluated for functional expression of terpenoid cyclase activity in Escherichia coli by using labeled geranyl, farnesyl, and geranylgeranyl diphosphates as substrates. Nine cDNA isolates expressed sesquiterpene synthase activity, and GC-MS analysis of the products identified germacrene C with smaller amounts of germacrene A, B, and D. None of the expressed proteins was active with geranylgeranyl diphosphate; however, one truncated protein converted geranyl diphosphate to the monoterpene limonene. The cDNA inserts specify a deduced polypeptide of 548 amino acids (Mr = 64,114), and sequence comparison with other plant sesquiterpene cyclases indicates that germacrene C synthase most closely resembles cotton δ-cadinene synthase (50% identity). PMID:9482865

  2. Display of a maize cDNA library on baculovirus infected insect cells.

    PubMed

    Meller Harel, Helene Y; Fontaine, Veronique; Chen, Hongying; Jones, Ian M; Millner, Paul A

    2008-08-12

    Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

  3. Purification, cDNA cloning, and regulation of lysophospholipase from rat liver.

    PubMed

    Sugimoto, H; Hayashi, H; Yamashita, S

    1996-03-29

    A lysophospholipase was purified 506-fold from rat liver supernatant. The preparation gave a single 24-kDa protein band on SDS-polyacrylamide gel electrophoresis. The enzyme hydrolyzed lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, lysophosphatidylserine, and 1-oleoyl-2-acetyl-sn-glycero-3-phosphocholine at pH 6-8. The purified enzyme was used for the preparation of antibody and peptide sequencing. A cDNA clone was isolated by screening a rat liver lambda gt11 cDNA library with the antibody, followed by the selection of further extended clones from a lambda gt10 library. The isolated cDNA was 2,362 base pairs in length and contained an open reading frame encoding 230 amino acids with a Mr of 24,708. The peptide sequences determined were found in the reading frame. When the cDNA was expressed in Escherichia coli cells as the beta-galactosidase fusion, lysophosphatidylcholine-hydrolyzing activity was markedly increased. The deduced amino acid sequence showed significant similarity to Pseudomonas fluorescence esterase A and Spirulina platensis esterase. The three sequences contained the GXSXG consensus at similar positions. The transcript was found in various tissues with the following order of abundance: spleen, heart, kidney, brain, lung, stomach, and testis = liver. In contrast, the enzyme protein was abundant in the following order: testis, liver, kidney, heart, stomach, lung, brain, and spleen. Thus the mRNA abundance disagreed with the level of the enzyme protein in liver, testis, and spleen. When HL-60 cells were induced to differentiate into granulocytes with dimethyl sulfoxide, the 24-kDa lysophospholipase protein increased significantly, but the mRNA abundance remained essentially unchanged. Thus a posttranscriptional control mechanism is present for the regulation of 24-kDa lysophospholipase.

  4. EXPRESSION PROFILING OF ESTROGENIC COMPOUNDS USING A SHEEPSHEAD MINNOW CDNA MACROARRAY

    EPA Science Inventory

    Larkin, Patrick, Leroy C. Folmar, Michael J. Hemmer, Arianna J. Poston and Nancy D. Denslow. 2003. Expression Profiling of Estrogenic Compounds Using a Sheepshead Minnow cDNA Macroarray. Environ. Health Perspect. 111(6):839-846. (ERL,GB 1171).

    A variety of anthropogenic c...

  5. EXPRESSION OF THE SPERMATOGENIC CELL-SPECIFIC GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPDS) IN RAT TESTIS

    EPA Science Inventory

    The spermatogenic cell-specific variant of glyceraldehyde 3-phosphate dehydrogenase (GAPDS) has been cloned from a rat testis cDNA library and its pattern of expression determined. A 1417 nucleotide cDNA has been found to encode an enzyme with substantial homology to mouse GAPDS...

  6. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  7. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  8. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).

    PubMed

    Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun

    2018-03-15

    Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.

  9. Ucma--A novel secreted factor represents a highly specific marker for distal chondrocytes.

    PubMed

    Tagariello, Andreas; Luther, Julia; Streiter, Melanie; Didt-Koziel, Lydia; Wuelling, Manuela; Surmann-Schmitt, Cordula; Stock, Michael; Adam, Nadia; Vortkamp, Andrea; Winterpacht, Andreas

    2008-01-01

    Growth and development of most parts of the vertebrate skeleton takes place by endochondral ossification, a process during which chondrocytes undergo distinct stages of differentiation resulting in a successive replacement of the cartilage anlagen by bone. In the context of an EST project we isolated a novel transcript from a human fetal growth plate cartilage cDNA library. The transcript which we called Ucma (unique cartilage matrix-associated protein) encodes a short protein of 138 amino acids. The protein sequence is evolutionary conserved throughout vertebrates and comprises a signal peptide, a coiled-coil domain, and a putative dibasic cleavage site for proprotein convertases. Using RNA in situ hybridization and immunohistochemistry with a polyclonal anti-Ucma antibody we found high expression of Ucma uniquely in distal (resting) chondrocytes in developing long bones of wildtype mice. This restricted expression could also be observed in Ihh(-/-), Ihh(-/-); Gli3(-/-), Gli3(-/-) mice, and in mice that overexpress Ihh under the control of the Col2a1 promoter indicating that expression of Ucma is regulated independent of hedgehog signaling. During insulin-induced differentiation of ATDC5 cells we found gradual increase of Ucma expression at day 21 with a maximum at day 24 and a decrease correlating with a simultaneous increase in the expression of cartilage link protein (Crtl1), a protein with maximum expression in column-forming proliferating chondrocytes. The present data strongly suggest an important function of Ucma in the early phase of chondrocyte differentiation.

  10. p62 modulates Akt activity via association with PKC{zeta} in neuronal survival and differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joung, Insil; Kim, Hak Jae; Kwon, Yunhee Kim

    2005-08-26

    p62 is a ubiquitously expressed phosphoprotein that interacts with a number of signaling molecules and a major component of neurofibrillary tangles in the brain of Alzheimer's disease patients. It has been implicated in important cellular functions such as cell proliferation and anti-apoptotic pathways. In this study, we have addressed the potential role of p62 during neuronal differentiation and survival using HiB5, a rat neuronal progenitor cell. We generated a recombinant adenovirus encoding T7-epitope tagged p62 to reliably transfer p62 cDNA into the neuronal cells. The results show that an overexpression of p62 led not only to neuronal differentiation, but alsomore » to decreased cell death induced by serum withdrawal in HiB5 cells. In this process p62-dependent Akt phosphorylation occurred via the release of Akt from PKC{zeta} by association of p62 and PKC{zeta}, which is known as a negative regulator of Akt activation. These findings indicate that p62 facilitates cell survival through novel signaling cascades that result in Akt activation. Furthermore, we found that p62 expression was induced during neuronal differentiation. Taken together, the data suggest p62 is a regulator of neuronal cell survival and differentiation.« less

  11. Identification of adipocyte adhesion molecule (ACAM), a novel CTX gene family, implicated in adipocyte maturation and development of obesity

    PubMed Central

    2004-01-01

    Few cell adhesion molecules have been reported to be expressed in mature adipocytes, and the significance of cell adhesion process in adipocyte biology is also unknown. In the present study, we identified ACAM (adipocyte adhesion molecule), a novel homologue of the CTX (cortical thymocyte marker in Xenopus) gene family. ACAM cDNA was isolated during PCR-based cDNA subtraction, and its mRNA was shown to be up-regulated in WATs (white adipose tissues) of OLETF (Otsuka Long–Evans Tokushima fatty) rats, an animal model for Type II diabetes and obesity. ACAM, 372 amino acids in total, has a signal peptide, V-type (variable) and C2-type (constant) Ig domains, a single transmembrane segment and a cytoplasmic tail. The amino acid sequence in rat is highly homologous to mouse (94%) and human (87%). ACAM mRNA was predominantly expressed in WATs in OLETF rats, and increased with the development of obesity until 30 weeks of age, which is when the peak of body mass is reached. Western blot analysis revealed that ACAM protein, approx. 45 kDa, was associated with plasma membrane fractions of mature adipocytes isolated from mesenteric and subdermal adipose deposits of OLETF rats. Up-regulation of ACAM mRNAs in obesity was also shown in WATs of genetically obese db/db mice, diet-induced obese ICR mice and human obese subjects. In primary cultured mouse and human adipocytes, ACAM mRNA expression was progressively up-regulated during differentiation. Several stably transfected Chinese-hamster ovary K1 cell lines were established, and the quantification of ACAM mRNA and cell aggregation assay revealed that the degree of homophilic aggregation correlated well with ACAM mRNA expression. In summary, ACAM may be the critical adhesion molecule in adipocyte differentiation and development of obesity. PMID:15563274

  12. Octylphenol (OP) alters the expression of members of the amyloid protein family in the hypothalamus of the snapping turtle, Chelydra serpentina serpentina.

    PubMed Central

    Trudeau, Vance L; Chiu, Suzanne; Kennedy, Sean W; Brooks, Ronald J

    2002-01-01

    The gonadal estrogen estradiol-17beta (E(2)) is important for developing and regulating hypothalamic function and many aspects of reproduction in vertebrates. Pollutants such as octylphenol (OP) that mimic the actions of estrogens are therefore candidate endocrine-disrupting chemicals. We used a differential display strategy (RNA-arbitrarily primed polymerase chain reaction) to isolate partial cDNA sequences of neurotransmitter, developmental, and disease-related genes that may be regulated by OP or E(2) in the snapping turtle Chelydra serpentina serpentina hypothalamus. Hatchling and year-old male snapping turtles were exposed to a 10 ng/mL nominal concentration of waterborne OP or E(2) for 17 days. One transcript [421 base pairs (bp)] regulated by OP and E(2) was 93% identical to human APLP-2. APLP-2 and the amyloid precursor protein (APP) regulate neuronal differentiation and are also implicated in the genesis of Alzheimer disease in humans. Northern blot analysis determined that the turtle hypothalamus contains a single APLP-2 transcript of 3.75 kb in length. Exposure to OP upregulated hypothalamic APLP-2 mRNA levels 2-fold (p < 0.05) in month-old and yearling turtles. E(2) did not affect APLP-2 mRNA levels in hatchlings but stimulated a 2-fold increase (p < 0.05) in APLP-2 mRNA levels in yearling males. The protein beta-amyloid, a selectively processed peptide derived from APP, is also involved in neuronal differentiation, and accumulation of this neurotoxic peptide causes neuronal degeneration in the brains of patients with Alzheimer disease. Therefore, we also sought to determine the effects of estrogens on the expression of beta-amyloid. Using homology cloning based on known sequences, we isolated a cDNA fragment (474 bp) from turtle brain with 88% identity to human APP. Northern blot analysis determined that a single 3.5-kb transcript was expressed in the turtle hypothalamus. Waterborne OP also increased the expression of hypothalamic APP after 35 days of exposure. Our results indicate that low levels of OP are bioactive and can alter the expression of APLP-2 and APP. Because members of the APP gene family are involved in neuronal development, we hypothesize that OP exposure may disrupt hypothalamic development in young turtles. PMID:11882478

  13. Octylphenol (OP) alters the expression of members of the amyloid protein family in the hypothalamus of the snapping turtle, Chelydra serpentina serpentina.

    PubMed

    Trudeau, Vance L; Chiu, Suzanne; Kennedy, Sean W; Brooks, Ronald J

    2002-03-01

    The gonadal estrogen estradiol-17beta (E(2)) is important for developing and regulating hypothalamic function and many aspects of reproduction in vertebrates. Pollutants such as octylphenol (OP) that mimic the actions of estrogens are therefore candidate endocrine-disrupting chemicals. We used a differential display strategy (RNA-arbitrarily primed polymerase chain reaction) to isolate partial cDNA sequences of neurotransmitter, developmental, and disease-related genes that may be regulated by OP or E(2) in the snapping turtle Chelydra serpentina serpentina hypothalamus. Hatchling and year-old male snapping turtles were exposed to a 10 ng/mL nominal concentration of waterborne OP or E(2) for 17 days. One transcript [421 base pairs (bp)] regulated by OP and E(2) was 93% identical to human APLP-2. APLP-2 and the amyloid precursor protein (APP) regulate neuronal differentiation and are also implicated in the genesis of Alzheimer disease in humans. Northern blot analysis determined that the turtle hypothalamus contains a single APLP-2 transcript of 3.75 kb in length. Exposure to OP upregulated hypothalamic APLP-2 mRNA levels 2-fold (p < 0.05) in month-old and yearling turtles. E(2) did not affect APLP-2 mRNA levels in hatchlings but stimulated a 2-fold increase (p < 0.05) in APLP-2 mRNA levels in yearling males. The protein beta-amyloid, a selectively processed peptide derived from APP, is also involved in neuronal differentiation, and accumulation of this neurotoxic peptide causes neuronal degeneration in the brains of patients with Alzheimer disease. Therefore, we also sought to determine the effects of estrogens on the expression of beta-amyloid. Using homology cloning based on known sequences, we isolated a cDNA fragment (474 bp) from turtle brain with 88% identity to human APP. Northern blot analysis determined that a single 3.5-kb transcript was expressed in the turtle hypothalamus. Waterborne OP also increased the expression of hypothalamic APP after 35 days of exposure. Our results indicate that low levels of OP are bioactive and can alter the expression of APLP-2 and APP. Because members of the APP gene family are involved in neuronal development, we hypothesize that OP exposure may disrupt hypothalamic development in young turtles.

  14. Cloning and Expression of cDNA for Rat Heme Oxygenase

    NASA Astrophysics Data System (ADS)

    Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi

    1985-12-01

    Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.

  15. Novel Permissive Cell Lines for Complete Propagation of Hepatitis C Virus

    PubMed Central

    Shiokawa, Mai; Fukuhara, Takasuke; Ono, Chikako; Yamamoto, Satomi; Okamoto, Toru; Watanabe, Noriyuki; Wakita, Takaji

    2014-01-01

    ABSTRACT Hepatitis C virus (HCV) is a major etiologic agent of chronic liver diseases. Although the HCV life cycle has been clarified by studying laboratory strains of HCV derived from the genotype 2a JFH-1 strain (cell culture-adapted HCV [HCVcc]), the mechanisms of particle formation have not been elucidated. Recently, we showed that exogenous expression of a liver-specific microRNA, miR-122, in nonhepatic cell lines facilitates efficient replication but not particle production of HCVcc, suggesting that liver-specific host factors are required for infectious particle formation. In this study, we screened human cancer cell lines for expression of the liver-specific α-fetoprotein by using a cDNA array database and identified liver-derived JHH-4 cells and stomach-derived FU97 cells, which express liver-specific host factors comparable to Huh7 cells. These cell lines permit not only replication of HCV RNA but also particle formation upon infection with HCVcc, suggesting that hepatic differentiation participates in the expression of liver-specific host factors required for HCV propagation. HCV inhibitors targeting host and viral factors exhibited different antiviral efficacies between Huh7 and FU97 cells. Furthermore, FU97 cells exhibited higher susceptibility for propagation of HCVcc derived from the JFH-2 strain than Huh7 cells. These results suggest that hepatic differentiation participates in the expression of liver-specific host factors required for complete propagation of HCV. IMPORTANCE Previous studies have shown that liver-specific host factors are required for efficient replication of HCV RNA and formation of infectious particles. In this study, we screened human cancer cell lines for expression of the liver-specific α-fetoprotein by using a cDNA array database and identified novel permissive cell lines for complete propagation of HCVcc without any artificial manipulation. In particular, gastric cancer-derived FU97 cells exhibited a much higher susceptibility to HCVcc/JFH-2 infection than observed in Huh7 cells, suggesting that FU97 cells would be useful for further investigation of the HCV life cycle, as well as the development of therapeutic agents for chronic hepatitis C. PMID:24599999

  16. Insulin-like growth factors I and II in starry flounder (Platichthys stellatus): molecular cloning and differential expression during embryonic development.

    PubMed

    Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying

    2015-02-01

    In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.

  17. Extending Immunological Profiling in the Gilthead Sea Bream, Sparus aurata, by Enriched cDNA Library Analysis, Microarray Design and Initial Studies upon the Inflammatory Response to PAMPs.

    PubMed

    Boltaña, Sebastian; Castellana, Barbara; Goetz, Giles; Tort, Lluis; Teles, Mariana; Mulero, Victor; Novoa, Beatriz; Figueras, Antonio; Goetz, Frederick W; Gallardo-Escarate, Cristian; Planas, Josep V; Mackenzie, Simon

    2017-02-03

    This study describes the development and validation of an enriched oligonucleotide-microarray platform for Sparus aurata (SAQ) to provide a platform for transcriptomic studies in this species. A transcriptome database was constructed by assembly of gilthead sea bream sequences derived from public repositories of mRNA together with reads from a large collection of expressed sequence tags (EST) from two extensive targeted cDNA libraries characterizing mRNA transcripts regulated by both bacterial and viral challenge. The developed microarray was further validated by analysing monocyte/macrophage activation profiles after challenge with two Gram-negative bacterial pathogen-associated molecular patterns (PAMPs; lipopolysaccharide (LPS) and peptidoglycan (PGN)). Of the approximately 10,000 EST sequenced, we obtained a total of 6837 EST longer than 100 nt, with 3778 and 3059 EST obtained from the bacterial-primed and from the viral-primed cDNA libraries, respectively. Functional classification of contigs from the bacterial- and viral-primed cDNA libraries by Gene Ontology (GO) showed that the top five represented categories were equally represented in the two libraries: metabolism (approximately 24% of the total number of contigs), carrier proteins/membrane transport (approximately 15%), effectors/modulators and cell communication (approximately 11%), nucleoside, nucleotide and nucleic acid metabolism (approximately 7.5%) and intracellular transducers/signal transduction (approximately 5%). Transcriptome analyses using this enriched oligonucleotide platform identified differential shifts in the response to PGN and LPS in macrophage-like cells, highlighting responsive gene-cassettes tightly related to PAMP host recognition. As observed in other fish species, PGN is a powerful activator of the inflammatory response in S. aurata macrophage-like cells. We have developed and validated an oligonucleotide microarray (SAQ) that provides a platform enriched for the study of gene expression in S. aurata with an emphasis upon immunity and the immune response.

  18. [Whole cDNA sequence cloning and expression of chicken L-FABP gene and its relationship with lipid deposition of hybrid chickens].

    PubMed

    Yu, Ying; Wang, Dong; Sun, Dong-Xiao; Xu, Gui-Yun; Li, Jun-Ying; Zhang, Yuan

    2011-07-01

    Liver fatty acid-binding protein (L-FABP) is closely related to intracellular transportation and deposition of lipids. A positive differential displayed fragment was found in the liver tissue among Silkie (CC), CAU-brown chicken (CD), and their reciprocal hybrids (CD and DC) at 8 weeks-old using differential display RT-PCR techniques (DDRT-PCR). Through recycling, sequencing, and alignment analysis, the fragment was identified as chicken liver fatty acid-binding protein gene (L-FABP, GenBank accession number AY321365). Reverse Northern dot blot and semi-quantitative RT-PCR revealed that the avian L-FABP gene was over-expressed in the liver tissue of the reciprocal hybrids (CD and DC) compared to their parental lines (CC and DD), which was consistent with the fact that higher abdomen fat weight and wider inter-muscular fat width observed in the reciprocal hybrids. Considering the higher expression of L-FABP may contribute to the increased lipid deposition in the hybrid chickens, the functional study of avian L-FABP is warranted in future.

  19. Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166).

    PubMed

    Ko, Jae-Heung; Prassinos, Constantinos; Han, Kyung-Hwan

    2006-01-01

    In contrast to our knowledge of the shoot apical meristem, our understanding of cambium meristem differentiation and maintenance is limited. Class III homeodomain leucine-zipper (HD-Zip) proteins have been shown to play a regulatory role in vascular differentiation. The hybrid aspen (Populus tremulaxPopulus alba) class III HD-Zip transcription factor (PtaHB1) and microRNA 166 (Pta-miR166) family were cloned from hybrid aspen using a combination of in silico and polymerase chain reaction methods. Expression analyses of PtaHB1 and Pta-miR166 were performed by Northern blot analysis. The expression of PtaHB1 was closely associated with wood formation and regulated both developmentally and seasonally, with the highest expression during the active growing season. Also, its expression was inversely correlated with the level of Pta-miR166. Pta-miR166-directed cleavage of PtaHB1 in vivo was confirmed using modified 5'-rapid amplification of cDNA ends (RACE). The expression of Pta-miR166 was much higher in the winter than in the growing seasons, suggesting seasonal and developmental regulation of microRNA in this perennial plant species.

  20. Wt-p53 action in human leukaemia cell lines corresponding to different stages of differentiation.

    PubMed

    Rizzo, M G; Zepparoni, A; Cristofanelli, B; Scardigli, R; Crescenzi, M; Blandino, G; Giuliacci, S; Ferrari, S; Soddu, S; Sacchi, A

    1998-05-01

    Recent studies support the potential application of the wt-p53 gene in cancer therapy. Expression of exogenous wt-p53 suppresses a variety of leukaemia phenotypes by acting on cell survival, proliferation and/or differentiation. As for tumour gene therapy, the final fate of the neoplastic cells is one of the most relevant points. We examined the effects of exogenous wt-p53 gene expression in several leukaemia cell lines to identify p53-responsive leukaemia. The temperature-sensitive p53Val135 mutant or the human wt-p53 cDNA was transduced in leukaemia cell lines representative of different acute leukaemia FAB subtypes, including M1 (KG1), M2 (HL-60), M3 (NB4), M5 (U937) and M6 (HEL 92.1.7), as well as blast crisis of chronic myelogenous leukaemia (BC-CML: K562, BV173) showing diverse differentiation features. By morphological, molecular and biochemical analyses, we have shown that exogenous wt-p53 gene expression induces apoptosis only in cells corresponding to M1, M2 and M3 of the FAB classification and in BC-CML showing morphological and cytochemical features of undifferentiated blast cells. In contrast, it promotes differentiation in the others. Interestingly, cell responsiveness was independent of the vector used and the status of the endogenous p53 gene.

  1. Necdin interacts with the Msx2 homeodomain protein via MAGE-D1 to promote myogenic differentiation of C2C12 cells.

    PubMed

    Kuwajima, Takaaki; Taniura, Hideo; Nishimura, Isao; Yoshikawa, Kazuaki

    2004-09-24

    Necdin is a potent growth suppressor that is expressed predominantly in postmitotic cells such as neurons and skeletal muscle cells. Necdin shows a significant homology to MAGE (melanoma antigen) family proteins, all of which contain a large homology domain. MAGE-D1 (NRAGE, Dlxin-1) interacts with the Dlx/Msx family homeodomain proteins via an interspersed hexapeptide repeat domain distinct from the homology domain. Here we report that necdin associates with the Msx homeodomain proteins via MAGE-D1 to modulate their function. In vitro binding and co-immunoprecipitation analyses revealed that MAGE-D1 directly interacted with necdin via the homology domain and Msx1 (or Msx2) via the repeat domain. A ternary complex of necdin, MAGE-D1, and Msx2 was formed in vitro, and an endogenous complex containing these three proteins was detected in differentiating embryonal carcinoma cells. Co-expression of necdin and MAGE-D1 released Msx-dependent transcriptional repression. C2C12 myoblast cells that were stably transfected with Msx2 cDNA showed a marked reduction in myogenic differentiation, and co-expression of necdin and MAGE-D1 canceled the Msx2-dependent repression. These results suggest that necdin and MAGE-D1 cooperate to modulate the function of Dlx/Msx homeodomain proteins in cellular differentiation. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.

  2. Global gene expression analysis in a mouse model for Norrie disease: late involvement of photoreceptor cells.

    PubMed

    Lenzner, Steffen; Prietz, Sandra; Feil, Silke; Nuber, Ulrike A; Ropers, H-Hilger; Berger, Wolfgang

    2002-09-01

    Mutations in the NDP gene give rise to a variety of eye diseases, including classic Norrie disease (ND), X-linked exudative vitreoretinopathy (EVRX), retinal telangiectasis (Coats disease), and advanced retinopathy of prematurity (ROP). The gene product is a cystine-knot-containing extracellular signaling molecule of unknown function. In the current study, gene expression was determined in a mouse model of ND, to unravel disease-associated mechanisms at the molecular level. Gene transcription in the eyes of 2-year-old Ndp knockout mice was compared with that in the eyes of age-matched wild-type control animals, by means of cDNA subtraction and microarrays. Clones (n = 3072) from the cDNA subtraction libraries were spotted onto glass slides and hybridized with fluorescently labeled RNA-derived targets. More than 230 differentially expressed clones were sequenced, and their expression patterns were verified by virtual Northern blot analysis. Numerous gene transcripts that are absent or downregulated in the eye of Ndp knockout mice are photoreceptor cell specific. In younger Ndp knockout mice (up to 1 year old), however, all these transcripts were found to be expressed at normal levels. The identification of numerous photoreceptor cell-specific transcripts with a reduced expression in 2-year-old, but not in young, Ndp knockout mice indicates that normal gene expression in these light-sensitive cells of mutant mice is established and maintained over a long period and that rods and cones are affected relatively late in the mouse model of ND. Obviously, the absence of the Ndp gene product is not compatible with long-term survival of photoreceptor cells in the mouse.

  3. Molecular characterization of two ferritins of the scallop Argopecten purpuratus and gene expressions in association with early development, immune response and growth rate.

    PubMed

    Coba de la Peña, Teodoro; Cárcamo, Claudia B; Díaz, María I; Brokordt, Katherina B; Winkler, Federico M

    2016-08-01

    Ferritin is involved in several iron homoeostasis processes in molluscs. We characterized two ferritin homologues and their expression patterns in association with early development, growth rate and immune response in the scallop Argopecten purpuratus, a species of economic importance for Chile and Peru. Two ferritin subunits (Apfer1 and Apfer2) were cloned. Apfer1 cDNA is a 792bp clone containing a 516bp open reading frame (ORF) that corresponds to a novel ferritin subunit in A. purpuratus. Apfer2 cDNA is a 681bp clone containing a 522bp ORF that corresponds to a previously sequenced EST. A putative iron responsive element (IRE) was identified in the 5'-untranslated region of both genes. The deduced protein sequences of both cDNAs possessed the motifs and domains characteristic of functional ferritin subunits. Both genes showed differential expression patterns at tissue-specific and early development stage levels. Apfer1 expression level increased 40-fold along larval developmental stages, decreasing markedly after larval settlement. Apfer1 expression in mantle tissue was 2.8-fold higher in fast-growing than in slow-growing scallops. Apfer1 increased 8-fold in haemocytes 24h post-challenge with the bacterium Vibrio splendidus. Apfer2 expression did not differ between fast- and slow-growing scallops or in response to bacterial challenge. These results suggest that Apfer1 and Apfer2 may be involved in iron storage, larval development and shell formation. Apfer1 expression may additionally be involved in immune response against bacterial infections and also in growth; and thus would be a potential marker for immune capacity and for fast growth in A. purpuratus. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. JAK and STAT members of yellow catfish Pelteobagrus fulvidraco and their roles in leptin affecting lipid metabolism.

    PubMed

    Wu, Kun; Tan, Xiao-Ying; Xu, Yi-Huan; Chen, Qi-Liang; Pan, Ya-Xiong

    2016-01-15

    The present study clones and characterizes the full-length cDNA sequences of members in JAK-STAT pathway, explores their mRNA tissue expression and the biological role in leptin influencing lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Full-length cDNA sequences of five JAKs and seven STAT members, including some splicing variants, were obtained from yellow catfish. Compared to mammals, more members of the JAKs and STATs family were found in yellow catfish, which provided evidence that the JAK and STAT family members had arisen by the whole genome duplications during vertebrate evolution. All of these members were widely expressed across the eleven tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, testis and ovary) but at the variable levels. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin changed triglyceride content and mRNA expression of several JAKs and STATs members, and genes involved in lipid metabolism. AG490, a specific inhibitor of JAK2-STAT pathway, partially reversed leptin-induced effects, indicating that the JAK2a/b-STAT3 pathway exerts main regulating actions of leptin on lipid metabolism at transcriptional level. Meanwhile, the different splicing variants were differentially regulated by leptin incubation. Thus, our data suggest that leptin activated the JAK/STAT pathway and increases the expression of target genes, which partially accounts for the leptin-induced changes in lipid metabolism in yellow catfish. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A New Protein Phosphatase 2C (FsPP2C1) Induced by Abscisic Acid Is Specifically Expressed in Dormant Beechnut Seeds1

    PubMed Central

    Lorenzo, Oscar; Rodríguez, Dolores; Nicolás, Gregorio; Rodríguez, Pedro L.; Nicolás, Carlos

    2001-01-01

    An abscisic acid (ABA)-induced cDNA fragment encoding a putative protein phosphatase 2C (PP2C) was obtained by means of differential reverse transcriptase-polymerase chain reaction approach. The full-length clone was isolated from a cDNA library constructed using mRNA from ABA-treated beechnut (Fagus sylvatica) seeds. This clone presents all the features of plant type PP2C and exhibits homology to members of this family such as AthPP2CA (61%), ABI1 (48%), or ABI2 (47%), therefore it was named FsPP2C1. The expression of FsPP2C1 is detected in dormant seeds and increases after ABA treatment, when seeds are maintained dormant, but it decreases and tends to disappear when dormancy is being released by stratification or under gibberellic acid treatment. Moreover, drought stress seems to have no effect on FsPP2C1 transcript accumulation. The FsPP2C1 transcript expression is tissue specific and was found to accumulate in ABA-treated seeds rather than in other ABA-treated vegetative tissues examined. These results suggest that the corresponding protein could be related to ABA-induced seed dormancy. By expressing FsPP2C1 in Escherichia coli as a histidine tag fusion protein, we have obtained direct biochemical evidence supporting Mg2+-dependent phosphatase activity of this protein. PMID:11299374

  6. Cloning and expression of a cDNA coding for catalase from zebrafish (Danio rerio).

    PubMed

    Ken, C F; Lin, C T; Wu, J L; Shaw, J F

    2000-06-01

    A full-length complementary DNA (cDNA) clone encoding a catalase was amplified by the rapid amplication of cDNA ends-polymerase chain reaction (RACE-PCR) technique from zebrafish (Danio rerio) mRNA. Nucleotide sequence analysis of this cDNA clone revealed that it comprised a complete open reading frame coding for 526 amino acid residues and that it had a molecular mass of 59 654 Da. The deduced amino acid sequence showed high similarity with the sequences of catalase from swine (86.9%), mouse (85.8%), rat (85%), human (83.7%), fruit fly (75.6%), nematode (71.1%), and yeast (58.6%). The amino acid residues for secondary structures are apparently conserved as they are present in other mammal species. Furthermore, the coding region of zebrafish catalase was introduced into an expression vector, pET-20b(+), and transformed into Escherichia coli expression host BL21(DE3)pLysS. A 60-kDa active catalase protein was expressed and detected by Coomassie blue staining as well as activity staining on polyacrylamide gel followed electrophoresis.

  7. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.

    PubMed

    Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping

    2011-10-01

    In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes. Published by Elsevier Ltd.

  8. Identification of tumor-restricted antigens NY-BR-1, SCP-1, and a new cancer/testis-like antigen NW-BR-3 by serological screening of a testicular library with breast cancer serum.

    PubMed

    Jäger, Dirk; Unkelbach, Marc; Frei, Claudia; Bert, Florian; Scanlan, Matthew J; Jäger, Elke; Old, Lloyd J; Chen, Yao-Tseng; Knuth, Alexander

    2002-06-28

    Serological analysis of recombinant cDNA expression libraries (SEREX) has led to the identification of several categories of new tumor antigens. We analyzed a testicular cDNA expression library with serum obtained from a breast cancer patient and isolated 13 genes designated NW-BR-1 through NW-BR-13. Of these, 3 showed tumor-restricted expression (NW-BR-1, -2 and -3), the others being expressed ubiquitously. NW-BR-3, representing 9 of 24 primary clones, showed tissue-restricted mRNA expression, being expressed in normal testis but not in 15 other normal tissues tested by Northern blotting. RT-PCR analysis showed strong NW-BR-3 expression in normal testis, weak expression in brain, kidney, trachea, uterus and normal prostate, and was negative in liver, heart, lung, colon, small intestine, bone marrow, breast, thymus, muscle, spleen, and stomach. NW-BR-3 mRNA expression was found in different tumor tissues and tumor cell lines by RT-PCR, thus showing a 'cancer/testis' (CT)-like mRNA expression pattern. NW-BR-3 shares 71% nucleotide and amino acid homology to a mouse gene cloned from mouse testicular tissue. Based on the mRNA expression pattern, NW-BR-3 represents a new candidate target gene for cancer immunotherapy. NW-BR-1 and NW-BR-2 also showed tumor-restricted mRNA expression. NW-BR-1 is a partial clone of the breast differentiation antigen NY-BR-1 previously identified by SEREX. NY-BR-1 is expressed in normal breast, testis and 80% of breast cancers. NW-BR-2 is identical to the CT antigen SCP-1, initially isolated by SEREX analysis of renal cancer. This study provides further evidence that SEREX is a powerful tool to identify new tumor antigens potentially relevant for immunotherapy approaches.

  9. An Ankyrin Repeat-Containing Protein, Characterized as a Ubiquitin Ligase, Is Closely Associated with Membrane-Enclosed Organelles and Required for Pollen Germination and Pollen Tube Growth in Lily1[W

    PubMed Central

    Huang, Jian; Chen, Feng; Del Casino, Cecilia; Autino, Antonella; Shen, Mouhua; Yuan, Shuai; Peng, Jia; Shi, Hexin; Wang, Chen; Cresti, Mauro; Li, Yiqin

    2006-01-01

    Exhibiting rapid polarized growth, the pollen tube delivers the male gametes into the ovule for fertilization in higher plants. To get an overall picture of gene expression during pollen germination and pollen tube growth, we profiled the transcription patterns of 1,536 pollen cDNAs from lily (Lilium longiflorum) by microarray. Among those that exhibited significant differential expression, a cDNA named lily ankyrin repeat-containing protein (LlANK) was thoroughly studied. The full-length LlANK cDNA sequence predicts a protein containing five tandem ankyrin repeats and a RING zinc-finger domain. The LlANK protein possesses ubiquitin ligase activity in vitro. RNA blots demonstrated that LlANK transcript is present in mature pollen and its level, interestingly contrary to most pollen mRNAs, up-regulated significantly during pollen germination and pollen tube growth. When fused with green fluorescent protein and transiently expressed in pollen, LlANK was found dominantly associated with membrane-enclosed organelles as well as the generative cell. Overexpression of LlANK, however, led to abnormal growth of the pollen tube. On the other hand, transient silencing of LlANK impaired pollen germination and tube growth. Taken together, these results showed that LlANK is a ubiquitin ligase associated with membrane-enclosed organelles and required for polarized pollen tube growth. PMID:16461387

  10. Identification of genes differentially expressed in grapevine associated with resistance to Elsinoe ampelina through suppressive subtraction hybridization.

