Sample records for differentially reddened globular

  1. G2C2 - II. Integrated colour-metallicity relations for Galactic globular clusters in SDSS passbands

    NASA Astrophysics Data System (ADS)

    Vanderbeke, Joachim; West, Michael J.; De Propris, Roberto; Peng, Eric W.; Blakeslee, John P.; Jordán, Andrés; Côté, Patrick; Gregg, Michael; Ferrarese, Laura; Takamiya, Marianne; Baes, Maarten

    2014-01-01

    We use our integrated Sloan Digital Sky Survey (SDSS) photometry for 96 globular clusters in g and z, as well as r and i photometry for a subset of 56 clusters, to derive the integrated colour-metallicity relation (CMR) for Galactic globular clusters. We compare this relation to previous work, including extragalactic clusters, and examine the influence of age, present-day mass function variations, structural parameters and the morphology of the horizontal branch on the relation. Moreover, we scrutinize the scatter introduced by foreground extinction (including differential reddening) and show that the scatter in the CMR can be significantly reduced combining two reddening laws from the literature. In all CMRs, we find some low-reddening young GCs that are offset to the CMR. Most of these outliers are associated with the Sagittarius system. Simulations show that this is due to less age than to a different enrichment history. Finally, we introduce CMRs based on the infrared calcium triplet, which are clearly non-linear when compared to (g' - i') and (g' - z') colours.

  2. Opening the Window on Galaxy Assembly: Ages and Structural Parameters of Globular Clusters Towards the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Cohen, Roger

    2015-10-01

    The primary aim of this program is to undertake a systematic investigation of highly reddened Galactic globular clusters (GGCs) located towards the Galactic bulge. These clusters have been excluded from deep space-based photometric surveys due to their severe total and differential extinction. We will exploit the photometric depth and homogeneity of two existing Treasury programs (the ACS GGC Treasury Survey and the WFC3 Bulge Treasury Program) along with the unique optical+IR parallel imaging capabilities of HST to finally place the bulge GGCs in the context of their optically well-studied counterparts. Specifically, by leveraging ACS/WFC together with WFC3/IR, we first exploit the reddening sensitivity at optical wavelengths to map severe, small-scale differential reddening in the cluster cores. Corrected two-color WFC3/IR photometry will then be used to measure cluster ages to better than 1 Gyr relative precision, finally completing the age-metallicity relation of the Milky Way GGC system. Ages are obtained using a demonstrated procedure which is strictly differential, and therefore insensitive to total distance, reddening, reddening law, or photometric calibration uncertainties. At the same time, deep archival Treasury survey imaging of the Galactic bulge will be used to decontaminate cluster luminosity functions, yielding measurements of bulge GGC mass functions and mass segregation on par with results from the ACS GGC Treasury survey. Finally, the imaging which we propose will be combined with existing wide-field near-IR PSF photometry, yielding complete radial number density profiles, structural and morphological parameters.

  3. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Gómez, Matías; Geisler, Douglas

    It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Vía Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates bymore » their color–magnitude diagrams. We provide their coordinates as well as their near-IR color–magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color–magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A {sub Ks} < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color–magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way.« less

  4. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge

    NASA Astrophysics Data System (ADS)

    Minniti, Dante; Geisler, Douglas; Alonso-García, Javier; Palma, Tali; Beamín, Juan Carlos; Borissova, Jura; Catelan, Marcio; Clariá, Juan J.; Cohen, Roger E.; Contreras Ramos, Rodrigo; Dias, Bruno; Fernández-Trincado, Jose G.; Gómez, Matías; Hempel, Maren; Ivanov, Valentin D.; Kurtev, Radostin; Lucas, Phillip W.; Moni-Bidin, Christian; Pullen, Joyce; Ramírez Alegría, Sebastian; Saito, Roberto K.; Valenti, Elena

    2017-11-01

    It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Vía Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates by their color-magnitude diagrams. We provide their coordinates as well as their near-IR color-magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color-magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A Ks < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color-magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way. Based on observations taken within the ESO programs 179.B-2002 and 298.D-5048.

  5. Variables en la región central del cúmulo globular NGC 3201: descomposición de Fourier de las curvas de luz de las RR Lyrae y análisis de la relación período-luminosidad de las SX Phoenicis

    NASA Astrophysics Data System (ADS)

    Ahumada, J. A.; Arellano Ferro, A.; Calderón, J. H.; Kains, N.

    2015-08-01

    We present CCD time-series observations of the central region of the globular cluster NGC 3201, collected from CASLEO in March 2013, with the aim of performing the Fourier decomposition of the light curves of the RR Lyrae variables. This procedure, applied to the RRab-type stars, gave a mean value [Fe/H], for the cluster metallicity, and 5.00 0.22 kpc, for the cluster distance. The values found from two RRc stars are consistent with those derived previously. Because of differential reddening across the cluster field, individual reddenings for the RRab stars were estimated from their curves, resulting in an average value . An investigation of the light curves of stars in the blue straggler region led to the discovery of three new SX Phoenicis variables. The period-luminosity relation of the SX Phoenicis was used for an independent determination of the distance to the cluster and of the individual reddenings of these variables.

  6. Reddening, distance modulus and age of the globular cluster NGC 6121 (M4) from the properties of RR Lyrae variables

    NASA Astrophysics Data System (ADS)

    Caputo, F.; Castellani, V.; Quarta, M. L.

    1985-02-01

    It is shown that pulsational properties of RR Lyrae variables in globular clusters can be used to put theoretical constraints on the values of cluster reddening and distance modulus. By requiring that the HR diagram location of pulsators agrees with the period distribution observed and with the theoretical boundaries of the instability strip, reddening and distance modulus of the globular cluster M4 are derived as a (slow) function of the pulsator masses. Thus, a best guess is presented for the cluster age (t = 12.2 billion years), some evidence for a non-canonical evolutionary having been taken into account.

  7. A New Reddening Law for M4

    NASA Astrophysics Data System (ADS)

    Hendricks, Benjamin; Stetson, Peter B.; VandenBerg, Don A.; Dall'Ora, Massimo

    2012-07-01

    We have used a combination of broadband near-infrared and optical Johnson-Cousins photometry to study the dust properties in the line of sight to the Galactic globular cluster M4. We have investigated the reddening effects in terms of absolute strength and variation across the cluster field, as well as the shape of the reddening law defined by the type of dust. All three aspects had been poorly defined for this system and, consequently, there has been controversy about the absolute distance to this globular cluster, which is closest to the Sun. Here, we determine the ratio of absolute to selective extinction (RV ) in the line of sight toward M4, which is known to be a useful indicator for the type of dust and therefore characterizes the applicable reddening law. Our method is independent of age assumptions and appears to be significantly more precise and accurate than previous approaches. We obtain AV /E(B - V) = 3.76 ± 0.07 (random error) for the dust in the line of sight to M4 for our set of filters. That corresponds to a dust-type parameter RV = 3.62 ± 0.07 in the Cardelli et al. reddening law. With this value, the distance to M4 is found to be 1.80 ± 0.05 kpc, corresponding to a true distance modulus of (m - M)0 = 11.28 ± 0.06 (random error). A reddening map for M4 has been created, which reveals a spatial differential reddening of δE(B - V) >= 0.2 mag across the field within 10' around the cluster center; this is about 50% of the total mean reddening, which we have determined to be E(B - V) = 0.37 ± 0.01. In order to provide accurate zero points for the extinction coefficients of our photometric filters, we investigated the impact of stellar parameters such as temperature, surface gravity, and metallicity on the extinction properties and the necessary corrections in different bandpasses. Using both synthetic ATLAS9 spectra and observed spectral energy distributions, we found similarly sized effects for the range of temperature and surface gravity typical of globular cluster stars: each causes a change of about 3% in the necessary correction factor for each filter combination. Interestingly, variations in the metallicity cause effects of the same order when the assumed value is changed from the solar metallicity ([Fe/H] = 0.0) to [Fe/H] = -2.5. The systematic differences between the reddening corrections for a typical main-sequence turnoff star in a metal poor globular cluster and a Vega-like star are even stronger (~5%). We compared the results from synthetic spectra to those obtained with observed spectral energy distributions and found significant differences for temperatures lower than ~5000 K. We have attributed these discrepancies to the inadequate treatment of some molecular bands in the B filter within the ATLAS9 models. Fortunately, these differences do not affect the principal astrophysical conclusions in this study, which are based on stars hotter than 5000 K. From our calculations, we provide extinction zero points for Johnson-Cousins and Two Micron All Sky Survey filters, spanning a wide range of stellar parameters and dust types. These extinction tables are suited for accurate, object-specific extinction corrections.

  8. Observational tests for stellar evolution and pulsation theory. I - The globular clusters M 4 and M 15

    NASA Astrophysics Data System (ADS)

    Caputo, F.

    1987-01-01

    It is shown that the pulsational properties of RR Lyrae variables in globular clusters can be used together with the Red Giant Branch location to derive reliable information on the cluster reddening and distance modulus. By demanding full agreement with some key observables, the reddening and distance modulus of the globular clusters M4 and M15 are derived as a function of the mass of the variables and of the adopted cluster metallicity. Thus, from the comparison between observations and theoretical isochrones, the cluster age can be evaluated. A best guess for the age of M4 and M15 can be presented: 16×109yr, with a total uncertainty of 2 billion years.

  9. Fourier Decomposition of RR Lyrae light curves and the SX Phe population in the central region of NGC 3201

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Ahumada, J. A.; Calderón, J. H.; Kains, N.

    2014-10-01

    CCD time-series observations of the central region of the globular cluster NGC 3201 were obtained with the aim of performing the Fourier decomposition of the light curves of the RR Lyrae stars present in that field. This procedure gave the mean values, for the metallicity, of [Fe/H] [ZW] = - 1.483±0.006 (statistical) ±0.090 (systematic), and for the distance, 5.000±0.001 kpc (statistical) ±0.220 (systematic). The values found from two RRc stars are consistent with those derived previously. The differential reddening of the cluster was investigated and individual reddenings for the RR Lyrae stars were estimated from their V - I curves. We found an average value of E(B - V) = 0.23±0.02. An investigation of the light curves of stars in the blue straggler region led to the discovery of three new SX Phe stars. The period-luminosity relation of the SX Phe stars was used for an independent determination of the distance to the cluster and of the individual reddenings. We found a distance of 5.0 kpc.

  10. Variable Stars In the Unusual, Metal-Rich Globular Cluster

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.

  11. Photometric and Structural Properties of NGC 6544: A Combined VVV-Hubble Space Telescope Study

    NASA Astrophysics Data System (ADS)

    Cohen, Roger E.; Mauro, Francesco; Geisler, Doug; Moni Bidin, Christian; Dotter, Aaron; Bonatto, Charles

    2014-07-01

    We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m - M)0 = 11.96, E(B - V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.

  12. The Age of the Inner Halo Globular Cluster NGC 6652

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    Hubble Space Telescope (HST) (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch (HB). This cluster is located close to the Galactic center at RGC approximately equal to 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately equal to -0.85. Based upon DELTA V (sup SGB) (sub HB), NGC 6652 is 11.7 plus or minus 1.6 Gyr old. Using A HB precise differential ages for 47 Tuc (a thick disk globular), M107 and NGC 1851 (both halo clusters) were obtained. NGC 6652 appears to be the same age as 47 Tuc and NGC 1851 (within +/- 1.2 Gyr), while there is a slight suggestion that M107 is older than NGC 6652 by 2.3 +/- 1.5 Gyr. As this is a less than 2 sigma result, this issue needs to be investigated further before a definitive statement regarding the relative age of M107 and NGC 6652 may be made.

  13. Determination of the fundamental properties of an M31 globular cluster from main-sequence photometry

    NASA Astrophysics Data System (ADS)

    Ma, Jun

    2013-02-01

    We determined the age of the M31 globular cluster B379 using isochrones of the Padova stellar evolutionary models. At the same time, the cluster's metal abundance, its distance modulus, and reddening value were also obtained. The results obtained in this paper are consistent with previous determinations, including the age. Brown et al. constrained the age of B379 by comparing its color-magnitude diagram with isochrones of the 2006 VandenBerg models. Therefore, this paper confirms the consistency of the age scale of B379 between the Padova isochrones and the 2006 VandenBerg isochrones. The results of B379 obtained in this paper are: metallicity [M/H] = log(Z/Z⊙) = -0.325 dex, age τ = 11.0 +/- 1.5 Gyr, reddening E(B - V) = 0.08 mag, and distance modulus (m - M)0 = 24.44 +/- 0.10 mag. Using the metallicity, the reddening value and the distance modulus obtained in this paper, we constrained the age of B379 by comparing its multicolor photometry with theoretical stellar population synthesis models. The age of B379 obtained is 10.6-0.76 +0.92 Gyr, which is in very good agreement with the determination from main-sequence photometry.

  14. Photometric and structural properties of NGC 6544: A combined VVV-Hubble space telescope study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Roger E.; Mauro, Francesco; Geisler, Doug

    We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m – M){sub 0}more » = 11.96, E(B – V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras Pena, C.; Catelan, M.; Grundahl, F.

    We present BV photometry of the Galactic globular cluster NGC 6402 (M14), based on 65 V frames and 67 B frames, reaching two magnitudes below the turnoff level. This represents, to the best of our knowledge, the deepest color-magnitude diagram (CMD) of NGC 6402 available in the literature. Statistical decontamination of field stars as well as differential reddening corrections are performed in order to derive a precise ridgeline and hence physical parameters of the cluster. We discuss previous attempts at deriving a reddening value for the cluster, and argue in favor of a value E(B - V) = 0.57 {+-}more » 0.02, which is significantly higher than indicated by either the Burstein and Heiles or Schlegel et al. (corrected according to Bonifacio et al.) interstellar dust maps. Differential reddening across the face of the cluster, which we find to be present at the level of {Delta}E(B - V) Almost-Equal-To 0.17 mag, is taken into account in our analysis. We measure several metallicity indicators based on the position of the red giant branch (RGB) in the cluster CMD. These give a metallicity of [Fe/H] = -1.38 {+-} 0.07 on the Zinn and West scale and [Fe/H] = -1.28 {+-} 0.08 on the new Carretta et al. (UVES) scale. We also provide measurements of other important photometric parameters for this cluster, including the position of the RGB luminosity function ''bump'' and the horizontal branch morphology. We compare the NGC 6402 ridgeline with that of NGC 5904 (M5) derived by Sandquist et al., and find evidence that NGC 6402 and M5 have approximately the same age to within the uncertainties, although the possibility that M14 may be slightly older cannot be ruled out.« less

  16. The Formation and Evolution of the Large Magellanic Cloud from Selected Clusters and Star Fields

    NASA Astrophysics Data System (ADS)

    Olsen, Knut Anders Grova

    We have obtained deep Hubble Space Telescope color-magnitude diagrams of fields centered on the six old LMC globular clusters NGC 1754, NGC 1835, WGC 1898, NGC 1916, NGC 2005, and NGC 2019. The data have been carefully calibrated and the effects of crowding on the photometric accuracy have been thoroughly investigated. The observations have been used to produce V-I,V color-magnitude diagrams of the clusters and of the background field stars, which we have separated from each other through a statistical cleaning technique. The cluster color-magnitude diagrams show that the clusters are old, with main sequence turnoffs at V~ 22.5 and well-developed horizontal branches. We used the slopes of the red giant branches to measure the abundances, which we find to be 0.3 dex higher, on average, than previously measured spectroscopic abundances. In two cases there is significant variable reddening across at least part of the image, but only for NGC 1916 does differential reddening preclude accurate measurements of the CMD characteristics. The mean reddenings of the clusters, measured both from the color of the red giant branch and through comparison with Milky Way clusters, are <=0.10 magnitudes in E(B-V) in all cases. By matching tbe color-magnitude diagrams of the clusters to fiducial sequences of the Milky Way globular clusters M3, M5, and M55, we find that the mean difference of the LMC and Milky Way cluster ages is 1.0 ± 1.2 Gyr, calculated such that a positive difference indicates that the LMC clusters are older. Through Monte Carlo simulations, errors in the individual measurements of the ages relative to Milky Way clusters are found to be ~<1.0 Gyr. We find a similar chronology by comparing the horizontal branch morphologies and abundances with HB evolutionary tracks, assuming that age is the 'second parameter'. These results imply that the LMC formed at the same time as the Milky Way Galaxy. The evolution of the LMC following its formation has been studied through an analysis of the field star CMDs. We used an automated technique to disentangle the evolutionary tracks of varying age and composition that are represented in the CMDs. We computed star formation rates as a function of age for a number of models having different initial mass function slopes, distances, and uniform reddenings, assuming that the chemical evolution follows that implied by LMC clusters. Our results show that the LMC has been actively forming stars over the last 4 Gyr, with evidence for a decline in the last 0.5-1 Gyr. While the NGC 1754 field, which lies in the disk, has had only a low level of star formation after the globular cluster formation epoch until 4 Gyr ago, we find that the bar has been actively forming stars for the past 6-8 Gyr. We find that these qualitative results are robust against errors in the model parameters. (Abstract shortened by UMI.)* ftn*Originally published in DAI Vol. 59, No. 6. Reprinted here with corrected author name.

  17. The State-of-the-art HST Astro-photometric Analysis of the Core of ω Centauri. II. Differential-reddening Map

    NASA Astrophysics Data System (ADS)

    Bellini, A.; Anderson, J.; van der Marel, R. P.; King, I. R.; Piotto, G.; Bedin, L. R.

    2017-06-01

    We take advantage of the exquisite quality of the Hubble Space Telescope astro-photometric catalog of the core of ωCen presented in the first paper of this series to derive a high-resolution, high-precision, high-accuracy differential-reddening map of the field. The map has a spatial resolution of 2 × 2 arcsec2 over a total field of view of about 4.‧3 × 4.‧3. The differential reddening itself is estimated via an iterative procedure using five distinct color-magnitude diagrams, which provided consistent results to within the 0.1% level. Assuming an average reddening value E(B - V) = 0.12, the differential reddening within the cluster’s core can vary by up to ±10%, with a typical standard deviation of about 4%. Our differential-reddening map is made available to the astronomical community in the form of a multi-extension FITS file. This differential-reddening map is essential for a detailed understanding of the multiple stellar populations of ωCen, as presented in the next paper in this series. Moreover, it provides unique insight into the level of small spatial-scale extinction variations in the Galactic foreground. Based on archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  18. Proper Motions and Structural Parameters of the Galactic Globular Cluster M71

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadelano, M.; Dalessandro, E.; Ferraro, F. R.

    2017-02-20

    By exploiting two ACS/ HST data sets separated by a temporal baseline of ∼7 years, we have determined the relative stellar proper motions (PMs; providing membership) and the absolute PM of the Galactic globular cluster M71. The absolute PM has been used to reconstruct the cluster orbit within a Galactic, three-component, axisymmetric potential. M71 turns out to be in a low-latitude disk-like orbit inside the Galactic disk, further supporting the scenario in which it lost a significant fraction of its initial mass. Since large differential reddening is known to affect this system, we took advantage of near-infrared, ground-based observations tomore » re-determine the cluster center and density profile from direct star counts. The new structural parameters turn out to be significantly different from the ones quoted in the literature. In particular, M71 has a core and a half-mass radii almost 50% larger than previously thought. Finally, we estimate that the initial mass of M71 was likely one order of magnitude larger than its current value, thus helping to solve the discrepancy with the observed number of X-ray sources.« less

  19. Integrated-light spectroscopy of globular clusters at the infrared Ca II lines

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.; Zinn, Robert

    1988-01-01

    Integrated-light spectroscopy has been obtained for 27 globular clusters at the Ca II IR triplet. Line strengths and radial velocities have been measured from the spectra. For the well-studied clusters in the sample, the strength of the Ca II lines is very well correlated with previous metallicity estimates. Thus, the triplet is useful as a metallicity indicator in globular cluster integrated-light spectra. The greatly reduced effect of interstellar extinction at these wavelengths (compared to the blue region of the spectrum) has permitted observations of some of the most heavily reddened clusters in the Galaxy. For several such clusters, the Ca II triplet metallicities are in poor agreement with metallicity estimates from IR photometry by Malkan (1981). The strength of an interstellar band at 8621A has been used to estimate the amount of extinction towards these clusters. Using the new metallicity and radial-velocity data, the metallicity distribution, kinematics, and spatial distribution of the disk globular cluster system have been analyzed. Results very similar to those of Zinn (1985) have been found. The relation of the disk globulars to the stellar thick disk is discussed.

  20. The metallicity of M4: Accurate spectroscopic fundamental parameters for four giants

    NASA Technical Reports Server (NTRS)

    Drake, J. J.; Smith, V. V.; Suntzeff, N. B.

    1994-01-01

    High-quality spectra, covering the wavelength range 5480 to 7080 A, have been obtained for four giant stars in the intermediate-metallicity CN-bimodal globular cluster M4 (NGC 6121). We have employed a model atmosphere analysis that is entirely independent from cluster parameters, such as distance, age, and reddening, in order to derive accurate values for the stellar parameters effective temperature, surface gravity, and microturbulence, and for the abundance of iron relative to the Sun, (Fe/H), and of calcium, Ca/H, for each of the four stars. Detailed radiative transfer and statistical equilibrium calculations carried out for iron and calcium suggest that departures from local thermodynamic equilibrium are not significant for the purposes of our analysis. The spectroscopically derived effective temperatures for our program stars are hotter by about 200 K than existing photometric calibrations suggest. We conclude that this is due partly to the uncertain reddening of M4 and to the existing photometric temperature calibration for red giants being too cool by about 100 K. Comparison of our spectroscopic and existing photometric temperatures supports the prognosis of a significant east-west gradient in the reddening across M4. Our derived iron abundances are slightly higher than previous high-resolution studies suggested; the differences are most probably due to the different temperature scale and choice of microturbulent velocities adopted by earlier workers. The resulting value for the metallicity of M4 is (Fe/H )(sub M4) = -1.05 + or - 0.15. Based on this result, we suggest that metallicities derived in previous high-dispersion globular cluster abundance analyses could be too low by 0.2 to 0.3 dex. Our calcium abundances suggest an enhancement of calcium, an alpha element, over iron, relative to the Sun, in M4 of (Ca/H) = 0.23.

  1. The Globular Cluster NGC 5286. I. A New CCD BV Color-Magnitude Diagram

    NASA Astrophysics Data System (ADS)

    Zorotovic, M.; Catelan, M.; Zoccali, M.; Pritzl, B. J.; Smith, H. A.; Stephens, A. W.; Contreras, R.; Escobar, M. E.

    2009-01-01

    We present BV photometry of the Galactic globular cluster NGC 5286, based on 128 V frames and 133 B frames, and covering the entire face of the cluster. Our photometry reaches almost two magnitudes below the turn-off level, and is accordingly suitable for age analysis. Field stars were removed statistically from the cluster's color-magnitude diagram (CMD), and a differential reddening correction applied, thus allowing a precise ridgeline to be calculated. Using the latter, a metallicity of [Fe/H] = -1.70 ± 0.05 in the Zinn & West scale, and [Fe/H] = -1.47 ± 0.02 in the Carretta & Gratton scale, was derived on the basis of several parameters measured from the red giant branch, in good agreement with the value provided in the Harris catalog. Comparing the NGC 5286 CMD with the latest photometry for M3 by P. B. Stetson, and using VandenBerg isochrones for a suitable chemical composition, we find evidence that NGC 5286 is around 1.7 ± 0.9 Gyr older than M3. This goes in the right sense to help account for the blue horizontal branch of NGC 5286, for which we provide a measurement of several morphological indicators. If NGC 5286 is a bona fide member of the Canis Major dwarf spheroidal galaxy, as previously suggested, our results imply that the latter's oldest components may be at least as old as the oldest Milky Way globular clusters. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory, Chile.

  2. Mutiple Stellar Populations in Blanco DECam Bulge Survey Globular Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Doryan; Pilachowski, C. A.; Johnson, C. I.; Rich, R. Michael; Clarkson, William I.; Young, M.; Michael, S.

