Sample records for differentially heated rotating

  1. Effect of heat flux on differential rotation in turbulent convection.

    PubMed

    Kleeorin, Nathan; Rogachevskii, Igor

    2006-04-01

    We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection. To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds stresses, the entropy fluctuations, and the turbulent heat flux. We used a spectral tau approximation in order to close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of approximately 10(L rho/l0)2, where l0 is the maximum scale of turbulent motions and L rho is the fluid density variation scale. This effect is crucial for the formation of the differential rotation and should be taken into account in the theories of the differential rotation of the Sun, stars, and planets. In particular, we demonstrated that this effect may cause the differential rotation which is comparable with the typical solar differential rotation.

  2. Mean-field theory of differential rotation in density stratified turbulent convection

    NASA Astrophysics Data System (ADS)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  3. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier's heat flux and non-Fick's mass flux theory

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wubshet

    2018-03-01

    This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.

  4. A laboratory model of planetary and stellar convection

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Toomre, J.; Deane, A. E.; Hurlburt, N. E.; Glatzmaier, G. A.; Fichtl, G. H.; Leslie, F.; Fowlis, W. W.; Gilman, P. A.

    1987-01-01

    Experiments on thermal convection in a rotating, differentially-heated spherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are in agreement with numerical simulations that can be conducted at modest parameter values, and suggest possible regimes of motion in rotating planets and stars.

  5. Rotating flow over a stretching sheet in nanofluid using Buongiorno model and thermophysical properties of nanoliquids

    NASA Astrophysics Data System (ADS)

    Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.

    2017-08-01

    The boundary layer flow and heat transfer in rotating nanofluid over a stretching sheet using Buongiorno model and thermophysical properties of nanoliquids is studied. Four types of nanoparticles, namely silver (Ag), copper (Cu), alumina (Al2O3) and titania (TiO2) are used in our analysis with water as the base fluid (Prandtl number, Pr = 6.2). The nonlinear partial differential equations are transformed into ordinary differential equations by using the similarity transformation. The numerical solutions of these equation is obtained using shooting method in Maple software. The numerical results is concentrated on the effects of nanoparticle volume fraction φ, Brownian motion Nb, thermophoresis Nt, rotation Ω and suction S parameters on the skin friction coefficient and heat transfer rate. Dual solutions are observed in a certain range of the rotating parameter.

  6. Geothermal energy conversion system

    NASA Astrophysics Data System (ADS)

    Goldstein, David

    1991-04-01

    A generator having a tubular gear made of shape memory alloy in sheet-form floatingly supported for rotation about an axis fixedly spaced from the rotational axis of a roller gear presented. The tubular gear is sequentially deformed by exposure to a geothermal heat source and meshing engagement with the roller gear. Such sequential deformation of the tubular gear is controlled by a temperature differential to induce and sustain rotation of the gears in response to which the heat energy is converted into electrical energy.

  7. CONVECTION IN OBLATE SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.

    2016-10-10

    We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly rotating solar-type stars. This has been achieved by exploiting the capabilities of the new compressible high-order unstructured spectral difference (CHORUS) code. We consider rotation rates up to 85% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat fluxmore » in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface differential rotation, ΔΩ, is insensitive to the oblateness, the oblateness does limit the fractional kinetic energy contained in the differential rotation to no more than 61%. Furthermore, we argue that this level of differential rotation is not enough to have a significant impact on the oblateness of the star.« less

  8. Unsteady boundary layer rotating flow and heat transfer in a copper-water nanofluid over a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Dzulkifli, Nor Fadhilah; Bachok, Norfifah; Yacob, Nor Azizah; Arifin, Norihan Md; Rosali, Haliza

    2017-04-01

    The study of unsteady three-dimensional boundary layer rotating flow with heat transfer in Copper-water nanofluid over a shrinking sheet is discussed. The governing equations in terms of partial differential equations are transformed to ordinary differential equations by introducing the appropriate similarity variables which are then solved numerically by a shooting method with Maple software. The numerical results of velocity gradient in x and y directions, skin friction coefficient and local Nusselt number as well as dual velocity and temperature profiles are shown graphically. The study revealed that dual solutions exist in certain range of s > 0.

  9. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  10. Superfluid Friction and Late-Time Thermal Evolution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Larson, Michelle B.; Link, Bennett

    1999-08-01

    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×106 and 2×107 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ω¯~0.6 rad s-1 for PSR 1929+10 and ~0.02 rad s-1 for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by the pinning of superfluid vortices to the inner crust lattice with strengths of ~1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (~30 rad s-1), a feedback instability could occur in stars younger than ~105 yr causing oscillations of the temperature and spin-down rate over a period of ~0.3tage. For stars older than ~106 yr, however, vortex creep occurs through quantum tunneling and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.

  11. Rotating flow of a nanofluid due to an exponentially stretching surface with suction

    NASA Astrophysics Data System (ADS)

    Salleh, Siti Nur Alwani; Bachok, Norfifah; Arifin, Norihan Md

    2017-08-01

    An analysis of the rotating nanofluid flow past an exponentially stretched surface with the presence of suction is studied in this work. Three different types of nanoparticles, namely, copper, titania and alumina are considered. The system of ordinary differential equations is computed numerically using a shooting method in Maple software after being transformed from the partial differential equations. This transformation has considered the similarity transformations in exponential form. The physical effect of the rotation, suction and nanoparticle volume fraction parameters on the rotating flow and heat transfer phenomena is investigated and has been described in detail through graphs. The dual solutions are found to appear when the governing parameters reach a certain range.

  12. Jet-front systems nearing strongly stratified region in differentially heated, rotating stratified annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Achatz, Ulrich

    2017-04-01

    The differentially heated, rotating annulus configuration has been used for a long time as a model system of the earth troposphere. It can easily reproduce thermal wind and baroclinic waves in the laboratory. It has recently been shown numerically that provided the Rossby number, the rotation rate and the Brunt-Väisälä frequency were well chosen, this configuration also reproduces the spontaneous emission of gravity waves by jet front systems [1]. This offers a very practical configuration in which to study an important process of emission of atmospheric gravity waves. It has also been shown experimentally that this configuration can be modified in order to add the possibility for the emitted wave to reach a strongly stratified region [2]. It thus creates a system containing a model troposphere where gravity waves are spontaneously emitted and can propagate to a model stratosphere. For this matter a stratification was created using a salinity gradient in the experimental apparatus. Through double diffusion, this generates a strongly stratified layer in the middle of the flow (the model stratosphere) and two weakly stratified region in the top and bottom layers (the model troposphere). In this poster, we present simulations of this configuration displaying baroclinic waves in the top and bottom layers. We aim at creating jet front systems strong enough that gravity waves can be spontaneously emitted. This will thus offer the possibility of studying the wave characteristic and mechanisms in emission and propagation in details. References [1] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [2] M. Vincze, I. Borcia, U. Harlander, P. Le Gal, Double-diffusive convection convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res. 48, 061414 (2016).

  13. Structure and Dynamics of Fluid Planets

    NASA Astrophysics Data System (ADS)

    Houben, H.

    2014-12-01

    Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.

  14. Coolant side heat transfer with rotation: User manual for 3D-TEACH with rotation

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; James, R. H.

    1989-01-01

    This program solves the governing transport equations in Reynolds average form for the flow of a 3-D, steady state, viscous, heat conducting, multiple species, single phase, Newtonian fluid with combustion. The governing partial differential equations are solved in physical variables in either a Cartesian or cylindrical coordinate system. The effects of rotation on the momentum and enthalpy calculations modeled in Cartesian coordinates are examined. The flow of the fluid should be confined and subsonic with a maximum Mach number no larger than 0.5. This manual describes the operating procedures and input details for executing a 3D-TEACH computation.

  15. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk

    NASA Astrophysics Data System (ADS)

    Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-04-01

    Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.

  16. Nonlinear dynamics analysis of a low-temperature-differential kinematic Stirling heat engine

    NASA Astrophysics Data System (ADS)

    Izumida, Yuki

    2018-03-01

    The low-temperature-differential (LTD) Stirling heat engine technology constitutes one of the important sustainable energy technologies. The basic question of how the rotational motion of the LTD Stirling heat engine is maintained or lost based on the temperature difference is thus a practically and physically important problem that needs to be clearly understood. Here, we approach this problem by proposing and investigating a minimal nonlinear dynamic model of an LTD kinematic Stirling heat engine. Our model is described as a driven nonlinear pendulum where the motive force is the temperature difference. The rotational state and the stationary state of the engine are described as a stable limit cycle and a stable fixed point of the dynamical equations, respectively. These two states coexist under a sufficient temperature difference, whereas the stable limit cycle does not exist under a temperature difference that is too small. Using a nonlinear bifurcation analysis, we show that the disappearance of the stable limit cycle occurs via a homoclinic bifurcation, with the temperature difference being the bifurcation parameter.

  17. Soret and Dufour effects on MHD peristaltic flow of Prandtl fluid in a rotating channel

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Zahir, Hina; Tanveer, Anum; Alsaedi, Ahmed

    2018-03-01

    An analysis has been arranged to study the magnetohydrodynamics (MHD) peristaltic flow of Prandtl fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Simultaneous effects of heat and mass transfer with thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects are considered. Convective conditions for heat and mass transfer in the formulation are adopted. Ordinary differential systems using low Reynolds number and long wavelength approximation are obtained. Resulting equations have been solved numerically. The discussion of axial and secondary velocities, temperature, concentration and heat transfer coefficient with respect to emerging parameters embedded in the flow model is presented after sketching plots.

  18. Mixed convection heat transfer enhancement in a cubic lid-driven cavity containing a rotating cylinder through the introduction of artificial roughness on the heated wall

    NASA Astrophysics Data System (ADS)

    Kareem, Ali Khaleel; Gao, Shian

    2018-02-01

    The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottom wall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 ≤ Ω ≤ 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-ɛ model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists.

  19. Benchmarking in a differentially heated rotating annulus experiment: Multiple equilibria in the light of laboratory experiments and simulations

    NASA Astrophysics Data System (ADS)

    Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian

    2014-05-01

    In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave modes. Thus certain "benchmarks" have been created that can later be used as test cases for atmospheric numerical model validation. Both in the experiments and in the numerics multiple equilibrium states have been observed in the form of hysteretic behavior depending on the initial conditions. The precise quantification of these state and wave mode transitions may shed light to some aspects of the basic underlying dynamics of the baroclinic annulus configuration, still to be understood.

  20. The effect of centrifugal buoyancy on the heat transport in rotating Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Horn, Susanne; Aurnou, Jonathan

    2017-11-01

    In a rapidly rotating and differentially heated fluid, the centrifugal acceleration can play a similar role to that of gravity in generating convective motion. However, in the paradigm system of rotating Rayleigh-Bénard convection, centrifugal buoyancy is typically not considered in theoretical studies and, thus, usually undesired in laboratory experiments, despite being unavoidable. How centrifugal buoyancy affects the turbulent flow, including the heat transport, is still largely unknown, in particular, when it can be considered negligible. We study this problem by means of direct numerical simulations. Unlike in experiments, we are able to systematically vary the Froude number Fr (ratio of centrifugal to gravitational acceleration) and the Rossby number Ro (dimensionless rotation rate) independently, and even set each to zero exactly. We show that the centrifugal acceleration simultaneously leads to contending phenomena, e.g. reflected by an increase and a decrease of the center temperature, or a suppression and an enhancement of the heat transfer efficiency. Which one prevails as net effect strongly depends on the combination of Fr and Ro. Furthermore, we discuss implications for experiments of rapidly rotating convection. SH acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) under Grant HO 5890/1-1, JA by the NSF Geophysics Program.

  1. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    PubMed

    Awad, Faiz G; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations.

  2. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  3. Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Javed, Mehwish; Imtiaz, Maria; Alsaedi, Ahmed

    2018-03-01

    This paper presents the study of Jeffrey fluid flow by a rotating disk with variable thickness. Energy equation is constructed by using Cattaneo-Christov heat flux model with variable thermal conductivity. A system of equations governing the model is obtained by applying boundary layer approximation. Resulting nonlinear partial differential system is transformed to ordinary differential system. Homotopy concept leads to the convergent solutions development. Graphical analysis for velocities and temperature is made to examine the influence of different involved parameters. Thermal relaxation time parameter signifies that temperature for Fourier's heat law is more than Cattaneo-Christov heat flux. A constitutional analysis is made for skin friction coefficient and heat transfer rate. Effects of Prandtl number on temperature distribution and heat transfer rate are scrutinized. It is observed that larger Reynolds number gives illustrious temperature distribution.

  4. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk

    NASA Astrophysics Data System (ADS)

    Aziz, Arsalan; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    2018-03-01

    Here MHD three-dimensional flow of viscous nanoliquid by a rotating disk with heat generation/absorption and slip effects is addressed. Thermophoresis and random motion features are also incorporated. Velocity, temperature and concentration slip conditions are imposed at boundary. Applied magnetic field is utilized. Low magnetic Reynolds number and boundary layer approximations have been employed in the problem formulation. Suitable transformations lead to strong nonlinear ordinary differential system. The obtained nonlinear system is solved numerically through NDSolve technique. Graphs have been sketched in order to analyze that how the velocity, temperature and concentration fields are affected by various pertinent variables. Moreover the numerical values for rates of heat and mass transfer have been tabulated and discussed.

  5. Thermally Radiative Rotating Magneto-Nanofluid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Sagheer, M.; Bilal, M.; Hussain, S.; Ahmed, R. N.

    2018-03-01

    This article examines a mathematical model to analyze the rotating flow of three-dimensional water based nanofluid over a convectively heated exponentially stretching sheet in the presence of transverse magnetic field with additional effects of thermal radiation, Joule heating and viscous dissipation. Silver (Ag), copper (Cu), copper oxide (CuO), aluminum oxide (Al 2 O 3 ) and titanium dioxide (TiO 2 ) have been taken under consideration as the nanoparticles and water (H 2 O) as the base fluid. Using suitable similarity transformations, the governing partial differential equations (PDEs) of the modeled problem are transformed to the ordinary differential equations (ODEs). These ODEs are then solved numerically by applying the shooting method. For the particular situation, the results are compared with the available literature. The effects of different nanoparticles on the temperature distribution are also discussed graphically and numerically. It is witnessed that the skin friction coefficient is maximum for silver based nanofluid. Also, the velocity profile is found to diminish for the increasing values of the magnetic parameter.

  6. Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Khan, Muhammad Ijaz; Alsaedi, Ahmed

    2018-01-01

    Simultaneous effects of viscous dissipation and Joule heating in flow by rotating disk of variable thickness are examined. Radiative flow saturating porous space is considered. Much attention is given to entropy generation outcome. Developed nonlinear ordinary differential systems are computed for the convergent series solutions. Specifically, the results of velocity, temperature, entropy generation, Bejan number, coefficient of skin friction, and local Nusselt number are discussed. Clearly the entropy generation rate depends on velocity and temperature distributions. Moreover the entropy generation rate is a decreasing function of Hartmann number, Eckert number, and Reynolds number, while they gave opposite behavior for Bejan numbers.

  7. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath

    2018-05-01

    This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.

  8. Gas absorption/desorption temperature-differential engine

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1981-01-01

    Continuously operating compressor system converts 90 percent of gas-turbine plant energy to electricity. Conventional plants work in batch mode, operating at 40 percent efficiency. Compressor uses metal hydride matrix on outside of rotating drum to generate working gas, hydrogen. Rolling valve seals allow continuous work. During operation, gas is absorbed, releasing heat, and desorbed with heat gain. System conserves nuclear and fossil fuels, reducing powerplant capital and operating costs.

  9. Numerical investigation of the onset of centrifugal buoyancy in a rotating cavity

    NASA Astrophysics Data System (ADS)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John

    2016-11-01

    Buoyancy-induced flows in a differentially heated rotating annulus present a multitude of dynamics when control parameters such as rotation rate, temperature difference and Prandtl number are varied. Whilst most of the work in this area has been motivated by applications involving geophysics, the problem of buoyancy-induced convection in rotating systems is also relevant in industrial applications such as the flow between rotating disks of turbomachinery internal air systems, in which buoyancy plays a major role and poses a challenge to accurately predict temperature distributions and heat transfer rates. In such applications the rotational speeds involved are very large, so that the centrifugal accelerations induced are much higher than gravity. In this work we perform direct numerical simulations and linear stability analysis of flow induced by centrifugal buoyancy in a sealed rotating annulus of finite gap with flat end-walls, using a canonical setup representative of an internal air system rotating cavity. The analysis focuses on the behaviour of small-amplitude disturbances added to the base flow, and how those affect the onset of Rossby waves and, ultimately, the transition to a fully turbulent state where convection columns no longer have a well-defined structure. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  10. Reynolds stress and heat flux in spherical shell convection

    NASA Astrophysics Data System (ADS)

    Käpylä, P. J.; Mantere, M. J.; Guerrero, G.; Brandenburg, A.; Chatterjee, P.

    2011-07-01

    Context. Turbulent fluxes of angular momentum and enthalpy or heat due to rotationally affected convection play a key role in determining differential rotation of stars. Their dependence on latitude and depth has been determined in the past from convection simulations in Cartesian or spherical simulations. Here we perform a systematic comparison between the two geometries as a function of the rotation rate. Aims: Here we want to extend the earlier studies by using spherical wedges to obtain turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. In particular, we want to clarify whether the sharp equatorial profile of the horizontal Reynolds stress found in earlier Cartesian models is also reproduced in spherical geometry. Methods: We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs, and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results: For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong "banana cells". Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance. Movies and Appendix A are available in electronic form at http://www.aanda.org

  11. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  12. Late stages of accumulation and early evolution of the planets

    NASA Technical Reports Server (NTRS)

    Vityazev, Andrey V.; Perchernikova, G. V.

    1991-01-01

    Recently developed solutions of problems are discussed that were traditionally considered fundamental in classical solar system cosmogony: determination of planetary orbit distribution patterns, values for mean eccentricity and orbital inclinations of the planets, and rotation periods and rotation axis inclinations of the planets. Two important cosmochemical aspects of accumulation are examined: the time scale for gas loss from the terrestrial planet zone, and the composition of the planets in terms of isotope data. It was concluded that the early beginning of planet differentiation is a function of the heating of protoplanets during collisions with large (thousands of kilometers) bodies. Energetics, heat mass transfer processes, and characteristic time scales of these processes at the early stages of planet evolution are considered.

  13. Analytical exploration of a TiO2 nanofluid along a rotating disk with homogeneous-heterogeneous chemical reactions and non-uniform heat source/sink

    NASA Astrophysics Data System (ADS)

    Das, Kalidas; Chakraborty, Tanmoy; Kumar Kundu, Prabir

    2017-12-01

    Comparative flow features of two different nanofluids containing TiO2 nanoparticles along a rotating disk near a stagnation point are theoretically addressed here. The primary fluids are presumed as ethylene glycol and water. The influences of non-uniform heat absorption/generation with homogeneous and heterogeneous chemical reactions have been integrated to modify the energy and concentration profiles. By virtue of similarity conversions, the leading partial differential system has been standardized into non-linear ODEs and then cracked analytically by NDM and numerically by RK-4 based shooting practice. Impressions of emerging parameters on the flow regime have been reported by tables and graphs coupled with required discussions. One of our results predicts that, with the augmentation of TiO2 nanoparticles concentration, the rate of heat transport for ethylene glycol nanofluid becomes 30-36% higher compared to that of a water nanofluid.

  14. Numerical investigation for entropy generation in hydromagnetic flow of fluid with variable properties and slip

    NASA Astrophysics Data System (ADS)

    Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-02-01

    This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.

  15. Analytical solutions for tomato peeling with combined heat flux and convective boundary conditions

    NASA Astrophysics Data System (ADS)

    Cuccurullo, G.; Giordano, L.; Metallo, A.

    2017-11-01

    Peeling of tomatoes by radiative heating is a valid alternative to steam or lye, which are expensive and pollutant methods. Suitable energy densities are required in order to realize short time operations, thus involving only a thin layer under the tomato surface. This paper aims to predict the temperature field in rotating tomatoes exposed to the source irradiation. Therefore, a 1D unsteady analytical model is presented, which involves a semi-infinite slab subjected to time dependent heating while convective heat transfer takes place on the exposed surface. In order to account for the tomato rotation, the heat source is described as the positive half-wave of a sinusoidal function. The problem being linear, the solution is derived following the Laplace Transform Method. In addition, an easy-to-handle solution for the problem at hand is presented, which assumes a differentiable function for approximating the source while neglecting convective cooling, the latter contribution turning out to be negligible for the context at hand. A satisfying agreement between the two analytical solutions is found, therefore, an easy procedure for a proper design of the dry heating system can be set up avoiding the use of numerical simulations.

  16. Piezothermal effect in a spinning gas

    NASA Astrophysics Data System (ADS)

    Geyko, V. I.; Fisch, N. J.

    2016-10-01

    A spinning gas, heated adiabatically through axial compression, is known to exhibit a rotation-dependent heat capacity. However, as equilibrium is approached, an effect is identified here wherein the temperature does not grow homogeneously in the radial direction, but develops a temperature differential with the hottest region on axis, at the maximum of the centrifugal potential energy. This phenomenon, which we call a piezothermal effect, is shown to grow bilinearly with the compression rate and the amplitude of the potential. Numerical simulations confirm a simple model of this effect, which can be generalized to other forms of potential energy and methods of heating.

  17. The Geophysical Fluid Flow Cell Experiment

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.

    1999-01-01

    The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.

  18. The Effect of Atmospheric Diabatic Heating on Low-Frequency Oscillations.

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Cheng

    1990-01-01

    A diagnostic scheme is devised to illustrate a chain relationship between diabatic heating and planetary -scale divergent and rotational circulations. The scheme consists of the velocity-potential (chi) maintenance equation, which relates diabatic heating and velocity potential, and the streamfunction (psi ) budget equation, which depicts the streamfunction tendency caused by the imbalance between streamfunction tendencies induced by vorticity advection and source. The proposed scheme is employed to examine the effect of tropical diabatic heating on the annual variation of subtropical jet streams. Furthermore, the chi -maintenance analysis is used to examine how the 30-60 day oscillation of planetary-scale divergent circulation is maintained; and the psi-budget analysis is performed to illustrate how the 30-60 day velocity potential (~{chi}) mode interacts with the upper-level monsoon flow to induce the 30-60 day oscillation of the tropical easterly jet. It was found that annual variations of both tropical diabatic heating and planetary-scale divergent circulation exhibit an annual in-phase seesaw oscillation between the winter and summer hemispheres. The annual variation of subtropical jet streams is caused by the adjustment of atmospheric rotational flow through planetary-scale divergent circulation in response to the annual cycle of tropical diabatic heating. The chi-maintenance equation is expressed as chi = chi _sp{rm Q}{.} - chi_{rm HA} , where chi_sp{rm Q}{.} and chi_ {rm HA} are the effects of vertical differential diabatic and adiabatic heating, respectively. The 30-60 day chi oscillation is shown to be primarily maintained by the differential diabatic heating effect, which can be inferred from the H _{rm VD} anomalies, the Laplician of the filtered chi_sp{rm Q}{.} anomalies. The resemblance of the H_{rm VD} and OLR anomalies in terms of the geographic distributions indicates that the differential diabatic heating effect maintaining the 30-60 day chi oscillation is attributable to the latent heat released by cumulus convection. The synoptic relationship among (~ {chi}, nabla~ {chi}) (200 mb), OLR and ~{psi} (200 mb) makes clear the synchronization of the 30-60 day oscillation of the tropical easterly jet and the Somali jet. The significant outcome of the psi-budget analysis demonstrates that the 30-60 day oscillation of the southern part of the tropical easterly jet is a response of the upper-level monsoon circulation to the eastward propagating ~{chi} mode.

  19. Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Mustafa, M.

    In this paper, the classical Von Kármán problem of infinite disk is extended when an electrically conducting nanofluid fills the space above the rotating disk which also stretches uniformly in the radial direction. Buongiorno model is considered in order to incorporate the novel Brownian motion and thermophoresis effects. Heat transport mechanism is modeled through more practically feasible convective conditions while Neumann type condition for nanoparticle concentration is adopted. Modified Von Kármán transformations are utilized to obtain self-similar differential system which is treated through a numerical method. Stretching phenomenon yields an additional parameter c which compares the stretch rate with the swirl rate. The effect of parameter c is to reduce the temperature and nanoparticle concentration profiles. Torque required to main steady rotation of the disk increases for increasing values of c while an improvement in cooling rate is anticipated in case of radial stretching, which is important in engineering processes. Brownian diffusion does not influence the heat flux from the stretching wall. Moreover, the wall heat flux has the maximum value for the situation in which thermoporetic force is absent.

  20. Simulation of large scale motions and small scale structures in planetary atmospheres and oceans: From laboratory to space experiments on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe

    2014-05-01

    Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., vol. 75, p 647-683

  1. Shaft seal assembly and method

    NASA Technical Reports Server (NTRS)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  2. Modeling of the WSTF frictional heating apparatus in high pressure systems

    NASA Technical Reports Server (NTRS)

    Skowlund, Christopher T.

    1992-01-01

    In order to develop a computer program able to model the frictional heating of metals in high pressure oxygen or nitrogen a number of additions have been made to the frictional heating model originally developed for tests in low pressure helium. These additions include: (1) a physical property package for the gases to account for departures from the ideal gas state; (2) two methods for spatial discretization (finite differences with quadratic interpolation or orthogonal collocation on finite elements) which substantially reduce the computer time required to solve the transient heat balance; (3) more efficient programs for the integration of the ordinary differential equations resulting from the discretization of the partial differential equations; and (4) two methods for determining the best-fit parameters via minimization of the mean square error (either a direct search multivariable simplex method or a modified Levenburg-Marquardt algorithm). The resulting computer program has been shown to be accurate, efficient and robust for determining the heat flux or friction coefficient vs. time at the interface of the stationary and rotating samples.

  3. Piezothermal effect in a spinning gas

    DOE PAGES

    Geyko, V. I.; Fisch, N. J.

    2016-10-13

    A spinning gas, heated adiabatically through axial compression, is known to exhibit a rotation-dependent heat capacity. However, as equilibrium is approached, an effect is identified here wherein the temperature does not grow homogeneously in the radial direction, but develops a temperature differential with the hottest region on axis, at the maximum of the centrifugal potential energy. This phenomenon, which we call a piezothermal effect, is shown to grow bilinearly with the compression rate and the amplitude of the potential. As a result, numerical simulations confirm a simple model of this effect, which can be generalized to other forms of potentialmore » energy and methods of heating.« less

  4. Measurements of coronal Faraday rotation at 4.6 R {sub ☉}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.

    2014-03-20

    Many competing models for the coronal heating and acceleration mechanisms of the high-speed solar wind depend on the solar magnetic field and plasma structure in the corona within heliocentric distances of 5 R {sub ☉}. We report on sensitive Very Large Array (VLA) full-polarization observations made in 2011 August, at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz) of the radio galaxy 3C 228 through the solar corona at heliocentric distances of 4.6-5.0 R {sub ☉}. Observations at 5.0 GHz permit measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. These Faradaymore » rotation observations provide unique information on the magnetic field in this region of the corona. The measured Faraday rotation on this day was lower than our a priori expectations, but we have successfully modeled the measurement in terms of observed properties of the corona on the day of observation. Our data on 3C 228 provide two lines of sight (separated by 46'', 33,000 km in the corona). We detected three periods during which there appeared to be a difference in the Faraday rotation measure between these two closely spaced lines of sight. These measurements (termed differential Faraday rotation) yield an estimate of 2.6-4.1 GA for coronal currents. Our data also allow us to impose upper limits on rotation measure fluctuations caused by coronal waves; the observed upper limits were 3.3 and 6.4 rad m{sup –2} along the two lines of sight. The implications of these results for Joule heating and wave heating are briefly discussed.« less

  5. Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium

    NASA Astrophysics Data System (ADS)

    Bayones, F. S.; Abd-Alla, A. M.

    2018-03-01

    In this paper the linear theory of the thermoelasticity has been employed to study the effect of the rotation in a thermoelastic half-space containing heat source on the boundary of the half-space. It is assumed that the medium under consideration is traction free, homogeneous, isotropic, as well as without energy dissipation. The normal mode analysis has been applied in the basic equations of coupled thermoelasticity and finally the resulting equations are written in the form of a vector- matrix differential equation which is then solved by eigenvalue approach. Numerical results for the displacement components, stresses, and temperature are given and illustrated graphically. Comparison was made with the results obtained in the presence and absence of the rotation. The results indicate that the effect of rotation, non-dimensional thermal wave and time are very pronounced.

  6. Development of a cryogenic rotating heat pipe joint

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The performance of two critical technology components required for a continuously rotatable heat pipe: (1) a low-leakage rotatable coupling for the heat pipe pressure vessel, and (2) a rotatable internal wick, is reported. Performance and leakage requirements were established based on 12 months operation of a cryogenic rotatable heat pipe on a satellite in earth orbit.

  7. Combined Influence of Hall Current and Soret Effect on Chemically Reacting Magnetomicropolar Fluid Flow from Radiative Rotating Vertical Surface with Variable Suction in Slip-Flow Regime

    PubMed Central

    Jain, Preeti

    2014-01-01

    An analysis study is presented to study the effects of Hall current and Soret effect on unsteady hydromagnetic natural convection of a micropolar fluid in a rotating frame of reference with slip-flow regime. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with variable suction velocity. The effects of heat absorption, chemical reaction, and thermal radiation are discussed and for this Rosseland approximation is used to describe the radiative heat flux in energy equation. The entire system rotates with uniform angular velocity Ω about an axis normal to the plate. The nonlinear coupled partial differential equations are solved by perturbation techniques. In order to get physical insight, the numerical results of translational velocity, microrotation, fluid temperature, and species concentration for different physical parameters entering into the analysis are discussed and explained graphically. Also, the results of the skin-friction coefficient, the couple stress coefficient, Nusselt number, and Sherwood number are discussed with the help of figures for various values of flow pertinent flow parameters. PMID:27350957

  8. Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk

    NASA Astrophysics Data System (ADS)

    Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.

    2018-03-01

    An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.

  9. Retrograde spins of near-Earth asteroids from the Yarkovsky effect.

    PubMed

    La Spina, A; Paolicchi, P; Kryszczyńska, A; Pravec, P

    2004-03-25

    Dynamical resonances in the asteroid belt are the gateway for the production of near-Earth asteroids (NEAs). To generate the observed number of NEAs, however, requires the injection of many asteroids into those resonant regions. Collisional processes have long been claimed as a possible source, but difficulties with that idea have led to the suggestion that orbital drift arising from the Yarkovsky effect dominates the injection process. (The Yarkovsky effect is a force arising from differential heating-the 'afternoon' side of an asteroid is warmer than the 'morning' side.) The two models predict different rotational properties of NEAs: the usual collisional theories are consistent with a nearly isotropic distribution of rotation vectors, whereas the 'Yarkovsky model' predicts an excess of retrograde rotations. Here we report that the spin vectors of NEAs show a strong and statistically significant excess of retrograde rotations, quantitatively consistent with the theoretical expectations of the Yarkovsky model.

  10. Static Magnetic Fields in Semiconductor Floating-Zone Growth

    NASA Technical Reports Server (NTRS)

    Croll, Arne; Benz, K. W.

    1999-01-01

    Heat and mass transfer in semiconductor float-zone processing are strongly influenced by convective flows in the zone, originating from sources such as buoyancy convection, thermocapillary (Marangoni) convection, differential rotation, or radio frequency heating. Because semiconductor melts are conducting, flows can be damped by the use of static magnetic fields to influence the interface shape and the segregation of dopants and impurities. An important objective is often the suppression of time-dependent flows and the ensuing dopant striations. In RF-heated Si-FZ - crystals, fields up to O.STesla show some flattening of the interface curvature and a reduction of striation amplitudes. In radiation-heated (small-scale) SI-FZ crystals, fields of 0.2 - 0.5 Tesla already suppress the majority of the dopant striations. The uniformity of the radial segregation is often compromised by using a magnetic field, due to the directional nature of the damping. Transverse fields lead to an asymmetric interface shape and thus require crystal rotation (resulting in rotational dopant striations) to achieve a radially symmetric interface, whereas axial fields introduce a coring effect. A complete suppression of dopant striations and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, are possible with axial static fields in excess of 1 Tesla. Strong static magnetic fields, however, can also lead to the appearance of thermoelectromagnetic convection, caused by the interaction of thermoelectric currents with the magnetic field.

  11. Transformed Fourier and Fick equations for the control of heat and mass diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenneau, S.; Petiteau, D.; Zerrad, M.

    We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves,more » the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.« less

  12. Effects of rotation on crystal settling in a terrestrial magma ocean: Spherical shell model

    NASA Astrophysics Data System (ADS)

    Maas, C.; Hansen, U.

    2015-12-01

    Like Moon or Mars, Earth experienced one or several deep magma ocean periods of globalextent in a later stage of its accretion. The crystallization of these magma oceans is of keyimportance for the chemical structure of Earth, the mantle evolution and the onset of platetectonics. Due to the fast rotation of early Earth and the small magma viscosity, rotationprobably had a profound effect on differentiation processes. For example, Matyska et al.[1994] propose that the distribution of heterogeneities like the two large low shear velocityprovinces (LLSVP) at the core mantle boundary is influenced by rotational dynamicsof early Earth. Further Garnero and McNamara [2008] suggest that the LLSVPs arevery long-living anomalies, probably reaching back to the time of differentiation andsolidification of Earth. However, nearly all previous studies neglect the effects of rotation.In our previous work using a Cartesian model, a strong influence of rotation as well asof latitude on the differentiation processes in an early magma ocean was revealed. Weshowed that crystal settling in an early stage of magma ocean crystallization cruciallydepends on latitude as well as on rotational strength and crystal density.In order to overcome the restrictions as to the geometry of the Cartesian model, we arecurrently developing a spherical model to simulate crystal settling in a rotating sphericalshell. This model will allow us not only to investigate crystal settling at the poles andthe equator, but also at latitudes in-between these regions, as well as the migration ofcrystals between poles and equator. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle.Science, 320(5876):626-628, 2008.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transferon the formation of megaplumes in the lower mantle. Earth and Planetary ScienceLetters, 125(1):255-266, 1994.

  13. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1998-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.

  14. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  15. ISOTOPE CONVERSION DEVICE AND METHOD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-11

    Homogeneous nuclear reactors are discussed, and an apparatus and method of operation are descrlbed. The apparatus consists essentially of a reaction tank, a heat exchanger connected to the reaction tank and two separate surge tanks connected to the heat exchanger. An oscillating differential pressure is applied to the surge tanks so that a portion of the homogeneous flssionable solution is circulated through the heat exchanger and reaction tank while maintaining sufficient solution in the reaction tank to sustain a controlled fission chain reaction. The reaction tank is disposed within another tank containing a neutron absorbing material through which coolant fluid is circulated, the outer tank being provided with means to permit and cause rotation thereof due to the circulation of the coolant therethrough.

  16. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, Peiyun; Manucharyan, Georgy E.; Thompson, Andrew F.; Goodman, Jason C.; Vance, Steven D.

    2017-06-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the previously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  17. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  18. Effect of composition gradient on magnetothermal instability modified by shear and rotation

    NASA Astrophysics Data System (ADS)

    Gupta, Himanshu; Chaudhuri, Anya; Sadhukhan, Shubhadeep; Chakraborty, Sagar

    2018-02-01

    We model the intracluster medium as a weakly collisional plasma that is a binary mixture of the hydrogen and the helium ions, along with free electrons. When, owing to the helium sedimentation, the gradient of the mean-molecular weight (or equivalently, composition or helium ions' concentration) of the plasma is not negligible, it can have appreciable influence on the stability criteria of the thermal convective instabilities, e.g. the heat-flux-buoyancy instability and the magnetothermal instability (MTI). These instabilities are consequences of the anisotropic heat conduction occurring preferentially along the magnetic field lines. In this paper, without ignoring the magnetic tension, we first present the mathematical criterion for the onset of composition gradient modified MTI. Subsequently, we relax the commonly adopted equilibrium state in which the plasma is at rest, and assume that the plasma is in a sheared state which may be due to differential rotation. We discuss how the concentration gradient affects the coupling between the Kelvin-Helmholtz instability and the MTI in rendering the plasma unstable or stable. We derive exact stability criterion by working with the sharp boundary case in which the physical variables - temperature, mean-molecular weight, density and magnetic field - change discontinuously from one constant value to another on crossing the boundary. Finally, we perform the linear stability analysis for the case of the differentially rotating plasma that is thermally and compositionally stratified as well. By assuming axisymmetric perturbations, we find the corresponding dispersion relation and the explicit mathematical expression determining the onset of the modified MTI.

  19. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.

    PubMed

    Magoń, A; Pyda, M

    2011-11-29

    The thermal behaviors of α-D-glucose in the melting and glass transition regions were examined utilizing the calorimetric methods of standard differential scanning calorimetry (DSC), standard temperature-modulated differential scanning calorimetry (TMDSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-TMDSC), and thermogravimetric analysis (TGA). The quantitative thermal analyses of experimental data of crystalline and amorphous α-D-glucose were performed based on heat capacities. The total, apparent and reversingheat capacities, and phase transitions were evaluated on heating and cooling. The melting temperature (T(m)) of a crystalline carbohydrate such as α-D-glucose, shows a heating rate dependence, with the melting peak shifted to lower temperature for a lower heating rate, and with superheating of around 25K. The superheating of crystalline α-D-glucose is observed as shifting the melting peak for higher heating rates, above the equilibrium melting temperature due to of the slow melting process. The equilibrium melting temperature and heat of fusion of crystalline α-D-glucose were estimated. Changes of reversing heat capacity evaluated by TMDSC at glass transition (T(g)) of amorphous and melting process at T(m) of fully crystalline α-D-glucose are similar. In both, the amorphous and crystalline phases, the same origin of heat capacity changes, in the T(g) and T(m) area, are attributable to molecular rotational motion. Degradation occurs simultaneously with the melting process of the crystalline phase. The stability of crystalline α-D-glucose was examined by TGA and TMDSC in the melting region, with the degradation shown to be resulting from changes of mass with temperature and time. The experimental heat capacities of fully crystalline and amorphous α-D-glucose were analyzed in reference to the solid, vibrational, and liquid heat capacities, which were approximated based on the ATHAS scheme and Data Bank. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Consequences of an Immense Hadean-Archean Heat Flux that Results from Virial Theorem Constraints on the Earth's Initial Axial Spin

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Criss, R. E.

    2016-12-01

    Early Earth conditions were largely erased, but the powerful Virial Theorem (VT) constrains Earth's post-accretion state, which largely dictates subsequent thermal and dynamical evolution. Proposals of huge initial inventories of primordial heat are based on Kelvin's disproven theory of starlight. Rather, the VT requires that gravitational potential of the Solar nebula was converted to rotational energy in a conservative, bound accretionary system, which is confirmed by planetary orbit characteristics. In addition, the VT relates axial spin to gravitational self-potential (Ug,self) of each body [2016 Can. J. Phys. p. 380]. From the VT, ½Ug,self binds the body and is unavailable, but spin energy (SE), also equal to ½Ug,self, degrades while gradually evolving heat via friction. The VT likewise restricts primordial heat of core formation, and is consistent with entropy reduction due to ordering and volume restriction [2015 J. Earth Sci., p. 124]. High initial Virial spin is confirmed by (1) data on young stars, (2) independent projections of Earth's initial spin as 2-17 hrs (from fossils and the current rate of spin loss: Lathe 2006), and (3) current SE for all planets defining a power-law trend with Ug,self, which further requires a universal cause for spin loss [2012 Planet. Space Sci. p. 111]. Spin loss is caused by tidal friction and differential rotation of layers. Dissipation is concentrated in the upper layers and especially in the brittle zone, which are much weaker than the highly compressed, essentially hydrostatic interior. With friction, neither mechanical energy nor angular momentum are conserved. Earth's frictional dissipation is immense. Uniform release over time would provide 300-700 TW. This source dominated heat generation for 2 Ga, whereas radiogenic heat dominates today. Exponential spin down suggests 100x more heat production during the Hadean than now, which obliterated early rocks while promoting outgassing and differentiation. Reduction to 10x present levels in the Archean permitted formation of a thin lithosphere and stabilized an ocean and atmosphere. Frictional heat from spin loss helps explain why oceanic heat flux today resembles that of continents which store all the chondritic U and Th. Topside frictional and radiogenic heat production prohibits lower mantle convection.

  1. Experimental study of time-dependent flows in laboratory atmospheric flow models

    NASA Technical Reports Server (NTRS)

    Rush, J. E.

    1982-01-01

    Baroclinic waves in a rotating, differentially-heated annulus of liquid were studied in support of the Atmospheric General Circulation Experiment. Specific objectives were to determine: (1) the nature of the flow at shallow depths, (2) the effect of a rigid lid vs. free surface, and (3) the nature of fluctuations in the waves as a function of rotation rate, depth, and type of surface. It is found that flows with a rigid lid are basically the same as those with a free surface, except for a decrease in flow rate. At shallow depths steady flows are found in essentially the same form, but the incidence of unsteady flows is greatly diminished.

  2. Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine

    DTIC Science & Technology

    2013-03-01

    Engine Research Facility HHV Higher heating value LHV Lower heating value PDE Pulsed detonation engine RDE Rotating detonation engine RTD...the combustion community are pulse detonation engines ( PDEs ) and rotating detonation engines (RDEs). 1.1 Differences between Pulsed and Rotating ...steadier than that of a PDE (2, 3). (2) (3) Figure 1. Unrolled rotating detonation wave from high-speed video (4) Another difference that

  3. Theoretical and experimental studies in support of the geophysical fluid flow experiment

    NASA Technical Reports Server (NTRS)

    Hart, J.; Toomre, J.

    1985-01-01

    Meteorologists and astrophysicists interested in large scale planetary and solar circulations have come to recognize the importance of rotation and stratification in determining the character of these flows. In particular, the effect of latitude-dependent Coriolis force on nonlinear convection is thought to play a crucial role in such phenomena as differential rotation on the Sun, cloud band orientation on Jupiter, and the generation of magnetic fields in thermally driven dynamos. The continuous low-gravity environment of the orbiting space shuttle offers a unique opportunity to make laboratory studies of such large-scale thermally driven flows under the constraint imposed by rotation and sphericity. This is possible because polarization forces in a dielectric liquid, which are linearly dependent on fluid temperature, give rise to an effectively radial buoyancy force when a radial electrostatic field is imposed. The Geophysical Fluid Flow Cell (GFFC) is an implementation of this ideal in which fluid is contained between two rotating hemispheres that are differentially heated and stressed with a large a-c voltage. The experiment, to be flown on Spacelab III (currently set for launch April 29, 1985), will explore non-linear mode selection and high Rayleigh number turbulence in a rotating convecting spherical shell of liquid. Experiments will be carried out in a low driving parameter range where some limited numerical experimentation is currently feasible, as well as in a parameter range significantly beyond numerical computation for many years.

  4. Laminar forced convection from a rotating horizontal cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.

    2017-04-01

    The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.