    PubMed

    Gao, Min; Wang, Qian; Wan, Ran; Fei, Zhangjun; Wang, Xiping

    2012-09-01

    Anthracnose, caused by the biotrophic fungus Elsinoe ampelina, is an economically devastating disease of grapevine (Vitis vinifera L.) prevalent in warm and humid regions of the world. In order to investigate the molecular resistance mechanisms and identify genes related to anthracnose resistance in grapevine, a Suppression Subtractive Hybridization (SSH) library was constructed using mixed cDNAs prepared from leaves of Chinese wild Vitis quinquangularis clone 'Shang-24', cDNA prepared from leaves infected with the pathogen E. ampelina served as tester and cDNA from mock-inoculated leaves as driver. A total of 670 high-quality ESTs were clustered and assembled into a collection of 461 unique genes comprising 85 contigs and 376 singletons. By Gene ontology (GO) analysis 310 unigenes were assigned to 22 GO slims within the molecular function category, while 317 unigenes could be sorted into 43 GO slims within the biological process category. The expression profiles of 20 selected genes, monitored by quantitative RT-PCR, indicated that expression of these genes in the E. ampelina-resistant 'Shang-24' was quicker and more intense, than in the susceptible 'Red Globe' where the reaction was delayed and limited. The results imply that these up-regulated genes could be involved in grapevine responses against E. ampelina infection. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus.

    PubMed

    Watanabe, Takayuki; Sadamoto, Hisayo; Aonuma, Hitoshi

    2013-12-01

    In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into L-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.

  12. Nutritional and reproductive signaling revealed by comparative gene expression analysis in Chrysopa pallens (Rambur) at different nutritional statuses

    PubMed Central

    Han, Benfeng; Zhang, Shen; Zeng, Fanrong; Mao, Jianjun

    2017-01-01

    Background The green lacewing, Chrysopa pallens Rambur, is one of the most important natural predators because of its extensive spectrum of prey and wide distribution. However, what we know about the nutritional and reproductive physiology of this species is very scarce. Results By cDNA amplification and Illumina short-read sequencing, we analyzed transcriptomes of C. pallens female adult under starved and fed conditions. In total, 71236 unigenes were obtained with an average length of 833 bp. Four vitellogenins, three insulin-like peptides and two insulin receptors were annotated. Comparison of gene expression profiles suggested that totally 1501 genes were differentially expressed between the two nutritional statuses. KEGG orthology classification showed that these differentially expression genes (DEGs) were mapped to 241 pathways. In turn, the top 4 are ribosome, protein processing in endoplasmic reticulum, biosynthesis of amino acids and carbon metabolism, indicating a distinct difference in nutritional and reproductive signaling between the two feeding conditions. Conclusions Our study yielded large-scale molecular information relevant to C. pallens nutritional and reproductive signaling, which will contribute to mass rearing and commercial use of this predaceous insect species. PMID:28683101

  13. Nutritional and reproductive signaling revealed by comparative gene expression analysis in Chrysopa pallens (Rambur) at different nutritional statuses.

    PubMed

    Han, Benfeng; Zhang, Shen; Zeng, Fanrong; Mao, Jianjun

    2017-01-01

    The green lacewing, Chrysopa pallens Rambur, is one of the most important natural predators because of its extensive spectrum of prey and wide distribution. However, what we know about the nutritional and reproductive physiology of this species is very scarce. By cDNA amplification and Illumina short-read sequencing, we analyzed transcriptomes of C. pallens female adult under starved and fed conditions. In total, 71236 unigenes were obtained with an average length of 833 bp. Four vitellogenins, three insulin-like peptides and two insulin receptors were annotated. Comparison of gene expression profiles suggested that totally 1501 genes were differentially expressed between the two nutritional statuses. KEGG orthology classification showed that these differentially expression genes (DEGs) were mapped to 241 pathways. In turn, the top 4 are ribosome, protein processing in endoplasmic reticulum, biosynthesis of amino acids and carbon metabolism, indicating a distinct difference in nutritional and reproductive signaling between the two feeding conditions. Our study yielded large-scale molecular information relevant to C. pallens nutritional and reproductive signaling, which will contribute to mass rearing and commercial use of this predaceous insect species.

  14. ALP gene expression in cDNA samples from bone tissue engineering using a HA/TCP/Chitosan scaffold

    NASA Astrophysics Data System (ADS)

    Stephanie, N.; Katarina, H.; Amir, L. R.; Gunawan, H. A.

    2017-08-01

    This study examined the potential use of hydroxyapatite (HA)/tricalcium phosphate (TCP)/Chitosan as a bone tissue engineering scaffold. The potential for using HA/TCP/chitosan as a scaffold was analyzed by measuring expression of the ALP osteogenic gene in cDNA from bone biopsies from four Macaque nemestrina. Experimental conditions included control (untreated), treatment with HA/TCP 70:30, HA/TCP 50:50, and HA/TCP/chitosan. cDNA samples were measured quantitively with Real-Time PCR (qPCR) and semi-quantitively by gel electrophoresis. There were no significant differences in ALP gene expression between treatment subjects after two weeks, but the HA/TCP/chitosan treatment gave the highest level of expression after four weeks. The scaffold using the HA/TCP/chitosan combination induced a higher level of expression of the osteogenic gene ALP than did scaffold without chitosan.

  15. Casein expression in cytotoxic T lymphocytes.

    PubMed Central

    Grusby, M J; Mitchell, S C; Nabavi, N; Glimcher, L H

    1990-01-01

    A cDNA that expresses a mRNA restricted to cytotoxic T lymphocytes (CTL) and mammary tissue has been isolated and characterized. The deduced amino acid sequence from this cDNA shows extensive homology with the previously reported amino acid sequence for rat alpha-casein. Indeed, the presence of a six-residue-repeated motif that is specific for rodent alpha-caseins strongly supports the identification of this cDNA as mouse alpha-casein. Northern (RNA) blot analysis of many hematopoietic cell types revealed that this gene is restricted to CTL, being expressed in four of six CTL lines examined. Furthermore, CTL that express this gene were also found to express other members of the casein gene family, such as beta- and kappa-casein. These results suggest that caseins may be important in CTL function, and their potential role in CTL-mediated lysis is discussed. Images PMID:2395885

  16. Targeting of GLUT1-GLUT5 chimeric proteins in the polarized cell line Caco-2.

    PubMed

    Inukai, K; Takata, K; Asano, T; Katagiri, H; Ishihara, H; Nakazaki, M; Fukushima, Y; Yazaki, Y; Kikuchi, M; Oka, Y

    1997-04-01

    Caco-2, a human differentiated intestinal epithelial cell line, is a promising model for investigating the mechanism of polarized targeting of apical and basolateral membrane proteins. We stably transfected rat GLUT5 cDNA and rabbit GLUT1 cDNA into Caco-2 cells with an expression vector. Immunohistochemical study revealed that the GLUT5 protein expressed was localized at apical membranes and that the GLUT1 expressed was present primarily in the basolateral membranes of cells grown on permeable support. Next, to investigate the domain responsible for determining apical vs. basolateral sorting in glucose transporters, we prepared several GLUT1-GLUT5 chimeric cDNAs and transfected them into Caco-2 cells. A GLUT1 [N terminus approximately sixth transmembrane domain (TM6)]-GLUT5 [intracellular loop (IL) approximately C terminus] chimera was observed exclusively at the apical membrane, while GLUT1 (N terminus approximately IL)-GLUT5 (TM7 approximately C terminus) and GLUT1 (N terminus approximately TM12)-GLUT5 (C-terminal domain) chimeras were observed mainly at the basolateral membrane, a localization similar to that of GLUT1. Moreover, using a recombinant adenovirus expression system, we expressed a GLUT5 (N terminus approximately TM6)-GLUT1(IL)-GLUT5(TM7 approximately C-terminus) chimera, which was observed at the basolateral membrane. Based on these results, the C-terminal domain does not determine isoform-specific targeting of GLUT1 and GLUT5. Rather, it is the intracellular loop in glucose transporters that appears to play a pivotal role in apical-basolateral sorting signals in Caco-2 cells.

  17. Identification and expression analysis of a CC chemokine from cobia (Rachycentron canadum).

    PubMed

    Feng, Juan; Su, Youlu; Guo, Zhixun; Xu, Liwen; Sun, Xiuxiu; Wang, Yunxin

    2013-06-01

    Chemokines are small, secreted cytokine peptides known principally for their ability to induce migration and activation of leukocyte populations and regulate the immune response mechanisms. The cobia (Rachycentron canadum), a marine finfish species, has a great potential for net cage aquaculture in the South China Sea. We isolated and characterized a CC chemokine cDNA from cobia-designated RcCC2. Its cDNA is 783 bp in length and encodes a putative protein of 110 amino acids. Homology and phylogenetic analysis revealed that the RcCC2 gene, which contains four conserved cysteine residues, shares a high degree of similarity with other known CC chemokine sequences and is closest to the CCL19/21 clade. The mRNA of RcCC2 is expressed constitutively in all tested tissues, including gill, liver, muscle, spleen, kidney, head kidney, skin, brain, stomach, intestine and heart, but not blood, with the highest level of expression in gill and liver. The reverse transcription quantitative polymerase chain reaction was used to examine the expression of the RcCC2 gene in immune-related tissues, including head kidney, spleen and liver, following intraperitoneal injection of the viral mimic polyriboinosinic polyribocytidylic acid, formalin-killed Vibrio carchariae (bacterial vaccine) and phosphate-buffered saline as a control. RcCC2 gene expression was up-regulated differentially in head kidney, spleen and liver during 12 h after challenge. These results indicate that the RcCC2 gene is inducible and is involved in immune responses, suggesting RcCC2 has an important role in the early stage of viral and bacterial infections.

  18. Cloning of soluble alkaline phosphatase cDNA and molecular basis of the polymorphic nature in alkaline phosphatase isozymes of Bombyx mori midgut.

    PubMed

    Itoh, M; Kanamori, Y; Takao, M; Eguchi, M

    1999-02-01

    A cDNA coding for soluble type alkaline phosphatase (sALP) of Bombyx mori was isolated. Deduced amino acid sequence showed high identities to various ALPs and partial similarities to ATPase of Manduca sexta. Using this cDNA sequence as a probe, the molecular basis of electrophoretic polymorphism in sALP and membrane-bound type ALP (mALP) was studied. As for mALP, the result suggested that post-translational modification was important for the proteins to express activity and to represent their extensive polymorphic nature, whereas the magnitude of activities was mainly regulated by transcription. On the other hand, sALP zymogram showed poor polymorphism, but one exception was the null mutant, in which the sALP gene was largely lost. Interestingly, the sALP gene was shown to be transcribed into two mRNAs of different sizes, 2.0 and 2.4 Kb. In addition to the null mutant of sALP, we found a null mutant for mALP. Both of these mutants seem phenotypically silent, suggesting that the functional differentiation between these isozymes is not perfect, so that they can still work mutually and complement each other as an indispensable enzyme for B. mori.

  19. Sequence of the cDNA of a human dihydrodiol dehydrogenase isoform (AKR1C2) and tissue distribution of its mRNA.

    PubMed Central

    Shiraishi, H; Ishikura, S; Matsuura, K; Deyashiki, Y; Ninomiya, M; Sakai, S; Hara, A

    1998-01-01

    Human liver contains three isoforms (DD1, DD2 and DD4) of dihydrodiol dehydrogenase with 20alpha- or 3alpha-hydroxysteroid dehydrogenase activity; the dehydrogenases belong to the aldo-oxo reductase (AKR) superfamily. cDNA species encoding DD1 and DD4 have been identified. However, four cDNA species with more than 99% sequence identity have been cloned and are compatible with a partial amino acid sequence of DD2. In this study we have isolated a cDNA clone encoding DD2, which was confirmed by comparison of the properties of the recombinant and hepatic enzymes. This cDNA showed differences of one, two, four and five nucleotides from the previously reported four cDNA species for a dehydrogenase of human colon carcinoma HT29 cells, human prostatic 3alpha-hydroxysteroid dehydrogenase, a human liver 3alpha-hydroxysteroid dehydrogenase-like protein and chlordecone reductase-like protein respectively. Expression of mRNA species for the five similar cDNA species in 20 liver samples and 10 other different tissue samples was examined by reverse transcriptase-mediated PCR with specific primers followed by diagnostic restriction with endonucleases. All the tissues expressed only one mRNA species corresponding to the newly identified cDNA for DD2: mRNA transcripts corresponding to the other cDNA species were not detected. We suggest that the new cDNA is derived from the principal gene for DD2, which has been named AKR1C2 by a new nomenclature for the AKR superfamily. It is possible that some of the other cDNA species previously reported are rare allelic variants of this gene. PMID:9716498

  20. Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus.

    PubMed

    Wang, Houpeng; Wu, Tingting; Qin, Fang; Wang, Lihong; Wang, Zaizhao

    2012-06-01

    Endocrine-disrupting chemicals (EDCs) can affect normal sexual differentiation in fish. Foxl2, one forkhead transcription factor, plays an important role in ovarian differentiation in the early development of the female gonad in mammals and fish. How EDCs affect Foxl2 expression is little known. In this study, we isolated a Foxl2 cDNA from the ovary of rare minnow Gobiocypris rarus and examined its expression during early development stages and in different adult tissues. Then, we analyzed Foxl2 expression in G. rarus juvenile following 3-day exposure to 17α- ethinylestradiol (EE2), 4-n-nonylphenol (NP), and bisphenol A (BPA). Alignment of known Foxl2 sequences among vertebrates showed high identity in forkhead domain and C-terminal region with other vertebrate proteins. Quantitative RT-PCR analysis showed that Foxl2 expression was linear decrease and cyp19a1a, the downstream target gene of Foxl2, had no correlation with Foxl2 from 18 to 50 days post fertilization (dpf). Among different adult tissues, Foxl2 is mainly expressed in ovary, brain, gill, eye, and male spleen. In the 3-day exposure, the juvenile fish to EDCs, 0.1 nM EE2, and 1 nM BPA significantly up-regulated the expression of Foxl2 gene, while NP had no effect on Foxl2 expression. Altogether, these results provide basic data for further study on how Foxl2 mediates EDCs impact on the sexual differentiation in G. rarus.

  1. Ovule development: identification of stage-specific and tissue-specific cDNAs.

    PubMed Central

    Nadeau, J A; Zhang, X S; Li, J; O'Neill, S D

    1996-01-01

    A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization. PMID:8742709

  2. CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4'-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis.

    PubMed

    Matsuno, Michiyo; Nagatsu, Akito; Ogihara, Yukio; Ellis, Brian E; Mizukami, Hajime

    2002-03-13

    Rosmarinic acid is the dominant hydroxycinnamic acid ester accumulated in Boraginaceae and Lamiaceae plants. A cytochrome P450 cDNA was isolated by differential display from cultured cells of Lithospermum erythrorhizon, and the gene product was designated CYP98A6 based on the deduced amino acid sequence. After expression in yeast, the P450 was shown to catalyze the 3-hydroxylation of 4-coumaroyl-4'-hydroxyphenyllactic acid, one of the final two steps leading to rosmarinic acid. The expression level of CYP98A6 is dramatically increased by addition of yeast extract or methyl jasmonate to L. erythrorhizon cells, and its expression pattern reflected the elicitor-induced change in rosmarinic acid production, indicating that CYP98A6 plays an important role in regulation of rosmarinic acid biosynthesis.

  3. Microarray analysis of differential gene expression elicited in Trametes versicolor during interspecific mycelial interactions.

    PubMed

    Eyre, Catherine; Muftah, Wafa; Hiscox, Jennifer; Hunt, Julie; Kille, Peter; Boddy, Lynne; Rogers, Hilary J

    2010-08-01

    Trametes versicolor is an important white rot fungus of both industrial and ecological interest. Saprotrophic basidiomycetes are the major decomposition agents in woodland ecosystems, and rarely form monospecific populations, therefore interspecific mycelial interactions continually occur. Interactions have different outcomes including replacement of one species by the other or deadlock. We have made subtractive cDNA libraries to enrich for genes that are expressed when T. versicolor interacts with another saprotrophic basidiomycete, Stereum gausapatum, an interaction that results in the replacement of the latter. Expressed sequence tags (ESTs) (1920) were used for microarray analysis, and their expression compared during interaction with three different fungi: S. gausapatum (replaced by T. versicolor), Bjerkandera adusta (deadlock) and Hypholoma fasciculare (replaced T. versicolor). Expression of significantly more probes changed in the interaction between T. versicolor and S. gausapatum or B. adusta compared to H. fasciculare, suggesting a relationship between interaction outcome and changes in gene expression. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Effects of tissue factor, PAR-2 and MMP-9 expression on human breast cancer cell line MCF-7 invasion.

    PubMed

    Lin, Zeng-Mao; Zhao, Jian-Xin; Duan, Xue-Ning; Zhang, Lan-Bo; Ye, Jing-Ming; Xu, Ling; Liu, Yin-Hua

    2014-01-01

    This study aimed to explore the expression of tissue factor (TF), protease activated receptor-2 (PAR-2), and matrix metalloproteinase-9 (MMP-9) in the MCF-7 breast cancer cell line and influence on invasiveness. Stable MCF-7 cells transfected with TF cDNA and with TF ShRNA were established. TF, PAR-2, and MMP-9 protein expression was analyzed using indirect immunofluorescence and invasiveness was evaluated using a cell invasion test. Effects of an exogenous PAR-2 agonist were also examined. TF protein expression significantly differed between the TF cDNA and TF ShRNA groups. MMP-9 protein expression was significantly correlated with TF protein expression, but PAR-2 protein expression was unaffected. The PAR- 2 agonist significantly enhanced MMP-9 expression and slightly increased TF and PAR-2 expression in the TF ShRNA group, but did not significantly affect protein expression in MCF-7 cells transfected with TF cDNA. TF and MMP-9 expression was positively correlated with the invasiveness of tumor cells. TF, PAR-2, and MMP-9 affect invasiveness of MCF-7 cells. TF may increase MMP-9 expression by activating PAR-2.

  5. Cloning and High-Level Expression of α-Galactosidase cDNA from Penicillium purpurogenum

    PubMed Central

    Shibuya, Hajime; Nagasaki, Hiroaki; Kaneko, Satoshi; Yoshida, Shigeki; Park, Gwi Gun; Kusakabe, Isao; Kobayashi, Hideyuki

    1998-01-01

    The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides. PMID:9797312

  6. Isolation, nucleotide sequence and expression of a cDNA encoding feline granulocyte colony-stimulating factor.

    PubMed

    Dunham, S P; Onions, D E

    2001-06-21

    A cDNA encoding feline granulocyte colony stimulating factor (fG-CSF) was cloned from alveolar macrophages using the reverse transcriptase-polymerase chain reaction. The cDNA is 949 bp in length and encodes a predicted mature protein of 174 amino acids. Recombinant fG-CSF was expressed as a glutathione S-transferase fusion and purified by affinity chromatography. Biological activity of the recombinant protein was demonstrated using the murine myeloblastic cell line GNFS-60, which showed an ED50 for fG-CSF of approximately 2 ng/ml. Copyright 2001 Academic Press.

  7. Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells.

    PubMed

    Wycliffe, Paul; Sitbon, Folke; Wernersson, Jonny; Ezcurra, Inés; Ellerström, Mats; Rask, Lars

    2005-10-01

    Brassica napus complementary deoxyribonucleic acid (cDNA) clones encoding a DNA-binding protein, BnPEND, were isolated by Southwestern screening. A distinctive feature of the protein was a bZIP-like sequence in the amino-terminal portion, which, after expression in Escherichia coli, bound DNA. BnPEND transcripts were present in B. napus roots and flower buds, and to a lesser extent in stems, flowers and young leaves. Treatment in the dark for 72 h markedly increased the amount of BnPEND transcript in leaves of all ages. Sequence comparison showed that BnPEND was similar to a presumed transcription factor from B. napus, GSBF1, a protein deduced from an Arabidopsis thaliana cDNA (BX825084) and the PEND protein from Pisum sativum, believed to anchor the plastid DNA to the envelope early during plastid development. Homology to expressed sequence tag (EST) sequences from additional species suggested that BnPEND homologues are widespread among the angiosperms. Transient expression of BnPEND fused with green fluorescent protein (GFP) in Nicotiana benthamiana epidermal cells showed that BnPEND is a plastid protein, and that the 15 amino acids at the amino-terminal contain information about plastid targeting. Expression of BnPEND in Nicotiana tabacum from the Cauliflower Mosaic Virus 35S promoter gave stable transformants with different extents of white to light-green areas in the leaves, and even albino plants. In the white areas, but not in adjacent green tissue, the development of palisade cells and chloroplasts was disrupted. Our data demonstrate that the BnPEND protein, when over-expressed at an inappropriate stage, functionally blocks the development of plastids and leads to altered leaf anatomy, possibly by preventing the release of plastid DNA from the envelope.

  8. Expression of the histone chaperone SET/TAF-Iβ during the strobilation process of Mesocestoides corti (Platyhelminthes, Cestoda).

    PubMed

    Costa, Caroline B; Monteiro, Karina M; Teichmann, Aline; da Silva, Edileuza D; Lorenzatto, Karina R; Cancela, Martín; Paes, Jéssica A; Benitz, André de N D; Castillo, Estela; Margis, Rogério; Zaha, Arnaldo; Ferreira, Henrique B

    2015-08-01

    The histone chaperone SET/TAF-Iβ is implicated in processes of chromatin remodelling and gene expression regulation. It has been associated with the control of developmental processes, but little is known about its function in helminth parasites. In Mesocestoides corti, a partial cDNA sequence related to SET/TAF-Iβ was isolated in a screening for genes differentially expressed in larvae (tetrathyridia) and adult worms. Here, the full-length coding sequence of the M. corti SET/TAF-Iβ gene was analysed and the encoded protein (McSET/TAF) was compared with orthologous sequences, showing that McSET/TAF can be regarded as a SET/TAF-Iβ family member, with a typical nucleosome-assembly protein (NAP) domain and an acidic tail. The expression patterns of the McSET/TAF gene and protein were investigated during the strobilation process by RT-qPCR, using a set of five reference genes, and by immunoblot and immunofluorescence, using monospecific polyclonal antibodies. A gradual increase in McSET/TAF transcripts and McSET/TAF protein was observed upon development induction by trypsin, demonstrating McSET/TAF differential expression during strobilation. These results provided the first evidence for the involvement of a protein from the NAP family of epigenetic effectors in the regulation of cestode development.

  9. Changes in global gene expression during in vitro decidualization of rat endometrial stromal cells

    PubMed Central

    Vallejo, Griselda; Maschi, Darío; Citrinovitz, Ana Cecilia Mestre; Aiba, Kazuhiro; Maronna, Ricardo; Yohai, Victor; Ko, Minoru S. H.; Beato, Miguel; Saragüeta, Patricia

    2009-01-01

    During the preimplantation phase of pregnancy the endometrial stroma differentiates into decidua, a process that implies numerous morphological changes and is an example of physiological transdifferentiation. Here we show that UIII rat endometrial stromal cells cultured in the presence of calf serum acquired morphological features of decidual cells and expressed decidual markers. To identify genes involved in decidualization we compared gene expression patterns of control and decidualized UIII cells using cDNA microarray. We found 322 annotated genes exhibiting significant differences in expression (>3 fold, FDR > 0.005), of which 312 have not been previously related to decidualization. Analysis of overrepresented functions revealed that protein synthesis, gene expression and chromatin architecture and remodeling are the most relevant modified functions during decidualization. Relevant genes are also found in the functional terms differentiation, cell proliferation, signal transduction, and matrix/structural proteins. Several of these new genes involved in decidualization (Csdc2, Trim27, Eef1a1, Bmp1, Wt1, Aes, Gna12, and Men1) are shown to be also regulated in uterine decidua during normal pregnancy. Thus, the UIII cell culture model will allow future mechanistic studies to define the transcriptional network regulating reprogramming of stromal cells into decidual cells. PMID:19780023

  10. Isolation and Characterization of a myo-inositol-1-phosphate Synthase Gene from Yellow Passion Fruit (Passiflora edulis f. flavicarpa) Expressed During Seed Development and Environmental Stress

    PubMed Central

    Abreu, Emanuel F. M.; Aragão, Francisco J. L.

    2007-01-01

    Background and Aims Myo-inositol-1l-phosphate synthase (MIPS) catalyses the conversion of d-glucose 6-phosphate to 1-l-myo-inositol-1-phosphate, the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. Inositol phospholipids play a vital role in membrane trafficking and signalling pathways, auxin storage and transport, phytic acid biosynthesis, cell wall biosynthesis and production of stress-related molecules. In the present study, an MIPS cDNA from developing Passiflora edulis f. flavicarpa seeds was characterized and an investigation made into its spatial and differential expression, as well as changes in its transcription during exposure of growing plants to cold and heat stresses. Methods The MIPS-encoding gene was isolated by polymerase chain reaction (PCR) methods, and transcript levels were examined using semi-quantitative reverse transcription–PCR (RT–PCR) during seed development and in response to heat and cold stress. In addition, the copy number of the cloned PeMIPS1 gene in the genome of Passiflora edulis, P. eichleriana, P. caerulea, P. nitida and P. coccinea was determined by Southern blot analyses. Key Results A full-length cDNA clone of the PeMIPS1 from P. edulis was isolated and characterized. Southern blot analyses indicated that the genomic DNA might have diverse sequences of MIPS-encoding genes and one copy of the cloned PeMIPS1 gene in the genomes of P. edulis, P. eichleriana, P. caerulea, P. nitida and P. coccinea. RT–PCR expression analyses revealed the presence of PeMIPS1 transcripts in ovules, pollen grains and leaves, and during the seed developmental stages, where it peaked at 9 d after pollination. The PeMIPS1 gene is differentially regulated under cold and heat stress, presenting a light-responsive transcription. Conclusions Experimental data suggest that PeMIPS1 transcription plays an important role in the establishment of developmental programmes and during the response of plants to environmental changes. The PeMIPS1 is differentially transcribed during cold and heat stress, presenting a light response pattern, suggesting that it is important for environmental stress response. PMID:17138579

  11. Differential tissue expression of enhanced green fluorescent protein in 'green mice'.

    PubMed

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-06-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.

  12. A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin.

    PubMed

    Wice, B M; Gordon, J I

    1992-01-01

    The human intestinal epithelium is rapidly and perpetually renewed as the descendants of multipotent stem cells located in crypts undergo proliferation, differentiation, and eventual exfoliation during a very well organized migration along the crypt to villus axis. The mechanisms that establish and maintain this balance between proliferation and differentiation are largely unknown. We have utilized HT-29 cells, derived from a human colon adenocarcinoma, as a model system for identifying gene products that may regulate these processes. Proliferating HT-29 cells cultured in the absence of glucose (e.g., using inosine as the carbon source) have some of the characteristics of undifferentiated but committed crypt epithelial cells while postconfluent cells cultured in the absence of glucose resemble terminally differentiated enterocytes or goblet cells. A cDNA library, constructed from exponentially growing HT-29 cells maintained in inosine-containing media, was sequentially screened with a series of probes depleted of sequences encoding housekeeping functions and enriched for intestine-specific sequences that are expressed in proliferating committed, but not differentiated, epithelial cells. Of 100,000 recombinant phage surveyed, one was found whose cDNA was derived from an apparently gut-specific mRNA. It encodes a 316 residue, 35,463-D protein that is a new member of the annexin/lipocortin family. Other family members have been implicated in regulation of cellular growth and in signal transduction pathways. RNA blot and in situ hybridization studies indicate that the gene encoding this new annexin exhibits region-specific expression along both axes of the human gut: (a) highest levels of mRNA are present in the jejunum with marked and progressive reductions occurring distally; (b) its mRNA appears in crypt-associated epithelial cells and increases in concentration as they exit the crypt. Villus-associated epithelial cells continue to transcribe this gene during their differentiation/translocation up the villus. Immunocytochemical studies reveal that the intestine-specific annexin (ISA) is associated with the plasma membrane of undifferentiated, proliferating crypt epithelial cells as well as differentiated villus enterocytes. In polarized enterocytes, the highest concentrations of ISA are found at the apical compared to basolateral membrane. In vitro studies using an octapeptide derived from residues 2-9 of the primary translation product of ISA mRNA and purified myristoyl-CoA:protein N-myristoyltransferase suggested that it is N-myristoylated. In vivo labeling studies confirmed that myristate is covalently attached to ISA via a hydroxylamine resistant amide linkage. The restricted cellular expression and acylation of ISA distinguish it from other known annexins.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds

    PubMed Central

    Lehnert, Sigrid A; Reverter, Antonio; Byrne, Keren A; Wang, Yonghong; Nattrass, Greg S; Hudson, Nicholas J; Greenwood, Paul L

    2007-01-01

    Background The muscle fiber number and fiber composition of muscle is largely determined during prenatal development. In order to discover genes that are involved in determining adult muscle phenotypes, we studied the gene expression profile of developing fetal bovine longissimus muscle from animals with two different genetic backgrounds using a bovine cDNA microarray. Fetal longissimus muscle was sampled at 4 stages of myogenesis and muscle maturation: primary myogenesis (d 60), secondary myogenesis (d 135), as well as beginning (d 195) and final stages (birth) of functional differentiation of muscle fibers. All fetuses and newborns (total n = 24) were from Hereford dams and crossed with either Wagyu (high intramuscular fat) or Piedmontese (GDF8 mutant) sires, genotypes that vary markedly in muscle and compositional characteristics later in postnatal life. Results We obtained expression profiles of three individuals for each time point and genotype to allow comparisons across time and between sire breeds. Quantitative reverse transcription-PCR analysis of RNA from developing longissimus muscle was able to validate the differential expression patterns observed for a selection of differentially expressed genes, with one exception. We detected large-scale changes in temporal gene expression between the four developmental stages in genes coding for extracellular matrix and for muscle fiber structural and metabolic proteins. FSTL1 and IGFBP5 were two genes implicated in growth and differentiation that showed developmentally regulated expression levels in fetal muscle. An abundantly expressed gene with no functional annotation was found to be developmentally regulated in the same manner as muscle structural proteins. We also observed differences in gene expression profiles between the two different sire breeds. Wagyu-sired calves showed higher expression of fatty acid binding protein 5 (FABP5) RNA at birth. The developing longissimus muscle of fetuses carrying the Piedmontese mutation shows an emphasis on glycolytic muscle biochemistry and a large-scale up-regulation of the translational machinery at birth. We also document evidence for timing differences in differentiation events between the two breeds. Conclusion Taken together, these findings provide a detailed description of molecular events accompanying skeletal muscle differentiation in the bovine, as well as gene expression differences that may underpin the phenotype differences between the two breeds. In addition, this study has highlighted a non-coding RNA, which is abundantly expressed and developmentally regulated in bovine fetal muscle. PMID:17697390

  14. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

    PubMed

    Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin

    2013-01-01

    The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors

    PubMed Central

    Jing, Xin; Infante, Jorge; Nachtman, Ronald G.; Jurecic, Roland

    2008-01-01

    Objective FLRF (Rnf41) gene was identified through screening of subtracted cDNA libraries form murine hematopoietic stem cells and progenitors. Subsequent work has revealed that FLRF acts as E3 ubiquitin ligase, and that it regulates steady-state levels of neuregulin receptor ErbB3, and participates in degradation of IAP protein BRUCE and parkin. The objective of this study was to start exploring the role of FLRF during hematopoiesis. Methods FLRF was over-expressed in a murine multipotent hematopoietic progenitor cell line EML, which can differentiate into almost all blood cell lineages, and in pro-B progenitor cell line BaF3. The impact of FLRF over-expression on EML cell differentiation into myelo-erythroid lineages was studied using hematopoietic colony-forming assays. The interaction of FLRF with cytokine receptors and receptor levels in control cells and EML and BaF3 cells over-expressing FLRF were examined with Western and immunoprecipitation. Results Remarkably, over-expression of FLRF significantly attenuated erythroid and myeloid differentiation of EML cells in response to cytokines Epo and IL-3, and retinoic acid (RA), and resulted in significant and constitutive decrease of steady-state levels of IL-3, Epo and RA receptor RARα in EML and BaF3 cells. Immunoprecipitation has revealed that FLRF interacts with IL-3, Epo and RARα receptors in EML and BaF3 cells, and that FLRF-mediated down-regulation of these receptors is ligand binding-independent. Conclusions The results of this study have revealed new FLRF-mediated pathway for ligand-independent receptor level regulation, and support the notion that through maintaining basal levels of cytokine receptors, FLRF is involved in the control of hematopoietic progenitor cell differentiation into myelo-erythroid lineages. PMID:18495327

  16. Cyp15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Coy, Monique R; Scharf, Michael E

    2012-07-01

    Termites are eusocial insects that jointly utilize juvenile hormone (JH), pheromones, and other semiochemicals to regulate caste differentiation and achieve caste homeostasis. Prior EST sequencing from the symbiont-free gut transcriptome of Reticulitermes flavipes unexpectedly revealed a number of unique cytochrome P450 (Cyp) transcripts, including fragments of a Cyp15 family gene (Cyp15F1) with homology to other insect Cyp15s that participate in JH biosynthesis. The present study investigated the role of Cyp15F1 in termite caste polyphenism and specifically tested the hypothesis that it plays a role in JH-dependent caste differentiation. After assembling the full-length Cyp15F1 cDNA sequence, we (i) determined its mRNA tissue expression profile, (ii) investigated mRNA expression changes in response to JH and the caste-regulatory primer pheromones γ-cadinene (CAD) and γ-cadinenal (ALD), and (iii) used RNA interference (RNAi) in combination with caste differentiation bioassays to investigate gene function at the phenotype level. Cyp15F1 has ubiquitous whole-body expression (including gut tissue); is rapidly and sustainably induced from 3 h to 48 h by JH, CAD, and ALD; and functions at least in part by facilitating JH-dependent soldier caste differentiation. These findings provide the second example of a termite caste regulatory gene identified through the use of RNAi, and significantly build upon our understanding of termite caste homeostatic mechanisms. These results also reinforce the concept of environmental caste determination in termites by revealing how primer pheromones, as socioenvironmental factors, can directly influence Cyp15 expression and caste differentiation. © 2012 Wiley Periodicals, Inc.

  17. Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish.