    2018-01-01

    Preliminary SDSS ugrizY photometric observations of globular cluster stars included in the Blanco DECam Bulge Survey (BDBS) were examined to determine the suitability of these data to characterize stellar populations within clusters. The BDBS fields include around two dozen globular clusters, including the iron-complex cluster M22 and the pulsar-rich cluster Terzan 5. Many globular clusters show evidence for multiple stellar populations as a spread in the u-g color of stars in a given phase of stellar evolution, and in some clusters, the populations have different radial distributions. BDBS clusters with low and/or non-variable reddening and long dynamical mixing time scales were selected for study, and photometry for RGB and main sequence stars within two half-light radii from the center of each cluster was extracted from the BDBS preliminary catalog. Field contamination was reduced in each candidate cluster by removing all stars more than a tenth of a magnitude from the best-fit fiducial curves following the g-r vs r color-magnitude diagram. The remaining stars were split into separate populations based on u-g color, and effective cumulative distribution functions vs. half-light radius were compared to identify differences in the populations’ radial distributions.

  3. Globular Cluster Variable Stars—Atlas and Coordinate Improvement using AAVSOnet Telescopes (Abstract)

    NASA Astrophysics Data System (ADS)

    Welch, D.; Henden, A.; Bell, T.; Suen, C.; Fare, I.; Sills, A.

    2015-12-01

    (Abstract only) The variable stars of globular clusters have played and continue to play a significant role in our understanding of certain classes of variable stars. Since all stars associated with a cluster have the same age, metallicity, distance and usually very similar (if not identical reddenings), such variables can produce uniquely powerful constraints on where certain types of pulsation behaviors are excited. Advanced amateur astronomers are increasingly well-positioned to provide long-term CCD monitoring of globular cluster variable star but are hampered by a long history of poor or inaccessible finder charts and coordinates. Many of variable-rich clusters have published photographic finder charts taken in relatively poor seeing with blue-sensitive photographic plates. While useful signal-to-noise ratios are relatively straightforward to achieve for RR Lyrae, Type 2 Cepheids, and red giant variables, correct identification remains a difficult issue—particularly when images are taken at V or longer wavelengths. We describe the project and report its progress using the OC61, TMO61, and SRO telescopes of AAVSOnet after the first year of image acquisition and demonstrate several of the data products being developed for globular cluster variables.

  4. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less

  5. Reddenings, Metallicities, and Possible Abundance Anomalies in Young Globular Clusters

    NASA Astrophysics Data System (ADS)

    Sarajedini, Ata; Layden, Andrew

    1997-01-01

    We present new photometry in the VI passbands for the ``young'' globular clusters Rup 106, Ter 7, and Arp 2. After formulating the simultaneous reddening and metallicity (SRM) method of Sarajedini (1994) in the BV passbands, we apply it, along with the SRM method in VI, to the red giant branches (RGBs) of these clusters using B-V photometry from the literature and the V-I data presented herein. We find [Fe/H] = -1.90 +/- 0.10, E(B-V) = 0.18 +/- 0.02 for Rup 106, [Fe/H] = -0.82 +/- 0.15, E(B-V) = 0.07 +/- 0.03 for Ter 7, and [Fe/H] = -1.84 +/- 0.09, E(B-V) = 0.10 +/- 0.02 for Arp 2. Furthermore, in light of this new abundance for Ter 7 and recent work on the luminosity of the red horizontal branch, we rederive the age of Ter 7 finding it to be some 6 Gyr younger than 47 Tuc. We show that the SRM method is insensitive to age for clusters with purely red HBs and ages as young as ~ 5 Gyr; for clusters with bluer HBs, the SRM method is only mildly sensitive to age differences between such clusters and the calibrating (standard) clusters. From these metallicity estimates, we conclude that the photometric abundances of the program clusters based on the properties of the RGB are systematically lower (Delta [Fe/H] = 0.1-0.4 dex) than those derived using other indicators, in particular the Ca 2 triplet method. We note that the young globular clusters Pal 12 and possibly IC 4499 also exhibit this behavior. We suggest that this discrepancy is due to systematic differences in the [alpha /Fe] ratios between the young clusters and the ``normal'' Galactic globulars used to calibrate the abundance determination methods. However, we are unable to completely reconcile all the observations of Rup 106 using this approach. Systematic differences in [alpha /Fe] between the young clusters and the rest of the Galactic globulars may indicate differences in their chemical enrichment histories, perhaps due to differing environments at the times of their formation. Interestingly, both Ter 7 and Arp 2 are believed to be memebers of the Sagittarius dwarf galaxy, while Rup 106 and (perhaps) Pal 12 are suspected of being captured from the Magellanic Clouds.

  6. Proper Motions and Structural Parameters of the Galactic Globular Cluster M71

    NASA Astrophysics Data System (ADS)

    Cadelano, M.; Dalessandro, E.; Ferraro, F. R.; Miocchi, P.; Lanzoni, B.; Pallanca, C.; Massari, D.

    2017-02-01

    By exploiting two ACS/HST data sets separated by a temporal baseline of ˜7 years, we have determined the relative stellar proper motions (PMs; providing membership) and the absolute PM of the Galactic globular cluster M71. The absolute PM has been used to reconstruct the cluster orbit within a Galactic, three-component, axisymmetric potential. M71 turns out to be in a low-latitude disk-like orbit inside the Galactic disk, further supporting the scenario in which it lost a significant fraction of its initial mass. Since large differential reddening is known to affect this system, we took advantage of near-infrared, ground-based observations to re-determine the cluster center and density profile from direct star counts. The new structural parameters turn out to be significantly different from the ones quoted in the literature. In particular, M71 has a core and a half-mass radii almost 50% larger than previously thought. Finally, we estimate that the initial mass of M71 was likely one order of magnitude larger than its current value, thus helping to solve the discrepancy with the observed number of X-ray sources. Based on observations collected with the NASA/ESA HST (GO10775, GO12932), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  7. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the simulated Hess diagrams. Conclusions: Even for low-mass star clusters, ASAmin is sensitive to the values of cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and to a lesser degree, binary fraction. Compared with simpler approaches, including binaries, a decaying star-formation rate, and a normally distributed differential reddening appears to yield more constrained parameters, especially the mass, age, and distance from the Sun. A robust determination of cluster parameters may have a positive impact on many fields. For instance, age, mass, and binary fraction are important for establishing the dynamical state of a cluster or for deriving a more precise star-formation rate in the Galaxy.

  8. A New Globular Cluster in the Area of VVVX

    NASA Astrophysics Data System (ADS)

    Bica, E.; Minniti, D.; Bonatto, C.; Hempel, M.

    2018-06-01

    We communicate the discovery of a new globular cluster in the Galaxy that was first detected on WISE/2MASS images and is now confirmed with VVVX photometry. It is a Palomar-like cluster projected at ℓ = 359.15°, b = 5.73°, and may be related to the bulge. We derive an absolute magnitude of MV ≈ -3.3, thus being an underluminous globular cluster. Our analyses provide a reddening of E(B - V) = 1.08 ± 0.18 and a distance to the Sun d⊙ = 6.3 ± 1 kpc, which implies a current position in the bulge volume. The estimated metallicity is [Fe/H] = -1.5 ± 0.25. It adds to the recently discovered faint globular cluster (Minniti 22) and candidates found with VVV, building up expectations of ≈50 globular clusters yet to be discovered in the bulge. We also communicate the discovery of an old open cluster in the same VVVX tile as the globular cluster. The VVVX photometry provided E(B - V) = 0.62 ± 0.1, d⊙ = 7.6 ± 1 kpc, and an age of 1.5 ± 0.3 Gyr. With a height from the plane of ≈0.8 kpc, it adds to nine Gyr-class clusters recently discovered within 0.8 ⩽ Z ⩽ 2.2 kpc, as recently probed in the single VVV tile b201. We suggest that these findings may be disclosing the thick disk at the bulge, which so far has no open cluster counterpart, and hardly any individual star. Thus, the VVV and VVVX surveys are opening new windows for follow-up studies, to employ present and future generations of large aperture telescopes.

  9. Exploring the total Galactic extinction with SDSS BHB stars

    NASA Astrophysics Data System (ADS)

    Tian, Hai-Jun; Liu, Chao; Hu, Jing-Yao; Xu, Yang; Chen, Xue-Lei

    2014-01-01

    Aims: We used 12 530 photometrically-selected blue horizontal branch (BHB) stars from the Sloan Digital Sky Survey (SDSS) to estimate the total extinction of the Milky Way at the high Galactic latitudes, RV and AV in each line of sight. Methods: A Bayesian method was developed to estimate the reddening values in the given lines of sight. Based on the most likely values of reddening in multiple colors, we were able to derive the values of RV and AV. Results: We selected 94 zero-reddened BHB stars from seven globular clusters as the template. The reddening in the four SDSS colors for the northern Galactic cap were estimated by comparing the field BHB stars with the template stars. The accuracy of this estimation is around 0.01 mag for most lines of sight. We also obtained ⟨ RV ⟩ to be around 2.40 ± 1.05 and AV map within an uncertainty of 0.1 mag. The results, including reddening values in the four SDSS colors, AV, and RV in each line of sight, are released on line. In this work, we employ an up-to-date parallel technique on GPU card to overcome time-consuming computations. We plan to release online the C++ CUDA code used for this analysis. Conclusions: The extinction map derived from BHB stars is highly consistent with that from Schlegel et al. (1998, ApJ, 500, 525). The derived RV is around 2.40 ± 1.05. The contamination probably makes the RV be larger. Tables 1-4 (excerpt) are available in electronic form at http://www.aanda.orgFull Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A142

  10. A computer system to be used with laser-based endoscopy for quantitative diagnosis of early gastric cancer.

    PubMed

    Miyaki, Rie; Yoshida, Shigeto; Tanaka, Shinji; Kominami, Yoko; Sanomura, Yoji; Matsuo, Taiji; Oka, Shiro; Raytchev, Bisser; Tamaki, Toru; Koide, Tetsushi; Kaneda, Kazufumi; Yoshihara, Masaharu; Chayama, Kazuaki

    2015-02-01

    To evaluate the usefulness of a newly devised computer system for use with laser-based endoscopy in differentiating between early gastric cancer, reddened lesions, and surrounding tissue. Narrow-band imaging based on laser light illumination has come into recent use. We devised a support vector machine (SVM)-based analysis system to be used with the newly devised endoscopy system to quantitatively identify gastric cancer on images obtained by magnifying endoscopy with blue-laser imaging (BLI). We evaluated the usefulness of the computer system in combination with the new endoscopy system. We evaluated the system as applied to 100 consecutive early gastric cancers in 95 patients examined by BLI magnification at Hiroshima University Hospital. We produced a set of images from the 100 early gastric cancers; 40 flat or slightly depressed, small, reddened lesions; and surrounding tissues, and we attempted to identify gastric cancer, reddened lesions, and surrounding tissue quantitatively. The average SVM output value was 0.846 ± 0.220 for cancerous lesions, 0.381 ± 0.349 for reddened lesions, and 0.219 ± 0.277 for surrounding tissue, with the SVM output value for cancerous lesions being significantly greater than that for reddened lesions or surrounding tissue. The average SVM output value for differentiated-type cancer was 0.840 ± 0.207 and for undifferentiated-type cancer was 0.865 ± 0.259. Although further development is needed, we conclude that our computer-based analysis system used with BLI will identify gastric cancers quantitatively.

  11. Analysis of Spectral-type A/B Stars in Five Open Clusters

    NASA Astrophysics Data System (ADS)

    Wilhelm, Ronald J.; Rafuil Islam, M.

    2014-01-01

    We have obtained low resolution (R = 1000) spectroscopy of N=68, spectral-type A/B stars in five nearby open star clusters using the McDonald Observatory, 2.1m telescope. The sample of blue stars in various clusters were selected to test our new technique for determining interstellar reddening and distances in areas where interstellar reddening is high. We use a Bayesian approach to find the posterior distribution for Teff, Logg and [Fe/H] from a combination of reddened, photometric colors and spectroscopic line strengths. We will present calibration results for this technique using open cluster star data with known reddening and distances. Preliminary results suggest our technique can produce both reddening and distance determinations to within 10% of cluster values. Our technique opens the possibility of determining distances for blue stars at low Galactic latitudes where extinction can be large and differential. We will also compare our stellar parameter determinations to previously reported MK spectral classifications and discuss the probability that some of our stars are not members of their reported clusters.

  12. Determination of Fundamental Properties of an M31 Globular Cluster from Main-Sequence Photometry

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Zhenyu; Wang, Song; Fan, Zhou; Zhou, Xu; Wu, Jianghua; Jiang, Zhaoji; Chen, Jiansheng

    2010-10-01

    M31 globular cluster B379 is the first extragalactic cluster whose age was determined by main-sequence photometry. In the main-sequence photometric method, the age of a cluster is obtained by fitting its color-magnitude diagram (CMD) with stellar evolutionary models. However, different stellar evolutionary models use different parameters of stellar evolution, such as range of stellar masses, different opacities and equations of state, and different recipes, and so on. So, it is interesting to check whether different stellar evolutionary models can give consistent results for the same cluster. Brown et al. constrained the age of B379 by comparing its CMD with isochrones of the 2006 VandenBerg models. Using SSP models of Bruzual & Charlot and its multiphotometry, ZMa et al. independently determined the age of B379, which is in good agreement with the determination of Brown et al. The models of Bruzual & Charlot are calculated based on the Padova evolutionary tracks. It is necessary to check whether the age of B379 as determined based on the Padova evolutionary tracks is in agreement with the determination of Brown et al.. In this article, we redetermine the age of B379 using isochrones of the Padova stellar evolutionary models. In addition, the metal abundance, the distance modulus, and the reddening value for B379 are reported. The results obtained are consistent with the previous determinations, which include the age obtained by Brown et al. This article thus confirms the consistency of the age scale of B379 between the Padova isochrones and the 2006 VandenBerg isochrones; i.e., the comparison between the results of Brown et al. and Ma et al. is meaningful. The results reported in this article of values found for B379 are: metallicity [M/H] = log(Z/Z ⊙) = -0.325, age τ = 11.0 ± 1.5 Gyr, reddening E(B - V) = 0.08, and distance modulus (m - M)0 = 24.44 ± 0.10.

  13. Proper motions in the VVV Survey: Results for more than 15 million stars across NGC 6544

    NASA Astrophysics Data System (ADS)

    Contreras Ramos, R.; Zoccali, M.; Rojas, F.; Rojas-Arriagada, A.; Gárate, M.; Huijse, P.; Gran, F.; Soto, M.; Valcarce, A. A. R.; Estévez, P. A.; Minniti, D.

    2017-12-01

    Context. In the last six years, the VISTA Variable in the Vía Láctea (VVV) survey mapped 562 sq. deg. across the bulge and southern disk of the Galaxy. However, a detailed study of these regions, which includes 36 globular clusters (GCs) and thousands of open clusters is by no means an easy challenge. High differential reddening and severe crowding along the line of sight makes highly hamper to reliably distinguish stars belonging to different populations and/or systems. Aims: The aim of this study is to separate stars that likely belong to the Galactic GC NGC 6544 from its surrounding field by means of proper motion (PM) techniques. Methods: This work was based upon a new astrometric reduction method optimized for images of the VVV survey. Results: PSF-fitting photometry over the six years baseline of the survey allowed us to obtain a mean precision of 0.51 mas yr-1, in each PM coordinate, for stars with Ks< 15 mag. In the area studied here, cluster stars separate very well from field stars, down to the main sequence turnoff and below, allowing us to derive for the first time the absolute PM of NGC 6544. Isochrone fitting on the clean and differential reddening corrected cluster color magnitude diagram yields an age of 11-13 Gyr, and metallicity [Fe/H] =-1.5 dex, in agreement with previous studies restricted to the cluster core. We were able to derive the cluster orbit assuming an axisymmetric model of the Galaxy and conclude that NGC 6544 is likely a halo GC. We have not detected tidal tail signatures associated to the cluster, but a remarkable elongation in the galactic center direction has been found. The precision achieved in the PM determination also allows us to separate bulge stars from foreground disk stars, enabling the kinematical selection of bona fide bulge stars across the whole survey area. Conclusions: Kinematical techniques are a fundamental step toward disentangling different stellar populations that overlap in a studied field. Our results show that VVV data is perfectly suitable for this kind of analysis. Based on observations taken with ESO telescopes at Paranal Observatory under programme IDs 179.B-2002.

  14. A New Spin for Understanding the Peculiar Horizontal Branch Morphology of the Galactic Globular Clusters NGC 6388 and NGC 6441

    NASA Technical Reports Server (NTRS)

    Busso, G.; Piotto, G.; Cassisi, S.; Romaniello, M.; Castelli, F.; Catelan, M.; Djorgovski, S. G.; King, I. R.; Landsman, W. B.; Blanco, A. Reico; hide

    2006-01-01

    In this paper we present multiband optical and UV Hubble Space Telescope photometry of the two Galactic globular clusters NGC 6388 and NGC 6441 Aims. We investigate the properties of their anomalous horizontal branches (HB) in different photometric planes in order to shed light on the nature of the physical mechanism(s) responsible for the existence of an extended HB blue tail, and of a slope in the HB, visible in all the color-magnitude diagrams. Methods. New photometric data have been collected and carefully reduced. Empirical data have been compared with updated stellar models of low-mass, metal-rich, He-burning structures, transformed to the observational plane with appropriate atmosphere models. Results. We have obtained the first UV color-magnitude diagrams for NGC 6388 and NGC 6441. These diagrams confirm previous results, obtained in optical bands, about the presence of a sizeable stellar population of extremely hot Horizontal Branch stars. At least in NGC 6388, we find a clear indication that at the hot end of the horizontal branch the distribution of stars forms a hook-like feature, closely resembling those observed in NGC 2808 and w Centauri. We briefly review the theoretical scenarios which have been suggested for interpreting this observational feature. We investigate also on the tilt in the horizontal branch morphology, and provide further evidence that supports early suggestions according to which this feature cannot be interpreted as an effect of differential reddening or radiative levitation, though these effects contribute to create the anomaly. We demonstrate that a possible solution of the puzzle is to assume that a small fraction (approx. 13% in NGC 6388 and approx. 8% NGC 6441) of the stellar population in the two clusters is strongly helium enriched (Y approx. 0.40 in NGC6388 and Y approx. 0.35 in NGC 6441). This solution necessarily implies the presence of a double generation of stars in the two clusters.

  15. Yellow supergiants in open clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, J.R.

    1986-01-01

    Superluminous giant stars (SLGs) have been reported in young globular clusters in the Large Magellanic Cloud (LMC). These stars appear to be in the post-asymptotic-giant-branch phase of evolution. This program was an investigation of galactic SLG candidates in open clusters, which are more like the LMC young globular clusters. These were chosen because luminosity, mass, and age determinations can be made for members since cluster distances and interstellar reddenings are known. Color magnitude diagrams were searched for candidates, using the same selection criteria as for SLGs in the LMC. Classification spectra were obtained of 115 program stars from McGraw-Hill Observatorymore » and of 68 stars from Cerro Tololo Inter-American Observatory Chile. These stars were visually classified on the MK system using spectral scans of standard stars taken at the respective observations. Published information was combined with this program's data for 83 stars in 30 clusters. Membership probabilities were assigned to these stars, and the clusters were analyzed according to age. It was seen that the intrinsically brightest supergiants are found in the youngest clusters. With increasing cluster age, the absolute luminosities attained by the supergiants decline. Also, it appears that the evolutionary tracks of luminosity class II stars are more similar to those of class I than of class III.« less

  16. Multiband Fourier Analysis and Interstellar Reddening of the Variable Stars in the Globular Cluster NGC 6402 (M14)

    NASA Astrophysics Data System (ADS)

    Weinschenk, Sedrick; Murphy, Brian; Villiger, Nathan J.

    2018-01-01

    We present a detailed study of the variable stars in the globular cluster NGC 6402 (M14). Approximately 1500 B and V band images were collected from July 2016 to August 2017 using the SARA Consortium Jacobus Kaptyen 1-meter telescope located in the Canary Islands. Using difference image analysis, we were able to identify 145 probable variable stars, confirming the 133 previously known variables and adding 12 new variables. The variables consisted of 117 RR Lyrae stars, 18 long period variables, 2 eclipsing variables, 6 Cepheid variables, and 2 SX Phoenix variables. Of the RR Lyrae variables 55 were of fundamental mode RR0 stars, of which 18 exhibited the Blazhko effect, 57 were of 1st overtone RR1, of which 7 appear to exhibit the Blazhko effect, 1 2nd overtone RR2, and 2 double mode variables. We found an average period of 0.59016 days for RR0 stars and 0.30294 days for RR1 stars. Using the multiband light curves of both the RR0 and RR1 variables we found an average E(B-V) of 0.604 with a scatter of 0.15 magnitudes. Using Fourier decomposition of the RR Lyrae light curves we also determined the metallicity and distance of the NGC 6402.

  17. The Araucaria Project: The Distance to the Fornax Dwarf Galaxy from Near-infrared Photometry of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Górski, Marek; Gieren, Wolfgang; Bersier, David

    2017-12-01

    We have obtained single-phase near-infrared (NIR) magnitudes in the J and K bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818+/- 0.015{{(statistical)}}+/- 0.116{{(systematic)}} mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 ± 0.013 mag), the tip of the red giant branch (20.84+/- 0.04+/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5% level. This precision is expected to reach the level of 3% once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids. Based on data collected with the VLT/HAWK-I instrument at ESO Paranal Observatory, Chile, as a part of programme 082.D-0123(B).

  18. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittariusmore » are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.« less

  19. The Mass Function of Young Star Clusters in the "Antennae" Galaxies.

    PubMed

    Zhang; Fall

    1999-12-20

    We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution.

  20. DDO 216-A1: A Central Globular Cluster in a Low-luminosity Transition-type Galaxy

    NASA Astrophysics Data System (ADS)

    Cole, Andrew A.; Weisz, Daniel R.; Skillman, Evan D.; Leaman, Ryan; Williams, Benjamin F.; Dolphin, Andrew E.; Johnson, L. Clifton; McConnachie, Alan W.; Boylan-Kolchin, Michael; Dalcanton, Julianne; Governato, Fabio; Madau, Piero; Shen, Sijing; Vogelsberger, Mark

    2017-03-01

    We confirm that the object DDO 216-A1 is a substantial globular cluster at the center of Local Group galaxy DDO 216 (the Pegasus dwarf irregular), using Hubble Space Telescope ACS imaging. By fitting isochrones, we find the cluster metallicity [M/H] = -1.6 ± 0.2, for reddening E(B-V) = 0.16 ± 0.02 the best-fit age is 12.3 ± 0.8 Gyr. There are ≈ 30 RR Lyrae variables in the cluster; the magnitude of the fundamental mode pulsators gives a distance modulus of 24.77 ± 0.08—identical to the host galaxy. The ratio of overtone to fundamental mode variables and their mean periods make DDO 216-A1 an Oosterhoff Type I cluster. We find a central surface brightness of 20.85 ± 0.17 F814W mag arcsec-2, a half-light radius of 3\\buildrel{\\prime\\prime}\\over{.} 1 (13.4 pc), and an absolute magnitude M814 = -7.90 ± 0.16 (M/{M}⊙ ≈ 105). King models fit to the cluster give the core radius and concentration index, r c = 2\\buildrel{\\prime\\prime}\\over{.} 1 ± 0\\buildrel{\\prime\\prime}\\over{.} 9 and c = 1.24 ± 0.39. The cluster is an “extended” cluster somewhat typical of some dwarf galaxies and the outer halo of the Milky Way. The cluster is projected ≲30 pc south of the center of DDO 216, unusually central compared to most dwarf galaxy globular clusters. Analytical models of dynamical friction and tidal destruction suggest that it probably formed at a larger distance, up to ˜1 kpc, and migrated inward. DDO 216 has an unexceptional specific cluster frequency, S N = 10. DDO 216 is the lowest-luminosity Local Group galaxy to host a 105 {M}⊙ globular cluster and the only transition-type (dSph/dIrr) galaxy in the Local Group with a globular cluster. Based on observations made with the NASA/ESA Hubble Space Telesope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations were obtained under program GO-13768.