  5. Analysis of buoyancy effect on fully developed laminar heat transfer in a rotating tube

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1985-01-01

    Laminar heat transfer is analyzed in a tube rotating about an axis perpendicular to the tube axis. The solution applies for flow that is either radially outward from the axis of rotation, or radially inward toward the axis of rotation. The conditions are fully developed, and there is uniform heat addition at the tube wall. The analysis is performed by expanding velocities and temperature in power series using the Taylor number as a perturbation parameter. Coriolis and buoyancy forces caused by tube rotation are included, and the solution is calculated through second-order terms. The secondary flow induced by the Coriolis terms always tends to increase the heat transfer coefficient; this effect can dominate for small wall heating. For radial inflow, buoyancy also tends to improve heat transfer. For radial outflow, however, buoyancy tends to reduce heat transfer; for large wall heating this effect can dominate, and there is a net reduction in heat transfer coefficient.

  6. Computational manipulation of a radiative MHD flow with Hall current and chemical reaction in the presence of rotating fluid

    NASA Astrophysics Data System (ADS)

    Alias Suba, Subbu; Muthucumaraswamy, R.

    2018-04-01

    A numerical analysis of transient radiative MHD(MagnetoHydroDynamic) natural convective flow of a viscous, incompressible, electrically conducting and rotating fluid along a semi-infinite isothermal vertical plate is carried out taking into consideration Hall current, rotation and first order chemical reaction.The coupled non-linear partial differential equations are expressed in difference form using implicit finite difference scheme. The difference equations are then reduced to a system of linear algebraic equations with a tri-diagonal structure which is solved by Thomas Algorithm. The primary and secondary velocity profiles, temperature profile, concentration profile, skin friction, Nusselt number and Sherwood Number are depicted graphically for a range of values of rotation parameter, Hall parameter,magnetic parameter, chemical reaction parameter, radiation parameter, Prandtl number and Schmidt number.It is recognized that rate of heat transfer and rate of mass transfer decrease with increase in time but they increase with increasing values of radiation parameter and Schmidt number respectively.

  7. Oscillations and instabilities of fast and differentially rotating relativistic stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krueger, Christian; Gaertig, Erich; Kokkotas, Kostas D.

    2010-04-15

    We study nonaxisymmetric oscillations of rapidly and differentially rotating relativistic stars in the Cowling approximation. Our equilibrium models are sequences of relativistic polytropes, where the differential rotation is described by the relativistic j-constant law. We show that a small degree of differential rotation raises the critical rotation value for which the quadrupolar f-mode becomes prone to the Chandrasekhar-Friedman-Schutz (CFS) instability, while the critical value of T/|W| at the mass-shedding limit is raised even more. For stiffer equations of state these effects are even more pronounced. When increasing differential rotation further to a high degree, the neutral point of the CFSmore » instability first reaches a local maximum and is lowered afterwards. For stars with a rather high compactness we find that for a large degree of differential rotation the absolute value of the critical T/|W| is below the corresponding value for rigid rotation. We conclude that the onset of the CFS instability is eased for a small degree of differential rotation and for a large degree at least in stars with a higher compactness. Moreover, we were able to extract the eigenfrequencies and the eigenfunctions of r-modes for differentially rotating stars and our simulations show a good qualitative agreement with previous Newtonian results.« less

  8. Transport Phenomena in Thin Rotating Liquid Films Including: Nucleate Boiling

    NASA Technical Reports Server (NTRS)

    Faghri, Amir

    2005-01-01

    In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from which

  9. Differential rotation in Jupiter: A comparison of methods

    NASA Astrophysics Data System (ADS)

    Wisdom, J.; Hubbard, W. B.

    2016-03-01

    Whether Jupiter rotates as a solid body or has some element of differential rotation along concentric cylinders is unknown. But Jupiter's zonal wind is not north/south symmetric so at most some average of the north/south zonal winds could be an expression of cylinders. Here we explore the signature in the gravitational moments of such a smooth differential rotation. We carry out this investigation with two general methods for solving for the interior structure of a differentially rotating planet: the CMS method of Hubbard (Hubbard, W.B. [2013]. Astrophys. J. 768, 1-8) and the CLC method of Wisdom (Wisdom, J. [1996]. Non-Perturbative Hydrostatic Equilibrium. http://web.mit.edu/wisdom/www/interior.pdf). The two methods are in remarkable agreement. We find that for smooth differential rotation the moments do not level off as they do for strong differential rotation.

  10. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, Richard L.

    1993-01-01

    A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.

  11. Self-sustained flow oscillations and heat transfer in radial flow through co-rotating parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Inoue, T.

    1990-03-01

    An experimental study was conducted to determine the fluid flow and heat transfer characteristics in a passage formed by two parallel rotating disks. The local heat transfer coefficients along the disk radius were measured in detail and the flow patterns between the two rotating disks were visualized by using paraffin mist and a laser-light sheet. It was disclosed that: (1) the self-sustained laminar flow separation which is characteristic of the stationary disks still exists even when the disks are set in motion, giving significant influence to the heat transfer; (2) for small source flow Reynolds number, Re, and large rotational Reynolds number, Re(omega), rotating stall dominates the heat transfer; and (3) heat transfer for steady laminar flow occurs only when Re is less than 1200 and Re(omega) is less than 20.

  12. Differential rotation in main-sequence solar-like stars: Qualitative inference from asteroseismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, Mikkel N.; Christensen-Dalsgaard, Jørgen; Miesch, Mark S., E-mail: mikkelnl@phys.au.dk

    2014-08-01

    Understanding differential rotation of Sun-like stars is of great importance for insight into the angular momentum transport in these stars. One means of gaining such information is that of asteroseismology. By a forward modeling approach we analyze in a qualitative manner the impact of different differential rotation profiles on the splittings of p-mode oscillation frequencies. The optimum modes for inference on differential rotation are identified along with the best value of the stellar inclination angle. We find that in general it is not likely that asteroseismology can be used to make an unambiguous distinction between a rotation profile such asmore » a conical Sun-like profile and a cylindrical profile. In addition, it seems unlikely that asteroseismology of Sun-like stars will result in inferences on the radial profile of the differential rotation, such as can be done for red giants. At best, one could possibly obtain the sign of the radial differential rotation gradient. Measurements of the extent of the latitudinal differential from frequency splitting are, however, more promising. One very interesting aspect that could likely be tested from frequency splittings is whether the differential rotation is solar-like or anti-solar-like in nature, in the sense that a solar-like profile has an equator rotating faster than the poles.« less

  13. Apparatus and method for materials processing utilizing a rotating magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidharan, Govindarajan; Angelini, Joseph A.; Murphy, Bart L.

    An apparatus for materials processing utilizing a rotating magnetic field comprises a platform for supporting a specimen, and a plurality of magnets underlying the platform. The plurality of magnets are configured for rotation about an axis of rotation intersecting the platform. A heat source is disposed above the platform for heating the specimen during the rotation of the plurality of magnets. A method for materials processing utilizing a rotating magnetic field comprises providing a specimen on a platform overlying a plurality of magnets; rotating the plurality of magnets about an axis of rotation intersecting the platform, thereby applying a rotatingmore » magnetic field to the specimen; and, while rotating the plurality of magnets, heating the specimen to a desired temperature.« less

  14. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, R.L.

    1993-12-28

    A heat exchanger is described which includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.

  15. Heat and Mass Transfer in the Over-Shower Zone of a Cooling Tower with Flow Rotation

    NASA Astrophysics Data System (ADS)

    Kashani, M. M. Hemmasian; Dobrego, K. V.

    2013-11-01

    The influence of flow rotation in the over-shower zone of a natural draft wet cooling tower (NDCT) on heat and mass transfer in this zone is investigated numerically. The 3D geometry of an actual NDCT and three models of the induced rotation velocity fields are utilized for calculations. Two phases (liquid and gaseous) and three components are taken into consideration. The interphase heat exchange, heat transfer to the walls, condensation-evaporation intensity field, and other parameters are investigated as functions of the induced rotation intensity (the inclination of the velocity vector at the periphery). It is shown that the induced flow rotation intensifies the heat and mass transfer in the over-shower zone of an NDCT. Flow rotation leads to specific redistribution of evaporation-condensation areas in an NDCT and stimulates water condensation near its walls.

  16. Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability

    NASA Astrophysics Data System (ADS)

    Vincze, Miklos; Borcia, Ion; Harlander, Uwe; Le Gal, Patrice

    2016-12-01

    A water-filled differentially heated rotating annulus with initially prepared stable vertical salinity profiles is studied in the laboratory. Based on two-dimensional horizontal particle image velocimetry data and infrared camera visualizations, we describe the appearance and the characteristics of the baroclinic instability in this original configuration. First, we show that when the salinity profile is linear and confined between two non-stratified layers at top and bottom, only two separate shallow fluid layers can be destabilized. These unstable layers appear nearby the top and the bottom of the tank with a stratified motionless zone between them. This laboratory arrangement is thus particularly interesting to model geophysical or astrophysical situations where stratified regions are often juxtaposed to convective ones. Then, for more general but stable initial density profiles, statistical measures are introduced to quantify the extent of the baroclinic instability at given depths and to analyze the connections between this depth-dependence and the vertical salinity profiles. We find that, although the presence of stable stratification generally hinders full-depth overturning, double-diffusive convection can lead to development of multicellular sideways convection in shallow layers and subsequently to a multilayered baroclinic instability. Therefore we conclude that by decreasing the characteristic vertical scale of the flow, stratification may even enhance the formation of cyclonic and anticyclonic eddies (and thus, mixing) in a local sense.

  17. Rotational spectral variations of asteroid (8) Flora Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1984-01-01

    The surface material and the surface material heterogeneities of the asteroid Flora are characterized using the best available data sets and the most sophisticated interpretive calibrations. Five spectrally derived mineralogic and patrologic properties of the surface assemblage of Flora which are relevant to whether this body is a differentiated or undifferentiated object are considered: bulk mineralogy, mafic mineral assemblage, metallic phase, pyroxene composition and structural type, and mineralogic variation. All of these properties indicate that Flora is a differentiated body. Flora is probably the residual core of an intensely heated, thermally evolved, and magnetically differentiated planetesimal which was subsequently disrupted. The present surface sample layers formed at or near the core-mantle boundary in the parent body.

  18. Solid state lighting devices and methods with rotary cooling structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less

  19. Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls

    NASA Technical Reports Server (NTRS)

    Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.

    1991-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.

  20. ELECTRONIC BIVANE WIND DIRECTION INDICATOR

    DOEpatents

    Moses, H.

    1961-05-01

    An apparatus is described for determining and recording three dimensional wind vectors. The apparatus comprises a rotatably mounted azimuthal wind component sensing head and an elevational wind component sensing head mounted to the azimuthal head and adapted to rotate therewith in the azimuthal plane and independently in the elevational plane. A heat source and thermocouples disposed thereabout are mounted within each of the sensing heads, the thermocouples providing electrical signals responsive to the temperature differential created by the passage of air through the sensing tuhes. The thermocouple signals are applied to drive mechanisms which position the sensing heads to a null wind position. Recording means are provided responsive to positional data from the drive mechanisms which are a measurement of the three dimensional wind vectors.

  1. Differential Rotation via Tracking of Coronal Bright Points.

    NASA Astrophysics Data System (ADS)

    McAteer, James; Boucheron, Laura E.; Osorno, Marcy

    2016-05-01

    The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.

  2. Solid State Welding Development at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.; Walker, Bryant

    2012-01-01

    What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.

  3. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  4. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  5. The rotating heat pipe - Implementation as a uniform-temperature heat source

    NASA Astrophysics Data System (ADS)

    Limoges, R. F.

    1981-11-01

    A wickless rotating heat pipe, if properly controlled, is a uniform heat source. The data presented are based on work done with 12.7 cm diameter x 76 cm long rotating heat pipes operating between 120 and 140 C. The major areas reviewed are: materials of fabrication, working fluids, sealing, temperature control, heaters, and safety. The optimum rotating heat pipe defined by these studies is fabricated of type 304 stainless steel, uses water as the working fluid, is sealed with welded joints, and utilizes a pressure switch and a fast-response quartz lamp for temperature control. Surface-temperature control of + or - 0.15 C and temperature uniformity within 0.8 C are obtained. Results of experiments designed to study the effects of hydrogen in the enclosed volume of the heat pipe are presented.

  6. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.

    2018-03-01

    Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.

  7. Orbital foamed material extruder

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2009-01-01

    This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.

  8. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  9. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  10. Some investigations on the enhancement of boiling heat transfer from planer surface embedded with continuous open tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.K.; Das, P.K.; Saha, P.

    2010-11-15

    Boiling heat transfer from a flat surface can be enhanced if continuous open tunnel type structures are embedded in it. Further, improvement of boiling heat transfer from such surfaces has been tried by two separate avenues. At first, inclined tunnels are embedded over the solid surface and an effort is made to optimize the tunnel inclination for boiling heat transfer. Surfaces are manufactured in house with four different inclinations of the tunnels with or without a reentrant circular pocket at the end of the tunnel. Experiments conducted in the nucleate boiling regime showed that 45 deg inclination of the tunnelsmore » for both with and without base geometry provides the highest heat transfer coefficient. Next, active fluid rotation was imposed to enhance the heat transfer from tunnel type surfaces with and without the base geometry. Rotational speed imparted by mechanical stirrer was varied over a wide range. It was observed that fluid rotation enhances the heat transfer coefficient only up to a certain value of stirrer speed. Rotational speed values, beyond this limit, reduce the boiling heat transfer severely. A comparison shows that embedding continuous tunnel turns out to be a better option for the increase of heat transfer coefficient compared to the imposition of fluid rotation. But the behavior of inclined tunnels under the action of fluid rotation is yet to be established and can be treated as a future scope of the work. (author)« less

  11. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits,more » the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.« less

  12. The Information Content in Analytic Spot Models of Broadband Precision Light Curves

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  13. Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Liou, Tong-Miin; Wang, Chun-Sheng

    2018-01-01

    Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.

  14. Linear Back-Drive Differentials

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.

  15. Heat Transfer Experiments in the Internal Cooling Passages of a Cooled Radial Turbine Rotor

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.

    1996-01-01

    An experimental study was conducted (1) to experimentally measure, assess and analyze the heat transfer within the internal cooling configuration of a radial turbine rotor blade and (2) to obtain heat transfer data to evaluate and improve computational fluid dynamics (CFD) procedures and turbulent transport models of internal coolant flows. A 1.15 times scale model of the coolant passages within the NASA LERC High Temperature Radial Turbine was designed, fabricated of Lucite and instrumented for transient beat transfer tests using thin film surface thermocouples and liquid crystals to indicate temperatures. Transient heat transfer tests were conducted for Reynolds numbers of one-fourth, one-half, and equal to the operating Reynolds number for the NASA Turbine. Tests were conducted for stationary and rotating conditions with rotation numbers in the range occurring in the NASA Turbine. Results from the experiments showed the heat transfer characteristics within the coolant passage were affected by rotation. In general, the heat transfer increased and decreased on the sides of the straight radial passages with rotation as previously reported from NASA-HOST-sponsored experiments. The heat transfer in the tri-passage axial flow region adjacent to the blade exit was relatively unaffected by rotation. However, the heat transfer on one surface, in the transitional region between the radial inflow passage and axial, constant radius passages, decreased to approximately 20 percent of the values without rotation. Comparisons with previous 3-D numerical studies indicated regions where the heat transfer characteristics agreed and disagreed with the present experiment.

  16. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  17. Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation using a Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-04-01

    We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a ``shallow-water'' model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s<18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s>=18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.

  18. Analysis of a Free Surface Film from a Controlled Liquid Impinging Jet over a Rotating Disk Including Conjugate Effects, with and without Evaporation

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.

    2005-01-01

    A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.

  19. Universal relations for differentially rotating relativistic stars at the threshold to collapse

    NASA Astrophysics Data System (ADS)

    Bozzola, Gabriele; Stergioulas, Nikolaos; Bauswein, Andreas

    2018-03-01

    A binary neutron star merger produces a rapidly and differentially rotating compact remnant whose lifespan heavily affects the electromagnetic and gravitational emissions. Its stability depends on both the equation of state (EOS) and the rotation law and it is usually investigated through numerical simulations. Nevertheless, by means of a sufficient criterion for secular instability, equilibrium sequences can be used as a computational inexpensive way to estimate the onset of dynamical instability, which, in general, is close to the secular one. This method works well for uniform rotation and relies on the location of turning points: stellar models that are stationary points in a sequence of equilibrium solutions with constant rest mass or angular momentum. Here, we investigate differentially rotating models (using a large number of EOSs and different rotation laws) and find that several universal relations between properly scaled gravitational mass, rest mass and angular momentum of the turning-point models that are valid for uniform rotation are insensitive to the degree of differential rotation, to high accuracy.

  20. On the stability and maximum mass of differentially rotating relativistic stars

    NASA Astrophysics Data System (ADS)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano

    2018-01-01

    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that `quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  1. Effect of planetary rotation on the differentiation of a terrestrial magma ocean in spherical geometry

    NASA Astrophysics Data System (ADS)

    Hansen, Ulrich; Maas, Christian

    2017-04-01

    About 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes and could for example influence the presence and distribution of chemical heterogeneities in the Earth's mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008]. Previous work in Cartesian geometry revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we developed a spherical shell model that allows to study crystal settling in-between pole and equator as well as the migration of crystals between these regions. Further we included centrifugal forces on the crystals, which significantly affect the lateral and radial distribution of the crystals. Depending on the strength of rotation the particles accumulate at mid-latitude or at the equator. At high rotation rates the dynamics of fluid and particles are dominated by jet-like motions in longitudinal direction that have different directions on northern and southern hemisphere. All in all the first numerical experiments in spherical geometry agree with Maas and Hansen [2015] that the crystal distribution crucially depends on latitude, rotational strength and crystal density. References E. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008. C. Maas and U. Hansen. Eff ects of earth's rotation on the early di erentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015. C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.

  2. Chromospheric models for Altair (A7 IV-V)

    NASA Technical Reports Server (NTRS)

    Ferrero, R. Freire; Gouttebroze, P.; Catalano, S.; Marilli, E.; Bruhweiler, F.; Kondo, Y.; Van Der Hucht, K.; Talavera, A.

    1995-01-01

    The star, Altair (A7 IV-V), is clearly shown to have Lyman-alpha emission of chromospheric origin, while no evidence is found for the Mg II emission reported in previous investigations. We present non-Local Thermodymanic Equilibrium (non-LTE) semiempirical models incorporating partial redistribution of the chromosphere of Altair that reproduce the observed Lyman-alpha emission and the Mg II resonance absorption at 2800 A. We unambiguously establihed that chromospheres exist at spectral types as early as A7 on the main sequence, and we also demonstrate that it very unlikely that the observed emission originates in a corotating expanding wind. This result represents a new challenge for chromospheric heating theories. It may indicate that both differential rotation and convection layers, at least near the equator, exist in this fast rotating (v sin i = 220 km/s) star.

  3. Control of three dimensional particle flux to divertor using rotating RMP in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Jia, M.; Sun, Y.; Liang, Y.; Wang, L.; Xu, J.; Gu, S.; Lyu, B.; Wang, H. H.; Yang, X.; Zhong, F.; Chu, N.; Feng, W.; He, K.; Liu, Y. Q.; Qian, J.; Shi, T.; Shen, B.

    2018-04-01

    Controlling the steady state particle and heat flux impinging on the plasma facing components, as one of the main concerns of future fusion reactors, is still necessary when the transient power loads induced by edge localized modes (ELMs) have been eliminated by resonant magnetic perturbations (RMPs) in high confinement tokamak experiments. This is especially true for long pulse operation. One promising solution is to use the rotating perturbed field. Recently rotating and differential phase scans of n  =  1 and 2 RMP fields have been operated for the first time in EAST discharges. The particle flux patterns on the divertor targets change synchronously with both rotating and phasing RMP fields as predicted by the modeled magnetic footprint patterns. The modeling with plasma response, which is calculated by MARS-F, is also carried out. The plasma response shows amplifying or screening effect to n  =  2 perturbations with different spectra. This changes the field line penetration depth rather than the general footprint shape. This has been verified by experimental observations on EAST. These experiments motivate further study of reducing both transient and steady state local power load and particle flux with the help of rotating RMPs in long pulse operation.

  4. The importance of planetary rotation period for ocean heat transport.

    PubMed

    Cullum, J; Stevens, D; Joshi, M

    2014-08-01

    The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.

  5. Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: effects of heating concentration, homogenizer rotating speed, and salt addition level.

    PubMed

    Cui, Zhumei; Chen, Yeming; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei

    2014-02-19

    The adsorption of heat-denatured soy proteins at the oil/water (O/W) interface during emulsification was studied. Protein samples were prepared by heating protein solutions at concentrations of 1-5% (w/v) and were then diluted to 0.3% (w/v). The results showed that soy proteins that had been heated at higher concentrations generated smaller droplet size of emulsion. Increase in homogenizer rotating speed resulted in higher protein adsorption percentages and lower surface loads at the O/W interface. Surface loads for both unheated and heated soy proteins were linearly correlated with the unadsorbed proteins' equilibrium concentration at various rotating speeds. With the rise in NaCl addition level, protein adsorption percentage and surface loads of emulsions increased, whereas lower droplet sizes were obtained at the ionic strength of 0.1 M. The aggregates and non-aggregates displayed different adsorption behaviors when rotating speed or NaCl concentration was varied.

  6. Influence of the shape factor on the flow and heat transfer of a water-based nanofluid in a rotating system

    NASA Astrophysics Data System (ADS)

    Khan, Umar; Adnan; Ahmed, Naveed; Mohyud-Din, Syed Tauseef

    2017-04-01

    The flow of a nanofluid between two parallel plates (horizontally placed) has been investigated. Different shapes of nanoparticles (suspended in a base fluid) have been considered and the effect of the shape factor has been analyzed. The lower plate is being stretched in opposite directions with forces of the same magnitude. The plates and nanofluid rotate together with angular velocity Ω. The dimensionless form of the flow model, in the form of a system of ordinary differential equations, is obtained by employing some viable similarity transformations. A well-knows analytical method i.e. Variation of Parameters Method (VPM), has been used to solve the problem. Besides, the same system of equations has also been solved numerically by using the forth order Runge-Kutta method, combined with shooting technique. The graphs highlight the influence of ingrained dimensionless physical parameters on the skin friction coefficient, velocity and temperature profiles, and local rate of heat transfer. It is observed that the velocity increases by varying suction/injection parameter and the temperature seems to drop for higher values of the Reynolds number. A decrement in skin friction is observed for increasing nanoparticles volume fraction. On the other hand, the local rate of heat transfer increases for increasing suction/injection parameter, Reynolds number and nanoparticles volume fraction.

  7. Differential rotation of plasma in the GOL-3 multiple-mirror trap during injection of a relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, I. A., E-mail: I.A.Ivanov@inp.nsk.su; Burdakov, A. V.; Burmasov, V. S.

    2017-02-15

    Results of spectral and magnetic diagnostics of plasma differential rotation in the GOL-3 multiplemirror trap are presented. It is shown that the maximum frequency of plasma rotation about the longitudinal axis reaches 0.5 MHz during the injection of a relativistic electron beam into the plasma. The data of two diagnostics agree if there is a region with a higher rotation frequency near the boundary of the electron beam. Plasma differential rotation can be an additional factor stabilizing interchange modes in the GOL-3 facility.

  8. Preparation of Geophysical Fluid Flow Experiments With The Rotating Spherical Gap Flow Model In Space

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The'GeoFlow' is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluid Mechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field simi- lar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment re- quires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth`s liquid core the experiment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heat- ing the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number.

  9. On the Maximum Mass of Differentially Rotating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Baumgarte, Thomas W.; Shapiro, Stuart L.; Shibata, Masaru

    2000-01-01

    We construct relativistic equilibrium models of differentially rotating neutron stars and show that they can support significantly more mass than their nonrotating or uniformly rotating counterparts. We dynamically evolve such ``hypermassive'' models in full general relativity and show that there do exist configurations that are dynamically stable against radial collapse and bar formation. Our results suggest that the remnant of binary neutron star coalescence may be temporarily stabilized by differential rotation, leading to delayed collapse and a delayed gravitational wave burst.

  10. Heat transfer flow of Cu-water and Al2O3-water micropolar nanofluids about a solid sphere in the presence of natural convection using Keller-box method

    NASA Astrophysics Data System (ADS)

    Swalmeh, Mohammed Z.; Alkasasbeh, Hamzeh T.; Hussanan, Abid; Mamat, Mustafa

    2018-06-01

    Natural convection boundary layer flow over a solid sphere in micropolar nanofluid with prescribed wall temperature is studied. Copper (Cu) and alumina (Al2O3) in water-based micropolar nanofluid has been considered. Tiwari and Das's nanofluid model with realistic empirical correlations are considered to analyze the nanoparticles effects on natural convective flow. The nonlinear partial differential equations of the boundary layer are first transformed into a non-dimensional form and then solved numerically using an implicit finite difference scheme known as Keller-box method. The effects of nanoparticles volume fraction, Prandtl number, micro-rotation parameter on temperature, velocity and angular velocity are plotted and discussed. Further, numerical results for the local Nusselt number and the local skin friction coefficient are obtained. It is found that Cu has a low heat transfer rate as compare to Al2O3 water-based micropolar nanofluid with increasing micro-rotation parameter. The present results of local Nusselt number and the local skin friction for viscous fluid are found to be in good agreement with the literature.

  11. Off-axis cooling of rotating devices using a crank-shaped heat pipe

    DOEpatents

    Jankowski, Todd A.; Prenger, F. Coyne; Waynert, Joseph A.

    2007-01-30

    The present invention is a crank-shaped heat pipe for cooling rotating machinery and a corresponding method of manufacture. The crank-shaped heat pipe comprises a sealed cylindrical tube with an enclosed inner wick structure. The crank-shaped heat pipe includes a condenser section, an adiabatic section, and an evaporator section. The crank-shape is defined by a first curve and a second curve existing in the evaporator section or the adiabatic section of the heat pipe. A working fluid within the heat pipe provides the heat transfer mechanism.

  12. Collisionality Scaling of Main-ion Toroidal and Poloidal Rotation in Low Torque DIII-D Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B A Grierson, et al

    In tokamak plasmas with low levels of toroidal rotation, the radial electric fi eld Er is a combination of pressure gradient and toroidal and poloidal rotation components, all having similar magnitudes. In order to assess the validity of neoclassical poloidal rotation theory for determining the poloidal rotation contribution to Er , Dα emission from neutral beam heated tokamak discharges in DIII-D [J.L. Luxon, Nucl. Fusion 42 , 614 (2002)] has been evaluated in a sequence of low torque (electron cyclotron resonance heating and balanced diagnostic neutral beam pulse) discharges to determine the local deuterium toroidal rotation velocity. By invoking themore » radial force balance relation the deuterium poloidal rotation can be inferred. It is found that the deuterium poloidal low exceeds the neoclassical value in plasmas with collisionality νi < 0: 1, being more ion diamagnetic, and with a stronger dependence on collisionality than neoclassical theory predicts. At low toroidal rotation, the poloidal rotation contribution to the radial electric fi eld and its shear is signi cant. The eff ect of anomalous levels of poloidal rotation on the radial electric fi eld and cross fi eld heat transport is investigated for ITER parameters.« less

  13. Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime

    NASA Astrophysics Data System (ADS)

    Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel

    2017-06-01

    In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.

  14. The 2D dynamics of radiative zones of low-mass stars

    NASA Astrophysics Data System (ADS)

    Hypolite, D.; Mathis, S.; Rieutord, M.

    2018-02-01

    Context. Helioseismology and asteroseismology allow us to probe the differential rotation deep within low-mass stars. In the solar convective envelope, the rotation varies with latitude with an equator rotating faster than the pole, which results in a shear applied on the radiative zone below. However, a polar acceleration of the convective envelope can be obtained through 3D numerical simulations in other low-mass stars and the dynamical interaction of the surface convective envelope with the radiative core needs to be investigated in the general case. Aim. In the context of secular evolution, we aim to describe the dynamics of the radiative core of low-mass stars to get a deeper understanding of the internal transport of angular momentum in such stars, which results in a solid rotation in the Sun from 0.7R⊙ to 0.2R⊙ and a weak radial core-envelope differential rotation in solar-type stars. This study requires at least a 2D description to capture the latitudinal variations of the differential rotation. Methods: We build 2D numerical models of a radiative core on the top of which we impose a latitudinal shear so as to reproduce a conical or cylindrical differential rotation in a convective envelope. We perform a systematic study over the Rossby number ℛo = ΔΩ/2Ω0 measuring the latitudinal differential rotation at the radiative-convective interface. We provide a 2D description of the differential rotation and the associated meridional circulation in the incompressible and stably stratified cases using the Boussinesq approximation. Results: The imposed shear generates a geostrophic flow implying a cylindrical differential rotation in the case of an isotropic viscosity. When compared to the baroclinic flow that arises from the stable stratification, we find that the geostrophic flow is dominant when the Rossby number is high enough (ℛo ≥ 1) with a cylindrical rotation profile. For low Rossby numbers (ℛo < 1), the baroclinic solution dominates with a quasi-shellular rotation profile. Using scaling laws from 3D simulations, we show that slow rotators (Ω0 < 30Ω⊙) are expected to have a cylindrical rotation profile. Fast rotators (Ω0 > 30Ω⊙) may have a shellular profile at the beginning of the main sequence in stellar radiative zones. Conclusions: This study enables us to predict different types of differential rotation and emphasizes the need for a new generation of 2D rotating stellar models developed in synergy with 3D numerical simulations. The shear induced by a surface convective zone has a strong impact on the dynamics of the underlying radiative zone in low-mass stars. However, it cannot produce a flat internal rotation profile in a solar configuration calling for additional processes for the transport of angular momentum in both radial and latitudinal directions.

  15. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    NASA Technical Reports Server (NTRS)

    Basu, S.; Cetegen, B. M.

    2005-01-01

    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

  16. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair.

    PubMed

    Tao, Xu; Liu, Junpeng; Chen, Lei; Zhou, You; Tang, Kanglai

    2015-01-01

    The rate of healing failure after surgical repair of chronic rotator cuff tears is considerably high. The aim of this study was to investigate the function of the zinc finger transcription factor early growth response 1 (EGR1) in the differentiation of tendon stem cells (TSCs) and in tendon formation, healing, and tendon tear repair using an animal model of rotator cuff repair. Tenocyte, adipocyte, osteocyte, and chondrocyte differentiation as well as the expression of related genes were determined in EGR1-overexpressing TSCs (EGR1-TSCs) using tissue-specific staining, immunofluorescence staining, quantitative PCR, and western blotting. A rabbit rotator cuff repair model was established, and TSCs and EGR1-TSCs in a fibrin glue carrier were applied onto repair sites. The rabbits were sacrificed 8 weeks after repair operation, and tissues were histologically evaluated and tenocyte-related gene expression was determined. EGR1 induced tenogenic differentiation of TSCs and inhibited non-tenocyte differentiation of TSCs. Furthermore, EGR1 promoted tendon repair in a rabbit model of rotator cuff injury. The BMP12/Smad1/5/8 signaling pathway was involved in EGR1-induced tenogenic differentiation and rotator cuff tendon repair. EGR1 plays a key role in tendon formation, healing, and repair through BMP12/Smad1/5/8 pathway. EGR1-TSCs is a promising treatment for rotator cuff tendon repair surgeries. © 2015 S. Karger AG, Basel.

  17. Tilted geostrophic convection in icy world oceans caused by the horizontal component of the planetary rotation vector

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2012-12-01

    The Coriolis force provides dominant control over the motion of atmospheres and oceans, both on Earth and on many other worlds. At any point on a planet's surface, the planetary rotation vector has both a vertical component and a horizontal (north-south) component. We typically ignore the horizontal component, which is justified if vertical motions are hydrostatic and the fluid is relatively shallow. Neither of these conditions is true for hydrothermal convection within the thick ocean layers of Europa and other icy worlds. Using the MITGCM ocean model, we explore the behavior of buoyant hydrothermal plumes in a deep unstratified ocean, including both components of the planetary rotation vector. We find that warm water does not rise vertically: instead, it spirals along the axis of planetary rotation. Eddies form which are tilted with respect to the local vertical, but parallel to the rotation axis: turbulent exchange of heat between these canted eddies carries the warm water toward the surface. This is not an entirely new idea: however, the implications for icy worlds have not been previously discussed. We observe that when these tilted plumes heat the ice layer above the ocean, the heating "footprint" of these tilted plumes will be more circular near the pole, more ellipsoidal in the tropics. If surface features of the ice crust were created by plume heating, their shapes ought to show consistent latitude trends. Also, we observe that if warm fluid were totally constrained to move along the planetary rotation axis, geothermal heat generated in the icy world's interior could never reach the ice crust near the equator. (For Europa, the "forbidden zone" could extend as far as +/- 20-25° latitude.) In practice, we find that turbulent eddies do allow heat to move perpendicular to the rotation vector, so the "forbidden zone" is not a tight constraint; still, it may affect the overall heating pattern of icy world crusts. Snapshot of ascent of buoyant hydrothermal plume in Europa's ocean (Seafloor heat source = 4 GW; ocean depth = 100 km; rotation period = 3.55 days; latitude = 30° N). Left: elevation section through plume. Right: 3-d isosurface of constant temperature (1 microkelvin above ambient). Note alignment of geostrophic eddies along angular rotation axis.

  18. The Importance of Planetary Rotation Period for Ocean Heat Transport

    PubMed Central

    Stevens, D.; Joshi, M.

    2014-01-01

    Abstract The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier—the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability. Key Words: Exoplanet—Oceans—Rotation—Climate—Habitability. Astrobiology 14, 645–650. PMID:25041658

  19. Numerical weather prediction in low latitudes

    NASA Technical Reports Server (NTRS)

    Krishnamurti, T. N.

    1985-01-01

    Based on the results of a number of numerical prediction experiments, the differential heating between land and ocean is an important and critical factor for investigation of phenomenon such as the onset of monsoons over the Indian subcontinent. The pre-onset period during the month of May shows a rather persistent flow field in the monsoon region. At low levels the circulation exhibits anticyclonic excursions over the Arabian Sea, flowing essentially parallel to the west coast of India from the north. Over the Indian subcontinent the major feature is a shallow heat low over northern India. As the heat sources commence a rapid northwestward movement toward the southern edge of the Tibetan Plateau, an interesting configuration of the large-scale divergent circulation occurs. A favorable configuration for a rapid exchange of energy from the divergent to the rotational kinetic energy develops. Strong low level monsoonal circulations evolve, attendant with that the onset of monsoon rains occurs. In order to test this observational sequence, a series of short-range numerical prediction experiments were initiated to define the initial heat sources.

  20. Heat Transfer from a Horizontal Cylinder Rotating in Oil

    NASA Technical Reports Server (NTRS)

    Seban, R. A.; Johnson, H. A.

    1959-01-01

    Measurements of the heat transfer from a horizontal cylinder rotating about its axis have been made with oil as the surrounding fluid to provide an addition to the heat-transfer results for this system heretofore available only for air. The results embrace a Prandtl number range from about 130 to 660, with Reynolds numbers up to 3 x 10(exp 4), and show an increasing dependence of free-convection heat transfer on rotation as the Prandtl number is increased by reducing the oil temperature. Some correlation of this effect, which agrees with the prior results for air, has been achieved. At higher rotative speeds the flow becomes turbulent, the free- convection effect vanishes, and the results with oil can be correlated generally with those for air and with mass-transfer results for even higher Prandtl numbers. For this system, however, the analogy calculations which have successfully related the heat transfer to the friction for pipe flows at high Prandtl numbers fail.

  1. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-04-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  2. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-12-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  3. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-02-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.

  4. Ultra high vacuum heating and rotating specimen stage

    DOEpatents

    Coombs, III, Arthur W.

    1995-01-01

    A heating and rotating specimen stage provides for simultaneous specimen heating and rotating. The stage is ideally suited for operation in ultrahigh vacuum (1.times.10.sup.-9 torr or less), but is useful at atmosphere and in pressurized systems as well. A specimen is placed on a specimen holder that is attached to a heater that, in turn, is attached to a top housing. The top housing is rotated relative to a bottom housing and electrically connected thereto by electrically conductive brushes. This stage is made of materials that are compatible with UHV, able to withstand high temperatures, possess low outgassing rates, are gall and seize resistant, and are able to carry substantial electrical loading without overheating.

  5. Contractor’s Meeting in Turbulence and Rotating Flows

    DTIC Science & Technology

    1999-08-18

    pipes under turbine cooling conditions. The research results can be used for the design and fabrication of miniature heat pipes in turbine blades. The...heater used to supply the heat to the evaporator of the heat pipe was successfully fabricated . All experimental tests have been successfully completed...California, Los Angeles; D. Parekh, Georgia Tech Research Institute Rotating Miniature Heat Pipes for Turbine Blade Cooling Applications 37 Y. Cao

  6. Pattern Formation in Diffusion Flames Embedded in von Karman Swirling Flows

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha

    2006-01-01

    Pattern formation is observed in nature in many so-called excitable systems that can support wave propagation. It is well-known in the field of combustion that premixed flames can exhibit patterns through differential diffusion mechanism between heat and mass. However, in the case of diffusion flames where fuel and oxidizer are separated initially there have been only a few observations of pattern formation. It is generally perceived that since diffusion flames do not possess an inherent propagation speed they are static and do not form patterns. But in diffusion flames close to their extinction local quenching can occur and produce flame edges which can propagate along stoichiometric surfaces. Recently, we reported experimental observations of rotating spiral flame edges during near-limit combustion of a downward-facing polymethylmethacrylate disk spinning in quiescent air. These spiral flames, though short-lived, exhibited many similarities to patterns commonly found in quiescent excitable media including compound tip meandering motion. Flame disks that grow or shrink with time depending on the rotational speed and in-depth heat loss history of the fuel disk have also been reported. One of the limitations of studying flame patterns with solid fuels is that steady-state conditions cannot be achieved in air at normal atmospheric pressure for experimentally reasonable fuel thickness. As a means to reproduce the flame patterns observed earlier with solid fuels, but under steady-state conditions, we have designed and built a rotating, porous-disk burner through which gaseous fuels can be injected and burned as diffusion flames. The rotating porous disk generates a flow of air toward the disk by a viscous pumping action, generating what is called the von K rm n boundary layer which is of constant thickness over the entire burner disk. In this note we present a map of the various dynamic flame patterns observed during the combustion of methane in air as a function of fuel flow rate and the burner rotational speed.

  7. REVIEWS OF TOPICAL PROBLEMS: The differential rotation of stars

    NASA Astrophysics Data System (ADS)

    Kitchatinov, Leonid L.

    2005-05-01

    Astronomical observations of recent years have substantially extended our knowledge of the rotation of stars. Helioseismology has found out that the equator-to-pole decline in the angular velocity observed on the solar surface traces down to the deep interior of the Sun. New information has been gained regarding the dependence of the rotational nonuniformities on the angular velocity and mass of the star. These achievements have prompted the development of the theory of differential rotation, which is the focal point of this review. Nonuniform rotation results from the interaction of turbulent convection with rotation. The investigation into the turbulent mechanisms of angular-momentum transport has reached a level at which the obtained results can serve as the basis for developing quantitative models of stellar rotation. Such models contain virtually no free parameters but closely reproduce the helioseismological data on the internal rotation of the Sun. The theoretical predictions on the differential rotation of the stars agree with observations. A brief discussion is held here on the relation between the magnetic activity of stars and the nonuniformity of their rotation and on prospects for further development of the theory.

  8. Heat transfer in rotating serpentine passages with selected model orientation for smooth or skewed trip walls

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.

    1993-01-01

    Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles which are as large as +/- 50 to 60 degrees to the axis of rotation. Most of the previously-presented, multiple-passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. Results from serpentine passages with orientations 0 and 45 degrees to the axis of rotation which simulate the coolant passages for the mid chord and trailing edge regions of the rotating airfoil are compared. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 degree trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 degrees compared to the model at 0 degrees. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 degrees, compared to the results at 0 degrees. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant.

  9. Comparison of velocity and temperature time series data analysis in experiments on the thermally driven rotating annulus

    NASA Astrophysics Data System (ADS)

    von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai

    2010-05-01

    The model of the differentially heated, rotating cylindrical gap filled with a fluid is since more than four decades extensively used for laboratory experiments of baroclinic wave interactions, and a number of data acquisition techniques are applied e.g. to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. In our experiments presented here, we make use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera, which resolution allows for resolving fine scale structures, measures the surface temperature field. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). In addition, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us not only to compare the data analysis methods but also to reclassify the results yielded with the LDV data analysis. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. For example, we found a dominant and a weak mode in the 3-4 wave transition region. This finding confirms earlier ideas on wave dispersion in transition regions between regular waves. Increasing the annulus' rotation leads to a growth of the weak mode until this mode becomes the dominant one. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5

  10. Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.

    2016-08-01

    This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.

  11. ELM-free and inter-ELM divertor heat flux broadening induced by edge harmonics oscillation in NSTX

    DOE PAGES

    Gan, K. F.; Ahn, J. -W.; Gray, T. K.; ...

    2017-10-26

    A new n =1 dominated edge harmonic oscillation (EHO) has been found in NSTX. The new EHO, rotating toroidally in the counter-current direction and the opposite direction of the neutral beam, was observed during certain inter-ELM and ELM-free periods of H-mode operation. This EHO is associated with a significant broadening of the integral heat flux width (more » $${{\\lambda}_{\\operatorname{int}}}$$ ) by up to 150%, and a decrease in the divertor peak heat flux by >60%. An EHO induced filament was also observed by the gas puff imaging diagnostic. The toroidal rotating filaments could change the edge magnetic topology resulting in toroidal rotating strike point splitting and heat flux broadening. Finally, experimental result of the counter current rotation of strike points splitting is consistent with the counter-current EHO.« less

  12. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink.

    PubMed

    Wang, Kai; Schonbrun, Ethan; Steinvurzel, Paul; Crozier, Kenneth B

    2011-09-13

    Although optical tweezers based on far-fields have proven highly successful for manipulating objects larger than the wavelength of light, they face difficulties at the nanoscale because of the diffraction-limited focused spot size. This has motivated interest in trapping particles with plasmonic nanostructures, as they enable intense fields confined to sub-wavelength dimensions. A fundamental issue with plasmonics, however, is Ohmic loss, which results in the water, in which the trapping is performed, being heated and to thermal convection. Here we demonstrate the trapping and rotation of nanoparticles using a template-stripped plasmonic nanopillar incorporating a heat sink. Our simulations predict an ~100-fold reduction in heating compared with previous designs. We further demonstrate the stable trapping of polystyrene particles, as small as 110 nm in diameter, which can be rotated around the nanopillar actively, by manual rotation of the incident linear polarization, or passively, using circularly polarized illumination.

  13. Effects of mass variation on structures of differentially rotating polytropic stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan

    2018-07-01

    A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.