    PubMed

    Rumfelt, Lynn L; Diaz, Marilyn; Lohr, Rebecca L; Mochon, Evonne; Flajnik, Martin F

    2004-07-15

    In most jawed vertebrates including cartilaginous fish, membrane-bound IgM is expressed as a five Ig superfamily (Igsf)-domain H chain attached to a transmembrane (Tm) region. Heretofore, bony fish IgM was the one exception with IgM mRNA spliced to produce a four-domain Tm H chain. We now demonstrate that the Tm and secretory (Sec) mRNAs of the novel cartilaginous fish Ig isotypes, IgW and IgNAR, are present in multiple forms, most likely generated by alternative splicing. In the nurse shark, Ginglymostoma cirratum, and horn shark, Heterodontus francisci, alternative splicing of Tm exons to the second or the fourth constant (C(H)) exons produces two distinct IgW Tm cDNAs. Although the seven-domain IgW Sec cDNA form contains a canonical secretory tail shared with IgM, IgNAR, and IgA, we report a three-domain cDNA form of shark IgW (IgW(short)) having an unusual Sec tail, which is orthologous to skate IgX(short) cDNA. The IgW and IgW(short) Sec transcripts are restricted in their tissue distribution and expression levels vary among individual sharks, with all forms expressed early in ontogeny. IgNAR mRNA is alternatively spliced to produce a truncated four-domain Tm cDNA and a second Tm cDNA is expressed identical in Igsf domains as the Sec form. PBL is enriched in the Tm cDNA of these Igs. These molecular data suggest that cartilaginous fish have augmented their humoral immune repertoire by diversifying the sizes of their Ig isotypes. Furthermore, these Tm cDNAs are prototypical and the truncated variants may translate as more stable protein at the cell surface.

  18. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.

    PubMed

    Phillips, A L; Ward, D A; Uknes, S; Appleford, N E; Lange, T; Huttly, A K; Gaskin, P; Graebe, J E; Hedden, P

    1995-07-01

    Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.

  19. Isolation, cDNA cloning and gene expression of an antibacterial protein from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros.

    PubMed

    Yang, J; Yamamoto, M; Ishibashi, J; Taniai, K; Yamakawa, M

    1998-08-01

    An antibacterial protein, designated rhinocerosin, was purified to homogeneity from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros immunized with Escherichia coli. Based on the amino acid sequence of the N-terminal region, a degenerate primer was synthesized and reverse-transcriptase PCR was performed to clone rhinocerosin cDNA. As a result, a 279-bp fragment was obtained. The complete nucleotide sequence was determined by sequencing the extended rhinocerosin cDNA clone by 5' rapid amplification of cDNA ends. The deduced amino acid sequence of the mature portion of rhinocerosin was composed of 72 amino acids without cystein residues and was shown to be rich in glycine (11.1%) and proline (11.1%) residues. Comparison of the deduced amino acid sequence of rhinocerosin with those of other antibacterial proteins indicated that it has 77.8% and 44.6% identity with holotricin 2 and coleoptrecin, respectively. Rhinocerosin had strong antibacterial activity against E. coli, Streptococcus pyogenes, Staphylococcus aureus but not against Pseudomonas aeruginosa. Results of reverse-transcriptase PCR analysis of gene expression in different tissues indicated that the rhinocerosin gene is strongly expressed in the fat body and the Malpighian tubule, and weakly expressed in hemocytes and midgut. In addition, gene expression was inducible by bacteria in the fat body, the Malpighian tubule and hemocyte but constitutive expression was observed in the midgut.

  20. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics

    PubMed Central

    2011-01-01

    Background The mechanical properties of wood are largely determined by the orientation of cellulose microfibrils in secondary cell walls. Several genes and their allelic variants have previously been found to affect microfibril angle (MFA) and wood stiffness; however, the molecular mechanisms controlling microfibril orientation and mechanical strength are largely uncharacterised. In the present study, cDNA microarrays were used to compare gene expression in developing xylem with contrasting stiffness and MFA in juvenile Pinus radiata trees in order to gain further insights into the molecular mechanisms underlying microfibril orientation and cell wall mechanics. Results Juvenile radiata pine trees with higher stiffness (HS) had lower MFA in the earlywood and latewood of each ring compared to low stiffness (LS) trees. Approximately 3.4 to 14.5% out of 3, 320 xylem unigenes on cDNA microarrays were differentially regulated in juvenile wood with contrasting stiffness and MFA. Greater variation in MFA and stiffness was observed in earlywood compared to latewood, suggesting earlywood contributes most to differences in stiffness; however, 3-4 times more genes were differentially regulated in latewood than in earlywood. A total of 108 xylem unigenes were differentially regulated in juvenile wood with HS and LS in at least two seasons, including 43 unigenes with unknown functions. Many genes involved in cytoskeleton development and secondary wall formation (cellulose and lignin biosynthesis) were preferentially transcribed in wood with HS and low MFA. In contrast, several genes involved in cell division and primary wall synthesis were more abundantly transcribed in LS wood with high MFA. Conclusions Microarray expression profiles in Pinus radiata juvenile wood with contrasting stiffness has shed more light on the transcriptional control of microfibril orientation and the mechanical properties of wood. The identified candidate genes provide an invaluable resource for further gene function and association genetics studies aimed at deepening our understanding of cell wall biomechanics with a view to improving the mechanical properties of wood. PMID:21962175

  1. Betacellulin overexpression in mesenchymal stem cells induces insulin secretion in vitro and ameliorates streptozotocin-induced hyperglycemia in rats.

    PubMed

    Paz, Ana H; Salton, Gabrielle Dias; Ayala-Lugo, Ana; Gomes, Cristiano; Terraciano, Paula; Scalco, Rosana; Laurino, Claudia Cilene Fernandes Correia; Passos, Eduardo Pandolfi; Schneider, Marlon R; Meurer, Luise; Cirne-Lima, Elizabeth

    2011-02-01

    Betacellulin (BTC), a ligand of the epidermal growth factor receptor, has been shown to promote growth and differentiation of pancreatic β-cells and to improve glucose metabolism in experimental diabetic rodent models. Mesenchymal stem cells (MSCs) have been already proved to be multipotent. Recent work has attributed to rat and human MSCs the potential to differentiate into insulin-secreting cells. Our goal was to transfect rat MSCs with a plasmid containing BTC cDNA to guide MSC differentiation into insulin-producing cells. Prior to induction of cell MSC transfection, MSCs were characterized by flow cytometry and the ability to in vitro differentiate into mesoderm cell types was evaluated. After rat MSC characterization, these cells were electroporated with a plasmid containing BTC cDNA. Transfected cells were cultivated in Dulbecco's modified Eagle medium high glucose (H-DMEM) with 10 mM nicotinamide. Then, the capability of MSC-BTC to produce insulin in vitro and in vivo was evaluated. It was possible to demonstrate by radioimmunoassay analysis that 10(4) MSC-BTC cells produced up to 0.4 ng/mL of insulin, whereas MSCs transfected with the empty vector (negative control) produced no detectable insulin levels. Moreover, MSC-BTC were positive for insulin in immunohistochemistry assay. In parallel, the expression of pancreatic marker genes was demonstrated by molecular analysis of MSC-BTC. Further, when MSC-BTC were transplanted to streptozotocin diabetic rats, BTC-transfected cells ameliorated hyperglycemia from over 500 to about 200 mg/dL at 35 days post-cell transplantation. In this way, our results clearly demonstrate that BTC overabundance enhances glucose-induced insulin secretion in MSCs in vitro as well as in vivo.

  2. Sexually dimorphic expression of the genes encoding ribosomal proteins L17 and L37 in the song control nuclei of juvenile zebra finches

    PubMed Central

    Tang, Yu Ping; Wade, Juli

    2010-01-01

    Studies evaluating the role of steroid hormones in sexual differentiation of the zebra finch song system have produced complicated and at times paradoxical results, and indicate that additional factors may be critical. Therefore, in a previous study we initiated a screen for differential gene expression in the telencephalon of developing male and female zebra finches. The use of cDNA microarrays and real-time quantitative PCR revealed increased expression of the genes encoding ribosomal proteins L17 and L37 (RPL17 and RPL37) in the male forebrain as a whole. Preliminary in situ hybridization data then indicated enhanced expression of both these genes in song control regions. Two experiments in the present study quantified the mRNA expression. The first utilized 25-day-old male and female zebra finches. The second compared a separate set of juveniles to adults of both sexes to both re-confirm enhanced expression in juvenile males and to determine whether it is limited to developing animals. In Experiment 1, males exhibited increased expression of both RPL17 and RPL37 compared to females in Area X, the robust nucleus of the arcopallium (RA), and the ventral ventricular zone (VVZ), which may provide neurons to Area X. Experiment 2 replicated the sexually dimorphic expression of these genes at post-hatching day 25, and documented that the sex differences are eliminated or greatly reduced in adults. The results are consistent with the idea that these ribosomal proteins may influence sexual differentiation of Area X and RA, potentially regulating the genesis and/or survival of neurons. PMID:16938280

  3. Sexually dimorphic expression of the genes encoding ribosomal proteins L17 and L37 in the song control nuclei of juvenile zebra finches.

    PubMed

    Tang, Yu Ping; Wade, Juli

    2006-12-18

    Studies evaluating the role of steroid hormones in sexual differentiation of the zebra finch song system have produced complicated and at times paradoxical results, and indicate that additional factors may be critical. Therefore, in a previous study we initiated a screen for differential gene expression in the telencephalon of developing male and female zebra finches. The use of cDNA microarrays and real-time quantitative PCR revealed increased expression of the genes encoding ribosomal proteins L17 and L37 (RPL17 and RPL37) in the male forebrain as a whole. Preliminary in situ hybridization data then indicated enhanced expression of both these genes in song control regions. Two experiments in the present study quantified the mRNA expression. The first utilized 25-day-old male and female zebra finches. The second compared a separate set of juveniles to adults of both sexes to both re-confirm enhanced expression in juvenile males and to determine whether it is limited to developing animals. In Experiment 1, males exhibited increased expression of both RPL17 and RPL37 compared to females in Area X, the robust nucleus of the arcopallium (RA), and the ventral ventricular zone (VVZ), which may provide neurons to Area X. Experiment 2 replicated the sexually dimorphic expression of these genes at post-hatching day 25, and documented that the sex differences are eliminated or greatly reduced in adults. The results are consistent with the idea that these ribosomal proteins may influence sexual differentiation of Area X and RA, potentially regulating the genesis and/or survival of neurons.

  4. Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis.

    PubMed

    Takahara, Hiroyuki; Dolf, Andreas; Endl, Elmar; O'Connell, Richard

    2009-08-01

    Generation of stage-specific cDNA libraries is a powerful approach to identify pathogen genes that are differentially expressed during plant infection. Biotrophic pathogens develop specialized infection structures inside living plant cells, but sampling the transcriptome of these structures is problematic due to the low ratio of fungal to plant RNA, and the lack of efficient methods to isolate them from infected plants. Here we established a method, based on fluorescence-activated cell sorting (FACS), to purify the intracellular biotrophic hyphae of Colletotrichum higginsianum from homogenates of infected Arabidopsis leaves. Specific selection of viable hyphae using a fluorescent vital marker provided intact RNA for cDNA library construction. Pilot-scale sequencing showed that the library was enriched with plant-induced and pathogenicity-related fungal genes, including some encoding small, soluble secreted proteins that represent candidate fungal effectors. The high purity of the hyphae (94%) prevented contamination of the library by sequences derived from host cells or other fungal cell types. RT-PCR confirmed that genes identified in the FACS-purified hyphae were also expressed in planta. The method has wide applicability for isolating the infection structures of other plant pathogens, and will facilitate cell-specific transcriptome analysis via deep sequencing and microarray hybridization, as well as proteomic analyses.

  5. Expression profiling of the mouse early embryo: Reflections and Perspectives

    PubMed Central

    Ko, Minoru S. H.

    2008-01-01

    Laboratory mouse plays important role in our understanding of early mammalian development and provides invaluable model for human early embryos, which are difficult to study for ethical and technical reasons. Comprehensive collection of cDNA clones, their sequences, and complete genome sequence information, which have been accumulated over last two decades, have provided even more advantages to mouse models. Here the progress in global gene expression profiling in early mouse embryos and, to some extent, stem cells are reviewed and the future directions and challenges are discussed. The discussions include the restatement of global gene expression profiles as snapshot of cellular status, and subsequent distinction between the differentiation state and physiological state of the cells. The discussions then extend to the biological problems that can be addressed only through global expression profiling, which include: bird’s-eye view of global gene expression changes, molecular index for developmental potency, cell lineage trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory cascades and networks. PMID:16739220

  6. Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis of its expression in relation to cell proliferation.

    PubMed

    Reddy, M K; Nair, S; Tewari, K K; Mudgil, Y; Yadav, B S; Sopory, S K

    1999-09-01

    We have isolated and sequenced four overlapping cDNA clones to identify the full-length cDNA for topoisomerase II (PsTopII) from pea. Using degenerate primers, based on the conserved amino acid sequences of other eukaryotic type II topoisomerases, a 680 bp fragment was PCR-amplified with pea cDNA as template. This fragment was used as a probe to screen an oligo-dT-primed pea cDNA library. A partial cDNA clone was isolated that was truncated at the 3' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of PsTopII is 4639 bp with an open reading frame of 4392 bp. The deduced amino acid sequence shows a strong homology to other eukaryotic topoisomerase II (topo II) at the N-terminus end. The topo II transcript was abundant in proliferative tissues. We also show that the level of topo II transcripts could be stimulated by exogenous application of growth factors that induced proliferation in vitro cultures. Light irradiation to etiolated tissue strongly stimulated the expression of topo II. These results suggest that topo II gene expression is up-regulated in response to light and hormones and correlates with cell proliferation. Besides, we have also isolated and analysed the 5'-flanking region of the pea TopII gene. This is first report on the isolation of a putative promoter for topoisomerase II from plants.

  7. Purification of a Jojoba Embryo Fatty Acyl-Coenzyme A Reductase and Expression of Its cDNA in High Erucic Acid Rapeseed

    PubMed Central

    Metz, James G.; Pollard, Michael R.; Anderson, Lana; Hayes, Thomas R.; Lassner, Michael W.

    2000-01-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes. PMID:10712526

  8. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    PubMed

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  9. Cloning and molecular characterization of the salt-regulated jojoba ScRab cDNA encoding a small GTP-binding protein.

    PubMed

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2002-10-01

    Salt stress results in a massive change in gene expression. An 837 bp cDNA designated ScRab was cloned from shoot cultures of the salt tolerant jojoba (Simmondsia chinesis). The cloned cDNA encodes a full length 200 amino acid long polypeptide that bears high homology to the Rab subfamily of small GTP binding proteins, particularly, the Rab5 subfamily. ScRab expression is reduced in shoots grown in the presence of salt compared to shoots from non-stressed cultures. His6-tagged ScRAB protein was expressed in E. coli, and purified to homogeneity. The purified protein bound radiolabelled GTP. The unlabelled guanine nucleotides GTP, GTP gamma S and GDP but not ATP, CTP or UTP competed with GTP binding.

  10. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes.

    PubMed Central

    Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J

    1993-01-01

    A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506

  11. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  12. Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23).

    PubMed

    Alvarez-Pérez, Marco Antonio; Narayanan, Sampath; Zeichner-David, Margarita; Rodríguez Carmona, Bruno; Arzate, Higinio

    2006-03-01

    Cementum is a unique mineralized connective tissue that covers the root surfaces of the teeth. The cementum is critical for appropriate maturation of the periodontium, both during development as well as that associated with regeneration of periodontal tissues, IU; however, one major impediment to understand the molecular mechanisms that regulate periodontal regeneration is the lack of cementum markers. Here we report on the identification and characterization of one such differentially human expressed gene, termed "cementum protein-23" (CP-23) that appears to be periodontal ligament and cementum-specific. We screened human cementum tumor-derived cDNA libraries by transient expression in COS-7 cells and "panning" with a rabbit polyclonal antibody against a cementoblastoma conditioned media-derived protein (CP). One isolated cDNA, CP-23, was expressed in E. coli and polyclonal antibodies against the recombinant human CP-23 were produced. Expression of CP-23 protein by cells of the periodontium was examined by Northern blot and in situ hybridization. Expression of CP-23 transcripts in human cementoblastoma-derived cells, periodontal ligament cells, human gingival fibroblasts and alveolar bone-derived cells was determined by RT-PCR. Our results show that we have isolated a 1374-bp human cDNA containing an open reading frame that encodes a polypeptide with 247 amino acid residues, with a predicted molecular mass of 25.9 kDa that represents CP species. The recombinant human CP-23 protein cross-reacted with antibodies against CP and type X collagen. Immunoscreening of human periodontal tissues revealed that CP-23 gene product is localized to the cementoid matrix of cementum and cementoblasts throughout the entire surface of the root, cell subpopulations of the periodontal ligament as well as cells located paravascularly to the blood vessels into the periodontal ligament. Furthermore, 98% of putative cementoblasts and 15% of periodontal ligament cells cultured in vitro expressed CP-23 gene product. Cementoblastoma cells and periodontal ligament cells contained a 5.0 kb CP-23 mRNA. In situ hybridization showed strong expression of CP-23 mRNA on cementoblast, cell subpopulations of the periodontal ligament and cells located around blood vessels into the periodontal ligament. Our results demonstrate that CP-23 represents a novel, tissue-specific-gene product being expressed by periodontal ligament subpopulations and cementoblasts. These findings offer the possibility to determine the cellular and molecular events that regulate the cementogenesis process during root development. Furthermore, it might provide new venues for the design of translational studies aimed at achieving predictable new cementogenesis and regeneration of the periodontal tissues.

  13. Generation of a total of 6483 expressed sequence tags from 60 day-old bovine whole fetus and fetal placenta.

    PubMed

    Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y

    2004-05-01

    Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.

  14. Metatranscriptomics of Soil Eukaryotic Communities.

    PubMed

    Yadav, Rajiv K; Bragalini, Claudia; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2016-01-01

    Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.

  15. Identification of Abundantly Expressed Novel and Conserved Genes from the Infective Larval Stage of Toxocara canis by an Expressed Sequence Tag Strategy

    PubMed Central

    Tetteh, Kevin K. A.; Loukas, Alex; Tripp, Cindy; Maizels, Rick M.

    1999-01-01

    Larvae of Toxocara canis, a nematode parasite of dogs, infect humans, causing visceral and ocular larva migrans. In noncanid hosts, larvae neither grow nor differentiate but endure in a state of arrested development. Reasoning that parasite protein production is orientated to immune evasion, we undertook a random sequencing project from a larval cDNA library to characterize the most highly expressed transcripts. In all, 266 clones were sequenced, most from both 3′ and 5′ ends, and similarity searches against GenBank protein and dbEST nucleotide databases were conducted. Cluster analyses showed that 128 distinct gene products had been found, all but 3 of which represented newly identified genes. Ninety-five genes were represented by a single clone, but seven transcripts were present at high frequencies, each composing >2% of all clones sequenced. These high-abundance transcripts include a mucin and a C-type lectin, which are both major excretory-secretory antigens released by parasites. Four highly expressed novel gene transcripts, termed ant (abundant novel transcript) genes, were found. Together, these four genes comprised 18% of all cDNA clones isolated, but no similar sequences occur in the Caenorhabditis elegans genome. While the coding regions of the four genes are dissimilar, their 3′ untranslated tracts have significant homology in nucleotide sequence. The discovery of these abundant, parasite-specific genes of newly identified lectins and mucins, as well as a range of conserved and novel proteins, provides defined candidates for future analysis of the molecular basis of immune evasion by T. canis. PMID:10456930

  16. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit.

    PubMed

    Chen, Jiao; Chen, Jian-Ye; Wang, Jun-Ning; Kuang, Jian-Fei; Shan, Wei; Lu, Wang-Jin

    2012-04-01

    CONSTANS (CO) gene is a key transcription regulator that controls the long-day induction of flowering in Arabidopsis plant. However, CO gene involved in fruit ripening and stress responses is poorly understood. In the present study, a novel cDNA encoding CONSTANS-like gene, designated as MaCOL1 was isolated and characterized from banana fruit. The full length cDNA sequence was 1887bp with an open reading frame (ORF) of 1242bp, encoding 414 amino acids with a molecular weight of 46.20kDa and a theoretical isoelectric point of 5.40. Sequence alignment showed that MaCOL1 contained two B-box zinc finger motifs and a CCT domain. In addition, MaCOL1 showed transcriptional activity in yeast and was a nucleus-localized protein. Real-time PCR analysis showed that MaCOL1 was differentially expressed among various banana plant organs, with higher expression in flower. Expression of MaCOL1 in peel changed slightly, while accumulation of MaCOL1 transcripts in pulp obviously increased during natural or ethylene-induced fruit ripening, suggesting that MaCOL1 might be associated with the pulp ripening of banana fruit. Moreover, accumulation of MaCOL1 transcript was obviously enhanced by abiotic and biotic stresses, such as chilling and pathogen Colletotrichum musae infection. Taken together, our results suggest that MaCOL1 is a transcription activator and may be involved in fruit ripening and stress responses. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Cloning and expression of the rat homologue of the Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, I.; Epplen, J.T.; Riess, O.

    1994-09-01

    Huntington`s disease (HD) is an autosomal dominant neurodegenerative disorder which is manifested usually in adult life. The age of onset is variable and leads to progressive symptoms including involuntary choreatic movements and various cognitive and psychiatric disturbances. Recently, a gene (IT15) was cloned containing a (CAG){sub n} repeat which is elongated and unstable in HD patients. IT15 is widely expressed in human tissues but unrelated to any known deduced protein sequence. To further investigate the HD gene, 15 rat cDNA libraries were screened. 24 clones have been identified covering the Huntingtin gene. Comparison of the Huntingtin gene between human andmore » rat revealed homologies between 80% and 87% at the DNA level and about 90% at the protein level. These analyses will help to define biologically important sequence regions, e.g., via evolutionary conservation. One clone contains the (CAG){sub n} repeat which consists of eight triplets compared to seven triplets in the mouse and a median of 17 in human. As in humans there are two transcripts arising from differential 3{prime}-polyadenylation. In the 3{prime}UTR a stretch of about 280 bp is exchanged for a 250 bp fragment with no homology in rodents and man. The cDNA clones are currently used to study Huntingtin gene expression during development in rodent tissues. RNA in situ hybridization of embryonic sections shows predominant signals in all neuronal tissues. In contrast to previously published data Huntingtin mRNA expression in testis is increased in spermatocytes vs. spermatogonia.« less

  18. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization

    PubMed Central

    Sahu, Binod B; Shaw, Birendra P

    2009-01-01

    Background Despite wealth of information generated on salt tolerance mechanism, its basics still remain elusive. Thus, there is a need of continued effort to understand the salt tolerance mechanism using suitable biotechnological techniques and test plants (species) to enable development of salt tolerant cultivars of interest. Therefore, the present study was undertaken to generate information on salt stress responsive genes in a natural halophyte, Suaeda maritima, using PCR-based suppression subtractive hybridization (PCR-SSH) technique. Results Forward and reverse SSH cDNA libraries were constructed after exposing the young plants to 425 mM NaCl for 24 h. From the forward SSH cDNA library, 429 high quality ESTs were obtained. BLASTX search and TIGR assembler programme revealed overexpression of 167 unigenes comprising 89 singletons and 78 contigs with ESTs redundancy of 81.8%. Among the unigenes, 32.5% were found to be of special interest, indicating novel function of these genes with regard to salt tolerance. Literature search for the known unigenes revealed that only 17 of them were salt-inducible. A comparative analysis of the existing SSH cDNA libraries for NaCl stress in plants showed that only a few overexpressing unigenes were common in them. Moreover, the present study also showed increased expression of phosphoethanolamine N-methyltransferase gene, indicating the possible accumulation of a much studied osmoticum, glycinebetaine, in halophyte under salt stress. Functional categorization of the proteins as per the Munich database in general revealed that salt tolerance could be largely determined by the proteins involved in transcription, signal transduction, protein activity regulation and cell differentiation and organogenesis. Conclusion The study provided a clear indication of possible vital role of glycinebetaine in the salt tolerance process in S. maritima. However, the salt-induced expression of a large number of genes involved in a wide range of cellular functions was indicative of highly complex nature of the process as such. Most of the salt inducible genes, nonetheless, appeared to be species-specific. In light of the observations made, it is reasonable to emphasize that a comparative analysis of ESTs from SSH cDNA libraries generated systematically for a few halophytes with varying salt exposure time may clearly identify the key salt tolerance determinant genes to a minimum number, highly desirable for any genetic manipulation adventure. PMID:19497134

  19. GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN CDNA MICROARRAY ANALYSES

    EPA Science Inventory

    GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN cDNA MICROARRAY ANALYSES

    B.S. Pukazhenthi1, J. C. Rockett2, M. Ouyang3, D.J. Dix2, J.G. Howard1, P. Georgopoulos4, W.J. J. Welsh3 and D. E. Wildt1

    1Department of Reproductiv...

  20. Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns

    Treesearch

    Luis F. Larrondo; Marcela Avila; Loreto Salas; Dan Cullen; Rafael Vicuna

    2003-01-01

    Analysis of genomic clones encoding a putative laccase in homokaryon strains of Ceriporiopsis subvermispora led to the identification of an allelic variant of the previously described lcs-1 gene. A cDNA clone corresponding to this gene was expressed in Aspergillus nidulans and in Aspergillus niger. Enzyme assays and Western blots showed that both hosts secreted active...

  1. A novel role for the Bombyx Slbo homologue, BmC/EBP, in insect choriogenesis.

    PubMed

    Sourmeli, S; Papantonis, A; Lecanidou, R

    2005-11-18

    One previously unidentified cDNA clone coding for a C/EBP factor, BmC/EBP, was isolated from Bombyx mori follicular cells. This is the first time that a C/EBP factor has been isolated and characterized in Lepidoptera. We provide information concerning structural features and developmental specificity, as well as in vitro interaction properties with chorion gene promoter modules. BmC/EBP was capable of effectively recognizing homologous binding sites from chorion gene promoters derived from flies and other moths, despite significant diversity of chorion structure, gene organization, and gene expression profiles. We propose that the relative concentration of BmC/EBP, in relation to its differential binding affinity for promoter cis-elements, results in activation or repression of silkmoth chorion gene expression.

  2. Evaluation of tyrosine-kinase receptor c-KIT (c-KIT) mutations, mRNA and protein expression in canine leukemia: might c-KIT represent a therapeutic target?

    PubMed

    Giantin, M; Aresu, L; Aricò, A; Gelain, M E; Riondato, F; Martini, V; Comazzi, S; Dacasto, M

    2013-04-15

    The tyrosine-kinase receptor c-KIT (c-KIT) plays an important role in proliferation, survival and differentiation of progenitor cells in normal hematopoietic cells. In human hematological malignancies, c-KIT is mostly expressed by progenitor cell neoplasia and seldom by those involving mature cells. Tyrosine kinase inhibitors (TKIs) are actually licensed for the first- and second-line treatment of human hematologic disorders. Aim of the present study was to evaluate c-KIT mRNA and protein expression and complementary DNA (cDNA) mutations in canine leukemia. Eleven acute lymphoblastic leukemia (ALL) and acute undifferentiated leukemia (AUL) and 12 chronic lymphocytic leukemia (CLL) were enrolled in this study. The amounts of c-KIT mRNA and protein were determined, in peripheral blood samples, by using quantitative real time RT-PCR, flow cytometry and immunocytochemistry, respectively. The presence of mutations on c-KIT exons 8-11 and 17 were investigated by cDNA sequencing. Higher amounts of c-KIT mRNA were found in ALL/AUL compared to CLL, and this latter showed a lower pattern of gene expression. Transcriptional data were confirmed at the protein level. No significant gain-of-function mutations were ever observed in both ALL/AUL and CLL. Among canine hematological malignancies, ALL/AUL typically show a very aggressive biological behavior, partly being attributable to the lack of efficacious therapeutic options. The high level of c-KIT expression found in canine ALL/AUL might represent the rationale for using TKIs in future clinical trials. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas in response to Taura syndrome Virus (TSV) experimental infection.

    PubMed

    Zeng, Digang; Chen, Xiuli; Xie, Daxiang; Zhao, Yongzhen; Yang, Chunling; Li, Yongmei; Ma, Ning; Peng, Min; Yang, Qiong; Liao, Zhenping; Wang, Hui; Chen, Xiaohan

    2013-01-01

    The Pacific white shrimp, Litopenaeus vannamei, is a worldwide cultured crustacean species with important commercial value. Over the last two decades, Taura syndrome virus (TSV) has seriously threatened the shrimp aquaculture industry in the Western Hemisphere. To better understand the interaction between shrimp immune and TSV, we performed a transcriptome analysis in the hepatopancreas of L. vannamei challenged with TSV, using the 454 pyrosequencing (Roche) technology. We obtained 126919 and 102181 high-quality reads from TSV-infected and non-infected (control) L. vannamei cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 15004 unigenes, with an average length of 507 bp. Based on BLASTX search (E-value <10-5) against NR, Swissprot, GO, COG and KEGG databases, 10425 unigenes (69.50% of all unigenes) were annotated with gene descriptions, gene ontology terms, or metabolic pathways. In addition, we identified 770 microsatellites and designed 497 sets of primers. Comparative genomic analysis revealed that 1311 genes differentially expressed in the infected shrimp compared to the controls, including 559 up- and 752 down- regulated genes. Among the differentially expressed genes, several are involved in various animal immune functions, such as antiviral, antimicrobial, proteases, protease inhibitors, signal transduction, transcriptional control, cell death and cell adhesion. This study provides valuable information on shrimp gene activities against TSV infection. Results can contribute to the in-depth study of candidate genes in shrimp immunity, and improves our current understanding of this host-virus interaction. In addition, the large amount of transcripts reported in this study provide a rich source for identification of novel genes in shrimp.

  4. Molecular cloning of the cDNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica.

    PubMed

    Guo, Mei; Lu, Fuping; Pu, Jun; Bai, Dongqing; Du, Lianxiang

    2005-11-01

    A cDNA encoding for laccase was isolated from the ligninolytic fungus Trametes versicolor by RNA-PCR. The cDNA corresponds to the gene Lcc1, which encodes a laccase isoenzyme of 498 amino acid residues preceded by a 22-residue signal peptide. The Lcc1 cDNA was cloned into the vectors pMETA and pMETalphaA and expressed in Pichia methanolica. The laccase activity obtained with the Saccharomyces cerevisiae alpha-factor signal peptide was found to be twofold higher than that obtained with the native secretion signal peptide. The extracellular laccase activity in recombinants with the alpha-factor signal peptide was 9.79 U ml(-1). The presence of 0.2 mM copper was necessary for optimal activity of laccase. The expression level was favoured by lower cultivation temperature. The identity of the recombinant protein was further confirmed by immunodetection using Western blot analysis. As expected, the molecular mass of the mature laccase was 64.0 kDa, similar to that of the native form.

  5. Molecular and characterization of NnPPO cDNA from lotus (Nelumbo nucifera) in rhizome browning.

    PubMed

    Dong, C; Yu, A Q; Yang, M G; Zhou, M Q; Hu, Z L

    2016-04-30

    The complete cDNA (NnPPO) of polyphenol oxidase in Nelumbo nucifera was successfully isolated, using Rapid amplification cDNA end (RACE) assays. The full-length cDNA of NnPPO was 2069 bp in size, containing a 1791 bp open reading frame coding 597 amino acids. The putative NnPPO possessed the conserved active sites and domains for PPO function. Phylogenetic analysis revealed that NnPPO shared high homology with PPO of high plants, and the homology modeling proved that NnPPO had the typical structure of PPO family. In order to characterize the role of NnPPO, Real-time PCR assay demonstrated that NnPPO mRNA was expressed in different tissues of N. nucifera including young leave, rhizome, flower, root and leafstalk, with the highest expression in rhizome. Patterns of NnPPO expression in rhizome illustrated its mRNA level was significantly elevated, which was consistent with the change of NnPPO activity during rhizome browning. Therefore, transcriptional activation of NnPPO was probably the main reason causing rhizome browning.

  6. Saponin Biosynthesis in Saponaria vaccaria. cDNAs Encoding β-Amyrin Synthase and a Triterpene Carboxylic Acid Glucosyltransferase1[OA

    PubMed Central

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.

    2007-01-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  7. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster.

    PubMed

    Tatry, Marie-Violaine; El Kassis, Elie; Lambilliotte, Raphaël; Corratgé, Claire; van Aarle, Ingrid; Amenc, Laurie K; Alary, Rémi; Zimmermann, Sabine; Sentenac, Hervé; Plassard, Claude

    2009-03-01

    Ectomycorrhizal symbiosis markedly improves plant phosphate uptake, but the molecular mechanisms underlying this benefit are still poorly understood. We identified two ESTs in a cDNA library prepared from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum with significant similarities to phosphate transporters from the endomycorrhizal fungus Glomus versiforme and from non-mycorrhizal fungi. The full-length cDNAs corresponding to these two ESTs complemented a yeast phosphate transport mutant (Deltapho84). Measurements of (33)P-phosphate influx into yeast expressing either cDNA demonstrated that the encoded proteins, named HcPT1 and HcPT2, were able to mediate Pi:H(+) symport with different affinities for Pi (K(m) values of 55 and 4 mum, respectively). Real-time RT-PCR showed that Pi starvation increased the levels of HcPT1 transcripts in H. cylindrosporum hyphae grown in pure culture. Transcript levels of HcPT2 were less dependent on Pi availability. The two transporters were expressed in H. cylindrosporum associated with its natural host plant, Pinus pinaster, grown under low or high P conditions. The presence of ectomycorrhizae increased net Pi uptake rates into intact Pinus pinaster roots at low or high soil P levels. The expression patterns of HcPT1 and HcPT2 indicate that the two fungal phosphate transporters may be involved in uptake of phosphate from the soil solution under the two soil P availability conditions used.

  8. Znrg, a novel gene expressed mainly in the developing notochord of zebrafish.

    PubMed

    Zhou, Yaping; Xu, Yan; Li, Jianzhen; Liu, Yao; Zhang, Zhe; Deng, Fengjiao

    2010-06-01

    The notochord, a defining characteristic of the chordate embryo is a critical midline structure required for axial skeletal formation in vertebrates, and acts as a signaling center throughout embryonic development. We utilized the digital differential display program of the National Center for Biotechnology Information, and identified a contig of expressed sequence tags (no. Dr. 83747) from the zebrafish ovary library in Genbank. Full-length cDNA of the identified gene was cloned by 5'- and 3'- RACE, and the resulting sequence was confirmed by polymerase chain reaction and sequencing. The cDNA clone contains 2,505 base pairs and encodes a novel protein of 707 amino acids that shares no significant homology with any known proteins. This gene was expressed in mature oocytes and at the one-cell stage, and persisted until the 5th day of development, as determined by RT-PCR. Transcripts were detected by whole-mount RNA in situ hybridization from the two-cell stage to 72 h of embryonic development. This gene was uniformly distributed from the cleavage stage up to the blastula stage. During early gastrulation, it was present in the dorsal region, and became restricted to the notochord and pectoral fin at 48 and 72 h of embryonic development. Based on its abundance in the notochord, we hypothesized that the novel gene may play an important role in notochord development in zebrafish; we named this gene, zebrafish notochord-related gene, or znrg.