  1. FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg abundances of 51 Milky Way globular clusters on a homogeneous scale

    NASA Astrophysics Data System (ADS)

    Dias, B.; Barbuy, B.; Saviane, I.; Held, E. V.; Da Costa, G. S.; Ortolani, S.; Gullieuszik, M.; Vásquez, S.

    2016-05-01

    Context. Globular clusters trace the formation and evolution of the Milky Way and surrounding galaxies, and outline their chemical enrichment history. To accomplish these tasks it is important to have large samples of clusters with homogeneous data and analysis to derive kinematics, chemical abundances, ages and locations. Aims: We obtain homogeneous metallicities and α-element enhancement for 51 Galactic bulge, disc, and halo globular clusters that are among the most distant and/or highly reddened in the Galaxy's globular cluster system. We also provide membership selection based on stellar radial velocities and atmospheric parameters. The implications of our results are discussed. Methods: We observed R ~ 2000 spectra in the wavelength interval 456-586 nm for over 800 red giant stars in 51 Galactic globular clusters. We applied full spectrum fitting with the code ETOILE together with libraries of observed and synthetic spectra. We compared the mean abundances of all clusters with previous work and with field stars. We used the relation between mean metallicity and horizontal branch morphology defined by all clusters to select outliers for discussion. Results: [Fe/H], [Mg/Fe], and [α/Fe] were derived in a consistent way for almost one-third of all Galactic globular clusters. We find our metallicities are comparable to those derived from high-resolution data to within σ = 0.08 dex over the interval -2.5< [Fe/H] < 0.0. Furthermore, a comparison of previous metallicity scales with our values yields σ< 0.16 dex. We also find that the distribution of [Mg/Fe] and [α/Fe] with [Fe/H] for the 51 clusters follows the general trend exhibited by field stars. It is the first time that the following clusters have been included in a large sample of homogeneous stellar spectroscopic observations and metallicity derivation: BH 176, Djorg 2, Pal 10, NGC 6426, Lynga 7, and Terzan 8. In particular, only photometric metallicities were available previously for the first three clusters, and the available metallicity for NGC 6426 was based on integrated spectroscopy and photometry. Two other clusters, HP 1 and NGC 6558, are confirmed as candidates for the oldest globular clusters in the Milky Way. Conclusions: Stellar spectroscopy in the visible at R ~ 2000 for a large sample of globular clusters is a robust and efficient way to trace the chemical evolution of the host galaxy and to detect interesting objects for follow-up at higher resolution and with forthcoming giant telescopes. The technique used here can also be applied to globular cluster systems in nearby galaxies with current instruments and to distant galaxies with the advent of ELTs. Based on observations collected at the European Southern Observatory/Paranal, Chile, under programmes 68.B-0482(A), 69.D-0455(A), 71.D-0219(A), 077.D-0775(A), and 089.D-0493(B).Full Tables 1 and A.2 with the derived average parameters for the 758 red giant stars are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A9

  2. A NEW CENSUS OF THE VARIABLE STAR POPULATION IN THE GLOBULAR CLUSTER NGC 2419

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Criscienzo, M.; Greco, C.; Ripepi, V.

    We present B, V, and I CCD light curves for 101 variable stars belonging to the globular cluster NGC 2419, 60 of which are new discoveries, based on data sets obtained at the Telescopio Nazionale Galileo, the Subaru telescope, and the Hubble Space Telescope. The sample includes 75 RR Lyrae stars (38 RRab, 36 RRc, and one RRd), one Population II Cepheid, 12 SX Phoenicis variables, two {delta} Scuti stars, three binary systems, five long-period variables, and three variables of uncertain classification. The pulsation properties of the RR Lyrae variables are close to those of Oosterhoff type II clusters, consistentmore » with the low metal abundance and the cluster horizontal branch morphology, disfavoring (but not totally ruling out) an extragalactic hypothesis for the origin of NGC 2419. The observed properties of RR Lyrae and SX Phoenicis stars are used to estimate the cluster reddening and distance, using a number of different methods. Our final value is {mu}{sub 0} (NGC 2419) = 19.71 {+-} 0.08 mag (D = 87.5 {+-} 3.3 kpc), with E(B - V) = 0.08 {+-} 0.01 mag, [Fe/H] = -2.1 dex on the Zinn and West metallicity scale, and a value of M{sub V} that sets {mu}{sub 0} (LMC) = 18.52 mag. This value is in good agreement with the most recent literature estimates of the distance to NGC 2419.« less

  3. Fourier Decomposition and Properties of the Variable Stars in the Globular Cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Reed, Hunter M.; Pajkos, Michael A.; Murphy, Brian W.; Darragh, Andrew

    2016-01-01

    Globular clusters provide an ideal setting to study stellar evolution of stars of similar composition and age. RR Lyrae stars found in globular clusters have a variety of uses in probing the physical characteristics of the stellar population itself and its evolution. Building upon our previous study, we focus on the RR Lyrae stars in the globular cluster NGC 4833. From March through June 2014, we used the Southeastern Association for Research in Astronomy 0.6-meter telescope located at CTIO to collect nearly 1,500 images of NGC 4833 in the B, V, R, and I bands. Using difference image analysis we identified 40 variable stars. Of these, 20 were RR Lyrae stars with 10 being of type RR0, 7 of type RR1, and 3 of type RR2. Additionally, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables were identified. The average period of the type RR0, RR1, and RR2 type variables were 0.69597 days, 0.39547 days, and 0.30654 days, respectively. The periods of the RR Lyrae stars and ratio of N1/(N0+N1) of 0.41 is indicative of an Oosterhoff Type II cluster. The observations of the RR Lyrae stars were of very high quality and phase coverage allowing us to perform Fourier decomposition of their light curves. From this Fourier decomposition we were able to determine the physical characteristics of the RR Lyrae stars. We found the mean iron abundance to be [Fe/H]JKZW = -1.87 ± 0.06, the mean apparent V-magnitude RR0 and RR1 type variables to be VRR = 15.51 ± 0.11, a mean absolute V-magnitude of MV = 0.636 ± 0.053; and an effective temperature for RR0's and RR1's of log10Teff = 3.797 and log10Teff = 3.855, respectively. The multi-band photometry allowed us to determine the reddening of the cluster, E(B-V) = 0.342 ± 0.021, which resulted in a distance of D(kpc) = 5.91 ± 0.31 to NGC 4833.

  4. Tripartite differentiation (squamous, glandular, and melanocytic) of a primary cutaneous neuroendocrine carcinoma. An immunocytochemical and ultrastructural study.

    PubMed

    Isimbaldi, G; Sironi, M; Taccagni, G; Declich, P; Dell'Antonio, A; Galli, C

    1993-06-01

    We report a case of primary cutaneous neuroendocrine carcinoma (PCNEC) with squamous, glandular, and melanocytic differentiation and associated Bowen disease. The paranuclear globular positivity of low-molecular-weight cytokeratins agrees with the ultrastructural observations of paranuclear fibrous bodies in the small neuroendocrine cells, while the diffuse cytoplasmic positivity corresponds to the sparse intermediate filaments in large cells with squamous differentiation. "Transitional forms" are characterized by both diffuse and globular cytoplasmic positivity for cytokeratins and by the ultrastructural evidence of neuroendocrine and squamous features. Therefore the ultrastructural demonstration of intracytoplasmic tonofibrils and tonofilaments, intercellular glandular lumina, lined by well-formed microvilli, and immature premelanosomes in the neurosecretory cells supports the proposed tripartite differentiation of neuroendocrine cells of this case of PCNEC.

  5. High resolution infrared spectra of Bulge Globular Clusters: Liller 1, NGC 6553, and Ter 5

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Rich, R. M.; Castro, S. M.

    2001-12-01

    Using the NIRSPEC spectrograph at Keck II, we have obtained echelle spectra covering the range 1.5-1.8μ m for 2 of the brightest giants in Liller 1 and NGC 6553, old metal rich globular clusters in the Galactic bulge. We also report a preliminary analysis for two giants in the obscured bulge globular cluster Ter 5. We use spectrum synthesis for the abundance analysis, and find [Fe/H]=-0.3+/-0.2 and [O/H]=+0.3+/- 0.1 (from the OH lines) for the giants in Liller 1 and NGC 6553. We measure strong lines for the alpha elements Mg, Ca, and Si, but the lower sensitivity of these lines to abundance permits us to only state a general [α /Fe]=+0.3+/-0.2 dex. The composition of the clusters is similar to that of field stars in the bulge and is consistent with a scenario in which the clusters formed early, with rapid enrichment. Our iron abundance for NGC 6553 is poorly consistent with either the low or the high values recently reported in the literature, unless unusally large, or no α -element enhancements are adopted, respectively. We will also present an abundance analsyis for 2 giants in the highly reddened bulge cluster Ter 5, which appears to be near the Solar metallicity. R. Michael Rich acknowledges finacial support from grant AST-0098739, from the National Science Foundation. Data presented herein were obtained at the W.M.Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors gratefully acknowledge those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality, none of the observations presented would have been possible.

  6. On the relative ages of galactic globular clusters. A new observable, a semi-empirical calibration and problems with the theoretical isochrones

    NASA Astrophysics Data System (ADS)

    Buonanno, R.; Corsi, C. E.; Pulone, L.; Fusi Pecci, F.; Bellazzini, M.

    1998-05-01

    A new procedure is described to derive homogeneous relative ages from the Color-Magnitude Diagrams (CMDs) of Galactic globular clusters (GGCs). It is based on the use of a new observable, Delta V(0.05) , namely the difference in magnitude between an arbitrary point on the upper main sequence (V_{+0.05} -the V magnitude of the MS-ridge, 0.05 mag redder than the Main Sequence (MS) Turn-off, (TO)) and the horizontal branch (HB). The observational error associated to Delta V(0.05) is substantially smaller than that of previous age-indicators, keeping the property of being strictly independent of distance and reddening and of being based on theoretical luminosities rather than on still uncertain theoretical temperatures. As an additional bonus, the theoretical models show that Delta V(0.05) has a low dependence on metallicity. Moreover, the estimates of the relative age so obtained are also sufficiently invariant (to within ~ +/- 1 Gyr) with varying adopted models and transformations. Since the difference in the color difference Delta (B-V)_{TO,RGB} (VandenBerg, Bolte and Stetson 1990 -VBS, Sarajedini and Demarque 1990 -SD) remains the most reliable technique to estimate relative cluster ages for clusters where the horizontal part of the HB is not adequately populated, we have used the differential ages obtained via the "vertical" Delta V(0.05) parameter for a selected sample of clusters (with high quality CMDs, well populated HBs, trustworthy calibrations) to perform an empirical calibration of the "horizontal" observable in terms of [Fe/H] and age. A direct comparison with the corresponding calibration derived from the theoretical models reveals the existence of clear-cut discrepancies, which call into question the model scaling with metallicity in the observational planes. Starting from the global sample of considered clusters, we have thus evaluated, within a homogeneous procedure, relative ages for 33 GGCs having different metallicity, HB-morphologies, and galactocentric distances. These new estimates have also been compared with previous latest determinations (Chaboyer, Demarque and Sarajedini 1996, and Richer {et al. } 1996). The distribution of the cluster ages with varying metallicity and galactocentric distance are briefly discussed: (a) there is no direct indication for any evident age-metallicity relationship; (b) there is some spread in age (still partially compatible with the errors), and the largest dispersion is found for intermediate metal-poor clusters; (c) older clusters populate both the inner and the outer regions of the Milky Way, while the younger globulars are present only in the outer regions, but the sample is far too poor to yield conclusive evidences.

  7. VizieR Online Data Catalog: TGAS MS & giants reddening and extinction (Gontcharov+, 2018)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.; Mosenkov, A. V.

    2018-01-01

    These are the reddening, interstellar extinction and extinction-to-reddening ratio estimates for the Gaia DR1 TGAS and Hipparcos stars within 415 pc from the Sun based on the 3D reddening map of Gontcharov (J/PAZh/43/521) and 3D extinction-to-reddening (total-to-selective extinction) ratio Rv map of Gontcharov (J/PAZh/38/15). (2 data files).

  8. On the Absolute Age of the Globular Cluster M92

    NASA Astrophysics Data System (ADS)

    Di Cecco, A.; Becucci, R.; Bono, G.; Monelli, M.; Stetson, P. B.; Degl'Innocenti, S.; Prada Moroni, P. G.; Nonino, M.; Weiss, A.; Buonanno, R.; Calamida, A.; Caputo, F.; Corsi, C. E.; Ferraro, I.; Iannicola, G.; Pulone, L.; Romaniello, M.; Walker, A. R.

    2010-09-01

    We present precise and deep optical photometry of the globular M92. Data were collected in three different photometric systems: Sloan Digital Sky Survey (g‧, r‧, i‧, and z‧ MegaCam at CFHT), Johnson-Kron-Cousins (B, V, and I; various ground-based telescopes), and Advanced Camera for Surveys (ACS) Vegamag (F475W, F555W, and F814W; Hubble Space Telescope). Special attention was given to the photometric calibration, and the precision of the ground-based data is generally better than 0.01 mag. We computed a new set of α-enhanced evolutionary models accounting for the gravitational settling of heavy elements at fixed chemical composition ([α/Fe] = +0.3, [Fe/H] = -2.32 dex, and Y = 0.248). The isochrones—assuming the same true distance modulus (μ = 14.74 mag), the same reddening [E(B - V) = 0.025 ± 0.010 mag], and the same reddening law—account for the stellar distribution along the main sequence and the red giant branch in different color-magnitude diagrams (i‧, g‧ - i‧ i‧, and g‧ - r‧ i‧, g‧ - z‧ I, and B - I and F814W and F475W-F814W). The same outcome applies to the comparison between the predicted zero-age horizontal-branch (ZAHB) and the HB stars. We also found a cluster age of 11 ± 1.5 Gyr, in good agreement with previous estimates. The error budget accounts for uncertainties in the input physics and the photometry. To test the possible occurrence of CNO-enhanced stars, we also computed two sets of α- and CNO-enhanced (by a factor of 3) models, both at fixed total metallicity ([M/H] = -2.10 dex) and at fixed iron abundance. We found that the isochrones based on the former set give the same cluster age (11 ± 1.5 Gyr) as the canonical α-enhanced isochrones. The isochrones based on the latter set also give a similar cluster age (10 ± 1.5 Gyr). These findings support previous results concerning the weak sensitivity of cluster isochrones to CNO-enhanced chemical mixtures. This paper makes use of data obtained from the Isaac Newton Group Archive, which is maintained as part of the CASU Astronomical Data Centre at the Institute of Astronomy, Cambridge. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency.

  9. Verifying reddening and extinction for Gaia DR1 TGAS giants

    NASA Astrophysics Data System (ADS)

    Gontcharov, George A.; Mosenkov, Aleksandr V.

    2018-03-01

    Gaia DR1 Tycho-Gaia Astrometric Solution parallaxes, Tycho-2 photometry, and reddening/extinction estimates from nine data sources for 38 074 giants within 415 pc from the Sun are used to compare their position in the Hertzsprung-Russell diagram with theoretical estimates, which are based on the PARSEC and MIST isochrones and the TRILEGAL model of the Galaxy with its parameters being widely varied. We conclude that (1) some systematic errors of the reddening/extinction estimates are the main uncertainty in this study; (2) any emission-based 2D reddening map cannot give reliable estimates of reddening within 415 pc due to a complex distribution of dust; (3) if a TRILEGAL's set of the parameters of the Galaxy is reliable and if the solar metallicity is Z < 0.021, then the reddening at high Galactic latitudes behind the dust layer is underestimated by all 2D reddening maps based on the dust emission observations of IRAS, COBE, and Planck and by their 3D followers (we also discuss some explanations of this underestimation); (4) the reddening/extinction estimates from recent 3D reddening map by Gontcharov, including the median reddening E(B - V) = 0.06 mag at |b| > 50°, give the best fit of the empirical and theoretical data with each other.

  10. Integral field spectroscopy with GEMINI: Extragalactic star cluster in NGC1275

    NASA Astrophysics Data System (ADS)

    Trancho, Gelys; Miller, Bryan; García-Lorenzo, Begoña; Sánchez, Sebastián F.

    2006-01-01

    Studies of globular cluster systems play a critical role in our understanding of galaxy formation. Imaging with the Hubble Space Telescope has revealed that young star clusters are formed copiously in galaxy mergers, strengthening theories in which giant elliptical galaxies are formed by the merger of spirals [e.g. Whitmore, B.C., Schweizer, F., Leitherer, C., Borne, K., Robert, C., 1993. Astronomical Journal. 106, 1354; Miller, B.W., Whitmore, B.C., Schweizer, F., Fall, S.M., 1997. Astronomical Journal. 114, 2381; Zepf, S.E., Ashman, K.M., English, J., Freeman, K.C., Sharples, R.M., 1999. Astronomical Journal. 118, 752; Ashman, K.M., Zepf, S.E., 1992. Astrophysical Journal. 384, 50]. However, the formation and evolution of globular cluster systems is still not well understood. Ages and metallicities of the clusters are uncertain either because of degeneracy in the broad-band colors or due to variable reddening. Also, the luminosity function of the young clusters, which depends critically on the metallicities and ages of the clusters, appears to be single power-laws while the luminosity function of old clusters has a well-defined break. Either there is significant dynamical evolution of the cluster systems or metallicity affects the mass function of forming clusters. Spectroscopy of these clusters are needed to improve the metallicity and age measurements and to study the kinematics of young cluster systems. Therefore, we have obtained GMOS IFU data of 4 clusters in NGC1275. We will present preliminary results like metallicities, ages, and velocities of the star clusters from IFU spectroscopy.

  11. STAR CLUSTERS IN M31. II. OLD CLUSTER METALLICITIES AND AGES FROM HECTOSPEC DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Nelson; Schiavon, Ricardo; Morrison, Heather

    2011-02-15

    We present new high signal-to-noise spectroscopic data on the M31 globular cluster (GC) system, obtained with the Hectospec multifiber spectrograph on the 6.5 m MMT. More than 300 clusters have been observed at a resolution of 5 A and with a median S/N of 75 per A, providing velocities with a median uncertainty of 6 km s{sup -1}. The primary focus of this paper is the determination of mean cluster metallicities, ages, and reddenings. Metallicities were estimated using a calibration of Lick indices with [Fe/H] provided by Galactic GCs. These match well the metallicities of 24 M31 clusters determined frommore » Hubble Space Telescope color-magnitude diagrams, the differences having an rms of 0.2 dex. The metallicity distribution is not generally bimodal, in strong distinction with the bimodal Galactic globular distribution. Rather, the M31 distribution shows a broad peak, centered at [Fe/H] = -1, possibly with minor peaks at [Fe/H] = -1.4, -0.7, and -0.2, suggesting that the cluster systems of M31 and the Milky Way had different formation histories. Ages for clusters with [Fe/H] > - 1 were determined using the automatic stellar population analysis program EZ{sub A}ges. We find no evidence for massive clusters in M31 with intermediate ages, those between 2 and 6 Gyr. Moreover, we find that the mean ages of the old GCs are remarkably constant over about a decade in metallicity (-0.95{approx}< [Fe/H] {approx}<0.0).« less

  12. Cluster membership probability: polarimetric approach

    NASA Astrophysics Data System (ADS)

    Medhi, Biman J.; Tamura, Motohide

    2013-04-01

    Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.

  13. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlafly, Edward F.; Finkbeiner, Douglas P.

    2011-08-20

    We present measurements of dust reddening using the colors of stars with spectra in the Sloan Digital Sky Survey. We measure reddening as the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline. We achieve uncertainties of 56, 34, 25, and 29 mmag in the colors u - g, g - r, r - i, and i - z, per star, though the uncertainty varies depending on the stellar type and the magnitude of the star. The spectrum-based reddening measurements confirm ourmore » earlier 'blue tip' reddening measurements, finding reddening coefficients different by -3%, 1%, 1%, and 2% in u - g, g - r, r - i, and i - z from those found by the blue tip method, after removing a 4% normalization difference. These results prefer an R{sub V} = 3.1 Fitzpatrick reddening law to O'Donnell or Cardelli et al. reddening laws. We provide a table of conversion coefficients from the Schlegel et al. (SFD) maps of E(B - V) to extinction in 88 bandpasses for four values of R{sub V} , using this reddening law and the 14% recalibration of SFD first reported by Schlafly et al. and confirmed in this work.« less

  14. Globular and Open Clusters Observed by SDSS/SEGUE: the Giant Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Heather L.; Ma, Zhibo; Clem, James L.

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the SDSS/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, also present a new variable reddening map and amore » new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g-r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.« less

  15. Globular and Open Clusters Observed by SDSS/SEGUE: The Giant Stars

    NASA Astrophysics Data System (ADS)

    Morrison, Heather L.; Ma, Zhibo; Clem, James L.; An, Deokkeun; Connor, Thomas; Schechtman-Rook, Andrew; Casagrande, Luca; Rockosi, Constance; Yanny, Brian; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer A.; Schneider, Donald P.

    2016-01-01

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g-r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.

  16. Globular and Open Clusters Observed by SDSS/SEGUE: the Giant Stars

    DOE PAGES

    Morrison, Heather L.; Ma, Zhibo; Clem, James L.; ...

    2015-12-18

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the SDSS/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, also present a new variable reddening map and amore » new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g-r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.« less

  17. Linking Dynamical and Stellar Evolution in the Metal-Poor Globular Cluster M92

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2017-08-01

    We propose a 5 orbit HST program to acquire UV imaging at the center of the ancient, metal-poor globular cluster NGC 6341 (M92). Our program is designed to achieve two science goals with a single data set, 1.) to directly measure the diffusion of stars through the massive cluster's core, 2.) to pinpoint the phase of post main-sequence evolution at which [Fe/H] = -2.3 stars lose their mass. Our novel technique will achieve these goals by using the full power of WFC3's exquisite UV sensitivity at <0.3 microns combined with its high spatial resolution. We will uncover 1000 newly-formed white dwarfs in the center of M92 and track how their spatial distribution changes as they get older on the cooling sequence. Having just experienced significant mass loss, the youngest remnants with ages <10s of Myr will still be moving slowly like their 0.8 Msun progenitors, whereas the older remnants with t_cool > 100s Myr will be fully relaxed. Using the methodology we developed and successfully applied to 47 Tuc (Heyl et al. 2015a; 2015b), we will watch this dynamical evolution to measure the diffusion coefficient due to gravitational relaxation in the cluster's core and the past timing of stellar mass loss that was responsible for the current cluster mass segregation profile. M92 is the ideal target for this study as it complements our existing study of the relatively metal-rich cluster 47 Tuc; it has an extremely low metallicity of [Fe/H] = -2.3, very low foreground reddening (E(B-V) = 0.02), moderate concentration index, and a theoretically-expected relaxation timescale in its core of 90 Myr, which nicely splits the young and old white dwarfs that can be observed with Hubble.

  18. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacoby, George H.; Marco, Orsola De; Davies, James

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrainmore » its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.« less

  19. A New, Large-scale Map of Interstellar Reddening Derived from H I Emission

    NASA Astrophysics Data System (ADS)

    Lenz, Daniel; Hensley, Brandon S.; Doré, Olivier

    2017-09-01

    We present a new map of interstellar reddening, covering the 39% of the sky with low H I column densities ({N}{{H}{{I}}}< 4× {10}20 cm-2 or E(B-V)≈ 45 mmag) at 16\\buildrel{ \\prime}\\over{.} 1 resolution, based on all-sky observations of Galactic H I emission by the HI4PI Survey. In this low-column-density regime, we derive a characteristic value of {N}{{H}{{I}}}/E(B-V)=8.8 × {10}21 {{cm}}2 {{mag}}-1 for gas with | {v}{LSR}| < 90 km s-1 and find no significant reddening associated with gas at higher velocities. We compare our H I-based reddening map with the Schlegel et al. (SFD) reddening map and find them consistent to within a scatter of ≃ 5 mmag. Further, the differences between our map and the SFD map are in excellent agreement with the low-resolution (4\\buildrel{\\circ}\\over{.} 5) corrections to the SFD map derived by Peek and Graves based on observed reddening toward passive galaxies. We therefore argue that our H I-based map provides the most accurate interstellar reddening estimates in the low-column-density regime to date. Our reddening map is made publicly available at doi.org/10.7910/DVN/AFJNWJ.