  14. Numerical investigation of laminar forced convection in Newtonian and non-Newtonian flows in eccentric annuli

    NASA Astrophysics Data System (ADS)

    Fang, Pingping

    1998-12-01

    An extended numerical investigation of fully developed, forced convective laminar flows with heat transfer in eccentric annuli has been carried out. Both Newtonian and non-Newtonian (power-law or Ostwald-de Waele) fluids are studied, representing typical applications in petrochemical, bio-chemical, personal care products, polymer/plastic extrusion and food industries. For the heat transfer problem, with an insulated outer surface, two types of thermal boundary conditions have been considered: Constant wall temperature (T), and uniform axial heat flux with constant peripheral temperature (H1) on the inner surface of the annulus. The governing differential equations for momentum and energy conservation are solved by finite-difference methods. Velocity and temperature distributions in the flow cross section, the wall shear-stress distribution, and isothermal f Re, Nu i,T and Nu i,H1 values for different eccentric annuli (0/leɛ/*/le0.6,/ 0.2/le r/sp/*/le0.8) are presented. In Newtonian flows, the eccentricity is found to have a very strong influence on the flow and temperature fields. In an annulus with relatively large inner cylinder eccentricity, the flow tends to stagnate in the narrow section and has higher peak velocities in the wide section of the annulus. There is considerable flow maldistribution in the azimuthal direction, which in turn produces greater nonuniformity in the temperature field and a consequent degradation in the average heat transfer. Also, the H1 wall condition sustains higher heat transfer coefficients relative to the T boundary condition on the inner surface. For viscous, power-law type non-Newtonian flows, both shear thinning (n<1) and shear thickening (n>1) fluids are considered. Here, the non-linear shear behavior of the fluid is found to further aggravate the flow and temperature maldistribution, and once again the eccentricity is seen to exhibit a very strong influence on the friction and heat transfer behavior. Finally, the hydrodynamic characteristics of fully developed axial laminar flow of Newtonian fluids in eccentric annuli with a rotating inner cylinder are investigated. These are of significant importance to the design and operation of oil and gas drilling wells. Using finite-difference method to solve the governing flow equations in bipolar coordinates, computational results for a wide range of annulus geometry (0/le r/sp/*/le1,/ 0/le/varepsilon/sp/*/le0.8), and rotational Reynolds number (0/le Rer/le150) are presented, where the rotational speeds are restricted to the sub-critical Taylor number regime. The results delineate the effects of annuli r/sp/* and ɛsp/*, and inner cylinder rotation speed on the flow structure and frictional losses.

  15. Ultra high vacuum heating and rotating specimen stage

    DOEpatents

    Coombs, A.W. III

    1995-05-02

    A heating and rotating specimen stage provides for simultaneous specimen heating and rotating. The stage is ideally suited for operation in ultrahigh vacuum (1{times}10{sup {minus}9} torr or less), but is useful at atmosphere and in pressurized systems as well. A specimen is placed on a specimen holder that is attached to a heater that, in turn, is attached to a top housing. The top housing is rotated relative to a bottom housing and electrically connected thereto by electrically conductive brushes. This stage is made of materials that are compatible with UHV, able to withstand high temperatures, possess low outgassing rates, are gall and seize resistant, and are able to carry substantial electrical loading without overheating. 5 figs.

  16. Rotational dynamics and heating of trapped nanovaterite particles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Richards, Joseph M.; Mazilu, Michael; Spalding, Gabriel C.; Skelton Spesyvtseva, Susan E.; Craig, Derek; Dholakia, Kishan

    2016-09-01

    Rotational control over optically trapped particles has gained significant prominence in recent years. The marriage between light fields possessing optical angular momentum and the material properties of microparticles has been useful to controllably spin particles in liquid, air and vacuum. The rotational degree of freedom adds new functionality to optical traps: in addition to allowing fundamental tests of optical angular momentum, the transfer of spin angular momentum in particular can allow measurements of local viscosity and exert local stresses on cellular systems. We demonstrate optical trapping and controlled rotation of nanovaterite crystals. These particles represent the smallest birefringent crystals ever trapped and set into rotation. Rotation rates of up to 5kHz in water are recorded, representing the fastest rotation to date for dielectric particles in liquid. Laser-induced heating results in the superlinear behaviour of the rotation rate as a function of trap power. We study both the rotational and translational modes of trapped nanovaterite crystals. The particle temperatures derived from those two optomechanical modes are in good agreement, which is supported by a numerical model revealing that the observed heating is dominated by absorption of light by the particles rather than by the surrounding liquid. A comparison is performed with trapped silica particles of similar size. The use of nanovaterite particles open up new studies for levitated optomechanics in vacuum as well as microrheological properties of cells or biological media. Their size and low heating offers prospects of viscosity measurements in ultra-small volumes and potentially simpler uptake by cellular media.

  17. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferredmore » across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.« less

  18. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    NASA Astrophysics Data System (ADS)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model, consisting of an independently-rotating radiative interior and convective envelope. Using such a prior we find that the rotation rates of the radiative interior and convective envelope likely do not differ by more than 50%. This further supports the idea that Sun-like stars likely show a rotation pattern similar to that of the Sun. Results from the analysis presented herein provide physical limits on the internal differential rotation of Sun-like stars, and show that this method may be easily applied to a wider variety of stars.

  19. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  20. Local heat transfer in turbine disk-cavities. I - Rotor and stator cooling with hub injection of coolant

    NASA Astrophysics Data System (ADS)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    Detailed radial heat-transfer coefficient distributions applicable to the cooling of disk-cavity regions of gas turbines are obtained experimentally from local heat-transfer data on both the rotating and stationary surfaces of a parallel-geometry disk-cavity system. Attention is focused on the hub injection of a coolant over a wide range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. It is shown that rotor heat transfer exhibits regions of impingement and rotational domination with a transition region between, while stator heat transfer displays flow reattachment and convection regions with an inner recirculation zone.

  1. Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egolf, Peter W.; Pawlowski, Anne-Gabrielle; Tsague, Paulin

    2016-08-14

    A magnetic hyperthermia cancer treatment strategy that does not operate by means of conventional heating mechanisms is presented. The proposed approach consists of injecting a gel with homogeneously distributed magnetic nanowires into a tumor. Upon the application of a low-frequency rotating or circularly polarized magnetic field, nanowires spin around their center of viscous drag due to torque generated by shape anisotropy. As a result of external rotational forcing and fluid friction in the nanoparticle's boundary layer, heating occurs. The nanowire dynamics is theoretically and experimentally investigated, and different feasibility proofs of the principle by physical modeling, which adhere to medicalmore » guidelines, are presented. The magnetic nanorotors exhibit rotations and oscillations with quite a steady center of gravity, which proves an immobile behavior and guarantees a time-independent homogeneity of the spatial particle distribution in the tumor. Furthermore, a fluid dynamic and thermodynamic heating model is briefly introduced. This model is a generalization of Penne's model that for this method reveals theoretic heating rates that are sufficiently high, and fits well into medical limits defined by present standards.« less

  2. The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Riley, Pete; Linker, Jon A.; Mikic, Zoran

    2004-01-01

    Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang et al., which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang et al.. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.

  3. Time-varying Entry Heating Profile Replication with a Rotating Arc Jet Test Article

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Venkatapathy, Ethiraj; Noyes, Eric A.; Mach, Jeffrey J.; Empey, Daniel M.; White, Todd R.

    2014-01-01

    A new approach for arc jet testing of thermal protection materials at conditions approximating the time-varying conditions of atmospheric entry was developed and demonstrated. The approach relies upon the spatial variation of heat flux and pressure over a cylindrical test model. By slowly rotating a cylindrical arc jet test model during exposure to an arc jet stream, each point on the test model will experience constantly changing applied heat flux. The predicted temporal profile of heat flux at a point on a vehicle can be replicated by rotating the cylinder at a prescribed speed and direction. An electromechanical test model mechanism was designed, built, and operated during an arc jet test to demonstrate the technique.

  4. Some current research in rotating-disc systems.

    PubMed

    Owen, J M; Wilson, M

    2001-05-01

    Rotating-disc systems are used to model the flow and heat transfer that occurs inside the cooling-air systems of gas-turbine engines. In this paper, recent computational and experimental research in three systems is discussed: rotor-stator systems, rotating cavities with superposed flow and buoyancy-induced flow in a rotating cavity. Discussion of the first two systems concentrates respectively on pre-swirl systems and rotating cavities with a peripheral inflow and outflow of cooling air. Buoyancy-induced flow in a rotating cavity is one of the most difficult problems facing computationalists and experimentalists, and there are similarities between the circulation in the Earth's atmosphere and the flow inside gas-turbine rotors. For this case, results are presented for heat transfer in sealed annuli and in rotating cavities with an axial throughflow of cooling air.

  5. Transition to chaos of natural convection between two infinite differentially heated vertical plates

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S.

    2013-08-01

    Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Rac=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.

  6. Dissipative slip flow along heat and mass transfer over a vertically rotating cone by way of chemical reaction with Dufour and Soret effects

    NASA Astrophysics Data System (ADS)

    Bilal, S.; Rehman, Khalil Ur; Jamil, Hamayun; Malik, M. Y.; Salahuddin, T.

    2016-12-01

    An attempt has been constructed in the communication to envision heat and mass transfer characteristics of viscous fluid over a vertically rotating cone. Thermal transport in the fluid flow is anticipated in the presence of viscous dissipation. Whereas, concentration of fluid particles is contemplated by incorporating the diffusion-thermo (Dufour) and thermo-diffusion (Soret) effects. The governing equations for concerning problem is first modelled and then nondimensionalized by implementing compatible transformations. The utilization of these transformations yields ordinary differential system which is computed analytically through homotopic procedure. Impact of velocity, temperature and concentration profiles are presented through fascinating graphics. The influence of various pertinent parameters on skin friction coefficient, Nusselt number and Sherwood number are interpreted through graphical and tabular display. After comprehensive examination of analysis, it is concluded that temperature of fluid deescalates for growing values of Soret parameter whereas it shows inciting attitude towards Dufour parameter and similar agreement is observed for the behavior of concentration profile with respect to these parameters. Furthermore, the affirmation of present work is established by developing comparison with previously published literature. An excellent agreement is found which shows the credibility and assurance of present analysis.

  7. On the effects of planetary rotation on the differentiation of a terrestrial magma ocean in spherical geometry

    NASA Astrophysics Data System (ADS)

    Maas, C.; Hansen, U.

    2016-12-01

    During a later stage of the accretion about 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes of the mantle and could for example influence the presence and distribution of chemical heterogeneities in the Earth mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008].Our previous work in Cartesian geometry studied crystal settling in the polar and equatorial regions separately from each other and revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we recently developed a spherical shell model that allows for new insights into the crystal settling in-between the pole and the equator as well as the migration of crystals between these regions. Further the spherical model allows us to include the centrifugal force on the crystals, which significantly affects the lateral and radial distribution of crystals. All in all the first numerical experiments in spherical geometry agree with the results of Maas and Hansen [2015] and show that the crystal distribution crucially depends on latitude, rotational strength and crystal density. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008.C. Maas and U. Hansen. Effects of earth's rotation on the early dierentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.

  8. On mechanisms separating stars into normal and chemically peculiar

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2017-10-01

    The paper argues in favor of the assumption that magnetic and non-magnetic protostars, from which CP stars were formed, are the objects that had rotation velocities of the parent cloud V smaller than a critical value V c . At V greater than the critical value, differential rotation emerges in the collapsing protostellar cloud, which twists magnetic lines of force into an' invisible' toroidal shape and disturbs the stability of the atmosphere. In magnetic protostars, the loss of angular momentum is due to magnetic braking, while in metallic protostars, the loss of rotation momentum occurs due to tidal interactions with a close component. HgMn stars are most likely not affected by some braking mechanism, but originated from the slowest protostellar rotators. The boundary of V c where the differential rotation occurs is not sharp. The slower the protostar rotates, the greater the probability of suppressing the differential rotation and the more likely the possibility of CP star birth.

  9. A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana

    2017-12-01

    The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.

  10. Heat Control via Torque Control in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  11. Numerical simulations of Z-Pinch experiments to create supersonic differentially-rotating plasma flows

    NASA Astrophysics Data System (ADS)

    Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.

    2012-02-01

    In the context of high energy density laboratory astrophysics, we aim to produce and study a rotating plasma relevant to accretion discs physics. We devised an experimental setup based on a modified cylindrical wire array and we studied it numerically with the three-dimensional, resistive magneto-hydrodynamic code GORGON. The simulations show that a rotating plasma cylinder is formed, with typical rotation velocity ~35 km/s and Mach number ~5. In addition, the plasma ring is differentially rotating and strongly radiatively cooled. The introduction of external magnetic fields is discussed.

  12. Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Llama, J.; Ceillier, T.; Chagas, M. L. das; Davenport, J. R. A.; García, R. A.; Hay, K. L.; Lanza, A. F.; McQuillan, A.; Mazeh, T.; de Medeiros, J. R.; Nielsen, M. B.; Reinhold, T.

    2015-07-01

    We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 d and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar-like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-d segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, autocorrelation function and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall' period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10 per cent of the true value in 70 per cent of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disc light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.

  13. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.

  14. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2017-01-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.

  15. Enhanced Stellar Activity for Slow Antisolar Differential Rotation?

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Giampapa, Mark S.

    2018-03-01

    High-precision photometry of solar-like members of the open cluster M67 with Kepler/K2 data has recently revealed enhanced activity for stars with a large Rossby number, which is the ratio of rotation period to the convective turnover time. Contrary to the well established behavior for shorter rotation periods and smaller Rossby numbers, the chromospheric activity of the more slowly rotating stars of M67 was found to increase with increasing Rossby number. Such behavior has never been reported before, although it was theoretically predicted to emerge as a consequence of antisolar differential rotation (DR) for stars with Rossby numbers larger than that of the Sun, because in those models the absolute value of the DR was found to exceed that for solar-like DR. Using gyrochronological relations and an approximate age of 4 Gyr for the members of M67, we compare with computed rotation rates using just the B ‑ V color. The resulting rotation–activity relation is found to be compatible with that obtained by employing the measured rotation rate. This provides additional support for the unconventional enhancement of activity at comparatively low rotation rates and the possible presence of antisolar differential rotation.

  16. Differential rotation in solar-like stars from global simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, G.; Kosovichev, A. G.; Smolarkiewicz, P. K.

    2013-12-20

    To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridionalmore » cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such 'banana-cell' pattern can be hidden beneath the supergranulation layer.« less

  17. Critical study of the distribution of rotational velocities of Be stars. II: Differential rotation and some hidden effects interfering with the interpretation of the V sin I parameter

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Frémat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2017-06-01

    Aims: We assume that stars may undergo surface differential rotation to study its impact on the interpretation of Vsini and on the observed distribution Φ(u) of ratios of true rotational velocities u = V/Vc (Vc is the equatorial critical velocity). We discuss some phenomena affecting the formation of spectral lines and their broadening, which can obliterate the information carried by Vsini concerning the actual stellar rotation. Methods: We studied the line broadening produced by several differential rotational laws, but adopted Maunder's expression Ω(θ) = Ω0(1 + αcos2θ) as an attempt to account for all of these laws with the lowest possible number of free parameters. We studied the effect of the differential rotation parameter α on the measured Vsini parameter and on the distribution Φ(u) of ratios u = V/Vc. Results: We conclude that the inferred Vsini is smaller than implied by the actual equatorial linear rotation velocity Veq if the stars rotate with α < 0, but is larger if the stars have α > 0. For a given | α | the deviations of Vsini are larger when α < 0. If the studied Be stars have on average α < 0, the number of rotators with Veq ≃ 0.9Vc is larger than expected from the observed distribution Φ(u); if these stars have on average α > 0, this number is lower than expected. We discuss seven phenomena that contribute either to narrow or broaden spectral lines, which blur the information on the rotation carried by Vsini and, in particular, to decide whether the Be phenomenon mostly rely on the critical rotation. We show that two-dimensional radiation transfer calculations are needed in rapid rotators to diagnose the stellar rotation more reliably.

  18. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  19. Spectrally resolved interferometric observations of α Cephei and physical modeling of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Delaa, O.; Zorec, J.; Domiciano de Souza, A.; Mourard, D.; Perraut, K.; Stee, Ph.; Frémat, Y.; Monnier, J.; Kraus, S.; Che, X.; Bério, Ph.; Bonneau, D.; Clausse, J. M.; Challouf, M.; Ligi, R.; Meilland, A.; Nardetto, N.; Spang, A.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2013-07-01

    Context. When a given observational quantity depends on several stellar physical parameters, it is generally very difficult to obtain observational constraints for each of them individually. Therefore, we studied under which conditions constraints for some individual parameters can be achieved for fast rotators, knowing that their geometry is modified by the rapid rotation which causes a non-uniform surface brightness distribution. Aims: We aim to study the sensitivity of interferometric observables on the position angle of the rotation axis (PA) of a rapidly rotating star, and whether other physical parameters can influence the determination of PA, and also the influence of the surface differential rotation on the determination of the β exponent in the gravity darkening law that enters the interpretation of interferometric observations, using α Cep as a test star. Methods: We used differential phases obtained from observations carried out in the Hα absorption line of α Cep with the VEGA/CHARA interferometer at high spectral resolution, R = 30 000 to study the kinematics in the atmosphere of the star. Results: We studied the influence of the gravity darkening effect (GDE) on the determination of the PA of the rotation axis of α Cep and determined its value, PA = -157-10°+17°. We conclude that the GDE has a weak influence on the dispersed phases. We showed that the surface differential rotation can have a rather strong influence on the determination of the gravity darkening exponent. A new method of determining the inclination angle of the stellar rotational axis is suggested. We conclude that differential phases obtained with spectro-interferometry carried out on the Hα line can in principle lead to an estimate of the stellar inclination angle i. However, to determine both i and the differential rotation parameter α, lines free from the Stark effect and that have collision-dominated source functions are to be preferred.

  20. Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis

    NASA Astrophysics Data System (ADS)

    Kővári, Zs.; Strassmeier, K. G.; Carroll, T. A.; Oláh, K.; Kriskovics, L.; Kővári, E.; Kovács, O.; Vida, K.; Granzer, T.; Weber, M.

    2017-10-01

    Context. Stars with about 1-2 solar masses at the red giant branch (RGB) represent an intriguing period of stellar evolution, I.e. when the convective envelope interacts with the fast-rotating core. During these mixing episodes freshly synthesized lithium can come up to the stellar surface along with high angular momentum material. This high angular momentum may alter the surface rotation pattern. Aims: The single rapidly rotating K-giant V1192 Ori is revisited to determine its surface differential rotation, lithium abundance, and basic stellar properties such as a precise rotation period. The aim is to independently verify the antisolar differential rotation of the star and possibly find a connection to the surface lithium abundance. Methods: We applied time-series Doppler imaging to a new multi-epoch data set. Altogether we reconstructed 11 Doppler images from spectroscopic data collected with the STELLA robotic telescope between 2007-2016. We used our inversion code iMap to reconstruct all stellar surface maps. We extracted the differential rotation from these images by tracing systematic spot migration as a function of stellar latitude from consecutive image cross-correlations. Results: The position of V1192 Ori in the Hertzsprung-Russell diagram suggests that the star is in the helium core-burning phase just leaving the RGB bump. We measure A(Li)NLTE = 1.27, I.e. a value close to the anticipated transition value of 1.5 from Li-normal to Li-rich giants. Doppler images reveal extended dark areas arranged quasi-evenly along an equatorial belt. No cool polar spot is found during the investigated epoch. Spot displacements clearly suggest antisolar surface differential rotation with α = - 0.11 ± 0.02 shear coefficient. Conclusions: The surface Li enrichment and the peculiar surface rotation pattern may indicate a common origin. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  1. Closed bore XMR (CBXMR) systems for aortic valve replacement: Investigation of rotating-anode x-ray tube heat loadability

    PubMed Central

    Bracken, John A.; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2008-01-01

    In order to improve the safety and efficacy of percutaneous aortic valve replacement procedures, a closed bore hybrid x-ray∕MRI (CBXMR) system is proposed in which an x-ray C-arm will be positioned with its isocenter ≈1 m from the entrance of a clinical MRI scanner. This system will harness the complementary strengths of both modalities to improve clinical outcome. A key component of the CBXMR system will be a rotating anode x-ray tube to produce high-quality x-ray images. There are challenges in positioning an x-ray tube in the magnetic fringe field of the MRI magnet. Here, the effects of an external magnetic field on x-ray tube induction motors of radiography x-ray tubes and the corresponding reduction of x-ray tube heat loadability are investigated. Anode rotation frequency fanode was unaffected when the external magnetic field Bb was parallel to the axis of rotation of the anode but decreased when Bb was perpendicular to the axis of rotation. The experimental fanode values agreed with predicted values to within ±3% over a Bb range of 0–30 mT. The MRI fringe field at the proposed location of the x-ray tube mounted on the C-arm (≈4 mT) reduced fanode by only 1%, so x-ray tube heat loadability will not be compromised when using CBXMR systems for percutaneous aortic valve replacement procedures. Eddy current heating power in the rotor due to an MRI fringe field was found to be two orders of magnitude weaker than the heating power produced on the anode due to a fluoroscopic exposure, so eddy current heating had no effect on x-ray tube heat loadability. PMID:18841857

  2. Radiation-driven rotational motion of nanoparticles

    DOE PAGES

    Liang, Mengning; Harder, Ross; Robinson, Ian

    2018-04-25

    Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less

  3. Radiation-driven rotational motion of nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Mengning; Harder, Ross; Robinson, Ian

    Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less

  4. A thermodynamic and mechanical model for formation of the Solar System via 3-dimensional collapse of the dusty pre-solar nebula

    NASA Astrophysics Data System (ADS)

    Hofmeister, Anne M.; Criss, Robert E.

    2012-03-01

    The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive -ΔUg≅Δ.R.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing 3-d pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain to the rarified PSN until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E.≅R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.≅R.E.f(1-If/Ii), where I is the moment of inertia. Orbital data for the inner planets follow 0.04×R.E.f≅-Ug which confirms conservation of angular momentum. Significant loss of spin, attributed to viscous dissipation during differential rotation, masks the initial spin of the un-ignited protoSun predicted by R.E.=-Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d Solar System, and infer the evolution of dust and gas densities. Duration of events is obtained from the time-dependent virial theorem. As the PSN slowly contracted, collapse of pre-solar dust in spheroidal shells simultaneously formed rocky protoplanets embedded in a dusty debris disk, creating their nearly circular co-planar orbits and upright axial spins with the same sense as orbital rotation, which were then enhanced via subsequent local contraction of nearby nebulae. Because rocky kernels at great distance out-competed the pull of the co-accreting star, gas giants formed in the outer reaches within ∼3 Ma as PSN contraction hastened. This pattern repeated to form satellite systems. The PSN imploded, once constricted to within Jupiter's orbit. Afterwards, disk debris slowly spiraled toward the protoSun, cratering and heating intercepted surfaces. Our conservative 3-d model, which allows for different behaviors of gas and dust, explains key Solar System characteristics (spin, orbits, gas giants and their compositions) and second-order features (dwarf planets, comet mineralogy, satellite system sizes).

  5. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  6. Heat transfer in a rotating cavity with a stationary stepped casing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzaee, I.; Quinn, P.; Wilson, M.

    1999-04-01

    In the system considered here, corotating turbine disks are cooled by air supplied at the periphery of the system. The system comprises two corotating disks, connected by a rotating cylindrical hub and shrouded by a stepped, stationary cylindrical outer casing. Cooling air enters the system through holes in the periphery of one disk, and leaves through the clearances between the outer casing and the disks. The paper describes a combined computational and experimental study of the heat transfer in the above-described system. In the experiments, one rotating disk is heated, the hub and outer casing are insulated, and the othermore » disk is quasi-adiabatic. Thermocouples and fluxmeters attached to the heated disc enable the Nusselt numbers, Nu, to be determined for a wide range of rotational speeds and coolant flow rates. Computations are carried out using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} turbulence model. The flow structure is shown to be complex and depends strongly on the so-called turbulent flow parameter, {lambda}{sub T}, which incorporates both rotational speed and flow rate. For a given value of {lambda}{sub T}, the computations show that Nu increases as Re{sub {phi}}, the rotational Reynolds number, increases. Despite the complexity of the flow, the agreement between the computed and measured Nusselt numbers is reasonably good.« less

  7. Heat pump apparatus

    DOEpatents

    Nelson, Paul A.; Horowitz, Jeffrey S.

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  8. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    NASA Astrophysics Data System (ADS)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  9. Microfog lubricant application system for advanced turbine engine components, phase 2. Tasks 3, 4 and 5: Wettability and heat transfer of microfog jets impinging on a heated rotating disc, and evaluation of reclassifying nozzles and a vortex mist generator

    NASA Technical Reports Server (NTRS)

    Shim, J.; Leonardi, S. J.

    1972-01-01

    The wettabilities and heat transfer rates of microfog jets (oil-mist nozzle flows) impinging on a heated rotating disc were determined under an inert atmosphere of nitrogen at temperatures ranging from 600 to 800 F. The results are discussed in relation to the various factors involved in the microfog lubricant application systems. Two novel reclassifying nozzles and a vortex mist generator were also studied.

  10. Windage Heating in a Shrouded Rotor-Stator System.

    PubMed

    Tao, Zhi; Zhang, Da; Luo, Xiang; Xu, Guoqiang; Han, Jianqiao

    2014-06-01

    This paper has experimentally and numerically studied the windage heating in a shrouded rotor-stator disk system with superimposed flow. Temperature rise in the radius direction on the rotating disk is linked to the viscous heating process when cooling air flows through the rotating component. A test rig has been developed to investigate the effect of flow parameters and the gap ratio on the windage heating, respectively. Experimental results were obtained from a 0.45 m diameter disk rotating at up to 12,000 rpm with gap ratio varying from 0.02 to 0.18 and a stator of the same diameter. Infrared temperature measurement technology has been proposed to measure the temperature rise on the rotor surface directly. The PIV technique was adapted to allow for tangential velocity measurements. The tangential velocity data along the radial direction in the cavity was compared with the results obtained by CFD simulation. The comparison between the free disk temperature rise data and an associated theoretical analysis for the windage heating indicates that the adiabatic disk temperature can be measured by infrared method accurately. For the small value of turbulence parameter, the gap ratio has limited influence on the temperature rise distribution along the radius. As turbulence parameter increases, the temperature rise difference is independent of the gap ratio, leaving that as a function of rotational Reynolds number and throughflow Reynolds number only. The PIV results show that the swirl ratio of the rotating core between the rotor and the stator has a key influence on the windage heating.

  11. Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Kopparapu, Ravi Kumar

    2015-01-01

    Earth-like planets within the liquid water habitable zone of M-type stars may evolve into synchronous rotators. On these planets, the substellar hemisphere experiences perpetual daylight while the opposing antistellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the antistellar side. Here, we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the antistellar hemisphere. We also explore the persistence of atmospheric asymmetries between the Northern and Southern hemispheres, and we find that the direction of the meridional circulation (for rapidly rotating planets) or the direction of zonal wind (for slowly rotating planets) reverses on either side of the substellar point. We show that the zonal circulation approaches a theoretical state similar to a Walker circulation only for slowly rotating planets, while rapidly rotating planets show a zonal circulation with the opposite direction. We find that a cross-polar circulation is present in all cases and provides an additional mechanism of mass and energy transport from the substellar to antistellar point. Characterization of the atmospheres of synchronously rotating planets should include consideration of hemispheric differences in meridional circulation and examination of transport due to cross-polar flow.

  12. Heat Capacity of Spider Silk-like Block Copolymers

    PubMed Central

    Huang, Wenwen; Krishnaji, Sreevidhya; Hu, Xiao; Kaplan, David; Cebe, Peggy

    2012-01-01

    We synthesized and characterized a new family of di-block copolymers based on the amino acid sequences of Nephila clavipes major ampulate dragline spider silk, having the form HABn and HBAn (n=1–3), comprising an alanine-rich hydrophobic block, A, a glycine-rich hydrophilic block, B, and a histidine tag, H. The reversing heat capacities, Cp(T), for temperatures below and above the glass transition, Tg, were measured by temperature modulated differential scanning calorimetry. For the solid state, we then calculated the heat capacities of our novel block copolymers based on the vibrational motions of the constituent poly(amino acid)s, whose heat capacities are known or can be estimated from the ATHAS Data Bank. For the liquid state, the heat capacity was estimated by using the rotational and translational motions in the polymer chain. Excellent agreement was found between the measured and calculated values of the heat capacity, showing that this method can serve as a standard by which to assess the Cp for other biologically inspired block copolymers. The fraction of beta sheet crystallinity of spider silk block copolymers was also determined by using the predicted Cp, and was verified by wide angle X-ray diffraction and Fourier transform infrared spectroscopy. The glass transition temperatures of spider silk block copolymer were fitted by Kwei’s equation and the results indicate that attractive interaction exists between the A-block and B-block. PMID:23869111

  13. Numerical simulation of nanofluids based on power-law fluids with flow and heat transfer

    NASA Astrophysics Data System (ADS)

    Li, Lin; Jiang, Yongyue; Chen, Aixin

    2017-04-01

    In this paper, we investigate the heat transfer of nanofluids based on power-law fluids and movement of nanoparticles with the effect of thermophoresis in a rotating circular groove. The velocity of circular groove rotating is a constant and the temperature on the wall is kept to be zero all the time which is different from the temperature of nanofluids in the initial time. The effects of thermophoresis and Brownian diffusion are considered in temperature and concentration equations, and it is assumed that the thermal conductivity of nanofluids is a function of concentration of nanoparticles. Based on numerical results, it can be found that nanofluids improve the process of heat transfer than base fluids in a rotating circular groove. The enhancement of heat transfer increases as the power law index of base fluids decreases.

  14. A suppression of differential rotation in Jupiter’s deep interior

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Miguel, Y.; Militzer, B.; Hubbard, W. B.; Kaspi, Y.; Galanti, E.; Cao, H.; Helled, R.; Wahl, S. M.; Iess, L.; Folkner, W. M.; Stevenson, D. J.; Lunine, J. I.; Reese, D. R.; Biekman, A.; Parisi, M.; Durante, D.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.

    2018-03-01

    Jupiter’s atmosphere is rotating differentially, with zones and belts rotating at speeds that differ by up to 100 metres per second. Whether this is also true of the gas giant’s interior has been unknown, limiting our ability to probe the structure and composition of the planet. The discovery by the Juno spacecraft that Jupiter’s gravity field is north–south asymmetric and the determination of its non-zero odd gravitational harmonics J3, J5, J7 and J9 demonstrates that the observed zonal cloud flow must persist to a depth of about 3,000 kilometres from the cloud tops. Here we report an analysis of Jupiter’s even gravitational harmonics J4, J6, J8 and J10 as observed by Juno and compared to the predictions of interior models. We find that the deep interior of the planet rotates nearly as a rigid body, with differential rotation decreasing by at least an order of magnitude compared to the atmosphere. Moreover, we find that the atmospheric zonal flow extends to more than 2,000 kilometres and to less than 3,500 kilometres, making it fully consistent with the constraints obtained independently from the odd gravitational harmonics. This depth corresponds to the point at which the electric conductivity becomes large and magnetic drag should suppress differential rotation. Given that electric conductivity is dependent on planetary mass, we expect the outer, differentially rotating region to be at least three times deeper in Saturn and to be shallower in massive giant planets and brown dwarfs.

  15. Differential rotation in magnetic chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Krtička, J.; Paunzen, E.; Švanda, M.; Hummerich, S.; Bernhard, K.; Jagelka, M.; Janík, J.; Henry, G. W.; Shultz, M. E.

    2018-01-01

    Magnetic chemically peculiar (mCP) stars constitute about 10% of upper-main-sequence stars and are characterized by strong magnetic fields and abnormal photospheric abundances of some chemical elements. Most of them exhibit strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by a rigidly rotating main-sequence star with persistent surface structures and a stable global magnetic field. Long-term observations of the phase curves of these variations enable us to investigate possible surface differential rotation with unprecedented accuracy and reliability. The analysis of the phase curves in the best-observed mCP stars indicates that the location and the contrast of photometric and spectroscopic spots as well as the geometry of the magnetic field remain constant for at least many decades. The strict periodicity of mCP variables supports the concept that the outer layers of upper-main-sequence stars do not rotate differentially. However, there is a small, inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades. The period oscillations may reflect real changes in the angular velocity of outer layers of the stars which are anchored by their global magnetic fields. In CU Vir, V901 Ori, and perhaps BS Cir, the rotational period variation indicates the presence of vertical differential rotation; however, its exact nature has remained elusive until now. The incidence of mCP stars with variable rotational periods is currently investigated using a sample of fifty newly identified Kepler mCP stars.

  16. Magnetic field amplification by the r-mode instability

    NASA Astrophysics Data System (ADS)

    Chugunov, A. I.; Friedman, J. L.; Lindblom, L.; Rezzolla, L.

    2017-12-01

    We discuss the magnetic field enhancement by unstable r-modes (driven by the gravitational radiation reaction force) in rotating stars. In the absence of a magnetic field, gravitational radiation exponentially increases the r-mode amplitude α, and accelerates differential rotation (secular motion of fluid elements). For a magnetized star, differential rotation enhances the magnetic field energy. Rezzolla et al (2000-2001) argued that if the magnetic energy grows faster than the gravitational radiation reaction force pumps energy into the r-modes, then the r-mode instability is suppressed. Chugunov (2015) demonstrated that without gravitational radiation, differential rotation can be treated as a degree of freedom decoupled from the r-modes and controlled by the back reaction of the magnetic field. In particular, the magnetic field windup does not damp r-modes. Here we discuss the effect of the back reaction of the magnetic field on differential rotation of unstable r-modes, and show that it limits the generated magnetic field and the magnetic energy growth rate preventing suppression of the r-mode instability by magnetic windup at low saturation amplitudes, α ≪ 1, predicted by current models.

  17. Steady Flow Generated by a Core Oscillating in a Rotating Spherical Cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Subbotin, S. V.

    2018-01-01

    Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).

  18. Behavior of a Light Solid in a Rotating Horizontal Cylinder with Liquid Under Vibration

    NASA Astrophysics Data System (ADS)

    Karpunin, I. E.; Kozlova, A. N.; Kozlov, N. V.

    2018-06-01

    Dynamics of a cylindrical body in a rotating cavity is experimentally studied under transversal translational vibrations of the cavity rotation axis. Experiments are run at high rotation rate, when under the action of centrifugal force the body shifts to the rotation axis (the centrifuged state). In the absence of vibrations, the lagging rotation of the body is observed, due to the body radial shift from the axis of rotation caused by gravity. The body average rotation regime depends on the cavity rotation rate. The vibrations lead to the excitation of different regimes of body differential rotation (leading or lagging) associated with the excitation of its inertial oscillations. The dependence of the differential speed of the body rotation on the vibration frequency is investigated. The body dynamics has a complex character depending on the dimensionless vibration frequency. The analysis of body oscillation trajectory revealed that the body oscillatory motion consists of several modes, which contribute to the averaged dynamics of the body and the flows in the cavity.

  19. Experience with k-epsilon turbulence models for heat transfer computations in rotating

    NASA Technical Reports Server (NTRS)

    Tekriwal, Prabbat

    1995-01-01

    This viewgraph presentation discusses geometry and flow configuration, effect of y+ on heat transfer computations, standard and extended k-epsilon turbulence model results with wall function, low-Re model results (the Lam-Bremhorst model without wall function), a criterion for flow reversal in a radially rotating square duct, and a summary.

  20. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  1. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  2. Generation and Sustainment of Plasma Rotation by ICRF Heating

    NASA Astrophysics Data System (ADS)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  3. Stellar Differential Rotation of F-Stars Using DI and ZDI: The Case of HR1817

    NASA Astrophysics Data System (ADS)

    Marsden, Stephen

    2018-04-01

    The measure of surface differential rotation via the motion of spots and/or magnetic features on the stellar surface is a critical part of understanding the stellar dynamo. Here we present several epochs of (Zeeman) Doppler imaging of the young late-F star HR1817 from 2001 until 2011. These results show that HR1817 exhibits a high shear of its surface features, significantly above the solar value. It would appear that F stars, with thin convective zones, have surface differential rotation rates much higher than that of low mass stars.

  4. Time-series photometric spot modeling. 2: Fifteen years of photometry of the bright RS CVn binary HR 7275

    NASA Technical Reports Server (NTRS)

    Strassmeier, K. G.; Hall, D. S.; Henry, G. W.

    1994-01-01

    We present a time-dependent spot modeling analysis of 15 consecutive years of V-band photometry of the long-period (P(sub orb) = 28.6 days) RS CVn binary HR 7275. This baseline in time is one of the longest, uninterrupted intervals a spotted star has been observed. The spot modeling analysis yields a total of 20 different spots throughout the time span of our observations. The distribution of the observed spot migration rates is consistent with solar-type differential rotation and suggests a lower limit of the differential-rotation coefficient of 0.022 +/-0.004. The observed, maximum lifetime of a single spot (or spot group) is 4.5 years, the minimum lifetime is approximately one year, but an average spot lives for 2.2 years. If we assume that the mechanical shear by differential rotation sets the upper limit to the spot lifetime, the observed maximum lifetime in turn sets an upper limit to the differential-rotation coefficient, namely 0.04 +/- 0.01. This would be differential rotation just 5 to 8 times less than the solar value and one of the strongest among active binaries. We found no conclusive evidence for the existence of a periodic phenomenon that could be attributed to a stellar magnetic cycle.

  5. Stellar differential rotation and coronal time-scales

    NASA Astrophysics Data System (ADS)

    Gibb, G. P. S.; Jardine, M. M.; Mackay, D. H.

    2014-10-01

    We investigate the time-scales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this, we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the lap time and the surface diffusion time-scale through the relation τ_Form ∝ √{τ_Lapτ_Diff}. In contrast, the lifetimes of flux ropes are proportional to the lap time (τLife∝τLap). With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than 2 d. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae.

  6. Influence of gravitation on the propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  7. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry.

    PubMed

    Shen, Jiacheng; Igathinathane, C; Yu, Manlu; Pothula, Anand Kumar

    2015-06-01

    Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700°C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587°C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism. Published by Elsevier Ltd.

  8. Differential Rotation within the Earth's Outer Core

    NASA Technical Reports Server (NTRS)

    Hide, R.; Boggs, D. H.; Dickey, J. O.

    1998-01-01

    Non-steady differential rotation drive by bouyancy forces within the Earth's liquid outer core (OC) plays a key role not only in the generation of the main geomagnetic field by the magnetohydrodynamic (MHD) dynamo process but also in the excitation of irregular fluctuations in the angular speed of rotation of the overlying solid mantle, as evidenced by changes in the length of the day (LOD) on decadal and longer timescales (1-8).

  9. The shear-Hall instability in newborn neutron stars

    NASA Astrophysics Data System (ADS)

    Kondić, T.; Rüdiger, G.; Hollerbach, R.

    2011-11-01

    Aims: In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a "shear-Hall instability" and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods: We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results: For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions: Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.

  10. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

    PubMed Central

    2018-01-01

    Objectives To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal (60° angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p < 0.001). No significant difference was observed between the files in the maximum torque load, while a significantly higher angular rotation to fracture was observed for M3 Pro Gold (p < 0.05). In the DSC analysis, the M3 Pro Gold files showed one prominent peak on the heating curve and 2 prominent peaks on the cooling curve. In contrast, the M3 Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase. PMID:29765904

  11. Robustness analysis of an air heating plant and control law by using polynomial chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.

    2014-12-10

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less

  12. Attosecond transient absorption instrumentation for thin film materials: Phase transitions, heat dissipation, signal stabilization, timing correction, and rapid sample rotation.

    PubMed

    Jager, Marieke F; Ott, Christian; Kaplan, Christopher J; Kraus, Peter M; Neumark, Daniel M; Leone, Stephen R

    2018-01-01

    We present an extreme ultraviolet (XUV) transient absorption apparatus tailored to attosecond and femtosecond measurements on bulk solid-state thin-film samples, specifically when the sample dynamics are sensitive to heating effects. The setup combines methodology for stabilizing sub-femtosecond time-resolution measurements over 48 h and techniques for mitigating heat buildup in temperature-dependent samples. Single-point beam stabilization in pump and probe arms and periodic time-zero reference measurements are described for accurate timing and stabilization. A hollow-shaft motor configuration for rapid sample rotation, raster scanning capability, and additional diagnostics are described for heat mitigation. Heat transfer simulations performed using a finite element analysis allow comparison of sample rotation and traditional raster scanning techniques for 100 Hz pulsed laser measurements on vanadium dioxide, a material that undergoes an insulator-to-metal transition at a modest temperature of 340 K. Experimental results are presented confirming that the vanadium dioxide (VO 2 ) sample cannot cool below its phase transition temperature between laser pulses without rapid rotation, in agreement with the simulations. The findings indicate the stringent conditions required to perform rigorous broadband XUV time-resolved absorption measurements on bulk solid-state samples, particularly those with temperature sensitivity, and elucidate a clear methodology to perform them.

  13. Attosecond transient absorption instrumentation for thin film materials: Phase transitions, heat dissipation, signal stabilization, timing correction, and rapid sample rotation

    NASA Astrophysics Data System (ADS)

    Jager, Marieke F.; Ott, Christian; Kaplan, Christopher J.; Kraus, Peter M.; Neumark, Daniel M.; Leone, Stephen R.

    2018-01-01

    We present an extreme ultraviolet (XUV) transient absorption apparatus tailored to attosecond and femtosecond measurements on bulk solid-state thin-film samples, specifically when the sample dynamics are sensitive to heating effects. The setup combines methodology for stabilizing sub-femtosecond time-resolution measurements over 48 h and techniques for mitigating heat buildup in temperature-dependent samples. Single-point beam stabilization in pump and probe arms and periodic time-zero reference measurements are described for accurate timing and stabilization. A hollow-shaft motor configuration for rapid sample rotation, raster scanning capability, and additional diagnostics are described for heat mitigation. Heat transfer simulations performed using a finite element analysis allow comparison of sample rotation and traditional raster scanning techniques for 100 Hz pulsed laser measurements on vanadium dioxide, a material that undergoes an insulator-to-metal transition at a modest temperature of 340 K. Experimental results are presented confirming that the vanadium dioxide (VO2) sample cannot cool below its phase transition temperature between laser pulses without rapid rotation, in agreement with the simulations. The findings indicate the stringent conditions required to perform rigorous broadband XUV time-resolved absorption measurements on bulk solid-state samples, particularly those with temperature sensitivity, and elucidate a clear methodology to perform them.