  9. Cloning and analysis of DnaJ family members in the silkworm, Bombyx mori.

    PubMed

    Li, Yinü; Bu, Cuiyu; Li, Tiantian; Wang, Shibao; Jiang, Feng; Yi, Yongzhu; Yang, Huipeng; Zhang, Zhifang

    2016-01-15

    Heat shock proteins (Hsps) are involved in a variety of critical biological functions, including protein folding, degradation, and translocation and macromolecule assembly, act as molecular chaperones during periods of stress by binding to other proteins. Using expressed sequence tag (EST) and silkworm (Bombyx mori) transcriptome databases, we identified 27 cDNA sequences encoding the conserved J domain, which is found in DnaJ-type Hsps. Of the 27 J domain-containing sequences, 25 were complete cDNA sequences. We divided them into three types according to the number and presence of conserved domains. By analyzing the gene structures, intron numbers, and conserved domains and constructing a phylogenetic tree, we found that the DnaJ family had undergone convergent evolution, obtaining new domains to expand the diversity of its family members. The acquisition of the new DnaJ domains most likely occurred prior to the evolutionary divergence of prokaryotes and eukaryotes. The expression of DnaJ genes in the silkworm was generally higher in the fat body. The tissue distribution of DnaJ1 proteins was detected by western blotting, demonstrating that in the fifth-instar larvae, the DnaJ1 proteins were expressed at their highest levels in hemocytes, followed by the fat body and head. We also found that the DnaJ1 transcripts were likely differentially translated in different tissues. Using immunofluorescence cytochemistry, we revealed that in the blood cells, DnaJ1 was mainly localized in the cytoplasm. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Differential Accumulation of Sunflower Tetraubiquitin mRNAs during Zygotic Embryogenesis and Developmental Regulation of Their Heat-Shock Response.

    PubMed Central

    Almoguera, C.; Coca, M. A.; Jordano, J.

    1995-01-01

    We have isolated and sequenced Ha UbiS, a cDNA for a dry-seed-stored mRNA that encodes tetraubiquitin. We have observed differential accumulation of tetraubiquitin mRNAs during sunflower (Helianthus annuus L.) zygotic embryogenesis. These mRNAs were up-regulated during late embryogenesis and reached higher prevalence in the dry seed, where they were found to be associated mainly with provascular tissue. UbiS mRNA, as confirmed by Rnase A protection experiments, accumulated also in response to heat shock, but only in leaves and later during postgerminative development. These novel observations demonstrate expression during seed maturation of specific plant polyubiquitin transcripts and developmental regulation of their heat-shock response. Using ubiquitin antibodies we also detected discrete, seed-specific proteins with distinct temporal expression patterns during zygotic embryogenesis. Some of these patterns were concurrent with UbiS mRNA accumulation in seeds. The most abundant ubiquitin-reacting proteins found in mature seeds were small (16-22 kD) and acidic (isoelectric points of 6.1-7.4). Possible functional implications for UbiS expression elicited from these observations are discussed. PMID:12228401

  11. Reproducibility-optimized test statistic for ranking genes in microarray studies.

    PubMed

    Elo, Laura L; Filén, Sanna; Lahesmaa, Riitta; Aittokallio, Tero

    2008-01-01

    A principal goal of microarray studies is to identify the genes showing differential expression under distinct conditions. In such studies, the selection of an optimal test statistic is a crucial challenge, which depends on the type and amount of data under analysis. While previous studies on simulated or spike-in datasets do not provide practical guidance on how to choose the best method for a given real dataset, we introduce an enhanced reproducibility-optimization procedure, which enables the selection of a suitable gene- anking statistic directly from the data. In comparison with existing ranking methods, the reproducibilityoptimized statistic shows good performance consistently under various simulated conditions and on Affymetrix spike-in dataset. Further, the feasibility of the novel statistic is confirmed in a practical research setting using data from an in-house cDNA microarray study of asthma-related gene expression changes. These results suggest that the procedure facilitates the selection of an appropriate test statistic for a given dataset without relying on a priori assumptions, which may bias the findings and their interpretation. Moreover, the general reproducibilityoptimization procedure is not limited to detecting differential expression only but could be extended to a wide range of other applications as well.

  12. Human placental lactogen mRNA and its structural genes during pregnancy: quantitation with a complementary DNA.

    PubMed Central

    McWilliams, D; Callahan, R C; Boime, I

    1977-01-01

    A complementary DNA (cDNA) strand was transcribed from human placental lactogen (hPL) mRNA. Based on alkaline sucrose gradient centrifugation, the size of the cDNA was about 8 S, which would represent at least 80% of the hPL mRNA. Previously we showed that four to five times more hPL was synthesized in cell-free extracts derived from term as compared to first trimester placentas. Hybridization of the cDNA with RNA derived from placental tissue revealed that there was about four times more hPL mRNA sequences in total RNA from term placenta than in a comparable quantity of total first trimester RNA. Only background hybridization was observed when the cDNA was incubated with RNA prepared from human kidney. To test if this differential accumulation of hPL mRNA was the result of an amplification of hPL genes, we hybridized the labeled cDNA with cellular DNA from first trimester and term placentas and with DNA isolated from human brain. In all cases, the amount of hPL sequences was approximately two copies per haploid genome. Thus, the enhanced synthesis of hPL mRNA appears to result from a transcriptional activation rather than an amplification of the hPL gene. The increase likely reflects placental differentiation in which the proportion of syncytial trophoblast increases at term. Images PMID:66681

  13. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon).

    PubMed

    Zhang, Fantao; Zhou, Yi; Zhang, Meng; Luo, Xiangdong; Xie, Jiankun

    2017-06-30

    Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice ( Oryza rufipogon , DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars. © 2017 The Author(s).

  14. Initiation of follicular atresia: gene networks during early atresia in pig ovaries.

    PubMed

    Zhang, Jinbi; Liu, Yang; Yao, Wang; Li, Qifa; Liu, Hong-Lin; Pan, Zengxiang

    2018-05-09

    In mammals, more than 99% of ovarian follicles undergo a degenerative process known as atresia. The molecular events involve in atresia initiation remain incompletely understood. The objective of this study was to analyze differential gene expression profiles of medium antral ovarian follicles during early atresia in pig. The transcriptome evaluation was performed on cDNA microarrays using healthy and early atretic follicle samples and was validated by quantitative PCR. Annotation analysis applying current database (sus scrofa 11.1) revealed 450 significantly differential expressed genes between healthy and early atretic follicles. Among them, 142 were significantly up-regulated in early atretic with respect to healthy group and 308 were down-regulated. Similar expression trends were observed between microarray data and qRT-PCR confirmation, which indicated the reliability of the microarray analysis. Further analysis of the differential expressed genes revealed the most significantly affected biological functions during early atresia including blood vessel development, regulation of DNA-templated transcription in response to stress and negative regulation of cell adhesion. The pathway and interaction analysis suggested that atresia initiation associates with 1) a crosstalk of cell apoptosis, autophagy, and ferroptosis rather than change of typical apoptosis markers, 2) dramatic shift of steroidogenic enzymes, 3) deficient glutathione metabolism, and 4) vascular degeneration. The novel gene candidates and pathways identified in the current study will lead to a comprehensive view of the molecular regulation of ovarian follicular atresia and a new understanding of atresia initiation.

  15. Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis.

    PubMed

    Kong, Hee Jeong; Cho, Hyun Kook; Park, Eun-Mi; Hong, Gyeong-Eun; Kim, Young-Ok; Nam, Bo-Hye; Kim, Woo-Jin; Lee, Sang-Jun; Han, Hyon Sob; Jang, In-Kwon; Lee, Chang Hoon; Cheong, Jaehun; Choi, Tae-Jin

    2009-01-01

    Proteinase inhibitors play important roles in host defence systems involving blood coagulation and pathogen digestion. We isolated and characterized a cDNA clone for a Kazal-type proteinase inhibitor (KPI) from a hemocyte cDNA library of the oriental white shrimp Fenneropenaeus chinensis. The KPI gene consists of three exons and two introns. KPI cDNA contains an open reading frame of 396 bp, a polyadenylation signal sequence AATAAA, and a poly (A) tail. KPI cDNA encodes a polypeptide of 131 amino acids with a putative signal peptide of 21 amino acids. The deduced amino acid sequence of KPI contains two homologous Kazal domains, each with six conserved cysteine residues. The mRNA of KPI is expressed in the hemocytes of healthy shrimp, and the higher expression of KPI transcript is observed in shrimp infected with the white spot syndrome virus (WSSV), suggesting a potential role for KPI in host defence mechanisms.

  16. Identification of Delta5-fatty acid desaturase from the cellular slime mold dictyostelium discoideum.

    PubMed

    Saito, T; Ochiai, H

    1999-10-01

    cDNA fragments putatively encoding amino acid sequences characteristic of the fatty acid desaturase were obtained using expressed sequence tag (EST) information of the Dictyostelium cDNA project. Using this sequence, we have determined the cDNA sequence and genomic sequence of a desaturase. The cloned cDNA is 1489 nucleotides long and the deduced amino acid sequence comprised 464 amino acid residues containing an N-terminal cytochrome b5 domain. The whole sequence was 38.6% identical to the initially identified Delta5-desaturase of Mortierella alpina. We have confirmed its function as Delta5-desaturase by over expression mutation in D. discoideum and also the gain of function mutation in the yeast Saccharomyces cerevisiae. Analysis of the lipids from transformed D. discoideum and yeast demonstrated the accumulation of Delta5-desaturated products. This is the first report concering fatty acid desaturase in cellular slime molds.

  17. Molecular identification and functional expression of mu 3, a novel alternatively spliced variant of the human mu opiate receptor gene.

    PubMed

    Cadet, Patrick; Mantione, Kirk J; Stefano, George B

    2003-05-15

    Studies from our laboratory have revealed a novel mu opiate receptor, mu 3, which is expressed in both vascular tissues and leukocytes. The mu 3 receptor is selective for opiate alkaloids and is insensitive to opioid peptides. We now identify the mu 3 receptor at the molecular level using a 441-bp conserved region of the mu 1 receptor. Sequence analysis of the isolated cDNA suggests that it is a novel, alternatively spliced variant of the mu opiate receptor gene. To determine whether protein expressed from this cDNA exhibits the biochemical characteristics expected of the mu 3 receptor, the cDNA clone was expressed in a heterologous system. At the functional level, COS-1 cells transfected with the mu 3 receptor cDNA exhibited dose-dependent release of NO following treatment with morphine, but not opioid peptides (i.e., Met-enkephalin). Naloxone was able to block the effect of morphine on COS-1 transfected cells. Nontransfected COS-1 cells did not produce NO in the presence of morphine or the opioid peptides at similar concentrations. Receptor binding analysis with [(3)H]dihydromorphine further supports the opiate alkaloid selectivity and opioid peptide insensitivity of this receptor. These data suggest that this new mu opiate receptor cDNA encodes the mu 3 opiate receptor, since it exhibits biochemical characteristics known to be unique to this receptor (opiate alkaloid selective and opioid peptide insensitive). Furthermore, using Northern blot, RT-PCR, and sequence analysis, we have demonstrated the expression of this new mu variant in human vascular tissue, mononuclear cells, polymorphonuclear cells, and human neuroblastoma cells.

  18. Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis

    PubMed Central

    Zhao, Hongjuan; Hastie, Trevor; Whitfield, Michael L; Børresen-Dale, Anne-Lise; Jeffrey, Stefanie S

    2002-01-01

    Background T7 based linear amplification of RNA is used to obtain sufficient antisense RNA for microarray expression profiling. We optimized and systematically evaluated the fidelity and reproducibility of different amplification protocols using total RNA obtained from primary human breast carcinomas and high-density cDNA microarrays. Results Using an optimized protocol, the average correlation coefficient of gene expression of 11,123 cDNA clones between amplified and unamplified samples is 0.82 (0.85 when a virtual array was created using repeatedly amplified samples to minimize experimental variation). Less than 4% of genes show changes in expression level by 2-fold or greater after amplification compared to unamplified samples. Most changes due to amplification are not systematic both within one tumor sample and between different tumors. Amplification appears to dampen the variation of gene expression for some genes when compared to unamplified poly(A)+ RNA. The reproducibility between repeatedly amplified samples is 0.97 when performed on the same day, but drops to 0.90 when performed weeks apart. The fidelity and reproducibility of amplification is not affected by decreasing the amount of input total RNA in the 0.3–3 micrograms range. Adding template-switching primer, DNA ligase, or column purification of double-stranded cDNA does not improve the fidelity of amplification. The correlation coefficient between amplified and unamplified samples is higher when total RNA is used as template for both experimental and reference RNA amplification. Conclusion T7 based linear amplification reproducibly generates amplified RNA that closely approximates original sample for gene expression profiling using cDNA microarrays. PMID:12445333

  19. Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling

    PubMed Central

    Morin, Ryan D.; Chang, Elbert; Petrescu, Anca; Liao, Nancy; Griffith, Malachi; Kirkpatrick, Robert; Butterfield, Yaron S.; Young, Alice C.; Stott, Jeffrey; Barber, Sarah; Babakaiff, Ryan; Dickson, Mark C.; Matsuo, Corey; Wong, David; Yang, George S.; Smailus, Duane E.; Wetherby, Keith D.; Kwong, Peggy N.; Grimwood, Jane; Brinkley, Charles P.; Brown-John, Mabel; Reddix-Dugue, Natalie D.; Mayo, Michael; Schmutz, Jeremy; Beland, Jaclyn; Park, Morgan; Gibson, Susan; Olson, Teika; Bouffard, Gerard G.; Tsai, Miranda; Featherstone, Ruth; Chand, Steve; Siddiqui, Asim S.; Jang, Wonhee; Lee, Ed; Klein, Steven L.; Blakesley, Robert W.; Zeeberg, Barry R.; Narasimhan, Sudarshan; Weinstein, John N.; Pennacchio, Christa Prange; Myers, Richard M.; Green, Eric D.; Wagner, Lukas; Gerhard, Daniela S.; Marra, Marco A.; Jones, Steven J.M.; Holt, Robert A.

    2006-01-01

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization. PMID:16672307

  20. Identification of genes differentially expressed by calorie restriction in the rotifer (Brachionus plicatilis).

    PubMed

    Oo, Aung Kyaw Swar; Kaneko, Gen; Hirayama, Makoto; Kinoshita, Shigeharu; Watabe, Shugo

    2010-01-01

    A monogonont rotifer Brachionus plicatilis has been widely used as a model organism for physiological, ecological studies and for ecotoxicology. Because of the availability of parthenogenetic mode of reproduction as well as its versatility to be used as live food in aquaculture, the population dynamic studies using the rotifer have become more important and acquired the priority over those using other species. Although many studies have been conducted to identify environmental factors that influence rotifer populations, the molecular mechanisms involved still remain to be elucidated. In this study, gene(s) differentially expressed by calorie restriction in the rotifer was analyzed, where a calorie-restricted group was fed 3 h day(-1) and a well-fed group fed ad libitum. A subtracted cDNA library from the calorie-restricted rotifer was constructed using suppression subtractive hybridization (SSH). One hundred sixty-three expressed sequence tags (ESTs) were identified, which included 109 putative genes with a high identity to known genes in the publicly available database as well as 54 unknown ESTs. After assembling, a total of 38 different genes were obtained among 109 ESTs. Further validation of expression by semi-quantitative reverse transcription-PCR showed that 29 out of the 38 genes obtained by SSH were up regulated by calorie restriction.

  1. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Xia, M.; Poovaiah, B. W.

    1998-01-01

    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  2. Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis

    PubMed Central

    Santos, Carolina Gonçalves; Hartfelder, Klaus

    2015-01-01

    Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees’ hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways. PMID:26500430

  3. Embryotrophic factor-3 from human oviductal cells affects the messenger RNA expression of mouse blastocyst.

    PubMed

    Lee, Y L; Lee, K F; Xu, J S; Kwok, K L; Luk, J M; Lee, W M; Yeung, W S B

    2003-02-01

    Our previous results showed that embryotrophic factor-3 (ETF-3) from human oviductal cells increased the size and hatching rate of mouse blastocysts in vitro. The present study investigated the production of ETF-3 by an immortalized human oviductal cell line (OE-E6/E7) and the effects of ETF-3 on the mRNA expression of mouse embryos. The ETF-3 was purified from primary oviductal cell conditioned media using sequential liquid chromatographic systems, and antiserum against ETF-3 was raised. The ETF-3-supplemented Chatot-Ziomek-Bavister medium was used to culture Day 1 MF1 x BALB/c mouse embryos for 4 days. The ETF-3 treatment significantly enhanced the mouse embryo blastulation and hatching rate. The antiserum, at concentrations of 0.03-3%, abolished the embryotrophic effect of ETF-3. Positive ETF-3 immunoreactivity was detected in the primary oviductal cells, OE-E6/E7, and blastocysts derived from ETF-3 treatment. Vero cells (African Green Monkey kidney cell line), fibroblasts, and embryos cultured in control medium did not possess ETF-3 immunoreactivity. The mRNA expression patterns of the treated embryos were studied at the blastocyst stage by mRNA differential display reverse transcription-polymerase chain reaction (DDRT-PCR). The DDRT-PCR showed that some of the mRNAs were differentially expressed after ETF-3 treatment. Twelve of the differentially expressed mRNAs that had high homology with cDNA sequences in the GenBank were selected for further characterization. The differential expression of seven of these mRNAs (ezrin, heat shock 70-kDa protein, cytochrome c oxidase subunit VIIa-L precursor, proteinase-activated receptor 2, eukaryotic translation initiation factor 2beta, cullin 1, and proliferating cell nuclear antigen) was confirmed by semiquantitative RT-PCR. In conclusion, immortalized oviductal cells produce ETF-3, which influences mRNA expression of mouse blastocyst.

  4. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    PubMed

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  5. Expression analysis of a novel pyridoxal kinase messenger RNA splice variant, PKL, in oil rape suffering abiotic stress and phytohormones.

    PubMed

    Yu, Shunwu; Luo, Lijun

    2008-12-01

    Pyridoxal kinase is key enzyme for the biosynthesis of pyridoxal 5'-phosphate, the biologically active form of vitamin B6, in the salvage pathway. A pyridoxal kinase gene, BnPKL (GenBank accession No. DQ463962), was isolated from oilseed rape (Brassica napus L.) following water stress through rapid amplification of complementary DNA (cDNA) ends. The results showed that the gene had two splice variants: PKL and PKL2. PKL, the long cDNA, encodes a 334 amino acid protein with a complete ATP-binding site, pyridoxal kinase-binding site and dimer interface site of a pyridoxal kinase, while PKL2, the short cDNA, lacked a partial domain. Southern blot showed that there were two copies in Brassica napus. The expression of BnPKL cDNA could rescue the mutant phenotype of Escherichia coli defective in pyridoxal kinase. Real-time reverse transcription-polymerase chain reaction revealed that the relative abundance of two transcripts are modulated by development and environmental stresses. Abscisic acid and NaCl were inclined to decrease PKL expression, but H2O2 and cold temperatures induced the PKL expression. In addition, the PKL expression could be transiently induced by jasmonate acid at an early stage, abscisic acid, salicylic acid and jasmonate acid enhanced the PKL expression in roots. Our results demonstrated that BnPKL was a pyridoxal kinase involved in responses to biotic and abiotic stresses.

  6. Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora

    PubMed Central

    Marraccini, Pierre; Vinecky, Felipe; Alves, Gabriel S.C.; Ramos, Humberto J.O.; Elbelt, Sonia; Vieira, Natalia G.; Carneiro, Fernanda A.; Sujii, Patricia S.; Alekcevetch, Jean C.; Silva, Vânia A.; DaMatta, Fábio M.; Ferrão, Maria A.G.; Leroy, Thierry; Pot, David; Vieira, Luiz G.E.; da Silva, Felipe R.; Andrade, Alan C.

    2012-01-01

    The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora. PMID:22511801

  7. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs.

    PubMed

    Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence; Buitenhuis, Bart; Hornshøj, Henrik; SanCristobal, Magali; Mormède, Pierre; de Koning, D J

    2009-07-16

    Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH). Different approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming. This paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.

  8. APPLICATION OF CDNA MICROARRAY TECHNOLOGY TO IN VITRO TOXICOLOGY AND THE SELECTION OF GENES FOR A REAL TIME RT-PCR-BASED SCREEN FOR OXIDATIVE STRESS IN HEP-G2 CELLS

    EPA Science Inventory

    Large-scale analysis of gene expression using cDNA microarrays promises the
    rapid detection of the mode of toxicity for drugs and other chemicals. cDNA
    microarrays were used to examine chemically-induced alterations of gene
    expression in HepG2 cells exposed to oxidative ...

  9. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  10. Cloning and expression of a novel lysophospholipase which structurally resembles lecithin cholesterol acyltransferase.

    PubMed

    Taniyama, Y; Shibata, S; Kita, S; Horikoshi, K; Fuse, H; Shirafuji, H; Sumino, Y; Fujino, M

    1999-04-02

    Lecithin cholesterol acyltransferase (LCAT) is the key enzyme in the esterification of plasma cholesterol and in the reverse cholesterol transport on high-density lipoprotein (HDL). We have found a novel LCAT-related gene among differentially expressed cDNA fragments between two types of foam cells derived from THP-1 cells, which are different in cholesterol efflux ability, using a subtractive PCR technique. The deduced 412-amino-acid sequence has 49% amino acid sequence similarity with human LCAT. In contrast to the liver-specific expression of LCAT, mRNA expression of the gene was observed mainly in peripheral tissues including kidney, placenta, pancreas, testis, spleen, heart, and skeletal muscle. The protein exists in human plasma and is probably associated with HDL. Moreover, we discovered that the recombinant protein hydrolyzed lysophosphatidylcholine (lysoPC), a proatherogenic lipid, to glycerophosphorylcholine and a free fatty acid. We have therefore named this novel enzyme LCAT-like lysophospholipase (LLPL), through which a new catabolic pathway for lysoPC on lipoproteins could be elucidated. Copyright 1999 Academic Press.

  11. [Effect of EMP-1 gene on human esophageal cancer cell line].

    PubMed

    Wang, Hai-tao; Liu, Zhi-hua; Wang, Xiu-qin; Wu, Min

    2002-03-01

    EMP-1 was selected from a series of differential expressed genes obtained from cDNA microarray in the authors' lab. Epithelial membrane pnteiu-1 gene (EMP-1) was expressed 6 fold lower in esophageal cancer than in normal tissue. The authors further designed the experiment to study the effect of human EMP-1 gene on human esophageal cancer cell line in order to explain the function of this gene on the carcinogensis and progression esophageal cancer. EMP-1 gene was cloned into eukaryotic vector and transfected into the human esophageal cancer cell line. The transfection effect was qualified by Western blot and RT-PCR method. The cell growth curve was observed and the cell cycle was checked by FACS method. EMP-1 was transfected into EC9706 cell line and its expression was up-regulated. The cell growth is accelerated and expression of EMP-1 is linked to induction of S phase arrest. EMP-1 gene has some relationship with carcinogenesis of esophagus.

  12. A Fruit-Specific Putative Dihydroflavonol 4-Reductase Gene Is Differentially Expressed in Strawberry during the Ripening Process1

    PubMed Central

    Moyano, Enriqueta; Portero-Robles, Ignacio; Medina-Escobar, Nieves; Valpuesta, Victoriano; Muñoz-Blanco, Juan; Luis Caballero, José

    1998-01-01

    A cDNA clone encoding a putative dihydroflavonol 4-reductase gene has been isolated from a strawberry (Fragaria × ananassa cv Chandler) DNA subtractive library. Northern analysis showed that the corresponding gene is predominantly expressed in fruit, where it is first detected during elongation (green stages) and then declines and sharply increases when the initial fruit ripening events occur, at the time of initiation of anthocyanin accumulation. The transcript can be induced in unripe green fruit by removing the achenes, and this induction can be partially inhibited by treatment of de-achened fruit with naphthylacetic acid, indicating that the expression of this gene is under hormonal control. We propose that the putative dihydroflavonol 4-reductase gene in strawberry plays a main role in the biosynthesis of anthocyanin during color development at the late stages of fruit ripening; during the first stages the expression of this gene could be related to the accumulation of condensed tannins. PMID:9625725

  13. Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)].

    PubMed

    Lata, Charu; Bhutty, Sarita; Bahadur, Ranjit Prasad; Majee, Manoj; Prasad, Manoj

    2011-06-01

    The DREB genes code for important plant transcription factors involved in the abiotic stress response and signal transduction. Characterization of DREB genes and development of functional markers for effective alleles is important for marker-assisted selection in foxtail millet. Here the characterization of a cDNA (SiDREB2) encoding a putative dehydration-responsive element-binding protein 2 from foxtail millet and the development of an allele-specific marker (ASM) for dehydration tolerance is reported. A cDNA clone (GenBank accession no. GT090998) coding for a putative DREB2 protein was isolated as a differentially expressed gene from a 6 h dehydration stress SSH library. A 5' RACE (rapid amplification of cDNA ends) was carried out to obtain the full-length cDNA, and sequence analysis showed that SiDREB2 encoded a polypeptide of 234 amino acids with a predicted mol. wt of 25.72 kDa and a theoretical pI of 5.14. A theoretical model of the tertiary structure shows that it has a highly conserved GCC-box-binding N-terminal domain, and an acidic C-terminus that acts as an activation domain for transcription. Based on its similarity to AP2 domains, SiDREB2 was classified into the A-2 subgroup of the DREB subfamily. Quantitative real-time PCR analysis showed significant up-regulation of SiDREB2 by dehydration (polyethylene glycol) and salinity (NaCl), while its expression was less affected by other stresses. A synonymous single nucleotide polymorphism (SNP) associated with dehydration tolerance was detected at the 558th base pair (an A/G transition) in the SiDREB2 gene in a core set of 45 foxtail millet accessions used. Based on the identified SNP, three primers were designed to develop an ASM for dehydration tolerance. The ASM produced a 261 bp fragment in all the tolerant accessions and produced no amplification in the sensitive accessions. The use of this ASM might be faster, cheaper, and more reproducible than other SNP genotyping methods, and thus will enable marker-aided breeding of foxtail millet for dehydration tolerance.

  14. Cloning and expression profiling of the VLDLR gene associated with egg performance in duck (Anas platyrhynchos).

    PubMed

    Wang, Cui; Li, Shi-Jun; Yu, Wen-Hua; Xin, Qing-Wu; Li, Chuang; Feng, Yan-Ping; Peng, Xiu-Li; Gong, Yan-Zhang

    2011-08-05

    The very low density lipoprotein receptor gene (VLDLR), a member of the low density lipoprotein receptor (LDLR) gene family, plays a crucial role in the synthesis of yolk protein precursors in oviparous species. Differential splicing of this gene has been reported in human, rabbit and rat. In chicken, studies showed that the VLDLR protein on the oocyte surface mediates the uptake of yolk protein precursors into growing oocytes. However, information on the VLDLR gene in duck is still scarce. Full-length duck VLDLR cDNA was obtained by comparative cloning and rapid amplification of cDNA ends (RACE). Tissue expression patterns were analysed by semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR). Association between the different genotypes and egg performance traits was investigated with the general linear model (GLM) procedure of the SAS® software package. In duck, two VLDLR transcripts were identified, one transcript (variant-a) containing an O-linked sugar domain and the other (variant-b) not containing this sugar domain. These transcripts share ~70 to 90% identity with their counterparts in other species. A phylogenetic tree based on amino acid sequences showed that duck VLDLR proteins were closely related with those of chicken and zebra finch. The two duck VLDLR transcripts are differentially expressed i.e. VLDLR-a is mainly expressed in muscle tissue and VLDLR-b in reproductive organs. We have localized the duck VLDLR gene on chromosome Z. An association analysis using two completely linked SNP sites (T/C at position 2025 bp of the ORF and G/A in intron 13) and records from two generations demonstrated that the duck VLDLR gene was significantly associated with egg production (P < 0.01), age of first egg (P < 0.01) and body weight of first egg (P < 0.05). Duck and chicken VLDLR genes probably perform similar function in the development of growing oocytes and deposition of yolk lipoprotein. Therefore, VLDLR could be a candidate gene for duck egg performance and be used as a genetic marker to improve egg performance in ducks.

  15. Cloning and expression profiling of the VLDLR gene associated with egg performance in duck (Anas platyrhynchos)

    PubMed Central

    2011-01-01

    Background The very low density lipoprotein receptor gene (VLDLR), a member of the low density lipoprotein receptor (LDLR) gene family, plays a crucial role in the synthesis of yolk protein precursors in oviparous species. Differential splicing of this gene has been reported in human, rabbit and rat. In chicken, studies showed that the VLDLR protein on the oocyte surface mediates the uptake of yolk protein precursors into growing oocytes. However, information on the VLDLR gene in duck is still scarce. Methods Full-length duck VLDLR cDNA was obtained by comparative cloning and rapid amplification of cDNA ends (RACE). Tissue expression patterns were analysed by semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR). Association between the different genotypes and egg performance traits was investigated with the general linear model (GLM) procedure of the SAS® software package. Results In duck, two VLDLR transcripts were identified, one transcript (variant-a) containing an O-linked sugar domain and the other (variant-b) not containing this sugar domain. These transcripts share ~70 to 90% identity with their counterparts in other species. A phylogenetic tree based on amino acid sequences showed that duck VLDLR proteins were closely related with those of chicken and zebra finch. The two duck VLDLR transcripts are differentially expressed i.e. VLDLR-a is mainly expressed in muscle tissue and VLDLR-b in reproductive organs. We have localized the duck VLDLR gene on chromosome Z. An association analysis using two completely linked SNP sites (T/C at position 2025 bp of the ORF and G/A in intron 13) and records from two generations demonstrated that the duck VLDLR gene was significantly associated with egg production (P < 0.01), age of first egg (P < 0.01) and body weight of first egg (P < 0.05). Conclusions Duck and chicken VLDLR genes probably perform similar function in the development of growing oocytes and deposition of yolk lipoprotein. Therefore, VLDLR could be a candidate gene for duck egg performance and be used as a genetic marker to improve egg performance in ducks. PMID:21819592

  16. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks

    PubMed Central

    Trapnell, Cole; Roberts, Adam; Goff, Loyal; Pertea, Geo; Kim, Daehwan; Kelley, David R; Pimentel, Harold; Salzberg, Steven L; Rinn, John L; Pachter, Lior

    2012-01-01

    Recent advances in high-throughput cDNA sequencing (RNA-seq) can reveal new genes and splice variants and quantify expression genome-wide in a single assay. The volume and complexity of data from RNA-seq experiments necessitate scalable, fast and mathematically principled analysis software. TopHat and Cufflinks are free, open-source software tools for gene discovery and comprehensive expression analysis of high-throughput mRNA sequencing (RNA-seq) data. Together, they allow biologists to identify new genes and new splice variants of known ones, as well as compare gene and transcript expression under two or more conditions. This protocol describes in detail how to use TopHat and Cufflinks to perform such analyses. It also covers several accessory tools and utilities that aid in managing data, including CummeRbund, a tool for visualizing RNA-seq analysis results. Although the procedure assumes basic informatics skills, these tools assume little to no background with RNA-seq analysis and are meant for novices and experts alike. The protocol begins with raw sequencing reads and produces a transcriptome assembly, lists of differentially expressed and regulated genes and transcripts, and publication-quality visualizations of analysis results. The protocol's execution time depends on the volume of transcriptome sequencing data and available computing resources but takes less than 1 d of computer time for typical experiments and ~1 h of hands-on time. PMID:22383036

  17. Molecular cloning and functional analysis of ESGP, an embryonic stem cell and germ cell specific protein.

    PubMed

    Chen, Yan-Mei; Du, Zhong-Wei; Yao, Zhen

    2005-12-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends. ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG) (SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic caoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression, forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  18. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.

    PubMed

    Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu

    2010-11-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.

  19. Toll like receptors gene expression of human keratinocytes cultured of severe burn injury.

    PubMed

    Cornick, Sarita Mac; Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Cezillo, Marcus V B; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    To evaluate the expression profile of genes related to Toll Like Receptors (TLR) pathways of human Primary Epidermal keratinocytes of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific TLR pathways PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 21% of these genes were differentially expressed, of which 100% were repressed or hyporegulated. Among these, the following genes (fold decrease): HSPA1A (-58), HRAS (-36), MAP2K3 (-23), TOLLIP (-23), RELA (-18), FOS (-16), and TLR1 (-6.0). This study contributes to the understanding of the molecular mechanisms related to TLR pathways and underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  20. Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress.

    PubMed

    Kim, Yun-Hee; Yang, Kyoung-Sil; Kim, Cha Young; Ryu, Sun-Hwa; Song, Wan-Keun; Kwon, Suk-Yoon; Lee, Haeng-Soon; Bang, Jae-Wook; Kwak, Sang-Soo

    2008-03-31

    Three peroxidase (POD) cDNAs were isolated from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas) plant via the screening of a cDNA library, and their expressions were assessed to characterize functions of each POD in relation to environmental stress. Three PODs were divided into two groups, designated the basic PODs (swpb4, swpb5) and the anionic PODs (swpa7), on the basis of the pI values of mature proteins. Fluorescence microscope analysis indicated that three PODs are secreted into the extracellular space. RTPCR analysis revealed that POD genes have diverse expression patterns in a variety of plant tissues. Swpb4 was abundantly expressed in stem tissues, whereas the expression levels of swpb5 and swpa7 transcripts were high in fibrous and thick pigmented roots. Swpb4 and swpa7 showed abundant expression levels in suspension cultured cells. Three POD genes responded differently in the leaf and fibrous roots in response to a variety of stresses including dehydration, temperature stress, stress-associated chemicals, and pathogenic bacteria.

  1. Characterization of chicken c-ski oncogene products expressed by retrovirus vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutrave, P.; Copeland, T.D.; Hughes, S.H.

    1990-06-01

    The authors have constructed replication-competent avian retrovirus vectors that contain two of the three known types of chicken c-{ital ski} cDNAs and a third vector that contains a truncated c-{ital ski} cDNA. They developed antisera that recognize the c-{ital ski} proteins made by the three transforming c-{ital ski} viruses. All three proteins (apparent molecular masses, 50, 60, and 90 kilodaltons) are localized primarily in the nucleus. The proteins are differentially phosphorylated; immunofluorescence also suggests that there are differences in subnuclear localization of the c-{ital ski} proteins and that c-{ital ski} protein is associated with condensed chromatin in dividing cells.

  2. A Potato cDNA Encoding a Homologue of Mammalian Multidrug Resistant P-Glycoprotein

    NASA Technical Reports Server (NTRS)

    Wang, W.; Takezawa, D.; Poovaiah, B. W.

    1996-01-01

    A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with S-15-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170-180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.