  20. The galactic reddening law - The evidence from uvby-beta photometry of B stars

    NASA Astrophysics Data System (ADS)

    Tobin, W.

    1985-01-01

    Values of interstellar reddening derived from uvby photometry of intermediate and high latitude B stars are used to test between the conflicting ideas of total galactic reddening expounded by Burstein and Heiles (1982) and de Vaucouleurs and Buta (1983). B stars are useful tracers of the galactic reddening because of their empirically and theoretically well-defined colours, and their large distances, but peculiar colours can result in an overestimate of the interstellar reddening, and Nicolet's (1982) B-star estimates of the polar reddening are too high because of this. Selection criteria are developed to exclude B stars with peculiar colours, and 72 selected B stars more than 250 pc from the galactic plane support the Burstein and Heiles zero-point of galactic reddening. The evidence of a few stars supports Burstein and Heiles' use of deep galaxy counts to provide a first-order correction for variations in the dust-to-gas ratio, but for corrections E (b - y) > 0.03 the accuracy may be less than their claimed 10%. However, the comparison of photometrically-derived values of interstellar reddening with values predicted by some model is inevitably partly subjective unless an extensive study is made of every individual star because otherwise any insufficiently red star can always plausibly be discounted as not outside all of the galactic dust, and any star that is too red can always plausibly be discounted as e.g. an undetected binary or emission-line star. The Burstein and Heiles maps are used to determine the intrinsic colours of some slightly-reddened B stars. B stars with projected rotational velocities of 250-300 km s-1 do not appear to be significantly redder than the Crawford (1978) standard relation.

  1. Reddened, Redshifted, or Intrinsically Red? Understanding Near-ultraviolet Colors of Type Ia Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Peter J.; Landez, Nancy J.; Milne, Peter A.

    The intrinsic colors of Type Ia supernovae (SNe Ia) are important to understanding their use as cosmological standard candles. Understanding the effects of reddening and redshift on the observed colors are complicated and dependent on the intrinsic spectrum, the filter curves, and the wavelength dependence of reddening. We present ultraviolet and optical data of a growing sample of SNe Ia observed with the Ultraviolet/Optical Telescope on the Swift spacecraft and use this sample to re-examine the near-UV (NUV) colors of SNe Ia. We find that a small amount of reddening ( E ( B − V ) = 0.2 mag)more » could account for the difference between groups designated as NUV-blue and NUV-red, and a moderate amount of reddening ( E ( B − V ) = 0.5 mag) could account for the whole NUV-optical differences. The reddening scenario, however, is inconsistent with the mid-UV colors and color evolution. The effect of redshift alone only accounts for part of the variation. Using a spectral template of SN2011fe, we can forward model the effects of redshift and reddening and directly compare those with the observed colors. We find that some SNe are consistent with reddened versions of SN2011fe, but most SNe Ia are much redder in the uvw 1 − v color than SN2011fe reddened to the same b − v color. The absolute magnitudes show that two out of five NUV-blue SNe Ia are blue because their near-UV luminosity is high, and the other three are optically fainter. We also show that SN 2011fe is not a “normal” SN Ia in the UV, but has colors placing it at the blue extreme of our sample.« less

  2. Faint blue objects at high Galactic latitude. V - Palomar Schmidt field centered on selected area 71

    NASA Technical Reports Server (NTRS)

    Usher, Peter D.; Mitchell, Kenneth J.; Warnock, Archibald, III

    1988-01-01

    Starlike objects with both blue and ultraviolet excess have been selected from a Palomar 1.2 m Schmidt field centered on Kapteyn selected area 71. The method of selection is that used in the previous papers of this series, but modified to account for the differential reddening that occurs across the field. The color classes, color subclasses, positions, and magnitudes of the selected objects are listed.

  3. Verifying reddening and extinction for Gaia DR1 TGAS main sequence stars

    NASA Astrophysics Data System (ADS)

    Gontcharov, George A.; Mosenkov, Aleksandr V.

    2017-12-01

    We compare eight sources of reddening and extinction estimates for approximately 60 000 Gaia DR1 Tycho-Gaia Astrometric Solution (TGAS) main sequence stars younger than 3 Gyr with a relative error of the Gaia parallax less than 0.1. For the majority of the stars, the best 2D dust emission-based reddening maps show considerable differences between the reddening to infinity and the one calculated to the stellar distance using the barometric law of the dust distribution. This proves that the majority of the TGAS stars are embedded in the Galactic dust layer and a proper 3D treatment of the reddening/extinction is required to calculate their dereddened colours and absolute magnitudes reliably. Sources with 3D estimates of reddening are tested in their ability to put the stars among the PARSEC and MIST theoretical isochrones in the Hertzsprung-Russell diagram based on the precise Gaia, Tycho-2, 2MASS and WISE photometry. Only the reddening/extinction estimates by Arenou et al. and Gontcharov, being appropriate for nearby stars within 280 pc, provide both the minimal number of outliers bluer than any reasonable isochrone and the correct number of stars younger than 3 Gyr in agreement with the Besançon Galaxy model.

  4. The Carnegie Supernova Project I. Methods to estimate host-galaxy reddening of stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Taddia, F.; Burns, C. R.; Phillips, M. M.; Bersten, M.; Contreras, C.; Folatelli, G.; Holmbo, S.; Hsiao, E. Y.; Hoeflich, P.; Leloudas, G.; Morrell, N.; Sollerman, J.; Suntzeff, N. B.

    2018-02-01

    We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SN photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub-sample for each traditionally defined spectroscopic sub-type (i.e., SNe IIb, SNe Ib, SNe Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0 d to +20 d relative to B-band maximum. This motivated the construction of intrinsic color-curve templates, which when compared to the colors of reddened SE SNe, yields an entire suite of optical and NIR color excess measurements. Comparison of optical/optical vs. optical/NIR color excess measurements indicates the majority of the CSP-I SE SNe suffer relatively low amounts of reddening (i.e., E(B-V)host< 0.20 mag) and we find evidence for different RVhost values among different SE SN. Fitting the color excess measurements of the seven most reddened (i.e., E(B-V)host> 0.20 mag) objects with the Fitzpatrick (1999, PASP, 111, 63) reddening law model provides robust estimates of the host visual-extinction AVhost and RVhost. In the case of the SE SNe with relatively low amounts of reddening, a preferred value of RVhost is adopted for each sub-type, resulting in estimates of AVhost through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside in galaxies characterized by a range of dust properties. We also find evidence that SNe Ic are more likely to occur in regions characterized by larger RVhost values compared to SNe IIb/Ib and they also tend to suffer more extinction. The later finding is consistent with work in the literature suggesting SNe Ic tend to occur in regions of on-going star formation. Based on observations collected at Las Campanas Observatory.

  5. On the RR Lyrae Stars in Globulars. IV. ω Centauri Optical UBVRI Photometry

    NASA Astrophysics Data System (ADS)

    Braga, V. F.; Stetson, P. B.; Bono, G.; Dall'Ora, M.; Ferraro, I.; Fiorentino, G.; Freyhammer, L. M.; Iannicola, G.; Marengo, M.; Neeley, J.; Valenti, E.; Buonanno, R.; Calamida, A.; Castellani, M.; da Silva, R.; Degl'Innocenti, S.; Di Cecco, A.; Fabrizio, M.; Freedman, W. L.; Giuffrida, G.; Lub, J.; Madore, B. F.; Marconi, M.; Marinoni, S.; Matsunaga, N.; Monelli, M.; Persson, S. E.; Piersimoni, A. M.; Pietrinferni, A.; Prada-Moroni, P.; Pulone, L.; Stellingwerf, R.; Tognelli, E.; Walker, A. R.

    2016-12-01

    New accurate and homogeneous optical UBVRI photometry has been obtained for variable stars in the Galactic globular cluster ω Cen (NGC 5139). We secured 8202 CCD images covering a time interval of 24 years and a sky area of 84 × 48 arcmin. The current data were complemented with data available in the literature and provided new, homogeneous pulsation parameters (mean magnitudes, luminosity amplitudes, periods) for 187 candidate ω Cen RR Lyrae (RRLs). Among them we have 101 RRc (first overtone) and 85 RRab (fundamental) variables, and a single candidate RRd (double-mode) variable. Candidate Blazhko RRLs show periods and colors that are intermediate between the RRc and RRab variables, suggesting that they are transitional objects. A comparison of the period distribution and the Bailey diagram indicates that RRLs in ω Cen show a long-period tail not present in typical Oosterhoff II (OoII) globulars. The RRLs in dwarf spheroidals and in ultra-faint dwarfs have properties between Oosterhoff intermediate and OoII clusters. Metallicity plays a key role in shaping the above evidence. These findings do not support the hypothesis that ω Cen is the core remnant of a spoiled dwarf galaxy. Using optical period-Wesenheit relations that are reddening-free and minimally dependent on metallicity we find a mean distance to ω Cen of 13.71 ± 0.08 ± 0.01 mag (semi-empirical and theoretical calibrations). Finally, we invert the I-band period-luminosity-metallicity relation to estimate individual RRLs’ metal abundances. The metallicity distribution agrees quite well with spectroscopic and photometric metallicity estimates available in the literature. Based in part on proprietary data and on data obtained from the ESO Science Archive Facility under multiple requests by the authors; and in part upon data distributed by the NOAO Science Archive. NOAO is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. This research also benefited from the Digitized Sky Survey service provided by the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. A detailed description of the log of the observations used in this investigation is given in Table 1.

  6. Detecting Reddening by Dust for Star Clusters in the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Cohn, Amy; Dorman, C.; Guhathakurta, P.; PHAT Collaboration

    2014-01-01

    We have developed a technique to detect reddening by interstellar dust of star clusters in the Andromeda Galaxy, using Hubble Space Telescope ACS/WFC imaging in B and I and spectroscopic data from Keck II DEIMOS spectrograph. These data are from the Panchromatic Hubble Andromeda Treasury (PHAT) and Spectroscopic and Panchromatic Landscape of Andromeda's Stellar Halo (SPLASH) surveys. We compared the observed color indices from the PHAT data to the intrinsic color indices quantitatively inferred from a chi-squared goodness of fit comparison between the SPLASH data and a library of template spectra, to detect reddening. The spectral comparison utilizes the strength of the titanium oxide bands. This technique will be applied to an additional 150 star clusters, in Andromeda, to determine the amount of reddening they have experienced. It will also be used as part of the process of correcting for the reddening, developing a reddening law, and learning more about the physical properties of the dust. This research was carried out under the auspices of UCSC's Science Internship Program. We thank the National Aeronautics and Space Administration and the National Science Foundation for funding support.

  7. SEARCH FOR VHE {gamma}-RAY EMISSION FROM THE GLOBULAR CLUSTER M13 WITH THE MAGIC TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderhub, H.; Biland, A.; Antonelli, L. A.

    Based on MAGIC observations from 2007 June to July, we have obtained an integral upper limit to the VHE energy emission of the globular cluster M13 of F(E>200 GeV) < 5.1 x 10{sup -12} cm{sup -2} s{sup -1}, and differential upper limits for E > 140 GeV. Those limits allow us to constrain the population of millisecond pulsars within M13 and to test models for acceleration of leptons inside their magnetospheres and surrounding. We conclude that in M13 either millisecond pulsars are fewer than expected or they accelerate leptons less efficiently than predicted.

  8. GLOBULAR AND OPEN CLUSTERS OBSERVED BY SDSS/SEGUE: THE GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Heather L.; Ma, Zhibo; Connor, Thomas

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a newmore » variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from T{sub eff} to g–r for giants of near solar abundance, using IRFM T{sub eff} measures of stars with good ugriz  and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.« less

  9. THE BLUE TIP OF THE STELLAR LOCUS: MEASURING REDDENING WITH THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlafly, Edward F.; Finkbeiner, Douglas P.; Juric, Mario

    2010-12-10

    We present measurements of reddening due to dust using the colors of stars in the Sloan Digital Sky Survey (SDSS). We measure the color of main-sequence turnoff stars by finding the 'blue tip' of the stellar locus: the prominent blue edge in the distribution of stellar colors. The method is sensitive to color changes of order 18, 12, 7, and 8 mmag of reddening in the colors u - g, g - r, r - i, and i - z, respectively, in regions measuring 90' by 14'. We present maps of the blue tip colors in each of these bandsmore » over the entire SDSS footprint, including the new dusty southern Galactic cap data provided by the SDSS-III. The results disfavor the best-fit O'Donnell and Cardelli et al. reddening laws, but are described well by a Fitzpatrick reddening law with R{sub V} = 3.1. The Schlegel et al. (SFD) dust map is found to trace the dust well, but overestimates reddening by factors of 1.4, 1.0, 1.2, and 1.4 in u - g, g - r, r - i, and i - z largely due to the adopted reddening law. In select dusty regions of the sky, we find evidence for problems in the SFD temperature correction. A dust map normalization difference of 15% between the Galactic north and south sky may be due to these dust temperature errors.« less

  10. The distances of the Galactic Novae

    NASA Astrophysics Data System (ADS)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  11. A map of dust reddening to 4.5 kpc from Pan-STARRS1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F.

    2014-07-01

    We present a map of the dust reddening to 4.5 kpc derived from Pan-STARRS1 stellar photometry. The map covers almost the entire sky north of declination –30° at a resolution of 7'-14', and is based on the estimated distances and reddenings to more than 500 million stars. The technique is designed to map dust in the Galactic plane, where many other techniques are stymied by the presence of multiple dust clouds at different distances along each line of sight. This reddening-based dust map agrees closely with the Schlegel et al. (SFD) far-infrared emission-based dust map away from the Galactic plane,more » and the most prominent differences between the two maps stem from known limitations of SFD in the plane. We also compare the map with Planck, finding likewise good agreement in general at high latitudes. The use of optical data from Pan-STARRS1 yields reddening uncertainty as low as 25 mmag E(B – V).« less

  12. Ages of the Bulge Globular Clusters NGC 6522 and NGC 6626 (M28) from HST Proper-motion-cleaned Color–Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Kerber, L. O.; Nardiello, D.; Ortolani, S.; Barbuy, B.; Bica, E.; Cassisi, S.; Libralato, M.; Vieira, R. G.

    2018-01-01

    Bulge globular clusters (GCs) with metallicities [Fe/H] ≲ ‑1.0 and blue horizontal branches are candidates to harbor the oldest populations in the Galaxy. Based on the analysis of HST proper-motion-cleaned color–magnitude diagrams in filters F435W and F625W, we determine physical parameters for the old bulge GCs NGC 6522 and NGC 6626 (M28), both with well-defined blue horizontal branches. We compare these results with similar data for the inner halo cluster NGC 6362. These clusters have similar metallicities (‑1.3 ≤ [Fe/H] ≤ ‑1.0) obtained from high-resolution spectroscopy. We derive ages, distance moduli, and reddening values by means of statistical comparisons between observed and synthetic fiducial lines employing likelihood statistics and the Markov chain Monte Carlo method. The synthetic fiducial lines were generated using α-enhanced BaSTI and Dartmouth stellar evolutionary models, adopting both canonical (Y ∼ 0.25) and enhanced (Y ∼ 0.30–0.33) helium abundances. RR Lyrae stars were employed to determine the HB magnitude level, providing an independent indicator to constrain the apparent distance modulus and the helium enhancement. The shape of the observed fiducial line could be compatible with some helium enhancement for NGC 6522 and NGC 6626, but the average magnitudes of RR Lyrae stars tend to rule out this hypothesis. Assuming canonical helium abundances, BaSTI and Dartmouth models indicate that all three clusters are coeval, with ages between ∼12.5 and 13.0 Gyr. The present study also reveals that NGC 6522 has at least two stellar populations, since its CMD shows a significantly wide subgiant branch compatible with 14% ± 2% and 86% ± 5% for first and second generations, respectively. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.

  13. Infrared Photometry of 487 Sources in the Inner Regions of NGC 5128 (Centaurus A)

    NASA Astrophysics Data System (ADS)

    Alonso, M. Victoria; Minniti, Dante

    1997-04-01

    We study the sources present in the inner 3 kpc region of NGC 5128 (Cen A), most of which are star clusters of different ages. Photometry of archival Hubble Space Telescope WFPC images (F675W filter) is complemented with IR photometry (JHK' filters) obtained with the IRAC2B infrared array camera at the ESO/MPI 2.2 m telescope. From IR color maps we divide the field into two regions: a clear region outside the dust lane, and an obscured region well inside the dust lane of NGC 5128. In the unreddened region there is a great variety of sources such as globular clusters, star associations, and H II regions. These sources are not individual stars, which would be too faint to be resolved from ground-based telescopes. The vast majority of IR sources in the reddened region, where the dust lane dominates, are not seen at all in the deep HST images. The presence of large amounts of differential extinction makes it difficult to evaluate them. In total, there are 372 objects detected in the inner region of NGC 5128. From them, 125 objects are detected both in IR and HST frames. There are 247 IR sources without optical counterparts (47 in the clear region and 200 in the dust lane). Accounting for the small volume sampled, there must be a total of ~500 sources with K < 18 in the dust lane region. The distribution of these sources is rather uniform and not particularly centrally concentrated. This fact suggests that the majority of them are located in a disk, as would be expected if they are young associations or clusters. The degree of background and foreground contamination is evaluated using observations of a nearby field. We found 115 IR sources in this field. The nucleus itself is invisible in deep optical images, but it is clearly identified in the IR. In the region just south of the nucleus the extinction must be larger than AK = 3. In the clear region, where the effect of the dust lane is negligible, we have identified some objects as intermediate-age clusters containing carbon stars. From color-magnitude diagrams we do not find evidence of very young clusters in this region. Such clusters might be fainter than our detection limit in JHK'. We measure metallicities for 42 globular clusters, confirming the presence of a metallicity gradient with Δ[Fe/H]/ΔR = -0.06 dex kpc-1. Based on observations collected at La Silla Observatory and on archival data of the NASA/ESA Hubble Space Telescope, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  14. Dust Reddened Quasars in FIRST and UKIDSS: Beyond the Tip of the Iceberg

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Urrutia, Tanya; Lacy, Mark; Djorgovski, S. G.; Urry, Meg; Croom, Scott; Schneider, Donald P.; Mahabal, Ashish; Graham, Matthew; Ge, Jian

    2013-12-01

    We present the results of a pilot survey to find dust-reddened quasars by matching the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) radio catalog to the UKIDSS near-infrared survey and using optical data from Sloan Digital Sky Survey to select objects with very red colors. The deep K-band limit provided by UKIDSS allows for finding more heavily reddened quasars at higher redshifts as compared with previous work using FIRST and Two Micron All Sky Survey (2MASS). We selected 87 candidates with K <= 17.0 from the UKIDSS Large Area Survey (LAS) First Data Release (DR1), which covers 190 deg2. These candidates reach up to ~1.5 mag below the 2MASS limit and obey the color criteria developed to identify dust-reddened quasars. We have obtained 61 spectroscopic observations in the optical and/or near-infrared, as well as classifications in the literature, and have identified 14 reddened quasars with E(B - V) > 0.1, including 3 at z > 2. We study the infrared properties of the sample using photometry from the Wide-Field Infrared Survey Explorer and find that infrared colors improve the efficiency of red quasar selection, removing many contaminants in an infrared-to-optical color-selected sample alone. The highest-redshift quasars (z >~ 2) are only moderately reddened, with E(B - V) ~ 0.2-0.3. We find that the surface density of red quasars rises sharply with faintness, comprising up to 17% of blue quasars at the same apparent K-band flux limit. We estimate that to reach more heavily reddened quasars (i.e., E(B - V) >~ 0.5) at z > 2 and a depth of K = 17, we would need to survey at least ~2.5 times more area.

  15. UV-luminous, star-forming hosts of z ˜ 2 reddened quasars in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Wethers, C. F.; Banerji, M.; Hewett, P. C.; Lemon, C. A.; McMahon, R. G.; Reed, S. L.; Shen, Y.; Abdalla, F. B.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; CarrascoKind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.

    2018-04-01

    We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity [E(B - V)QSO ≳ 0.5; Lbol > 1046 erg s-1] broad-line quasars at 1.5 < z < 2.7. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near-infrared VISTA Hemisphere Survey and UKIDSS Large Area Survey data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least 10 quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV < 365 M⊙ yr-1, with an average SFRUV = 130 ± 95 M⊙ yr-1. We find a broad correlation between SFRUV and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.

  16. VizieR Online Data Catalog: HIP and TGAS stars reddening and extinction (Gontcharov+ 2018)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.; Mosenkov, A. V.

    2018-01-01

    These are the reddening, interstellar extinction and extinction-to-reddening ratio estimates interpolated for 730,496 Gaia DR1 TGAS and Hipparcos stars within 415 pc from the Sun based on the 3D reddening map of Gontcharov (J/PAZh/43/521) and 3D extinction-to-reddening (total-to-selective extinction) ratio Rv=Av/E(B-V) map of Gontcharov (J/PAZh/38/15). For 711,237 Gaia DR1 TGAS stars the rMoMW distances from Astraatmadja and Bailer-Jones (2016ApJ...833..119A, Cat. J/ApJ/833/119) are used. For 19,259 Hipparcos stars, not in Gaia DR1 TGAS, the distances as the inversion of Hipparcos (I/311) parallaxes are used. The E(B-V) are calculated from initial E(J-Ks) as E(B-V)=E(J-Ks)*(0.047X3-0.1X2-0.09X+1.74), where X=(BT-VT) (B_T and V_T Tycho-2 bands) following the extinction law. This refined relation supersedes E(B-V)=1.655E(J-Ks) in the original 3D reddening map of Gontcharov. The Rv are interpolated from the 3D map of Rv of Gontcharov (2012AstL...38...12G, 2012PAZh...38...15G, Cat. J/PAZh/38/15). The Av are the product of E(B-V) and Rv. (2 data files).

  17. LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. III. TWO-DIMENSIONAL EXTINCTION MAPS OF THE GALACTIC MIDPLANE USING THE RAYLEIGH-JEANS COLOR EXCESS METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nidever, David L.; Zasowski, Gail; Majewski, Steven R., E-mail: dln5q@virginia.edu, E-mail: gz2n@virginia.edu, E-mail: srm4n@virginia.edu

    We provide new, high-resolution A(K{sub s} ) extinction maps of the heavily reddened Galactic midplane based on the Rayleigh-Jeans Color Excess ({sup R}JCE{sup )} method. RJCE determines star-by-star reddening based on a combination of near- and mid-infrared photometry. The new RJCE-generated maps have 2' Multiplication-Sign 2' pixels and span some of the most severely extinguished regions of the Galaxy-those covered with Spitzer/IRAC imaging by the GLIMPSE-I, -II, -3D, and Vela-Carina surveys, from 256 Degree-Sign < l < 65 Degree-Sign and, in general, for |b| {<=} 1 Degree-Sign -1.{sup 0}5 (extending up to |b| {<=} 4 Degree-Sign in the bulge). Usingmore » RJCE extinction measurements, we generate dereddened color-magnitude diagrams and, in turn, create maps based on main sequence, red clump, and red giant star tracers, each probing different distances and thereby providing coarse three-dimensional information on the relative placement of dust cloud structures. The maps generated from red giant stars, which reach to {approx}18-20 kpc, probe beyond most of the Milky Way extinction in most directions and provide close to a 'total Galactic extinction' map-at minimum they provide high angular resolution maps of lower limits on A(K{sub s} ). Because these maps are generated directly from measurements of reddening by the very dust being mapped, rather than inferred on the basis of some less direct means, they are likely the most accurate to date for charting in detail the highly patchy differential extinction in the Galactic midplane. We provide downloadable FITS files and an IDL tool for retrieving extinction values for any line of sight within our mapped regions.« less

  18. Review of Cytoskeleton Research in Cell Differentiation and Development.

    DTIC Science & Technology

    1987-09-10

    tetrameric mol- molecule and the corresponding site on ecule of dumbbell-like structure. Plec - ,MAP’s underwent molecular coevolution and tin’s globular...coworkers as plectin’s interaction by dlffe~ent MAP’s. Limited proteolysis partners. Thus, Wiche suggests that plec - of tubulin and MAP’s to analyze the

  19. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  20. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes.