  14. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani; Roy, Titob

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for themore » constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.« less

  15. Educing the emission mechanism of internal gravity waves in the differentially heat rotating annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Hien, Steffen; Achatz, Ulrich; Borchert, Sebastian; Fruman, Mark

    2016-04-01

    Understanding the lifecycle of gravity waves is fundamental to a good comprehension of the dynamics of the atmosphere. In this lifecycle, the emission mechanisms may be the most elusive. Indeed, while the emission of gravity waves by orography or convection is well understood, the so-called spontaneous emission is still a quite open topic of investigation [1]. This type of emission usually occur very near jet-front systems in the troposphere. In this abstract, we announce our numerical study of the question. Model systems of the atmosphere which can be easily simulated or built in a laboratory have always been an important part of the study of atmospheric dynamics, alongside global simulations, in situ measurements and theory. In the case of the study of the spontaneous emission of gravity waves near jet-front systems, the differentially heated rotating annulus set up has been proposed and extensively used. It comprises of an annular tank containing water: the inner cylinder is kept at a cold temperature while the outer cylinder is kept at a warm temperature. The whole system is rotating. Provided the values of the control parameters (temperature, rotation rate, gap between the cylinders, height of water) are well chosen, the resulting flow mimics the troposphere at midlatitudes: it has a jet stream, and a baroclinic lifecycle develops on top of it. A very reasonable ratio of Brunt-Väisälä frequency over rotation rate of the system can be obtained, so as to be as close to the atmosphere as possible. Recent experiments as well as earlier numerical simulations in our research group have shown that gravity waves are indeed emitted in this set up, in particular near the jet front system of the baroclinic wave [2]. After a first experimental stage of characterising the emitted wavepacket, we focused our work on testing hypotheses on the gravity wave emission mechanism: we have tested and validated the hypothesis of spontaneous imbalance generated by the flow in geostrophic balance. For the first stage of this investigation, we separated the flow between a balance and an imbalanced part at first order in Rossby number: the balanced pressure field was computed through an inversion of the potential vorticity equation [3]. The balanced horizontal velocity field and buoyancy were then computed using the geostrophic and hydrostatic balance conditions. We first checked that this decomposition gave on the one hand a large scaled balanced flow, comprising mostly of the baroclinic wave, and on the other hand a small scale flow comprising mostly of the gravity wave signal. We then proceeded with the central stage of the validation: we simulated the tangent linear dynamics of the imbalanced part of the flow [4]. The equations are linearised about the balanced part, and any imbalances forces the modeled imbalanced part. The output of this simulation compares very well with the actual imbalanced part, thus confirming that the observed gravity waves are indeed generated through spontaneous imbalance. To our knowledge, this is the first demonstration of emission by this mechanism in a flow which is not idealised: a flow which can be obtained as a result of a numerical simulation of primitive equations or actually observed in a laboratory experiment. References [1] R. Plougonven, F. Zhang, Internal gravity waves from atmospheric jets and fronts, Rev. Geophys. 52, 33-76 (2014). [2] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [3] F. Zhang, S.E . Koch, C. A. Davis, M. L. Kaplan, A Survey of unbalanced flow diagnostics and their application, Adv. Atmo. Sci. 17, 165-183 (2000). [4] S. Wang, F. Zhang, Source of gravity waves within a vortex dipole jet revealed by a linear model, J. Atmo. Sci. 67, 1438-1455 (2010).

  16. Tuning transitions in rotating Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Joshi, Pranav; Kunnen, Rudie; Clercx, Herman

    2015-11-01

    Turbulent rotating Rayleigh-Bénard convection, depending on the system parameters, exhibits multiple flow states and transitions between them. The present experimental study aims to control the transitions between the flow regimes, and hence the system heat transfer characteristics, by introducing particles in the flow. We inject near-neutrally buoyant silver coated hollow ceramic spheres (~100 micron diameter) and measure the system response, i.e. the Nusselt number, at different particle concentrations and rotation rates. Both for rotating and non-rotating cases, most of the particles settle on the top and bottom plates in a few hours following injection. This rapid settling may be a result of ``trapping'' of particles in the laminar boundary layers at the horizontal walls. These particle layers on the heat-transfer surfaces reduce their effective conductivity, and consequently, lower the heat transfer rate. We calculate the effective system parameters by estimating, and accounting for, the temperature drop across the particle layers. Preliminary analysis suggests that the thermal resistance of the particle layers may affect the flow structure and delay the transition to the ``geostrophic'' regime. Financial support from Foundation for Fundamental Research on Matter.

  17. A Rotating Plug Model of Friction Stir Welding Heat Transfer

    NASA Technical Reports Server (NTRS)

    Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.

    2006-01-01

    A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.

  18. Heat transfer in internal channel of a blade: Effects of rotation in a trailing edge cooling system

    NASA Astrophysics Data System (ADS)

    Andrei, Luca; Andreini, Antonio; Bonanni, Leonardo; Facchini, Bruno

    2012-06-01

    The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating arm holding both the PMMA TE model and the instrumentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermo-chromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pressure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; moreover several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steady-state RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. Low-Reynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an in-house developed pressure based solver exploiting the k-ω SST turbulence model implemented in the framework of the open-source finite volume discretization toolbox OpenFOAM®. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the heated surface as to resemble a 90 [deg] blade metal angle. Results are reported in terms of detailed heat transfer coefficient 2D maps on the suction side surface as well as spanwise profiles inside the pedestal ducts.

  19. On the Cause of Solar Differential Rotations in the Solar Interior and Near the Solar Surface

    NASA Astrophysics Data System (ADS)

    Lyu, L.

    2012-12-01

    A theoretical model is proposed to explain the cause of solar differential rotations observed in the solar interior and near the solar surface. We propose that the latitudinal differential rotation in the solar convection zone is a manifestation of an easterly wind in the mid latitude. The speed of the easterly wind is controlled by the magnitude of the poleward temperature gradient in the lower part of the solar convection zone. The poleward temperature gradient depends on the orientation and strength of the magnetic fields at different latitudes in the solar convection zone. The north-south asymmetry in the wind speed can lead to north-south asymmetry in the evolution of the solar cycle. The easterly wind is known to be unstable for a west-to-east rotating star or planet. Based on the observed differential rotations in the solar convection zone, we can estimate the easterly wind speed at about 60-degree latitude and determine the azimuthal wave number of the unstable wave modes along the zonal flow. The lowest azimuthal wave number is about m=7~8. This result is consistent with the average width of the elephant-trunk coronal hole shown in the solar X-ray images. The nonlinear evolution of the unstable easterly wind can lead to transpolar migration of coronal holes and can change the poloidal magnetic field in a very efficient way. In the study of radial differential rotation near the solar surface, we propose that the radial differential rotation depends on the radial temperature gradient. The radial temperature gradient depends on the magnetic field structure above the solar surface. The non-uniform magnetic field distribution above the solar surface can lead to non-uniform radial convections and formation of magnetic flux rope at different spatial scales. The possible cause of continuous formation and eruption of prominences near an active region will also be discussed.

  20. Muscle Weakness in the Empty and Full Can Tests Cannot Differentiate Rotator Cuff Tear from Cervical Spondylotic Amyotrophy: Pain Provocation is a Useful Finding.

    PubMed

    Iwata, Eiichiro; Shigematsu, Hideki; Inoue, Kazuya; Egawa, Takuya; Sakamoto, Yoshihiro; Tanaka, Yasuhito

    2017-01-01

    Rotator cuff tears and cervical spondylotic amyotrophy (CSA) are often confused as the main symptom in those with difficulty in shoulder elevation. Empty and full can tests are frequently used for the clinical diagnosis of rotator cuff tears. The aim of the present study was to investigate whether the empty and full can test results can help differentiate rotator cuff tears from CSA. Twenty-seven consecutive patients with rotator cuff tears and 25 with CSA were enrolled. We prospectively performed empty and full can tests in patients with rotator cuff tears and CSA. The following signs were considered positive: (a) muscle weakness during the empty can test, (b) muscle weakness during the full can test, (c) pain provocation during the empty can test, and (d) pain provocation during the full can test. We calculated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of rotator cuff tears for each positive finding. The sensitivity and specificity of each index were as follows (sensitivity, specificity, PPV, NPV): (a) 77.8%, 0%, 45.7%, 0%; (b) 66.7%, 4.0%, 42.9%, 10.0%; (c) 88.9%, 96.0%, 96.0%, 88.9%; and (d) 74.1%, 96.0%, 95.2%, 77.4%. There were significant differences for each index. Muscle weakness during the empty and full can tests was not useful in differentiating rotator cuff tears from CSA because of low specificity and PPV. However, pain provocation was useful in differentiating these two conditions because of high specificity and PPV.

  1. High heat-flux self-rotating plasma-facing component: Concept and loading test in TEXTOR

    NASA Astrophysics Data System (ADS)

    Terra, A.; Sergienko, G.; Hubeny, M.; Huber, A.; Mertens, Ph.; Philipps, V.; The Textor Team

    2015-08-01

    This contribution reports on the concept of a circular self-rotating and temperature self-stabilising plasma-facing component (PFC), and test of a related prototype in TEXTOR tokamak. This PFC uses the Lorentz force induced by plasma current and magnet field (J × B) to create a torque applied on metallic discs which produce a rotational movement. Additional thermionic current, present at high operation temperatures, brings additional temperature stabilisation ability. This self-rotating disk limiter was exposed to plasma in the TEXTOR tokamak under different radial positions to vary the heat flux. This disk structure shows the interesting ability to stabilise its maximum temperature through the fact that the self-induced rotation is modulated by the thermal emission current. It was observed that the rotation speed increased following both the current collected by the limiter, and the temperature of the tungsten disks.

  2. Effects of Earth's rotation on the early differentiation of a terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Hansen, Ulrich

    2015-11-01

    Similar to other terrestrial planets like Moon and Mars, Earth experienced a magma ocean period about 4.5 billion years ago. On Earth differentiation processes in the magma ocean set the initial conditions for core formation and mantle evolution. During the magma ocean period Earth was rotating significantly faster than today. Further, the viscosity of the magma was low, thus that planetary rotation potentially played an important role for differentiation. However, nearly all previous studies neglect rotational effects. All in all, our results suggest that planetary rotation plays an important role for magma ocean crystallization. We employ a 3-D numerical model to study crystal settling in a rotating and vigorously convecting early magma ocean. We show that crystal settling in a terrestrial magma ocean is crucially affected by latitude as well as by rotational strength and crystal density. Due to rotation an inhomogeneous accumulation of crystals during magma ocean solidification with a distinct crystal settling between pole and equator could occur. One could speculate that this may have potentially strong effects on the magma ocean solidification time and the early mantle composition. It could support the development of a basal magma ocean and the formation of anomalies at the core-mantle boundary in the equatorial region, reaching back to the time of magma ocean solidification.

  3. Quasi-geostrophic free mode models of long-lived Jovian eddies: Forcing mechanisms and crucial observational tests

    NASA Technical Reports Server (NTRS)

    Read, P. L.

    1986-01-01

    Observations of Jupiter and Saturn long-lived eddies, such as Jupiter's Great Red Spot and White Ovals, are presently compared with laboratory experiments and corresponding numerical simulations for free thermal convection in a rotating fluid that is subject to horizontal differential heating and cooling. Difficulties in determining the essential processes maintaining and dissipating stable eddies, on the basis of global energy budget studies, are discussed; such difficulties do not arise in considerations of the flow's potential vorticity budget. On Jupiter, diabatically forced and transient eddy-driven flows primarily differ in the implied role of transient eddies in transporting potential vorticity across closed geostrophic streamlines in the time mean.

  4. Two Populations of Sunspots: Differential Rotation

    NASA Astrophysics Data System (ADS)

    Nagovitsyn, Yu. A.; Pevtsov, A. A.; Osipova, A. A.

    2018-03-01

    To investigate the differential rotation of sunspot groups using the Greenwich data, we propose an approach based on a statistical analysis of the histograms of particular longitudinal velocities in different latitude intervals. The general statistical velocity distributions for all such intervals are shown to be described by two rather than one normal distribution, so that two fundamental rotation modes exist simultaneously: fast and slow. The differentiality of rotation for the modes is the same: the coefficient at sin2 in Faye's law is 2.87-2.88 deg/day, while the equatorial rotation rates differ significantly, 0.27 deg/day. On the other hand, an analysis of the longitudinal velocities for the previously revealed two differing populations of sunspot groups has shown that small short-lived groups (SSGs) are associated with the fast rotation mode, while large long-lived groups (LLGs) are associated with both fast and slow modes. The results obtained not only suggest a real physical difference between the two populations of sunspots but also give new empirical data for the development of a dynamo theory, in particular, for the theory of a spatially distributed dynamo.

  5. Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source

    DOEpatents

    Paulson, Leland E.

    1990-01-01

    A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.

  6. Method of production H/sub 2/ using a rotating drum reactor with a pulse jet heat source

    DOEpatents

    Paulson, L.E.

    1988-05-13

    A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300/degree/ to 1400/degree/F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices. 1 fig.

  7. STABILITY OF ROTATING MAGNETIZED JETS IN THE SOLAR ATMOSPHERE. I. KELVIN–HELMHOLTZ INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaqarashvili, Teimuraz V.; Zhelyazkov, Ivan; Ofman, Leon, E-mail: teimuraz.zaqarashvili@uni-graz.at

    2015-11-10

    Observations show various jets in the solar atmosphere with significant rotational motions, which may undergo instabilities leading to heat ambient plasma. We study the Kelvin–Helmholtz instability (KHI) of twisted and rotating jets caused by the velocity jumps near the jet surface. We derive a dispersion equation with appropriate boundary conditions for total pressure (including centrifugal force of tube rotation), which governs the dynamics of incompressible jets. Then, we obtain analytical instability criteria of KHI in various cases, which were verified by numerical solutions to the dispersion equation. We find that twisted and rotating jets are unstable to KHI when themore » kinetic energy of rotation is more than the magnetic energy of the twist. Our analysis shows that the azimuthal magnetic field of 1–5 G can stabilize observed rotations in spicule/macrospicules and X-ray/extreme-ultraviolet (EUV) jets. On the other hand, nontwisted jets are always unstable to KHI. In this case, the instability growth time is several seconds for spicule/macrospicules and a few minutes (or less) for EUV/X-ray jets. We also find that standing kink and torsional Alfvén waves are always unstable near the antinodes, owing to the jump of azimuthal velocity at the surface, while the propagating waves are generally stable. Kelvin–Helmholtz (KH) vortices may lead to enhanced turbulence development and heating of surrounding plasma; therefore, rotating jets may provide energy for chromospheric and coronal heating.« less

  8. Null result for violation of the equivalence principle with free-fall rotating gyroscopes

    NASA Astrophysics Data System (ADS)

    Luo, J.; Nie, Y. X.; Zhang, Y. Z.; Zhou, Z. B.

    2002-02-01

    The differential acceleration between a rotating mechanical gyroscope and a nonrotating one is directly measured by using a double free-fall interferometer, and no apparent differential acceleration has been observed at the relative level of 2×10-6. It means that the equivalence principle is still valid for rotating extended bodies, i.e., the spin-gravity interaction between the extended bodies has not been observed at this level. Also, to the limit of our experimental sensitivity, there is no observed asymmetrical effect or antigravity of the rotating gyroscopes as reported by Hayasaka et al.

  9. Solar differential rotation in the period 1964-2016 determined by the Kanzelhöhe data set

    NASA Astrophysics Data System (ADS)

    Poljančić Beljan, I.; Jurdana-Šepić, R.; Brajša, R.; Sudar, D.; Ruždjak, D.; Hržina, D.; Pötzi, W.; Hanslmeier, A.; Veronig, A.; Skokić, I.; Wöhl, H.

    2017-10-01

    Context. Kanzelhöhe Observatory for Solar and Environmental Research (KSO) provides daily multispectral synoptic observations of the Sun using several telescopes. In this work we made use of sunspot drawings and full disk white light CCD images. Aims: The main aim of this work is to determine the solar differential rotation by tracing sunspot groups during the period 1964-2016, using the KSO sunspot drawings and white light images. We also compare the differential rotation parameters derived in this paper from the KSO with those collected fromf other data sets and present an investigation of the north - south rotational asymmetry. Methods: Two procedures for the determination of the heliographic positions were applied: an interactive procedure on the KSO sunspot drawings (1964-2008, solar cycles Nos. 20-23) and an automatic procedure on the KSO white light images (2009-2016, solar cycle No. 24). For the determination of the synodic angular rotation velocities two different methods have been used: a daily shift (DS) method and a robust linear least-squares fit (rLSQ) method. Afterwards, the rotation velocities had to be converted from synodic to sidereal, which were then used in the least-squares fitting for the solar differential rotation law. A comparison of the interactive and automatic procedures was performed for the year 2014. Results: The interactive procedure of position determination is fairly accurate but time consuming. In the case of the much faster automatic procedure for position determination, we found the rLSQ method for calculating rotational velocities to be more reliable than the DS method. For the test data from 2014, the rLSQ method gives a relative standard error for the differential rotation parameter B that is three times smaller than the corresponding relative standard error derived for the DS method. The best fit solar differential rotation profile for the whole time period is ω(b) = (14.47 ± 0.01)-(2.66 ± 0.10)sin2b (deg/day) for the DS method and ω(b) = (14.50 ± 0.01)-(2.87 ± 0.12)sin2b (deg/day) for the rLSQ method. A barely noticeable north - south asymmetry is observed for the whole time period 1964-2016 in the present paper. Rotation profiles, using different data sets, presented by other authors for the same time periods and the same tracer types, are in good agreement with our results. Conclusions: The KSO data set used in this paper is in good agreement with the Debrecen Photoheliographic Data and Greenwich Photoheliographic Results and is suitable for the investigation of the long-term variabilities in the solar rotation profile. Also, the quality of the KSO sunspot drawings has gradually increased during the last 50 yr.

  10. Evaluation of fatigue properties of EN31 steel heat treated using biodegradable gingili oil

    NASA Astrophysics Data System (ADS)

    Harichandra, B. P.; Prashanth, Mrudula; Prakash, S. V.

    2016-09-01

    Rotating bending fatigue is the most commonly encountered loading in most machines and machine tools. At the same time, modern literature in this area is very little. EN31 steel is a steel which is commonly used in load bearing applications which encounters fatigue loading. Further, studies on heat treated EN31 steel to improve fatigue strength is hardly reported. This paper takes this rare issue further ahead by using bio-degradable gingili oil to heat treat EN31 steel for fatigue applications. This paper reports the results of rotating bending fatigue study of EN31 steel. Fatigue tests were conducted for three conditions a) Untreated, b) Heat treated with water, and c) Heat treated with gingili oil, with cantilever loads ranging from 30% to 90% using double sided rotating bending fatigue testing machine. It is seen that EN31 steel heat treated using gingili oil has far superior fatigue properties than water treated and untreated ones, with gingili oil quenched specimen have ∼10 times more fatigue life than water quenched specimen and ∼100 times more than unquenched specimens when lower bending stresses are involved.

  11. What Supergranule Flow Models Tell Us About the Sun's Surface Shear Layer and Magnetic Flux Transport

    NASA Technical Reports Server (NTRS)

    Hathaway, David

    2011-01-01

    Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.

  12. Dynamic domains of the Derviche Tourneur sodium experiment: Simulations of a spherical magnetized Couette flow

    NASA Astrophysics Data System (ADS)

    Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.

    2018-03-01

    The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.

  13. Experimental study of the convection in a rotating tangent cylinder

    NASA Astrophysics Data System (ADS)

    Aujogue, Kélig; Pothérat, Alban; Sreenivasan, Binod; Debray, François

    2018-05-01

    This paper experimentally investigates the convection in a fast rotating Tangent Cylinder (TC), for Ekman numbers down to $E=3.36\\times10^{-6}$, in a configuration relevant to the liquid core of the Earth. In the apparatus, the TC results from the Proudman-Taylor constraint incurred by rotating a hemispherical fluid vessel heated in its centre by a protruding heating element of cylindrical shape. The resulting convection that develops above the heater, i.e within the TC, is shown to set in for critical Rayleigh numbers and wavenumbers respectively scaling as $Ra_c\\sim E^{4/3}$ and $a_c\\sim E^{1/3}$ with the Ekman number $E$. Though exhibiting the same exponents as for plane rotating convection, these laws are indicative of much larger convective plumes at onset. The structure and dynamics of these plumes are in fact closer to those found in solid rotating cylinders heated from below, suggesting that the confinement within the TC induced by the Taylor-Proudman constraint influences convection in a similar way as solid walls would do. There is further similarity in that the critical modes in the TC all exhibit a slow retrograde precession at onset. In supercritical regimes, the precession evolves into a thermal wind with a complex structure featuring retrograde rotation at high latitude and either prograde or retrograde rotation at low latitudes (close to the heater), depending on the criticality and the Ekman number. Nevertheless the intensity of the thermal wind measured by the Rossby number scales as $Ro\\sim 0.85(Ra_q^*)^{0.41}$ with the Rayleigh number based on the heat flux $Ra_q^*$. This scaling suggests that the convection in the TC is driven by quasi-geostrophic dynamics, a finding supported by the scaling for the rotation-normalised Nusselt number $Nu^{*} \\sim (Ra_{q}^{*})^{5/9}$.

  14. [Intensification of the penicillin drying process based on the theory of short-term contact of material with a heat-exchange surface].

    PubMed

    Sadykov, R A; Migunov, V V

    1987-01-01

    The process of potassium benzylpenicillin vacuum drying was investigated. The kinetics of the process showed that a larger period of the drying process was needed for eliminating bound moisture. The influence of the angular velocity of the drier drum rotation on drying duration was studied in a short-term contact model. It was shown that intensity of drying increased with increasing velocity of the drum rotation. Experimental trials confirmed the conclusion and revealed adequacy of the relationship between the drying time and dispersion intensity in the short-term contact model. A qualitative dependence of the coefficient of convective heat exchange between the heating surface and the product on the angular velocity of the drier drum rotation was constructed.

  15. Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips

    NASA Technical Reports Server (NTRS)

    Tse, David G.N.; Steuber, Gary

    1996-01-01

    Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.

  16. Modeling Mars Cyclogenesis and Frontal Waves: Seasonal Variations and Implications on Dust Activity

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, M. A.

    2014-01-01

    Between late autumn through early spring,middle and high latitudes onMars exhibit strong equator-to-polemean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic period waves) [1, 2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wave-like disturbances serve as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars' extratropical weather systems have significant sub-synoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  17. Investigating the Spectroscopic Variability of Magentically Active M Dwarfs In SDSS.

    NASA Astrophysics Data System (ADS)

    Ventura, Jean-Paul; Schmidt, Sarah J.; Cruz, Kelle; Rice, Emily; Cid, Aurora

    2018-01-01

    Magnetic activity, a wide range of observable phenomena produced in the outer atmospheres of stars is, currently, not well understood for M dwarfs. In higher mass stars, magnetic activity is powered by a dynamo process involving the differential rotation of a star’s inner regions. This process generates a magnetic field, heats up regions in the chromosphere and produces Hα emission line radiation from collisional excitation. Using spectroscopic data from the Sloan Digital Sky Survey (SDSS), I compare Hα emission line strengths for a subsample of 12,000 photometric variability selected M dwarfs from Pan-STARRS1 with those of a known non-variable sample. Presumably, the photometric variability originates from the occurrence of star spots at the stellar surface, which are the result of an intense magnetic field and associated chromospheric heating. We proceed with this work in order to test whether the photometric variability of the sample correlates with chromospheric Hα emission features. If not, we explore alternate reasons for that photometric variability (e.g. binarity or transiting planetary companions)

  18. Extratropical Cyclogenesis and Frontal Waves on Mars: Influences on Dust, Weather and the Planet's climate

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, Melinda A.

    2012-01-01

    Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  19. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  20. Surface-acoustic-wave (SAW) flow sensor.

    PubMed

    Joshi, S G

    1991-01-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  1. Heat exchanger device and method for heat removal or transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P

    2015-03-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  2. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  3. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  4. Heat exchanger device and method for heat removal or transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  5. Nozzle flow with vibrational nonequilibrium

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Landry, J. G.

    1995-01-01

    This research concerns the modeling and numerical solutions of the coupled system of compressible Navier-Stokes equations in cylindrical coordinates under conditions of equilibrium and nonequilibrium thermodynamics. The problem considered was the modeling of a high temperature diatomic gas N2 flowing through a converging-diverging high expansion nozzle. The problem was modeled in two ways. The first model uses a single temperature with variable specific heats as functions of this temperature. For the second model we assume that the various degrees of freedom all have a Boltzmann distribution and that there is a continuous redistribution of energy among the various degrees of freedom as the gas passes through the nozzle. Each degree of freedom is assumed to have its own temperature and, consequently, each system state can be characterized by these temperatures. This suggests that formulation of a second model with a vibrational degree of freedom along with a rotational-translation degree of freedom, each degree of freedom having its own temperature. Initially the vibrational degree of freedom is excited by heating the gas to a high temperature. As the high temperature gas passes through the nozzle throat there is a sudden drop in temperature along with a relaxation time for the vibrational degree of freedom to achieve equilibrium with the rotational-translation degree of freedom. That is, we assume that the temperature change upon passing through the throat is so great that the changes in the vibrational degree of freedom occur at a much slower pace and consequently lags behind the rotational-translational energy changes. This lag results in a finite relaxation time. In this context the term nonequilibrium is used to denote the fact that the energy content of the various degrees of freedom are characterized by two temperatures. We neglect any chemical reactions which could also add nonequilibrium effects. We develop the energy equations for the nonequilibrium model from first principles. The resulting equations, which model the nozzle flow, can be expressed in various forms. In most forms the resulting equations are coupled systems of nonlinear partial differential equations subject to certain boundary conditions. To solve the resulting coupled system of nonlinear partial differential equations, several numerical techniques were investigated: (1) the explicit MacCormack method, (2) the explicit-implicit MacCormack method, (3) the method of operator splitting, (4) factorization schemes, and (5) the Steger-Warming scheme.

  6. Experimental investigation of thermal processes in the multi-ring Couette system with counter rotation of cylinders

    NASA Astrophysics Data System (ADS)

    Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2016-01-01

    The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.

  7. Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid.

    PubMed

    Tabassum, Rabil; Mehmood, R; Nadeem, S

    2017-09-01

    This study inspects the influence of temperature dependent viscosity on Oblique flow of micropolar nanofluid. Fluid viscosity is considered as an exponential function of temperature. Governing equations are converted into dimensionless forms with aid of suitable transformations. Outcomes of the study are shown in graphical form and discussed in detail. Results revealed that viscosity parameter has pronounced effects on velocity profiles, temperature distribution, micro-rotation, streamlines, shear stress and heat flux. It is found that viscosity parameter enhances the temperature distribution, tangential velocity profile, normal component of micro-rotation and shear stress at the wall while it has decreasing effect on tangential component of micro-rotation and local heat flux. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Large-scale models reveal the two-component mechanics of striated muscle.

    PubMed

    Jarosch, Robert

    2008-12-01

    This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and alpha-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical "two-component model" of active muscle differentiated a "contractile component" which stretches the "series elastic component" during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic alpha-actinin Z-filaments (provided with force-regulating sites for Ca(2+) binding), the thin filament rotations change the torsional twist of the four Z-filaments as the "series elastic components". Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.

  9. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    PubMed Central

    Jarosch, Robert

    2008-01-01

    This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with force-regulating sites for Ca2+ binding), the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments. PMID:19330099

  10. Nonmodal phenomena in differentially rotating dusty plasmas

    NASA Astrophysics Data System (ADS)

    Poedts, Stefaan; Rogava, Andria D.

    2000-10-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .

  11. Shape memory alloy heat engines and energy harvesting systems

    DOEpatents

    Browne, Alan L; Johnson, Nancy L; Keefe, Andrew C; Alexander, Paul W; Sarosi, Peter Maxwell; Herrera, Guillermo A; Yates, James Ryan

    2013-12-17

    A heat engine includes a first rotatable pulley and a second rotatable pulled spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes first spring coil and a first fiber core within the first spring coil. A timing cable is disposed about disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  12. Rotary actuator

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron (Inventor)

    1995-01-01

    Rotary actuators and other mechanical devices incorporating shape memory alloys are provided herein. Shape memory alloys are a group of metals which when deformed at temperatures below their martensite temperatures, resume the shapes which they had prior to the deformation if they are heated to temperatures above their austensite temperatures. Actuators in which shape memory alloys are employed include bias spring types, in which springs deform the shape memory alloy (SMA), and differential actuators, which use two SMA members mechanically connected in series. Another type uses concentric cylindrical members. One member is in the form of a sleeve surrounding a cylinder, both being constructed of shape memory alloys. Herein two capstans are mounted on a shaft which is supported in a framework. Each capstan is capable of rotating the shaft. Shape memory wire, as two separate lengths of wire, is wrapped around each capstan to form a winding around that capstan. The winding on one capstan is so wrapped that the wire is in a prestretched state. The winding on the other capstan is so wrapped that the wire is in a taut, but not a prestretched, state. Heating one performs work in one direction, thus deforming the other one. When the other SMA is heated the action is reversed.

  13. Stellar Mixing: I. Formalism

    NASA Technical Reports Server (NTRS)

    Canuto, V .M.

    2011-01-01

    In this paper we use the Reynolds stress models (RSM) to derive algebraic expressions for the following variables: a) heat fluxes; b) J.l fluxes; and c) momentum fluxes. These relations, which are fully 3D, include: 1) stable and unstable stratification, represented by the Brunt-Vaislila frequency, N(exp 2) =-g/H(sub p_(del - del(sub ad))(1 - RI(sub mu)); 2) double diffusion, salt-fingers, and semi-convection, represented by the density ratio R(sub mu) = del(sub mu)/(del - del(sub ad)); 3) shear (differential rotation), represented by the mean squared shear Sigma(exp 2) or by the Richardson number, Ri =N(exp 2)Sigma(exp -2); 4) radiative losses represented by a Peclet number, Pe; 5) a complete analytical solution of the ID version of the model. In general, the model requires the solution of two differential equations for the eddy kinetic energy K and its rate of dissipation, epsilon. In the local and stationary cases, when production equals dissipation, the model equations are all algebraic.

  14. Experimental characterization of novel microdiffuser elements

    NASA Astrophysics Data System (ADS)

    Ehrlich, L.; Punch, J.; Jeffers, N.; Stafford, J.

    2014-07-01

    Micropumps can play a significant role in thermal management applications, as a component of microfluidic cooling systems. For next-generation high density optical communication systems, in particular, heat flux levels are sufficiently high to require a microfluidic circuit for cooling. Valveless piezoelectrically-actuated micropumps are a particularly promising technology to be deployed for this application. These pumps exploit the asymmetric flow behaviour of microdiffusers to achieve net flow. They feature no rotating or contacting parts, which make them intrinsically reliable in comparison to micropumps with active valves. In this paper, two novel microdiffuser elements are reported and characterized. The micropumps were fabricated using a 3D Printer. Each single diffuser had a length of 1800 pm and a depth of 400 pm. An experimental characterization was conducted in which the flow rate and differential pressure were measured as a function of operating frequency. In comparison with standard diffuser, both elements showed an increase in differential pressure in the range of 40 - 280 %, but only one of the elements exhibited an improved flow rate, of about 85 %.

  15. Thermally-induced first-order phase transition in the (FC6H4C2H4NH3)2[PbI4] photoluminescent organic-inorganic material

    NASA Astrophysics Data System (ADS)

    Koubaa, M.; Dammak, T.; Garrot, D.; Castro, M.; Codjovi, E.; Mlayah, A.; Abid, Y.; Boukheddaden, K.

    2012-03-01

    The thermal properties of the perovskite slab alkylammonium lead iodide (FC6H4C2H4NH3)2[PbI4] are investigated using spectroscopic ellipsometry, differential scanning calorimetry, photoluminescence, and Raman spectroscopy. The spectroscopic ellipsometry, performed in the heating mode, clearly evidenced the presence of a singularity at 375 K. This is corroborated by the temperature dependence of the photoluminescence, which pointed out a first-order order-disorder phase transition at ˜375 K, with a hysteresis loop of 40 K width. Raman spectroscopy data suggest that this transition arises from a dynamic rotational disordering of the ammonium headgroups of the alkylammonium chain. In contrast, differential scanning calorimetry measurements on a pellet sample led to an entropy change value ΔS ≈0.39 J/K/mol at the transition, suggesting the existence of a residual short-range order of the NH3+ on cooling from the high temperature phase.

  16. The effect of atmospheric diabatic heating on low-frequency oscillations

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Cheng

    A diagnostic scheme is devised to illustrate a chain relationship between diabatic heating and planetary-scale divergent and rotational circulations. The scheme consists of the velocity-potential maintenance equation, which relates diabatic heating and velocity potential, and the streamfunction budget equation, which depicts the streamfunction tendency caused by the imbalance between streamfunction tendencies induced by vorticity advection and source. The proposed scheme is employed to examine the effect of tropical diabatic heating on the annual variation of subtropical jet streams. It was found that annual variations of both tropical diabatic heating and planetary-scale divergent circulation exhibit an annual in-phase seesaw oscillation between the winter and summer hemispheres. The annual variation of subtropical jet streams is caused by the adjustment of atmospheric rotational flow through planetary-scale divergent circulation in response to the annual cycle of tropical diabatic heating.

  17. Plasma Centrifuge Heat Engine - a Route to Non-thermal p- 11 B Fusion

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.

    2007-06-01

    An invention [US Patent and Trademark Office App. Nos. 60/596567 (2005) and 60/766791 (2006)] combines centrifugal and dipole confinement, with recent oscillating plasma theory. The plasma undergoes compression/expansion (C/E), parallel to B by centrifugal force and perpendicular to B by B variation, providing a thermal cycle which recovers most (>95%) of heating as mechanical energy. This gives a "Q-amplifier" for beam-target systems. Centrifugally confined Boron plasma undergoes C/E by slow, cross-B interchange activity. Parallel and perpendicular C/E are matched by the rotation profile which arises naturally. Hot plasma is heated and cold plasma is cooled. Beam-target fusion reactions occur in the hot plasma region and expansion returns most of the heat energy as rotation energy. Rotation energy, in turn, produces waves which drive protons to an energy near the fusion peak cross section. A possible machine, including the arrangement of magnets and HV, is described.

  18. Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model

    NASA Astrophysics Data System (ADS)

    Khaniki, Hossein Bakhshi

    2018-05-01

    Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.

  19. KIC 9451096: Magnetic Activity, Flares and Differential Rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Yoldaş, E.; Dal, H. A.

    2018-04-01

    We present a spectroscopic and photometric analysis of KIC 9451096. The combined spectroscopic and photometric modelling shows that the system is a detached eclipsing binary in a circular orbit and composed of F5V + K2V components. Subtracting the best-fitting light curve model from the whole long cadence data reveals additional low (mmag) amplitude light variations in time and occasional flares, suggesting a low, but still remarkable level of magnetic spot activity on the K2V component. Analyzing the rotational modulation of the light curve residuals enables us to estimate the differential rotation coefficient of the K2V component as k = 0.069 ± 0.008, which is 3 times weaker compared with the solar value of k = 0.19, assuming a solar type differential rotation. We find the stellar flare activity frequency for the K2V component as 0.000368411 h-1 indicating a low magnetic activity level.

  20. Pressure deformation of tires using differential stiffness for triangular solid-of-revolution elements

    NASA Technical Reports Server (NTRS)

    Chen, C. H. S.

    1975-01-01

    The derivation is presented of the differential stiffness for triangular solid of revolution elements. The derivation takes into account the element rigid body rotation only, the rotation being about the circumferential axis. Internal pressurization of a pneumatic tire is used to illustrate the application of this feature.

  1. Turbulent convection in liquid metal with and without rotation

    PubMed Central

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional buoyancy forcing and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer . In general, we find that the convective behavior of liquid metal differs substantially from that of moderate fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of and fluids, respectively. PMID:23569262

  2. INFALLING–ROTATING MOTION AND ASSOCIATED CHEMICAL CHANGE IN THE ENVELOPE OF IRAS 16293–2422 SOURCE A STUDIED WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa

    2016-06-20

    We have analyzed rotational spectral line emission of OCS, CH{sub 3}OH, HCOOCH{sub 3}, and H{sub 2}CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0.″6 × 0.″5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH{sub 3}OH and HCOOCH{sub 3} are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of themore » centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M {sub ⊙}, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH{sub 3}OH and HCOOCH{sub 3} may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H{sub 2}CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.« less

  3. Kelvin-Helmholtz instability of counter-rotating discs

    NASA Astrophysics Data System (ADS)

    Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.

    2015-01-01

    Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.

  4. Comparison between two models of energy balance in coronal loops

    NASA Astrophysics Data System (ADS)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  5. Research highlights: June 1990 - May 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Linear instability calculations at MSFC have suggested that the Geophysical Fluid Flow Cell (GFFC) should exhibit classic baroclinic instability at accessible parameter settings. Interest was in the mechanisms of transition to temporal chaos and the evolution of spatio-temporal chaos. In order to understand more about such transitions, high resolution numerical experiments for the physically simplest model of two layer baroclinic instability were conducted. This model has the advantage that the numerical code is exponentially convergent and can be efficiently run for very long times, enabling the study of chaotic attractors without the often devastating effects of low-order trunction found in many previous studies. Numerical algorithms for implementing an empirical orthogonal function (EOF) analysis of the high resolution numerical results were completed. Under conditions of rapid rotation and relatively low differential heating, convection in a spherical shell takes place as columnar banana cells wrapped around the annular gap, but with axes oriented along the axis of rotation; these were clearly evident in the GFFC experiments. The results of recent numerical simulations of columnar convection and future research plans are presented.

  6. DYNAMO EFFECTS NEAR THE TRANSITION FROM SOLAR TO ANTI-SOLAR DIFFERENTIAL ROTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simitev, Radostin D.; Kosovichev, Alexander G.; Busse, Friedrich H.

    2015-09-01

    Numerical MHD simulations play an increasingly important role for understanding the mechanisms of stellar magnetism. We present simulations of convection and dynamos in density-stratified rotating spherical fluid shells. We employ a new 3D simulation code for obtaining the solution of a physically consistent anelastic model of the process with a minimum number of parameters. The reported dynamo simulations extend into a “buoyancy-dominated” regime where the buoyancy forcing is dominant while the Coriolis force is no longer balanced by pressure gradients, and strong anti-solar differential rotation develops as a result. We find that the self-generated magnetic fields, despite being relatively weak,more » are able to reverse the direction of differential rotation from anti-solar to solar-like. We also find that convection flows in this regime are significantly stronger in the polar regions than in the equatorial region, leading to non-oscillatory dipole-dominated dynamo solutions, and to a concentration of magnetic field in the polar regions. We observe that convection has a different morphology in the inner and the outer part of the convection zone simultaneously such that organized geostrophic convection columns are hidden below a near-surface layer of well-mixed highly chaotic convection. While we focus our attention on the buoyancy-dominated regime, we also demonstrate that conical differential rotation profiles and persistent regular dynamo oscillations can be obtained in the parameter space of the rotation-dominated regime even within this minimal model.« less

  7. Meridional Motions and Reynolds Stress Determined by Using Kanzelhöhe Drawings and White Light Solar Images from 1964 to 2016

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Sudar, Davor; Brajša, Roman; Skokić, Ivica; Poljančić Beljan, Ivana; Jurdana-Šepić, Rajka; Hanslmeier, Arnold; Veronig, Astrid; Pötzi, Werner

    2018-04-01

    Sunspot position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of sunspot groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using sunspots as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.

  8. Thermal casting of polymers in centrifuge for producing X-ray optics

    DOEpatents

    Hill, Randy M [Livermore, CA; Decker, Todd A [Livermore, CA

    2012-03-27

    An optic is produced by the steps of placing a polymer inside a rotateable cylindrical chamber, the rotateable cylindrical chamber having an outside wall, rotating the cylindrical chamber, heating the rotating chamber forcing the polymer to the outside wall of the cylindrical chamber, allowing the rotateable cylindrical chamber to cool while rotating producing an optic substrate with a substrate surface, sizing the optic substrate, and coating the substrate surface of the optic substrate to produce the optic with an optic surface.

  9. Physics of spinning gases and plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geyko, Vasily I.

    Initially motivated by the problem of compression of spinning plasma in Z-pinch devices and related applications, the thesis explores a number of interesting smaller-scale problems related to physics of gas and plasma rotation. In particular, thermodynamics of ideal spinning gas is studied. It is found that rotation modifies the heat capacity of the gas and reduces the gas compressibility. It is also proposed that, by performing a series of measurement of external parameters of a spinning gas, one can infer the distribution of masses of gas constituents. It is also proposed how to use the rotation-dependent heat capacity for improvingmore » the thermodynamic efficiency of internal combustion engines. To that end, two possible engine embodiments are proposed and explored in detail. In addition, a transient piezothermal effect is discovered numerically and is given a theoretical explanation. The effect consists of the formation of a radial temperature gradient driven by gas heating or compression along the rotation axis. By elaborating on this idea, a theoretical explanation is proposed also for the operation of so-called vortex tubes, which so far have been lacking rigorous theory. Finally, adiabatic compression of spinning plasmas and ionized gases are considered, and the effect of the electrostatic interactions on the compressibility and heat capacity is predicted.« less

  10. Unstable current systems and plasma instabilities in astrophysics; Proceedings of the 107th Symposium, University of Maryland, College Park, August 8-11, 1983

    NASA Technical Reports Server (NTRS)

    Kundu, M. R. (Editor); Holman, G. D. (Editor)

    1985-01-01

    Among the topics discussed are: magnetic field reconnection in cosmic plasmas; energy dissipation mechanisms in the solar corona; and the acceleration of runaway electrons and Joule heating in solar flares. Consideration is also given to: the nonlinear evolution of the resistive tearing mode; anomalous transport in current sheets; equilibrium and instability in extragalactic jets; and magnetic field reconnection in differentially rotating accretion disks. Among additional topics discussed are: the creation of high energy electron tails by lower hybrid waves and its connection with type-II and type-III bursts; beam current systems in solar flares; and the spatio-temporal features of microwave emissions of active regions and flares.

  11. Petrology and age of alkalic lava from the Ratak Chain of the Marshall Islands

    USGS Publications Warehouse

    Davis, A.S.; Pringle, M.S.; Pickthorn, L.-B.G.; Clague, D.A.; Schwab, W.C.

    1989-01-01

    Volcanic rock dredged from the flanks of four volcanic edifices in the Ratak chain of the Marshall Islands consist of alkalic lava that erupted above sea level or in shallow water. Compositions of recovered samples are predominantly differentiated alkalic basalt and hawaiite but include strongly alkalic melilitite. Whole rock 40Ar/39Ar total fusion and incremental heating ages of 87.3 ?? 0.6 Ma and 82.2 ?? 1.6 Ma determined for samples from Erikub Seamount and Ratak Guyot, respectively, are within the range predicted by plate rotation models but show no age progression consistent with a simple hot spot model. Variations in isotopic and some incompatible element ratios suggest interisland heterogeneity. -from Authors

  12. Assessment of Dominant/Codominant Height Growth for Second Rotation Slash Pine Plantations in South Georgia and North Florida

    Treesearch

    Charles E. Rose; Barry D. Shiver

    2002-01-01

    A slash pine (Pinus elliottii Engelm.) successive rotation plantation study was established in 1978-79 for the north Florida and south Georgia fiatwoods. The second rotation duplicated the first rotation seed source, site preparation, planting method, and density. The comparison between the two rotations is based on the mean height differential...

  13. Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate

    NASA Astrophysics Data System (ADS)

    Koffi, Moise

    The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary layer. Therefore the cooling is enhanced using flexible models by 30 percent. However, the huge size of the elephant pinna combined with its large surface to volume ratio and blood perfusion plays a key role in the enhancement of the animal's heat dissipation.