  3. Screening of eye-position related genes with DD-RT-PCR and RDA in the hybrids between Japanese flounder Paralichthys olivaceus and stone flounder Kareius bicoloratus

    NASA Astrophysics Data System (ADS)

    Chen, Yanjie; Zhang, Quanqi; Qi, Jie; Sun, Yeying; Zhong, Qiwang; Wang, Xubo; Wang, Zhigang; Li, Shuo; Li, Chunmei

    2009-02-01

    Flatfish or flounder moves one eye to change body proportion into vertebral asymmetry during metamorphosis, during which some become sinistral while others dextral. However, the mechanism behinds the eye-position has not been well understood. In this research, hybrids between Japanese flounder(♀) and stone flounder (♂) show mixed eye-location in both dextral type and sinistral type, and thus become good samples for studying the eye-migration. mRNAs from pro-metamorphosis sinistral and dextral hybrids larvae were screened with classical differential display RT-PCR (DD-RT-PCR) and representational difference analysis of cDNA (cDNA-RDA); 30 and 47 putative fragments were isolated, respectively. The cDNA fragments of creatine kinase and trypsinogen 2 precursor genes isolated by cDNA-RDA exhibited eye-position expression patterns during metamorphosis. However, none of the fragments was proved to be related to flatfishes’ eye-position specifically. Therefore, further studies and more sensitive gene isolated methods are needed to solve the problems.

  4. Identification and sequencing of members of a drought-induced multigene family in Atriplex canescens (salt bush)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Chen; Cairney, J.; Newton, R.J.

    1991-05-01

    Atriplex canescens (Pursh.) Nutt. is known to have a high degree of morphological and physiological drought-tolerance, which appears to be related to molecular responses. A cDNA library, constructed from drought-induced messenger RNA, was differentially screened with radioactively labelled cDNA probes synthesized from mRNA extracted from stressed and non-stressed Atriplex. Two clones named 19-3 and 27-3, whose expression is induced by drought-stress, have been characterized. Sequence analysis shows that they are more than 96% homologous. Each clone has an open reading frame which specifies a protein of 95 amino acids (12.77 kDa and 12.74 kDa respectively.) In vitro transcription and translationmore » of each clone results in a single protein of apparent molecular weight 8.6 kDa. The disparity in size may be due to secondary structure, dictated, at least in part, by a highly charged carboxy terminus which may be important for the function of these proteins in drought tolerance.« less

  5. Gene-expression profiling using suppression-subtractive hybridization and cDNA microarray in rat mononuclear cells in response to welding-fume exposure.

    PubMed

    Rim, Kyung Taek; Park, Kun Koo; Sung, Jae Hyuck; Chung, Yong Hyun; Han, Jeong Hee; Cho, Key Seung; Kim, Kwang Jong; Yu, Il Je

    2004-06-01

    Welders with radiographic pneumoconiosis abnormalities have shown a gradual clearing of the X-ray identified effects following removal from exposure. In some cases, the pulmonary fibrosis associated with welding fumes appears in a more severe form in welders. Accordingly, for the early detection of welding-fume-exposure-induced pulmonary fibrosis, the gene expression profiles of peripheral mononuclear cells from rats exposed to welding fumes were studied using suppression-subtractive hybridization (SSH) and a cDNA microarray. As such, Sprague-Dawley rats were exposed to a stainless steel arc welding fume for 2 h/day in an inhalation chamber with a 1107.5 +/- 2.6 mg/m3 concentration of total suspended particulate (TSP) for 30 days. Thereafter, the total RNA was extracted from the peripheral blood mononuclear cells, the cDNA synthesized from the total RNA using the SMART PCR cDNA method, and SSH performed to select the welding-fume-exposure-regulated genes. The cDNAs identified by the SSH were then cloned into a plasmid miniprep, sequenced and the sequences analysed using the NCBI BLAST programme. In the SSH cloned cDNA microarray analysis, five genes were found to increase their expression by 1.9-fold or more, including Rgs 14, which plays an important function in cellular signal transduction pathways; meanwhile 36 genes remained the same and 30 genes decreased their expression by more than 59%, including genes associated with the immune response, transcription factors and tyrosine kinases. Among the 5200 genes analysed, 256 genes (5.1%) were found to increase their gene expression, while 742 genes (15%) decreased their gene expression in response to the welding-fume exposure when tested using a commercial 5.0k DNA microarray. Therefore, unlike exposure to other toxic substances, prolonged welding-fume exposure was found to substantially downregulate many genes.

  6. Molecular Insights on Post-chemotherapy Retinoblastoma by Microarray Gene Expression Analysis

    PubMed Central

    Nalini, Venkatesan; Segu, Ramya; Deepa, Perinkulam Ravi; Khetan, Vikas; Vasudevan, Madavan; Krishnakumar, Subramanian

    2013-01-01

    Purpose Management of Retinoblastoma (RB), a pediatric ocular cancer is limited by drug-resistance and drug-dosage related side effects during chemotherapy. Molecular de-regulation in post-chemotherapy RB tumors was investigated. Materials and Methods cDNA microarray analysis of two post-chemotherapy and one pre-chemotherapy RB tumor tissues was performed, followed by Principle Component Analysis, Gene ontology, Pathway Enrichment analysis and Biological Analysis Network (BAN) modeling. The drug modulation role of two significantly up-regulated genes (p≤0.05) − Ect2 (Epithelial-cell-transforming-sequence-2), and PRAME (preferentially-expressed-Antigen-in-Melanoma) was assessed by qRT-PCR, immunohistochemistry and cell viability assays. Results Differential up-regulation of 1672 genes and down-regulation of 2538 genes was observed in RB tissues (relative to normal adult retina), while 1419 genes were commonly de-regulated between pre-chemotherapy and post- chemotherapy RB. Twenty one key gene ontology categories, pathways, biomarkers and phenotype groups harboring 250 differentially expressed genes were dys-regulated (EZH2, NCoR1, MYBL2, RB1, STAMN1, SYK, JAK1/2, STAT1/2, PLK2/4, BIRC5, LAMN1, Ect2, PRAME and ABCC4). Differential molecular expressions of PRAME and Ect2 in RB tumors with and without chemotherapy were analyzed. There was neither up- regulation of MRP1, nor any significant shift in chemotherapeutic IC50, in PRAME over-expressed versus non-transfected RB cells. Conclusion Cell cycle regulatory genes were dys-regulated post-chemotherapy. Ect2 gene was expressed in response to chemotherapy-induced stress. PRAME does not contribute to drug resistance in RB, yet its nuclear localization and BAN information, points to its possible regulatory role in RB. PMID:24092970

  7. Using mummichog (Fundulus heteroclitus) arrays to monitor the effectiveness of remediation at a superfund site in Charleston, South Carolina, U.S.A.

    PubMed

    Roling, Jonathan A; Bain, Lisa J; Gardea-Torresdey, Jorge; Key, Peter B; Baldwin, William S

    2007-06-01

    We previously developed a cDNA array for mummichogs (Fundulus heteroclitus), an estuarine minnow, that is targeted for identifying differentially expressed genes from exposure to polycyclic aromatic hydrocarbons and several metals, including chromium. A chromium-contaminated Superfund site at Shipyard Creek in Charleston, South Carolina, USA, is undergoing remediation, providing us a unique opportunity to study the utility of arrays for monitoring the effectiveness of site remediation. Mummichogs were captured in Shipyard Creek in Charleston prior to remediation (2000) and after remediation began (2003 and 2005). Simultaneously, mummichogs were collected from a reference site at the Winyah Bay National Estuarine Research Reserve (NERR) in Georgetown, South Carolina, USA. The hepatic gene expression pattern of fish captured at Shipyard Creek in 2000 showed wide differences from the fish captured at NERR in 2000. Interestingly, as remediation progressed the gene expression pattern of mummichogs captured at Shipyard Creek became increasingly similar to those captured at NERR. The arrays acted as multidimensional biomarkers as the number of differentially expressed genes dropped from 22 in 2000 to four in 2003, and the magnitude of differential expression dropped from 3.2-fold in 2000 to no gene demonstrating a difference over 1.5-fold in 2003. Furthermore, the arrays indicated changes in the bioavailability of chromium caused by hydraulic dredging in the summer of 2005. This research is, to our knowledge, the first report using arrays as biomarkers for a weight-of-evidence hazard assessment and demonstrates that arrays can be used as multidimensional biomarkers to monitor site mitigation because the gene expression profile is associated with chromium bioavailability and body burden.

  8. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    PubMed

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  9. Comparative Analysis of AhR-Mediated TCDD-Elicited Gene Expression in Human Liver Adult Stem Cells

    PubMed Central

    Kim, Suntae; Dere, Edward; Burgoon, Lyle D.; Chang, Chia-Cheng; Zacharewski, Timothy R.

    2009-01-01

    Time course and dose-response studies were conducted in HL1-1 cells, a human liver cell line with stem cell–like characteristics, to assess the differential gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) compared with other established models. Cells were treated with 0.001, 0.01, 0.1, 1, 10, or 100nM TCDD or dimethyl sulfoxide vehicle control for 12 h for the dose-response study, or with 10nM TCDD or vehicle for 1, 2, 4, 8, 12, 24, or 48 h for the time course study. Elicited changes were monitored using a human cDNA microarray with 6995 represented genes. Empirical Bayes analysis identified 144 genes differentially expressed at one or more time points following treatment. Most genes exhibited dose-dependent responses including CYP1A1, CYP1B1, ALDH1A3, and SLC7A5 genes. Comparative analysis of HL1-1 differential gene expression to human HepG2 data identified 74 genes with comparable temporal expression profiles including 12 putative primary responses. HL1-1–specific changes were related to lipid metabolism and immune responses, consistent with effects elicited in vivo. Furthermore, comparative analysis of HL1-1 cells with mouse Hepa1c1c7 hepatoma cell lines and C57BL/6 hepatic tissue identified 18 and 32 commonly regulated orthologous genes, respectively, with functions associated with signal transduction, transcriptional regulation, metabolism and transport. Although some common pathways are affected, the results suggest that TCDD elicits species- and model-specific gene expression profiles. PMID:19684285

  10. Genome-wide analysis of endogenously expressed ZEB2 binding sites reveals inverse correlations between ZEB2 and GalNAc-transferase GALNT3 in human tumors.

    PubMed

    Balcik-Ercin, Pelin; Cetin, Metin; Yalim-Camci, Irem; Odabas, Gorkem; Tokay, Nurettin; Sayan, A Emre; Yagci, Tamer

    2018-03-07

    ZEB2 is a transcriptional repressor that regulates epithelial-to-mesenchymal transition (EMT) through binding to bipartite E-box motifs in gene regulatory regions. Despite the abundant presence of E-boxes within the human genome and the multiplicity of pathophysiological processes regulated during ZEB2-induced EMT, only a small fraction of ZEB2 targets has been identified so far. Hence, we explored genome-wide ZEB2 binding by chromatin immunoprecipitation-sequencing (ChIP-seq) under endogenous ZEB2 expression conditions. For ChIP-Seq we used an anti-ZEB2 monoclonal antibody, clone 6E5, in SNU398 hepatocellular carcinoma cells exhibiting a high endogenous ZEB2 expression. The ChIP-Seq targets were validated using ChIP-qPCR, whereas ZEB2-dependent expression of target genes was assessed by RT-qPCR and Western blotting in shRNA-mediated ZEB2 silenced SNU398 cells and doxycycline-induced ZEB2 overexpressing colorectal carcinoma DLD1 cells. Changes in target gene expression were also assessed using primary human tumor cDNA arrays in conjunction with RT-qPCR. Additional differential expression and correlation analyses were performed using expO and Human Protein Atlas datasets. Over 500 ChIP-Seq positive genes were annotated, and intervals related to these genes were found to include the ZEB2 binding motif CACCTG according to TOMTOM motif analysis in the MEME Suite database. Assessment of ZEB2-dependent expression of target genes in ZEB2-silenced SNU398 cells and ZEB2-induced DLD1 cells revealed that the GALNT3 gene serves as a ZEB2 target with the highest, but inversely correlated, expression level. Remarkably, GALNT3 also exhibited the highest enrichment in the ChIP-qPCR validation assays. Through the analyses of primary tumor cDNA arrays and expO datasets a significant differential expression and a significant inverse correlation between ZEB2 and GALNT3 expression were detected in most of the tumors. We also explored ZEB2 and GALNT3 protein expression using the Human Protein Atlas dataset and, again, observed an inverse correlation in all analyzed tumor types, except malignant melanoma. In contrast to a generally negative or weak ZEB2 expression, we found that most tumor tissues exhibited a strong or moderate GALNT3 expression. Our observation that ZEB2 negatively regulates a GalNAc-transferase (GALNT3) that is involved in O-glycosylation adds another layer of complexity to the role of ZEB2 in cancer progression and metastasis. Proteins glycosylated by GALNT3 may be exploited as novel diagnostics and/or therapeutic targets.

  11. Molecular cloning, characterization, and expression analysis of an ecdysone receptor homolog in Teleogryllus emma (Orthoptera: Gryllidae).

    PubMed

    He, Hui; Xi, Gengsi; Lu, Xiao

    2015-01-01

    Ecdysteroids are steroid hormones that play important roles in the regulation of Arthropoda animal growth development, larvae ecdysis, and reproduction. The effect of ecdysteroids is mediated by ecdysteroid receptor (EcR). The ecdysone receptor (EcR) belongs to the superfamily of nuclear receptors (NRs) that are ligand-dependent transcription factors. Ecdysone receptor is present only in invertebrates and plays a critical role in regulating the expression of a series of genes during development and reproduction. Here, we isolated and characterized cDNA of the cricket Teleopgryllus emma (Ohmachi & Matsuura) (Orthoptera: Gryllidae) and studied mRNA expression pattern using real time-polymerase chain reaction. The full-length cDNA of T. emma EcR, termed TeEcR, is 2,558 bp and contains a 5'-untranslated region of 555 bp and a 3'-untranslated region of 407 bp. The open reading frame of TeEcR encodes deduced 531-amino acid peptides with a predicted molecular mass of 60.7 kDa. The amino acid sequence of T. emma EcR was similar to that of known EcR especially in the ligand-binding domain of insect EcR. Real-time quantitative reverse transcription-polymerase chain reaction was performed to compare TeEcR mRNA expression level at the whole body and gonad during T. emma development. The data revealed that TeEcR mRNA is differentially expressed during T. emma development, with the highest expression level in late-instar larvae of the body and lowest in third instar. The levels of TeEcR transcripts also vary among gonads development, and levels in ovaries were higher than in testes at every developmental stage. These results suggest that TeEcR may have potential significance to regulate the morphological structure and gonad development of T. emma, due to its expression in different developmental periods. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  12. Molecular Cloning, Characterization, and Expression Analysis of an Ecdysone Receptor Homolog in Teleogryllus emma (Orthoptera: Gryllidae)

    PubMed Central

    He, Hui; Xi, Gengsi; Lu, Xiao

    2015-01-01

    Ecdysteroids are steroid hormones that play important roles in the regulation of Arthropoda animal growth development, larvae ecdysis, and reproduction. The effect of ecdysteroids is mediated by ecdysteroid receptor (EcR). The ecdysone receptor (EcR) belongs to the superfamily of nuclear receptors (NRs) that are ligand-dependent transcription factors. Ecdysone receptor is present only in invertebrates and plays a critical role in regulating the expression of a series of genes during development and reproduction. Here, we isolated and characterized cDNA of the cricket Teleopgryllus emma (Ohmachi & Matsuura) (Orthoptera: Gryllidae) and studied mRNA expression pattern using real time-polymerase chain reaction. The full-length cDNA of T. emma EcR, termed TeEcR, is 2,558 bp and contains a 5′-untranslated region of 555 bp and a 3′-untranslated region of 407 bp. The open reading frame of TeEcR encodes deduced 531-amino acid peptides with a predicted molecular mass of 60.7 kDa. The amino acid sequence of T. emma EcR was similar to that of known EcR especially in the ligand-binding domain of insect EcR. Real-time quantitative reverse transcription-polymerase chain reaction was performed to compare TeEcR mRNA expression level at the whole body and gonad during T. emma development. The data revealed that TeEcR mRNA is differentially expressed during T. emma development, with the highest expression level in late-instar larvae of the body and lowest in third instar. The levels of TeEcR transcripts also vary among gonads development, and levels in ovaries were higher than in testes at every developmental stage. These results suggest that TeEcR may have potential significance to regulate the morphological structure and gonad development of T. emma, due to its expression in different developmental periods. PMID:25797799

  13. Acetylcholinesterase of the Sand Fly, Phlebotomus papatasi (Scopoli): cDNA Sequence, Baculovirus Expression, and Biochemical Properties

    DTIC Science & Technology

    2013-01-01

    identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a...tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85...improve effectiveness of pesticide application for control of the new world sand fly Lutzomyia longipalpis in chicken sheds [13]. Attempts to control

  14. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus

    PubMed Central

    2013-01-01

    Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae. PMID:23725589

  15. cDNA sequence and expression of a cold-responsive gene in Citrus unshiu.

    PubMed

    Hara, M; Wakasugi, Y; Ikoma, Y; Yano, M; Ogawa, K; Kuboi, T

    1999-02-01

    A cDNA clone encoding a protein (CuCOR19), the sequence of which is similar to Poncirus COR19, of the dehydrin family was isolated from the epicarp of Citrus unshiu. The molecular mass of the predicted protein was 18,980 daltons. CuCOR19 was highly hydrophilic and contained three repeating elements including Lys-rich motifs. The gene expression in leaves increased by cold stress.

  16. Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart

    NASA Astrophysics Data System (ADS)

    Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.

    1996-06-01

    cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

  17. Prostate cancer-associated gene expression alterations determined from needle biopsies.

    PubMed

    Qian, David Z; Huang, Chung-Ying; O'Brien, Catherine A; Coleman, Ilsa M; Garzotto, Mark; True, Lawrence D; Higano, Celestia S; Vessella, Robert; Lange, Paul H; Nelson, Peter S; Beer, Tomasz M

    2009-05-01

    To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. Comparative analyses identified 954 transcript alterations associated with cancer (q < 0.01%), including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy use, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.

  18. Prostate Cancer-Associated Gene Expression Alterations Determined from Needle Biopsies

    PubMed Central

    Qian, David Z.; Huang, Chung-Ying; O'Brien, Catherine A.; Coleman, Ilsa M.; Garzotto, Mark; True, Lawrence D.; Higano, Celestia S.; Vessella, Robert; Lange, Paul H.; Nelson, Peter S.; Beer, Tomasz M.

    2010-01-01

    Purpose To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Experimental Design Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays comprised of 6200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative RT-PCR. Results Comparative analyses identified 954 transcript alterations associated with cancer (q value <0.01%) including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy utilization, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of AR expression changes was noted. In exploratory analyses, AR down regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Conclusions Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation. PMID:19366833

  19. Sequence and pattern of expression of a bovine homologue of a human mitochondrial transport protein associated with Grave's disease.

    PubMed

    Fiermonte, G; Runswick, M J; Walker, J E; Palmieri, F

    1992-01-01

    A human cDNA has been isolated previously from a thyroid library with the aid of serum from a patient with Grave's disease. It encodes a protein belonging to the mitochondrial metabolite carrier family, referred to as the Grave's disease carrier protein (GDC). Using primers based on this sequence, overlapping cDNAs encoding the bovine homologue of the GDC have been isolated from total bovine heart poly(A)+ cDNA. The bovine protein is 18 amino acids shorter than the published human sequence, but if a frame shift requiring the removal of one nucleotide is introduced into the human cDNA sequence, the human and bovine proteins become identical in their C-terminal regions, and 308 out of 330 amino acids are conserved over their entire sequences. The bovine cDNA has been used to investigate the expression of the GDC in various bovine tissues. In the tissues that were examined, the GDC is most strongly expressed in the thyroid, but substantial amounts of its mRNA were also detected in liver, lung and kidney, and lesser amounts in heart and skeletal muscle.

  20. Molecular cloning of a catalase cDNA from Nicotiana glutinosa L. and its repression by tobacco mosaic virus infection.

    PubMed

    Yi, S Y; Yu, S H; Choi, D

    1999-06-30

    Recent reports revealed that catalase has a role in the plant defense mechanism against a broad range of pathogens through being inhibited by salicylic acid (SA). During an effort to clone disease resistance-responsive genes, a cDNA encoding catalase (Ngcat1; Nicotiana glutinosa cat1) was isolated from a tobacco cDNA library. In N. glutinosa, catalase is encoded by a small gene family. The deduced amino acid sequence of the Ngcat1 cDNA has 98% homology with the cat1 gene of N. plumbaginifolia. The Ngcat1 expression is controlled by the circadian clock, and its mRNA level is the most abundant in leaves. Both the expression of Ngcat1 mRNA and its enzyme activity in the tobacco plant undergoing a hypersensitive response (HR) to TMV infection were repressed. The repression of the mRNA level was also observed following treatment with SA. These results imply that SA may act as an inhibitor of catalase transcription during the HR of tobacco. Cloning and expression of the Ngcat1 in tobacco following pathogen infection and SA treatment are presented.

  1. Molecular characterization of melanin-concentrating hormone (MCH) in Schizothorax prenanti: cloning, tissue distribution and role in food intake regulation.

    PubMed

    Wang, Tao; Yuan, Dengyue; Zhou, Chaowei; Lin, Fangjun; Wei, Rongbin; Chen, Hu; Wu, Hongwei; Xin, Zhiming; Liu, Ju; Gao, Yundi; Chen, Defang; Yang, Shiyong; Wang, Yan; Pu, Yundan; Li, Zhiqiong

    2016-06-01

    Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti.

  2. Defining behavioral and molecular differences between summer and migratory monarch butterflies

    PubMed Central

    Zhu, Haisun; Gegear, Robert J; Casselman, Amy; Kanginakudru, Sriramana; Reppert, Steven M

    2009-01-01

    Background In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. Results Here we show that increasing juvenile hormone activity to induce summer-like reproductive development in fall migrants does not alter directional flight behavior or its time-compensated orientation, as monitored in a flight simulator. Reproductive summer butterflies, in contrast, uniformly fail to exhibit directional, oriented flight. To define molecular correlates of behavioral state, we used microarray analysis of 9417 unique cDNA sequences. Gene expression profiles reveal a suite of 40 genes whose differential expression in brain correlates with oriented flight behavior in individual migrants, independent of juvenile hormone activity, thereby molecularly separating fall migrants from summer butterflies. Intriguing genes that are differentially regulated include the clock gene vrille and the locomotion-relevant tyramine beta hydroxylase gene. In addition, several differentially regulated genes (37.5% of total) are not annotated. We also identified 23 juvenile hormone-dependent genes in brain, which separate reproductive from non-reproductive monarchs; genes involved in longevity, fatty acid metabolism, and innate immunity are upregulated in non-reproductive (juvenile-hormone deficient) migrants. Conclusion The results link key behavioral traits with gene expression profiles in brain that differentiate migratory from summer butterflies and thus show that seasonal changes in genomic function help define the migratory state. PMID:19335876

  3. cDNA Cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (prunus dulcis).

    PubMed

    Abolhassani, Mohsen; Roux, Kenneth H

    2009-06-01

    Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.

  4. cDNA cloning of the murine PEX gene implicated in X-linked hypophosphatemia and evidence for expression in bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, L.; Desbarats, M.; Viel, J.

    1996-08-15

    The recently identified human PEX g ene apparently encodes for a neutral endopeptidase that is mutated in patients with X-linked hypophosphatemia. The 3{prime} and 5{prime} ends of the coding region of PEX have not been cloned, nor has the tissue expression of the gene been identified. Here we report the isolation and characterization of the complete open reading frame of the mouse Pex gene and the demonstration of its expression in bone. Mouse Pex cDNA is predicted to encode a protein of 749 amino acids with 95% identity to the available human PEX sequence and significant homology to members ofmore » the membrane-bound metalloendopeptidase family. Northern blot analysis revealed a 6.6-kb transcript in bone and in cultured osteoblasts from normal mice that was not detectable in samples from the Hyp mouse, the murine homolog of human X-linked hypophosphatemia. Pex transcripts were, however, detectable in Hyp bone by RT-PCR amplification. Of particular interest, a cDNA clone from rat incisor shows 93% sequence identity to the 5{prime} end of Pex cDNA, suggesting that Pex may be expressed in another calcified tissue, the tooth. The association of impaired mineralization of bone and teeth and disturbed renal phosphate reabsorption with altered expression of Pex suggests that the Pex gene product may play a critical role in these processes. 47 refs., 2 figs., 1 tab.« less

  5. Population structure of pigs determined by single nucleotide polymorphisms observed in assembled expressed sequence tags.

    PubMed

    Matsumoto, Toshimi; Okumura, Naohiko; Uenishi, Hirohide; Hayashi, Takeshi; Hamasima, Noriyuki; Awata, Takashi

    2012-01-01

    We have collected more than 190000 porcine expressed sequence tags (ESTs) from full-length complementary DNA (cDNA) libraries and identified more than 2800 single nucleotide polymorphisms (SNPs). In this study, we tentatively chose 222 SNPs observed in assembled ESTs to study pigs of different breeds; 104 were selected by comparing the cDNA sequences of a Meishan pig and samples of three-way cross pigs (Landrace, Large White, and Duroc: LWD), and 118 were selected from LWD samples. To evaluate the genetic variation between the chosen SNPs from pig breeds, we determined the genotypes for 192 pig samples (11 pig groups) from our DNA reference panel with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Of the 222 reference SNPs, 186 were successfully genotyped. A neighbor-joining tree showed that the pig groups were classified into two large clusters, namely, Euro-American and East Asian pig populations. F-statistics and the analysis of molecular variance of Euro-American pig groups revealed that approximately 25% of the genetic variations occurred because of intergroup differences. As the F(IS) values were less than the F(ST) values(,) the clustering, based on the Bayesian inference, implied that there was strong genetic differentiation among pig groups and less divergence within the groups in our samples. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  6. Expression and processing of human preprogastrin in murine medullary thyroid carcinoma cells.

    PubMed

    Daugherty, D F; Dickinson, C J; Takeuchi, T; Bachwich, D; Yamada, T

    1991-05-01

    Gastrin, the primary hormonal mediator of postprandial gastric acid secretion, is produced from its precursor progastrin by a series of posttranslational processing reactions including dibasic residue cleavage and carboxyl-terminal alpha-amidation. Progastrin contains three dibasic cleavage signals, Arg57Arg58, Lys74Lys75, and Arg94Arg95, that appear to be cleaved differently in different tissues. Differential processing is a potential means by which the production of biologically active peptides may be regulated in a tissue-specific manner. To study these reactions further, we used the pZipNeo SV(X) retroviral vector to express human gastrin cDNA in a heterologous cell line (MTC 6-23) known to be capable of processing other peptide precursors. The psi 2 packaging cell line transfected with the gastrin cDNA-retroviral construct (pSVXgas) produced progastrin, but no substantial amounts of processed amidated gastrin were detected. amounts of processed amidated gastrin were detected. In contrast, MTC 6-23 cells infected with the viral stock obtained from the supernatant of pSVXgas-transfected psi 2 cells produced carboxyl-terminally amidated gastrin in all of its standard molecular forms, including sulfated and nonsulfated forms of tetratriacontagastrin (G-34), heptadecagastrin (G-17), and tetradecagastrin (G-14). These studies indicate that heterologous endocrine cell lines infected with a retroviral-peptide cDNA construct can serve as useful models for peptide hormone posttranslational processing.

  7. Gene discovery in Eimeria tenella by immunoscreening cDNA expression libraries of sporozoites and schizonts with chicken intestinal antibodies.

    PubMed

    Réfega, Susana; Girard-Misguich, Fabienne; Bourdieu, Christiane; Péry, Pierre; Labbé, Marie

    2003-04-02

    Specific antibodies were produced ex vivo from intestinal culture of Eimeria tenella infected chickens. The specificity of these intestinal antibodies was tested against different parasite stages. These antibodies were used to immunoscreen first generation schizont and sporozoite cDNA libraries permitting the identification of new E. tenella antigens. We obtained a total of 119 cDNA clones which were subjected to sequence analysis. The sequences coding for the proteins inducing local immune responses were compared with nucleotide or protein databases and with expressed sequence tags (ESTs) databases. We identified new Eimeria genes coding for heat shock proteins, a ribosomal protein, a pyruvate kinase and a pyridoxine kinase. Specific features of other sequences are discussed.

  8. Single molecule fluorescence microscopy for ultra-sensitive RNA expression profiling

    NASA Astrophysics Data System (ADS)

    Hesse, Jan; Jacak, Jaroslaw; Regl, Gerhard; Eichberger, Thomas; Aberger, Fritz; Schlapak, Robert; Howorka, Stefan; Muresan, Leila; Frischauf, Anna-Maria; Schütz, Gerhard J.

    2007-02-01

    We developed a microarray analysis platform for ultra-sensitive RNA expression profiling of minute samples. It utilizes a novel scanning system for single molecule fluorescence detection on cm2 size samples in combination with specialized biochips, optimized for low autofluorescence and weak unspecific adsorption. 20 μg total RNA was extracted from 10 6 cells of a human keratinocyte cell line (HaCaT) and reversely transcribed in the presence of Alexa647-aha-dUTP. 1% of the resulting labeled cDNA was used for complex hybridization to a custom-made oligonucleotide microarray representing a set of 125 different genes. For low abundant genes, individual cDNA molecules hybridized to the microarray spots could be resolved. Single cDNA molecules hybridized to the chip surface appeared as diffraction limited features in the fluorescence images. The à trous wavelet method was utilized for localization and counting of the separated cDNA signals. Subsequently, the degree of labeling of the localized cDNA molecules was determined by brightness analysis for the different genes. Variations by factors up to 6 were found, which in conventional microarray analysis would result in a misrepresentation of the relative abundance of mRNAs.

  9. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis.

    PubMed

    Hirotani, M; Kuroda, R; Suzuki, H; Yoshikawa, T

    2000-05-01

    A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53,094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4'-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments.

  10. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns.

    PubMed

    Liu, Guosheng; Sheng, Xiaoyan; Greenshields, David L; Ogieglo, Adam; Kaminskyj, Susan; Selvaraj, Gopalan; Wei, Yangdou

    2005-07-01

    A cDNA library was constructed from leaf epidermis of diploid wheat (Triticum monococcum) infected with the powdery mildew fungus (Blumeria graminis f. sp. tritici) and was screened for genes encoding peroxidases. From 2,500 expressed sequence tags (ESTs), 36 cDNAs representing 10 peroxidase genes (designated TmPRX1 to TmPRX10) were isolated and further characterized. Alignment of the deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species demonstrated that these peroxidases fall into four distinct groups. Differential expression and tissue-specific localization among the members were observed during the B. graminis f. sp. tritici attack using Northern blots and reverse-transcriptase polymerase chain reaction analyses. Consistent with its abundance in the EST collection, TmPRX1 expression showed the highest induction during pathogen attack and fluctuated in response to the fungal parasitic stages. TmPRX1 to TmPRX6 were expressed predominantly in mesophyll cells, whereas TmPRX7 to TmPRX10, which feature a putative C-terminal propeptide, were detectable mainly in epidermal cells. Using TmPRX8 as a representative, we demonstrated that its C-terminal propeptide was sufficient to target a green fluorescent protein fusion protein to the vacuoles in onion cells. Finally, differential expression profiles of the TmPRXs after abiotic stresses and signal molecule treatments were used to dissect the potential role of these peroxidases in multiple stress and defense pathways.

  11. Vacuolar H+-ATPase Is Expressed in Response to Gibberellin during Tomato Seed Germination1

    PubMed Central

    Cooley, Michael B.; Yang, Hong; Dahal, Peetambar; Mella, R. Alejandra; Downie, A. Bruce; Haigh, Anthony M.; Bradford, Kent J.

    1999-01-01

    Completion of germination (radicle emergence) by gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill.) seeds is dependent upon exogenous GA, because weakening of the endosperm tissue enclosing the radicle tip requires GA. To investigate genes that may be involved in endosperm weakening or embryo growth, differential cDNA display was used to identify mRNAs differentially expressed in gib-1 seeds imbibed in the presence or absence of GA4+7. Among these was a GA-responsive mRNA encoding the 16-kD hydrophobic subunit c of the V0 membrane sector of vacuolar H+-translocating ATPases (V-ATPase), which we termed LVA-P1. LVA-P1 mRNA expression in gib-1 seeds was dependent on GA and was particularly abundant in the micropylar region prior to radicle emergence. Both GA dependence and tissue localization of LVA-P1 mRNA expression were confirmed directly in individual gib-1 seeds using tissue printing. LVA-P1 mRNA was also expressed in wild-type seeds during development and germination, independent of exogenous GA. Specific antisera detected protein subunits A and B of the cytoplasmic V1 sector of the V-ATPase holoenzyme complex in gib-1 seeds only in the presence of GA, and expression was localized to the micropylar region. The results suggest that V-ATPase plays a role in GA-regulated germination of tomato seeds. PMID:10594121

  12. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  13. Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica serovar Dublin.

    PubMed

    Klerks, M M; van Gent-Pelzer, M; Franz, E; Zijlstra, C; van Bruggen, A H C

    2007-08-01

    This paper describes the physiological and molecular interactions between the human-pathogenic organism Salmonella enterica serovar Dublin and the commercially available mini Roman lettuce cv. Tamburo. The association of S. enterica serovar Dublin with lettuce plants was first determined, which indicated the presence of significant populations outside and inside the plants. The latter was evidenced from significant residual concentrations after highly efficient surface disinfection (99.81%) and fluorescence microscopy of S. enterica serovar Dublin in cross sections of lettuce at the root-shoot transition region. The plant biomass was reduced significantly compared to that of noncolonized plants upon colonization with S. enterica serovar Dublin. In addition to the physiological response, transcriptome analysis by cDNA amplified fragment length polymorphism analysis also provided clear differential gene expression profiles between noncolonized and colonized lettuce plants. From these, generally and differentially expressed genes were selected and identified by sequence analysis, followed by reverse transcription-PCR displaying the specific gene expression profiles in time. Functional grouping of the expressed genes indicated a correlation between colonization of the plants and an increase in expressed pathogenicity-related genes. This study indicates that lettuce plants respond to the presence of S. enterica serovar Dublin at physiological and molecular levels, as shown by the reduction in growth and the concurrent expression of pathogenicity-related genes. In addition, it was confirmed that Salmonella spp. can colonize the interior of lettuce plants, thus potentially imposing a human health risk when processed and consumed.

  14. MOLECULAR CHARACTERIZATION OF ENDOCRINE DISRUPTION IN FISH USING CDNA ARRAYS.

    EPA Science Inventory

    We are developing cDNA macroarrays to measure the induction of gene expression in sheepshead minnows and largemouth bass exposed to anthropogenic chemicals that can mimic the action of endogenous hormones. For sheepshead minnows exposed in aqua, we observed similar genetic profil...

  15. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    NASA Astrophysics Data System (ADS)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  16. Construction and application of EST library from Setaria italica in response to dehydration stress.