    PubMed

    Pondman, Kirsten M; Pednekar, Lina; Paudyal, Basudev; Tsolaki, Anthony G; Kouser, Lubna; Khan, Haseeb A; Shamji, Mohamed H; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday

    2015-11-01

    Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Omnipresence of the polyproline II helix in fibrous and globular proteins.

    PubMed

    Esipova, Natalia G; Tumanyan, Vladimir G

    2017-02-01

    Left-handed helical conformation of a polypeptide chain (PPII) is the third type of the protein backbone structure. This conformation universally exists in fibrous, globular proteins, and biologically active peptides. It has unique physical and chemical properties determining a wide range of biological functions, from the protein folding to the tissue differentiation. New examples of the structure have been appearing in spite of difficulties in their detection and investigation. The annotation and prediction of the PPII was also a challenging task. Recently, many PPII motifs with new and/or unexpected functions are being accumulated in databases. In this review we describe the major structural and dynamic forms of PPII, the diversity of its functions, and the role in different biological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Additional red and reddened stars in Cyg OB2 association

    NASA Technical Reports Server (NTRS)

    Parthasarathy, M.; Jain, S. K.

    1989-01-01

    Several new red and reddened stars are detected in the most heavily reddened associations Cyg OB2. About 47 IRAS sources are detected in Cyg OB2. Their flux distributions, and colors, suggest that they are young stellar objects embedded in dust envelopes or disks (some of them may be proto stars) and are most likely members of the Cyg OB2 association. The large values of the flux ratio L sub IR/L sub VIS suggests that the central objects are obscured because of very large extinction.

  3. UV-luminous, star-forming hosts of z ~ 2 reddened quasars in the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wethers, C. F.; Banerji, M.; Hewett, P. C.

    We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)more » $$_{\\rm{QSO}}\\gtrsim$$ 0.5; L$$_{\\rm{bol}}>$$ 10$$^{46}$$ergs$$^{-1}$$) broad-line quasars at $1.5 < z < 2.7$. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFR$$_{\\rm{UV}}$$ < 365 M$$_{\\odot}$$yr$$^{-1}$$, with an average SFR$$_{\\rm{UV}}$$ = 130 $$\\pm$$ 95 M$$_{\\odot}$$yr$$^{-1}$$. In conclusion, we find a broad correlation between SFR$$_{\\rm{UV}}$$ and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.« less

  4. UV-luminous, star-forming hosts of z ~ 2 reddened quasars in the Dark Energy Survey

    DOE PAGES

    Wethers, C. F.; Banerji, M.; Hewett, P. C.; ...

    2018-01-05

    We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)more » $$_{\\rm{QSO}}\\gtrsim$$ 0.5; L$$_{\\rm{bol}}>$$ 10$$^{46}$$ergs$$^{-1}$$) broad-line quasars at $1.5 < z < 2.7$. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFR$$_{\\rm{UV}}$$ < 365 M$$_{\\odot}$$yr$$^{-1}$$, with an average SFR$$_{\\rm{UV}}$$ = 130 $$\\pm$$ 95 M$$_{\\odot}$$yr$$^{-1}$$. In conclusion, we find a broad correlation between SFR$$_{\\rm{UV}}$$ and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.« less

  5. SWIFT ULTRAVIOLET OBSERVATIONS OF SUPERNOVA 2014J IN M82: LARGE EXTINCTION FROM INTERSTELLAR DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Peter J.; Smitka, Michael T.; Wang, Lifan

    We present optical and ultraviolet (UV) photometry and spectra of the very nearby and highly reddened supernova (SN) 2014J in M82 obtained with the Swift Ultra-Violet/Optical Telescope (UVOT). Comparison of the UVOT grism spectra of SN 2014J with Hubble Space Telescope observations of SN2011fe or UVOT grism spectra of SN 2012fr are consistent with an extinction law with a low value of R{sub V} ∼1.4. The high reddening causes the detected photon distribution in the broadband UV filters to have a much longer effective wavelength than for an unreddened SN. The light curve evolution is consistent with this shift andmore » does not show a flattening due to photons being scattered back into the line of sight (LOS). The light curve shapes and color evolution are inconsistent with a contribution scattered into the LOS by circumstellar dust. We conclude that most or all of the high reddening must come from interstellar dust. We show that even for a single dust composition, there is not a unique reddening law caused by circumstellar scattering. Rather, when considering scattering from a time-variable source, we confirm earlier studies that the reddening law is a function of the dust geometry, column density, and epoch. We also show how an assumed geometry of dust as a foreground sheet in mixed stellar/dust systems will lead to a higher inferred R{sub V}. Rather than assuming the dust around SNe is peculiar, SNe may be useful probes of the interstellar reddening laws in other galaxies.« less

  6. Laboratory observations and simulations of phase reddening

    NASA Astrophysics Data System (ADS)

    Schröder, S. E.; Grynko, Ye.; Pommerol, A.; Keller, H. U.; Thomas, N.; Roush, T. L.

    2014-09-01

    The visible reflectance spectrum of many Solar System bodies changes with changing viewing geometry for reasons not fully understood. It is often observed to redden (increasing spectral slope) with increasing solar phase angle, an effect known as phase reddening. Only once, in an observation of the martian surface by the Viking 1 lander, was reddening observed up to a certain phase angle with bluing beyond, making the reflectance ratio as a function of phase angle shaped like an arch. However, in laboratory experiments this arch-shape is frequently encountered. To investigate this, we measured the bidirectional reflectance of particulate samples of several common rock types in the 400-1000 nm wavelength range and performed ray-tracing simulations. We confirm the occurrence of the arch for surfaces that are forward scattering, i.e. are composed of semi-transparent particles and are smooth on the scale of the particles, and for which the reflectance increases from the lower to the higher wavelength in the reflectance ratio. The arch shape is reproduced by the simulations, which assume a smooth surface. However, surface roughness on the scale of the particles, such as the Hapke and van Horn (Hapke, B., van Horn, H. [1963]. J. Geophys. Res. 68, 4545-4570) fairy castles that can spontaneously form when sprinkling a fine powder, leads to monotonic reddening. A further consequence of this form of microscopic roughness (being indistinct without the use of a microscope) is a flattening of the disk function at visible wavelengths, i.e. Lommel-Seeliger-type scattering. The experiments further reveal monotonic reddening for reflectance ratios at near-IR wavelengths. The simulations fail to reproduce this particular reddening, and we suspect that it results from roughness on the surface of the particles. Given that the regolith of atmosphereless Solar System bodies is composed of small particles, our results indicate that the prevalence of monotonic reddening and Lommel-Seeliger-type scattering for these bodies results from microscopic roughness, both in the form of structures built by the particles and roughness on the surface of the particles themselves. It follows from the singular Viking 1 observation that the surface in front of the lander was composed of semi-transparent particles, and was smooth on the scale of the particle size.

  7. The differential enlargement of the neurocranium in the full-term fetus.

    PubMed

    Jordaan, H V

    1976-11-17

    There is a wide range of variation in the cephalic index in the full-term fetus. The index rises as birth weight increases. The correlation between birth weight and the cephalic index is significant (r = 0,65) at the 0,05 level. Increasing neurocranial size is associated with differential growth of the dimensions which determine endocranial capacity. A higher cephalic index is achieved by a disproportionately large increase in the biparietal diameter relative to the occipitofrontal dimension. This results in a more globular neurocranial form.

  8. Multicolor optical polarimetry of reddened stars in the small Magellanic cloud

    NASA Technical Reports Server (NTRS)

    Magalhaes, Antonio M.; Coyne, G. V.; Piirola, Valero; Rodrigues, C. V.

    1989-01-01

    First results of an on-going program to determine the wavelength dependence of the interstellar optical polarization of reddened stars in the Small Magellanic Cloud (SMC) are presented. IUE observations of reddened stars in the SMC (Bouchet et al. 1985) generally show marked differences in the extinction law as compared to both the Galaxy and the Large Megallanic Cloud. The aim here is to determine the wavelength dependence of the optical linear polarization in the direction of several such stars in the SMC in order to further constrain the dust composition and size distribution in that galaxy.

  9. Vector space methods of photometric analysis - Applications to O stars and interstellar reddening

    NASA Technical Reports Server (NTRS)

    Massa, D.; Lillie, C. F.

    1978-01-01

    A multivariate vector-space formulation of photometry is developed which accounts for error propagation. An analysis of uvby and H-beta photometry of O stars is presented, with attention given to observational errors, reddening, general uvby photometry, early stars, and models of O stars. The number of observable parameters in O-star continua is investigated, the way these quantities compare with model-atmosphere predictions is considered, and an interstellar reddening law is derived. It is suggested that photospheric expansion affects the formation of the continuum in at least some O stars.

  10. A Differential Chemical Abundance Scale for the Globular Cluster M5

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; McWilliam, Andrew

    2010-06-01

    We present LTE chemical abundances for five red giants and one AGB star in the Galactic globular cluster (GC) M5 based on high-resolution spectroscopy using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus. The stars in our sample that overlap with existing studies in the literature are consistent with published values for [Fe/H] and agree to within typically 0.04 dex for the α-elements. Most deviations can be assigned to varying analysis techniques in the literature. This strengthens our newly established differential GC abundance scale and advocates future use of this method. In particular, we confirm a mean [Fe I/H] of -1.33 ± 0.03 (stat.) ±0.03 (sys.) dex and also reproduce M5's enhancement in the α-elements (O, Mg, Si, Ca, Ti) at +0.4 dex, rendering M5 a typical representative of the Galactic halo. Over-ionization of Fe I in the atmospheres of these stars by non-LTE effects is found to be less than 0.07 dex. Five of our six stars show O-Na-Al-Mg abundance patterns consistent with pollution by proton-capture nucleosynthesis products. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. On the calibration of the COBE/IRAS dust emission reddening maps

    NASA Astrophysics Data System (ADS)

    Dutra, C. M.; Ahumada, A. V.; Clariá, J. J.; Bica, E.; Barbuy, B.

    2003-09-01

    In this work we study the spectral properties (3600-6800 Å) of the nuclear region of early-type galaxies at low (|b|<25deg), intermediate (including surroundings of the Magellanic Clouds) and high (South Polar Cap) Galactic latitudes. We determine the E(B-V) reddening values of the galaxies by matching their continuum distribution with respect to those of reddening-free spectral galaxy templates with similar stellar populations. We also compare the spectroscopic reddening value of each galaxy with that derived from 100 mu m dust emission (E(B-V)FIR) in its line of sight, and we find that there is agreement up to E(B-V)=0.25. Beyond this limit E(B-V)FIR values are higher. Taking into account the data up to E(B-V) ~ 0.7, we derive a calibration factor of 0.016 between the spectroscopic E(B-V) values and Schlegel et al.'s (\\cite{Schlegel1998}) opacities. By combining this result with an AK extinction map built within ten degrees of the Galactic centre using Bulge giants as probes (Dutra et al. \\cite{Dutra2003}), we extended the calibration of dust emission reddening maps to low Galactic latitudes down to |b|=4deg and E(B-V)= 1.6 (AV ~ 5). According to this new calibration, a multiplicative factor of ~0.75 must be applied to the COBE/IRAS dust emission reddening maps. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Pata, Córdoba and San Juan, Argentina.

  12. Extinction in the Star Cluster SAI 113 and Galactic Structure in Carina

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Turner, David G.; Majaess, Daniel J.; Baume, Gustavo L.; Gamen, Roberto; Molina Lera, José A.

    2017-04-01

    Photometric CCD UB VI C photometry obtained for 4860 stars surrounding the embedded southern cluster SAI 113 (Skiff 8) is used to examine the reddening in the field and derive the distance to the cluster and nearby van Genderen 1. Spectroscopic color excesses for bright cluster stars, photometric reddenings for A3 dwarfs, and dereddening of cluster stars imply that the reddening and extinction laws match results derived for other young clusters in Carina: {E}U-B/{E}B-V≃ 0.64 and {R}V≃ 4. SAI 113 displays features that may be linked to a history of dynamical interactions among member stars: possible circumstellar reddening and rapid rotation of late B-type members, ringlike features in star density, and a compact core, with most stars distributed randomly across the field. The group van Genderen 1 resembles a stellar asterism, with potential members distributed randomly across the field. Distances of 3.90 ± 0.19 kpc and 2.49 ± 0.09 kpc are derived for SAI 113 and van Genderen 1, respectively, with variable reddenings {E}B-V ranging from 0.84 to 1.29 and 0.23 to 1.28. The SRC variables CK Car and EV Car may be outlying members of van Genderen 1, thereby of use for calibrating the period-luminosity relation for pulsating M supergiants. More importantly, the anomalous reddening and extinction evident in Carina and nearby regions of the Galactic plane in the fourth quadrant impact the mapping of spiral structure from young open clusters. The distribution of spiral arms in the fourth quadrant may be significantly different from how it is often portrayed.

  13. The Reddening Curve below 1200 Angstroms.

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, C.

    2012-05-01

    Thirty percent of the bolometric luminosity of star-forming galaxies is emitted in the wavelength range between 912 and 1200 Å. This wavelength range carries information about the stellar mass distribution and the star formation rate of the newly formed populations of massive (M > 8 M_sun) stars in these galaxies, and about the leakage of Lyman-continuum photons from these galaxies. This is also the wavelength range where the reddening curve peaks, and where our understanding of the reddening curve is the most fragmentary. We present preliminary results from a spectroscopic study aimed to characterize the reddening curve below 1200 Å. Our project is based on the analysis of archival HUT (830-1850 Å), FUSE (905-1187 Å), IUE (1150-3200 Å), and HST (1200-3200 Å) data of a sample of 70 low-redshift (z<0.1) star-forming galaxies, using synthetic spectra of stellar populations plus the ISM. The stellar population and nebula models were generated with STARBURST99 and CLOUDY, respectively. This work is supported by NASA J1401.

  14. Heavily reddened type 1 quasars at z > 2 - I. Evidence for significant obscured black hole growth at the highest quasar luminosities

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; Alaghband-Zadeh, S.; Hewett, Paul C.; McMahon, Richard G.

    2015-03-01

    We present a new population of z > 2 dust-reddened, type 1 quasars with 0.5 ≲ E(B - V) ≲ 1.5, selected using near-infrared (NIR) imaging data from the UKIDSS-LAS (Large Area Survey), ESO-VHS (European Southern Obseratory-VISTA Hemisphere Survey) and WISE surveys. NIR spectra obtained using the Very Large Telescope for 24 new objects bring our total sample of spectroscopically confirmed hyperluminous (>1013 L⊙), high-redshift dusty quasars to 38. There is no evidence for reddened quasars having significantly different Hα equivalent widths relative to unobscured quasars. The average black hole masses (˜109-1010 M⊙) and bolometric luminosities (˜1047 erg s-1) are comparable to the most luminous unobscured quasars at the same redshift, but with a tail extending to very high luminosities of ˜1048 erg s-1. 66 per cent of the reddened quasars are detected at >3σ at 22 μm by WISE. The average 6-μm rest-frame luminosity is log10(L6 μm/ erg s-1) = 47.1 ± 0.4, making the objects among the mid-infrared brightest active galactic nuclei (AGN) currently known. The extinction-corrected space density estimate now extends over three magnitudes (-30 < Mi < -27) and demonstrates that the reddened quasar luminosity function is significantly flatter than that of the unobscured quasar population at z = 2-3. At the brightest magnitudes, Mi ≲ -29, the space density of our dust-reddened population exceeds that of unobscured quasars. A model where the probability that a quasar becomes dust reddened increases at high luminosity is consistent with the observations and such a dependence could be explained by an increase in luminosity and extinction during AGN-fuelling phases. The properties of our obscured type 1 quasars are distinct from the heavily obscured, Compton-thick AGN that have been identified at much fainter luminosities and we conclude that they likely correspond to a brief evolutionary phase in massive galaxy formation.

  15. HST/WFC3 OBSERVATIONS OF LOW-MASS GLOBULAR CLUSTERS AM 4 AND PALOMAR 13: PHYSICAL PROPERTIES AND IMPLICATIONS FOR MASS LOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamren, Katherine M.; Smith, Graeme H.; Guhathakurta, Puragra

    2013-11-01

    We investigate the loss of low-mass stars in two of the faintest globular clusters known, AM 4 and Palomar 13 (Pal 13), using HST/WFC3 F606W and F814W photometry. To determine the physical properties of each cluster—age, mass, metallicity, extinction, and present day mass function (MF)—we use the maximum likelihood color-magnitude diagram (CMD) fitting program MATCH and the Dartmouth, Padova, and BaSTI stellar evolution models. For AM 4, the Dartmouth models provide the best match to the CMD and yield an age of >13 Gyr, metallicity log Z/Z {sub ☉} = –1.68 ± 0.08, a distance modulus (m – M) {submore » V} = 17.47 ± 0.03, and reddening A{sub V} = 0.19 ± 0.02. For Pal 13 the Dartmouth models give an age of 13.4 ± 0.5 Gyr, log Z/Z {sub ☉} = –1.55 ± 0.06, (m – M) {sub V} = 17.17 ± 0.02, and A{sub V} = 0.43 ± 0.01. We find that the systematic uncertainties due to choice in assumed stellar model greatly exceed the random uncertainties, highlighting the importance of using multiple stellar models when analyzing stellar populations. Assuming a single-sloped power-law MF, we find that AM 4 and Pal 13 have spectral indices α = +0.68 ± 0.34 and α = –1.67 ± 0.25 (where a Salpeter MF has α = +1.35), respectively. Comparing our derived slopes with literature measurements of cluster integrated magnitude (M{sub V} ) and MF slope indicates that AM 4 is an outlier. Its MF slope is substantially steeper than clusters of comparable luminosity, while Pal 13 has an MF in line with the general trend. We discuss both primordial and dynamical origins for the unusual MF slope of AM 4 and tentatively favor the dynamical scenario. However, MF slopes of more low luminosity clusters are needed to verify this hypothesis.« less

  16. Preliminary results on interstellar reddening as deduced from filter photometry

    NASA Technical Reports Server (NTRS)

    Laget, M.

    1972-01-01

    Filter photometry has been used to derive the interstellar reddening law from stars through the study of a single spectral type, B0. The deficiency in the far ultraviolet flux of a supergiant relative to a main sequence star is compared with the difference in the flux distribution due to a change of one spectral class. Individual interstellar reddening curves show the general feature reported by Stecher (1969) and by Bless and Savage (1970). There is a large amount of scatter in the far ultraviolet which may be partially due to a real difference in interstellar extinction and partially due to observational inaccuracy.

  17. HUBBLE TARANTULA TREASURY PROJECT. V. THE STAR CLUSTER HODGE 301: THE OLD FACE OF 30 DORADUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cignoni, M.; Sabbi, E.; Marel, R. P. van der

    Based on color–magnitude diagrams (CMDs) from the Hubble Space Telescope  Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 andmore » 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800  M {sub ⊙} and average reddening E ( B − V ) ≈ 0.22–0.24 mag, with a differential reddening δE ( B − V ) ≈ 0.04 mag.« less

  18. Hubble Tarantula Treasury Project V. The Star Cluster Hodge 301: The Old Face of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Sabbi, E.; van der Marel, R. P.; Lennon, D. J.; Tosi, M.; Grebel, E. K.; Gallagher, J. S., III; Aloisi, A.; de Marchi, G.; Gouliermis, D. A.; Larsen, S.; Panagia, N.; Smith, L. J.

    2016-12-01

    Based on color-magnitude diagrams (CMDs) from the Hubble Space Telescope Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800 M ⊙ and average reddening E(B - V) ≈ 0.22-0.24 mag, with a differential reddening δE(B - V) ≈ 0.04 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  19. FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code

    NASA Astrophysics Data System (ADS)

    Wilkinson, David M.; Maraston, Claudia; Goddard, Daniel; Thomas, Daniel; Parikh, Taniya

    2017-12-01

    We present a new spectral fitting code, FIREFLY, for deriving the stellar population properties of stellar systems. FIREFLY is a chi-squared minimization fitting code that fits combinations of single-burst stellar population models to spectroscopic data, following an iterative best-fitting process controlled by the Bayesian information criterion. No priors are applied, rather all solutions within a statistical cut are retained with their weight. Moreover, no additive or multiplicative polynomials are employed to adjust the spectral shape. This fitting freedom is envisaged in order to map out the effect of intrinsic spectral energy distribution degeneracies, such as age, metallicity, dust reddening on galaxy properties, and to quantify the effect of varying input model components on such properties. Dust attenuation is included using a new procedure, which was tested on Integral Field Spectroscopic data in a previous paper. The fitting method is extensively tested with a comprehensive suite of mock galaxies, real galaxies from the Sloan Digital Sky Survey and Milky Way globular clusters. We also assess the robustness of the derived properties as a function of signal-to-noise ratio (S/N) and adopted wavelength range. We show that FIREFLY is able to recover age, metallicity, stellar mass, and even the star formation history remarkably well down to an S/N ∼ 5, for moderately dusty systems. Code and results are publicly available.1

  20. STELLAR ARCHEOLOGY IN THE GALACTIC HALO WITH ULTRA-FAINT DWARFS. VII. HERCULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musella, Ilaria; Ripepi, Vincenzo; Marconi, Marcella, E-mail: ilaria@na.astro.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it

    2012-09-10

    We present the first time-series study of the ultra-faint dwarf galaxy Hercules. Using a variety of telescope/instrument facilities we secured about 50 V and 80 B epochs. These data allowed us to detect and characterize 10 pulsating variable stars in Hercules. Our final sample includes six fundamental-mode (ab-type) and three first-overtone (c-type) RR Lyrae stars, and one Anomalous Cepheid. The average period of the ab-type RR Lyrae stars, (P{sub ab}) = 0.68 days ({sigma} = 0.03 days), places Hercules in the Oosterhoff II group, as found for almost the totality of the ultra-faint dwarf galaxies investigated so far for variability.more » The RR Lyrae stars were used to obtain independent estimates of the metallicity, reddening, and distance to Hercules, for which we find [Fe/H] = -2.30 {+-} 0.15 dex, E(B - V) = 0.09 {+-} 0.02 mag, and (m - M){sub 0} = 20.6 {+-} 0.1 mag, in good agreement with the literature values. We have obtained a V, B - V color-magnitude diagram (CMD) of Hercules that reaches V {approx} 25 mag and extends beyond the galaxy's half-light radius over a total area of 40' Multiplication-Sign 36'. The CMD and the RR Lyrae stars indicate the presence of a population as old and metal-poor as (at least) the Galactic globular cluster M68.« less

  1. Photometric properties of Ceres from telescopic observations using Dawn Framing Camera color filters

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Li, Jian-Yang; Gary, Bruce L.; Sanchez, Juan A.; Stephens, Robert D.; Megna, Ralph; Coley, Daniel; Nathues, Andreas; Le Corre, Lucille; Hoffmann, Martin

    2015-11-01

    The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres' phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength. Our analysis shows that the modeled geometric albedos derived from both the IAU HG model and the Hapke model are consistent with a flat and featureless spectrum of Ceres, although the values are ∼10% higher than previous measurements. Our models also suggest a wavelength dependence of Ceres' phase function. The IAU G-parameter and the Hapke single-particle phase function parameter, g, are both consistent with decreasing (shallower) phase slope with increasing wavelength. Such a wavelength dependence of phase function is consistent with reddening of spectral slope with increasing phase angle, or phase-reddening. This phase reddening is consistent with previous spectra of Ceres obtained at various phase angles archived in the literature, and consistent with the fact that the modeled geometric albedo spectrum of Ceres is the bluest of all spectra because it represents the spectrum at 0° phase angle. Ground-based FC color filter lightcurve data are consistent with HST albedo maps confirming that Ceres' lightcurve is dominated by albedo and not shape. We detected a positive correlation between 1.1-μm absorption band depth and geometric albedo suggesting brighter areas on Ceres have absorption bands that are deeper. We did not see the "extreme" slope values measured by Perna et al. (Perna, D., et al. [2015]. Astron. Astrophys. 575 (L1-6)), which they have attributed to "resurfacing episodes" on Ceres.