  14. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  15. Numerical modeling of melt flows in vertical Bridgman configuration affected by a rotating heat field

    NASA Astrophysics Data System (ADS)

    Kokh, K. A.; Popov, V. N.; Kokh, A. E.; Krasin, B. A.; Nepomnyaschikh, A. I.

    2007-05-01

    In this work, the numerical modeling of convection in a vertical Bridgman system under the influence of a rotating heat field was studied. First results show that changing of the heating from an axi-symmetric to a non-symmetric non-stationary configuration results in an increase in the convective flow and thus led to an increase of the melt uniformity because the convective cell is occupying almost the entire melt domain. Experimental growth of polycrystalline silicon under such special conditions provided ingots with improved texture and uniformity of electronic properties.

  16. Modeling and analyzing flow of third grade nanofluid due to rotating stretchable disk with chemical reaction and heat source

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.

    2018-05-01

    This article addresses flow of third grade nanofluid due to stretchable rotating disk. Mass and heat transports are analyzed through thermophoresis and Brownian movement effects. Further the effects of heat generation and chemical reaction are also accounted. The obtained ODE's are tackled computationally by means of homotopy analysis method. Graphical outcomes are analyzed for the effects of different variables. The obtained results show that velocity reduces through Reynolds number and material parameters. Temperature and concentration increase with Brownian motion and these decrease by Reynolds number.

  17. Contactless heater floating zone refining and crystal growth

    NASA Technical Reports Server (NTRS)

    Lan, Chung-Wen (Inventor); Kou, Sindo (Inventor)

    1993-01-01

    Floating zone refining or crystal growth is carried out by providing rapid relative rotation of a feed rod and finish rod while providing heat to the junction between the two rods so that significant forced convection occurs in the melt zone between the two rods. The forced convection distributes heat in the melt zone to allow the rods to be melted through with a much shorter melt zone length than possible utilizing conventional floating zone processes. One of the rods can be rotated with respect to the other, or both rods can be counter-rotated, with typical relative rotational speeds of the rods ranging from 200 revolutions per minute (RPM) to 400 RPM or greater. Zone refining or crystal growth is carried out by traversing the melt zone through the feed rod.

  18. Analytical modeling for heat transfer in sheared flows of nanofluids.

    PubMed

    Ferrari, Claudio; Kaoui, Badr; L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii; ten Thije Boonkkamp, J H M; Toschi, Federico

    2012-07-01

    We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect: it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnett limit for the spherical nanoparticles. The road ahead, which should lead toward robust predictive models of heat flux enhancement, is discussed.

  19. Effect of rotation on a rotating hot-wire sensor

    NASA Technical Reports Server (NTRS)

    Hah, C.; Lakshminarayana, B.

    1978-01-01

    An investigation was conducted to discern the effects of centrifugal and Coriolis forces on a rotating hot-wire. The probe was calibrated in a wind tunnel as well as in a rotating mode. The effect of rotation was found to be negligibly small. A small change in cold resistance (1.5%) was observed in the rotating wire. The rotation seems to have a negligible effect on the fluid mechanics, heat transfer and material characteristics of the wire. This is a significant conclusion in view of the potential application of the hot-wire probe in a rotating passage (such as turbomachinery).

  20. Effects of rotation on coolant passage heat transfer. Volume 2: Coolant passages with trips normal and skewed to the flow

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.

    1993-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modem turbine blades. This experimental program is one part of the NASA Hot Section Technology (HOST) Initiative, which has as its overall objective the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. The objective of this program was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. The experimental work was broken down into two phases. Phase 1 consists of experiments conducted in a smooth wall large scale heat transfer model. A detailed discussion of these results was presented in volume 1 of a NASA Report. In Phase 2 the large scale model was modified to investigate the effects of skewed and normal passage turbulators. The results of Phase 2 along with comparison to Phase 1 is the subject of this Volume 2 NASA Report.

  1. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  2. Effects of Post-Weld Heat Treatment on the Microstructure and Toughness of Flash Butt Welded High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Shajan, Nikhil; Arora, Kanwer Singh; Asati, Brajesh; Sharma, Vikram; Shome, Mahadev

    2018-04-01

    Effect of post-weld heat treatment on the weld microstructure, texture, and its correlation to the toughness of flash butt welded joints were investigated. Upon flash butt welding, the α and γ-fiber in the parent material converted to Goss (110)[001], rotated Goss (110)[1 \\bar{1} 0], and rotated cube (001)[1 \\bar{1} 0], (001)[ \\overline{11} 0] textures along the fracture plane. Formation of these detrimental texture components was a result of shear deformation and recrystallization of austenite at temperatures above T nr resulting in a drop of toughness at the weld zone. Inter-critical and sub-critical annealing cycles proved to be less effective in reducing the Goss (110)[001], rotated Goss (110)[1 \\bar{1} 0], and rotated cube (001)[1 \\bar{1} 0], (001)[ \\overline{11} 0] texture components, and therefore, toughness values remained unaffected. Post-weld heat treatment in the austenite phase field at 1000 °C for 5 seconds resulted in the formation of new grains with different orientations leading to a reduction in the texture intensities of both Goss and rotated Goss components and therefore improved weld zone toughness. Prolonged annealing time was found to be ineffective in improving the toughness due to grain growth.

  3. Laser-heated rotating specimen autoignition test

    NASA Technical Reports Server (NTRS)

    Au, A. C.

    1988-01-01

    Specimens of 440 C steel were rotated in a chamber pressurized with oxygen gas and heated with a 5-kW CO2 laser to determine the temperature required for autoignition to occur. Tests included exposures of static and rotating (25,000 rpm) specimens in oxygen pressurized to 5.51 MPa, and with focused laser fluences of more than 3.5 billion W/sq m. Specimen surface temperatures were monitored with a scanning infrared camera. Temperature measurement difficulties were experienced due to a problem with internal reflection inside the test chamber; however, posttest specimen examinations confirmed that surface melt (1371 C) was achieved in several tests. No sustained combustion was initiated in any rotating specimen. One static specimen was ignited. Results indicated that conditions necessary for autoignition of 440 C steel are more dependent on specimen geometry and available heat removal mechanisms. Sustained combustion occurred in the ignited static specimen with an estimated 130 C/sec cooling rate due to conduction. The rotating specimens could not sustain combustion due to a greater conductive/convective cooling rate of about 4000 C/sec and ejection of molten material. These results were applied to the Space Shuttle Main Engine (SSME) oxygen turbopump bearings to conclude that the LOX-cooled 440 C steel bearings cannot sustain combustion initiated by skidding friction.

  4. Linear thermal circulator based on Coriolis forces.

    PubMed

    Li, Huanan; Kottos, Tsampikos

    2015-02-01

    We show that the presence of a Coriolis force in a rotating linear lattice imposes a nonreciprocal propagation of the phononic heat carriers. Using this effect we propose the concept of Coriolis linear thermal circulator which can control the circulation of a heat current. A simple model of three coupled harmonic masses on a rotating platform permits us to demonstrate giant circulating rectification effects for moderate values of the angular velocities of the platform.

  5. Detailed heat/mass transfer distributions in a rotating two pass coolant channel with engine-near cross section and smooth walls.

    PubMed

    Rathjen, L; Hennecke, D K; Bock, S; Kleinstück, R

    2001-05-01

    This paper shows results obtained by experimental and numerical investigations concerning flow structure and heat/mass transfer in a rotating two-pass coolant channel with engine-near geometry. The smooth two passes are connected by a 180 degrees U-bend in which a 90 degrees turning vane is mounted. The influence of rotation number, Reynolds number and geometry is investigated. The results show a detailed picture of the flow field and distributions of Sherwood number ratios determined experimentally by the use of the naphthalene sublimation technique as well as Nusselt number ratios obtained from the numerical work. Especially the heat/mass transfer distributions in the bend and in the region after the bend show strong gradients, where several separation zones exist and the flow is forced to follow the turbine airfoil shape. Comparisons of numerical and experimental results show only partly good agreement.

  6. The influence of global self-heating on the Yarkovsky and YORP effects

    NASA Astrophysics Data System (ADS)

    Rozitis, B.; Green, S. F.

    2013-07-01

    In addition to collisions and gravitational forces, there is a growing amount of evidence that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are primary mechanisms that are fundamental to the physical and dynamical evolution of small asteroids. The Yarkovsky effect causes orbital drift, and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of global self-heating that occurs within the large concavities of irregularly shaped asteroids, which has been neglected or dismissed in all previous models. It is also combined with rough surface thermal-infrared beaming effects, which have been previously shown to enhance the Yarkovsky orbital drift and dampen on average the YORP rotational acceleration by orders of several tens of per cent. Tests on all published concave shape models of near-Earth asteroids, and also on 100 Gaussian random spheres, show that the Yarkovsky effect is sensitive to shadowing and global self-heating effects at the few per cent level or less. For simplicity, Yarkovsky models can neglect these effects if the level of accuracy desired is of this order. Unlike the Yarkovsky effect, the YORP effect can be very sensitive to shadowing and global self-heating effects. Its sensitivity increases with decreasing relative strength of the YORP rotational acceleration, and does not appear to depend greatly on the degree of asteroid concavity. Global self-heating tends to produce a vertical offset in an asteroid's YORP-rotational-acceleration versus obliquity curve which is in opposite direction to that produced by shadowing effects. It also ensures that at least one critical obliquity angle exists at which zero YORP rotational acceleration occurs. Global self-heating must be included for accurate predictions of the YORP effect if an asteroid exhibits a large shadowing effect. If global self-heating effects are not included, then it is found in ˜75 per cent of cases that better predictions are produced when shadowing is also not included. Furthermore, global self-heating has implications for reducing the sensitivity of the YORP effect predictions to detailed variations in an asteroid's shape model.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir

    The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique tomore » solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.« less

  8. Experimental study on the heat transfer characteristics of waste printed circuit boards pyrolysis.

    PubMed

    Ma, Hongting; Du, Na; Lin, Xueyin; Li, Chen; Lai, Junwen; Li, Zihao

    2018-08-15

    In order to study the appropriate and advanced technology for recycling waste printed circuit boards (PCBs), a fixed bed pyrolysis device with stirring function has been designed and developed. The effect of rotating speed on the temperature distribution and mass change in the pyrolysis process of FR-4 PCB has been analyzed. The heat transfer and pyrolysis characteristics of different granular layers with and without stirring have been investigated. The results indicate that the stirring can change the main way of heat transfer from conduction to convection in the PCB layers. As the increase of rotating speed, the temperature rising rate of material at the bottom of the pyrolysis furnace gradually decreases, while the heating rate is increasing at the upper layer, and the temperature difference between the upper and bottom layers is gradually reduced. When the rotating speed varies from 0r/min to 18r/min, the weight loss of the material increases from 3.97% to 6.76%, and the overall pyrolysis degree is improved. During the pyrolysis process, the material layer can be divided into three zones along the vertical direction, namely complete pyrolysis zone, partial pyrolysis zone and non-pyrolysis zone. As the rotating speed is 0r/min, the thickness of each zones is 6cm, 6cm and 3cm, respectively. However, when the rotating speed is increased to 18r/min, the non-pyrolysis zone disappears, and the thickness of complete pyrolysis zone and partial pyrolysis zone increase to 9cm and 6cm, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Shot-noise dominant regime of a nanoparticle in a laser beam

    NASA Astrophysics Data System (ADS)

    Zhong, Changchun; Robicheaux, Francis

    2017-04-01

    The technique of laser levitation of nanoparticles has become increasingly promising in the study of cooling and controlling mesoscopic quantum systems. Unlike a mechanical system, the levitated nanoparticle is less exposed to thermalization and decoherence due to the absence of direct contact with a thermal environment. In ultrahigh vacuum, the dominant source of decoherence comes from the unavoidable photon recoil from the optical trap which sets an ultimate bound for the control of levitated systems. In this paper, we study the shot noise heating and the parametric feedback cooling of an optically trapped anisotropic nanoparticle in the laser shot noise dominant regime. The rotational trapping frequency and shot noise heating rate have a dependence on the shape of the trapped particle. For an ellipsoidal particle, the ratio of the axis lengths and the overall size controls the shot noise heating rate relative to the rotational frequency. For a near spherical nanoparticle, the effective heating rate for the rotational degrees of freedom is smaller than that for translation suggesting that the librational ground state may be easier to achieve than the vibrational ground state.

  10. Experimental and numerical investigation on heat transfer augmentation in a circular tube under forced convection with annular differential blockages/inserts

    NASA Astrophysics Data System (ADS)

    Waghole, D. R.

    2018-06-01

    Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.

  11. Turbulent convection in liquid metal with and without rotation.

    PubMed

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr < 1. Most analog models of planetary dynamos, however, use moderate Pr fluids, and the systematic influence of reducing Pr is not well understood. We perform rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr < 1 and Pr > 1 fluids, respectively.

  12. When a Slowly Rotating Aquaplanet is Coupled to a Dynamical Ocean

    NASA Astrophysics Data System (ADS)

    Salameh, J.; Marotzke, J.

    2017-12-01

    Planets orbiting in close distance from their stars have a high probability to be detected, and are expected to be slowly rotating due to strong tidal forces. By increasing the rotation period from 1 Earth-day to 365 Earth-days, we previously found that the global-mean surface temperature of an aquaplanet with a static mixed-layer ocean decreases by up to 27 K. The cooling is attributed to an increase of the planetary albedo with the rotation period, which is associated with the different distributions of the sea ice and the deep convective clouds. However, we had there assumed a fixed mixed-layer depth and a zero oceanic heat transport in the aquaplanet configuration. The limitations of these assumptions in such exotic climates are still unclear. We therefore perform coupled atmosphere-ocean aquaplanet simulations with the general circulation model ICON for various rotation periods ranging from 1 Earth-day to 365 Earth-days. We investigate how the underlying oceanic circulation modifies the mean climate of slowly rotating aquaplanets, and whether the day-to-night oceanic heat transport reduces the surface-temperature gradients and the sea-ice extent.

  13. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-03-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  14. Understanding rotation profile structures in ECH-heated plasmas using nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.

    2015-11-01

    A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  15. Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets

    NASA Astrophysics Data System (ADS)

    Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.

    2017-12-01

    Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.

  16. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B. Huston

    1983-01-01

    Two support rings on a rotatable drum respectively engage conically tapered nd surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  17. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B.H.

    1982-07-21

    Two support rings on a rotatable drum respectively engage conically tapered end surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  18. Preparation of Geophysical Fluid Flow Experiments ( GeoFlow ) in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The ,,GeoFlow" is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluidmechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field similar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment requires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth's liquid core the exp eriment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heating the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number. Results of preparatory experiments and numerical simulation of the space experiment will be presented. Funding from DLR under grant 50 WM 0122 is greatfully ackwnoledged.

  19. Thermo-Rotational Instability in Plasma Disks Around Compact Objects*

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2008-04-01

    Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and the vertical gradients of the plasma density and temperature [1]. When the electron mean free path is shorter than the disk height and the (vertical) thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where ηT≡(dlnT/dz/(dlnn/dz)=2/3. Here T is the plasma temperature and n the particle density. The faster growth rates correspond to steeper temperature profiles (ηT>2/3) such as those produced by an internal (e.g. viscous) heating process. In the end, ballooning modes excited for various values of ηT can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings[2].*Sponsored in part by the U.S. Department of Energy[1]B. Coppi, M.I.T. (LNS) Report HEP, 07/02, Cambridge, MA (2007), Invited Paper at the International Symposium on ``Momentum Transport in Jets, Disks and Laboratory Plasmas'', Alba, Piedmont, September 2007, to be published in Europhysical Letters (EPL, IOP)[2]B. Coppi andF. Rousseau, Ap. J., 641, 458, (2006)

  20. Wage Differentials between Heat-Exposure Risk and No Heat-Exposure Risk Groups

    PubMed Central

    Kim, Donghyun; Lim, Up

    2017-01-01

    The goal of this study is to investigate the wage differential between groups of workers who are exposed to heat and those who are not. Workers in the heat-exposure risk group are defined as workers who work in conditions that cause them to spend more than 25% of their work hours at high temperatures. To analyze the wage differential, the Blinder-Oaxaca and Juhn-Murphy-Pierce methods were applied to Korea Working Condition Survey data. The results show that the no heat-exposure risk group received higher wages. In most cases, this can be interpreted as the endowment effect of human capital. As a price effect that lowers the endowment effect, the compensating differential for the heat-exposure risk group was found to be 1%. Moreover, education level, work experience, and employment status counteracted the compensating differentials for heat-exposure risks. A comparison of data sets from 2011 and 2014 shows that the increasing wage gap between the two groups was not caused by systematic social discrimination factors. This study suggests that wage differential factors can be modified for thermal environmental risks that will change working conditions as the impact of climate change increases. PMID:28672804

  1. Wage Differentials between Heat-Exposure Risk and No Heat-Exposure Risk Groups.

    PubMed

    Kim, Donghyun; Lim, Up

    2017-06-24

    The goal of this study is to investigate the wage differential between groups of workers who are exposed to heat and those who are not. Workers in the heat-exposure risk group are defined as workers who work in conditions that cause them to spend more than 25% of their work hours at high temperatures. To analyze the wage differential, the Blinder-Oaxaca and Juhn-Murphy-Pierce methods were applied to Korea Working Condition Survey data. The results show that the no heat-exposure risk group received higher wages. In most cases, this can be interpreted as the endowment effect of human capital. As a price effect that lowers the endowment effect, the compensating differential for the heat-exposure risk group was found to be 1%. Moreover, education level, work experience, and employment status counteracted the compensating differentials for heat-exposure risks. A comparison of data sets from 2011 and 2014 shows that the increasing wage gap between the two groups was not caused by systematic social discrimination factors. This study suggests that wage differential factors can be modified for thermal environmental risks that will change working conditions as the impact of climate change increases.

  2. Density Functional Computations and Molecular Dynamics Simulations of the Triethylammonium Triflate Protic Ionic Liquid.

    PubMed

    Mora Cardozo, Juan F; Burankova, T; Embs, J P; Benedetto, A; Ballone, P

    2017-12-21

    Systematic molecular dynamics simulations based on an empirical force field have been carried out for samples of triethylammonium trifluoromethanesulfonate (triethylammonium triflate, [TEA][Tf]), covering a wide temperature range 200 K ≤ T ≤ 400 K and analyzing a broad set of properties, from self-diffusion and electrical conductivity to rotational relaxation and hydrogen-bond dynamics. The study is motivated by recent quasi-elastic neutron scattering and differential scanning calorimetry measurements on the same system, revealing two successive first order transitions at T ≈ 230 and 310 K (on heating), as well as an intriguing and partly unexplained variety of subdiffusive motions of the acidic proton. Simulations show a weakly discontinuous transition at T = 310 K and highlight an anomaly at T = 260 K in the rotational relaxation of ions that we identify with the simulation analogue of the experimental transition at T = 230 K. Thus, simulations help identifying the nature of the experimental transitions, confirming that the highest temperature one corresponds to melting, while the one taking place at lower T is a transition from the crystal, stable at T ≤ 260 K, to a plastic phase (260 ≤ T ≤ 310 K), in which molecules are able to rotate without diffusing. Rotations, in particular, account for the subdiffusive motion seen at intermediate T both in the experiments and in the simulation. The structure, distribution, and strength of hydrogen bonds are investigated by molecular dynamics and by density functional computations. Clustering of ions of the same sign and the effect of contamination by water at 1% wgt concentration are discussed as well.

  3. Thermal analysis of MHD electro-osmotic peristaltic pumping of Casson fluid through a rotating asymmetric micro-channel

    NASA Astrophysics Data System (ADS)

    Venugopal Reddy, Kattamreddy; Makinde, Oluwole Daniel; Gnaneswara Reddy, Machireddy

    2018-05-01

    In this paper, we investigate the combined effects of wall slip, viscous dissipation, and Joule heating on MHD electro-osmotic peristaltic motion of Casson fluid with heat transfer through a rotating asymmetric micro-channel. Using long wavelength and small Reynolds number assumptions, the governing equations of momentum and energy balance are obtained and tackled analytically. The effects of various embedding parameters on the stream function, velocity, temperature, skin friction, Nusselt number and trapping phenomenon are displayed graphically and discussed. It is found that Casson fluid velocity, temperature, and heat transfer rate are enhanced with a boost in electro-osmotic force.

  4. Modeling Chemically Reactive Flow of Sutterby Nanofluid by a Rotating Disk in Presence of Heat Generation/Absorption

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Ijaz Khan, M.; Alsaedi, A.

    2018-05-01

    In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, chemical reaction and heat source are also accounted. We employ transformation procedure to obtain a system of nonlinear ODE’s. This system is numerically solved by Built-in-Shooting method. Impacts of different involved parameter on velocity, temperature and concentration are described. Velocity, concentration and temperature gradients are numerically computed. Obtained results show that velocity is reduced through material parameter. Temperature and concentration are enhanced with thermophoresis parameter.

  5. Thermal radiation influence on MHD flow of a rotating fluid with heat transfer through EFGM solutions

    NASA Astrophysics Data System (ADS)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.

  6. Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.

    1993-01-01

    We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.

  7. Numerical study of mixed convection heat transfer enhancement in a channel with active flow modulation

    NASA Astrophysics Data System (ADS)

    Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim

    2017-06-01

    A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.

  8. Iapetus' Geophysics: Rotation Rate, Shape, and Equatorial Ridge

    NASA Technical Reports Server (NTRS)

    Castillo-Rogez, J. C.; Matson, D. L.; Sotin, C.; Johnson, T. V.; Lunine, J. I.; Thomas, P. C.

    2007-01-01

    Iapetus has preserved evidence that constrains the modeling of its geophysical history from the time of its accretion until now. The evidence is (a) its present 79.33-day rotation or spin rate, (b) its shape that corresponds to the equilibrium figure for a hydrostatic body rotating with a period of approximately 16 h, and (c) its high, equatorial ridge, which is unique in the Solar System. This paper reports the results of an investigation into the coupling between Iapetus' thermal and orbital evolution for a wide range of conditions including the spatial distributions with time of composition, porosity, short-lived radioactive isotopes (SLRI), and temperature. The thermal model uses conductive heat transfer with temperature-dependent conductivity. Only models with a thick lithosphere and an interior viscosity in the range of about the water ice melting point can explain the observed shape. Short-lived radioactive isotopes provide the heat needed to decrease porosity in Iapetus? early history. This increases thermal conductivity and allows the development of the strong lithosphere that is required to preserve the 16-h rotational shape and the high vertical relief of the topography. Long-lived radioactive isotopes and SLRI raise internal temperatures high enough that significant tidal dissipation can start, and despin Iapetus to synchronous rotation. This occurred several hundred million years after Iapetus formed. The models also constrain the time when Iapetus formed because the successful models are critically dependent upon having just the right amount of heat added by SLRI decay in this early period. The amount of heat available from short-lived radioactivity is not a free parameter but is fixed by the time when Iapetus accreted, by the canonical concentration of Al-26, and, to a lesser extent, by the concentration of Fe-60. The needed amount of heat is available only if Iapetus accreted between 2.5 and 5.0Myr after the formation of the calcium aluminum inclusions as found in meteorites. Models with these features allow us to explain Iapetus? present synchronous rotation, its fossil 16-h shape, and the context within which the equatorial ridge arose.

  9. Rotating microgravity-bioreactor cultivation enhances the hepatic differentiation of mouse embryonic stem cells on biodegradable polymer scaffolds.

    PubMed

    Wang, Yingjie; Zhang, Yunping; Zhang, Shichang; Peng, Guangyong; Liu, Tao; Li, Yangxin; Xiang, Dedong; Wassler, Michael J; Shelat, Harnath S; Geng, Yongjian

    2012-11-01

    Embryonic stem (ES) cells are pluripotent cells that are capable of differentiating all the somatic cell lineages, including those in the liver tissue. We describe the generation of functional hepatic-like cells from mouse ES (mES) cells using a biodegradable polymer scaffold and a rotating bioreactor that allows simulated microgravity. Cells derived from ES cells cultured in the three-dimensional (3D) culture system with exogenous growth factors and hormones can differentiate into hepatic-like cells with morphologic characteristics of typical mature hepatocytes. Reverse-transcription polymerase chain-reaction testing, Western blot testing, immunostaining, and flow cytometric analysis show that these cells express hepatic-specific genes and proteins during differentiation. Differentiated cells on scaffolds further exhibit morphologic traits and biomarkers characteristic of liver cells, including albumin production, cytochrome P450 activity, and low-density lipoprotein uptake. When these stem cell-bearing scaffolds are transplanted into severe combined immunodeficient mice, the 3D constructs remained viable, undergoing further differentiation and maturation of hepatic-like cells in vivo. In conclusion, the growth and differentiation of ES cells in a biodegradable polymer scaffold and a rotating microgravity bioreactor can yield functional and organizational hepatocytes useful for research involving bioartificial liver and engineered liver tissue.

  10. Thermal Evolution of Earht's Core during Accretion: a Preliminary Solid Inner Core at the End of Accrfetion.

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.

    2015-12-01

    Growth of an inner core has conventionally been related to core cooling blow the liquidus of iron. It is however possible that the core of the proto-Earth solidifies upon pressure increase during accretion. The lithostatic pressure in the proto-Earth increases immediately after merging each impactor, and the pressure-dependent liquidus of iron may supersede the temperature near the center resulting in a solid inner core. Assuming that Earth is formed by accreting a few dozen Moon to Mars size planetary embryos, the thermal evolution of the proto-Earth's core is investigated during accretion. The collision of an embryo heats the Earth differentially and the rotating low-viscosity, differentially heated core stratifies, creating a spherically symmetric stable and radially increasing temperature distribution. Convection occurs in the outer core while heat transfers by conduction in deeper parts. It is assumed that the iron core of an embryo pools at the bottom of partially molten mantle and thermally equilibrates with surroundings. It then descends as an iron diapir in the solid silicate mantle, while releasing its gravitational energy. Depending on its temperature when arrives at the core mantle boundary, it may spread on the core creating a hot layer or plunge into the core and descend to a neutrally buoyant level while further releasing its gravitational energy. A few dozen thermal evolution models of the core are investigates to examine effects of major parameters such as: total number of impacting embryos; partitioning of the gravitational energy released during the descent of the diaper in the mantle (between the silicate mantle and the iron diaper), and in the core (between the proto-Earth's core and that of the embryo); and gravitational energy and latent heat released due to the core solidification. All of the models predict a large solid inner core, about 1500 to 2000 km in radius, at the end of accretion.

  11. Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage With a 180 Degree Turn

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    1999-01-01

    Numerical results are presented for flow in a rotating internal passage with a 180 degree turn and ribbed walls. Reynolds numbers ranging from 5200 to 7900, and Rotation numbers of 0.0 and 0.24 were considered. The straight sections of the channel have a square cross section, with square ribs spaced one hydraulic diameter (D) apart on two opposite sides. The ribs have a height of 0.1D and are not staggered from one side to the other. The full three dimensional Reynolds Averaged Navier-Stokes equations are solved combined with the Wilcox k-omega turbulence model. By solving an additional equation for mass transfer, it is possible to isolate the effect of buoyancy in the presence of rotation. That is, heat transfer induced buoyancy effects can be eliminated as in naphthalene sublimation experiments. Heat transfer, mass transfer and flow field results are presented with favorable agreement with available experimental data. It is shown that numerically predicting the reattachment between ribs is essential to achieving an accurate prediction of heat/mass transfer. For the low Reynolds numbers considered, the standard turbulence model did not produce reattachment between ribs. By modifying the wall boundary condition on omega, the turbulent specific dissipation rate, much better agreement with the flow structure and heat/ mass transfer was achieved. It is beyond the scope of the present work to make a general recommendation on the omega wall boundary condition. However, the present results suggest that the omega boundary condition should take into account the proximity to abrupt changes in geometry.

  12. Energy absorption by a magnetic nanoparticle suspension in a rotating field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raikher, Yu. L.; Stepanov, V. I., E-mail: stepanov@icmm.ru

    Heat generation by viscous dissipation in a dilute suspension of single-domain ferromagnetic particles in a rotating magnetic field is analyzed by assuming that the suspended particles have a high magnetic rigidity. The problem is solved by using a kinetic approach based on a rotational diffusion equation. Behavior of specific loss power (SLP) as a function of field strength H and frequency {omega} is examined at constant temperature. SLP increases as either of these parameters squared when the other is constant, eventually approaching a saturation value. The function SLP(H, {omega}) can be used to determine optimal and admissible ranges of magneticallymore » induced heating.« less

  13. Centrifugal and Coriolis Effects on Thermal Convection in a Rotating Vertical Cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Hanjie; Pearlstein, Arne J.

    1997-11-01

    For a rotating vertical circular cylinder, we compute steady axisymmetric flows driven by heating from below, accounting for both centrifugal and Coriolis effects. We discuss the dependence of the flow and heat transfer on Rayleigh number and Ekman number for selected values of the Prandtl number and aspect ratio. For the case where the sidewall temperature varies linearly, the computed solutions include single- and multi-cell flows. We pay particular attention to deviations from rigid-body rotation, with emphasis on topological division of the flow by surfaces on which the azimuthal velocity is equal to the product of the angular velocity and the radius, or by surfaces on which the meridional flow vanishes.

  14. One-step method for the production of nanofluids

    DOEpatents

    Kostic, Milivoje [Chicago, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John R [Downers Grove, IL; Choi, Stephen U. S. [Napersville, IL

    2010-05-18

    A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.

  15. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  16. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Heger, A.; Woosley, S. E.; Spruit, H. C.

    2005-06-01

    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.

  17. The Differential Impact of Clerk Interest and Participation in a Child and Adolescent Psychiatry Clerkship Rotation upon Psychiatry and Pediatrics Residency Matches

    ERIC Educational Resources Information Center

    Hanson, Mark D.; Szatmari, Peter; Eva, Kevin W.

    2011-01-01

    Objective: The authors evaluated the differential impact of clerk interest and participation in a Child and Adolescent Psychiatry (CAP) clerkship rotation upon psychiatry and pediatrics residency matches. Method: Authors studied clerks from the McMaster University M.D. program graduating years of 2005-2007. Participants were categorized as 1)…

  18. Task Rotation: Strategies for Differentiating Activities and Assessments by Learning Style. A Strategic Teacher PLC Guide

    ERIC Educational Resources Information Center

    Silver, Harvey; Moirao, Daniel; Jackson, Joyce

    2011-01-01

    One of the hardest jobs in teaching is to differentiate learning activities and assessments to your students' learning styles. But you and your colleagues can learn how to do this together when each of you has this guide to the Task Rotation strategy from our ultimate guide to teaching strategies, "The Strategic Teacher". Use the guide in your…

  19. Electro-mechanical heat switch for cryogenic applications

    DOEpatents

    van den Berg, Marcel L.; Batteux, Jan D.; Labov, Simon E.

    2003-01-01

    A heat switch includes two symmetric jaws. Each jaw is comprised of a link connected at a translatable joint to a flexible arm. Each arm rotates about a fixed pivot, and has an articulated end including a thermal contact pad connected to a heat sink. The links are joined together at a translatable main joint. To close the heat switch, a closing solenoid is actuated and forces the main joint to an over-center position. This movement rotates the arms about their pivots, respectively, forces each of them into a stressed configuration, and forces the thermal contact pads towards each other and into compressive contact with a cold finger. The closing solenoid is then deactivated. The heat switch remains closed due to a restoring force generated by the stressed configuration of each arm, until actuation of an opening solenoid returns the main joint to its starting open-switch position.

  20. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a stationary and rotating disk and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1990-01-01

    In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.

  1. Wavelet analysis of stellar differential rotation. III. The Sun in white light

    NASA Astrophysics Data System (ADS)

    Hempelmann, A.

    2003-02-01

    Future space projects like KEPLER will deliver a vast quantity of high precision light curves of stars. This paper describes a test concerning the observability of rotation and even differential rotation of slowly rotating stars from such data. Two published light curves of solar total irradiance measures are investigated: the Nimbus-7 Earth Radiation Budget (ERB) observations between 1978 and 1993 and the Active Cavity Radiometer Irradiance Monitor I (ACRIM I) measurements between 1980 and 1989. Light curve analysis show that oscillations on time-scales comparable to solar rotation but of a complex pattern are visible. Neither Fourier analysis nor time-frequency Wavelet analysis yield the true rotation period during the more active phases of the solar cycle. The true rotation period dominates only for a short time during solar minimum. In the light of this study even space-born broad band photometry may turn out an inappropriate instrument to study stellar butterfly diagrams of stars rotating as slow as the Sun. However, it was shown in Papers I and II of this series that chromospheric tracers like Lyman alpha , Mg II h+k and CaII H+K are appropriate instruments to perform this task.

  2. Research of the rotation effect upon the hydrodynamics and heat and mass transport in a chemical reactor

    NASA Astrophysics Data System (ADS)

    Gicheva, Natalia I.

    2017-11-01

    The subject of this research is a chemical reactor for producing tungsten. A physical and mathematical model of fluid motion and heat and mass transfer in a vortex chamber of the chemical reactor under forced and free convection has been described and simulated using two methods. The numerical simulation was carried out in «vortex - stream functions and «velocity - pressure» variables. The velocity field, the mass and the temperature distributions in the reactor were obtained. The influence of a rotation effect upon the hydrodynamics and heat and mass transport was showed. The rotation is important for more uniform distribution of temperature and matter in the vortex chamber. Parametric studies on effects of the Reynolds, Prandtl and Rossbi criteria on the flow characteristics were also performed. Reliability of the calculations was verified by comparing the results obtained by the methods mentioned above. Also, the created model was applied for numerically solving of the classical test problem of the velocity distribution in an annular channel and that of a rotating infinite disk in a stationary liquid. The study findings showed a good agreement with the exact solutions.

  3. Rotating thermal convection at very large Rayleigh numbers

    NASA Astrophysics Data System (ADS)

    Weiss, Stephan; van Gils, Dennis; Ahlers, Guenter; Bodenschatz, Eberhard

    2016-11-01

    The large scale thermal convection systems in geo- and astrophysics are usually influenced by Coriolis forces caused by the rotation of their celestial bodies. To better understand the influence of rotation on the convective flow field and the heat transport at these conditions, we study Rayleigh-Bénard convection, using pressurized sulfur hexaflouride (SF6) at up to 19 bars in a cylinder of diameter D=1.12 m and a height of L=2.24 m. The gas is heated from below and cooled from above and the convection cell sits on a rotating table inside a large pressure vessel (the "Uboot of Göttingen"). With this setup Rayleigh numbers of up to Ra =1015 can be reached, while Ekman numbers as low as Ek =10-8 are possible. The Prandtl number in these experiment is kept constant at Pr = 0 . 8 . We report on heat flux measurements (expressed by the Nusselt number Nu) as well as measurements from more than 150 temperature probes inside the flow. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of GA was supported in part by the US National Science Foundation through Grant DMR11-58514.

  4. Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

    NASA Technical Reports Server (NTRS)

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2013-01-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.

  5. Rotational properties of hypermassive neutron stars from binary mergers

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst

    2017-08-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  6. Jeans instability of rotating magnetized quantum plasma: Influence of radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, H., E-mail: hjoshi8525@yahoo.com; Pensia, R. K.

    2015-07-31

    The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.

  7. Limits on magnetic field amplification from the r -mode instability

    NASA Astrophysics Data System (ADS)

    Friedman, John L.; Lindblom, Lee; Rezzolla, Luciano; Chugunov, Andrey I.

    2017-12-01

    At second order in perturbation theory, the unstable r -mode of a rotating star includes growing differential rotation whose form and growth rate are determined by gravitational-radiation reaction. With no magnetic field, the angular velocity of a fluid element grows exponentially until the mode reaches its nonlinear saturation amplitude and remains nonzero after saturation. With a background magnetic field, the differential rotation winds up and amplifies the field, and previous work where large mode amplitudes were considered [L. Rezzolla, F. K. Lamb, and S. L. Shapiro, Astrophys. J. 531, L139 (2000)., 10.1086/312539], suggests that the amplification may damp out the instability. A background magnetic field, however, turns the saturated time-independent perturbations corresponding to adding differential rotation into perturbations whose characteristic frequencies are of order the Alfvén frequency. As found in previous studies, we argue that magnetic-field growth is sharply limited by the saturation amplitude of an unstable mode. In contrast to previous work, however, we show that if the amplitude is small, i.e., ≲10-4 , then the limit on the magnetic-field growth is stringent enough to prevent the loss of energy to the magnetic field from damping or significantly altering an unstable r -mode in nascent neutron stars with normal interiors and in cold stars whose interiors are type II superconductors. We show this result first for a toy model, and we then obtain an analogous upper limit on magnetic-field growth using a more realistic model of a rotating neutron star. Our analysis depends on the assumption that there are no marginally unstable perturbations, and this may not hold when differential rotation leads to a magnetorotational instability.

  8. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  9. AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Andrew A.; Weisenburger, Kolby L.; Irwin, Jonathan

    Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one tomore » longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.« less

  10. Rotating samples in FT-RAMAN spectrometers

    NASA Astrophysics Data System (ADS)

    De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.

    1997-11-01

    It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.

  11. Task-dependent output of human parasternal intercostal motor units across spinal levels.

    PubMed

    Hudson, Anna L; Gandevia, Simon C; Butler, Jane E

    2017-12-01

    During breathing, there is differential activity in the human parasternal intercostal muscles and the activity is tightly coupled to the known mechanical advantages for inspiration of the same regions of muscles. It is not known whether differential activity is preserved for the non-respiratory task of ipsilateral trunk rotation. In the present study, we compared single motor units during resting breathing and axial rotation of the trunk during apnoea. We not only confirmed non-uniform recruitment of motor units across parasternal intercostal muscles in breathing, but also demonstrated that the same motor units show an altered pattern of recruitment in the non-respiratory task of trunk rotation. The output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task and these results help us understand the mechanisms that may govern task-dependent differences in motoneurone output. During inspiration, there is differential activity in the human parasternal intercostal muscles across interspaces. We investigated whether the earlier recruitment of motor units in the rostral interspaces compared to more caudal spaces during inspiration is preserved for the non-respiratory task of ipsilateral trunk rotation. Single motor unit activity (SMU) was recorded from the first, second and fourth parasternal interspaces on the right side in five participants in two tasks: resting breathing and 'isometric' axial rotation of the trunk during apnoea. Recruitment of the same SMUs was compared between tasks (n = 123). During resting breathing, differential activity was indicated by earlier recruitment of SMUs in the first and second interspaces compared to the fourth space in inspiration (P < 0.01). By contrast, during trunk rotation, the same motor units showed an altered pattern of recruitment because SMUs in the first interspace were recruited later and at a higher rotation torque than those in the second and fourth interspaces (P < 0.05). Tested for a subset of SMUs, the reliability of the breathing and rotation tasks, as well as the SMU recruitment measures, was good-excellent [intraclass correlation (2,1): 0.69-0.91]. Thus, the output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task. Given that the differential inspiratory output of parasternal intercostal muscles is linked to their relative mechanical effectiveness for inspiration and also that this output is altered in trunk rotation, we speculate that a mechanism matching neural drive to muscle mechanics underlies the task-dependent differences in output of axial motoneurone pools. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  12. Modelling of the rotational moulding process for the manufacture of plastic products

    NASA Astrophysics Data System (ADS)

    Khoon, Lim Kok

    The present research is mainly focused on two-dimensional non-linear thermal modelling, numerical procedures and software development for the rotational moulding process. The RotoFEM program is developed for the rotational moulding process using finite element procedures. The program is written in the MATLAB environment. The research includes the development of new slip flow models, phase change study, warpage study and process analyses. A new slip flow methodology is derived for the heat transfer problem inside the enclosed rotating mould during the heating stage of the tumbling powder. The methodology enables the discontinuous powder to be modelled by the continuous-based finite element method. The Galerkin Finite Element Method is incorporated with the lumped-parameter system and the coincident node technique in finding the multi-interacting heat transfer solutions inside the mould. Two slip flow models arise from the slip flow methodology; they are SDM (single-layered deposition method) and MDM (multi-layered deposition method). These two models have differences in their thermal description for the internal air energy balance and the computational procedure for the deposition of the molten polymer. The SDM model assumes the macroscopic deposition of the molten polymer bed exists only between the bed and the inner mould surface. On the other hand, the MDM model allows the layer-by-layer deposition of the molten polymer bed macroscopically. In addition, the latter has a more detailed heat transfer description for the internal air inside the mould during the powder heating cycle. In slip flow models, the semi-implicit approach has been introduced to solve the final quasi-equilibrium internal air temperature during the heating cycle. A notable feature of this slip flow methodology is that the slip flow models are capable of producing good results for the internal air at the heating powder stage, without the consideration of the powder movement and changeable powder mass. This makes the modelling of the rotational moulding process much simpler. In the simulation of the cooling stage in rotational moulding, the thermal aspects of the inherent warpage problem and external-internal cooling method have been explored. The predicted internal air temperature profiles have shown that the less apparent crystallization plateau in the experimental internal air in practice could be related to warpage. Various phase change algorithms have been reviewed and compared, and thus the most convenient and considerable effective algorithm is proposed. The dimensional analysis method, expressed by means of dimensionless combinations of physical, boundary, and time variables, is utilized to study the dependence of the key thermal parameters on the processing times of rotational moulding. Lastly, the predicted results have been compared with the experimental results from two different external resources. The predicted temperature profiles of the internal air, oven times and other process conditions are consistent with the available data.

  13. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  14. Newton Algorithms for Analytic Rotation: An Implicit Function Approach

    ERIC Educational Resources Information Center

    Boik, Robert J.

    2008-01-01

    In this paper implicit function-based parameterizations for orthogonal and oblique rotation matrices are proposed. The parameterizations are used to construct Newton algorithms for minimizing differentiable rotation criteria applied to "m" factors and "p" variables. The speed of the new algorithms is compared to that of existing algorithms and to…

  15. Perception of Invariance Over Perspective Transformations in Five Month Old Infants.

    ERIC Educational Resources Information Center

    Gibson, Eleanor; And Others

    This experiment asked whether infants at 5 months perceived an invariant over four types of rigid motion (perspective transformations), and thereby differentiated rigid motion from deformation. Four perspective transformations of a sponge rubber object (rotation around the vertical axis, rotation around the horizontal axis, rotation in the frontal…

  16. Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.

    2005-01-01

    A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.

  17. Large-Scale Dynamics of the Solar Convection Zone: Puzzles, Challenges, and Insights from a Modeler's Perspective

    NASA Astrophysics Data System (ADS)

    Featherstone, Nicholas A.; Miesch, Mark S.