    PubMed

    Zhang, Jinpeng; Liu, Tingsong; Fu, Junjie; Zhu, Yun; Jia, Jinping; Zheng, Jun; Zhao, Yinhe; Zhang, Ying; Wang, Guoying

    2007-07-01

    Foxtail millet is a gramineous crop with low water requirement. Despite its high water use efficiency, less attention has been paid to the molecular genetics of foxtail millet. This article reports the construction of subtracted cDNA libraries from foxtail millet seedlings under dehydration stress and the expression profile analysis of 1947 UniESTs from the subtracted cDNA libraries by a cDNA microarray. The results showed that 95 and 57 ESTs were upregulated by dehydration stress, respectively, in roots and shoots of seedlings and that 10 and 27 ESTs were downregulated, respectively, in roots and shoots. The expression profile analysis showed that genes induced in foxtail millet roots were different from those in shoots during dehydration stress and that the early response to dehydration stress in foxtail millet roots was the activation of the glycolysis metabolism. Moreover, protein degradation pathway may also play a pivotal role in drought-tolerant responses of foxtail millet. Finally, Northern blot analysis validated well the cDNA microarray data.

  17. Differential gene expression in ripening banana fruit.

    PubMed Central

    Clendennen, S K; May, G D

    1997-01-01

    During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants. PMID:9342866

  18. A method for obtaining RNA from Hemileia vastatrix appressoria produced in planta, suitable for transcriptomic analyses.

    PubMed

    Loureiro, Andreia; Azinheira, Helena Gil; Silva, Maria do Céu; Talhinhas, Pedro

    2015-11-01

    Appressoria are the first infection structures developed by rust fungi and require specific topographic signals from the host for their differentiation. The ease in obtaining appressoria in vitro for these biotrophic fungi led to studies concerning gene expression and gene discovery at appressorial level, avoiding the need to distinguish plant and fungal transcripts. However, in some pathosystems, it was observed that gene expression in appressoria seems to be influenced by host-derived signals, suggesting that transcriptomic analyses performed from in planta differentiated appressoria would be potentially more informative than those from in vitro differentiated appressoria. Nevertheless analysing appressorial RNA obtained from in planta samples is often hampered by an excessive dilution of fungal RNA within plant RNA, besides uncertainty regarding the fungal or plant origin of RNA from highly conserved genes. To circumvent these difficulties, we have recovered Hemileia vastatrix appressoria from Arabica coffee leaf surface using a film of nitrocellulose dissolved in butyl and ethyl acetates (nail polish), and extracted fungal RNA from the polish peel. RNA thus obtained is of good quality and usable for cDNA synthesis and transcriptomic (quantitative PCR) studies. This method could provide the means to investigate specific host-induced appressoria-related fungal pathogenicity factors. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Single Cell Transcriptomics of Hypothalamic Warm Sensitive Neurons that Control Core Body Temperature and Fever Response

    PubMed Central

    Eberwine, James; Bartfai, Tamas

    2011-01-01

    We report on an ‘unbiased’ molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs was confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme. GAD1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitter -, hormone- receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found.. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform GAD1 expression, WSN- transcriptomes show heterogenity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping. PMID:20970451

  20. Multidisciplinary Biomarkers of Early Mammary Carcinogenesis

    DTIC Science & Technology

    2011-04-01

    cDNA prepared. Quantitative real-time PCR (qRT-PCR) was then performed on the cDNA. All qRT-PCR reactions were performed in triplicate. ESR1 ...in Figure 4, all ER(+) cells express ESR1 at high levels (at least 4 fold higher than ER(-) cell lines). A Pearson correlation coefficient was...calculated to determine the linear relationship between the optical redox ratio and ESR1 expression levels and found to be significant (p = 0.0024, r

  1. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-Tmore » Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.« less

  2. Paramyosin from the parasitic mite Sarcoptes scabiei: cDNA cloning and heterologous expression.

    PubMed

    Mattsson, J G; Ljunggren, E L; Bergström, K

    2001-05-01

    The burrowing mite Sarcoptes scabiei is the causative agent of the highly contagious disease sarcoptic mange or scabies. So far, there is no in vitro propagation system for S. scabiei available, and mites used for various purposes must be isolated from infected hosts. Lack of parasite-derived material has limited the possibilities to study several aspects of scabies, including pathogenesis and immunity. It has also hampered the development of high performance serological assays. We have now constructed an S. scabiei cDNA expression library with mRNA purified from mites isolated from red foxes. Immunoscreening of the library enabled us to clone a full-length cDNA coding for a 102.5 kDa protein. Sequence similarity searches identified the protein as a paramyosin. Recombinant S. scabiei paramyosin expressed in Escherichia coli was recognized by sera from dogs and swine infected with S. scabiei. We also designed a small paramyosin construct of about 17 kDa that included the N-terminal part, an evolutionary variable part of the helical core, and the C-terminal part of the molecule. The miniaturized protein was efficiently expressed in E. coli and was recognized by sera from immunized rabbits. These data demonstrate that the cDNA library can assist in the isolation of important S. scabiei antigens and that recombinant proteins can be useful for the study of scabies.

  3. A novel RET rearrangement (ACBD5/RET) by pericentric inversion, inv(10)(p12.1;q11.2), in papillary thyroid cancer from an atomic bomb survivor exposed to high-dose radiation.

    PubMed

    Hamatani, Kiyohiro; Eguchi, Hidetaka; Koyama, Kazuaki; Mukai, Mayumi; Nakachi, Kei; Kusunoki, Yoichiro

    2014-11-01

    During analysis of RET/PTC rearrangements in papillary thyroid cancer (PTC) among atomic bomb survivors, a cDNA fragment of a novel type of RET rearrangement was identified in a PTC patient exposed to a high radiation dose using the improved 5' RACE method. This gene resulted from the fusion of the 3' portion of RET containing tyrosine kinase domain to the 5' portion of the acyl-coenzyme A binding domain containing 5 (ACBD5) gene, by pericentric inversion inv(10)(p12.1;q11.2); expression of the fusion gene was confirmed by RT-PCR. ACBD5 gene is ubiquitously expressed in various human normal tissues including thyroid. Full-length cDNA of the ACBD5-RET gene was constructed and then examined for tumorigenicity. Enhanced phosphorylation of ERK proteins in the MAPK pathway was observed in NIH3T3 cells transfected with expression vector encoding the full-length ACBD5/RET cDNA, while this was not observed in the cells transfected with empty expression vector. Stable NIH3T3 transfectants with ACBD5-RET cDNA induced tumor formation after their injection into nude mice. These findings suggest that the ACBD5-RET rearrangement is causatively involved in the development of PTC.

  4. Molecular cloning and expression of rat liver bile acid CoA ligase.

    PubMed

    Falany, Charles N; Xie, Xiaowei; Wheeler, James B; Wang, Jin; Smith, Michelle; He, Dongning; Barnes, Stephen

    2002-12-01

    Bile acid CoA ligase (BAL) is responsible for catalyzing the first step in the conjugation of bile acids with amino acids. Sequencing of putative rat liver BAL cDNAs identified a cDNA (rBAL-1) possessing a 51 nucleotide 5'-untranslated region, an open reading frame of 2,070 bases encoding a 690 aa protein with a molecular mass of 75,960 Da, and a 138 nucleotide 3'-nontranslated region followed by a poly(A) tail. Identity of the cDNA was established by: 1) the rBAL-1 open reading frame encoded peptides obtained by chemical sequencing of the purified rBAL protein; 2) expressed rBAL-1 protein comigrated with purified rBAL during SDS-polyacrylamide gel electrophoresis; and 3) rBAL-1 expressed in insect Sf9 cells had enzymatic properties that were comparable to the enzyme isolated from rat liver. Evidence for a relationship between fatty acid and bile acid metabolism is suggested by specific inhibition of rBAL-1 by cis-unsaturated fatty acids and its high homology to a human very long chain fatty acid CoA ligase. In summary, these results indicate that the cDNA for rat liver BAL has been isolated and expression of the rBAL cDNA in insect Sf9 cells results in a catalytically active enzyme capable of utilizing several different bile acids as substrates.

  5. Phenylbutyrate Attenuates the Expression of Bcl-XL, DNA-PK, Caveolin-1, and VEGF in Prostate Cancer Cells1

    PubMed Central

    Goh, Meidee; Chen, Feng; Paulsen, Michelle T; Yeager, Ann M; Dyer, Erica S; Ljungman, Mats

    2001-01-01

    Abstract Phenylbutyrate (PB) is a histone deacetylase inhibitor that has been shown to induce differentiation and apoptosis in various cancer cell lines. Although these effects are most likely due to modulation of gene expression, the specific genes and gene products responsible for the effects of PB are not well characterized. In this study, we used cDNA expression arrays and Western blot to assess the effect that PB has on the expression of various cancer and apoptosis-regulatory gene products. We show that PB attenuates the expression of the apoptosis antagonist Bcl-XL, the double-strand break repair protein DNA-dependent protein kinase, the prostate progression marker caveolin -1, and the pro-angiogenic vascular endothelial growth factor. Furthermore, PB was found to act in synergy with ionizing radiation to induce apoptosis in prostate cancer cells. Taken together, our results point to the possibility that PB may be an effective anti-prostate cancer agent when used in combination with radiation or chemotherapy and for the inhibition of cancer progression. PMID:11571633

  6. Molecular cloning of the Coch gene of guinea pig inner ear and its expression analysis in cultured fibrocytes of the spiral ligament.

    PubMed

    Li, Lishu; Ikezono, Tetsuo; Sekine, Kuwon; Shindo, Susumu; Matsumura, Tomohiro; Pawankar, Ruby; Ichimiya, Issei; Yagi, Toshiaki

    2010-08-01

    We have cloned guinea pig Coch cDNA and the sequence information will be useful for future molecular study combined with physiological experiments. Proper Coch gene expression appears to be dependent on the unique extracellular micro-environment of the inner ear in vivo. These results provide insight into the Coch gene expression and its regulation. To characterize the guinea pig Coch gene, we performed molecular cloning and expression analysis in the inner ear and cultured fibrocytes of the spiral ligament. The Coch cDNA was isolated using RACE. Cochlin isofoms were studied by Western blot using three different types of mammalian inner ear. The cochlear fibrocytes were cultured and characterized by immunostaining. Coch gene expression in the fibrocytes was investigated and the influence of cytokine stimulation was evaluated. The full-length 1991 bp Coch cDNA that encodes a 553 amino acid protein was isolated. The sequence had significant homology with other mammals, and the sizes of the Cochlin isoforms were identical. In the cultured fibrocytes, Coch mRNA was expressed in a very small amount and the isoform production was different, compared with the results in vivo. Cytokine stimulation did not alter the level of mRNA expression or isoform formation.

  7. Molecular characterization of a novel ovary-specific gene fem-1 homolog from the oriental river prawn, Macrobrachium nipponense.

    PubMed

    Ma, Ke-Yi; Liu, Zhi-Qiang; Lin, Jing-Yun; Li, Jia-Le; Qiu, Gao-Feng

    2016-01-10

    The feminization-1 (fem-1) gene is characterized by one of the most common protein-protein interaction motifs, ankyrin repeat motifs, displays many expression patterns in vertebrates and invertebrates, and plays an essential role in the sex-determination/differentiation pathway in Caenorhabditis elegans. In this study, a fem-1 homolog, designated as Mnfem-1, was first cloned from the oriental river prawn Macrobrachium nipponense. The prawn Mnfem-1 gene consists of six exons and five introns. The full-length cDNA (2603bp) of Mnfem-1 contains an open reading frame (ORF) encoding a protein of 622 amino acids. The Mnfem-1 RNA and protein are exclusively expressed in the ovary in adult prawns as revealed by RT-PCR and immunofluorescence analysis, respectively. In situ hybridization results showed that strong positive signals were concentrated at the edge of the previtellogenic and vitellogenic oocyte. During embryogenesis, Mnfem-1 is highly expressed in both unfertilized eggs and embryos at cleavage stage and thereafter dropped to a low level from blastula to zoea, indicating that the Mnfem-1 in early embryos is maternal. After hatching, the Mnfem-1 expression significantly increased in the larvae at length of 2cm, an important stage of sex differentiation. Yeast two hybridization results showed that the Mnfem-1 protein can be potentially interactive with cathepsin L and proteins containing the domains of insulinase, ankyrin or ubiquitin. Our results suggested that Mnfem-1 could have roles in prawn ovarian development and sex determination/differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Genes differentially expressed in Theobroma cacao associated with resistance to witches' broom disease caused by Crinipellis perniciosa.

    PubMed

    Leal, Gildemberg Amorim; Albuquerque, Paulo S B; Figueira, Antonio

    2007-05-01

    SUMMARY The basidiomycete Crinipellis perniciosa is the causal agent of witches' broom disease of Theobroma cacao (cocoa). Hypertrophic growth of infected buds ('brooms') is the most dramatic symptom, but the main economic losses derive from pod infection. To identify cocoa genes differentially expressed during the early stages of infection, two cDNA libraries were constructed using the suppression subtractive hybridization (SSH) approach. Subtraction hybridization was conducted between cDNAs from infected shoot-tips of the susceptible genotype 'ICS 39' and the resistant 'CAB 214', in both directions. A total of 187 unique sequences were obtained, with 83 from the library enriched for the susceptible 'ICS 39' sequences, and 104 for the resistant 'CAB 214'. By homology search and ontology analyses, the identified sequences were mainly putatively categorized as belonging to 'signal transduction', 'response to biotic and abiotic stress', 'metabolism', 'RNA and DNA metabolism', 'protein metabolism' and 'cellular maintenance' classes. Quantitative reverse transcription amplification (RT-qPCR) of 23 transcripts identified as differentially expressed between genotypes revealed distinct kinetics of gene up-regulation at the asymptomatic stage of the disease. Expression induction in the susceptible 'ICS 39' in response to C. perniciosa was delayed and limited, while in 'CAB 214' there was a quicker and more intense reaction, with two peaks of gene induction at 48 and 120 h after inoculation, corresponding to morphological and biochemical changes previously described during colonization. Similar differences in gene induction were validated for another resistant genotype ('CAB 208') in an independent experiment. Validation of these genes corroborated similar hypothetical mechanisms of resistance described in other pathosystems.

  9. Hydrocortisone-induced anti-inflammatory effects in immature human enterocytes depend on the timing of exposure.

    PubMed

    Rautava, Samuli; Walker, W Allan; Lu, Lei

    2016-06-01

    The immature human gut has a propensity to exaggerated inflammatory responses that are thought to play a role in the pathogenesis of necrotizing enterocolitis (NEC). Prenatal exposure to corticosteroids has been reported to reduce the risk of NEC, while postnatal dexamethasone treatment is associated with adverse neurodevelopmental outcomes in preterm infants. The aim of this study was to investigate the direct role of hydrocortisone in gene expression patterns and inflammatory responses in immature human enterocytes. Time-dependent hydrocortisone effects in nontransformed primary human fetal intestinal epithelial cell line H4 were investigated by cDNA microarray. Fetal intestinal organ culture and cell culture experiments were conducted. Inflammatory responses were induced by stimulation with IL-1β and TNF-α with and without hydrocortisone. IL-8 and IL-6 expression and secretion were measured as functional readout. Here we report time-dependent hydrocortisone-induced changes in gene expression patterns detected by cDNA microarray. Hydrocortisone significantly attenuated IL-1β-induced inflammatory responses in the immature human gut when administered at the time of the proinflammatory insult: IL-1β-induced IL-8 and IL-6 secretion in the fetal ileum as well as H4 cells were significantly reduced. Hydrocortisone also inhibited IL-8 secretion in response to TNF-α. In contrast, TNF-α-induced IL-8 secretion was not reduced in cells treated with hydrocortisone for 48 h before stimulation. Our observations provide a physiological basis for understanding the differential clinical effects of corticosteroids in the immature human gut depending on the timing of treatment. Copyright © 2016 the American Physiological Society.

  10. Hydrocortisone-induced anti-inflammatory effects in immature human enterocytes depend on the timing of exposure

    PubMed Central

    Rautava, Samuli; Lu, Lei

    2016-01-01

    The immature human gut has a propensity to exaggerated inflammatory responses that are thought to play a role in the pathogenesis of necrotizing enterocolitis (NEC). Prenatal exposure to corticosteroids has been reported to reduce the risk of NEC, while postnatal dexamethasone treatment is associated with adverse neurodevelopmental outcomes in preterm infants. The aim of this study was to investigate the direct role of hydrocortisone in gene expression patterns and inflammatory responses in immature human enterocytes. Time-dependent hydrocortisone effects in nontransformed primary human fetal intestinal epithelial cell line H4 were investigated by cDNA microarray. Fetal intestinal organ culture and cell culture experiments were conducted. Inflammatory responses were induced by stimulation with IL-1β and TNF-α with and without hydrocortisone. IL-8 and IL-6 expression and secretion were measured as functional readout. Here we report time-dependent hydrocortisone-induced changes in gene expression patterns detected by cDNA microarray. Hydrocortisone significantly attenuated IL-1β-induced inflammatory responses in the immature human gut when administered at the time of the proinflammatory insult: IL-1β-induced IL-8 and IL-6 secretion in the fetal ileum as well as H4 cells were significantly reduced. Hydrocortisone also inhibited IL-8 secretion in response to TNF-α. In contrast, TNF-α-induced IL-8 secretion was not reduced in cells treated with hydrocortisone for 48 h before stimulation. Our observations provide a physiological basis for understanding the differential clinical effects of corticosteroids in the immature human gut depending on the timing of treatment. PMID:27056727

  11. An Ambystoma mexicanum EST sequencing project: analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries

    PubMed Central

    Habermann, Bianca; Bebin, Anne-Gaelle; Herklotz, Stephan; Volkmer, Michael; Eckelt, Kay; Pehlke, Kerstin; Epperlein, Hans Henning; Schackert, Hans Konrad; Wiebe, Glenis; Tanaka, Elly M

    2004-01-01

    Background The ambystomatid salamander, Ambystoma mexicanum (axolotl), is an important model organism in evolutionary and regeneration research but relatively little sequence information has so far been available. This is a major limitation for molecular studies on caudate development, regeneration and evolution. To address this lack of sequence information we have generated an expressed sequence tag (EST) database for A. mexicanum. Results Two cDNA libraries, one made from stage 18-22 embryos and the other from day-6 regenerating tail blastemas, generated 17,352 sequences. From the sequenced ESTs, 6,377 contigs were assembled that probably represent 25% of the expressed genes in this organism. Sequence comparison revealed significant homology to entries in the NCBI non-redundant database. Further examination of this gene set revealed the presence of genes involved in important cell and developmental processes, including cell proliferation, cell differentiation and cell-cell communication. On the basis of these data, we have performed phylogenetic analysis of key cell-cycle regulators. Interestingly, while cell-cycle proteins such as the cyclin B family display expected evolutionary relationships, the cyclin-dependent kinase inhibitor 1 gene family shows an unusual evolutionary behavior among the amphibians. Conclusions Our analysis reveals the importance of a comprehensive sequence set from a representative of the Caudata and illustrates that the EST sequence database is a rich source of molecular, developmental and regeneration studies. To aid in data mining, the ESTs have been organized into an easily searchable database that is freely available online. PMID:15345051

  12. Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake.

    PubMed

    Pu, L; Zhang, L C; Zhang, J S; Song, X; Wang, L G; Liang, J; Zhang, Y B; Liu, X; Yan, H; Zhang, T; Yue, J W; Li, N; Wu, Q Q; Wang, L X

    2016-08-12

    Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) is essential for apoptosis, proliferation, differentiation, and immune responses, and is a candidate marker for residual feed intake (RFI) in pig. We cloned the full-length cDNA sequence of porcine MAP3K5 by rapid-amplification of cDNA ends. The 5451-bp gene contains a 5'-untranslated region (UTR) (718 bp), a coding region (3738 bp), and a 3'-UTR (995 bp), and encodes a peptide of 1245 amino acids, which shares 97, 99, 97, 93, 91, and 84% sequence identity with cattle, sheep, human, mouse, chicken, and zebrafish MAP3K5, respectively. The deduced MAP3K5 protein sequence contains two conserved domains: a DUF4071 domain and a protein kinase domain. Phylogenetic analysis showed that porcine MAP3K5 forms a separate branch to vicugna and camel MAP3K5. Tissue expression analysis using real-time quantitative polymerase chain reaction (qRT-PCR) revealed that MAP3K5 was expressed in the heart, liver, spleen, lung, kidney, muscle, fat, pancrea, ileum, and stomach tissues. Copy number variation was detected for porcine MAP3K5 and validated by qRT-PCR. Furthermore, a significant increase in average copy number was detected in the low RFI group when compared to the high RFI group in a Duroc pig population. These results provide useful information regarding the influence of MAP3K5 on RFI in pigs.

  13. Characterization of the cod (Gadus morhua) steroidogenic acute regulatory protein (StAR) sheds light on StAR gene structure in fish.

    PubMed

    Goetz, Frederick W; Norberg, Birgitta; McCauley, Linda A R; Iliev, Dimitar B

    2004-03-01

    The full-length cDNA for the cod (Gadus morhua) StAR was cloned by RT-PCR and library screening using ovarian RNA. From the library screening, 2 size classes of cDNA were obtained; a 1577 bp cDNA (cStAR1) and a 2851 bp cDNA (cStAR2). The cStAR1 cDNA presumably encodes a protein of 286 amino acids. The cStAR2 cDNA was composed of 6 separated sequences that contained all of the coding regions of cStAR1 when added together, but also contained 5 noncoding regions not observed in cStAR1. Polymerase chain reactions of cod genomic DNA produced products slightly larger than cStAR2. The sequence of these products were the same as cStAR2 but revealed one additional noncoding region (intron). Thus, the fish StAR gene contains the same number of exons (7) and introns (6) as observed in mammals, but is approximately half the size of the mammalian gene. Using Northern analysis and RT-PCR, cStAR1 expression was observed only in testes, ovaries and head kidneys. Polymerase chain reaction products were also observed using cDNA from steroidogenic tissues and primers designed to regions specific for cStAR2, indicating that cStAR2 is expressed in tissues and may account for the presence of larger transcripts observed on Northern blots.

  14. Characterization, expression profiles, intracellular distribution and association analysis of porcine PNAS-4 gene with production traits.

    PubMed

    Mo, Delin; Zhu, Zhengmao; te Pas, Marinus F W; Li, Xinyun; Yang, Shulin; Wang, Heng; Wang, Huanling; Li, Kui

    2008-06-30

    In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and production efficiency, we determined how porcine PNAS-4 gene regulates meat production. Therefore, this gene has been sequenced, expression analyzed and associated with meat production traits. We cloned the full-length cDNA of porcine PNAS-4 gene encoding a protein of 194 amino acids which was expressed in the Golgi complex. This gene was mapped to chromosome 10, q11-16, in a region of conserved synteny with human chromosome 1 where the human homologous gene was localized. Real-time PCR revealed that PNAS-4 mRNA was widely expressed with highest expression levels in skeletal muscle followed by lymph, liver and other tissues, and showed a down-regulated expression pattern during prenatal development while a up-regulated expression pattern after weaning. Association analysis revealed that allele C of SNP A1813C was prevalent in Chinese indigenous breeds whereas A was dominant allele in Landrace and Large White, and the pigs with homozygous CC had a higher fat content than those of the pigs with other genotypes (P < 0.05). Porcine PNAS-4 protein tagged with green fluorescent protein accumulated in the Golgi complex, and its mRNA showed a widespread expression across many tissues and organs in pigs. It may be an important factor affecting the meat production efficiency, because its down-regulated expression pattern during early embryogenesis suggests involvement in increase of muscle fiber number. In addition, the SNP A1813C associated with fat traits might be a genetic marker for molecular-assisted selection in animal breeding.

  15. Genetic Regulation in the Aiptasia pallida Symbiosis - Performance Report, Year 1.

    DTIC Science & Technology

    1997-02-01

    and symbiotic zooxanthellae is one developed for serial analysis of gene expression (SAGE). We initially tested the SAGE protocol with cDNA generated...technically difficult. We are now focusing on constructing representative cDNA libraries from cultured and symbiotic zooxanthellae and will sequence

  16. Identification, characterization and functional analysis of regulatory region of nanos gene from half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Huang, Jinqiang; Li, Yongjuan; Shao, Changwei; Wang, Na; Chen, Songlin

    2017-06-20

    The nanos gene encodes an RNA-binding zinc finger protein, which is required in the development and maintenance of germ cells. However, there is very limited information about nanos in flatfish, which impedes its application in fish breeding. In this study, we report the molecular cloning, characterization and functional analysis of the 3'-untranslated region of the nanos gene (Csnanos) from half-smooth tongue sole (Cynoglossus semilaevis), which is an economically important flatfish in China. The 1233-bp cDNA sequence, 1709-bp genomic sequence and flanking sequences (2.8-kb 5'- and 1.6-kb 3'-flanking regions) of Csnanos were cloned and characterized. Sequence analysis revealed that CsNanos shares low homology with Nanos in other species, but the zinc finger domain of CsNanos is highly similar. Phylogenetic analysis indicated that CsNanos belongs to the Nanos2 subfamily. Csnanos expression was widely detected in various tissues, but the expression level was higher in testis and ovary. During early development and sex differentiation, Csnanos expression exhibited a clear sexually dimorphic pattern, suggesting its different roles in the migration and differentiation of primordial germ cells (PGCs). Higher expression levels of Csnanos mRNA in normal females and males than in neomales indicated that the nanos gene may play key roles in maintaining the differentiation of gonad. Moreover, medaka PGCs were successfully labeled by the microinjection of synthesized mRNA consisting of green fluorescence protein and the 3'-untranslated region of Csnanos. These findings provide new insights into nanos gene expression and function, and lay the foundation for further study of PGC development and applications in tongue sole breeding. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls.

    PubMed Central

    Jessen-Eller, Kathryn; Kreiling, Jill A; Begley, Gail S; Steele, Marjorie E; Walker, Charles W; Stephens, Raymond E; Reinisch, Carol L

    2002-01-01

    The cell-cycle checkpoint protein p53 both directs terminal differentiation and protects embryos from DNA damage. To study invertebrate p53 during early development, we identified three differentially expressed p53 family members (p53, p97, p120) in the surf clam, Spisula solidissima. In these mollusks, p53 and p97 occur in both embryonic and adult tissue, whereas p120 is exclusively embryonic. We sequenced, cloned, and characterized p120 cDNA. The predicted protein, p120, resembles p53 across all evolutionarily conserved regions and contains a C-terminal extension with a sterile alpha motif (SAM) as in p63 and p73. These vertebrate forms of p53 are required for normal inflammatory, epithelial, and neuronal development. Unlike clam p53 and p97, p120 mRNA and protein levels are temporally expressed in embryos, with mRNA levels decreasing with increasing p120 protein (R(2) = 0.97). Highest surf clam p120 mRNA levels coincide with the onset of neuronal growth. In earlier work we have shown that neuronal development is altered by exposure to polychlorinated biphenyls (PCBs), a neurotoxic environmental contaminant. In this study we show that PCBs differentially affect expression of the three surf clam p53 family members. p120 mRNA and protein are reduced the most and earliest in development, p97 protein shows a smaller and later reduction, and p53 protein levels do not change. For the first time we report that unlike p53 and p97, p120 is specifically embryonic and expressed in a time-dependent manner. Furthermore, p120 responds to PCBs by 48 hr when PCB-induced suppression of the serotonergic nervous system occurs. PMID:11940455

  18. The Lipopolysaccharide and β-1,3-Glucan Binding Protein Gene Is Upregulated in White Spot Virus-Infected Shrimp (Penaeus stylirostris)

    PubMed Central

    Roux, Michelle M.; Pain, Arnab; Klimpel, Kurt R.; Dhar, Arun K.

    2002-01-01

    Pattern recognition proteins such as lipopolysaccharide and β-1,3-glucan binding protein (LGBP) play an important role in the innate immune response of crustaceans and insects. Random sequencing of cDNA clones from a hepatopancreas cDNA library of white spot virus (WSV)-infected shrimp provided a partial cDNA (PsEST-289) that showed similarity to the LGBP gene of crayfish and insects. Subsequently full-length cDNA was cloned by the 5′-RACE (rapid amplification of cDNA ends) technique and sequenced. The shrimp LGBP gene is 1,352 bases in length and is capable of encoding a polypeptide of 376 amino acids that showed significant similarity to homologous genes from crayfish, insects, earthworms, and sea urchins. Analysis of the shrimp LGBP deduced amino acid sequence identified conserved features of this gene family including a potential recognition motif for β-(1→3) linkage of polysaccharides and putative RGD cell adhesion sites. It is known that LGBP gene expression is upregulated in bacterial and fungal infection and that the binding of lipopolysaccharide and β-1,3-glucan to LGBP activates the prophenoloxidase (proPO) cascade. The temporal expression of LGBP and proPO genes in healthy and WSV-challenged Penaeus stylirostris shrimp was measured by real-time quantitative reverse transcription-PCR, and we showed that LGBP gene expression in shrimp was upregulated as the WSV infection progressed. Interestingly, the proPO expression was upregulated initially after infection followed by a downregulation as the viral infection progressed. The downward trend in the expression of proPO coincided with the detection of WSV in the infected shrimp. Our data suggest that shrimp LGBP is an inducible acute-phase protein that may play a critical role in shrimp-WSV interaction and that the WSV infection regulates the activation and/or activity of the proPO cascade in a novel way. PMID:12072514

  19. Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos.

    PubMed

    Imai, Kaoru S; Satoh, Nori; Satou, Yutaka

    2002-04-01

    In early Ciona savignyi embryos, nuclear localization of beta-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of beta-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of beta-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in beta-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.

  20. Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery.

    PubMed

    Bermúdez, Beatriz; López, Sergio; Pacheco, Yolanda M; Villar, José; Muriana, Francisco J G; Hoheisel, Jöerg D; Bauer, Andrea; Abia, Rocío

    2008-07-15

    Postprandial triglyceride-rich lipoproteins (TRL) have a direct effect on vascular smooth muscle cells (SMC) and they increase the risk of atherogenesis. Here, we have tested the hypothesis that the different fatty acid composition of TRL is capable of differentially modifying gene expression in human coronary artery SMC (CASMC). In addition, the effect of TRL on cell proliferation and transcription factor activation was also evaluated. TRL were prepared from plasma of healthy volunteers after the ingestion of meals enriched in refined olive oil (ROO), butter or a mixture of vegetable and fish oils (VEFO). We use cDNA microarrays to determine the genes differentially expressed in TRL-treated CASMC. Correspondence cluster analysis demonstrated that TRL-butter, -ROO and -VEFO provoked different transcriptional profiles in CASMC. Sixty-six genes were regulated by TRL-butter, 55 by -ROO, and 47 by -VEFO. The data revealed that TRL-butter predominantly activated genes involved in the regulation of cell proliferation and inflammation. Likewise, TRL-VEFO induced the expression of genes implicated in inflammation, while TRL-ROO promoted a less atherogenic gene profile. The pathophysiological contribution of TRL to the development of atherosclerosis and the stability of atherosclerotic plaques may depend on the fatty acid composition of TRL. Our findings suggest a role for macrophage-inhibiting cytokine-1 (MIC-1) in coronary artery cardiovascular events.

  1. Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization.

    PubMed

    Sun, Wenyue; Zhang, Kaitai; Zhang, Xinyu; Lei, Wendong; Xiao, Ting; Ma, Jinfang; Guo, Suping; Shao, Shujuan; Zhang, Husheng; Liu, Yan; Yuan, Jinsong; Hu, Zhi; Ma, Ying; Feng, Xiaoli; Hu, Songnian; Zhou, Jun; Cheng, Shujun; Gao, Yanning

    2004-08-20

    Lung cancer is one of the major causes of cancer-related deaths. Over the past decade, much has been known about the molecular changes associated with lung carcinogenesis; however, our understanding to lung tumorigenesis is still incomplete. To identify genes that are differentially expressed in squamous cell carcinoma (SCC) of the lung, we compared the expression profiles between primarily cultured SCC tumor cells and bronchial epithelial cells derived from morphologically normal bronchial epithelium of the same patient. Using suppression subtractive hybridization (SSH), two cDNA libraries containing up- and down-regulated genes in the tumor cells were constructed, named as LCTP and LCBP. The two libraries comprise 258 known genes and 133 unknown genes in total. The known up-regulated genes in the library LCTP represented a variety of functional groups; including metabolism-, cell adhesion and migration-, signal transduction-, and anti-apoptosis-related genes. Using semi-quantitative reverse transcription-polymerase chain reaction, seven genes chosen randomly from the LCTP were analyzed in the tumor tissue paired with its corresponding adjacent normal lung tissue derived from 16 cases of the SCC. Among them, the IQGAP1, RAP1GDS1, PAICS, MLF1, and MARK1 genes showed a consistent expression pattern with that of the SSH analysis. Identification and further characterization of these genes may allow a better understanding of lung carcinogenesis.

  2. HOM/HOX homeobox genes are present in hydra (Chlorohydra viridissima) and are differentially expressed during regeneration.

    PubMed Central

    Schummer, M; Scheurlen, I; Schaller, C; Galliot, B

    1992-01-01

    Hydra, a diblastic animal consisting of two cell layers, ectoderm and endoderm, is one of the most ancient animals displaying an anteroposterior axis with a head and a foot developing from an uncommitted gastric region. As such, hydra is an interesting model for studying the presence and function of homeobox genes in a phylogenetically old organism. By screening a Chlorohydra viridissima cDNA library with a 'guessmer' oligonucleotide, we have cloned several such cnidarian homeobox-containing genes (cnox genes). Two of these, cnox1 and cnox2, display labial and Deformed type homeodomains respectively and could represent two ancestral genes of the HOM/HOX complexes; cnox3 exhibits some similarity to the BarH1 and the distal-less type homeodomains and a fourth gene is highly related to the msh/Hox7 type of homeodomain. We used quantitative PCR to study levels of expression of these genes along the body axis and during head regeneration. In all cases, the expression in heads was stronger than that in the gastric region. cnox1 transcripts dramatically peaked within the first hours of head regeneration, whereas cnox2 and cnox3 reached their maximal levels 1 and 2 days after cutting respectively. This differential expression of homeobox genes at various stages of regeneration suggests that they play specific roles in regenerative processes. Images PMID:1374713

  3. Global analysis of differential gene expression related to long-term sperm storage in oviduct of Chinese Soft-Shelled Turtle Pelodiscus sinensis

    PubMed Central

    Liu, Tengfei; Yang, Ping; Chen, Hong; Huang, Yufei; Liu, Yi; Waqas, Yasir; Ahmed, Nisar; Chu, Xiaoya; Chen, Qiusheng

    2016-01-01

    Important evolutionary and ecological consequences arise from the ability of female turtles to store viable spermatozoa for an extended period. Although previous morphological studies have observed the localization of spermatozoa in Pelodiscus sinensis oviduct, no systematic study on the identification of genes that are involved in long-term sperm storage has been performed. In this study, the oviduct of P. sinensis at different phases (reproductive and hibernation seasons) was prepared for RNA-Seq and gene expression profiling. In total, 2,662 differentially expressed genes (DEGs) including 1,224 up- and 1,438 down-regulated genes were identified from two cDNA libraries. Functional enrichment analysis indicated that many genes were predominantly involved in the immune response, apoptosis pathway and regulation of autophagy. RT-qPCR, ELISA, western blot and IHC analyses showed that the expression profiles of mRNA and protein in selected DEGs were in consistent with results from RNA-Seq analysis. Remarkably, TUNEL analysis revealed the reduced number of apoptotic cells during sperm storage. IHC and TEM analyses found that autophagy occurred in the oviduct epithelial cells, where the spermatozoa were closely attached. The outcomes of this study provide fundamental insights into the complex sperm storage regulatory process and facilitate elucidating the mechanism of sperm storage in P. sinensis. PMID:27628424

  4. Molecular characterization and expression profile of nanos in Schistosoma japonicum and its influence on the expression several mammalian stem cell factors.