  2. Multi-scale Imaging of Cellular and Sub-cellular Structures using Scanning Probe Recognition Microscopy.

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Rice, A. F.

    2005-03-01

    Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).

  3. Selected Theoretical Studies Group contributions to the 14th International Cosmic Ray conference. [including studies on galactic molecular hydrogen, interstellar reddening, and on the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The galactic distribution of H2 was studied through gamma radiation and through X-ray, optical, and infrared absorption measurements from SAS-2 and other sources. A comparison of the latitude distribution of gamma-ray intensity with reddening data shows reddening data to give the best estimate of interstellar gas in the solar vicinity. The distribution of galactic cosmic ray nucleons was determined and appears to be identical to the supernova remnant distribution. Interactions between ultrahigh energy cosmic-ray nuclei and intergalactic photon radiation fields were calculated, using the Monte Carlo method.

  4. A Far Ultraviolet Spectroscopic Explorer Survey of High-Declination Dwarf Novae

    DTIC Science & Technology

    2009-08-20

    and the occurrence of standstills. It was clas- sified as a Z Camelopardalis system by Notni & Richter (1984). Optical spectra were later obtained by...reddening in the direction of the constellation of Perseus is quite large. To estimate the reddening of FO Per, we note (Table 3) that TZ Per has a

  5. THE EXTENDED HIGH A ( V ) QUASAR SURVEY: SEARCHING FOR DUSTY ABSORBERS TOWARD MID-INFRARED-SELECTED QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogager, J.-K.; Noterdaeme, P.; Fynbo, J. P. U.

    2016-11-20

    We present the results of a new spectroscopic survey for dusty intervening absorption systems, particularly damped Ly α absorbers (DLAs), toward reddened quasars. The candidate quasars are selected from mid-infrared photometry from the Wide-field Infrared Survey Explorer combined with optical and near-infrared photometry. Out of 1073 candidates, we secure low-resolution spectra for 108 using the Nordic Optical Telescope on La Palma, Spain. Based on the spectra, we are able to classify 100 of the 108 targets as quasars. A large fraction (50%) is observed to have broad absorption lines (BALs). Moreover, we find six quasars with strange breaks in theirmore » spectra, which are not consistent with regular dust reddening. Using template fitting, we infer the amount of reddening along each line of sight ranging from A ( V ) ≈ 0.1 to 1.2 mag (assuming a Small Magellanic Cloud extinction curve). In four cases, the reddening is consistent with dust exhibiting the 2175 Å feature caused by an intervening absorber, and for two of these, an Mg ii absorption system is observed at the best-fit absorption redshift. In the rest of the cases, the reddening is most likely intrinsic to the quasar. We observe no evidence for dusty DLAs in this survey. However, the large fraction of BAL quasars hampers the detection of absorption systems. Out of the 50 non-BAL quasars, only 28 have sufficiently high redshift to detect Ly α in absorption.« less

  6. Globular Cluster Star Classification: Application to M13

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2013-06-01

    Starting from recent determination of Fe, O, Na abundances on a restricted sample (N=67) of halo and thick disk stars, a natural and well motivated selection criterion is defined for the classification globular cluster stars. An application is performed to M13 using a sample (N=113) for which Fe, O, Na abundances have been recently inferred from observations. A comparison is made between the current and earlier M13 star classifications. Both O and Na empirical differential abundance distributions are determined for each class and for the whole sample (with the addition of Fe in the last case) and compared with their theoretical counterparts due to cosmic scatter obeying a Gaussian distribution whose parameters are inferred from related subsamples. The occurrence of an agreement between the empirical and theoretical distributions is interpreted as absence of significant chemical evolution and vice versa. The procedure is repeated with regard to four additional classes depending on whether oxygen and sodium abundance is above (stage CE) or below (stage AF) a selected threshold. Both O and Na empirical differential abundance distributions, related to the whole sample, exhibit a linear fit for the AF and CE stage. Within the errors, the oxygen slope for the CE stage is equal and of opposite sign with respect to the sodium slope for AF stage, while the contrary holds when dealing with the oxygen slope for the AF stage with respect to the sodium slope for the CE stage. In the light of simple models of chemical evolution applied to M13, oxygen depletion appears to be mainly turned into sodium enrichment for [O/H]≥-1.35 and [Na/H]≤-1.45, while one or more largely preferred channels occur for [O/H]<-1.35 and [Na/H]>-1.45. In addition, the primordial to the current M13 mass ratio can be inferred from the true sodium yield in units of the sodium solar abundance. Though the above results are mainly qualitative due to large (∓.5 dex) uncertainties in abundance determination, still the exhibited trend is expected to be real. The proposed classification of globular cluster stars may be extended in a twofold manner, namely to: (i) elements other than Na and Fe and (ii) globular clusters other than M13.

  7. A Differential Chemical Element Analysis of the Metal-poor Globular Cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; McWilliam, Andrew

    2011-08-01

    We present chemical abundances in three red giants and two turnoff (TO) stars in the metal-poor Galactic globular cluster (GC) NGC 6397 based on spectroscopy obtained with the Magellan Inamori Kyocera Echelle high-resolution spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus and the Galactic halo field star Hip 66815. At a mean of -2.10 ± 0.02 (stat.) ±0.07 (sys.), the differential iron abundance is in good agreement with other studies in the literature based on gf-values. As in previous differential works we find a distinct departure from ionization equilibrium in that the abundances of Fe I and Fe II differ by ~0.1 dex, with opposite signs for the red giant branch (RGB) and TO stars. The α-element ratios are enhanced to 0.4 (RGB) and 0.3 dex (TO), respectively, and we also confirm strong variations in the O, Na, and Al/Fe abundance ratios. Accordingly, the light-element abundance patterns in one of the red giants can be attributed to pollution by an early generation of massive Type II supernovae. TO and RGB abundances are not significantly different, with the possible exception of Mg and Ti, which are, however, amplified by the patterns in one TO star additionally belonging to this early generation of GC stars. We discuss interrelations of these light elements as a function of the GC metallicity. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. [Changes in polyamine levels in Citrus sinensis Osb. cv. Valencia callus during somatic embryogenesis].

    PubMed

    Liu, Hua-Ying; Xiao, Lang-Tao; Lu, Xu-Dong; Hu, Jia-Jin; Wu, Shun; He, Chang-Zheng; Deng, Xiu-Xin

    2005-06-01

    Somatic embryogenetic capability and changes in polyamine level and their relationship were analyzed using the long-term (8 years) subcultured calli of Citrus sinensis Osb. cv. Valencia as materials. The results showed that endogenous polyamine contents in embryogenic calli were higher than those in non-embryogenic calli, and the embryogenetic capability was positively correlated to the levels of endogenous polyamines. When the calli were transferred to a differentiation medium, the putrescine content rapidly increased and reached a peak, then fell gradually. Applying exogenous putrescine raised the embryogenesis frequency and endogenous putrescine level. It indicated that increase in putrescine content at early stage of differentiation promoted embryogenesis. With the development of somatic embryo, spermidine content reached its the highest level at globular embryo stage, spermine content rose and reached a peak at a later stage of globular embryo development. Furthermore, changes of the putrescine, spermidine and spermine contents during somatic embryogenesis were similar in Valencia calli which had different ploidy levels, but their contents decreased following the increasing of ploidy level. Changes in arginine decarboxylase activity were positively correlated to the polyamine levels, which suggest that the later is a key factor in regulating the polyamine levels during somatic embryogenesis in citrus plants.

  9. A new method to determine the interstellar reddening towards WN stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Morris, Patrick W.

    1990-01-01

    An empirical approach to determine the redding in WN stars is presented, in which the measured strengths of the emission lines of He II at 1640 and 4686 A are used to estimate the extinction. The He II emission lines at these wavelengths are compared for a number of WN stars in the Galaxy and the LMC. It is shown that the equivalent width ratios are single valued and are independent of the spectral subtypes. The reddening for stars in the Galaxy is derived using a Galactic extinction law and observed line flux ratios, showing good agreement with previous determinations of reddening. The possible application of the method to study the absorption properties of the interstellar medium in more distant galaxies is discussed.

  10. The WAGGS project - I. The WiFeS Atlas of Galactic Globular cluster Spectra

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Pastorello, Nicola; Bellstedt, Sabine; Alabi, Adebusola; Cerulo, Pierluigi; Chevalier, Leonie; Fraser-McKelvie, Amelia; Penny, Samantha; Foster, Caroline; McDermid, Richard M.; Schiavon, Ricardo P.; Villaume, Alexa

    2017-07-01

    We present the WiFeS Atlas of Galactic Globular cluster Spectra, a library of integrated spectra of Milky Way and Local Group globular clusters. We used the WiFeS integral field spectrograph on the Australian National University 2.3 m telescope to observe the central regions of 64 Milky Way globular clusters and 22 globular clusters hosted by the Milky Way's low-mass satellite galaxies. The spectra have wider wavelength coverage (3300-9050 Å) and higher spectral resolution (R = 6800) than existing spectral libraries of Milky Way globular clusters. By including Large and Small Magellanic Cloud star clusters, we extend the coverage of parameter space of existing libraries towards young and intermediate ages. While testing stellar population synthesis models and analysis techniques is the main aim of this library, the observations may also further our understanding of the stellar populations of Local Group globular clusters and make possible the direct comparison of extragalactic globular cluster integrated light observations with well-understood globular clusters in the Milky Way. The integrated spectra are publicly available via the project website.

  11. Infrared spectra and interstellar reddening of anonymous type II OH/IR stars

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Hackwell, J. A.; Grasdalen, G. L.; Kleinmann, S. G.; Mason, S.

    1985-01-01

    Infrared positions and multicolor infrared photometry for a sample of type II OH/IR stars are reported. The infrared colors and 11.4-micron silicate optical depths of the confirmed sources in this group increase as a function of distance, suggesting that interstellar reddening must be taken into account in assessing their infrared energy distributions and physical characteristics.

  12. Vector space methods of photometric analysis. II - Refinement of the MK grid for B stars. III - The two components of ultraviolet reddening

    NASA Technical Reports Server (NTRS)

    Massa, D.

    1980-01-01

    This paper discusses systematic errors which arise from exclusive use of the MK system to determine reddening. It is found that implementation of uvby, beta photometry to refine the qualitative MK grid substantially reduces stellar mismatch error. A working definition of 'identical' ubvy, beta types is investigated and the relationship of uvby to B-V color excesses is determined. A comparison is also made of the hydrogen based uvby, beta types with the MK system based on He and metal lines. A small core correlated effective temperature luminosity error in the MK system for the early B stars is observed along with a breakdown of the MK luminosity criteria for the late B stars. The second part investigates the wavelength dependence of interstellar extinction in the ultraviolet wavelength range observed with the TD-1 satellite. In this study the sets of identical stars employed to find reddening are determined more precisely than in previous studies and consist only of normal, nonsupergiant stars. A multivariate analysis of variance techniques in an unbiased coordinate system is used for determining the wavelength dependence of reddening.

  13. Interactions between globular proteins and F-actin in isotonic saline solution.

    PubMed

    Lakatos, S; Minton, A P

    1991-10-05

    Solutions of each of three different globular proteins (cytochrome c, chromophorically labeled serum albumin, and chromophorically labeled aldolase), mixed with another unlabeled globular protein or with fibrous actin, were prepared in pH 8.0 Tris-HCl buffer containing 0.15 M NaCl. Each solution was centrifuged at low speed, at 5 degrees C, until unassociated globular protein in solution achieved sedimentation equilibrium. Individual absorbance gradients of both macrosolutes in the mixtures subsequent to centrifugation were obtained via optical scans of the centrifuge tubes at two wavelengths. The gradients of each macrosolute in mixtures of two globular proteins revealed no association of globular proteins under the conditions of these experiments, but perturbation of the gradients of serum albumin, aldolase, and cytochrome c in the presence of F-actin indicated association of all three globular proteins with F-actin. Perturbation of actin gradients in the presence of serum albumin and aldolase suggested partial depolymerization of the F-actin by the globular protein. Analysis of the data with a simple phenomenological model relating free globular protein, bound globular protein, and total actin concentration provided estimates of the respective equilibrium constants for association of serum albumin and aldolase with F-actin, under the conditions of these experiments, of the order of 0.1 microM-1.

  14. Discovery of Cepheids in NGC 5253: Absolute peak brightness of SN Ia 1895B and SN Ia 1972E and the value of H(sub 0)

    NASA Technical Reports Server (NTRS)

    Saha, A.; Sandage, Allan; Labhardt, Lukas; Schwengeler, Hans; Tammann, G. A.; Panagia, N.; Macchetto, F. D.

    1995-01-01

    Observations of the Hubble Space Telescope (HST) between 1993 May 31 and 1993 July 19 in 20 epochs in the F555W passband and five epochs in the F785LP passband have led to the discovery of 14 Cepheids in the Amorphous galaxy NGC 5253. The apparent V distance modulus is (m-M)(sub AV) = 28.08 +/- 0.10 determined from the 12 Cepheids with normal amplitudes. The distance modulus using the F785LP data is consistent with the V value to within the errors. Five methods used to determine the internal reddening are consistent with zero differential reddening, accurate to a level of E(B-V) less than 0.05 mag, over the region occupied by Cepheids and the two supernovae (SNe) produced by NGC 5253. The apparent magnitudes at maximum for the two SNe in NGC 5253 are adopted as B(sub max) = 8.33 +/- 0.2 mag for SN 1895B, and B(sub max) = 8.56 +/- 0.1 and V(sub max) = 8.60 +/- 0.1 for SN 1972E which is a prototype SN of Type Ia. The apparent magnitude system used by Walker (1923) for SN 1859B has been corrected to the modern B scale and zero point to determine its adopted B(sub max) value.

  15. The early-type strong emission-line supergiants of the Magellanic Clouds - A spectroscopic zoology

    NASA Technical Reports Server (NTRS)

    Shore, S. N.; Sanduleak, N.

    1984-01-01

    The results of a spectroscopic survey of 21 early-type extreme emission line supergiants of the Large and Small Magellanic Clouds using IUE and optical spectra are presented. The combined observations are discussed and the literature on each star in the sample is summarized. The classification procedures and the methods by which effective temperatures, bolometric magnitudes, and reddenings were assigned are discussed. The derived reddening values are given along with some results concerning anomalous reddening among the sample stars. The derived mass, luminosity, and radius for each star are presented, and the ultraviolet emission lines are described. Mass-loss rates are derived and discussed, and the implications of these observations for the evolution of the most massive stars in the Local Group are addressed.

  16. Intra-cluster Globular Clusters in a Simulated Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Ramos-Almendares, Felipe; Abadi, Mario; Muriel, Hernán; Coenda, Valeria

    2018-01-01

    Using a cosmological dark matter simulation of a galaxy-cluster halo, we follow the temporal evolution of its globular cluster population. To mimic the red and blue globular cluster populations, we select at high redshift (z∼ 1) two sets of particles from individual galactic halos constrained by the fact that, at redshift z = 0, they have density profiles similar to observed ones. At redshift z = 0, approximately 60% of our selected globular clusters were removed from their original halos building up the intra-cluster globular cluster population, while the remaining 40% are still gravitationally bound to their original galactic halos. As the blue population is more extended than the red one, the intra-cluster globular cluster population is dominated by blue globular clusters, with a relative fraction that grows from 60% at redshift z = 0 up to 83% for redshift z∼ 2. In agreement with observational results for the Virgo galaxy cluster, the blue intra-cluster globular cluster population is more spatially extended than the red one, pointing to a tidally disrupted origin.

  17. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

  18. Effects of cosmic string velocities and the origin of globular clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert, E-mail: ling.lin2@mail.mcgill.ca, E-mail: shoma.yamanouchi@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2015-12-01

    With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milkymore » Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.« less

  19. Betaine protects urea-induced denaturation of myosin subfragment-1.

    PubMed

    Ortiz-Costa, Susana; Sorenson, Martha M; Sola-Penna, Mauro

    2008-07-01

    We have demonstrated previously that urea inhibits the activity and alters the tertiary structure of skeletal muscle myosin in a biphasic manner. This was attributed to differential effects on its globular and filamentous portion. The inhibition of catalytic activity was counteracted by methylamines. With the aim of comprehending the effects of urea on the catalytic (globular) portion of myosin, this study examines the effects of urea and the countereffects of betaine on the catalytic activity and structure of myosin subfragment-1. It is shown that urea inactivates subfragment-1 in parallel with its ability to induce exposure of the enzyme hydrophobic domains, as assessed using intrinsic and extrinsic fluorescence. Both effects are counteracted by betaine, which alone does not significantly affect subfragment-1. Urea also enhances the accessibility of thiol groups, promotes aggregation and decreases the alpha-helix content of S1, effects that are also counteracted by betaine. We conclude that urea-induced inactivation of the enzyme is caused by partial unfolding of the myosin catalytic domain.

  20. The Globular Clusters of the Galactic Bulge: Results from Multiwavelength Follow-up Imaging

    NASA Astrophysics Data System (ADS)

    Cohen, Roger; Geisler, Doug; Mauro, Francesco; Alonso Garcia, Javier; Hempel, Maren; Sarajedini, Ata

    2018-01-01

    The Galactic globular clusters (GGCs) located towards the bulge of the Milky Way suffer from severe total and differential extinction and high field star densities. They have therefore been systematically excluded from deep, large-scale homogenous GGC surveys, and will present a challenge for Gaia. Meanwhile, existing observations of bulge GGCs have revealed tantalizing hints that they hold clues to Galactic formation and evolution not found elsewhere. Therefore, in order to better characterize these poorly studied stellar systems and place them in the context of their optically well-studied counterparts, we have undertaken imaging programs at optical and near-infrared wavelengths. We describe these programs and present a variety of results, including self-consistent measurement of bulge GGC ages and structural parameters. The limitations imposed by spatially variable extinction and extinction law are highlighted, along with the complimentary nature of forthcoming facilities, allowing us to finally complete our picture of the Milky Way GGC system.

  1. The case for cases B and C: intrinsic hydrogen line ratios of the broad-line region of active galactic nuclei, reddenings, and accretion disc sizes

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin

    2017-05-01

    Low-redshift active galactic nuclei (AGNs) with extremely blue optical spectral indices are shown to have a mean, velocity-averaged, broad-line Hα/Hβ ratio of ≈2.72 ± 0.04, consistent with a Baker-Menzel Case B value. Comparison of a wide range of properties of the very bluest AGNs with those of a luminosity-matched subset of the Dong et al. blue AGN sample indicates that the only difference is the internal reddening. Ultraviolet fluxes are brighter for the bluest AGNs by an amount consistent with the flat AGN reddening curve of Gaskell et al. The lack of a significant difference in the GALEX (far-ultraviolet-near-ultraviolet) colour index strongly rules out a steep Small Magellanic Cloud-like reddening curve and also argues against an intrinsically harder spectrum for the bluest AGNs. For very blue AGNs, the Ly α/Hβ ratio is also consistent with being the Case B value. The Case B ratios provide strong support for the self-shielded broad-line model of Gaskell, Klimek & Nazarova. It is proposed that the greatly enhanced Ly α/Hβ ratio at very high velocities is a consequence of continuum fluorescence in the Lyman lines (Case C). Reddenings of AGNs mean that the far-UV luminosity is often underestimated by up to an order of magnitude. This is a major factor causing the discrepancies between measured accretion disc sizes and the predictions of simple accretion disc theory. Dust covering fractions for most AGNs are lower than has been estimated. The total mass in lower mass supermassive black holes must be greater than hitherto estimated.

  2. DETERMINING TYPE Ia SUPERNOVA HOST GALAXY EXTINCTION PROBABILITIES AND A STATISTICAL APPROACH TO ESTIMATING THE ABSORPTION-TO-REDDENING RATIO R{sub V}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cikota, Aleksandar; Deustua, Susana; Marleau, Francine, E-mail: acikota@eso.org

    We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxymore » center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.« less

  3. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  4. REVIEW: Optics of globular photonic crystals

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.

    2007-05-01

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter ~200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported.

  5. The Nature of LSB galaxies revealed by their Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kissler-Patig, Markus

    2005-07-01

    Low Surface Brightness {LSB} galaxies encompass many of the extremes in galaxy properties. Their understanding is essential to complete our picture of galaxy formation and evolution. Due to their historical under-representation on galaxy surveys, their importance to many areas of astronomy has only recently began to be realized. Globular clusters are superb tracers of the formation histories of galaxies and have been extensively used as such in high surface brightness galaxies. We propose to investigate the nature of massive LSB galaxies by studying their globular cluster systems. No globular cluster study has been reported for LSB galaxies to date. Yet, both the presence or absence of globular clusters set very strong constraints on the conditions prevailing during LSB galaxy formation and evolution. Both in dwarf and giant high surface brightness {HSB} galaxies, globular clusters are known to form as a constant fraction of baryonic mass. Their presence/absence immediately indicates similarities or discrepancies in the formation and evolution conditions of LSB and HSB galaxies. In particular, the presence/absence of metal-poor halo globular clusters infers similarities/differences in the halo formation and assembly processes of LSB vs. HSB galaxies, while the presence/absence of metal-rich globular clusters can be used to derive the occurrence and frequency of violent events {such as mergers} in the LSB galaxy assembly history. Two band imaging with ACS will allow us to identify the globular clusters {just resolved at the selected distance} and to determine their metallicity {potentially their rough age}. The composition of the systems will be compared to the extensive census built up on HSB galaxies. Our representative sample of six LSB galaxies {cz < 2700 km/s} are selected such, that a large system of globular clusters is expected. Globular clusters will constrain phases of LSB galaxy formation and evolution that can currently not be probed by other means. HST/ACS imaging is the only facility capable of studying the globular cluster systems of LSB galaxies given their distance and relative scarcity.

  6. Use of Lower Body Negative Pressure as a Countermeasure to Negative Gz Acceleration

    DTIC Science & Technology

    1989-03-10

    improvement rate and marked reddening and petechial hemorrhages about the face (71). Early authors described that -Gz acceleration may be accompanied by...pressures were measured at the forehead level. Petechial hemorrhages were noted in the conjunctiva and actual subconjunctival extravasations of blood did...reddening of vision after five seconds. Congestion disappears slowly, may leave petechial hemorrhages and edematous eyelids -5 Gz: five seconds is the

  7. THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.

    2016-09-20

    Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less

  8. Reddening and He i{sup ∗} λ 10830 Absorption Lines in Three Narrow-line Seyfert 1 Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng

    We report the detection of heavy reddening and the He i* λ 10830 absorption lines at the active galactic nucleus (AGN) redshift in three narrow-line Seyfert 1 galaxies: SDSS J091848.61+211717.0, SDSS J111354.66+124439.0, and SDSS J122749.13+321458.9. They exhibit very red optical to near-infrared colors, narrow Balmer/Paschen broad emission lines and He i* λ 10830 absorption lines. The ultraviolet-optical-infrared nucleus continua are reddened by the SMC extinction law of E ( B − V ) ∼ 0.74, 1.17, and 1.24 mag for three objects, which are highly consistent with the values obtained from the broad-line Balmer decrements, but larger than those ofmore » narrow emission lines. The reddening analysis suggests that the extinction dust simultaneously obscures the accretion disk, the broad emission-line region, and the hot dust from the inner edge of the torus. It is possible that the dust obscuring the AGN structures is the dusty torus itself. Furthermore, the Cloudy analysis of the He i* λ 10830 absorption lines proposes the distance of the absorption materials to be the extend scale of the torus, which greatly increases probabilities of the obscure and absorption materials being the dusty torus.« less

  9. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b

  10. Reddening and Extinction toward the Galactic Bulge from OGLE-III: The Inner Milky Way's RV ~ 2.5 Extinction Curve

    NASA Astrophysics Data System (ADS)

    Nataf, David M.; Gould, Andrew; Fouqué, Pascal; Gonzalez, Oscar A.; Johnson, Jennifer A.; Skowron, Jan; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Pietrzyński, Grzegorz; Soszyński, Igor; Ulaczyk, Krzysztof; Wyrzykowski, Łukasz; Poleski, Radosław

    2013-06-01

    We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - Ks ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation AI = 0.7465 × E(V - I) + 1.3700 × E(J - Ks ), or, equivalently, AI = 1.217 × E(V - I)(1 + 1.126 × (E(J - Ks )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an RV ≈ 2.5 extinction curve with a dispersion {\\sigma }_{R_{V}} \\approx 0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M_{I,RC}, \\sigma _{I,RC,0}, (V-I)_{RC,0}, \\sigma _{(V-I)_{RC}}, (J-K_{s})_{RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt α ≈ 40° between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at α ≈ 25°. The number of RC stars suggests a total stellar mass for the Galactic bulge of ~2.3 × 1010 M ⊙ if one assumes a canonical Salpeter initial mass function (IMF), or ~1.6 × 1010 M ⊙ if one assumes a bottom-light Zoccali IMF. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution for Science.