    2013-03-01

    Meridional circulations and rotational shear serve as a key ingredient in many models of the solar dynamo, likely playing an important role in the maintenance and timing of the solar cycle. These global-scale flows must themselves be driven by the large-scale overturning convection thought to pervade the outer layers of the Sun. As these deep interior motions are inaccessible to local helioseismic analyses in virtually all respects, global-scale numerical models have become a widely-used tool for probing their dynamics. Such models must confront a number of challenges, however, if they are to yield an accurate description of the convection zone. These difficulties stem in part from the Sun's location in parameter space being far removed from anything accessible to modern supercomputers, but also from questions concerning how to best capture the salient, but generally unresolvable, physics of the tachocline and near-photospheric layers. In recent years, global-scale models have made good contact with observations in spite of these challenges, presumably owing to their ability to accurately reflect the large-scale balances established throughout the convection zone. Due to their success in reproducing many aspects of the solar differential rotation and the solar cycle in particular, we might be encouraged to ask what insights numerical models can provide into phenomena that are much more difficult to observe directly. Of particular interest is the possibility that deep modeling efforts might provide some glimpses into the nature of the Sun's deep meridional circulation. I will describe the essential elements common amongst many global-scale models of the solar convection zone, with some discussion of the strengths and weaknesses associated with the assumptions inherent in a typical model setup. I will then present a class of solar convection models that demonstrate the existence of two distinct regimes of meridional circulation. These two regimes depend predominantly on the the vigor of the convective driving and possess, in one instance, a single monolithic cell of circulation in each hemisphere, and in the other instance, a single cell at high latitudes with multiple cells at low latitudes. The transition between these two regimes in the context of solar simulations serves to motivate the need for careful treatment of heat transport in the upper and lower convection zone. After discussing the nature of this transition, I will examine how thermal perturbations associated with the inclusion of a tachocline might alter this phenomenon. Finally, I will compare various strategies employed by different authors to address the nature of heat transport in the upper boundary layer, focusing on the implications of each approach for the resulting velocity amplitudes and the convective heat flux established throughout the bulk of the convection zone. Convective amplitudes associated with those regimes that produce a nearly solar-like differential rotation are in generally good agreement with those based on theoretical predictions, but are somewhat higher than those inferred through helioseismic analysis.

  18. The Influence of Static and Rotating Magnetic Fields on Heat and Mass Transfer in Silicon Floating Zones

    NASA Technical Reports Server (NTRS)

    Croll, A.; Dold, P.; Kaiser, Th.; Szofran, F. R.; Benz, K. W.

    1999-01-01

    Heat and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio-frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a defined flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to 5 T and in transverse rotating magnetic fields up to 7.5 mT. Static fields of a few 100 mT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile toward a more diffusion-limited case, is possible with static fields greater than or equal to 1 T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelectromagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few millitesla. The field shifts time- dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes.

  19. Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating.

    PubMed

    Qasim, Muhammad; Khan, Ilyas; Shafie, Sharidan

    2013-01-01

    This article looks at the steady flow of Micropolar fluid over a stretching surface with heat transfer in the presence of Newtonian heating. The relevant partial differential equations have been reduced to ordinary differential equations. The reduced ordinary differential equation system has been numerically solved by Runge-Kutta-Fehlberg fourth-fifth order method. Influence of different involved parameters on dimensionless velocity, microrotation and temperature is examined. An excellent agreement is found between the present and previous limiting results.

  20. Rotational dynamics and heating of trapped nanovaterite particles

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Richards, Joseph M.; Mazilu, Michael; Spalding, Gabriel C.; Skelton Spesyvtseva, Susan E.; Craig, Derek; Dholakia, Kishan

    2017-04-01

    We synthesize, optically trap, and rotate individual nanovaterite crystals with a mean particle radius of 423 nm. Rotation rates of up to 4.9 kHz in heavy water are recorded [1]. Laser-induced heating due to residual absorption of the nanovaterite particle results in the superlinear behavior of the rotation rate as a function of trap power. A finite element method based on the Navier-Stokes model for the system allows us to determine the residual optical absorption coefficient for a trapped nanovaterite particle. This is further confirmed by the theoretical model. Our data reveal that the nanoparticle experiences a different Stokes drag torque or force depending on whether we consider rotational or translational motion, which is in a good agreement with the theoretical prediction of the rotational hot Brownian motion [2]. The data allow us to determine the correction factors for the local viscosity for both the rotational and translational motion of the nanoparticle. The use of nanovaterite particles opens up new studies for levitated optomechanics in vacuum [3-6] as well as microrheological properties of cells or biological media [7]. For these latter studies, nanovaterite offers prospects of microviscosity measurements in ultrasmall volumes and, due to its size, potentially simpler uptake by cellular media [8].

  1. Questions and Answers About Shoulder Problems

    MedlinePlus

    ... months your shoulder is not better. Rotator Cuff Tear Treatment for a rotator cuff tear may also include: Heat or cold to the ... into your shoulder joint. Surgery to repair the tear if you don’t see improvement with other ...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faubel, M.; Weiner, E.R.

    Rotational level populations of N/sub 2/ were measured downstream from the skimmer in beams of pure N/sub 2/ and in mixtures of N/sub 2/ with He, Ne, and Ar expanded from room temperature nozzles. The range of p/sub 0/D was from 5 to 50 Torr cm. The formation of dimers and higher condensates of beam species was monitored during the runs. The effect of condensation energy release on rotational populations and parallel temperatures was readily observed. Two different methods for evaluating the rotational population distributions were compared. One method is based on a dipole-excitation model and the other on anmore » excitation matrix obtained empirically. Neither method proved clearly superior. Both methods indicated nonequilibrium rotational populations for all of our room temperature nozzle expansion conditions. Much of the nonequilibrium character appears to be due to the behavior of the K = 2 and K = 4 levels, which may be accounted for in terms of the rotational energy level spacing. In particular, the overpopulation of the K = 4 level is explained by a near-resonant transfer of rotational energy between molecules in the K = 6 and K = 0 states, to give two molecules in the K = 4 state. Rotational and vibrational temperatures were determined for pure N/sub 2/ beams from nozzles heated up to 1700 /sup 0/K. The heated nozzle experiments indicated a 40% increase in the rotational collision number between 300 and 1700 /sup 0/K.« less

  3. Recurrent star-spot activity and differential rotation in KIC 11560447

    NASA Astrophysics Data System (ADS)

    Özavcı, I.; Şenavcı, H. V.; Işık, E.; Hussain, G. A. J.; O'Neal, D.; Yılmaz, M.; Selam, S. O.

    2018-03-01

    We present a detailed analysis of surface inhomogeneities on the K1-type subgiant component of the rapidly rotating eclipsing binary KIC 11560447, using high-precision Kepler light curves spanning nearly 4 yr, which corresponds to about 2800 orbital revolutions. We determine the system parameters precisely, using high-resolution spectra from the 2.1-m Otto Struve Telescope at the McDonald Observatory. We apply the maximum entropy method to reconstruct the relative longitudinal spot occupancy. Our numerical tests show that the procedure can recover large-scale random distributions of individually unresolved spots, and it can track the phase migration of up to three major spot clusters. By determining the drift rates of various spotted regions in orbital longitude, we suggest a way to constrain surface differential rotation and we show that the results are consistent with periodograms. The K1IV star exhibits two mildly preferred longitudes of emergence, indications of solar-like differential rotation, and a 0.5-1.3-yr recurrence period in star-spot emergence, accompanied by a secular increase in the axisymmetric component of spot occupancy.

  4. Shape memory alloy heat engines and energy harvesting systems

    DOEpatents

    Browne, Alan L; Johnson, Nancy L; Shaw, John Andrew; Churchill, Christopher Burton; Keefe, Andrew C; McKnight, Geoffrey P; Alexander, Paul W; Herrera, Guillermo A; Yates, James Ryan; Brown, Jeffrey W

    2014-09-30

    A heat engine includes a first rotatable pulley and a second rotatable pulley spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes a first wire, a second wire, and a matrix joining the first wire and the second wire. The first wire and the second wire are in contact with the pulleys, but the matrix is not in contact with the pulleys. A timing cable is disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  5. One-step method for the production of nanofluids

    DOEpatents

    Kostic, Milivoje [Sycamore, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John [Downers Grove, IL; Choi, Stephen U. S. [Naperville, IL

    2011-08-16

    A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.

  6. Review of advanced radiator technologies for spacecraft power systems and space thermal control

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Peterson, George P.

    1994-01-01

    A two-part overview of progress in space radiator technologies is presented. The first part reviews and compares the innovative heat-rejection system concepts proposed during the past decade, some of which have been developed to the breadboard demonstration stage. Included are space-constructable radiators with heat pipes, variable-surface-area radiators, rotating solid radiators, moving-belt radiators, rotating film radiators, liquid droplet radiators, Curie point radiators, and rotating bubble-membrane radiators. The second part summarizes a multielement project including focused hardware development under the Civil Space Technology Initiative (CSTI) High Capacity Power program carried out by the NASA Lewis Research Center and its contractors to develop lightweight space radiators in support of Space Exploration Initiative (SEI) power systems technology.

  7. Knudsen torque on heated micro beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction ofmore » the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.« less

  8. [MRI of the rotator cuff: evaluation of a new symptomatologic classification].

    PubMed

    Tavernier, T; Walch, G; Noël, E; Lapra, C; Bochu, M

    1995-05-01

    The different classifications use for the rotator cuff pathology seem to be incomplete. We propose a new classification with many advantages: 1) Differentiate the tendinopathy between less serious (grade 2A) and serious (grade 2B). 2) Recognize the intra-tendinous cleavage of the infra-spinatus associated with complete tear of the supra-spinatus. 3) Differentiate partial and complete tears of the supra-spinatus. We established this classification after a retrospective study of 42 patients operated on for a rotator cuff pathology. Every case had had a preoperative MRI. This classification is simple, reliable, especially for the associated intra tendinous cleavage.

  9. Heat transfer in a cover-plate preswirl rotating-disk system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilbrow, R.; Karabay, H.; Wilson, M.

    1999-04-01

    In most gas turbines, blade-cooling air is supplied from stationary preswirl nozzles that swirl the air in the direction of rotation of the turbine disk. In the cover-plate system, the preswirl nozzles are located radially inward of the blade-cooling holes in the disk, and the swirling air flows radially outward in the cavity between the disk and a cover-plate attached to it. In this combined computational and experimental paper, an axisymmetric elliptic solver, incorporating the Launder-Sharma and the Morse low-Reynolds-number {kappa}-{epsilon} turbulence models, is used to compute the flow and heat transfer. The computed Nusselt numbers for the heated turbinemore » disk are compared with measured values obtained from a rotating-disk rig. Comparisons are presented, for a wide range of coolant flow rates, for rotational Reynolds numbers in the range 0.5 {times} 10{sup 6} to 1.5 {times} 10{sup 6}, and for 0.9 < {beta}{sub p} < 3.1, where {beta}{sub p} is the preswirl ratio (or ratio of the tangential component of velocity of the cooling air at inlet to the system to that of the disk). Agreement between the computed and measured Nusselt numbers is reasonably good, particularly at the larger Reynolds numbers. A simplified numerical simulation is also conducted to show the effect of the swirl ratio and the other flow parameters on the flow and heat transfer in the cover-plate system.« less

  10. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating

    NASA Astrophysics Data System (ADS)

    Kislyakova, K. G.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Guedel, M.

    2017-10-01

    Low-mass M stars are plentiful in the Universe and often host small, rocky planets detectable with the current instrumentation. Recently, seven small planets have been discovered orbiting the ultracool dwarf TRAPPIST-1 te{Gillon16,Gillon17}. We examine the role of electromagnetic induction heating of these planets, caused by the star's rotation and the planet's orbital motion. If the stellar rotation and magnetic dipole axes are inclined with respect to each other, induction heating can melt the upper mantle and enormously increase volcanic activity, sometimes producing a magma ocean below the planetary surface. We show that induction heating leads the three innermost planets, one of which is in the habitable zone, to either evolve towards a molten mantle planet, or to experience increased outgassing and volcanic activity, while the four outermost planets remain mostly unaffected.

  11. Significant consequences of heat generation/absorption and homogeneous-heterogeneous reactions in second grade fluid due to rotating disk

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.

  12. Comparison of trunk kinematics in trunk training exercises and throwing.

    PubMed

    Stodden, David F; Campbell, Brian M; Moyer, Todd M

    2008-01-01

    Strength and conditioning professionals, as well as coaches, have emphasized the importance of training the trunk and the benefits it may have on sport performance and reducing the potential for injury. However, no data on the efficacy of trunk training support such claims. The purpose of this study was to examine the maximum differential trunk rotation and maximum angular velocities of the pelvis and upper torso of participants while they performed 4 trunk exercises (seated band rotations, cross-overs, medicine ball throws, and twisters) and compare these trunk exercise kinematics with the trunk kinematics demonstrated in actual throwing performance. Nine NCAA Division I baseball players participated in this study. Each participant's trunk kinematics was analyzed while he performed 5 repetitions of each exercise in both dominant and nondominant rotational directions. Results indicated maximum differentiated rotation in all 4 trunk exercises was similar to maximum differentiated rotation (approximately 50-60 degrees) demonstrated in throwing performance. Maximum angular velocities of the pelvis and upper torso in the trunk exercises were appreciably slower (approximately 50% or less) than the angular velocities demonstrated during throwing performance. Incorporating trunk training exercises that demonstrate sufficient trunk ranges of motion and velocities into a strength and conditioning program may help to increase ball velocity and/or decrease the risk injury.

  13. Rotational Relaxation in Nonequilibrium Freejet Expansions of Heated Nitrogen

    NASA Technical Reports Server (NTRS)

    Gochberg, Lawrence A.; Hurlbut, Franklin C.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Rotational temperatures have been measured in rarefied, nonequilibrium, heated freejet expansions of nitrogen using the electron beam fluorescence technique at the University of California at Berkeley Low Density Wind Tunnel facility. Spectroscopic measurements of the (0,0) band of the first negative system of nitrogen reveal the nonequilibrium behavior in the flowfield upstream of, and through the Mach disk, which forms as the freejet expands into a region of finite back pressure. Results compare well with previous freejet expansion data and computations regarding location of the Mach disk and terminal rotational temperature in the expansion. Measurements are also presented for shock thickness based on the rotational temperature changes in the flow. Thickening shock layers, departures of rotational temperature from equilibrium in the expansion region, and downstream rotational temperature recovery much below that of an isentropic normal shock provide indications of the rarefied, nonequilibrium flow behavior. The data are analyzed to infer constant values of the rotational-relaxation collision number from 2.2 to 6.5 for the various flow conditions. Collision numbers are also calculated in a consistent manner for data from other investigations for which is seen a qualitative increase with increasing temperature. Rotational-relaxation collision numbers are seen as not fully descriptive of the rarefied freejet flows. This may be due to the high degree of nonequilibrium in the flowfields, and/or to the use of a temperature-insensitive rotational-relaxation collision number model in the data analyses.

  14. Electron cyclotron heating and core intrinsic rotation reversal in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassie, J. S. de, E-mail: degrassie@fusion.gat.com; Boedo, J. A.; Grierson, B. A.

    2015-12-10

    The effect of electron cyclotron heating (ECH) on the intrinsic rotation profile in DIII-D is shown experimentally. Former DIII-D experiments have shown that ECH tends to cause an interior reduction in the normally co-Ip directed intrinsic rotation profile, and this core rotation can be fully reversed to the opposite direction. This effect is due to a turbulent rearrangement of the interior rotation profile. Here, we show results that there is more than one mechanism causing this. We compare two low density L-mode discharges where the only operational difference is the location of the ECH deposition. At low ECH power, comparablemore » to the Ohmic power, the primary change is in the q-profile accompanied by a reversal of the core intrinsic rotation direction for the more off-axis deposition. The change in the shear of the q-profile fits well with a recent theoretical prediction for this rotation reversal. At higher ECH power, the primary change is in the core electron temperature, Te, accompanied by a hollowing of the rotation profile near the magnetic axis. This effect appears to be due to the change in electron collisionality, consistent with another theoretical, gyrokinetic prediction. The variety of phenomena that could allow ECH to modify the intrinsic rotation profile give some expectation that regions of large velocity shear in the interior could be generated, with the possibility of triggering internal transport barriers.« less

  15. USE OF A NOVEL BOARD GAME IN A CLINICAL ROTATION FOR LEARNING THORACIC DIFFERENTIAL DIAGNOSES IN VETERINARY MEDICAL IMAGING.

    PubMed

    Ober, Christopher P

    2017-03-01

    When confronted with various findings on thoracic radiographs, fourth-year veterinary students often have difficulty generating appropriate lists of differential diagnoses. The purpose of this one-group, pretest, posttest experimental study was to determine if a game could be used as an adjunct teaching method to improve students' understanding of connections between imaging findings and differential diagnoses. A novel board game focusing on differential diagnoses in thoracic radiography was developed. One hundred fourth-year veterinary students took a brief pretest, played the board game, and took a brief posttest as a part of their respective clinical radiology rotations. Pretest results were compared to posttest results using a paired t-test to determine if playing the game impacted student understanding. Students' mean scores on the posttest were significantly higher than mean pretest scores (P < 0.0001). Thus, results indicate that playing the board game resulted in improved short-term understanding of thoracic differential diagnoses by fourth-year students, and use of the board game on a clinical rotation seems to be a beneficial part of the learning process. © 2016 American College of Veterinary Radiology.

  16. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  17. Inertia gravity waves in a rotating, differentially heated annulus with an upper free surface

    NASA Astrophysics Data System (ADS)

    Randriamampianina, Anthony; Harlander, Uwe; Vincze, Miklos; von Larcher, Thomas; Viazzo, Stephane

    2015-04-01

    Inertia gravity waves (IGWs) are ubiquitous in the atmosphere and oceans, and are known to play a fundamental role in a wide variety of processes, among others the induction and modulation of turbulence. Observations and simulations have revealed their spontaneous occurrence simultaneously with the onset of baroclinic instability, recognized to be one of the dominant energetic processes in the large-scale atmospheric and oceanic circulations. In spite of intensive research activities these last decades, the generation mechanism and the propagation of IGWs, as well as their interaction with large-scale structures triggering locally chaotic motions, remain poorly understood. A better understanding of these phenomena is therefore mandatory for the development of IGW's parameterization schemes actually required for numerical global weather prediction. A combined laboratory experiment and direct numerical simulations study is proposed for the detailed investigations of instabilities arising within a differentially heated rotating annulus, the baroclinic cavity. The configuration corresponds to an experimental setup used at BTU, Cottbus Senftenberg, Germany [1], characterized by an open upper surface and filled with water (Pr = 7). Infrared thermography and simultaneous kalliroscope visualization in horizontal planes, illuminated by a laser sheet, have been applied to detect the surface signatures of IGWs. These findings confirmed the computations carried out by three different numerical approaches, using either spectral methods, high order compact finite difference scheme (M2P2, Marseille), or the EULAG code (Freie Universitaet Berlin). These small-scale features have been observed in addition to those developing along the inner cold cylinder, previously identified by simulations in a closed cavity, filled with a liquid defined by Pr = 16 [2]. These new IGWs show characteristics similar to the ones obtained by [3] at the exit of the meandering jet between the cyclonic and anticyclonic parts of the baroclinic waves. References [1] Harlander, U. et al. Exp. Fluids 52:1077-1087, 2012. [2] Randriamampianina, A. C. R. M'ecanique 341:547-552, 2013. [3] Plougonven, R. & Snyder, C. J. Atmos Sci. 64:2502-2520, 2007.

  18. Differential metabolic responses of perennial grass Cynodon transvaalensis×Cynodon dactylon (C₄) and Poa Pratensis (C₃) to heat stress.

    PubMed

    Du, Hongmei; Wang, Zhaolong; Yu, Wenjuan; Liu, Yimin; Huang, Bingru

    2011-03-01

    Differential metabolic responses to heat stress may be associated with variations in heat tolerance between cool-season (C₃) and warm-season (C₄) perennial grass species. The main objective of this study was to identify metabolites associated with differential heat tolerance between C₄ bermudagrass and C₃ Kentucky bluegrass by performing metabolite profile analysis using gas chromatography-mass spectrometry. Plants of Kentucky bluegrass (Poa Pratensis'Midnight') and hybrid bermudagrass (Cynodon transvaalensis x Cynodon dactylon'Tifdwarf') were grown under optimum temperature conditions (20/15 °C for Kentucky bluegrass and 30/25 °C for bermudagrass) or heat stress (35/30 °C for Kentucky bluegrass and 45/40 °C for bermudagrass). Physiological responses to heat stress were evaluated by visual rating of grass quality, measuring photochemical efficiency (variable fluorescence to maximal fluorescence) and electrolyte leakage. All of these parameters indicated that bermudagrass exhibited better heat tolerance than Kentucky bluegrass. The metabolite analysis of leaf polar extracts revealed 36 heat-responsive metabolites identified in both grass species, mainly consisting of organic acids, amino acids, sugars and sugar alcohols. Most metabolites showed higher accumulation in bermudagrass compared with Kentucky bluegrass, especially following long-term (18 days) heat stress. The differentially accumulated metabolites included seven sugars (sucrose, fructose, galactose, floridoside, melibiose, maltose and xylose), a sugar alcohol (inositol), six organic acids (malic acid, citric acid, threonic acid, galacturonic acid, isocitric acid and methyl malonic acid) and nine amino acids (Asn, Ala, Val, Thr, γ-aminobutyric acid, IIe, Gly, Lys and Met). The differential accumulation of those metabolites could be associated with the differential heat tolerance between C₃ Kentucky bluegrass and C₄ bermudagrass. Copyright © Physiologia Plantarum 2010.

  19. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, Courtney R.; Pinsonneault, Marc H., E-mail: epstein@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with amore » range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.« less

  20. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  1. The solar gravitational figure: J2 and J4

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Hawkins, G. W.

    1980-01-01

    The theory of the solar gravitational figure is derived including the effects of differential rotation. It is shown that J sub 4 is smaller than J sub 2 by a factor of about 10 rather than being of order J sub 2 squared as would be expected for rigid rotation. The dependence of both J sub 2 and J sub 4 on envelope mass is given. High order p-mode oscillation frequencies provide a constraint on solar structure which limits the range in envelope mass to the range 0.01 M sub E/solar mass 0.04. For an assumed rotation law in which the surface pattern of differential rotation extends uniformly throughout the convective envelope, this structural constraint limits the ranges of J sub 2 and J sub 4 in units of 10 to the -8th power to 10 J sub 2 15 and 0.6 -J sub 4 1.5. Deviations from these ranges would imply that the rotation law is not constant with depth and would provide a measure of this rotation law.

  2. Study of the solar coronal hole rotation

    NASA Astrophysics Data System (ADS)

    Oghrapishvili, N. B.; Bagashvili, S. R.; Maghradze, D. A.; Gachechiladze, T. Z.; Japaridze, D. R.; Shergelashvili, B. M.; Mdzinarishvili, T. G.; Chargeishvili, B. B.

    2018-06-01

    Rotation of coronal holes is studied using data from SDO/AIA for 2014 and 2015. A new approach to the treatment of data is applied. Instead of calculated average angular velocities of each coronal hole centroid and then grouping them in latitudinal bins for calculating average rotation rates of corresponding latitudes, we compiled instant rotation rates of centroids and their corresponding heliographic coordinates in one matrix for further processing. Even unfiltered data showed clear differential nature of rotation of coronal holes. We studied possible reasons for distortion of data by the limb effects to eliminate some discrepancies at high latitudes caused by the high order of scattering of data in that region. A study of the longitudinal distribution of angular velocities revealed the optimal longitudinal interval for the best result. We examined different methods of data filtering and realized that filtration using targeting on the local medians of data with a constant threshold is a more acceptable approach that is not biased towards a predefined notion of an expected result. The results showed a differential pattern of rotation of coronal holes.

  3. Models of the Origin of the Moon; Early History of Earth and Venus (The Role of Tidal Friction in the Formation of Structure of the Planets)

    NASA Astrophysics Data System (ADS)

    Pechernikova, G. V.; Ruskol, E. L.

    2017-05-01

    An analytical review of the two contemporary models of the origin of the Earth-Moon system in the process of solid-body accretion is presented: socalled co-accretion model and as a result of a gigantic collision with a planetarysized body (i.e. a megaimpact model). The co-accretion model may be considered as a universal mechanism of the origin of planetary satellites, that accompanies the growth of planets. We consider the conditions of this process that secure the sufficient mass and angular momentum of the protolunar disk such as macroimpacts (collisions with the bodies of asteroidal size) into the mantle of the growing Earth, the role of an lunar embryo growing on the geocentric lunar orbit, its tidal interaction with the Earth. The most difficult remains the explanation of chemical composition of the Moon. Different scenarios of megaimpact are reviewed, in which the Earth's mantle is destroyed and the protosatellite disk is filled mainly by its fragments. There is evaluated amount of energy transferred to the Earth from the evolution of lunar orbit. It is an order of magnitude lower than three main sources of the Earth's interior heat, i.e. the heat of accretion, the energy of differentiation and the heat of radioactive sources. The tidal heating of the Venus's interiors could reach 1000K by slowing its axial initial rotation, in addition to three sources mentioned above in concern of the Earth.

  4. An Improved Model of Cryogenic Propellant Stratification in a Rotating, Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Oliveira, Justin; Kirk, Daniel R.; Schallhorn, Paul A.; Piquero, Jorge L.; Campbell, Mike; Chase, Sukhdeep

    2007-01-01

    This paper builds on a series of analytical literature models used to predict thermal stratification within rocket propellant tanks. The primary contribution to the literature is to add the effect of tank rotation and to demonstrate the influence of rotation on stratification times and temperatures. This work also looks levels of thermal stratification for generic propellant tanks (cylindrical shapes) over a parametric range of upper-stage coast times, heating levels, rotation rates, and gravity levels.

  5. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, H. M.; Reed, M. D.; Telting, J. H.

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets ofmore » ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.« less

  6. Surface differential rotation and prominences of the Lupus post T Tauri star RX J1508.6-4423

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Mengel, M.; Carter, B. D.; Marsden, S.; Collier Cameron, A.; Wichmann, R.

    2000-08-01

    We present in this paper a spectroscopic monitoring of the Lupus post T Tauri star RX J1508.6-4423 carried out at two closely separated epochs (1998 May 06 and 10) with the UCL Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Applying least-squares convolution and maximum entropy image reconstruction techniques to our sets of spectra, we demonstrate that this star features on its surface a large cool polar cap with several appendages extending to lower latitudes, as well as one spot close to the equator. The images reconstructed at both epochs are in good overall agreement, except for a photospheric shear that we interpret in terms of latitudinal differential rotation. Given the spot distribution at the epoch of our observations, differential rotation could only be investigated between latitudes 15° and 60°. We find in particular that the observed differential rotation is compatible with a solar-like law (i.e., with rotation rate decreasing towards high latitudes proportionally to sin2l, where l denotes the latitude) in this particular latitude range. Assuming that such a law can be extrapolated to all latitudes, we find that the equator of RX J1508.6-4423 does one more rotational cycle than the pole every 50+/-10d, implying a photospheric shear 2 to 3 times stronger than that of the Sun. We also discover that the Hα emission profile of RX J1508.6-4423 is most of the time double-peaked and strongly modulated with the rotation period of the star. We interpret this rotationally modulated emission as being caused by a dense and complex prominence system, the circumstellar distribution of which is obtained through maximum entropy Doppler tomography. These maps show in particular that prominences form a complete and inhomogeneous ring around the star, precisely at the corotation radius. We use the total Hα and Hβ emission flux to estimate that the mass of the whole prominence system is about 1020g. From our observation that the whole cloud system surrounding the star is regenerated in less than 4d, we conclude that the braking time-scale of RX J1508.6-4423 is shorter than 1Gyr, and that prominence expulsion is thus likely to contribute significantly to the rotational spindown of young low-mass stars.

  7. Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases

    NASA Astrophysics Data System (ADS)

    Hadjara, M.; Domiciano de Souza, A.; Vakili, F.; Jankov, S.; Millour, F.; Meilland, A.; Khorrami, Z.; Chelli, A.; Baffa, C.; Hofmann, K.-H.; Lagarde, S.; Robbe-Dubois, S.

    2014-09-01

    Context. As previously demonstrated on Achernar, one can derive the angular radius, rotational velocity, axis tilt, and orientation of a fast-rotating star from the differential phases obtained by spectrally resolved long baseline interferometry using earth-rotation synthesis. Aims: We applied this method on a small sample of stars for different spectral types and classes, in order to generalize the technique to other rotating stars across the H-R diagram and determine their fundamental parameters. Methods: We used differential phase data from the AMBER/VLTI instrument obtained prior to refurbishing its spectrometer in 2010. With the exception of Fomalhaut, which has been observed in the medium-resolution mode of AMBER (λ/δλ ≈ 1500), our three other targets, Achernar, Altair, and δ Aquilae offered high-resolution (λ/δλ ≈ 12 000) spectro-interferometric data around the Brγ absorption line in K band. These data were used to constrain the input parameters of an analytical, still realistic model to interpret the observations with a systematic approach for the error budget analysis in order to robustly conclude on the physics of our 4 targets. We applied the super resolution provided by differential phases φdiff to measure the size (equatorial radius Req and angular diameter ⌀eq), the equatorial rotation velocity (Veq), the inclination angle (i), and the rotation axis position angle (PArot) of 4 fast-rotating stars: Achernar, Altair, δ Aquilae, and Fomalhaut. The stellar parameters of the targets were constrained using a semi-analytical algorithm dedicated to fast rotators SCIROCCO. Results: The derived parameters for each star were Req = 11.2 ± 0.5 R⊙, Veqsini = 290 ± 17 km s-1, PArot = 35.4° ± 1.4°, for Achernar; Req = 2.0 ± 0.2 R⊙, Veqsini = 226 ± 34 km s-1, PArot = -65.5° ± 5.5°, for Altair; Req = 2.2 ± 0.3 R⊙, Veqsini = 74 ± 35 km s-1, PArot = -101.2° ± 14°, for δ Aquilae; and Req = 1.8 ± 0.2 R⊙, Veqsini = 93 ± 16 km s-1, PArot = 65.6° ± 5°, for Fomalhaut. They were found to be compatible with previously published values from differential phase and visibility measurements, while we were able to determine, for the first time, the inclination angle i of Fomalhaut (i = 90° ± 9°) and δ Aquilae (i = 81° ± 13°), and the rotation-axis position angle PArot of δ Aquilae. Conclusions: Beyond the theoretical diffraction limit of an interferometer (ratio of the wavelength to the baseline), spatial super resolution is well suited to systematically estimating the angular diameters of rotating stars and their fundamental parameters with a few sets of baselines and the Earth-rotation synthesis provided a high enough spectral resolution. Based on observations performed at the European Southern Observatory, Chile, under ESO AMBER-consortium GTO program IDs 084.D-0456 081.D-0293 and 082.C-0376.Figure 5 is available in electronic form at http://www.aanda.org

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Junichi; Saitoh, Takayuki R.; Wada, Keiichi, E-mail: babajn@geo.titech.ac.jp

    In order to understand the physical mechanisms underlying non-steady stellar spiral arms in disk galaxies, we analyzed the growing and damping phases of their spiral arms using three-dimensional N-body simulations. We confirmed that the spiral arms are formed due to a swing amplification mechanism that reinforces density enhancement as a seeded wake. In the damping phase, the Coriolis force exerted on a portion of the arm surpasses the gravitational force that acts to shrink the portion. Consequently, the stars in the portion escape from the arm, and subsequently they form a new arm at a different location. The time-dependent naturemore » of the spiral arms originates in the continual repetition of this nonlinear phenomenon. Since a spiral arm does not rigidly rotate, but follows the galactic differential rotation, the stars in the arm rotate at almost the same rate as the arm. In other words, every single position in the arm can be regarded as the corotation point. Due to interaction with their host arms, the energy and angular momentum of the stars change, thereby causing radial migration of the stars. During this process, the kinetic energy of random motion (random energy) of the stars does not significantly increase, and the disk remains dynamically cold. Owing to this low degree of disk heating, short-lived spiral arms can recurrently develop over many rotational periods. The resultant structure of the spiral arms in the N-body simulations is consistent with the observational nature of spiral galaxies. We conclude that the formation and structure of spiral arms in isolated disk galaxies can be reasonably understood by nonlinear interactions between a spiral arm and its constituent stars.« less

  9. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, L.E.

    1980-11-24

    An apparatus and method are disclosed for preventing a solar receiver utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver by a plurality of reflectors which rotate so that they direct solar energy to the receiver as the earth rotates. The apparatus disclosed includes a first storage tank for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank having an inlet through which the coolant can enter. The first and second storage tanks are in fluid communication with each other through the solar receiver. The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank through the solar receiver and into the second storage tank. Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks will be sufficient to maintain the coolant in the receiver below a predetermined upper temperature until the solar reflectors become defocused with respect to the solar receiver due to the earth's rotation.

  10. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Shandross, Richard; Weintraub, Daniel

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  11. Modeling the Solar Convective Dynamo and Emerging Flux

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  12. Limitations of differential electrophoresis for measuring colloidal forces: a Brownian dynamics study.

    PubMed

    Holtzer, Gretchen L; Velegol, Darrell

    2005-10-25

    Differential electrophoresis experiments are often used to measure subpiconewton forces between two spheres of a heterodoublet. The experiments have been interpreted by solving the electrokinetic equations to obtain a simple Stokes law-type equation. However, for nanocolloids, the effects of Brownian motion alter the interpretation: (1) Brownian translation changes the rate of axial separation. (2) Brownian rotation reduces the alignment of the doublet with the applied electric field. (3) Particles can reaggregate by Brownian motion after they break, forming either heterodoublets or homodoublets, and because homodoublets cannot be broken by differential electrophoresis, this effectively terminates the experiment. We tackle points 1 and 2 using Brownian dynamics simulations (BDS) with electrophoresis as an external force, accounting for convective translation and rotation as well as Brownian translation and rotation. Our simulations identify the lower particle size limit of differential electrophoresis to be about 1 microm for desired statistical accuracy. Furthermore, our simulations predict that particles around 10 nm in size and at ambient conditions will break primarily by Brownian motion, with a negligible effect due to the electric field.

  13. Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.

    2018-06-01

    Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.

  14. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Part 4: Aerodynamic data tabulation

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Joslyn, H. D.; Blair, M. F.

    1987-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.

  15. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOEpatents

    Hodges, James L.; Cerkanowicz, Anthony E.

    1983-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  16. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOEpatents

    Hodges, James L.; Cerkanowicz, Anthony E.

    1982-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  17. Flow and heat transfer in an L-shaped cooling passage with ribs and pin fins for the trailing edge of a gas-turbine vane and blade

    NASA Astrophysics Data System (ADS)

    Pardeshi, Irsha

    Efficient and effective cooling of the trailing edges of gas-turbine vanes and blades is challenging because there is very little space to work with. In this study, CFD simulations based on steady RANS closed by the shear-stress transport turbulence model were performed to study the flow and heat transfer in an L-shaped duct for the trailing edge under two operating conditions. One operating condition, referred to as the laboratory condition, where experimental measurements were made, has a Reynolds number at the duct inlet of ReD = 15,000, coolant inlet temperature of Tinlet = 300 K, wall temperature of Twall = 335 K, a back pressure of Pb = 1 atm. When rotating, the angular speed was O = 1,000 rpm. The other condition, referred to as the engine-relevant condition, has Re D = 150,000 at the duct inlet, Tinlet = 673 K, Twall = 1,173 K, and Pb = 25 atm. When rotating, O was 3,600 rpm. The objective is to understand the nature of the flow and heat transfer in an L-shaped cooling passage for the trailing edge that has a combination of ribs and pin fins under rotating and non-rotating conditions with focus on how pin fins and ribs distribute the flow throughout the passage and to understand what features of the flow and heat transfer can or cannot be extrapolated from the laboratory to the engine-relevant operating conditions. When there is no rotation, results obtained show that for both operating conditions, the pin fins minimized the size of the separation bubble when the flow exits the inlet duct into the expanded portion of the L-shaped duct. The size of the separation bubble at the tip of the L-shaped duct created by the adverse pressure gradient is quite large for the laboratory condition and relatively small for the engine condition. Each rib was found to create two sets of recirculating flows, one just upstream of the rib because of the adverse pressure gradient induced by the rib and one just downstream of the rib because of flow separation from a sharp edge. These recirculating flows spiral from the ribs towards the exit of the L-shaped duct, and the spiraling brings cool fluid from the middle of the passage to the walls. Each pin fin was found to induce a pair of counter-rotating separated regions behind it and has horse-shoe vortices that wrap around it next to the top and bottom walls. The heat transfer is highest just upstream of the each rib, around the pin fins, and when the cooling fluid impinges on walls, and very low in the separated region next to the tip. When there is rotation, Coriolis force creates a pair of counter-rotating vortices that bring the cooler fluid to the trailing wall in the inlet duct. Thus, the trailing wall has higher heat transfer than the leading wall. In the inlet duct, centrifugal buoyancy causes a massive flow separation on the leading wall. In the expanded portion of the L-shaped duct, the centrifugal-buoyancy-induced separation on the leading wall is limited to the region with the ribs, and the separation degenerates into a series of smaller spiraling separation bubbles, one between every set of consecutive ribs. On the leading and trailing walls, the ribs and the pin fins induce the same kind of flows as they did under non-rotating conditions. Because of centrifugal-buoyancy-induced flow separation on the leading face, the heat transfer on the leading wall is 10-15% lower than that on the trailing wall, which is not significant. The adverse effects of centrifugal buoyancy were mitigated because the separation bubbles between the ribs are spiraling from the side wall to the trailing-edge exit and are constantly supplied by new coolant. The heat transfer on the side and back walls is higher near the trailing wall because centrifugal buoyancy directed most of the coolant flow towards the trailing wall. The size of the separation bubble at the tip of the L-shaped duct essentially disappeared when there is rotation for both the lab and engine-relevant conditions.

  18. Rotational effects on impingement cooling

    NASA Technical Reports Server (NTRS)

    Epstein, A. H.; Kerrebrock, J. L.; Koo, J. J.; Preiser, U. Z.

    1987-01-01

    The present consideration of rotation effects on heat transfer in a radially exhausted, impingement-cooled turbine blade model gives attention to experimental results for Reynolds and Rossby numbers and blade/coolant temperature ratio values that are representative of small gas turbine engines. On the basis of a model that encompasses the effects of Coriolis force and buoyancy on heat transfer, bouyancy is identified as the cause of an average Nusselt number that is 20-30 percent lower than expected from previous nonrotating data. A heuristic model is proposed which predicts that the impingement jets nearest the blade roots should deflect inward, due to a centripetal force generated by their tangential velocity counter to the blade motion. Potentially serious thermal stresses must be anticipated from rotation effects in the course of blade design.

  19. Unified Nusselt- and Sherwood-number correlations in axisymmetric finite-gap stagnation and rotating-disk flows

    DOE PAGES

    Coltrin, Michael E.; Kee, Robert J.

    2016-06-18

    This paper develops a unified analysis of stagnation flow heat and mass transport, considering both semi-infinite domains and finite gaps, with and without rotation of the stagnation surface. An important objective is to derive Nusselt- and Sherwood-number correlations that represent heat and mass transport at the stagnation surface. The approach is based on computationally solving the governing conservation equations in similarity form as a boundary-value problem. The formulation considers ideal gases and incompressible fluids. The correlated results depend on fluid properties in terms of Prandtl, Schmidt, and Damkohler numbers. Heterogeneous chemistry at the stagnation surface is represented as a singlemore » first-order reaction. A composite Reynolds number represents the combination of stagnation flows with and without stagnation-surface rotation.« less

  20. Mathematical Minute: Rotating a Function Graph

    ERIC Educational Resources Information Center

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  1. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-07-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  2. ON INTERMITTENT TURBULENCE HEATING OF THE SOLAR WIND: DIFFERENCES BETWEEN TANGENTIAL AND ROTATIONAL DISCONTINUITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xin; Tu Chuanyi; He Jiansen

    The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These resultsmore » confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.« less

  3. Soviet-West German Symposium on Heat Transfer in Cryogenic Systems, 3rd, Kharkov, Ukrainian SSR, Oct. 9-11, 1989, Proceedings

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The papers presented in this volume describe a rotating cryostat for the simulation of mechanical, thermal, and hydraulic processes in superconducting rotors; the problems of cooling the fully superconducting generator stator; an investigation of natural circulation by optical methods; and a method of calculating void fraction for vapor-liquid or gas-liquid flow conditions. Attention is given to an experimental study of the processes of He-3 boiling and condensation, heat transfer in He II at a slow variation of the heat load, an investigation of He II flow crisis in porous media, and cryogenic heat pipes. Other papers are on the stability of rotating superconducting windings for electric machines, the stability of high-temperature superconductors cooled by liquid nitrogen, a calculation of the transpiration cooling of a cylindrical porous wall, and pressure losses in boiling nitrogen flow through horizontal channels.

  4. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-02-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  5. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    PubMed

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  6. Uniform semiclassical sudden approximation for rotationally inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, H.J.; Schinke, R.

    1980-08-01

    The infinite-order-sudden (IOS) approximation is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase approximation for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less

  7. Anatomy of a laminar starting thermal plume at high Prandtl number

    NASA Astrophysics Data System (ADS)

    Davaille, Anne; Limare, Angela; Touitou, Floriane; Kumagai, Ichiro; Vatteville, Judith

    2011-02-01

    We present an experimental study of the dynamics of a plume generated from a small heat source in a high Prandtl number fluid with a strongly temperature-dependent viscosity. The velocity field was determined with particle image velocimetry, while the temperature field was measured using differential interferometry and thermochromic liquid crystals. The combination of these different techniques run simultaneously allows us to identify the different stages of plume development, and to compare the positions of key-features of the velocity field (centers of rotation, maximum vorticity locations, stagnation points) respective to the plume thermal anomaly, for Prandtl numbers greater than 103. We further show that the thermal structure of the plume stem is well predicted by the constant viscosity model of Batchelor (Q J R Met Soc 80: 339-358, 1954) for viscosity ratios up to 50.

  8. Rigid Amorphous Fraction in PLA Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Ma, Qian; Simona Cozza, Erika; Pyda, Marek; Mao, Bin; Zhu, Yazhe; Monticelli, Orietta

    2013-03-01

    Electrospun fibers of poly(lactic acid) (PLA) were formed by adopting a high-speed rotating wheel as the counter-electrode. The molecular orientation, crystallization mechanism, and phase structure and transitions of the aligned ES fibers were investigated. Using thermal analysis and wide angle X-ray scattering (WAXS), we evaluated the confinement that exists in as-spun amorphous, and heat-treated semicrystalline, fibers. Differential scanning calorimetry confirmed the existence of a constrained amorphous phase in as-spun aligned fibers, without the presence of crystals or fillers to serve as fixed physical constraints. Using WAXS, for the first time the mesophase fraction, consisting of oriented amorphous PLA chains, was quantitatively characterized in nanofibers. The authors acknowledge support from the National Science Foundation, Polymers Program under grant DMR-0602473. ESC acknowledges a Ph.D. grant supported by Italian Ministry of Education and Scientific Research.

  9. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    DOE PAGES

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; ...