    PubMed

    Giri, Bikash Ranjan; Du, Xiaoli; Xia, Tianqi; Chen, Yongjun; Li, Hao; Cheng, Guofeng

    2017-07-01

    Pluripotent stem cells, called neoblasts, are well known for the regenerative capability and developmental plasticity in flatworms. Impressive advancement has been made in free-living flatworms, while in case of its parasitic counterpart, neoblast-like stem cells have attracted recent attention for its self-renewal and differentiation capacity. Nanos is a key conserved post-transcriptional regulator critical for the formation, development, and/or maintenance of the pluripotent germ line stem cell systems in many metazoans including schistosomes. In the present study, we report the molecular cloning and expression of nanos orthologous genes nanos in Schistosoma japonicum (Sjnanos). The cDNA of Sjnanos is 826 bp long, containing an open reading frame (ORF) for 223 amino acid long protein. qRT-PCR analysis shown that Sjnanos was differently expressed in several stages of schistosomes with relatively high level in schistosomula. Additionally, Sjnanos was expressed highly in adult females compared to adult males. Transfection of recombinant plasmid for expressing Sjnanos resulted in significant proliferation and increased expression of several stem cell factors in mammalian cells. Overall, our preliminary study provides the molecular basis to further functionally characterize Sjnanos in S. japonicum.

  5. Analysis of xylem formation in pine by cDNA sequencing

    NASA Technical Reports Server (NTRS)

    Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.; hide

    1998-01-01

    Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.

  6. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots.

    PubMed

    Vangelisti, Alberto; Natali, Lucia; Bernardi, Rodolfo; Sbrana, Cristiana; Turrini, Alessandra; Hassani-Pak, Keywan; Hughes, David; Cavallini, Andrea; Giovannetti, Manuela; Giordani, Tommaso

    2018-01-08

    Arbuscular mycorrhizal (AM) fungi are essential elements of soil fertility, plant nutrition and productivity, facilitating soil mineral nutrient uptake. Helianthus annuus is a non-model, widely cultivated species. Here we used an RNA-seq approach for evaluating gene expression variation at early and late stages of mycorrhizal establishment in sunflower roots colonized by the arbuscular fungus Rhizoglomus irregulare. mRNA was isolated from roots of plantlets at 4 and 16 days after inoculation with the fungus. cDNA libraries were built and sequenced with Illumina technology. Differential expression analysis was performed between control and inoculated plants. Overall 726 differentially expressed genes (DEGs) between inoculated and control plants were retrieved. The number of up-regulated DEGs greatly exceeded the number of down-regulated DEGs and this difference increased in later stages of colonization. Several DEGs were specifically involved in known mycorrhizal processes, such as membrane transport, cell wall shaping, and other. We also found previously unidentified mycorrhizal-induced transcripts. The most important DEGs were carefully described in order to hypothesize their roles in AM symbiosis. Our data add a valuable contribution for deciphering biological processes related to beneficial fungi and plant symbiosis, adding an Asteraceae, non-model species for future comparative functional genomics studies.

  7. Identification and characterization of a DnaJ gene from red alga Pyropia yezoensis (Bangiales, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Liu, Jiao; Li, Xianchao; Tang, Xuexi; Zhou, Bin

    2016-03-01

    Members of the DnaJ family are proteins that play a pivotal role in various cellular processes, such as protein folding, protein transport and cellular responses to stress. In the present study, we identified and characterized the full-length DnaJ cDNA sequence from expressed sequence tags of Pyropia yezoensis ( PyDnaJ) via rapid identification of cDNA ends. This cDNA encoded a protein of 429 amino acids, which shared high sequence similarity with other identified DnaJ proteins, such as a heat shock protein 40/DnaJ from Pyropia haitanensis. The relative mRNA expression level of PyDnaJ was investigated using real-time PCR to determine its specific expression during the algal life cycle and during desiccation. The relative mRNA expression level in sporophytes was higher than that in gametophytes and significantly increased during the whole desiccation process. These results indicate that PyDnaJ is an authentic member of the DnaJ family in plants and red algae and might play a pivotal role in mitigating damage to P. yezoensis during desiccation.

  8. Characterization and expression of the calpastatin gene in Cyprinus carpio.

    PubMed

    Chen, W X; Ma, Y

    2015-07-03

    Calpastatin, an important protein used to regulate meat quality traits in animals, is encoded by the CAST gene. The aim of the present study was to clone the cDNA sequence of the CAST gene and detect the expression of CAST in the tissues of Cyprinus carpio. The cDNA of the C. carpio CAST gene, amplified using rapid amplification of cDNA ends PCR, is 2834 bp in length (accession No. JX275386), contains a 2634-bp open reading frame, and encodes a protein with 877 amino acid residues. The amino acid sequence of the C. carpio CAST gene was 88, 80, and 59% identical to the sequences observed in grass carp, zebrafish, and other fish, respectively. The C. carpio CAST was observed to contain four conserved domains with 54 serine phosphorylation loci, 28 threonine phosphorylation loci, 1 tyrosine phosphorylation loci, and 6 specific protein kinase C phosphorylation loci. The CAST gene showed widespread expression in different tissues of C. carpio. Surprisingly, the relative expression of the CAST transcript in the muscle and heart tissues of C. carpio was significantly higher than in other tissues (P < 0.01).

  9. Gene expression profiling of three different stressors in the water flea Daphnia magna.

    PubMed

    Jansen, Mieke; Vergauwen, Lucia; Vandenbrouck, Tine; Knapen, Dries; Dom, Nathalie; Spanier, Katina I; Cielen, Anke; De Meester, Luc

    2013-07-01

    Microarrays are an ideal tool to screen for differences in gene expression of thousands of genes simultaneously. However, often commercial arrays are not available. In this study, we performed microarray analyses to evaluate patterns of gene transcription following exposure to two natural and one anthropogenic stressor. cDNA microarrays compiled of three life stage specific and three stressor-specific EST libraries, yielding 1734 different EST sequences, were used. We exposed juveniles of the water flea Daphnia magna for 48, 96 and 144 h to three stressors known to exert strong selection in natural populations of this species i.e. a sublethal concentration of the pesticide carbaryl, infective spores of the endoparasite Pasteuria ramosa, and fish predation risk mimicked by exposure to fish kairomones. A total of 148 gene fragments were differentially expressed compared to the control. Based on a PCA, the exposure treatments were separated into two main groups based on the extent of the transcriptional response: a low and a high (144 h of fish or carbaryl exposure and 96 h of parasite exposure) stress group. Firstly, we observed a general stress-related transcriptional expression profile independent of the treatment characterized by repression of transcripts involved in transcription, translation, signal transduction and energy metabolism. Secondly, we observed treatment-specific responses including signs of migration to deeper water layers in response to fish predation, structural challenge of the cuticle in response to carbaryl exposure, and disturbance of the ATP production in parasite exposure. A third important conclusion is that transcription expression patterns exhibit stress-specific changes over time. Parasite exposure shows the most differentially expressed gene fragments after 96 h. The peak of differentially expressed transcripts came only after 144 h of fish exposure, while carbaryl exposure induced a more stable number of differently expressed gene fragments over time.

  10. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  11. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.

    2003-05-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  12. Cloning and expressions of peroxisome proliferator activated receptor alpha1 and alpha2 (PPARα1 and PPARα2) in loach (Misgurnus anguillicaudatus) and in response to different dietary fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Xiao; Gao, Jian; Li, Dapeng

    Peroxisome proliferator activated receptor alpha1 and alpha2 (PPARα1 and PPARα2) were investigated in loach (Misgurnus anguillicaudatus) by RACE (rapid amplification of cDNA ends) and qPCR (real-time quantitative PCR) for the first time. The cDNA sequences of PPARα1 and PPARα2 were 2042bp and 2407bp, respectively encoding 467 and 465 amino acids. Sequence alignments of deduced amino acids showed significant homology between the two subtypes of PPARα, indicating 70% identity. The two genes revealed sensible changes in transcriptions during early life stages of the loach, and the highest transcriptions of the two genes both appeared at some day after hatching. PPARα1 predominantlymore » expressed in liver, while PPARα2 markedly expressed in heart. The expression regulation of PPARα1 and PPARα2 in response to dietary fatty acids was determined in livers of loaches fed with diets containing fish oil (FO group) and soybean oil (SO group) for 75 days. The expression level of PPARα1 in FO group was significantly higher than those in SO group (P < 0.01), while the expression level of PPARα2 in FO group was also significantly higher than those in SO group (P < 0.05). There was no significant difference in the expression level between PPARα1 and PPARα2 in SO group, whereas significant difference in FO group. These indicated that lipid resources could regulate the expressions of these two genes in the loach. Our results will provide opportunities to better understand the functional characterization of PPARα1 and PPARα2 in further studies. - Highlights: • The full-length cDNAs of loach PPARα1 and PPARα2 were obtained by a RACE PCR method. • Phylogenetic and protein characterizations of these two genes were predicted. • These two genes differentially expressed at different early life stages and tissues indicating their different functions. • n-3 PUFA may regulate the activation of PPARα in the loach.« less

  13. Gene expression profiling defined pathways correlated with fibroblast cell proliferation induced by Opisthorchis viverrini excretory/secretory product.

    PubMed

    Thuwajit, Chanitra; Thuwajit, Peti; Uchida, Kazuhiko; Daorueang, Daoyot; Kaewkes, Sasithorn; Wongkham, Sopit; Miwa, Masanao

    2006-06-14

    To investigate the mechanism of fibroblast cell proliferation stimulated by the Opisthorchis viverrini excretory/secretory (ES) product. NIH-3T3, mouse fibroblast cells were treated with O. viverrini ES product by non-contact co-cultured with the adult parasites. Total RNA from NIH-3T3 treated and untreated with O. viverrini was extracted, reverse transcribed and hybridized with the mouse 15K complementary DNA (cDNA) array. The result was analyzed by ArrayVision version 5 and GeneSpring version 5 softwares. After normalization, the ratios of gene expression of parasite treated to untreated NIH-3T3 cells of 2-and more-fold upregulated was defined as the differentially expressed genes. The expression levels of the signal transduction genes were validated by semi-quantitative SYBR-based real-time RT-PCR. Among a total of 15,000 genes/ESTs, 239 genes with established cell proliferation-related function were 2 fold-and more-up-regulated by O. viverrini ES product compared to those in cells without exposure to the parasitic product. These genes were classified into groups including energy and metabolism, signal transduction, protein synthesis and translation, matrix and structural protein, transcription control, cell cycle and DNA replication. Moreover, the expressions of serine-threonine kinase receptor, receptor tyrosine kinase and collagen production-related genes were up-regulated by O. viverrini ES product. The expression level of signal transduction genes; pkC, pdgfr alpha, jak 1, eps 8, tgf beta 1i4, strap and h ras measured by real-time RT-PCR confirmed their expression levels to those obtained from cDNA array. However, only the up-regulated expression of pkC, eps 8 and tgfbeta 1i4 which are the downstream signaling molecules of either epidermal growth factor (EGF) or transforming growth factor-beta (TGF-beta) showed statistical significance (P < 0.05). O. viverrini ES product stimulates the significant changes of gene expression in several functional categories and these mainly include transcripts related to cell proliferation. The TGF-beta and EGF signal transduction pathways are indicated as the possible pathways of O. viverrini-driven cell proliferation.

  14. Characterization by Suppression Subtractive Hybridization of Transcripts That Are Differentially Expressed in Leaves of Anthracnose-Resistant Ramie Cultivar.

    PubMed

    Xuxia, Wang; Jie, Chen; Bo, Wang; Lijun, Liu; Hui, Jiang; Diluo, Tang; Dingxiang, Peng

    2012-01-01

    For the purpose of screening putative anthracnose resistance-related genes of ramie ( Boehmeria nivea L. Gaud), a cDNA library was constructed by suppression subtractive hybridization using anthracnose-resistant cultivar Huazhu no. 4. The cDNAs from Huazhu no. 4, which were infected with Colletotrichum gloeosporioides , were used as the tester and cDNAs from uninfected Huazhu no. 4 as the driver. Sequencing analysis and homology searching showed that these clones represented 132 single genes, which were assigned to functional categories, including 14 putative cellular functions, according to categories established for Arabidopsis . These 132 genes included 35 disease resistance and stress tolerance-related genes including putative heat-shock protein 90, metallothionein, PR-1.2 protein, catalase gene, WRKY family genes, and proteinase inhibitor-like protein. Partial disease-related genes were further analyzed by reverse transcription PCR and RNA gel blot. These expressed sequence tags are the first anthracnose resistance-related expressed sequence tags reported in ramie.

  15. A Plastid Terminal Oxidase Associated with Carotenoid Desaturation during Chromoplast Differentiation1

    PubMed Central

    Josse, Eve-Marie; Simkin, Andrew J.; Gaffé, Joël; Labouré, Anne-Marie; Kuntz, Marcel; Carol, Pierre

    2000-01-01

    The Arabidopsis IMMUTANS gene encodes a plastid homolog of the mitochondrial alternative oxidase, which is associated with phytoene desaturation. Upon expression in Escherichia coli, this protein confers a detectable cyanide-resistant electron transport to isolated membranes. In this assay this activity is sensitive to n-propyl-gallate, an inhibitor of the alternative oxidase. This protein appears to be a plastid terminal oxidase (PTOX) that is functionally equivalent to a quinol:oxygen oxidoreductase. This protein was immunodetected in achlorophyllous pepper (Capsicum annuum) chromoplast membranes, and a corresponding cDNA was cloned from pepper and tomato (Lycopersicum esculentum) fruits. Genomic analysis suggests the presence of a single gene in these organisms, the expression of which parallels phytoene desaturase and ζ-carotene desaturase gene expression during fruit ripening. Furthermore, this PTOX gene is impaired in the tomato ghost mutant, which accumulates phytoene in leaves and fruits. These data show that PTOX also participates in carotenoid desaturation in chromoplasts in addition to its role during early chloroplast development. PMID:10938359

  16. The effect of nonylphenol on gene expression in Atlantic salmon smolts

    USGS Publications Warehouse

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na+/K+-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers.

  17. cDNA cloning of Brassica napus malonyl-CoA:ACP transacylase (MCAT) (fab D) and complementation of an E. coli MCAT mutant.

    PubMed

    Simon, J W; Slabas, A R

    1998-09-18

    The GenBank database was searched using the E. coli malonyl CoA:ACP transacylase (MCAT) sequence, for plant protein/cDNA sequences corresponding to MCAT, a component of plant fatty acid synthetase (FAS), for which the plant cDNA has not been isolated. A 272-bp Zea mays EST sequence (GenBank accession number: AA030706) was identified which has strong homology to the E. coli MCAT. A PCR derived cDNA probe from Zea mays was used to screen a Brassica napus (rape) cDNA library. This resulted in the isolation of a 1200-bp cDNA clone which encodes an open reading frame corresponding to a protein of 351 amino acids. The protein shows 47% homology to the E. coli MCAT amino acid sequence in the coding region for the mature protein. Expression of a plasmid (pMCATrap2) containing the plant cDNA sequence in Fab D89, an E. coli mutant, in MCAT activity restores growth demonstrating functional complementation and direct function of the cloned cDNA. This is the first functional evidence supporting the identification of a plant cDNA for MCAT.

  18. Role of cytochrome P450 IA2 in acetanilide 4-hydroxylation as determined with cDNA expression and monoclonal antibodies.

    PubMed

    Liu, G; Gelboin, H V; Myers, M J

    1991-02-01

    The role of P450 IA2 in the hydroxylation of acetanilide was examined using an inhibitory monoclonal antibody (MAb) 1-7-1 and vaccinia cDNA expression producing murine P450 IA1 (mIA1), murine P450 IA2 (mIA2), or human P450 IA2 (hIA2). Acetanilide hydroxylase (AcOH) activity was measured using an HPLC method with more than 500-fold greater sensitivity than previously described procedures. This method, which does not require the use of radioactive acetanilide, was achieved by optimizing both the gradient system and the amount of enzyme needed to achieve detection by uv light. MAb 1-7-1 inhibits up to 80% of the AcOH activity in both rat liver microsomes and cDNA expressed mouse and human P450 IA2. MAb 1-7-1, which recognizes both P450 IA1 and P450 IA2, completely inhibits the aryl hydrocarbon hydroxylase (AHH) activity of cDNA expressed in IA1. The inhibition of only 80% of the AHH activity present in MC liver microsomes by MAb 1-7-1 suggests that additional P450 forms are contributing to the overall AHH activity present in methylcholanthrene (MC)-liver microsomes as MAb 1-7-1 almost completely inhibits the AHH activity of expressed mIA1. Maximal inhibition of IA2 by 1-7-1 results in an 80% decrease in acetanilide hydroxylase activity in both liver microsomes and expressed mouse and human IA2. The capacity of MAb 1-7-1 to produce identical levels of inhibition of acetanilide hydroxylase activity in rat MC microsomes (80%) and in expressed mouse (81%) and human P450 IA2 (80%) strongly suggests that P450 IA2 is the major and perhaps the only enzyme responsible for the metabolism of acetanilide. These results demonstrate the complementary utility of monoclonal antibodies and cDNA expression for defining the contribution of specific P450 enzymes to the metabolism of a given substrate. This complementary approach allows for a more precise determination of the inhibitory capacity of MAb with respect to the metabolic capacity of the target P450.

  19. A pilot study of gene expression analysis in workers with hand-arm vibration syndrome.

    PubMed

    Maeda, Setsuo; Yu, Xiaozhong; Wang, Rui-Sheng; Sakakibara, Hisataka

    2008-04-01

    The purpose of this pilot study was to examine differences in gene expressions by cDNA microarray analysis of hand-arm vibration syndrome (HAVS) patients. Vein blood samples were collected and total RNA was extracted. All blood samples were obtained in the morning in one visit after a standard light breakfast. We performed microarray analysis with the labeled cDNA prepared by reverse transcription from RNA samples, using the Human CHIP version 1 (DNA Chip Research Inc, Yokohama, Japan). There are 2,976 genes on the chip, and these genes were selected from a cDNA library prepared with human peripheral white blood cells (WBC). Different gene levels between the HAVS patients and controls, and between groups of HAVS with different levels of symptoms, were indicated by the randomized variance model. The most up-regulated genes were analyzed for their possible functions and association with the occurrence of HAVS. From the results of this pilot study, although the results were obtained a limited number of subjects, it would appear that cDNA microarray analysis of HAVS patients has potential as a new objective method of HAVS diagnosis. Further research is needed to examine the gene expression with increased numbers of patients at different stages of HAVS.

  20. Stachyose synthesis in seeds of adzuki bean (Vigna angularis): molecular cloning and functional expression of stachyose synthase.

    PubMed

    Peterbauer, T; Mucha, J; Mayer, U; Popp, M; Glössl, J; Richter, A

    1999-12-01

    Stachyose is the major soluble carbohydrate in seeds of a number of important crop species. It is synthesized from raffinose and galactinol by the action of stachyose synthase (EC 2.4.1.67). We report here on the identification of a cDNA encoding stachyose synthase from seeds of adzuki bean (Vigna angularis Ohwi et Ohashi). Based on internal amino acid sequences of the enzyme purified from adzuki bean, oligonucleotides were designed and used to amplify corresponding sequences from adzuki bean cDNA by RT-PCR, followed by rapid amplification of cDNA ends (RACE-PCR). The complete cDNA sequence comprised 3046 nucleotides and included an open reading frame which encoded a polypeptide of 857 amino acid residues. The entire coding region was amplified by PCR, engineered into the baculovirus expression vector pVL1393 and introduced into Spodoptera frugiperda (Sf21) insect cells for heterologous expression. The recombinant protein was immunologically reactive with polyclonal antibodies raised against stachyose synthase purified from adzuki bean and was shown to be a functional stachyose synthase with the same catalytic properties as its native counterpart. High levels of stachyose synthase mRNA were transiently accumulated midway through seed development, and the enzyme was also present in mature seeds and during germination.

  1. The mining of pearl formation genes in pearl oyster Pinctada fucata by cDNA suppression subtractive hybridization.

    PubMed

    Wang, Ning; Kinoshita, Shigeharu; Nomura, Naoko; Riho, Chihiro; Maeyama, Kaoru; Nagai, Kiyohito; Watabe, Shugo

    2012-04-01

    Recent researches revealed the regional preference of biomineralization gene transcription in the pearl oyster Pinctada fucata: it transcribed mainly the genes responsible for nacre secretion in mantle pallial, whereas the ones regulating calcite shells expressed in mantle edge. This study took use of this character and constructed the forward and reverse suppression subtractive hybridization (SSH) cDNA libraries. A total of 669 cDNA clones were sequenced and 360 expressed sequence tags (ESTs) greater than 100 bp were generated. Functional annotation associated 95 ESTs with specific functions, and 79 among them were identified from P. fucata at the first time. In the forward SSH cDNA library, it recognized mass amount of nacre protein genes, biomineralization genes dominantly expressed in the mantle pallial, calcium-ion-binding genes, and other biomineralization-related genes important for pearl formation. Real-time PCR showed that all the examined genes were distributed in oyster mantle tissues with a consistence to the SSH design. The detection of their RNA transcripts in pearl sac confirmed that the identified genes were certainly involved in pearl formation. Therefore, the data from this work will initiate a new round of pearl formation gene study and shed new insights into molluscan biomineralization.

  2. Comparative transcriptomic analyses of normal and malformed flowers in sugar apple (Annona squamosa L.) to identify the differential expressed genes between normal and malformed flowers.

    PubMed

    Liu, Kaidong; Li, Haili; Li, Weijin; Zhong, Jundi; Chen, Yan; Shen, Chenjia; Yuan, Changchun

    2017-10-23

    Sugar apple (Annona squamosa L.), a popular fruit with high medicinal and nutritional properties, is widely cultivated in tropical South Asia and America. The malformed flower is a major cause for a reduction in production of sugar apple. However, little information is available on the differences between normal and malformed flowers of sugar apple. To gain a comprehensive perspective on the differences between normal and malformed flowers of sugar apple, cDNA libraries from normal and malformation flowers were prepared independently for Illumina sequencing. The data generated a total of 70,189,896 reads that were integrated and assembled into 55,097 unigenes with a mean length of 783 bp. A large number of differentially expressed genes (DEGs) were identified. Among these DEGs, 701 flower development-associated transcript factor encoding genes were included. Furthermore, a large number of flowering- and hormone-related DEGs were also identified, and most of these genes were down-regulated expressed in the malformation flowers. The expression levels of 15 selected genes were validated using quantitative-PCR. The contents of several endogenous hormones were measured. The malformed flowers displayed lower endogenous hormone levels compared to the normal flowers. The expression data as well as hormone levels in our study will serve as a comprehensive resource for investigating the regulation mechanism involved in floral organ development in sugar apple.

  3. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    PubMed

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  4. cDNA cloning, expression, and mutagenesis of a PR-10 protein SPE-16 from the seeds of Pachyrrhizus erosus.

    PubMed

    Wu, Fang; Yan, Ming; Li, Yikun; Chang, Shaojie; Song, Xiaomin; Zhou, Zhaocai; Gong, Weimin

    2003-12-19

    SPE-16 is a new 16kDa protein that has been purified from the seeds of Pachyrrhizus erosus. It's N-terminal amino acid sequence shows significant sequence homology to pathogenesis-related class 10 proteins. cDNA encoding 150 amino acids was cloned by RT-PCR and the gene sequence proved SPE-16 to be a new member of PR-10 family. The cDNA was cloned into pET15b plasmid and expressed in Escherichia coli. The bacterially expressed SPE-16 also demonstrated ribonuclease-like activity in vitro. Site-directed mutation of three conserved amino acids E95A, E147A, Y150A, and a P-loop truncated form were constructed and their different effects on ribonuclease activities were observed. SPE-16 is also able to bind the fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) in the native state. The ANS anion is a much-utilized "hydrophobic probe" for proteins. This binding activity indicated another biological function of SPE-16.

  5. Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts.

    PubMed

    Hirozane-Kishikawa, Tomoko; Shiraki, Toshiyuki; Waki, Kazunori; Nakamura, Mari; Arakawa, Takahiro; Kawai, Jun; Fagiolini, Michela; Hensch, Takao K; Hayashizaki, Yoshihide; Carninci, Piero

    2003-09-01

    The normalization and subtraction of highly expressed cDNAs from relatively large tissues before cloning dramatically enhanced the gene discovery by sequencing for the mouse full-length cDNA encyclopedia, but these methods have not been suitable for limited RNA materials. To normalize and subtract full-length cDNA libraries derived from limited quantities of total RNA, here we report a method to subtract plasmid libraries excised from size-unbiased amplified lambda phage cDNA libraries that avoids heavily biasing steps such as PCR and plasmid library amplification. The proportion of full-length cDNAs and the gene discovery rate are high, and library diversity can be validated by in silico randomization.

  6. Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response Signaling asymmetry and an extension of chemical neuroanatomy.

    PubMed

    Eberwine, James; Bartfai, Tamas

    2011-03-01

    We report on an 'unbiased' molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs were confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme Gad1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitters, hormone receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor 2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform Gad1 expression, WSN transcriptomes show heterogeneity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression.

    PubMed

    Pereira, Clifford T; Herndon, David N; Rocker, Roland; Jeschke, Marc G

    2007-05-15

    Growth factors affect the complex cascade of wound healing; however, interaction between different growth factors during dermal and epidermal regeneration are still not entirely defined. In the present study, we thought to determine the interaction between keratinocyte growth factor (KGF) administered as liposomal cDNA with other dermal and epidermal growth factors and collagen synthesis in an acute wound. Rats received an acute wound and were divided into two groups to receive weekly subcutaneous injections of liposomes plus the Lac-Z gene (0.22 microg, vehicle), or liposomes plus the KGF cDNA (2.2 microg) and Lac-Z gene (0.22 microg). Histological and immunohistochemical techniques were used to determine growth factor, collagen expression, and dermal and epidermal structure. KGF cDNA increased insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and fibroblast growth factor (FGF), decreased transforming growth factor-beta (TGF-beta), while it had no effect on platelet-derived growth factor (PDGF) levels in the wound. KGF cDNA significantly increased collagen Type IV at both the wound edge as well as the wound bed, while it had no effect on collagen Type I and III. KGF cDNA increased re-epithelialization, improved dermal regeneration, and increased neovascularization. Exogenous administered KGF cDNA causes increases in IGF-I, IGF-BP3, FGF, and collagen IV and decreases TGF-beta concentration. KGF gene transfer accelerates wound healing without causing an increase in collagen I or III.

  8. Evidence of accelerated evolution and ectodermal-specific expression of presumptive BDS toxin cDNAs from Anemonia viridis.

    PubMed

    Nicosia, Aldo; Maggio, Teresa; Mazzola, Salvatore; Cuttitta, Angela

    2013-10-30

    Anemonia viridis is a widespread and extensively studied Mediterranean species of sea anemone from which a large number of polypeptide toxins, such as blood depressing substances (BDS) peptides, have been isolated. The first members of this class, BDS-1 and BDS-2, are polypeptides belonging to the β-defensin fold family and were initially described for their antihypertensive and antiviral activities. BDS-1 and BDS-2 are 43 amino acid peptides characterised by three disulfide bonds that act as neurotoxins affecting Kv3.1, Kv3.2 and Kv3.4 channel gating kinetics. In addition, BDS-1 inactivates the Nav1.7 and Nav1.3 channels. The development of a large dataset of A. viridis expressed sequence tags (ESTs) and the identification of 13 putative BDS-like cDNA sequences has attracted interest, especially as scientific and diagnostic tools. A comparison of BDS cDNA sequences showed that the untranslated regions are more conserved than the protein-coding regions. Moreover, the KA/KS ratios calculated for all pairwise comparisons showed values greater than 1, suggesting mechanisms of accelerated evolution. The structures of the BDS homologs were predicted by molecular modelling. All toxins possess similar 3D structures that consist of a triple-stranded antiparallel β-sheet and an additional small antiparallel β-sheet located downstream of the cleavage/maturation site; however, the orientation of the triple-stranded β-sheet appears to differ among the toxins. To characterise the spatial expression profile of the putative BDS cDNA sequences, tissue-specific cDNA libraries, enriched for BDS transcripts, were constructed. In addition, the proper amplification of ectodermal or endodermal markers ensured the tissue specificity of each library. Sequencing randomly selected clones from each library revealed ectodermal-specific expression of ten BDS transcripts, while transcripts of BDS-8, BDS-13, BDS-14 and BDS-15 failed to be retrieved, likely due to under-representation in our cDNA libraries. The calculation of the relative abundance of BDS transcripts in the cDNA libraries revealed that BDS-1, BDS-3, BDS-4, BDS-5 and BDS-6 are the most represented transcripts.

  9. CsPLDalpha1 and CsPLDgamma1 are differentially induced during leaf and fruit abscission and diurnally regulated in Citrus sinensis.

    PubMed

    Malladi, Anish; Burns, Jacqueline K

    2008-01-01

    Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. 'Valencia'. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDalpha1 and CsPLDgamma1, were isolated and their role was examined. CsPLDalpha1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDgamma1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDalpha1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDgamma1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDalpha1 expression appeared to be light-entrained in leaves, CsPLDgamma1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDgamma1. The results indicate differential regulation of CsPLDalpha1 and CsPLDgamma1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus.

  10. ADGO: analysis of differentially expressed gene sets using composite GO annotation.

    PubMed

    Nam, Dougu; Kim, Sang-Bae; Kim, Seon-Kyu; Yang, Sungjin; Kim, Seon-Young; Chu, In-Sun

    2006-09-15

    Genes are typically expressed in modular manners in biological processes. Recent studies reflect such features in analyzing gene expression patterns by directly scoring gene sets. Gene annotations have been used to define the gene sets, which have served to reveal specific biological themes from expression data. However, current annotations have limited analytical power, because they are classified by single categories providing only unary information for the gene sets. Here we propose a method for discovering composite biological themes from expression data. We intersected two annotated gene sets from different categories of Gene Ontology (GO). We then scored the expression changes of all the single and intersected sets. In this way, we were able to uncover, for example, a gene set with the molecular function F and the cellular component C that showed significant expression change, while the changes in individual gene sets were not significant. We provided an exemplary analysis for HIV-1 immune response. In addition, we tested the method on 20 public datasets where we found many 'filtered' composite terms the number of which reached approximately 34% (a strong criterion, 5% significance) of the number of significant unary terms on average. By using composite annotation, we can derive new and improved information about disease and biological processes from expression data. We provide a web application (ADGO: http://array.kobic.re.kr/ADGO) for the analysis of differentially expressed gene sets with composite GO annotations. The user can analyze Affymetrix and dual channel array (spotted cDNA and spotted oligo microarray) data for four species: human, mouse, rat and yeast. chu@kribb.re.kr http://array.kobic.re.kr/ADGO.

  11. Transcriptional Analysis of Resistance to Low Temperatures in Bermudagrass Crown Tissues

    PubMed Central

    Melmaiee, Kalpalatha; Anderson, Michael; Elavarthi, Sathya; Guenzi, Arron; Canaan, Patricia

    2015-01-01

    Bermudagrass (Cynodon dactylon L pers.) is one of the most geographically adapted and utilized of the warm-season grasses. However, bermudagrass adaptation to the Northern USA is limited by freeze damage and winterkill. Our study provides the first large-scale analyses of gene expression in bermudagrass regenerative crown tissues during cold acclimation. We compared gene expression patterns in crown tissues from highly cold tolerant “MSU” and susceptible “Zebra” genotypes exposed to near-freezing temperatures. Suppressive subtractive hybridization was used to isolate putative cold responsive genes Approximately, 3845 transcript sequences enriched for cold acclimation were deposited in the GenBank. A total of 4589 ESTs (3184 unigenes) including 744 ESTs associated with the bermudagrass disease spring dead spot were printed on microarrays and hybridized with cold acclimated complementary Deoxyribonucleic acid (cDNA). A total of 587 differentially expressed unigenes were identified in this study. Of these only 97 (17%) showed significant NCBI matches. The overall expression pattern revealed 40% more down- than up-regulated genes, which was particularly enhanced in MSU compared to Zebra. Among the up-regulated genes 68% were uniquely expressed in MSU (36%) or Zebra (32%). Among the down-regulated genes 40% were unique to MSU, while only 15% to Zebra. Overall expression intensity was significantly higher in MSU than in Zebra (p value ≤ 0.001) and the overall number of genes expressed at 28 days was 2.7 fold greater than at 2 days. These changes in expression patterns reflect the strong genotypic and temporal response to cold temperatures. Additionally, differentially expressed genes from this study can be utilized for developing molecular markers in bermudagrass and other warm season grasses for enhancing cold hardiness. PMID:26348040

  12. CsPLDα1 and CsPLDγ1 are differentially induced during leaf and fruit abscission and diurnally regulated in Citrus sinensis

    PubMed Central

    Malladi, Anish; Burns, Jacqueline K.

    2008-01-01

    Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. ‘Valencia’. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDα1 and CsPLDγ1, were isolated and their role was examined. CsPLDα1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDγ1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDα1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDγ1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDα1 expression appeared to be light-entrained in leaves, CsPLDγ1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDγ1. The results indicate differential regulation of CsPLDα1 and CsPLDγ1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus. PMID:18799715

  13. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle

    PubMed Central

    Westhoff, Connie M.; Uy, Jon Michael; Aguad, Maria; Smeland‐Wagman, Robin; Kaufman, Richard M.; Rehm, Heidi L.; Green, Robert C.; Silberstein, Leslie E.