  11. CVs and millisecond pulsar progenitors in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Cool, A. M.; Bailyn, C. D.

    1991-01-01

    The recent discovery of a large population of millisecond pulsars in globular clusters, together with earlier studies of both low luminosity X-ray sources and LMXBs in globulars, suggest there should be significant numbers of CVs in globulars. Although they have been searched for without success in selected cluster X-ray source fields, systematic surveys are lacking and would constrain binary production and both stellar and dynamical evolution in globular clusters. We describe the beginnings of such a search, using narrow band H-alpha imaging, and the sensitivities it might achieve.

  12. Globular Cluster Systems in Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Zepf, S.; Murdin, P.

    2000-11-01

    GLOBULAR CLUSTERS are dynamically bound and dense collections of large numbers of coeval stars. Typical globular clusters have roughly one million stars within a radius of a few parsecs. They are also usually close to spherical, hence the name globular. By virtue of their rich, isolated population of stars they provide an important laboratory for studies of STELLAR EVOLUTION. Moreover, because of...

  13. EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond {approx}30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo.more » We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.« less

  14. Spectroscopic Classification of SN 2018nt as a Reddened Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Vinko, J.; Szeged, U.; Wheeler, J. C.

    2018-02-01

    An optical spectrum (range 360-700 nm) of SN 2018nt (K2 C16-0043), was obtained with the "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Odewahn on 2018 Feb 05.20 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2 mag) about 3 weeks after maximum light.

  15. VizieR Online Data Catalog: Improved reddenings for 59 Galactic Cepheids (Madore+, 2017)

    NASA Astrophysics Data System (ADS)

    Madore, B. F.; Freedman, W. L.; Moak, S.

    2018-01-01

    We have used a published compilation of absolute magnitudes measured in seven bands, based on distances and reddenings independently determined for 59 Galactic Cepheids (Fouque+ 2007, J/A+A/476/73), with overtone and suspected overtone pulsators omitted. Where available, HST parallaxes have been adopted for these stars, followed by Infrared Surface Brightness (IRSB) determinations and then Interferometric Baade-Wesselink applications and, finally, revised Hipparcos parallaxes. (1 data file).

  16. The interstellar redding law in the ultraviolet deduced from filter photometry obtained by the OAO-2 satellite

    NASA Technical Reports Server (NTRS)

    Laget, M.

    1972-01-01

    Filter photometry has been obtained of 16 BO stars at ten effective wavelengths in the range 4250-1430 A. The wavelength dependence of the interstellar reddening law, deduced from a least squares fit of the observed values to the reddening line at each band, is found in satisfactory agreement with that derived by Bless and Savage (1972). Toward the shorter wavelengths the increase of the computed probable error of the slope of the mean reddening line suggests that large fluctuations in the law may occur from star to star. Similar computations, separating main-sequence stars and supergiants, indicate that the large fluctuations of the law appear to be well related to the luminosity of the stars; the supergiants show systematically less extinction, this deficiency becoming large toward the far UV. The small number in the sample however, does not allow a general conclusion to be drawn.

  17. A Color-locus Method for Mapping R V Using Ensembles of Stars

    NASA Astrophysics Data System (ADS)

    Lee, Albert; Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.; Burgett, William; Chambers, Ken; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Kudritzki, Rolf-Peter; Magnier, Eugene; Metcalfe, Nigel; Wainscoat, Richard; Waters, Christopher

    2018-02-01

    We present a simple but effective technique for measuring angular variation in R V across the sky. We divide stars from the Pan-STARRS1 catalog into Healpix pixels and determine the posterior distribution of reddening and R V for each pixel using two independent Monte Carlo methods. We find the two methods to be self-consistent in the limits where they are expected to perform similarly. We also find some agreement with high-precision photometric studies of R V in Perseus and Ophiuchus, as well as with a map of reddening near the Galactic plane based on stellar spectra from APOGEE. While current studies of R V are mostly limited to isolated clouds, we have developed a systematic method for comparing R V values for the majority of observable dust. This is a proof of concept for a more rigorous Galactic reddening map.

  18. Cygnus X-2 - Neutron star or degenerate dwarf?

    NASA Technical Reports Server (NTRS)

    Mcclintock, J. E.; Remillard, R. A.; Petro, L. D.; Hammerschlag-Hensberge, G.; Proffitt, C. R.

    1984-01-01

    Some conflicting models have been proposed for Cyg X-2: a degenerate dwarf model which predicts a distance of 250 + or 50 pc; and a neutron star model which implies a distance of about 8000 pc. Based on a reddening study, it is found that the distance to Cyg X-2 is greater than 1100 pc, which rules strongly against the degenerate dwarf model. This conclusion is based on observations of the 2200 A feature in the spectrum of Cyg X-2 made with the International Ultraviolet Explorer (IUE), and UBV and spectroscopic observations of 38 field stars. For the reddening of Cyg X-2 values of E(B-V) = 0.40 + or - 0.07 (1 sigma) are found and are consistent with the reddening to infinity in that direction inferred from radio data. Consequently, Cyg X-2 may be located in the halo at about 8 kpc as proposed in 1979 by Cowley, Crampton, and Hutchings.

  19. X-ray illumination of globular cluster puzzles. [globular cluster X ray sources as clues to Milky Way Galaxy age and evolution

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.; Grindlay, J. E.

    1982-01-01

    Globular clusters are thought to be among the oldest objects in the Galaxy, and provide, in this connection, important clues for determining the age and process of formation of the Galaxy. The present investigation is concerned with puzzles relating to the X-ray emission of globular clusters, taking into account questions regarding the location of X-ray emitting clusters (XEGC) unusually near the galactic plane and/or galactic center. An adopted model is discussed for the nature, formation, and lifetime of X-ray sources in globular clusters. An analysis of the available data is conducted in connection with a search for correlations between binary formation time scales, central relaxation times, galactic locations, and X-ray emission. The positive correlation found between distance from galactic center and two-body binary formation time for globular clusters, explanations for this correlation, and the hypothesis that X-ray sources in globular clusters require binary star systems provide a possible explanation of the considered puzzles.

  20. Dinamical properties of globular clusters: Primordial or evolutional?

    NASA Astrophysics Data System (ADS)

    Surdin, V. G.

    1995-04-01

    Some observable relations between globular cluster parameters appear as a result of dynamical evolution of the cluster system. These relations are inapplicable to the studies of the globular cluster origin

  1. Determining the fraction of reddened quasars in COSMOS with multiple selection techniques from X-ray to radio wavelengths

    NASA Astrophysics Data System (ADS)

    Heintz, K. E.; Fynbo, J. P. U.; Møller, P.; Milvang-Jensen, B.; Zabl, J.; Maddox, N.; Krogager, J.-K.; Geier, S.; Vestergaard, M.; Noterdaeme, P.; Ledoux, C.

    2016-10-01

    The sub-population of quasars reddened by intrinsic or intervening clouds of dust are known to be underrepresented in optical quasar surveys. By defining a complete parent sample of the brightest and spatially unresolved quasars in the COSMOS field, we quantify to which extent this sub-population is fundamental to our understanding of the true population of quasars. By using the available multiwavelength data of various surveys in the COSMOS field, we built a parent sample of 33 quasars brighter than J = 20 mag, identified by reliable X-ray to radio wavelength selection techniques. Spectroscopic follow-up with the NOT/ALFOSC was carried out for four candidate quasars that had not been targeted previously to obtain a 100% redshift completeness of the sample. The population of high AV quasars (HAQs), a specific sub-population of quasars selected from optical/near-infrared photometry, some of which were shown to be missed in large optical surveys such as SDSS, is found to contribute 21%+9-5 of the parent sample. The full population of bright spatially unresolved quasars represented by our parent sample consists of 39%+9-8 reddened quasars defined by having AV > 0.1, and 21%+9-5 of the sample having E(B-V) > 0.1 assuming the extinction curve of the Small Magellanic Cloud. We show that the HAQ selection works well for selecting reddened quasars, but some are missed because their optical spectra are too blue to pass the g-r color cut in the HAQ selection. This is either due to a low degree of dust reddening or anomalous spectra. We find that the fraction of quasars with contributing light from the host galaxy, causing observed extended spatial morphology, is most dominant at z ≲ 1. At higher redshifts the population of spatially unresolved quasars selected by our parent sample is found to be representative of the full population of bright active galactic nuclei at J< 20 mag. This work quantifies the bias against reddened quasars in studies that are based solely on optical surveys. Partly based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias.

  2. A search for novae in M 31 globular clusters

    NASA Astrophysics Data System (ADS)

    Ciardullo, Robin; Tamblyn, Peter; Phillips, A. C.

    1990-10-01

    By combining a local sky-fitting algorithm with a Fourier point-spread-function matching technique, nova outbursts have been searched for inside 54 of the globular clusters contained on the Ciardullo et al. (1987 and 1990) H-alpha survey frames of M 31. Over a mean effective survey time of about 2.0 years, no cluster exhibited a magnitude increase indicative of a nova explosion. If the cataclysmic variables (CVs) contained within globular clusters are similar to those found in the field, then these data imply that the overdensity of CVs within globulars is at least several times less than that of the high-luminosity X-ray sources. If tidal capture is responsible for the high density of hard binaries within globulars, then the probability of capturing condensed objects inside globular clusters may depend strongly on the mass of the remnant.

  3. VizieR Online Data Catalog: HST astro-photometric analysis of NGC5139. III. (Bellini+, 2017)

    NASA Astrophysics Data System (ADS)

    Bellini, A.; Milone, A. P.; Anderson, J.; Marino, A. F.; Piotto, G.; van der Marel, R. P.; Bedin, L. R.; King, I. R.

    2018-03-01

    The results presented here are the product of a massive effort, and represent a continuation of what we published in Bellini+ (2010, J/AJ/140/631). Paper I of this series (Bellini+ 2017, J/ApJ/842/6) describes the photometric techniques we adopted and applied to 650 individual exposures in 26 different bands. The photometry has been corrected for differential reddening and zero-point spatial variations in Bellini+ (2017ApJ...842....7B, Paper II). In this paper, we analyze the CMDs and the so-called "chromosome" maps (Milone+ 2017MNRAS.464.3636M) of the MS of the cluster, and finally identify at least 15 distinct stellar populations. (1 data file).

  4. Understanding the Current Dynamical States of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2008-09-01

    We appear to be on the verge of a major paradigm shift in our understanding of the current dynamical states of Galactic globular clusters. Fregeau (2008) brought together two recent theoretical breakthroughs as well as an observational breakthrough made possible by Chandra -- that a globular cluster's X-ray source population scales with its dynamical encounter frequency -- to persuasively argue that we have misunderstood the dynamical states of Galactic globular clusters. The observational evidence hinges on Chandra results from clusters which are classified as "core collapsed," of which there are only a handful of observations. I propose a nearly complete census with Chandra of the rest of the "core collapsed" globular clusters.

  5. The Newly-Discovered Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, D.; Huxor, A.; Ferguson, A.

    2012-08-01

    In this contribution we describe the discovery of a large number of globular clusters in the outer halo of M31 from the Pan-Andromeda Archaeological Survey (PAndAS). New globular clusters have also been found in the outskirts of M33, and NGC 147 and 185. Many of the remote M31 clusters are observed to preferentially project onto tidal debris streams in the stellar halo, suggesting that much of the outer M31 globular cluster system has been assembled via the accretion of satellite galaxies. We briefly discuss the global properties of the M31 halo globular cluster system.

  6. Dynamical evolution of globular-cluster systems in clusters of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  7. Globular Cluster Contributions to the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Martell, Sarah; Grebel, Eva; Lai, David

    2010-08-01

    The goal of this project is to confirm chemically that globular clusters are the source of as much as half the population of the Galactic halo. Using moderate-resolution spectroscopy from the SEGUE survey, we have identified a previously unknown population of halo field giants with distinctly strong CN features. CN variations are typically only observed in globular clusters, so these stars are interpreted as immigrants to the halo that originally formed in globular clusters. In one night of Keck/HIRES time, we will obtain high-quality, high- resolution spectra for five such stars, and determine abundances of O, Na, Mg, Al, alpha, iron-peak and neutron-capture elements. With this information we can state clearly whether these unusual CN-strong halo stars carry the full abundance pattern seen in CN-strong globular cluster stars, with depleted C, O, and Mg and enhanced N, Na, and Al. This type of coarse ``chemical tagging'' will allow a clearer division of the Galactic halo into contributions from globular clusters and from dwarf galaxies, and will place constraints on theoretical models of globular cluster formation and evolution.

  8. GLOBULAR CLUSTERS AS CRADLES OF LIFE AND ADVANCED CIVILIZATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefano, R. Di; Ray, A., E-mail: rdistefano@cfa.harvard.edu, E-mail: akr@tifr.res.in

    2016-08-10

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions canmore » destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.« less

  9. Globular Clusters as Cradles of Life and Advanced Civilizations

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.; Ray, A.

    2016-08-01

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  10. RR Lyrae in Sagittarius Dwarf Globular Clusters (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Pritzl, B. J.; Gehrman, T. J.; Bell, E.; Salinas, R.; Smith, H. A.; Catelan, M.

    2016-12-01

    (Abstract only) The Milky Way Galaxy was built up in part by the cannibalization of smaller dwarf galaxies. Some of them likely contained globular clusters. The Sagittarius dwarf galaxy provides a unique opportunity to study a system of globular clusters that originated outside the Milky Way. We have investigated the RR Lyrae populations in two Sagittarius globular clusters, Arp 2 and Terzan 8. The RR Lyrae are used to study the properties of the clusters and to compare this system to Milky Way globular clusters. We will discuss whether or not dwarf galaxies similar to the Sagittarius dwarf galaxy could have played a role in the formation of the Milky Way Galaxy.

  11. A catalogue of masses, structural parameters and velocity dispersion profiles of 112 Milky Way globular clusters

    NASA Astrophysics Data System (ADS)

    Baumgardt, H.; Hilker, M.

    2018-05-01

    We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.

  12. Nuclear Rings in the IR: Hidden Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Maoz, Dan

    1997-07-01

    We propose NICMOS broad-band {F160W, F187W} and Paschen Alpha {F187N} imaging of nuclear starburst rings in two nearby galaxies. We already have UV {F220W} FOC data, and are scheduled to obtain WFPC2 images in U, V, I, and Halpha+[NII] of these rings. The rings contain large populations of super star clusters similar to those recently discovered in other types of starburst systems. Nuclear rings contain large numbers of these clusters in relatively unobscured starburst environments. Measurement of the age, size, and stellar contents of the clusters can test the hypothesis that super star clusters are young globular clusters. Together with our UV and optical data, NICMOS images will provide the SED of numerous super star clusters over a decade in wavelength. Our already-approved observations will allow us to estimate, by comparison with evolutionary synthesis models, the masses and ages of the clusters. The proposed IR data will be sensitive to the number of supergiants {1.6 micron} and O-stars {Paschen Alpha} in each of the clusters. The observations will provide an independent determination of the reddening, mass, and age of each cluster. We expect to see in the IR numerous clusters that are obscured in the UV and optical. These clusters may be the younger ones, which are still embedded in their molecular clouds. By measuring the mass, age, and size of a large number of clusters, we can actually obtain an evolutionary picture of these objects at different stages in their lives.

  13. Analysis of Jupiter's Oval BA: A Streamlined Approach

    NASA Technical Reports Server (NTRS)

    Sussman, Michael G.; Chanover, Nancy J.; Simon-Miller, Amy A.; Vasavada, Ashwin R.; Beebe, Reta F.

    2010-01-01

    We present a novel method of constructing streamlines to derive wind speeds within jovian vortices and demonstrate its application to Oval BA for 2001 pre-reddened Cassini flyby data, 2007 post-reddened New Horizons flyby data, and 1998 Galileo data of precursor Oval DE. Our method, while automated, attempts to combine the advantages of both automated and manual cloud tracking methods. The southern maximum wind speed of Oval BA does not show significant changes between these data sets to within our measurement uncertainty. The northern maximum dries appear to have increased in strength during this time interval, tvhich likely correlates with the oval's return to a symmetric shape. We demonstrate how the use of closed streamlines can provide measurements of vorticity averaged over the encircled area with no a priori assumptions concerning oval shape. We find increased averaged interior vorticity between pre- and post-reddened Oval BA, with the precursor Oval DE occupying a middle value of vorticity between these two.

  14. Low accumulation of chlorogenic acids represses reddening during flesh browning in Japanese peach "Okayama PEH7".

    PubMed

    Yokotani, Naoki; Uraji, Misugi; Hara, Miyuki; Hihara, Seisuke; Hatanaka, Tadashi; Oda, Kenji

    2017-01-01

    In peaches, fruit flesh browns unattractively after peeling or cutting. A recently developed cultivar, Okayama PEH7, was distinct from other Japanese cultivars, including Okayama PEH8, with respect to its reduced browning potential. Homogenate prepared from Okayama PEH7 flesh had significantly less reddening during the browning reaction. Okayama PEH7 had less soluble phenolic compounds and higher polyphenol oxidase activity than Okayama PEH8. Reduced browning was observed even when phenols prepared from Okayama PEH7 were incubated with crude extract from Okayama PEH8, suggesting that phenols lower the browning potential of Okayama PEH7. In Okayama PEH7, contents of chlorogenic acid and its isomers were about one-tenth compared to Okayama PEH8. Exogenous addition of chlorogenic acid to Okayama PEH7 homogenate increased the browning potential and visibly enhanced reddening. These results indicate that the reduced browning of Okayama PEH7 flesh is due to a defect in chlorogenic acid accumulation.

  15. Erratum: Voyager Color Photometry of Saturn's Main Rings

    NASA Technical Reports Server (NTRS)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Showalter, Mark R.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    We correct a calibration error in our earlier analysis of Voyager color observations of Saturn's main rings at 14 deg phase angle and present thoroughly revised and reanalyzed radial profiles of the brightness of the main rings in Voyager G, V, and UV filters, and ratios of these brightnesses. These results are consistent with more recent HST results at 6 deg phase angle, once allowance is made for plausible phase reddening of the rings. Unfortunately, the Voyager camera calibration factors are simply not sufficiently well known for a combination of the Voyager and HST data to be used to constrain the phase reddening quantitatively. However, some interesting radial variations in reddening between 6-14 deg phase angles are hinted at. We update a ring-and-satellite color vs. albedo plot from Cuzzi and Estrada in several ways. The A and B rings are still found to be in a significantly redder part of color-albedo space than Saturn's icy satellites.

  16. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  17. Dust-reddened Quasars In First And Ukidss

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Lacy, M.; Urrutia, T.

    2012-05-01

    We recently identified a large population of dust-reddened quasars by matching radio sources detected in the FIRST survey to the 2MASS near-infrared catalog (F2M) and selecting sources with red topical-to-near-infrared colors. We find that dust-reddened quasars are intrinsically the most luminous quasars in the Universe. Further analysis suggests that red quasars represent an emergent phase in merger-driven quasar/galaxy co-evolution model where the obscured quasar is shedding its dusty shroud prior to becoming a "normal" quasar. Here we use the UKIDSS Large Area Survey (LAS) First Data Release (DR1; 190 deg2) to reach fainter K-band magnitudes and expand beyond the results of the F2M survey. The deeper K-band limit provided by UKIDSS enables the discovery of more heavily reddened quasars at higher redshifts. We selected 95 candidates in the UKIDSS DR1 that had matches in the FIRST catalog with K<17.0 and obeyed color criteria similar to the F2M survey (R-K>5, J-K > 1.5). We have obtained 54 near-infrared spectra as well as 12 optical spectra from SDSS. Preliminary analysis confirm 12 new obscured quasars, including at least two with z>2 reaching lower intrinsic luminosities than were found by the F2M survey. We find that despite being a luminous quasar phenomenon, the space density of red quasars continues to rise to fainter magnitudes, representing 20% of the overall quasar population.

  18. Reddening and age for 13 southern Galactic open clusters determined from integrated spectra

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.; Dutra, C. M.; Torres, M. C.

    2001-10-01

    In this study we present flux-calibrated integrated spectra in the range 3800-6800 Å for 13 concentrated open clusters with Galactic longitudes between 219deg and 316deg, nine of which have not been previously studied. Using the equivalent widths of the Balmer lines and comparing the cluster spectra with template spectra of Magellanic Clouds and Galactic star clusters with known parameters, we derive both foreground interstellar reddening values and age. For nine clusters these two parameters have been determined for the first time, while for the rest of the sample the results show good agreement with previous studies. The present analysis indicates four very young (Hogg 11, NGC 5606, vdB-RN 80 and Pismis 17), seven moderately young (ESO 429-SC13, Hogg 3, Hogg 12, Haffner 7, BH 87, NGC 2368 and Bochum 12) and two intermediate-age (Berkeley 75 and NGC 2635) open clusters. The derived foreground interstellar reddening values are in the range 0.00 <= E(B-V) <= 0.38. The age and reddening distributions of the present sample of relatively faint open clusters match those of open clusters with known parameters in a 90deg sector centered at l = 270deg. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biganzoli, Davide; Potenza, Marco A. C.; Robberto, Massimo, E-mail: robberto@stsci.edu

    We discuss the radiative transfer theory for translucent clouds illuminated by an extended background source. First, we derive a rigorous solution based on the assumption that multiple scatterings produce an isotropic flux. Then we derive a more manageable analytic approximation showing that it nicely matches the results of the rigorous approach. To validate our model, we compare our predictions with accurate laboratory measurements for various types of well-characterized grains, including purely dielectric and strongly absorbing materials representative of astronomical icy and metallic grains, respectively, finding excellent agreement without the need to add free parameters. We use our model to exploremore » the behavior of an astrophysical cloud illuminated by a diffuse source with dust grains having parameters typical of the classic ISM grains of Draine and Lee and protoplanetary disks, with an application to the dark silhouette disk 114–426 in Orion Nebula. We find that the scattering term modifies the transmitted radiation, both in terms of intensity (extinction) and shape (reddening) of the spectral distribution. In particular, for small optical thickness, our results show that scattering makes reddening almost negligible at visible wavelengths. Once the optical thickness increases enough and the probability of scattering events becomes close to or larger than 1, reddening becomes present but is appreciably modified with respect to the standard expression for line-of-sight absorption. Moreover, variations of the grain refractive index, in particular the amount of absorption, also play an important role in changing the shape of the spectral transmission curve, with dielectric grains showing the minimum amount of reddening.« less

  20. The Massive Star Content of NGC 3603

    NASA Astrophysics Data System (ADS)

    Melena, Nicholas W.; Massey, Philip; Morrell, Nidia I.; Zangari, Amanda M.