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  10. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-07-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  11. Rotatable crucible for rapid solidification process

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas (Inventor)

    1990-01-01

    This invention relates to an apparatus for producing filament, fiber, ribbon or film from a molten material, comprising a preferably heat extracting crucible which contains a pool of molten material at a selected horizontal level in the pool. The crucible has an opening extending from above the free surface level to a bottom edge of the opening, the bottom edge being sufficiently below the free surface level so that the molten material cannot form and hold a meniscus by surface tension between the edge and the level of the free surface and further comprises a heat extracting substrate laterally disposed with respect to the crucible and which rotates about an axis of rotation. The substrate is positioned adjacent the edge of the opening which confines the molten material and prevents it from overflowing downwardly out of the crucible. The invention features rotating means which includes a first drive means for tiltably rotating the crucible about an axis of rotation which is coaxial with the axis of rotation of the substrate, so the crucible edge can be maintained a predetermined constant distance from the substrate. The distance chosen is suitable for depositing molten material on the substrate and the apparatus also has a second drive means which is drivingly connected to the substrate for continuously moving the surface of the substrate upwardly past the edge and a melt front formed at the interface of the molten material and the substrate surface.

  12. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-04-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  13. Experimental study of inertial waves in a spherical shell induced by librations of the inner sphere

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Jahangir, Saad; Egbers, Christoph

    2015-04-01

    Many planetary bodies do not rotate with a constant velocity but undergo rotations with superposed oscillations called longitudinal librations. This is the case e.g. for the Earth's moon, Mars' moon, Mercury and many other moons of Jupiter and Saturn and some of them have a solid inner core and a molten outer core. It is worth to know the interaction between the libration of the core and the interior of the fluid to understand tidal heating, fluid mixing, and the generation of magnetic fields. Here we present an experimental investigation of inertial waves in a spherical shell. The shell rotates with a mean angular velocity Ω around its vertical axis overlaid by a time periodic oscillation of the inner sphere in the range 0 < ω < 2Ω, in order to excite inertial waves with a known frequency. We want to show the influence of the libration amplitude ɛ on different libration frequencies ω and how efficient libration is, to excite inertial waves in the given frequency range. For low ω and high ɛ instability starts to grow and, beside the excited inertial waves, several low frequency structures can be found. Quantitative PIV analyses of the horizontal plane in the co-rotation frame show clear spiral structures with different wave numbers for high libration amplitudes due to strong shear, similar to differential rotation. Another question, we like to address, is whether high libration amplitudes can also excite very low frequency Rossby wave structures? If the frequency increases, it can be seen from Poincaré plots that large attractor windows for inertial waves appear. We want to show PIV analyses for such flows dominated by wave attractors. It is known that for large excitation frequencies subharmonic parametric instability starts to grow and triads will be excited. Our experimental data show hints for the existence of triads and preliminary results will be discussed.

  14. Drill drive mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressel, M.O.

    1979-10-30

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfacesmore » of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the different gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft. 11 claims.« less

  15. Roller Locking Brake

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1993-01-01

    Roller locking brake is normally braking rotary mechanism allowing free rotation when electromagnet in mechanism energized. Well suited to robots and other machinery which automatic braking upon removal of electrical power required. More compact and reliable. Requires little electrical power to maintain free rotation and exhibits minimal buildup of heat.

  16. Cyclic fatigue resistance of newly manufactured rotary nickel titanium instruments used in different rotational directions.

    PubMed

    Gambarini, Gianlucca; Gergi, Richard; Grande, Nicola Maria; Osta, Nada; Plotino, Gianluca; Testarelli, Luca

    2013-12-01

    The aim of this study was to investigate whether cyclic fatigue resistance is increased for nickel titanium instruments manufactured with improved heating processes in clockwise or counterclockwise continuous rotation. The instruments compared were produced either using the R-phase heat treatment (K3XF; SybronEndo, Orange, CA, USA) or the M-wire alloy (ProFile Vortex; DENTSPLY Tulsa Dental Specialties, Tulsa, OK, USA). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments in curved artificial canals. Results indicated no significant difference in resistance to cyclic fatigue when rotary nickel titanium instruments are used in clockwise or counterclockwise continuous rotation. In both directions of rotation, size 04-25 K3XF showed a significant increase (P < 0.05) in the mean number of cycles to failure when compared with size 04-25 ProFile Vortex. © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  17. Limits on radial differential rotation in Sun-like stars from parametric fits to oscillation power spectra

    NASA Astrophysics Data System (ADS)

    Nielsen, M. B.; Schunker, H.; Gizon, L.; Schou, J.; Ball, W. H.

    2017-06-01

    Context. Rotational shear in Sun-like stars is thought to be an important ingredient in models of stellar dynamos. Thanks to helioseismology, rotation in the Sun is characterized well, but the interior rotation profiles of other Sun-like stars are not so well constrained. Until recently, measurements of rotation in Sun-like stars have focused on the mean rotation, but little progress has been made on measuring or even placing limits on differential rotation. Aims: Using asteroseismic measurements of rotation we aim to constrain the radial shear in five Sun-like stars observed by the NASA Kepler mission: KIC 004914923, KIC 005184732, KIC 006116048, KIC 006933899, and KIC 010963065. Methods: We used stellar structure models for these five stars from previous works. These models provide the mass density, mode eigenfunctions, and the convection zone depth, which we used to compute the sensitivity kernels for the rotational frequency splitting of the modes. We used these kernels as weights in a parametric model of the stellar rotation profile of each star, where we allowed different rotation rates for the radiative interior and the convective envelope. This parametric model was incorporated into a fit to the oscillation power spectrum of each of the five Kepler stars. This fit included a prior on the rotation of the envelope, estimated from the rotation of surface magnetic activity measured from the photometric variability. Results: The asteroseismic measurements without the application of priors are unable to place meaningful limits on the radial shear. Using a prior on the envelope rotation enables us to constrain the interior rotation rate and thus the radial shear. In the five cases that we studied, the interior rotation rate does not differ from the envelope by more than approximately ± 30%. Uncertainties in the rotational splittings are too large to unambiguously determine the sign of the radial shear.

  18. An experimental study of heat transfer in a large-scale turbine rotor passage

    NASA Astrophysics Data System (ADS)

    Blair, Michael F.

    1992-06-01

    An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil as well as for the hub endwall surface. The objective of this program was to document the effects of flow three-dimensionality on the heat transfer in a rotating blade row (vs a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system.

  19. New eutectic alloys and their heats of transformation

    NASA Technical Reports Server (NTRS)

    Farkas, D.; Birchenall, C. E.

    1985-01-01

    Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.

  20. SHIPPING CONTAINER FOR RADIOACTIVE MATERIAL

    DOEpatents

    Nachbar, H.D.; Biggs, B.B.; Tariello, P.J.; George, K.O.

    1963-01-15

    A shipping container is described for transponting a large number of radioactive nuclear fuel element modules which produce a substantial amount of heat. The container comprises a primary pressure vessel and shield, and a rotatable head having an access port that can be indexed with module holders in the container. In order to remove heat generated in the fuel eleme nts, a heat exchanger is arranged within the container and in contact with a heat exchange fluid therein. The heat exchanger communicates with additional external heat exchangers, which dissipate heat to the atmosphere. (AEC)

  1. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Sterl, Sebastian; Li, Hui-Min; Zhong, Jin-Qiang

    2016-12-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ ˙(t ) and thermal amplitude δ (t ) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of θ ˙(t ) . We also focus on the influence of modulated rotation rates on the frequency of occurrence η of stochastic cessation or reorientation events, and on the interplay between such events and the periodically modulated response of θ ˙(t ) . Here we identify a mechanism by which η can be amplified by the modulated response, and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and we extend this approach to make predictions for the occurrence of cessation events and the probability distributions of θ ˙(t ) and δ (t ) during different phases of a modulation cycle, based on an adiabatic approach that treats each phase separately. Last, we show that such periodic forcing has consequences beyond influencing LSC dynamics, by investigating how it can modify the heat transport even under conditions where the Ekman pumping effect is predominant and strong enhancement of heat transport occurs. We identify phase and amplitude responses of the heat transport, and we show how increased modulations influence the average Nusselt number.

  2. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    PubMed

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  3. Butterfly Diagram and Activity Cycles in HR 1099

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Henry, Gregory W.

    2007-04-01

    We analyze photometric data of the active RS CVn-type star HR 1099 for the years 1975-2006 with an inversion technique and reveal the nature of two activity cycles of 15-16 yr and 5.3+/-0.1 yr duration. The 16 yr cycle is related to variations of the total spot area and is coupled with the differential rotation, while the 5.3 yr cycle is caused by the symmetric redistribution of the spotted area between the opposite stellar hemispheres (flip-flop cycle). We recover long-lived active regions comprising two active longitudes that migrate in the orbital reference frame with a variable rate because of the differential rotation along with changes in the mean spot latitudes. The migration pattern is periodic with the 16 yr cycle. Combining the longitudinal migration of the active regions with a previously measured differential rotation law, we recover the first stellar butterfly diagram without an assumption about spot shapes. We find that mean latitudes of active regions at opposite longitudes change antisymmetrically in the course of the 16 yr cycle: while one active region migrates to the pole, the other approaches the equator. This suggests a precession of the global magnetic field with respect to the stellar rotational axis.

  4. Solitary plasma rings and magnetic field generation involving gravity and differential rotation

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2012-12-01

    A new theoretical framework for describing how magnetic fields are generated and amplified is provided by finding magneto-gravitational modes that involve gravity, density gradients, and differential rotation in an essential way. Other factors, such as the presence of a high temperature particle population or of a temperature gradient, can contribute to their excitation. These modes identified by a linearized analysis are shown to be important for the evolution of plasma disks surrounding black holes toward different configurations. Since the nonlinear development of these modes can lead to radially localized regions with a relatively small differential rotation, new stationary structures have been identified, in the (fully) nonlinear limit, which are localized radially over regions with negligible gradients of the rotation frequency. These structures, characterized by solitary plasma rings, do not involve a pre-existing "seed" magnetic field, unlike other configurations found previously. The relevant magnetic energy density is comparable to the gravitationally confined plasma pressure. The "source" of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it that is an important factor in the theory of magneto-gravitational modes, another important factor being an anisotropy of the plasma pressure.

  5. Heating uniformity and differential heating of insects in almonds associated with radio frequency energy

    USDA-ARS?s Scientific Manuscript database

    Radio frequency (RF) treatments have potential as alternatives to chemical fumigation for phytosanitary disinfestation treatments in the dried nut industry. To develop effective RF treatment protocols for almonds, it is desirable to determine heating uniformity and the occurrence of differential hea...

  6. Manually operated elastomer heat pump

    NASA Technical Reports Server (NTRS)

    Hutchinson, W. D.

    1970-01-01

    Device consisting of a rotating mechanism, a frame with multiple wide bands of rubber, and a fluid bath, demonstrates the feasibility of a human operated device capable of cooling or producing heat. This invention utilizes the basic thermodynamic properties of natural rubber.

  7. Harnessing mass differential confinement effects in magnetized rotating plasmas to address new separation needs

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Rax, J.-M.; Zweben, S. J.; Fisch, N. J.

    2018-01-01

    The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.

  8. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  9. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    NASA Astrophysics Data System (ADS)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  10. SUSTAINED TURBULENCE IN DIFFERENTIALLY ROTATING MAGNETIZED FLUIDS AT A LOW MAGNETIC PRANDTL NUMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nauman, Farrukh; Pessah, Martin E., E-mail: nauman@nbi.ku.dk

    2016-12-20

    We show for the first time that sustained turbulence is possible at a low magnetic Prandtl number in local simulations of Keplerian flows with no mean magnetic flux. Our results indicate that increasing the vertical domain size is equivalent to increasing the dynamical range between the energy injection scale and the dissipative scale. This has important implications for a large variety of differentially rotating systems with low magnetic Prandtl number such as protostellar disks and laboratory experiments.

  11. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Volume 2: Heat transfer data tabulation. 15 percent axial spacing

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.

    1986-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.

  12. Solar Cycle Variability and Surface Differential Rotation from Ca II K-line Time Series Data

    NASA Astrophysics Data System (ADS)

    Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period ~ 11 yr), (b) quasi-periodic variations (periods ~ 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range ~0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  13. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargle, Jeffrey D.; Worden, Simon P.; Keil, Stephen L.

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structuremore » (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.« less

  14. Characteristics of steady vibration in a rotating hub-beam system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Liu, Caishan; Ma, Wei

    2016-02-01

    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  15. ISS Node-1 and PMA-1 rotated in KSC's SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The International Space Station's Node 1 and Pressurized Mating Adapter-1 (PMA-1) are rotated by workers in KSC's Space Station Processing Facility. The node is rotated to provide access to different areas of the flight element for processing. Here, the node is rotated to provide access for the installation of heat pipe radiators and a flight computer. The node is scheduled to launch into space on STS-88, slated for a July 9 liftoff at 1:11 p.m. from KSC's Launch Pad 39B.

  16. Dynamical Stability and Long-term Evolution of Rotating Stellar Systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.

    2011-05-01

    We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.

  17. Biceps-Related Physical Findings Are Useful to Prevent Misdiagnosis of Cervical Spondylotic Amyotrophy as a Rotator Cuff Tear.

    PubMed

    Iwata, Eiichiro; Shigematsu, Hideki; Inoue, Kazuya; Egawa, Takuya; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Yamamoto, Yusuke; Sakamoto, Yoshihiro; Koizumi, Munehisa; Tanaka, Yasuhito

    2018-02-01

    Case-control study. The aim of the present study was to identify physical findings useful for differentiating between cervical spondylotic amyotrophy (CSA) and rotator cuff tears to prevent the misdiagnosis of CSA as a rotator cuff tear. CSA and rotator cuff tears are often confused among patients presenting with difficulty in shoulder elevation. Twenty-five patients with CSA and 27 with rotator cuff tears were enrolled. We included five physical findings specific to CSA that were observed in both CSA and rotator cuff tear patients. The findings were as follows: (1) weakness of the deltoid muscle, (2) weakness of the biceps muscle, (3) atrophy of the deltoid muscle, (4) atrophy of the biceps muscle, and (5) swallow-tail sign (assessment of the posterior fibers of the deltoid). Among 25 CSA patients, 10 (40.0%) were misdiagnosed with a rotator cuff tear on initial diagnosis. The sensitivity and specificity of each physical finding were as follows: (1) deltoid weakness (sensitivity, 92.0%; specificity, 55.6%), (2) biceps weakness (sensitivity, 80.0%; specificity, 100%), (3) deltoid atrophy (sensitivity, 96.0%; specificity, 77.8%), (4) biceps atrophy (sensitivity, 88.8%; specificity, 92.6%), and (5) swallow-tail sign (sensitivity, 56.0%; specificity, 74.1%). There were statistically significant differences in each physical finding. CSA is likely to be misdiagnosed as a rotator cuff tear; however, weakness and atrophy of the biceps are useful findings for differentiating between CSA and rotator cuff tears to prevent misdiagnosis.

  18. On the correlation between ‘non-local’ effects and intrinsic rotation reversals in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, P.; Rice, J. E.; Cao, N. M.; Creely, A. J.; Howard, N. T.; Hubbard, A. E.; Irby, J. H.; White, A. E.

    2017-07-01

    Contemporary predictive models for heat and particle transport in tokamak plasmas are based on the assumption that local fluxes can be described in terms of local plasma parameters, where electromagnetic drift-wave-type turbulence is driven by local gradients and results in cross-field transport. The question of whether or not transport could be dominated by non-local terms in certain circumstances is essential for our understanding of transport in magnetically confined plasmas, and critical for developing predictive models for future tokamaks, such as ITER. Perturbative transport experiments using cold-pulse injections at low density seem to challenge the local closure of anomalous transport: a rapid temperature increase in the core of the plasma following a sharp edge cooling is widely observed in tokamaks and helical devices. Past work in Ohmic plasmas in Alcator C-Mod and in ECH plasmas in KSTAR found that the temperature inversions disappear at higher densities, above the intrinsic toroidal rotation reversal density. These observations suggested that the so-called ‘non-local’ heat transport effects were related to the intrinsic rotation reversal, and therefore to changes in momentum transport. In this work, new experiments and analysis at Alcator C-Mod show that intrinsic rotation reversals and disappearance of temperature inversions are not concomitant in Ohmic plasmas at high plasma current and in ICRH L-modes. This new data set shows that the correlation between transient temperature inversions and intrinsic rotation reversals is not universal, suggesting that ‘non-local’ heat transport and momentum transport effects may be affected by different physical mechanisms.

  19. RETRACTION: Unsteady flow and heat transfer of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in a porous medium

    NASA Astrophysics Data System (ADS)

    Attia, H. A.

    2007-04-01

    It has come to the attention of the Institute of Physics that this article should not have been submitted for publication owing to its plagiarism of an earlier paper (Hossain A, Hossain M A and Wilson M 2001 Unsteady flow of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in presence of transverse magnetic field and heat transfer Int. J. Therm. Sci. 40 11-20). Therefore this article has been retracted by the Institute of Physics and by the author, Hazem Ali Attia.

  20. Magnetic field variation caused by rotational speed change in a magnetohydrodynamic dynamo.

    PubMed

    Miyagoshi, Takehiro; Hamano, Yozo

    2013-09-20

    We have performed numerical magnetohydrodynamic dynamo simulations in a spherical shell with rotational speed or length-of-day (LOD) variation, which is motivated by correlations between geomagnetic field and climatic variations with ice and non-ice ages. The results show that LOD variation leads to magnetic field variation whose amplitude is considerably larger than that of LOD variation. The heat flux at the outer sphere and the zonal flow also change. The mechanism of the magnetic field variation due to LOD variation is also found. The keys are changes of dynamo activity and Joule heating.

  1. Nonequilibrium life-cycles in Ocean Heat Content

    NASA Astrophysics Data System (ADS)

    Weiss, Jeffrey B.; Fox-Kemper, Baylor; Mandal, Dibyendu; Zia, Royce K. P.

    2014-03-01

    Natural climate variability can be considered as fluctuations in a nonequilibrium steady state. A fundamental property of nonequilibrium steady states is the phase space current which provides a preferred direction for fluctuations, and is manifested as preferred life-cycles for climate fluctuations. We propose a new quantity, the phase space angular momentum, to quantify the phase space rotation. In analogy with traditional angular momentum, which quantifies the rotation of mass in physical space, the phase space angular momentum quantifies the rotation of probability in phase space. It has the additional advantage that it is straightforward to calculate from a time series. We investigate the phase space angular momentum for fluctuations in ocean heat content in both observations and ocean general circulation models. We gratefully acknowledge financial support from the National Science Foundation (USA) under grant OCE 1245944.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru; Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru

    In the MHD tokamak plasma theory, the plasma pressure is usually assumed to be isotropic. However, plasma heating by neutral beam injection and RF heating can lead to a strong anisotropy of plasma parameters and rotation of the plasma. The development of MHD equilibrium theory taking into account the plasma inertia and anisotropic pressure began a long time ago, but until now it has not been consistently applied in computational codes for engineering calculations of the plasma equilibrium and evolution in tokamak. This paper contains a detailed derivation of the axisymmetric plasma equilibrium equation in the most general form (withmore » arbitrary rotation and anisotropic pressure) and description of the specialized version of the SPIDER code. The original method of calculation of the equilibrium with an anisotropic pressure and a prescribed rotational transform profile is proposed. Examples of calculations and discussion of the results are also presented.« less

  3. Evaluation of biomass quality of selected woody species depending on the soil enrichment practice

    NASA Astrophysics Data System (ADS)

    Stolarski, Mariusz J.; Krzyżaniak, Michał; Załuski, Dariusz; Niksa, Dariusz

    2018-01-01

    Perennial energy crops are a source of the bio-mass used to generate energy. The aim of this study was to determine the chemical and thermophysical parameters of short rotation woody crops (black locust, poplar and willow), depending on soil enrichment practice (mineral fertilisation, lignin and mycorrhiza), in three- and four-year harvest cycles. In the study, the thermophysical properties and elemental composition of the biomass were determined. All analyses were performed in trip-licate according to the standards. The fresh black locust biomass had the lowest moisture content, which resulted in the best lower heating value (10.16 MJ kg-1, on average) in the four-year harvest cycle. The poplar biomass had the greatest higher heating value, fixed carbon, carbon and ash content, the highest concentrations of which were found in the biomass in which lignin was applied (2.00% d.m.). On the other hand, the willow biomass contained the lowest concentrations of ash and fixed carbon. Soil enrichment significantly differentiated the quality parameters of black locust, poplar and willow. This effect is of particular importance to those who grow and use biomass as a fuel.

  4. Using Doppler Shifts of GPS Signals To Measure Angular Speed

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E., Jr.

    2006-01-01

    A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.

  5. Compact contacting device

    NASA Technical Reports Server (NTRS)

    Acharya, Arun (Inventor); Gottzmann, Christian F. (Inventor); Lockett, Michael J. (Inventor); Schneider, James S. (Inventor); Victor, Richard A. (Inventor); Zawierucha, Robert (Inventor)

    1994-01-01

    An apparatus comprising a rotatable mass of structured packing for mass or heat transfer between two contacting fluids of different densities wherein the packing mass is made up of corrugated sheets of involute shape relative to the axis of the packing mass and form a logarithmic spiral curved counter to the direction of rotation.

  6. Multiscale Analysis in the Compressible Rotating and Heat Conducting Fluids

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam; Maltese, David; Novotný, Antonín

    2017-06-01

    We consider the full Navier-Stokes-Fourier system under rotation in the singular regime of small Mach and Rossby, and large Reynolds and Péclet numbers, with ill prepared initial data on an infinite straight 3-D layer rotating with respect to the axis orthogonal to the layer. We perform the singular limit in the framework of weak solutions and identify the 2-D Euler-Boussinesq system as the target problem.

  7. Memory alloy heat engine and method of operation

    DOEpatents

    Johnson, Alfred Davis

    1977-01-01

    A heat engine and method of operation employing an alloy having a shape memory effect. A memory alloy element such as one or more wire loops are cyclically moved through a heat source, along a path toward a heat sink, through the heat sink and then along another path in counter-flow heat exchange relationship with the wire in the first path. The portion of the wire along the first path is caused to elongate to its trained length under minimum tension as it is cooled. The portion of the wire along the second path is caused to contract under maximum tension as it is heated. The resultant tension differential between the wires in the two paths is applied as a force through a distance to produce mechanical work. In one embodiment a first set of endless memory alloy wires are reeved in non-slip engagement between a pair of pulleys which are mounted for conjoint rotation within respective hot and cold reservoirs. Another set of endless memory alloy wires are reeved in non-slip engagement about another pair of pulleys which are mounted in the respective hot and cold reservoirs. The pulleys in the cold reservoir are of a larger diameter than those in the hot reservoir and the opposite reaches of the wires between the two sets of pulleys extend in closely spaced-apart relationship in counter-flow heat regenerator zones. The pulleys are turned to move the two sets of wires in opposite directions. The wires are stretched as they are cooled upon movement through the heat regenerator toward the cold reservoirs, and the wires contract as they are heated upon movement through the regenerator zones toward the hot reservoir. This contraction of wires exerts a larger torque on the greater diameter pulleys for turning the pulleys and supplying mechanical power. Means is provided for applying a variable tension to the wires. Phase change means is provided for controlling the angular phase of the pulleys of each set for purposes of start up procedure as well as for optimizing engine operation under varying conditions of load, speed and temperatures.

  8. Magnetic Field Generation Processes Involving Gravity and Differential Rotation. Solitary Plasma Rings Formation around Black Holes

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2012-10-01

    A clear theoretical framework to describe how magnetic fields are generated and amplified is provided by the magneto-gravitational modes that involve both differential rotation and gravity and for which other factors such as temperature gradients can contribute to their excitation. These modes are shown to be important for the evolution of plasma disks surrounding black holes.footnotetextB. Coppi, Phys. Plasmas 18, 032901 (2011) Non-linear and axi-symmetric plasmas and associated field configurations are found under stationary conditions that do not involve the presence of a pre-existing ``seed'' magnetic field unlike other configurations found previously.footnotetextIbid. The relevant magnetic energy density is of the order of the gravitationally confined plasma pressure. The solitary plasma rings that characterize these configurations are localized radially over regions with vanishing differential rotation and can be envisioned as the saturated state of magneto-gravitational modes. The ``source'' of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it.

  9. Photospheric Magnetic Flux Transport - Supergranules Rule

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Rightmire-Upton, Lisa

    2012-01-01

    Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!

  10. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon

    2010-11-20

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends onmore » the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.« less

  11. The Solar Rotation in the 1930s from the Sunspot and Flocculi Catalogs of the Ebro Observatory

    NASA Astrophysics Data System (ADS)

    de Paula, V.; Curto, J. J.; Casas, R.

    2016-10-01

    The tables of sunspot and flocculi heliographic positions included in the catalogs published by the Ebro Observatory in the 1930s have recently been recovered and converted into digital format by using optical character recognition (OCR) technology. We here analyzed these data by computing the angular velocity of several sunspot and flocculi groups. A difference was found in the rotational velocity for sunspots and flocculi groups at high latitudes, and we also detected an asymmetry between the northern and southern hemispheres, which is especially marked for the flocculi groups. The results were then fitted with a differential-rotation law [ω=a+b sin2 B] to compare the data obtained with the results published by other authors. A dependence on the latitude that is consistent with former studies was found. Finally, we studied the possible relationship between the sunspot/flocculi group areas and their corresponding angular velocity. There are strong indications that the rotational velocity of a sunspot/flocculi group is reduced (in relation to the differential rotation law) when its maximum area is larger.

  12. Direct exposure to mild heat promotes proliferation and neuronal differentiation of neural stem/progenitor cells in vitro

    PubMed Central

    Hossain, Md Emon; Katakura, Masanori; Sugimoto, Naotoshi; Mamun, Abdullah Al; Islam, Rafiad; Hashimoto, Michio; Shido, Osamu

    2017-01-01

    Heat acclimation in rats is associated with enhanced neurogenesis in thermoregulatory centers of the hypothalamus. To elucidate the mechanisms for heat acclimation, we investigated the effects of direct mild heat exposure on the proliferation and differentiation of neural stem/progenitor cells (NSCs/NPCs). The NSCs/NPCs isolated from forebrain cortices of 14.5-day-old rat fetuses were propagated as neurospheres at either 37.0°C (control) or 38.5°C (mild heat exposure) for four days, and the effects on proliferation were investigated by MTS cell viability assay, measurement of neurosphere diameter, and counting the total number of cells. The mRNA expressions of heat shock proteins (HSPs) and brain-derived neurotrophic factor (BDNF), cAMP response element-binding (CREB) protein and Akt phosphorylation levels, and intracellular reactive oxygen species (ROS) levels were analyzed using real time PCR, Western blotting and CM-H2DCFDA assay respectively. Heat exposure under proliferation condition increased NSC/NPC viability, neurosphere diameter, and cell count. BDNF mRNA expression, CREB phosphorylation, and ROS level were also increased by heat exposure. Heat exposure increased HSP27 mRNA expression concomitant with enhanced p-Akt level. Moreover, treatment with LY294002 (a PI3K inhibitor) abolished the effects of heat exposure on NSC/NPC proliferation. Furthermore, heat exposure under differentiation conditions increased the proportion of cells positive for Tuj1 (a neuronal marker). These findings suggest that mild heat exposure increases NSC/NPC proliferation, possibly through activation of the Akt pathway, and also enhances neuronal differentiation. Direct effects of temperature on NSCs/NPCs may be one of the mechanisms involved in hypothalamic neurogenesis in heat-acclimated rats. Such heat-induced neurogenesis could also be an effective therapeutic strategy for neurodegenerative diseases. PMID:29287093

  13. Pulsars in the Classroom: Suggested Exercises for Lab or Homework

    ERIC Educational Resources Information Center

    Gordon, Kurtiss J.

    1978-01-01

    Exercises for introductory to intermediate level college students are proposed. Observations of pulsars can be used to illustrate the phenomena of dispersion and Faraday rotation of radio waves, and to illustrate the differential rotation of the galaxy. (BB)

  14. RF Plasma Heating in the PFRC-2 Device: Motivation, Goals and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, S.; Brunkhorst, C.; Glasser, A.

    2011-12-23

    The motivation for using radio frequency, odd-parity rotating magnetic fields for heating field-reversed-configuration (FRC) plasmas is explained. Calculations are presented of the expected electron and ion temperatures in the PFRC-2 device, currently under construction.

  15. Rapid, dynamic segregation of core forming melts: Results from in-situ High Pressure- High Temperature X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Yu, T.; Wang, Y.

    2011-12-01

    The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.

  16. ULTRAVIOLET SPECTROSCOPY OF RAPIDLY ROTATING SOLAR-MASS STARS: EMISSION-LINE REDSHIFTS AS A TEST OF THE SOLAR-STELLAR CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linsky, Jeffrey L.; Bushinsky, Rachel; Ayres, Tom

    2012-07-20

    We compare high-resolution ultraviolet spectra of the Sun and thirteen solar-mass main-sequence stars with different rotational periods that serve as proxies for their different ages and magnetic field structures. In this, the second paper in the series, we study the dependence of ultraviolet emission-line centroid velocities on stellar rotation period, as rotation rates decrease from that of the Pleiades star HII314 (P{sub rot} = 1.47 days) to {alpha} Cen A (P{sub rot} = 28 days). Our stellar sample of F9 V to G5 V stars consists of six stars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescopemore » (HST) and eight stars observed with the Space Telescope Imaging Spectrograph on HST. We find a systematic trend of increasing redshift with more rapid rotation (decreasing rotation period) that is similar to the increase in line redshift between quiet and plage regions on the Sun. The fastest-rotating solar-mass star in our study, HII314, shows significantly enhanced redshifts at all temperatures above log T = 4.6, including the corona, which is very different from the redshift pattern observed in the more slowly rotating stars. This difference in the redshift pattern suggests that a qualitative change in the magnetic-heating process occurs near P{sub rot} = 2 days. We propose that HII314 is an example of a solar-mass star with a magnetic heating rate too large for the physical processes responsible for the redshift pattern to operate in the same way as for the more slowly rotating stars. HII314 may therefore lie above the high activity end of the set of solar-like phenomena that is often called the 'solar-stellar connection'.« less

  17. Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas

    2018-01-01

    We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.

  18. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes

    PubMed Central

    Lumbera, Wenchie Marie L.; dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-01-01

    There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat shock amelioration among 3T3-L1 preadipocytes through heat shock factor and proteins augmentation and enhanced adipogenic marker expression. PMID:26950875

  19. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes.

    PubMed

    Lumbera, Wenchie Marie L; Dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-03-01

    There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat shock amelioration among 3T3-L1 preadipocytes through heat shock factor and proteins augmentation and enhanced adipogenic marker expression.

  20. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    NASA Astrophysics Data System (ADS)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2017-12-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  1. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    NASA Astrophysics Data System (ADS)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2018-05-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  2. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  3. Temperature field for radiative tomato peeling

    NASA Astrophysics Data System (ADS)

    Cuccurullo, G.; Giordano, L.

    2017-01-01

    Nowadays peeling of tomatoes is performed by using steam or lye, which are expensive and polluting techniques, thus sustainable alternatives are searched for dry peeling and, among that, radiative heating seems to be a fairly promising method. This paper aims to speed up the prediction of surface temperatures useful for realizing dry-peeling, thus a 1D-analytical model for the unsteady temperature field in a rotating tomato exposed to a radiative heating source is presented. Since only short times are of interest for the problem at hand, the model involves a semi-infinite slab cooled by convective heat transfer while heated by a pulsating heat source. The model being linear, the solution is derived following the Laplace Transform method. A 3D finite element model of the rotating tomato is introduced as well in order to validate the analytical solution. A satisfactory agreement is attained. Therefore, two different ways to predict the onset of the peeling conditions are available which can be of help for proper design of peeling plants. Particular attention is paid to study surface temperature uniformity, that being a critical parameter for realizing an easy tomato peeling.

  4. Temperature Prediction in High Speed Bone Grinding using Motor PWM Signal

    PubMed Central

    Tai, Bruce L.; Zhang, Lihui; Wang, Anthony C.; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J.

    2013-01-01

    This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. PMID:23806419

  5. Response of plasma rotation to resonant magnetic perturbations in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Yan, W.; Chen, Z. Y.; Huang, D. W.; Hu, Q. M.; Shi, Y. J.; Ding, Y. H.; Cheng, Z. F.; Yang, Z. J.; Pan, X. M.; Lee, S. G.; Tong, R. H.; Wei, Y. N.; Dong, Y. B.; J-TEXT Team

    2018-03-01

    The response of plasma toroidal rotation to the external resonant magnetic perturbations (RMP) has been investigated in Joint Texas Experimental Tokamak (J-TEXT) ohmic heating plasmas. For the J-TEXT’s plasmas without the application of RMP, the core toroidal rotation is in the counter-current direction while the edge rotation is near zero or slightly in the co-current direction. Both static RMP experiments and rotating RMP experiments have been applied to investigate the plasma toroidal rotation. The core toroidal rotation decreases to lower level with static RMP. At the same time, the edge rotation can spin to more than 20 km s-1 in co-current direction. On the other hand, the core plasma rotation can be slowed down or be accelerated with the rotating RMP. When the rotating RMP frequency is higher than mode frequency, the plasma rotation can be accelerated to the rotating RMP frequency. The plasma confinement is improved with high frequency rotating RMP. The plasma rotation is decelerated to the rotating RMP frequency when the rotating RMP frequency is lower than the mode frequency. The plasma confinement also degrades with low frequency rotating RMP.

  6. Changes in the regulation of heat shock gene expression in neuronal cell differentiation.

    PubMed

    Oza, Jay; Yang, Jingxian; Chen, Kuang Yu; Liu, Alice Y-C

    2008-01-01

    Neuronal differentiation of the NG108-15 neuroblastoma-glioma hybrid cells is accompanied by a marked attenuation in the heat shock induction of the Hsp70-firefly luciferase reporter gene activity. Analysis of the amount and activation of heat shock factor 1, induction of mRNA(hsp), and the synthesis and accumulation of heat shock proteins (HSPs) in the undifferentiated and differentiated cells suggest a transcriptional mechanism for this attenuation. Concomitant with a decreased induction of the 72-kDa Hsp70 protein in the differentiated cells, there is an increased abundance of the constitutive 73-kDa Hsc70, a protein known to function in vesicle trafficking. Assessment of sensitivity of the undifferentiated and differentiated cells against stress-induced cell death reveals a significantly greater vulnerability of the differentiated cells toward the cytotoxic effects of arsenite and glutamate/glycine. This study shows that changes in regulation of the HSP and HSC proteins are components of the neuronal cell differentiation program and that the attenuated induction of HSPs likely contributes to neuronal vulnerability whereas the increased expression of Hsc70 likely has a role in neural-specific functions.

  7. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E.; Howard, N. T.; Greenwald, M.

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxesmore » from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.« less

  8. Rotational and vibrational transitions for Li + H2 collisions

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.; Tang, K. T.

    1977-01-01

    Close coupling calculations for integral and differential cross sections have been carried out for Li + H2 collisions with an ab initio Hartree-Fock potential energy surface. Rotational, vibrational, and vib-rotational excitation cross sections are reported at 0.4336 eV, 0.7 eV, and 0.8673 eV in the center of mass system. For pure rotational excitations, which dominate the inelastic scattering, coupling with vibrational states is not very important. For vibrational transitions, the influence of large multiquantum rotational transitions is far less than that found for Li(+) + H2 collisions.

  9. Measuring flows in the solar interior: current developments, results, and outstanding problems

    NASA Astrophysics Data System (ADS)

    Schad, Ariane

    2016-10-01

    I will present an overview of the current developments to determine flows in the solar interior and recent results from helioseismology. I will lay special focus on the inference of the deep structure of the meridional flow, which is one of the most challenging problems in helioseismology. In recent times, promising approaches have been developed for solving this problem. The time-distance analysis made large improvements in this after becoming aware of and compensating for a systematic effect in the analysis, the origin of which is not clear yet. In addition to this, a different approach is now available, which directly exploits the distortion of mode eigenfunctions by the meridional flow as well as rotation. These methods have presented us partly surprisingly complex meridional flow patterns, which, however, do not provide a consistent picture of the flow. Resolving this puzzle is part of current research since this has important consequences on our understanding of the solar dynamo. Another interesting discrepancy was found in recent studies between the amplitudes of the large- and small-scale dynamics in the convection zone estimated from helioseismology and those predicted from theoretical models. This raises fundamental questions how the Sun, and in general a star, maintains its heat transport and redistributes its angular momentum that lead, e.g., to the observed differential rotation.

  10. Collapse of differentially rotating neutron stars and cosmic censorship

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-07-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M2, where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M2<1, i.e. “sub-Kerr” models, we were able to find models that are dynamically unstable and that collapse promptly to a rotating black hole. Both the dynamics of the collapse and the consequent emission of gravitational waves resemble those seen for uniformly rotating stars, although with an overall decrease in the efficiency of gravitational-wave emission. For stellar models with J/M2>1, i.e. “supra-Kerr” models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  11. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    DOEpatents

    McIntosh, M.J.; Arzoumanidis, G.G.

    1997-09-02

    A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

  12. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    DOEpatents

    McIntosh, Michael J.; Arzoumanidis, Gregory G.

    1997-01-01

    A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

  13. A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems

    PubMed Central

    Begum, Shahanara; Nakaba, Satoshi; Yamagishi, Yusuke; Yamane, Kenichi; Islam, Md. Azharul; Oribe, Yuichiro; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo

    2012-01-01

    Background and Aims Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings. Methods Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy. Key Results Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells. Conclusions The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature. PMID:22843340

  14. Optical excess of dim isolated neutron stars

    NASA Astrophysics Data System (ADS)

    Ertan, Ü.; Çalışkan, Ş.; Alpar, M. A.

    2017-09-01

    The optical excess in the spectra of dim isolated neutron stars (XDINs) is a significant fraction of their rotational energy loss rate. This is strikingly different from the situation in isolated radio pulsars. We investigate this problem in the framework of the fallback disc model. The optical spectra can be powered by magnetic stresses on the innermost disc matter, as the energy dissipated is emitted as blackbody radiation mainly from the inner rim of the disc. In the fallback disc model, XDINs are the sources evolving in the propeller phase with similar torque mechanisms. In this model, the ratio of the total magnetic work that heats up the inner disc matter is expected to be similar for different XDINs. Optical luminosities that are calculated consistently with the optical spectra and the theoretical constraints on the inner disc radii give very similar ratios of the optical luminosity to the rotational energy loss rate for all these sources. These ratios indicate that a significant fraction of the magnetic torque heats up the disc matter while the remaining fraction expels disc matter from the system. For XDINs, the contribution of heating by X-ray irradiation to the optical luminosity is negligible in comparison with the magnetic heating. The correlation we expect between the optical luminosities and the rotational energy loss rates of XDINs can be a property of the systems with low X-ray luminosities, in particular those in the propeller phase.

  15. The Influence of Trace Gases Absorption on Differential Ring Cross Sections

    NASA Astrophysics Data System (ADS)

    Han, Dong; Zhao, Keyi

    2017-04-01

    The Ring effect refers to the filling in of Fraunhofer lines, which is known as solar absorption lines, caused almost entirely by rotational Raman scattering. The rotational Raman scattering by N2 and O2 in the atmosphere is the main factor that leads to Ring effect. The Ring effect is one significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere, while using satellite data with Differential Optical Absorption Spectroscopy technique. In this study, firstly the solar spectrum is convolved with rotational Raman cross sections of atmosphere, which is calculated with rotational Raman cross sections of N2 and O2, divided by the original solar spectrum, with a cubic polynomial subtracted off, to create differential Ring spectrum Ring1. Secondly, the Ring effect for pure Raman scattering of the Fraunhofer spectrum plus the contribution from interference by terrestrial absorption which always comes from a kind of trace gas (e.g., O3) are derived. To allow for more generality, the optically thin term as well as the next term in the expansion for the Beer-Lambert law are calculated.Ring1, Ring2, and Ring3are the Fraunhofer only, 1st terrestrial correction, and 2nd terrestrial correction for DOAS fitting.

  16. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) turboprop engines for single-rotation prop-fans and conceptual designs of pitch change mechanisms for single- and counter-rotation prop-fan application are discussed. The single-rotation gearbox is a split path, in-line configuration. The counter-rotation gearbox is an in-line, differential planetary design. The pitch change mechanisms for both the single- and counter-rotation arrangements are rotary/hydraulic. The advanced technology single-rotation gearbox yields a 2.4 percent improvement in aircraft fuel burn and a one percent improvement in operating cost relative to a current technology gearbox. The 1992 counter-rotation gearbox is 15 percent lighter, 15 percent more reliable, 5 percent lower in cost, and 45 percent lower in maintenance cost than the 1992 single-rotation gearbox. The pitch controls are modular, accessible, and external.

  17. Differential effects of voluntary wheel running and toy rotation on the mRNA expression of neurotrophic factors and FKBP5 in a post-traumatic stress disorder rat model with the shuttle-box task.

    PubMed

    Tanichi, Masaaki; Toda, Hiroyuki; Shimizu, Kunio; Koga, Minori; Saito, Taku; Enomoto, Shingo; Boku, Shuken; Asai, Fumiho; Mitsui, Yumi; Nagamine, Masanori; Fujita, Masanori; Yoshino, Aihide

    2018-06-18

    Life-threatening experiences can result in the development of post-traumatic stress disorder. We have developed an animal model for post-traumatic stress disorder (PTSD) using a shuttle box in rats. In this paradigm, the rats were exposed to inescapable foot-shock stress (IS) in a shuttle box, and then an avoidance/escape task was performed in the same box 2 weeks after IS. A previous study using this paradigm revealed that environmental enrichment (EE) ameliorated avoidance/numbing-like behaviors, but not hyperarousal-like behaviors, and EE also elevated hippocampal brain-derived neurotrophic factor (BDNF) expression. However, the differential effects of EE components, i.e., running wheel (RW) or toy rotation, on PTSD-like behaviors has remained unclear. In this experiment, we demonstrated that RW, toy rotation, and EE (containing RW and toy rotation) ameliorated avoidance/numbing-like behaviors, induced learning of avoidance responses, and improved depressive-like behaviors in traumatized rats. The RW increased the hippocampal mRNA expression of neurotrophic factors, especially BDNF and glial-cell derived neurotrophic factor. Toy rotation influenced FK506 binding protein 5 mRNA expression, which is believed to be a regulator of the hypothalamic-pituitary-adrenal (HPA)-axis system, in the hippocampus and amygdala. This is the first report to elucidate the differential mechanistic effects of RW and toy rotation. The former appears to exert its effects via neurotrophic factors, while the latter exerts its effects via the HPA axis. Further studies will lead to a better understanding of the influence of environmental factors on PTSD. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A new Faraday rotator for high average power lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khazanov, E A

    2001-04-30

    The new design of a Faraday rotator is proposed which allows one to compensate partially the radiation depolarisation in magneto-optical elements induced by heating due to the laser radiation absorption. The new design is compared analytically and numerically with a conventional design for the cases of glass and crystal magneto-optical media. It is shown that a rotator, which provides the compensation for birefringence in active elements with the accuracy up to 1 % at the average laser radiation power of 1 kW in the rotator, can be created. (laser applications and other topics in quantum electronics)

  19. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  20. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  1. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  2. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects.