    2015-01-01

    BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next‐generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS‐based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data. PMID:26634332

  14. Sequence, molecular properties, and chromosomal mapping of mouse lumican

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Hevelone, N. D.; Stech, M. E.; Justice, M. J.; Liu, C. Y.; Kao, W. W.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    PURPOSE. Lumican is a major proteoglycan of vertebrate cornea. This study characterizes mouse lumican, its molecular form, cDNA sequence, and chromosomal localization. METHODS. Lumican sequence was determined from cDNA clones selected from a mouse corneal cDNA expression library using a bovine lumican cDNA probe. Tissue expression and size of lumican mRNA were determined using Northern hybridization. Glycosidase digestion followed by Western blot analysis provided characterization of molecular properties of purified mouse corneal lumican. Chromosomal mapping of the lumican gene (Lcn) used Southern hybridization of a panel of genomic DNAs from an interspecific murine backcross. RESULTS. Mouse lumican is a 338-amino acid protein with high-sequence identity to bovine and chicken lumican proteins. The N-terminus of the lumican protein contains consensus sequences for tyrosine sulfation. A 1.9-kb lumican mRNA is present in cornea and several other tissues. Antibody against bovine lumican reacted with recombinant mouse lumican expressed in Escherichia coli and also detected high molecular weight proteoglycans in extracts of mouse cornea. Keratanase digestion of corneal proteoglycans released lumican protein, demonstrating the presence of sulfated keratan sulfate chains on mouse corneal lumican in vivo. The lumican gene (Lcn) was mapped to the distal region of mouse chromosome 10. The Lcn map site is in the region of a previously identified developmental mutant, eye blebs, affecting corneal morphology. CONCLUSIONS. This study demonstrates sulfated keratan sulfate proteoglycan in mouse cornea and describes the tools (antibodies and cDNA) necessary to investigate the functional role of this important corneal molecule using naturally occurring and induced mutants of the murine lumican gene.

  15. Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene.

    PubMed

    Takahashi, C; Akiyama, N; Matsuzaki, T; Takai, S; Kitayama, H; Noda, M

    1996-05-16

    A cDNA (termed CT124) encoding a carboxyl-terminal fragment of the human homeobox protein MSX-2 was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in NIH3T3 cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a near full-length human MSX-2 cDNA and tested its activities in two cell systems, i.e. fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated CT124 cDNA interfered with the transforming activities of v-Ki-ras oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and CT124 was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that CT124 may act as a dominant suppressor of MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  16. Csa-19, a radiation-responsive human gene, identified by an unbiased two-gel cDNA library screening method in human cancer cells

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Meltzer, S. J.; Han, L. H.; Zhang, X. F.; Shi, Z. M.; Harrison, G. H.; Abraham, J. M.

    1997-01-01

    A novel polymerase chain reaction (PCR)-based method was used to identify candidate genes whose expression is altered in cancer cells by ionizing radiation. Transcriptional induction of randomly selected genes in control versus irradiated human HL60 cells was compared. Among several complementary DNA (cDNA) clones recovered by this approach, one cDNA clone (CL68-5) was downregulated in X-irradiated HL60 cells but unaffected by 12-O-tetradecanoyl phorbol-13-acetate, forskolin, or cyclosporin-A. DNA sequencing of the CL68-5 cDNA revealed 100% nucleotide sequence homology to the reported human Csa-19 gene. Northern blot analysis of RNA from control and irradiated cells revealed the expression of a single 0.7-kilobase (kb) messenger RNA (mRNA) transcript. This 0.7-kb Csa-19 mRNA transcript was also expressed in a variety of human adult and corresponding fetal normal tissues. Moreover, when the effect of X- or fission neutron-irradiation on Csa-19 mRNA was compared in cultured human cells differing in p53 gene status (p53-/- versus p53+/+), downregulation of Csa-19 by X-rays or fission neutrons was similar in p53-wild type and p53-null cell lines. Our results provide the first known example of a radiation-responsive gene in human cancer cells whose expression is not associated with p53, adenylate cyclase or protein kinase C.

  17. Skipping of Exons by Premature Termination of Transcription and Alternative Splicing within Intron-5 of the Sheep SCF Gene: A Novel Splice Variant

    PubMed Central

    Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta

    2012-01-01

    Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (−) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (−) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals. PMID:22719917

  18. Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora

    PubMed Central

    2010-01-01

    Background The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceaespecies, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E. amylovora in host plants has yet been characterized, recent work has identified some molecular events which occur in resistant and/or susceptible host interaction with E. amylovora: In order to understand the mechanisms that characterize responses to FB, differentially expressed genes were identified by cDNA-AFLP analysis in resistant and susceptible apple genotypes after inoculation with E. amylovora. Results cDNA were isolated from M.26 (susceptible) and G.41 (resistant) apple tissues collected 2 h and 48 h after challenge with a virulent E. amylovora strain or mock (buffer) inoculated. To identify differentially expressed transcripts, electrophoretic banding patterns were obtained from cDNAs. In the AFLP experiments, M.26 and G.41 showed different patterns of expression, including genes specifically induced, not induced, or repressed by E. amylovora. In total, 190 ESTs differentially expressed between M.26 and G.41 were identified using 42 pairs of AFLP primers. cDNA-AFLP analysis of global EST expression in a resistant and a susceptible apple genotype identified different major classes of genes. EST sequencing data showed that genes linked to resistance, encoding proteins involved in recognition, signaling, defense and apoptosis, were modulated by E. amylovora in its host plant. The expression time course of some of these ESTs selected via a bioinformatic analysis has been characterized. Conclusion These data are being used to develop hypotheses of resistance or susceptibility mechanisms in Malus to E. amylovora and provide an initial categorization of genes possibly involved in recognition events, early signaling responses the subsequent development of resistance or susceptibility. These data also provided potential candidates for improving apple resistance to fire blight either by marker-assisted selection or genetic engineering. PMID:20047654

  19. Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools.

    PubMed

    Akeroyd, Michiel; Olsthoorn, Maurien; Gerritsma, Jort; Gutker-Vermaas, Diana; Ekkelkamp, Laurens; van Rij, Tjeerd; Klaassen, Paul; Plugge, Wim; Smit, Ed; Strupat, Kerstin; Wenzel, Thibaut; van Tilborg, Marcel; van der Hoeven, Rob

    2013-03-10

    In the discovery of new enzymes genomic and cDNA expression libraries containing thousands of differential clones are generated to obtain biodiversity. These libraries need to be screened for the activity of interest. Removing so-called empty and redundant clones significantly reduces the size of these expression libraries and therefore speeds up new enzyme discovery. Here, we present a sensitive, generic workflow for high throughput screening of successful microbial protein over-expression in microtiter plates containing a complex matrix based on mass spectrometry techniques. MALDI-LTQ-Orbitrap screening followed by principal component analysis and peptide mass fingerprinting was developed to obtain a throughput of ∼12,000 samples per week. Alternatively, a UHPLC-MS(2) approach including MS(2) protein identification was developed for microorganisms with a complex protein secretome with a throughput of ∼2000 samples per week. TCA-induced protein precipitation enhanced by addition of bovine serum albumin is used for protein purification prior to MS detection. We show that this generic workflow can effectively reduce large expression libraries from fungi and bacteria to their minimal size by detection of successful protein over-expression using MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Innate and adaptive immunity gene expression of human keratinocytes cultured of severe burn injury.

    PubMed

    Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Lanziani, Larissa Elias; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    Evaluate the expression profile of genes related to Innate and Adaptive Immune System (IAIS) of human Primary Epidermal keratinocytes (hPEKP) of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific IAIS PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 63% of these genes were differentially expressed, of which 77% were repressed and 23% were hyper-regulated. Among these, the following genes (fold increase or decrease): IL8 (41), IL6 (32), TNF (-92), HLA-E (-86), LYS (-74), CCR6 (- 73), CD86 (-41) and HLA-A (-35). This study contributes to the understanding of the molecular mechanisms underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  1. Efficacy of vaccination with plasmid DNA encoding for HER2/neu or HER2/neu-eGFP fusion protein against prostate cancer in rats.

    PubMed

    Bhattachary, R; Bukkapatnam, R; Prawoko, I; Soto, J; Morgan, M; Salup, R R

    2002-05-01

    Despite early diagnosis and improved therapy, 31,500 men will die from prostate cancer (PC) this year. The HER2/neu oncoprotein is an important effector of cell growth found in the majority of high-grade prostatic tumors and is capable of rendering immunogenicity. The antigenicity of this oncoprotein might prove useful in the development of PC vaccines. Our goal is to prove the principle that a single DNA vaccine can provide reliable immunity against PC in the MatLyLu (MLL) translational tumor model. The parental rat MatLyLu PC cell line expresses low to moderate levels of the rat neu protein. To simulate in vivo human PC, MatLyLu cells were transfected with a truncated sequence of human HER2/neu cDNA cloned into the pCI-neo vector. This HER2/neu cDNA sequence encodes the first 433 amino acids of the extracellular domain (ECD). MatLyLu cells were also transfected with the same HER2/neu cDNA sequence cloned into the N1-terminal sequence of EGFP reporter gene to produce a fusion protein. The partial ECD sequence of HER2/neu includes five rat major histocompatibility (MHC)-II-restricted peptides with complete human-to-rat cross-species homology. The HER2/neu protein overexpression was documented by Western Blot analysis, and the expression of fusion protein was monitored by confocal microscopy and fluorimetry. Vaccination with a single injection of HER2/neu cDNA protected 50% of animals against HER2/neu-MatLyLu tumors (P < 0.01). When the tumor cells were engineered to express HER2/neu-EGFP fusion protein, the antitumor immunity was enhanced, as following vaccination with HER2/neu-EGFP cDNA, 80% of these rats rejected HER2/neu-EGFP-MatLyLu (P<0.001). Both vaccines induced HER2/neu-specific antibody titers. Rats vaccinated with EGFP-cDNA rejected 80% of EGFP-MatLyLu tumors and, interestingly, 40% of HER2/neu-MatLyLu tumors. None of the cDNA vaccines induced immunity against parental MatLyLu cells. Our data clearly demonstrate that a single injection of HER2/neu-EGFP cDNA is a very effective vaccine against PC tumors expressing the cognate tumor-associated antigen (TA). The antitumor immunity is significantly more pronounced if the tumors express xenogeneic HER2/neu-EGFP fusion protein as opposed to only the syngeneic HER2/neu oncoprotein. Our data suggests that the HER2/neu-EGFP-MatLyLu tumor is a potential animal tumor model for investigating therapeutic vaccine strategies against PC in vivo and demonstrates the limitations of a cDNA vaccine only encoding for MHC-II-restricted HER2/neu-ECD sequence peptides.

  2. cDNA Microarray Gene Expression Profiling of Hedgehog Signaling Pathway Inhibition in Human Colon Cancer Cells

    PubMed Central

    Shi, Ting; Mazumdar, Tapati; DeVecchio, Jennifer; Duan, Zhong-Hui; Agyeman, Akwasi; Aziz, Mohammad; Houghton, Janet A.

    2010-01-01

    Background Hedgehog (HH) signaling plays a critical role in normal cellular processes, in normal mammalian gastrointestinal development and differentiation, and in oncogenesis and maintenance of the malignant phenotype in a variety of human cancers. Increasing evidence further implicates the involvement of HH signaling in oncogenesis and metastatic behavior of colon cancers. However, genomic approaches to elucidate the role of HH signaling in cancers in general are lacking, and data derived on HH signaling in colon cancer is extremely limited. Methodology/Principal Findings To identify unique downstream targets of the GLI genes, the transcriptional regulators of HH signaling, in the context of colon carcinoma, we employed a small molecule inhibitor of both GLI1 and GLI2, GANT61, in two human colon cancer cell lines, HT29 and GC3/c1. Cell cycle analysis demonstrated accumulation of GANT61-treated cells at the G1/S boundary. cDNA microarray gene expression profiling of 18,401 genes identified Differentially Expressed Genes (DEGs) both common and unique to HT29 and GC3/c1. Analyses using GenomeStudio (statistics), Matlab (heat map), Ingenuity (canonical pathway analysis), or by qRT-PCR, identified p21Cip1 (CDKN1A) and p15Ink4b (CDKN2B), which play a role in the G1/S checkpoint, as up-regulated genes at the G1/S boundary. Genes that determine further cell cycle progression at G1/S including E2F2, CYCLIN E2 (CCNE2), CDC25A and CDK2, and genes that regulate passage of cells through G2/M (CYCLIN A2 [CCNA2], CDC25C, CYCLIN B2 [CCNB2], CDC20 and CDC2 [CDK1], were down-regulated. In addition, novel genes involved in stress response, DNA damage response, DNA replication and DNA repair were identified following inhibition of HH signaling. Conclusions/Significance This study identifies genes that are involved in HH-dependent cellular proliferation in colon cancer cells, and following its inhibition, genes that regulate cell cycle progression and events downstream of the G1/S boundary. PMID:20957031

  3. Gene expression of cell surface antigens in the early phase of murine influenza pneumonia determined by a cDNA expression array technique.

    PubMed

    Sakai, Shinya; Mantani, Naoki; Kogure, Toshiaki; Ochiai, Hiroshi; Shimada, Yutaka; Terasawa, Katsutoshi

    2002-12-01

    Influenza virus is a worldwide health problem with significant economic consequences. To study the gene expression pattern induced by influenza virus infection, it is useful to reveal the pathogenesis of influenza virus infection; but this has not been well examined, especially in vivo study. To assess the influence of influenza virus infection on gene expression in mice, mRNA levels in the lung and tracheal tissue 48 h after infection were investigated by cDNA array analysis. Four-week-old outbred, specific pathogen free strain, ICR female mice were infected by intra-nasal inoculation of a virus solution under ether anesthesia. The mice were sacrificed 48 h after infection and the tracheas and lungs were removed. To determine gene expression, the membrane-based microtechnique with an Atlas cDNA expression array (mouse 1.2 array II) was performed in accordance with the manual provided. We focused on the expression of 46 mRNAs for cell surface antigens. Of these 46 mRNAs that we examined, four (CD1d2 antigen, CD39 antigen-like 1, CD39 antigen-like 3, CD68 antigen) were up-regulated and one (CD36 antigen) was down-regulated. Although further studies are required, these data suggest that these molecules play an important role in influenza virus infection, especially the phase before specific immunity.

  4. Update of the Diatom EST Database: a new tool for digital transcriptomics

    PubMed Central

    Maheswari, Uma; Mock, Thomas; Armbrust, E. Virginia; Bowler, Chris

    2009-01-01

    The Diatom Expressed Sequence Tag (EST) Database was constructed to provide integral access to ESTs from these ecologically and evolutionarily interesting microalgae. It has now been updated with 130 000 Phaeodactylum tricornutum ESTs from 16 cDNA libraries and 77 000 Thalassiosira pseudonana ESTs from seven libraries, derived from cells grown in different nutrient and stress regimes. The updated relational database incorporates results from statistical analyses such as log-likelihood ratios and hierarchical clustering, which help to identify differentially expressed genes under different conditions, and allow similarities in gene expression in different libraries to be investigated in a functional context. The database also incorporates links to the recently sequenced genomes of P. tricornutum and T. pseudonana, enabling an easy cross-talk between the expression pattern of diatom orthologs and the genome browsers. These improvements will facilitate exploration of diatom responses to conditions of ecological relevance and will aid gene function identification of diatom-specific genes and in silico gene prediction in this largely unexplored class of eukaryotes. The updated Diatom EST Database is available at http://www.biologie.ens.fr/diatomics/EST3. PMID:19029140

  5. Signatures from Tissue-specific MPSS Libraries Identify Transcripts Preferentially Expressed in the Mouse Inner Ear

    PubMed Central

    Peters, Linda M.; Belyantseva, Inna A.; Lagziel, Ayala; Battey, James F.; Friedman, Thomas B.; Morell, Robert J.

    2007-01-01

    Specialization in cell function and morphology is influenced by the differential expression of mRNAs, many of which are expressed at low abundance and restricted to certain cell types. Detecting such transcripts in cDNA libraries may require sequencing millions of clones. Massively parallel signature sequencing (MPSS) is well-suited for identifying transcripts that are expressed in discrete cell types and in low abundance. We have made MPSS libraries from microdissections of three inner ear tissues. By comparing these MPSS libraries to those of 87 other tissues included in the Mouse Reference Transcriptome (MRT) online resource, we have identified genes that are highly enriched in, or specific to, the inner ear. We show by RT-PCR and in situ hybridization that signatures unique to the inner ear libraries identify transcripts with highly specific cell-type localizations. These transcripts serve to illustrate the utility of a resource that is available to the research community. Utilization of these resources will increase the number of known transcription units and expand our knowledge of the tissue-specific regulation of the transcriptome. PMID:17049805

  6. Molecular Cloning and Sequencing of Channel Catfish, Ictalurus punctatus, Cathepsin H and L cDNA

    USDA-ARS?s Scientific Manuscript database

    Cathepsin H and L, a lysosomal cysteine endopeptidase of the papain family, are ubiquitously expressed and involve in antigen processing. In this communication, the channel catfish cathepsin H and L transcripts were sequenced and analyzed. Total RNA from tissues was extracted and cDNA libraries we...

  7. Promoter-Based Theranostics for Prostate Cancer

    DTIC Science & Technology

    2016-06-01

    diagnosis vector consists of the tumor-specific PEG-promoter (PEG-Prom) and cDNA of human chorionic gonadotropin β chain (βhCG) as a reporter. We...transfection efficiency. We also used CpG-free cDNA of Figure 5. pCpGfree-PEGwt-HSV1-tk-neo vector expressed functional thymidine kinase in human

  8. Cloning of novel cellulases from cellulolytic fungi: heterologous expression of a family 5 glycoside hydrolase from Trametes versicolor in Pichia pastoris.

    PubMed

    Salinas, Alejandro; Vega, Marcela; Lienqueo, María Elena; Garcia, Alejandro; Carmona, Rene; Salazar, Oriana

    2011-12-10

    Total cDNA isolated from cellulolytic fungi cultured in cellulose was examined for the presence of sequences encoding for endoglucanases. Novel sequences encoding for glycoside hydrolases (GHs) were identified in Fusarium oxysporum, Ganoderma applanatum and Trametes versicolor. The cDNA encoding for partial sequences of GH family 61 cellulases from F. oxysporum and G. applanatum shares 58 and 68% identity with endoglucanases from Glomerella graminicola and Laccaria bicolor, respectively. A new GH family 5 endoglucanase from T. versicolor was also identified. The cDNA encoding for the mature protein was completely sequenced. This enzyme shares 96% identity with Trametes hirsuta endoglucanase and 22% with Trichoderma reesei endoglucanase II (EGII). The enzyme, named TvEG, has N-terminal family 1 carbohydrate binding module (CBM1). The full length cDNA was cloned into the pPICZαB vector and expressed as an active, extracellular enzyme in the methylotrophic yeast Pichia pastoris. Preliminary studies suggest that T. versicolor could be useful for lignocellulose degradation. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Effects of 2G on Gene Expression of Stress-Related Hormones in Rat Placenta

    NASA Technical Reports Server (NTRS)

    Benson, S.; Talyansky, Y.; Moyer, E. L.; Lowe, M.; Baer, L. A.; Ronca, A. E.

    2017-01-01

    Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and quantified the expression levels of the genes of interest relative to the GAPDH housekeeping gene, using RT-qPCR and gene-specific cDNA probes. Elucidation of glucocorticoid transfer and synthesis in the placenta can provide new insights into the unique dynamics of mammalian development in microgravity and guide future multi-generational studies in space.

  10. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta.

    PubMed

    Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G

    1997-03-01

    We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.

  11. Mice Deficient for Glucagon Gene-Derived Peptides Display Normoglycemia and Hyperplasia of Islet α-Cells But Not of Intestinal L-Cells

    PubMed Central

    Hayashi, Yoshitaka; Yamamoto, Michiyo; Mizoguchi, Hiroyuki; Watanabe, Chika; Ito, Ryoichi; Yamamoto, Shiori; Sun, Xiao-yang; Murata, Yoshiharu

    2009-01-01

    Multiple bioactive peptides, including glucagon, glucagon-like peptide-1 (GLP-1), and GLP-2, are derived from the glucagon gene (Gcg). In the present study, we disrupted Gcg by introduction of GFP cDNA and established a knock-in mouse line. Gcggfp/gfp mice that lack most, if not all, of Gcg-derived peptides were born in an expected Mendelian ratio without gross abnormalities. Gcggfp/gfp mice showed lower blood glucose levels at 2 wk of age, but those in adult Gcggfp/gfp mice were not significantly different from those in Gcg+/+ and Gcggfp/+ mice, even after starvation for 16 h. Serum insulin levels in Gcggfp/gfp mice were lower than in Gcg+/+ and Gcggfp/+ on ad libitum feeding, but no significant differences were observed on starvation. Islet α-cells and intestinal L-cells were readily visualized in Gcggfp/gfp and Gcggfp/+ mice under fluorescence. The Gcggfp/gfp postnatally developed hyperplasia of islet α-cells, whereas the population of intestinal L-cells was not increased. In the Gcggfp/gfp, expression of Aristaless-related homeobox (Arx) was markedly increased in pancreas but not in intestine and suggested involvement of Arx in differential regulation of proliferation of Gcg-expressing cells. These results illustrated that Gcg-derived peptides are dispensable for survival and maintaining normoglycemia in adult mice and that Gcg-derived peptides differentially regulate proliferation/differentiation of α-cells and L-cells. The present model is useful for analyzing glucose/energy metabolism in the absence of Gcg-derived peptides. It is useful also for analysis of the development, differentiation, and function of Gcg-expressing cells, because such cells are readily visualized by fluorescence in this model. PMID:19819987

  12. Genetic validation of whole-transcriptome sequencing for mapping expression affected by cis-regulatory variation.

    PubMed

    Babak, Tomas; Garrett-Engele, Philip; Armour, Christopher D; Raymond, Christopher K; Keller, Mark P; Chen, Ronghua; Rohl, Carol A; Johnson, Jason M; Attie, Alan D; Fraser, Hunter B; Schadt, Eric E

    2010-08-13

    Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing.

  13. Silencing of the SlNAP7 gene influences plastid development and lycopene accumulation in tomato

    NASA Astrophysics Data System (ADS)

    Fu, Da-Qi; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Yan, Hua-Xue; Luo, Yun-Bo

    2016-12-01

    Ripening is an important stage of fruit development. To screen the genes associated with pigment formation in tomato fruit, a suppression subtractive hybridization (SSH) cDNA library was constructed by using tomato fruit in the green ripe and break ripe stages, and 129 differential genes were obtained. Using redness as a screening marker, virus-induced gene silencing (VIGS) of the differential genes was performed with a sprout vacuum-infiltration system (SVI). The results showed that silencing the SlNAP7 gene affected the chloroplast development of tomato leaves, manifesting as a photo-bleaching phenotype, and silenced fruit significantly affected the accumulation of lycopene, manifested as a yellow phenotype. In our study, we found that silencing the SlNAP7 gene downregulates the expression of the POR and PORA genes and destroys the normal development of the chloroplast. The expression of related genes included in the lycopene biosynthesis pathway was not significantly changed, but lycopene accumulation was significantly reduced in tomato fruit. Perhaps it was caused by the destruction of the chromoplast, which leads to the oxidation of lycopene. The results show that the SlNAP7 gene influences chloroplast development and lycopene accumulation in tomato.

  14. The western red cedar (Thuja plicata) 8-8' DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity

    NASA Technical Reports Server (NTRS)

    Kim, Myoung K.; Jeon, Jae-Heung; Fujita, Masayuki; Davin, Laurence B.; Lewis, Norman G.

    2002-01-01

    The isolation and characterization of a multigene family of the first class of dirigent proteins (namely that mainly involved in 8-8' coupling leading to (+)-pinoresinol in this case) is reported, this comprising of nine western red cedar (Thuja plicata) DIRIGENT genes (DIR1-9) of 72-99.5% identity to each other. Their corresponding cDNA clones had coding regions for 180-183 amino acids with each having a predicted molecular mass of ca. 20 kDa including the signal peptide. Real time-PCR established that the DIRIGENT isovariants were differentially expressed during growth and development of T. plicata (P < 0.05). The phylogenetic relationships and the rates and patterns of nucleotide substitution suggest that the DIRIGENT gene may have evolved via paralogous expansion at an early stage of vascular plant diversification. Thereafter, western red cedar paralogues have maintained an high homogeneity presumably via a concerted evolutionary mode. This, in turn, is assumed to be the driving force for the differential formation of 8-8'-linked pinoresinol derived (poly)lignans in the needles, stems, bark and branches, as well as for massive accumulation of 8-8'-linked plicatic acid-derived (poly)lignans in heartwood.

  15. Silencing of the SlNAP7 gene influences plastid development and lycopene accumulation in tomato

    PubMed Central

    Fu, Da-Qi; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Yan, Hua-Xue; Luo, Yun-Bo

    2016-01-01

    Ripening is an important stage of fruit development. To screen the genes associated with pigment formation in tomato fruit, a suppression subtractive hybridization (SSH) cDNA library was constructed by using tomato fruit in the green ripe and break ripe stages, and 129 differential genes were obtained. Using redness as a screening marker, virus-induced gene silencing (VIGS) of the differential genes was performed with a sprout vacuum-infiltration system (SVI). The results showed that silencing the SlNAP7 gene affected the chloroplast development of tomato leaves, manifesting as a photo-bleaching phenotype, and silenced fruit significantly affected the accumulation of lycopene, manifested as a yellow phenotype. In our study, we found that silencing the SlNAP7 gene downregulates the expression of the POR and PORA genes and destroys the normal development of the chloroplast. The expression of related genes included in the lycopene biosynthesis pathway was not significantly changed, but lycopene accumulation was significantly reduced in tomato fruit. Perhaps it was caused by the destruction of the chromoplast, which leads to the oxidation of lycopene. The results show that the SlNAP7 gene influences chloroplast development and lycopene accumulation in tomato. PMID:27929131

  16. Hybrid Sequencing of Full-Length cDNA Transcripts of Stems and Leaves in Dendrobium officinale

    PubMed Central

    He, Liu; Fu, Shuhua; Xu, Zhichao; Yan, Jun; Xu, Jiang; Zhou, Hong; Zhou, Jianguo; Chen, Xinlian; Li, Ying; Au, Kin Fai; Yao, Hui

    2017-01-01

    Dendrobium officinale is an extremely valuable orchid used in traditional Chinese medicine, so sought after that it has a higher market value than gold. Although the expression profiles of some genes involved in the polysaccharide synthesis have previously been investigated, little research has been carried out on their alternatively spliced isoforms in D. officinale. In addition, information regarding the translocation of sugars from leaves to stems in D. officinale also remains limited. We analyzed the polysaccharide content of D. officinale leaves and stems, and completed in-depth transcriptome sequencing of these two diverse tissue types using second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing technology. The results of this study yielded a digital inventory of gene and mRNA isoform expressions. A comparative analysis of both transcriptomes uncovered a total of 1414 differentially expressed genes, including 844 that were up-regulated and 570 that were down-regulated in stems. Of these genes, one sugars will eventually be exported transporter (SWEET) and one sucrose transporter (SUT) are expressed to a greater extent in D. officinale stems than in leaves. Two glycosyltransferase (GT) and four cellulose synthase (Ces) genes undergo a distinct degree of alternative splicing. In the stems, the content of polysaccharides is twice as much as that in the leaves. The differentially expressed GT and transcription factor (TF) genes will be the focus of further study. The genes DoSWEET4 and DoSUT1 are significantly expressed in the stem, and are likely to be involved in sugar loading in the phloem. PMID:28981454

  17. Construction of a cDNA library for miniature pig mandibular deciduous molars

    PubMed Central

    2014-01-01

    Background The miniature pig provides an excellent experimental model for tooth morphogenesis because its diphyodont and heterodont dentition resembles that of humans. However, little information is available on the process of tooth development or the exact molecular mechanisms controlling tooth development in miniature pigs or humans. Thus, the analysis of gene expression related to each stage of tooth development is very important. Results In our study, after serial sections were made, the development of the crown of the miniature pigs’ mandibular deciduous molar could be divided into five main phases: dental lamina stage (E33-E35), bud stage (E35-E40), cap stage (E40-E50), early bell stage (E50-E60), and late bell stage (E60-E65). Total RNA was isolated from the tooth germ of miniature pig embryos at E35, E45, E50, and E60, and a cDNA library was constructed. Then, we identified cDNA sequences on a large scale screen for cDNA profiles in the developing mandibular deciduous molars (E35, E45, E50, and E60) of miniature pigs using Illumina Solexa deep sequencing. Microarray assay was used to detect the expression of genes. Lastly, through Unigene sequence analysis and cDNA expression pattern analysis at E45 and E60, we found that 12 up-regulated and 15 down-regulated genes during the four periods are highly conserved genes homologous with known Homo sapiens genes. Furthermore, there were 6 down-regulated and 2 up-regulated genes in the miniature pig that were highly homologous to Homo sapiens genes compared with those in the mouse. Conclusion Our results not only identify the specific transcriptome and cDNA profile in developing mandibular deciduous molars of the miniature pig, but also provide useful information for investigating the molecular mechanism of tooth development in the miniature pig. PMID:24750690

  18. Identification of immune protective genes of Eimeria maxima through cDNA expression library screening.

    PubMed

    Yang, XinChao; Li, MengHui; Liu, JianHua; Ji, YiHong; Li, XiangRui; Xu, LiXin; Yan, RuoFeng; Song, XiaoKai

    2017-02-16

    Eimeria maxima is one of the most prevalent Eimeria species causing avian coccidiosis, and results in huge economic loss to the global poultry industry. Current control strategies, such as anti-coccidial medication and live vaccines have been limited because of their drawbacks. The third generation anticoccidial vaccines including the recombinant vaccines as well as DNA vaccines have been suggested as a promising alternative strategy. To date, only a few protective antigens of E. maxima have been reported. Hence, there is an urgent need to identify novel protective antigens of E. maxima for the development of neotype anticoccidial vaccines. With the aim of identifying novel protective genes of E. maxima, a cDNA expression library of E. maxima sporozoites was constructed using Gateway technology. Subsequently, the cDNA expression library was divided into 15 sub-libraries for cDNA expression library immunization (cDELI) using parasite challenged model in chickens. Protective sub-libraries were selected for the next round of screening until individual protective clones were obtained, which were further sequenced and analyzed. Adopting the Gateway technology, a high-quality entry library was constructed, containing 9.2 × 10 6 clones with an average inserted fragments length of 1.63 kb. The expression library capacity was 2.32 × 10 7 colony-forming units (cfu) with an average inserted fragments length of 1.64 Kb. The expression library was screened using parasite challenged model in chickens. The screening yielded 6 immune protective genes including four novel protective genes of EmJS-1, EmRP, EmHP-1 and EmHP-2, and two known protective genes of EmSAG and EmCKRS. EmJS-1 is the selR domain-containing protein of E. maxima whose function is unknown. EmHP-1 and EmHP-2 are the hypothetical proteins of E. maxima. EmRP and EmSAG are rhomboid-like protein and surface antigen glycoproteins of E. maxima respectively, and involved in invasion of the parasite. Our results provide a cDNA expression library for further screening of T cell stimulating or inhibiting antigens of E. maxima. Moreover, our results provide six candidate protective antigens for developing new vaccines against E. maxima.

  19. Transcriptome Analysis of Portunus trituberculatus in Response to Salinity Stress Provides Insights into the Molecular Basis of Osmoregulation

    PubMed Central

    Lv, Jianjian; Liu, Ping; Wang, Yu; Gao, Baoquan; Chen, Ping; Li, Jian

    2013-01-01

    Background The swimming crab, Portunus trituberculatus, which is naturally distributed in the coastal waters of Asia-Pacific countries, is an important farmed species in China. Salinity is one of the most important abiotic factors that influence not only the distribution and abundance of crustaceans, it is also an important factor for artificial propagation of the crab. To better understand the interaction between salinity stress and osmoregulation, we performed a transcriptome analysis in the gills of Portunus trituberculatus challenged with salinity stress, using the Illumina Deep Sequencing technology. Results We obtained 27,696,835, 28,268,353 and 33,901,271 qualified Illumina read pairs from low salinity challenged (LC), non-challenged (NC), and high salinity challenged (HC) Portunus trituberculatus cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 94,511 unigenes, with an average length of 644 bp. Comparative genomic analysis revealed that 1,705 genes differentially expressed in salinity stress compared to the controls, including 615 and 1,516 unigenes in NC vs LC and NC vs HC respectively. GO functional enrichment analysis results showed some differentially expressed genes were involved in crucial processes related to osmoregulation, such as ion transport processes, amino acid metabolism and synthesis processes, proteolysis process and chitin metabolic process. Conclusion This work represents the first report of the utilization of the next generation sequencing techniques for transcriptome analysis in Portunus trituberculatus and provides valuable information on salinity adaptation mechanism. Results reveal a substantial number of genes modified by salinity stress and a few important salinity acclimation pathways, which will serve as an invaluable resource for revealing the molecular basis of osmoregulation in Portunus trituberculatus. In addition, the most comprehensive sequences of transcripts reported in this study provide a rich source for identification of novel genes in the crab. PMID:24312639

  20. Identification of differentially expressed genes associated with the enhancement of X-ray susceptibility by RITA in a hypopharyngeal squamous cell carcinoma cell line (FaDu).

    PubMed

    Luan, Jinwei; Li, Xianglan; Guo, Rutao; Liu, Shanshan; Luo, Hongyu; You, Qingshan

    2016-06-01

    Next generation sequencing and bio-informatic analyses were conducted to investigate the mechanism of reactivation of p53 and induction of tumor cell apoptosis (RITA)-enhancing X-ray susceptibility in FaDu cells. The cDNA was isolated from FaDu cells treated with 0 X-ray, 8 Gy X-ray, or 8 Gy X-ray + RITA. Then, cDNA libraries were created and sequenced using next generation sequencing, and each assay was repeated twice. Subsequently, differentially expressed genes (DEGs) were identified using Cuffdiff in Cufflinks and their functions were predicted by pathway enrichment analyses. Genes that were constantly up- or down-regulated in 8 Gy X-ray-treated FaDu cells and 8 Gy X-ray + RITA-treated FaDu cells were obtained as RITA genes. Afterward, the protein-protein interaction (PPI) relationships were obtained from the STRING database and a PPI network was constructed using Cytoscape. Furthermore, ClueGO was used for pathway enrichment analysis of genes in the PPI network. Total 2,040 and 297 DEGs were identified in FaDu cells treated with 8 Gy X-ray or 8 Gy X-ray + RITA, respectively. PARP3 and NEIL1 were enriched in base excision repair, and CDK1 was enriched in p53 signaling pathway. RFC2 and EZH2 were identified as RITA genes. In the PPI network, many interaction relationships were identified (e.g., RFC2-CDK1, EZH2-CDK1 and PARP3-EZH2). ClueGO analysis showed that RFC2 and EZH2 were related to cell cycle. RFC2, EZH2, CDK1, PARP3 and NEIL1 may be associated, and together enhance the susceptibility of FaDu cells treated with RITA to the deleterious effects of X-ray.

Top