    PubMed

    Hayat, Tanzila; Nadeem, S; Khan, A U

    2018-06-14

    The main object of the present paper is to examine and compare the improvement of flow and heat transfer characteristics between a rotating nanofluid and a newly discovered hybrid nanofluid in the presence of velocity slip and thermal slip. The influence of thermal radiation is also included in the present study. The system after applying the similarity transformations is solved numerically by using the bvp-4c scheme. Additionally, numerical calculations for the coefficient of skin friction and local Nusselt number are introduced and perused for germane parameters. The comparison between water, nanofluid and hybrid nanofluid on velocity and temperature is also visualized. It is observed that the velocity and temperature distributions are decreasing functions of the slip parameter. Temperature is boosted by thermal radiation and rotation. It is found that the heat transfer rate of the hybrid nanofluid is higher as compared to the traditional nanofluid.

  3. Motion-induced eddy current thermography for high-speed inspection

    NASA Astrophysics Data System (ADS)

    Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian

    2017-08-01

    This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  4. Variations in the Solar Coronal Rotation with Altitude - Revisited

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Trivedi, Rupal; Sharma, Som Kumar; Vats, Hari Om

    2017-04-01

    Here we report an in-depth reanalysis of an article by Vats et al. ( Astrophys. J. 548, L87, 2001) that was based on measurements of differential rotation with altitude as a function of observing frequencies (as lower and higher frequencies indicate higher and lower heights, respectively) in the solar corona. The radial differential rotation of the solar corona is estimated from daily measurements of the disc-integrated solar radio flux at 11 frequencies: 275, 405, 670, 810, 925, 1080, 1215, 1350, 1620, 1755, and 2800 MHz. We use the same data as were used in Vats et al. (2001), but instead of the twelfth maxima of autocorrelograms used there, we use the first secondary maximum to derive the synodic rotation period. We estimate synodic rotation by Gaussian fit of the first secondary maximum. Vats et al. (2001) reported that the sidereal rotation period increases with increasing frequency. The variation found by them was from 23.6 to 24.15 days in this frequency range, with a difference of only 0.55 days. The present study finds that the sidereal rotation period increases with decreasing frequency. The variation range is from 24.4 to 22.5 days, and the difference is about three times larger (1.9 days). However, both studies give a similar rotation period at 925 MHz. In Vats et al. (2001) the Pearson's factor with trend line was 0.86, whereas present analysis obtained a {˜} 0.97 Pearson's factor with the trend line. Our study shows that the solar corona rotates more slowly at higher altitudes, which contradicts the findings reported in Vats et al. (2001).

  5. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  6. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less

  7. Can the Study of Thermochemistry Facilitate Students' Differentiation between Heat Energy and Temperature?

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2006-01-01

    The objectives of this study are: (a) Evaluate science major freshman students' ability to differentiate between heat energy and temperature, after having studied the topic of thermochemistry; (b) ascertain the degree to which students resist change from the caloric to the kinetic-molecular theory; (c) study the ability to differentiate between…

  8. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation.

  9. Parameter optimization and evaluation of mechanical and thermal properties of nanographene reinforced Al 6060 surface composite using FSP

    NASA Astrophysics Data System (ADS)

    Kalyanamanohar, V.; Appalachari, D. Gireesh Chandra

    2018-04-01

    Friction stir processing (FSP) is emerging as a promising technique for making surface composites. FSP can improve surface properties such as hardness, strength, ductility, corrosion resistance, fatigue life and formability without affecting the bulk properties of the material. The literatures reported that FSP can produces very fine equiaxed and homogeneous grain structure for different Al alloys. Al 6060 is heat treatable alloy which has high thermal and electrical properties than remaining Al alloys. Al 6060 is being used where high rate of heat exchange is needed i.e. engine cylinders, heat exchangers etc. As derived from the carbon materials, like graphene and CNTs dissipates heat rapidly that improves the life of the engine cylinders and heat exchangers. In this work, nanographene is reinforced in the Al 6060 using friction stir processing at different rotational speeds, traverse speeds, and at constant load and tool tilt angle. After processed, the effect of process parameters on microstructure of the surface composite was investigated. The SEM studies shows that the FSP produces very fine and homogenous grain structure and it is observed that smaller grain size structure is obtained at lower traverse speed and higher rotational speeds. Significant improvement in ultimate tensile strength(22.9%) and hardness (22.44%) when compared friction stir processed plate at 1400 rotational speed and 20mm/min traverse speed with base Al 6060 plate. Coefficient of thermal expansion test of nanographene reinforced Al 6060 shows 7.33% decrease in its coefficient of thermal expansion as graphene has tendency to reduce the anisotropic nature.

  10. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  11. Jet-impingement heat transfer in gas turbine systems.

    PubMed

    Han, B; Goldstein, R J

    2001-05-01

    A review of jet-impingement heat transfer in gas turbine systems is presented. Characteristics of the different flow regions for submerged jets--free jet, stagnation flow, and wall jet--are reviewed. Heat transfer characteristics of both single and multiple jets are discussed with consideration of the effects of important parameters relevant to gas turbine systems including curvature of surfaces, crossflow, angle of impact, and rotation.

  12. Friction pull plug welding: dual chamfered plate hole

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Early attempts with FPPW followed the matching plug/plate geometry precedence of the successful Friction Push Plug Welding program, however no defect free welds were achieved due to substantial plug necking and plug rotational stalling. The dual chamfered hole has eliminated plug rotational stalling, both upon initial plug/plate contact and during welding. Also, the necking of the heated plug metal under a tensile heating/forging load has been eliminated through the usage of the dual chamfered plate hole.

  13. An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.

  14. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  15. Rotating Arc Jet Test Model: Time-Accurate Trajectory Heat Flux Replication in a Ground Test Environment

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj

    2011-01-01

    Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.

  16. KELT-17b: A Hot-Jupiter Transiting an A-star in a Misaligned Orbit Detected with Doppler Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, George; Rodriguez, Joseph E.; Collins, Karen A.; Beatty, Thomas; Oberst, Thomas; Heintz, Tyler M.; Stassun, Keivan G.; Latham, David W.; Kuhn, Rudolf B.; Bieryla, Allyson; Lund, Michael B.; Labadie-Bartz, Jonathan; Siverd, Robert J.; Stevens, Daniel J.; Gaudi, B. Scott; Pepper, Joshua; Buchhave, Lars A.; Eastman, Jason; Colón, Knicole; Cargile, Phillip; James, David; Gregorio, Joao; Reed, Phillip A.; Jensen, Eric L. N.; Cohen, David H.; McLeod, Kim K.; Tan, T. G.; Zambelli, Roberto; Bayliss, Daniel; Bento, Joao; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.; Blancato, Kirsten; Manner, Mark; Samulski, Camile; Stockdale, Christopher; Nelson, Peter; Stephens, Denise; Curtis, Ivan; Kielkopf, John; Fulton, Benjamin J.; DePoy, D. L.; Marshall, Jennifer L.; Pogge, Richard; Gould, Andy; Trueblood, Mark; Trueblood, Pat

    2016-11-01

    We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a {1.31}-0.29+0.28 {M}{{J}}, {1.525}-0.060+0.065 {R}{{J}} hot-Jupiter in a 3.08-day period orbit misaligned at -115.°9 ± 4.°1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin-orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (α \\lt 0.30 at 2σ significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of {1.635}-0.061+0.066 {M}⊙ , an effective temperature of 7454 ± 49 K, and a projected rotational velocity of v\\sin {I}* ={44.2}-1.3+1.5 {km} {{{s}}}-1; it is among the most massive, hottest, and most rapidly rotating of known planet hosts.

  17. MACULA: Fast Modeling of Rotational Modulations of Spotty Stars

    NASA Astrophysics Data System (ADS)

    Kipping, David

    2015-08-01

    Rotational modulations are frequently observed on stars observed by photometry surveys such as Kepler, with periodicities ranging from days to months and amplitudes of sub-parts-per-million to several percent. These variations may be studied to reveal important stellar properties such as rotational periods, inclinations and gradients of differential rotation. However, inverting the disk-integrated flux into a solution for spot number, sizes, contrasts, etc is highly degenerate and thereby necessitating an exhaustive search of the parameter space. In recognition of this, the software MACULA is designed to be a fast forward model of circular, grey spots on rotating stars, including effects such as differential rotation, spot evolution and even spot penumbra/umbra. MACULA seeks to achieve computational efficiency by using a wholly analytic description of the disk-integrated flux, which is described in Kipping (2012), leading to a computational improvement of three orders-of-magnitude over its numerical counterparts. As part of the hack day, I'll show how to simulate light curves with MACULA and provide examples with visualizations. I will also discuss the on-going development of the code, which will head towards modeling spot crossing events and radial velocity jitter and I encourage discussions amongst the participants on analytic methods to this end.

  18. Heat capacity and entropy of Ni2SiO4-olivine from 5 to 1000 K and heat capacity of Co2SiO4 from 360 to 1000 K.

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Ito, J.; Krupka, K.M.

    1984-01-01

    The heat capacity of Ni2SiO4-olivine has been measured between 5 and 387 K by cryogenic adiabatic-shield calorimetry and between 360 and 1000 K by differential scanning calorimetry. The heat capacity of Co2SiO4-olivine was measured between 360 and 1000 K by differential scanning calorimetry.-J.A.Z.

  19. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors.

    PubMed

    DiStefano, Tyler; Chen, Holly Yu; Panebianco, Christopher; Kaya, Koray Dogan; Brooks, Matthew J; Gieser, Linn; Morgan, Nicole Y; Pohida, Tom; Swaroop, Anand

    2018-01-09

    Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25) reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies. Published by Elsevier Inc.

  20. Heating and current drive on NSTX

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.

    1997-04-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.

  1. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  2. Uniform rotating field network structure to efficiently package a magnetic bubble domain memory

    NASA Technical Reports Server (NTRS)

    Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor); Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor)

    1978-01-01

    A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.

  3. Dissipative dark matter and the rotation curves of dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foot, R., E-mail: rfoot@unimelb.edu.au

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless 'dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interactionmore » facilitates halo heating by enabling ordinary supernovae to be a source of these 'dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or 'equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and H α fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.« less

  4. A thermodynamic and mechanical model for the earliest Solar System: Formation via 3-d collapse of dust in the pre-Solar nebula

    NASA Astrophysics Data System (ADS)

    Criss, R. E.; Hofmeister, A.

    2012-12-01

    The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive ΔUg ˜= ΔR.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E. ˜= R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.depends on the contraction of orbits during collapse. Orbital data for the inner planets follow 0.04xR.E.f ˜= -Ug which confirms conservation of angular momentum. Measured spins of the youngest stars confirm that R.E.˜= -Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d Solar System, and infer the evolution of dust and gas densities. Duration of events is obtained from the time-dependent virial theorem. As the PSN slowly contracted, collapse of pre-solar dust in spheroidal shells simultaneously formed rocky protoplanets embedded in a dusty debris disk, creating their nearly circular co-planar orbits and upright axial spins with the same sense as orbital rotation, which were then enhanced via subsequent local contraction of nearby nebulae. Because rocky kernels at great distance out-competed the pull of the co-accreting star, gas giants formed in the outer reaches within ~3 Ma as PSN contraction hastened. This pattern repeated to form satellite systems. The PSN imploded, once constricted to within Jupiter's orbit. Afterwards, disk debris slowly spiraled toward the protoSun, cratering and heating intercepted surfaces. Our conservative 3-d model, which allows for different behaviors of gas and dust, explains key Solar System characteristics (spin, orbits, gas giants and their compositions) and second-order features (dwarf planets, comet mineralogy, satellite system sizes).

  5. The Controllable Ball Joint Mechanism

    NASA Astrophysics Data System (ADS)

    Tung, Yung Cheng; Chieng, Wei-Hua; Ho, Shrwai

    A controllable ball joint mechanism with three rotational degrees of freedom is proposed in this paper. The mechanism is composed of three bevel gears, one of which rotates with respect to a fixed frame and the others rotate with respect to individual floating frames. The output is the resultant motion of the differential motions by the motors that rotates the bevel gears at the fixed frame and the floating frames. The mechanism is capable of a large rotation, and the structure is potentially compact. The necessary inverse and forward kinematic analyses as well as the derivation of kinematic singularity are provided according to the kinematical equivalent structure described in this paper.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides inmore » one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.« less

  7. Noise suppression for the differential detection in nuclear magnetic resonance gyroscope

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Zhou, Binquan; Chen, LinLin; Jia, YuChen; Lu, QiLin

    2017-10-01

    The nuclear magnetic resonance gyroscope is based on spin-exchange optical pumping of noble gases to detect and measure the angular velocity of the carrier, but it would be challenging to measure the precession signal of noble gas nuclei directly. To solve the problem, the primary detection method utilizes alkali atoms, the precession of nuclear magnetization modulates the alkali atoms at the Larmor frequency of nuclei, relatively speaking, and it is easier to detect the precession signal of alkali atoms. The precession frequency of alkali atoms is detected by the rotation angle of linearly polarized probe light; and differential detection method is commonly used in NMRG in order to detect the linearly polarized light rotation angle. Thus, the detection accuracy of differential detection system will affect the sensitivity of the NMRG. For the purpose of further improvement of the sensitivity level of the NMRG, this paper focuses on the aspects of signal detection, and aims to do an error analysis as well as an experimental research of the linearly light rotation angle detection. Through the theoretical analysis and the experimental illustration, we found that the extinction ratio σ2 and DC bias are the factors that will produce detective noise in the differential detection method.

  8. Gamma rays from accretion onto rotating black holes

    NASA Technical Reports Server (NTRS)

    Collins, M. S.

    1979-01-01

    Ionized matter falling onto an isolated rotating black hole will be heated sufficiently that proton-proton collisions will produce mesons, including neutral pions, which decay into gamma rays. For massive (1000-solar mass) black holes, the resulting gamma-ray luminosity may exceed 10 to the 36th erg/s with a spectrum peaked near 20 MeV.

  9. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower crust relative to the brittle crust above. Our study suggests that kinematics of crustal blocks in the ER is controlled by Africa and Somalia plates interaction at different scale and layers.

  10. When the Earth's Inner Core Shuffles

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Bodin, T.; Ngo, S.; Sambridge, M.

    2011-12-01

    Shuffling is a tribal dance recently adapted by teenagers as a street dance. In one of the most popular moves, the so-called "Running Man", a stomp forward on one foot, shifted without being lifted from the ground, is followed by a change of position backwards on the same foot. Here, we present strong observational evidence from a newly observed collection of earthquake doublets that the Earth's inner core "shuffles" exhibiting both prograde and retrograde rotation in the reference frame of the mantle. This discovery is significant on several levels. First, the observed pattern consists of intermittent intervals of quasi-locked and differentially rotating inner core with respect to the Earth's mantle. This means that the angular alignment of the inner core and mantle oscillates in time over the past five decades. Jolting temporal changes are revealed, indicating that during the excursions from the quasi-locked state, the Earth's inner core can rotate both faster and slower than the rest of the planet, thus exhibiting both eastward and westward rotation. According to our results, a short time interval (on the order of one to two years) is needed for the inner core to accelerate to a differential rotation rate of several degrees per year, and typically a slightly longer time is needed to decelerate down to a negligibly small differential rotation rate. These time scales are in agreement with experimental spin-up times obtained when the magnetic torque alone is used to accelerate the inner core. Second, when we integrate the rotation rate over different time intervals, it is possible to explain discrepancies between the body wave and normal modes results for the rate of the inner core differential rotation found by previous authors. We show that the integrated shift in angular alignment and average rotation rates (previously determined to be constant) in normal mode studies are much smaller that those for the body waves. The repeating earthquakes from the South Atlantic generate elastic waves that traverse the Earth's mantle and core, and are recorded by the seismographs located in the northern hemisphere. The waveform doublets produced by repeating earthquakes present a reliable probe, which can reveal temporal changes exhibited by the inner core due to the fact that the mantle effects are minimized. We observe new waveform-doublets at the College station, Alaska, and analyse all existing doublets recorded at that station using state of the art mathematical methods. The complex temporal pattern of differences in travel times between the first and the second event of a doublet is impossible to explain with a simple linear-fit approach. An ensemble approach utilizing transdimensional and hierarchical Bayesian analysis proves to be a powerful approach in this case, relaxing the choices on model parameterization and revealing hitherto unseen complex dynamics of the Earth's inner core.

  11. Rotator cuff injuries.

    PubMed

    Crusher, R H

    2000-07-01

    Different types of rotator cuff injuries frequently present to Accident and Emergency departments and minor injury units but can be difficult to differentiate clinically. This brief case study describes the examination and diagnosis of related shoulder injuries, specifically rotator cuff tears/disruption and calcifying supraspinatus tendinitis. The relevant anatomy and current therapies for these injuries is also discussed to enable the emergency nurse practitioner to have a greater understanding of the theory surrounding their diagnosis and treatments.

  12. Nanostructures: Physics and Technology International Symposium (9th), St. Petersburg, Russia, June 18-22, 2001 Proceedings

    DTIC Science & Technology

    2001-06-22

    detection: SThM operates because of heat extending into the microfabricated thermocouple. Therefore, the nature of the thermal contact between tip and...local heating phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 ix NC.05 Yu. V. Dubrovskii, A. Patane, P. N... heating . During the growth process the rotation of the samples is used, temperature field inhomogenity across the surface is about ∼ 5%. In order to

  13. Did 26Al and impact-induced heating differentiate Mercury?

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2017-02-01

    Numerical models dealing with the planetary scale differentiation of Mercury are presented with the short-lived nuclide, 26Al, as the major heat source along with the impact-induced heating during the accretion of planets. These two heat sources are considered to have caused differentiation of Mars, a planet with size comparable to Mercury. The chronological records and the thermal modeling of Mars indicate an early differentiation during the initial 1 million years (Ma) of the formation of the solar system. We theorize that in case Mercury also accreted over an identical time scale, the two heat sources could have differentiated the planets. Although unlike Mars there is no chronological record of Mercury's differentiation, the proposed mechanism is worth investigation. We demonstrate distinct viable scenarios for a wide range of planetary compositions that could have produced the internal structure of Mercury as deduced by the MESSENGER mission, with a metallic iron (Fe-Ni-FeS) core of radius 2000 km and a silicate mantle thickness of 400 km. The initial compositions were derived from the enstatite and CB (Bencubbin) chondrites that were formed in the reducing environments of the early solar system. We have also considered distinct planetary accretion scenarios to understand their influence on thermal processing. The majority of our models would require impact-induced mantle stripping of Mercury by hit and run mechanism with a protoplanet subsequent to its differentiation in order to produce the right size of mantle. However, this can be avoided if we increase the Fe-Ni-FeS contents to 71% by weight. Finally, the models presented here can be used to understand the differentiation of Mercury-like exoplanets and the planetary embryos of Venus and Earth.

  14. Numerical modelling of flow and heat transfer in the rotating disc cavities of a turboprop engine.

    PubMed

    Faragher, J; Ooi, A

    2001-05-01

    A numerical analysis of the flow and heat transfer in the cavity between two co-rotating discs with axial inlet and radial outflow of fluid, a configuration common in gas turbine engines, is described. The results are compared with the experimental data of Northrop and Owen. The effectiveness of the k-epsilon turbulence model with the two-layer zonal model for near-wall treatment of Chen and Patel is tested for this type of flow. Using three-dimensional models it is shown that modelling discrete holes at the outlet as opposed to a continuous slot, which is the approximation inherent in the two-dimensional axisymmetric model, has little effect on the predicted Nusselt number distribution along the disc surface. Results of a conjugate heat transfer analysis of a spacer in the turbine section of a turboprop engine are then presented.

  15. A sublimation heat engine

    PubMed Central

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  16. A sublimation heat engine.

    PubMed

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-03

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  17. Pattern-free thermal modulator via thermal radiation between Van der Waals materials

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Shen, Jiadong; Xuan, Yimin

    2017-10-01

    Modulating heat flux provides a platform for a plethora of emerging devices such as thermal diodes, thermal transistors, and thermal memories. Here, a pattern-free noncontact thermal modulator is proposed based on the mechanical rotation between two Van der Waals films with optical axes parallel to the surfaces. A modulation contrast can reach a value higher than 5 for hexagonal Boron Nitride (hBN) films separated by a nanoscale gap distance. The dominant radiative heat exchange comes from the excitation of both Type I and Type II hyperbolic surface phonon polaritons (HSPhPs) at the vacuum-hBN interface for different orientations, while the large modulation contrast is mainly attributed to the mismatching Type I HSPhPs induced by rotation. This work opens the possibility to design cheap thermal modulators without relying on nanofabrication techniques, and paves the way to apply natural Van der Waals materials in manipulating heat currents in an active way.

  18. Local heat transfer in turbine disk-cavities. II - Rotor cooling with radial location injection of coolant

    NASA Astrophysics Data System (ADS)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    The detailed radial distributions of rotor heat-transfer coefficients for three basic disk-cavity geometries applicable to gas turbines are presented. The coefficients are obtained over a range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. The effects of a parallel rotor are analyzed, and strong variations in local Nusselt numbers for all but the rotational speed are pointed out and compared with the associated hub-injection data from a previous study. It is demonstrated that the overall rotor heat transfer is optimized by either the hub injection or radial location injection of a coolant, dependent on the configuration.

  19. Double diffusive conjugate heat transfer: Part III

    NASA Astrophysics Data System (ADS)

    Soudagar, Manzoor Elahi M.; Azeem

    2018-05-01

    The placement of a small solid wall towards cold surface of square porous cavity affects the heat transfer behavior of porous region due to restriction of fluid motion in the region occupied by solid wall. An investigation of heat transfer is carried out to understand the fluid flow and heat transfer behavior in porous cavity by solving the governing partial differential equations. Galerkin's approach is used to convert the partial differential equations into algebraic form of equations by applying finite element method. The heat transfer increases for solid towards right surface as compared to the case of solid at center of cavity.

  20. Night-shift work is associated with increased pain perception.

    PubMed

    Matre, Dagfinn; Knardahl, Stein; Nilsen, Kristian Bernhard

    2017-05-01

    Objectives The aim of the present study was to determine whether shift workers exhibit increased perception of experimentally induced pain after working night shifts. Methods The study was a paired cross-over design with two sleep conditions, after at least two nights of habitual sleep and after two consecutive night shifts at work. Fifty-three nurses in rotating shift work participated. The sensitivity to electrically induced pain, heat pain, cold pain, pressure pain and pain inhibition was determined experimentally in each sleep condition. Sleepiness and vigilance were also assessed. Results Night-shift work (NSW) increased the sensitivity to electrically induced pain and heat pain (P≤0.001). Relative to habitual sleep, electrically induced pain increased by 22.3% and heat pain increased by 26.5%. The sensitivity to cold and pressure pain did not change, changes relative to habitual sleep was <5% (P>0.5). Pain inhibition was 66.9% stronger after NSW versus after habitual sleep (P<0.001). Sleepiness (measured with the Karolinska Sleepiness Scale) increased from 4.1 after habitual sleep to 6.9 after NSW (P<0.001). Vigilance decreased after NSW, measured as a 0.03-second decrease in reaction time (P<0.005). Conclusions Changes in pain sensitivity after NSW is measurable with clinically relevant effect sizes and may be an important marker for studies comparing the physiological effects of different shift work schedules. Explanations for the differential effect on different pain modalities should be a focus for future studies.

  1. Non-destructive imaging of spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Samson, E.; Vinit, Anshuman; Raman, Chandra

    2013-05-01

    We present a non-destructive differential imaging technique that enables the observation of the spatial distribution of the magnetization in a spinor Bose-Einstein condensate (BEC) through a Faraday rotation protocol. In our procedure, we utilize a linearly polarized, far-detuned laser beam as our imaging probe, and upon interaction with the condensate, the beam's polarization direction undergoes Faraday rotation. A differential measurement of the orthogonal polarization components of the rotated beam provides a spatial map of the net magnetization density within the BEC. The non-destructive aspect of this method allows for continuous imaging of the condensate. This imaging technique will prove useful in experimental BEC studies, such as spatially resolved magnetometry using ultracold atoms, and non-destructive imaging of non-equilibrium behavior of antiferromagnetic spinor condensates. This work was supported by the DARPA QuASAR program through a grant from ARO.

  2. Temperature prediction in high speed bone grinding using motor PWM signal.

    PubMed

    Tai, Bruce L; Zhang, Lihui; Wang, Anthony C; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J

    2013-10-01

    This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Effect of steady crucible rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Patrick Doty, F.; Derby, Jeffrey J.

    1999-05-01

    Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of steady crucible rotation on axial and radial segregation in the grown crystal. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and pseudo-binary zinc segregation. Imposing a moderate rotation rate of 10 rpm on the system slightly improves axial segregation but makes radial segregation much worse. Moreover, values of dimensionless thermal Rossby and Taylor numbers calculated for this system indicate that the baroclinic instability may occur at the rotation rates studied.

  4. Physics of rotation: problems and challenges

    NASA Astrophysics Data System (ADS)

    Maeder, Andre; Meynet, Georges

    2015-01-01

    We examine some debated points in current discussions about rotating stars: the shape, the gravity darkening, the critical velocities, the mass loss rates, the hydrodynamical instabilities, the internal mixing and N-enrichments. The study of rotational mixing requires high quality data and careful analysis. From recent studies where such conditions are fulfilled, rotational mixing is well confirmed. Magnetic coupling with stellar winds may produce an apparent contradiction, i.e. stars with a low rotation and a high N-enrichment. We point out that it rather confirms the large role of shears in differentially rotating stars for the transport processes. New models of interacting binaries also show how shears and mixing may be enhanced in close binaries which are either spun up or down by tidal interactions.

  5. Rotational Modulation and Activity Cycles at Rotational Extremes: 25 yrs of NURO Photometry for HII 1883

    NASA Astrophysics Data System (ADS)

    Milingo, Jackie; Saar, Steven; Marschall, Laurence

    2018-01-01

    We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period of ~ 0.24 d and displays significant rotational modulation due to non-uniform surface brightness or "starspots". Preliminary work yields a cycle period of ~ 9 yrs and rotational shear (ΔP_rot/) considerably less than solar. HII 1883 is one of the fastest rotating single stars with a known cycle. With additional data available we compare newly determined P_cyc and ΔP_rot/ values with those of other stars, putting HII 1883 into the broader context of dynamo properties in single cool dwarfs.

  6. Stellar rotation periods determined from simultaneously measured Ca II H&K and Ca II IRT lines

    NASA Astrophysics Data System (ADS)

    Mittag, M.; Hempelmann, A.; Schmitt, J. H. M. M.; Fuhrmeister, B.; González-Pérez, J. N.; Schröder, K.-P.

    2017-11-01

    Aims: Previous studies have shown that, for late-type stars, activity indicators derived from the Ca II infrared-triplet (IRT) lines are correlated with the indicators derived from the Ca II H&K lines. Therefore, the Ca II IRT lines are in principle usable for activity studies, but they may be less sensitive when measuring the rotation period. Our goal is to determine whether the Ca II IRT lines are sufficiently sensitive to measure rotation periods and how any Ca II IRT derived rotation periods compare with periods derived from the "classical" Mount Wilson S-index. Methods: To analyse the Ca II IRT lines' sensitivity and to measure rotation periods, we define an activity index for each of the Ca II IRT lines similar to the Mount Wilson S-index and perform a period analysis for the lines separately and jointly. Results: For eleven late-type stars we can measure the rotation periods using the Ca II IRT indices similar to those found in the Mount Wilson S-index time series and find that a period derived from all four indices gives the most probable rotation period; we find good agreement for stars with already existing literature values. In a few cases the computed periodograms show a complicated structure with multiple peaks, meaning that formally different periods are derived in different indices. We show that in one case, this is due to data sampling effects and argue that denser cadence sampling is necessary to provide credible evidence for differential rotation. However, our TIGRE data for HD 101501 shows good evidence for the presence of differential rotation.

  7. Modelisation numerique des phenomenes physiques du soudage par friction-malaxage et comportement en fatigue de joints soudes en aluminium 7075-T6

    NASA Astrophysics Data System (ADS)

    Gemme, Frederic

    The aim of the present research project is to increase the amount of fundamental knowledge regarding the process by getting a better understanding of the physical phenomena involved in friction stir welding (FSW). Such knowledge is required to improve the process in the context of industrial applications. In order to do so, the first part of the project is dedicated to a theoretical study of the process, while the microstructure and the mechanical properties of welded joints obtained in different welding conditions are measured and analyzed in the second part. The combination of the tool rotating and translating movements induces plastic deformation and heat generation of the welded material. The material thermomechanical history is responsible for metallurgical phenomena occurring during FSW such as recrystallization and precipitate dissolution and coarsening. Process modelling is used to reproduce this thermomechanical history in order to predict the influence of welding on the material microstructure. It is helpful to study heat generation and heat conduction mechanisms and to understand how joint properties are related to them. In the current work, a finite element numerical model based on solid mechanics has been developed to compute the thermomechanical history of the welded material. The computation results were compared to reference experimental data in order to validate the model and to calibrate unknown physical parameters. The model was used to study the effect of the friction coefficient on the thermomechanical history. Results showed that contact conditions at the workpiece/tool interface have a strong effect on relative amounts of heat generated by friction and by plastic deformation. The comparison with the experimental torque applied by the tool for different rotational speeds has shown that the friction coefficient decreases when the rotational speed increases. Consequently, heat generation is far more important near the material/tool interface and the material deformation is shallower, increasing the lack of penetration probability. The variation of thermomechanical conditions with regards to the rotational speed is responsible for the variation of the nugget shape, as recrystallization conditions are not reached in the same volume of material. The second part of the research project was dedicated to a characterization of the welded joints microstructure and mechanical properties. Sound joints were obtained by using a manufacturing procedure involving process parameters optimization and quality control of the joint integrity. Five different combinations of rotational and advancing speeds were studied. Microstructure observations have shown that the rotational speed has an effect on recrystallization conditions because of the variation of the contact conditions at the material/tool interface. On the other hand, the advancing speed has a strong effect on the precipitation state in the heat affected zone (HAZ). The heat input increases when the advancing speed decreases. The material softening in the HAZ is then more pronounced. Mechanical testing of the welded joints showed that the fatigue resistance increases when the rotational speed increases and the advancing speed decreases. The fatigue resistance of FSW joints mainly depends on the ratio of the advancing speed on the rotational speed, called the welding pitch k. When the welding pitch is high (k ≥ 0,66 mm/rev), the fatigue resistance depends on crack initiation at the root of circular grooves left by the tool on the weld surface. The size of these grooves is directly related to the welding pitch. When the welding pitch is low (k ≤ 0,2 mm/rev), the heat input is high and the fatigue resistance is limited by the HAZ softening. The fatigue resistance is optimized when k stands in the 0,25-0,30 mm/rev range. Outside that range, the presence of small lateral lips is critical. The results of the characterization part of the project showed that the effects of the applied vertical force on the formation of lateral lips should be submitted to further investigations. The elimination of the lateral lip, which could be achieved with a more precise adjustment of the vertical force, could lead to an improved fatigue resistance. The elimination of lateral lips, but also the circular grooves left by the tool, may be obtained by developing an appropriate surfacing technique and could lead to an improved fatigue resistance without reducing the advancing speed. (Abstract shortened by UMI.)

  8. Conformational statistics of stiff macromolecules as solutions to partial differential equations on the rotation and motion groups

    PubMed

    Chirikjian; Wang

    2000-07-01

    Partial differential equations (PDE's) for the probability density function (PDF) of the position and orientation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-Siggia models are examples of stiffness models to which the present formulation is applied. The solution technique uses harmonic analysis on the rotation and motion groups to convert PDE's governing the PDF's of interest into linear algebraic equations which have mathematically elegant solutions.

  9. Differential rotation of chromosphere and photosphere in the rising phase of N22 cycle of the Sun: torsional oscillations

    NASA Astrophysics Data System (ADS)

    Kasinskii, V.; Kasinskaia, L. I.

    2005-06-01

    The angular velocities of chromosphere and photosphere are calculated for 1987-1990 on the basis of heliographic coordinates of the chromospheric flares and sunspots (Solar Geophysical Data). The time resolution accepted is 0.25 year. The mean equatorial rotations of chromosphere and photosphere practically coincide. However, the differential coefficients in the chromosphere and photosphere, b, have strongly different behaviour. The value bch - bph change regularly from ``+'' sign to ``-'' sign over two-year interval. Thus, the idea of a torsion like oscillations of ``chromosphere-photosphere'' is supported.

  10. Slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating

    NASA Astrophysics Data System (ADS)

    Mohamed, Muhammad Khairul Anuar; Noar, Nor Aida Zuraimi Md; Ismail, Zulkhibri; Kasim, Abdul Rahman Mohd; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Ishak, Anuar

    2017-08-01

    Present study solved numerically the velocity slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating. The governing equations which in the form of partial differential equations are transformed to ordinary differential equations before being solved numerically using the Runge-Kutta-Fehlberg method in MAPLE. The numerical solution is obtained for the surface temperature, heat transfer coefficient, reduced skin friction coefficient as well as the temperature and velocity profiles. The flow features and the heat transfer characteristic for the pertinent parameter such as Prandtl number, stretching parameter, heat generation/absorption parameter, velocity slip parameter and conjugate parameter are analyzed and discussed.

  11. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk - A numerical approach

    NASA Astrophysics Data System (ADS)

    Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem

    The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.

  12. Rotationally and vibrationally inelastic scattering in the rotational IOS approximation. Ultrasimple calculation of total (differential, integral, and transport) cross sections for nonspherical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, G.A.; Pack, R.T

    1978-02-15

    A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less

  13. Regulation of heat shock protein message in Jurkat cells cultured under serum-starved and gravity-altered conditions

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Hughes-Fulford, M.

    2000-01-01

    Although our understanding of effects of space flight on human physiology has advanced significantly over the past four decades, the potential contribution of stress at the cellular and gene regulation level is not characterized. The objective of this ground-based study was to evaluate stress gene regulation in cells exposed to altered gravity and environmentally suboptimal conditions. We designed primers to detect message for both the constitutive and inducible forms of the heat shock protein, HSP-70. Applying the reverse transcriptase-polymerase chain reaction (RT-PCR), we probed for HSP-70 message in human acute T-cell leukemia cells, Jurkat, subjected to three types of environmental stressors: (1) altered gravity achieved by centrifugation (hypergravity) and randomization of the gravity vector in rotating bioreactors, (2) serum starvation by culture in medium containing 0.05% serum, and (3) temperature elevation (42 degrees C). Temperature elevation, as the positive control, significantly increased HSP-70 message, while centrifugation and culture in rotating bioreactors did not upregulate heat shock gene expression. We found a fourfold increase in heat shock message in serum-starved cells. Message for the housekeeping genes, actin and cyclophilin, were constant and comparable to unstressed controls for all treatments. We conclude that gravitational perturbations incurred by centrifugal forces, exceeding those characteristic of a Space Shuttle launch (3g), and culture in rotating bioreactors do not upregulate HSP-70 gene expression. In addition, we found RT-PCR useful for evaluating stress in cultured cells. Copyright 2000 Wiley-Liss, Inc.

  14. Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi

    The experimental evaluation of the separated and coupled rotating desiccant wheel and heat wheel is reported. The study aims to investigate the performance of the desiccant wheel and of the heat wheel both when operated separately and jointly. The performance evaluation of the desiccant wheel is based on its moisture removal capacity (MRC), moisture removal regeneration (MRR), and moisture mass balance (MMB). In addition, the study used the total energy balance (TEB), sensible coefficient of performance (COP{sub Sensible}), latent coefficient of performance (COP{sub Latent}) and, total coefficient of performance (COP{sub Total}). The performance of the heat wheel is based onmore » its effectiveness. The COP{sub Sensible}, COP{sub Latent} and, COP{sub Total} are used in the performance evaluation of the coupled desiccant wheel and heat wheel. The general results of the study show that the MRC, MRR and MMB coupled with the TEB, COP{sub Latent}, COP{sub Sensible} and COP{sub Total} predict adequately the performance of the desiccant wheel. In addition, the coupled operation of the desiccant wheel and heat wheel, contributed to the reduction of the external thermal energy requirement for the regeneration of the desiccant wheel. This study can be applied in other researches seeking evaluation of the desiccant wheel, heat wheel, and their combined operation. Moreover, the data presented here are significant for the desiccant wheel benchmarking and for evaluation of the desiccant wheel models. (author)« less

  15. Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress

    PubMed Central

    Liao, Jiang-Lin; Zhou, Hui-Wen; Huang, Ying-Jin

    2014-01-01

    Rice yield and quality are adversely affected by high temperatures, and these effects are more pronounced at the ‘milky stage’ of the rice grain ripening phase. Identifying the functional proteins involved in the response of rice to high temperature stress may provide the basis for improving heat tolerance in rice. In the present study, a comparative proteomic analysis of paired, genetically similar heat-tolerant and heat-sensitive rice lines was conducted. Two-dimensional electrophoresis (2-DE) revealed a total of 27 differentially expressed proteins in rice grains, predominantly from the heat-tolerant lines. The protein profiles clearly indicated variations in protein expression between the heat-tolerant and heat-sensitive rice lines. Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analysis revealed that 25 of the 27 differentially displayed proteins were homologous to known functional proteins. These homologous proteins were involved in biosynthesis, energy metabolism, oxidation, heat shock metabolism, and the regulation of transcription. Seventeen of the 25 genes encoding the differentially displayed proteins were mapped to rice chromosomes according to the co-segregating conditions between the simple sequence repeat (SSR) markers and the target genes in recombinant inbred lines (RILs). The proteins identified in the present study provide a basis to elucidate further the molecular mechanisms underlying the adaptation of rice to high temperature stress. PMID:24376254

  16. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.)

    PubMed Central

    von Korff, M.

    2013-01-01

    The objective of this study was to identify barley leaf proteins differentially regulated in response to drought and heat and the combined stresses in context of the morphological and physiological changes that also occur. The Syrian landrace Arta and the Australian cultivar Keel were subjected to drought, high temperature, or a combination of both treatments starting at heading. Changes in the leaf proteome were identified using differential gel electrophoresis and mass spectrometry. The drought treatment caused strong reductions of biomass and yield, while photosynthetic performance and the proteome were not significantly changed. In contrast, the heat treatment and the combination of heat and drought reduced photosynthetic performance and caused changes of the leaf proteome. The proteomic analysis identified 99 protein spots differentially regulated in response to heat treatment, 14 of which were regulated in a genotype-specific manner. Differentially regulated proteins predominantly had functions in photosynthesis, but also in detoxification, energy metabolism, and protein biosynthesis. The analysis indicated that de novo protein biosynthesis, protein quality control mediated by chaperones and proteases, and the use of alternative energy resources, i.e. glycolysis, play important roles in adaptation to heat stress. In addition, genetic variation identified in the proteome, in plant growth and photosynthetic performance in response to drought and heat represent stress adaption mechanisms to be exploited in future crop breeding efforts. PMID:23918963

  17. Understanding the stability of the low torque ITER Baseline Scenario in DIII-D

    NASA Astrophysics Data System (ADS)

    Turco, Francesca

    2017-10-01

    Analysis of the evolving current density (J), pedestal and rotation profiles in a database of 200 ITER Baseline Scenario discharges in the DIII-D tokamak sheds light on the cause of the disruptive instability limiting both high and low torque operation of these plasmas. The m =2/n =1 tearing modes, occurring after several pressure-relaxation times, are related to the shape of the current profile in the outer region of the plasma. The q =2 surface is located just inside the current pedestal, near a minimum in J. This well in J deepens at constant betaN and at lower rotation, causing the equilibrium to evolve towards a classically unstable state. Lack of core-edge differential rotation likely biases the marginal point towards instability during the secular trend in J. New results from the 2017 experimental campaign establish the first reproducible, stable operation at T =0 Nm for this scenario. A new ramp-up recipe with delayed heating keeps the discharges stable without the need for ECCD stabilization. The J profile shape in the new shots is consistent with an expansion of the previous ``shallow well'' stable operational space. Realtime Active MHD Spectroscopy (AMS) has been applied to IBS plasmas for the first time, and the plasma response measurements show that the AMS can help sense the approach to instability during the discharges. The AMS data shows the trend towards instability at low rotation, and MARS-K modelling partially reproduces the experimental trend if collisionality and resistivity are included. The modelling results are sensitive to the edge resistivity, and this can indicate that the AMS is measuring the changes in ideal (kink) stability, to which the tearing stability index delta' is correlated. Together these results constitute a crucial step to acquire physical understanding and sensing capability for the MHD stability in the Q =10 ITER scenario. Work supported by US DOE under DE-FC02-04ER54698 and DE-FG02-04ER54761.

  18. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, Lyle E.

    1983-01-01

    An apparatus and method for preventing a solar receiver (12) utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver (12) by a plurality of reflectors (16) which rotate so that they direct solar energy to the receiver (12) as the earth rotates. The apparatus disclosed includes a first storage tank (30) for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank (30) includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank (34) for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank (34) having an inlet through which the coolant can enter. The first and second storage tanks (30) and (34) are in fluid communication with each other through the solar receiver (12). The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank (30) through the solar receiver (12) and into the second storage tank (34). Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors (16) stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks (30) and (34) will be sufficient to maintain the coolant in the receiver (12) below a predetermined upper temperature until the solar reflectors (16) become defocused with respect to the solar receiver (12) due to the earth's rotation.

  19. Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing.

    PubMed

    Li, Huiying; Hu, Tao; Amombo, Erick; Fu, Jinmin

    2017-06-01

    MicroRNAs (miRNAs) play vital roles in the adaptive response of plants to various abiotic and biotic stresses. Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turf grass species which is severely influenced by heat stress. To unravel possible heat stress-responsive miRNAs, high-throughput sequencing was employed for heat-tolerant PI578718 and heat-sensitive PI234881 genotypes growing in presence and absence of heat stress (40°C for 36h). By searching against the miRBase database, among 1421 reference monocotyledon miRNAs, more than 850 were identified in all samples. Among these miRNAs, 1.46% and 2.29% were differentially expressed in PI234881 and PI578718 under heat stress, respectively, and most of them were down-regulated. In addition, a total of 170 novel miRNAs belonging to 145 miRNA families were identified. Furthermore, putative targets of differentially expressed miRNAs were predicted. The regulation of selected miRNAs by heat stress was revalidated through quantitative reverse transcription PCR (qRT-PCR) analysis. Most of these miRNAs shared similar expression patterns; however, some showed distinct expression patterns under heat stress, with their putative targets displaying different transcription levels. This is the first genome-wide miRNA identification in tall fescue. miRNAs specific to PI578718, or those that exhibited differential expression profiles between the two genotypes under high temperature, were probably associated with the variation in thermotolerance of tall fescue. The differentially expressed miRNAs between these two tall fescue genotypes and their putative targeted genes will provide essential information for further study on miRNAs mediating heat response and facilitate to improve turf grass breeding. Copyright © 2017. Published by Elsevier GmbH.

  20. Flow and Heat Transfer in 180-Degree Turn Square Ducts: Effects of Turning Configuration and System Rotation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chyu, Ming-King

    1993-01-01

    Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.

Top