    2008-03-01

    We investigate the massive star content of NGC 3603, the closest known giant H II region. We have obtained spectra of 26 stars in the central cluster using the Baade 6.5 m telescope (Magellan I). Of these 26 stars, 16 had no previous spectroscopy. We also obtained photometry of all of the stars with previous or new spectroscopy, primarily using archival HST Advanced Camera for Surveys/High-Resolution Camera images. The total number of stars that have been spectroscopically classified in NGC 3603 now stands at 38. The sample is dominated by very early O-type stars (O3); there are also several (previously identified) H-rich WN+abs stars. We derive E(B - V) = 1.39, and find that there is very little variation in reddening across the cluster core, in agreement with previous studies. Our spectroscopic parallax is consistent with the kinematic distance only if the ratio of total to selective extinction is anomalously high within the cluster, as argued by Pandey et al. Adopting their reddening, we derive a distance of 7.6 kpc. We discuss the various distance estimates to the cluster, and note that although there has been a wide range of values in the recent literature (6.3-10.1 kpc) there is actually good agreement with the apparent distance modulus of the cluster—the disagreement has been the result of the uncertain reddening correction. We construct our H-R diagram using the apparent distance modulus with a correction for the slight difference in differential reddening from star to star. The resulting H-R diagram reveals that the most massive stars are highly coeval, with an age of 1-2 Myr, and of very high masses (120 Msun). The three stars with Wolf-Rayet features are the most luminous and massive, and are coeval with the non-WRs, in accord with what was found in the R136 cluster. There may be a larger age spread (1-4 Myr) for the lower mass objects (20-40 Msun). Two supergiants (an OC9.7 I and the B1 I star Sher 25) both have an age of about 4 Myr. We compare the stellar content of this cluster to that of R136, finding that the number of very high luminosity (Mbol <= -10) stars is only about 1.1-2.4× smaller in NGC 3603. The most luminous members in both clusters are H-rich WN+abs stars, basically "Of stars on steroids," relatively unevolved stars whose high luminosities results in high-mass loss rates, and hence spectra that mimic that of evolved WNs. To derive an initial-mass function for the massive stars in NGC 3603 requires considerably more spectroscopy; we estimate from a color-magnitude diagram that less than a third of the stars with masses above 20 Msun have spectral types known. This paper is based on data gathered with the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile.

  1. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim

    2016-08-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  2. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim, E-mail: dhooper@fnal.gov, E-mail: linden.70@osu.edu

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in themore » Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  3. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  4. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    DOE PAGES

    Hooper, Dan; Linden, Tim

    2016-08-09

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  5. Analisis fotometrico del cumulo abierto NGC 6611

    NASA Astrophysics Data System (ADS)

    Suarez Nunez, Johanna

    2007-08-01

    Matlab programs were designed to apply differential aperture photometry. Two images were taken with a charge-couple device ( CCD ) in the visible V and blue filters, to calculate physical parameters (the flux( f ), the apparent magnitude ( m V ) and its reddening corrected value ( V 0 ), color index ( B- V ) and ( B-V ) 0 , the log of effective temperature (log T eff ), the absolute magnitude ( M V ), the bolometric magnitude ( M B ) & log(L [low *] /[Special characters omitted.] )) of each studied star pertaining to the open cluster NGC 6611. Upon obtaining the parameters, the color-magnitude diagram was graphed and by fitting to the main sequence, the distance modulus and thus the distance to the cluster was found. The stars were assumed to be at the same distance and born at approximately the same moment.

  6. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  7. Search for Carbon-Rich Asymptotic Giant Branch Stars in Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Indahl, Briana; Pessev, P.

    2014-01-01

    From our current understanding of stellar evolution, it would not be expected to find carbon rich asymptotic giant branch (AGB) stars in Milky Way globular clusters. Due to the low metallicity of the population II stars making up the globular clusters and their age, stars large enough to fuse carbon should have already evolved off of the asymptotic giant branch. Recently, however, there have been serendipitous discoveries of these types of stars. Matsunaga et al. (2006) discovered a Mira variable in the globular cluster Lynga 7. It was later confirmed by Feast et al. (2012) that the star is a member of the cluster and must be a product of a stellar merger. In the same year, Sharina et al. (2012) discovered a carbon star in the low metallicity globular cluster NGC6426 and reports it to be a CH star. Five more of these types of stars have been made as serendipitous discoveries and have been reported by Harding (1962), Dickens (1972), Cote et al. (1997), and Van Loon (2007). The abundance of these types of carbon stars in Milky Way globular clusters has been unknown because the discovery of these types of objects has only ever been a serendipitous discovery. These stars could have been easily overlooked in the past as they are outside the typical parameter space of galactic globular clusters. Also advances in near-infrared instruments and observing techniques have made it possible to detect the fainter carbon stars in binary systems. Having an understanding of the abundances of carbon stars in galactic globular clusters will aid in the modeling of globular cluster and galaxy formation leading to a better understanding of these processes. To get an understanding of the abundances of these stars we conducted the first comprehensive search for AGB carbon stars into all Milky Way globular clusters listed in the Harris Catalog (expect for Pyxis). I have found 128 carbon star candidates using methods of comparing color magnitude diagrams of the clusters with the carbon stars of the Large Magellenic Clouds and picking out very red stars in the red giant branch range. Observations will need to be done of these candidates to further confirm if they are carbon stars and are members of their respective globular cluster.

  8. On the Distribution of Orbital Poles of Milky Way Satellites

    NASA Astrophysics Data System (ADS)

    Palma, Christopher; Majewski, Steven R.; Johnston, Kathryn V.

    2002-01-01

    In numerous studies of the outer Galactic halo some evidence for accretion has been found. If the outer halo did form in part or wholly through merger events, we might expect to find coherent streams of stars and globular clusters following orbits similar to those of their parent objects, which are assumed to be present or former Milky Way dwarf satellite galaxies. We present a study of this phenomenon by assessing the likelihood of potential descendant ``dynamical families'' in the outer halo. We conduct two analyses: one that involves a statistical analysis of the spatial distribution of all known Galactic dwarf satellite galaxies (DSGs) and globular clusters, and a second, more specific analysis of those globular clusters and DSGs for which full phase space dynamical data exist. In both cases our methodology is appropriate only to members of descendant dynamical families that retain nearly aligned orbital poles today. Since the Sagittarius dwarf (Sgr) is considered a paradigm for the type of merger/tidal interaction event for which we are searching, we also undertake a case study of the Sgr system and identify several globular clusters that may be members of its extended dynamical family. In our first analysis, the distribution of possible orbital poles for the entire sample of outer (Rgc>8 kpc) halo globular clusters is tested for statistically significant associations among globular clusters and DSGs. Our methodology for identifying possible associations is similar to that used by Lynden-Bell & Lynden-Bell, but we put the associations on a more statistical foundation. Moreover, we study the degree of possible dynamical clustering among various interesting ensembles of globular clusters and satellite galaxies. Among the ensembles studied, we find the globular cluster subpopulation with the highest statistical likelihood of association with one or more of the Galactic DSGs to be the distant, outer halo (Rgc>25 kpc), second-parameter globular clusters. The results of our orbital pole analysis are supported by the great circle cell count methodology of Johnston, Hernquist, & Bolte. The space motions of the clusters Pal 4, NGC 6229, NGC 7006, and Pyxis are predicted to be among those most likely to show the clusters to be following stream orbits, since these clusters are responsible for the majority of the statistical significance of the association between outer halo, second-parameter globular clusters and the Milky Way DSGs. In our second analysis, we study the orbits of the 41 globular clusters and six Milky Way-bound DSGs having measured proper motions to look for objects with both coplanar orbits and similar angular momenta. Unfortunately, the majority of globular clusters with measured proper motions are inner halo clusters that are less likely to retain memory of their original orbit. Although four potential globular cluster/DSG associations are found, we believe three of these associations involving inner halo clusters to be coincidental. While the present sample of objects with complete dynamical data is small and does not include many of the globular clusters that are more likely to have been captured by the Milky Way, the methodology we adopt will become increasingly powerful as more proper motions are measured for distant Galactic satellites and globular clusters, and especially as results from the Space Interferometry Mission (SIM) become available.

  9. A photometric map of interstellar reddening within 100 PC

    NASA Astrophysics Data System (ADS)

    Perry, C. L.; Johnston, L.; Crawford, D. L.

    1982-12-01

    Color excesses and distances are calculated for 300 bright, northern, late F stars using uvby beta photometric indices. The data allow an extension of the earlier maps by Perry and Johnston of the spatial distribution of interstellar reddening into the local (r less than 100 pc) solar neighborhood. Some definite conclusions are made regarding the distribution of interstellar dust in the northern hemisphere and within 300 pc of the sun by merging these results and the polarimetric observations by Tinbergen (1982) for 180 stars within 35 pc of the sun.

  10. REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S R{sub V} {approx} 2.5 EXTINCTION CURVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, David M.; Gould, Andrew; Johnson, Jennifer A.

    We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - K{sub s} ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation A{sub I} = 0.7465 Multiplication-Sign E(V - I) + 1.3700 Multiplication-Sign E(J - K{sub s} ), or, equivalently, A{sub I} = 1.217 Multiplication-Sign E(V - I)(1 + 1.126 Multiplication-Sign (E(J - K{sub s} )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxymore » approximately follows an R{sub V} Almost-Equal-To 2.5 extinction curve with a dispersion {sigma}{sub R{sub V}}{approx}0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M{sub I,RC},{sigma}{sub I,RC,0}, (V-I){sub RC,0},{sigma}{sub (V-I){sub R{sub C}}}, (J-K{sub s}){sub RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt {alpha} Almost-Equal-To 40 Degree-Sign between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at {alpha} Almost-Equal-To 25 Degree-Sign . The number of RC stars suggests a total stellar mass for the Galactic bulge of {approx}2.3 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a canonical Salpeter initial mass function (IMF), or {approx}1.6 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a bottom-light Zoccali IMF.« less

  11. Evidence for an Accretion Origin for the Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Chapman, S. C.; Lewis, G. F.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond ≈30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

  12. Discovery of a new X-ray transient in the globular cluster Liller 1

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; van den Berg, Maureen; Heinke, Craig; Pooley, David; Degenaar, Nathalie; van den Eijnden, Jakob; Bahramian, Arash; Gendreau, Keith; Arzoumanian, Zaven

    2018-05-01

    We report on the discovery of a new X-ray transient in the globular cluster Liller 1 with Chandra. Swift/XRT monitoring observations of the globular cluster Liller 1 in early April 2018 revealed low-level activity (around 0.1 ct/s) in the core of the cluster.

  13. The Evolution of Globular Cluster Systems In Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl

    1999-07-01

    We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.

  14. Hypothesized kinetic models for describing the growth of globular and encrusting demosponges.

    PubMed

    Sipkema, Detmer; Yosef, Nejla A M; Adamczewski, Marcin; Osinga, Ronald; Mendola, Dominick; Tramper, Johannes; Wijffels, René H

    2006-01-01

    The marine sponges Dysidea avara and Chondrosia reniformis (globular forms) were cultured in the laboratory on a diet of viable Phaeodactylum tricornutum cells and dissolved nutrients (algae and fish powders). Our growth data were combined with literature data for Pseudosuberites andrewsi (a globular sponge) and for the encrusting sponges Oscarella lobularis, Hemimycale columella, and Crambe crambe. The suitability of three growth models-linear, exponential, and radial accretive-for describing the growth of globular and encrusting sponges was assessed. Radial accretive growth was determined to be the best model to describe growth of both encrusting and globular sponges. Average growth rates of 0.051+/-0.016 and 0.019+/-0.003 mm/day (calculated as the increase of the radius of the sponge per day) were obtained experimentally for D. avara and C. reniformis, respectively.

  15. Ozone suppression of oat crown rust uredia development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heagle, A.S.

    1969-01-01

    First foliage leaves of 10-day-old crown rust differential varieties of Avena sativa were inoculated with urediospores of race 264 of Puccinia coronata var. avenae and placed for 16 hr in a mist chamber at 23 C. Infected plants were then placed in two separate chambers at 25C, 80% relative humidity, 3000 ft-c, and a 16-hr photoperiod. Plants in one chamber were exposed to 10 pphm ozone (KI corrected Mast value) for 6 hr daily in the light for 10 days. Plants in the other chamber were not exposed to ozone. Visible ozone injury was restricted to minor flecking. In severalmore » varieties, a slight reddening appeared on inoculated leaves near the end of the experiment. The reaction to rust on ozone-exposed plants of all varieties was resistant, whereas the reaction on nonexposed plants of all differentials except 8, 9, and 10 was susceptible. The level of ozone used in this experiment is often surpassed in rural areas near urban centers, indicating that air pollution can influence rust development in the field.« less

  16. Radiative Transfer in a Translucent Cloud Illuminated by an Extended Background Source

    NASA Astrophysics Data System (ADS)

    Biganzoli, Davide; Potenza, Marco A. C.; Robberto, Massimo

    2017-05-01

    We discuss the radiative transfer theory for translucent clouds illuminated by an extended background source. First, we derive a rigorous solution based on the assumption that multiple scatterings produce an isotropic flux. Then we derive a more manageable analytic approximation showing that it nicely matches the results of the rigorous approach. To validate our model, we compare our predictions with accurate laboratory measurements for various types of well-characterized grains, including purely dielectric and strongly absorbing materials representative of astronomical icy and metallic grains, respectively, finding excellent agreement without the need to add free parameters. We use our model to explore the behavior of an astrophysical cloud illuminated by a diffuse source with dust grains having parameters typical of the classic ISM grains of Draine & Lee and protoplanetary disks, with an application to the dark silhouette disk 114-426 in Orion Nebula. We find that the scattering term modifies the transmitted radiation, both in terms of intensity (extinction) and shape (reddening) of the spectral distribution. In particular, for small optical thickness, our results show that scattering makes reddening almost negligible at visible wavelengths. Once the optical thickness increases enough and the probability of scattering events becomes close to or larger than 1, reddening becomes present but is appreciably modified with respect to the standard expression for line-of-sight absorption. Moreover, variations of the grain refractive index, in particular the amount of absorption, also play an important role in changing the shape of the spectral transmission curve, with dielectric grains showing the minimum amount of reddening.

  17. The Hunt for Red Quasars: Luminous Obscured Black Hole Growth Unveiled in the Stripe 82 X-Ray Survey

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Glikman, Eilat; Brusa, Marcella; Rigby, Jane R.; Tasnim Ananna, Tonima; Stern, Daniel; Lira, Paulina; Urry, C. Megan; Salvato, Mara; Alexandroff, Rachael; Allevato, Viola; Cardamone, Carolin; Civano, Francesca; Coppi, Paolo; Farrah, Duncan; Komossa, S.; Lanzuisi, Giorgio; Marchesi, Stefano; Richards, Gordon; Trakhtenbrot, Benny; Treister, Ezequiel

    2017-10-01

    We present results of a ground-based near-infrared campaign with Palomar TripleSpec, Keck NIRSPEC, and Gemini GNIRS to target two samples of reddened active galactic nucleus (AGN) candidates from the 31 deg2 Stripe 82 X-ray survey. One sample, which is ˜89% complete to K< 16 (Vega), consists of eight confirmed AGNs, four of which were identified with our follow-up program, and is selected to have red R - K colors (> 4, Vega). The fainter sample (K> 17, Vega) represents a pilot program to follow-up four sources from a parent sample of 34 that are not detected in the single-epoch SDSS catalog and have WISE quasar colors. All 12 sources are broad-line AGNs (at least one permitted emission line has an FWHM exceeding 1300 km s-1) and span a redshift range 0.59< z< 2.5. Half the (R - K)-selected AGNs have features in their spectra suggestive of outflows. When comparing these sources to a matched sample of blue Type 1 AGNs, we find that the reddened AGNs are more distant (z> 0.5), and a greater percentage have high X-ray luminosities ({L}{{X},{full}}> {10}44 erg s-1). Such outflows and high luminosities may be consistent with the paradigm that reddened broad-line AGNs represent a transitory phase in AGN evolution as described by the major merger model for black hole growth. Results from our pilot program demonstrate proof of concept that our selection technique is successful in discovering reddened quasars at z> 1 missed by optical surveys.

  18. VARIABLE REDDENING AND BROAD ABSORPTION LINES IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007: AN ORIGIN IN THE TORUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk

    2015-08-10

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddeningmore » increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.« less

  19. A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope

    DOE PAGES

    Abdo, A. A.

    2010-11-24

    Context. Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. The observation of this emission provides a powerful tool to assess the millisecond pulsar population of a cluster, is essential for understanding the importance of binary systems for the evolution of globular clusters, and provides complementary insights into magnetospheric emission processes. Aims. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. Methods. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Spacemore » Telescope to study the gamma-ray emission towards 13 globular clusters. Results. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7 < Γ < 1.4) and clear evidence for an exponential cut-off in the range 1.0 - 2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0 < Γ < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600 - 4700 MSPs in Galactic globular clusters, commensurate with previous estimates. Conclusions. The observation of high-energy gamma-ray emission from globular clusters thus provides a reliable independent method to assess their millisecond pulsar populations.« less

  20. Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies

    NASA Technical Reports Server (NTRS)

    Whitmore, Bradley C.; Schweizer, Francois

    1995-01-01

    New, high-resolution images of the disks of NGC 4038/4039 obtained with the Wide Field Camera of the Hubble Space Telescope (HST) are presented. NGC 4038/4039, nicknamed The Antennae, is a prototypical example of a pair of colliding galaxies believed to be at an early stage of a merger. Down to the limiting magnitude of V approximately 23 mag, the HST images reveal a population of over 700 blue pointlike objects within the disks. The mean absolute magnitude of these objects is M(sub V) = -11 mag, with the brightest objects reaching M(sub V) approximately -15. Their mean apparent color indices ar U - V = -0.7 mag and V - 1 = 0.8 mag on the Johnson UVI passband system, while their mean indices corrected for internal reddening are (u - v)(sub 0) = -1.0 mag and (V - I(sub 0) = 0.5. Their mean effective radius, determined from slightly resolved images, is 18 pc (for H(sub 0) = 50 km/s /Mpc). Based on their luminosities and resolution, most of these objects cannot be individual stars, but are likely young compact star clusters. The brighter ones are similar to the objects found in NGC 1275 and NGC 7252, which appear to be young globular clusters formed during recent galazy mergers. Based on their U - V and V - I colors, the brightest, bluest clusters of NGC 4038/4039 appear to be less than 10 Myr old. Most of these bright clusters are relatively tightly clustered themselves, with typically a dozen individual clusters belonging to a complex identified as a giant H II region from ground-based observations. The cluster luminosity function (LF) is approximately a power law, phi(L)dL proportional to L(exp -1.78+/-0.05)dL, with no hint of a turnover at fainter magnitudes. This power-law shape agrees with the LF of Magellanic Cloud clusters and Galactic open clusters, but differs from the LF of old globular cluster systems that is typically Gaussian with a Full Width at Half Maximum (FWHM) of approximately 3 mag. Besides the blue clusters, we also find about a dozen extremely red objects with V - I greater than 3.0. The highest number density of these red objects is found in the SE quadrant, where star formation appears to be most recent. We propose that these objects may be very young star clusters still embedded in their placental dust cocoons.

  1. WFPC2 Observations of the URSA Minor Dwarf Spheroidal Galaxy

    NASA Technical Reports Server (NTRS)

    Mighell, Kenneth J.; Burke, Christopher J.

    1999-01-01

    We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F555W (approximately V) and F814W (approximately I) of the central region of the Ursa Minor dwarf spheroidal galaxy. The V versus V - I color-magnitude diagram features a sparsely populated blue horizontal branch, a steep thin red giant branch, and a narrow subgiant branch. The main sequence reaches approximately 2 magnitudes below the main-sequence turnoff (V(sup UMi, sub TO) approximately equals 23.27 +/- 0.11 mag) of the median stellar population. We compare the fiducial sequence of the Galactic globular cluster M92 (NGC 6341). The excellent match between Ursa Minor and M92 confirms that the median stellar population of the UMi dSph galaxy is metal poor ([Fe/H](sub UMi) approximately equals [Fe/H](sub M92) approximately equals -2.2 dex) and ancient (age(sub UMi)approximately equalsage(sub M92) approximately equals 14 Gyr). The B - V reddening and the absorption in V are estimated to be E(B - V) = 0.03 +/- 0.01 mag and A(sup UMi, sub V) = 0.09 +/- 0.03 mag. A new estimate of the distance modulus of Ursa Minor, (m - M)(sup UMi, sub 0) = 19.18 +/- 0.12 mag, has been derived based on fiducial-sequence fitting M92 [DELTA.V(sub UMi - M92) = 4.60 +/- 0.03 mag and DELTA(V - I)(sub UMi - M92) = 0.010 +/- 0.005 mag] and the adoption of the apparent V distance modulus for M92 of (m - M)(sup M92, sub V) = 14.67 +/- 0.08 mag (Pont et al. 1998, A&A, 329, 87). The Ursa Minor dwarf spheroidal galaxy is then at a distance of 69 +/- 4 kpc from the Sun. These HST observations indicate that Ursa Minor has had a very simple star formation history consisting mainly of a single major burst of star formation about 14 Gyr ago which lasted approximately < 2 Gyr. While we may have missed minor younger stellar populations due to the small field-of-view of the WFPC2 instrument, these observations clearly show that most of the stars in the central region Ursa Minor dwarf spheroidal galaxy are ancient. If the ancient Galactic globular clusters, like M92, formed concurrently with the early formation of the Milky Way galaxy itself, then the Ursa Minor dwarf spheroidal is probably as old as the Milky Way.

  2. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  3. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  4. The stellar content of LH 9 and 10 (N11) in the LMC - A case for sequential star formation

    NASA Technical Reports Server (NTRS)

    Parker, Joel WM.; Garmany, Catharine D.; Massey, Philip; Walborn, Nolan R.

    1992-01-01

    The young OB associations Lucke-Hodge 9 and 10 are studied with UBV photometry that is independent of reddening to determine the IMF directly from star counts. The temperature and reddening of the stars are determined which, in conjunction with the spectroscopic classification of the earliest stars, is employed to place the stellar groups on the theoretical H-R diagram. Observations are also presented of the highly compact H II region/knot N11A and the multiple system HD 32228, and LH 9 and 10 are compared. The Lyman ionizing flux calculated at 4.9-7.2 x 10 exp 50/s agrees well with flux required to generate the H-alpha luminosity of the H II region. LH 10 has a much flatter slope, a higher ratio of higher-mass to lower-mass stars, and greater reddening than LH 9, and LH 10 contains all of the O stars earlier than O6. It is concluded that LH 9 is older than LH 10 and probably contributed to the initiation of star formation in LH 10.

  5. THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amanullah, R.; Goobar, A.; Johansson, J.

    The wavelength dependence of the extinction of Type Ia SN 2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of an SN Ia is characterized over the full wavelength range of 0.2-2 μm. A total-to-selective extinction, R{sub V} ≥ 3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields R{sub V} = 1.4 ± 0.1. The observed reddening of SN 2014J is also compatiblemore » with a power-law extinction, A {sub λ}/A{sub V} = (λ/λ {sub V}) {sup p} as expected from multiple scattering of light, with p = –2.1 ± 0.1. After correcting for differences in reddening, SN 2014J appears to be very similar to SN 2011fe over the 14 broadband filter light curves used in our study.« less

  6. A Spectroscopic Analysis of the Galactic Globular Cluster NGC 6273 (M19)

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, R. Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.

    2015-08-01

    A combined effort utilizing spectroscopy and photometry has revealed the existence of a new globular cluster class. These “anomalous” clusters, which we refer to as “iron-complex” clusters, are differentiated from normal clusters by exhibiting large (≳0.10 dex) intrinsic metallicity dispersions, complex sub-giant branches, and correlated [Fe/H] and s-process enhancements. In order to further investigate this phenomenon, we have measured radial velocities and chemical abundances for red giant branch stars in the massive, but scarcely studied, globular cluster NGC 6273. The velocities and abundances were determined using high resolution (R ˜ 27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We find that NGC 6273 has an average heliocentric radial velocity of +144.49 km s-1 (σ = 9.64 km s-1) and an extended metallicity distribution ([Fe/H] = -1.80 to -1.30) composed of at least two distinct stellar populations. Although the two dominant populations have similar [Na/Fe], [Al/Fe], and [α/Fe] abundance patterns, the more metal-rich stars exhibit significant [La/Fe] enhancements. The [La/Eu] data indicate that the increase in [La/Fe] is due to almost pure s-process enrichment. A third more metal-rich population with low [X/Fe] ratios may also be present. Therefore, NGC 6273 joins clusters such as ω Centauri, M2, M22, and NGC 5286 as a new class of iron-complex clusters exhibiting complicated star formation histories. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. The Evolution of the Globular Cluster System in a Triaxial Galaxy: Can a Galactic Nucleus Form by Globular Cluster Capture?

    NASA Astrophysics Data System (ADS)

    Capuzzo-Dolcetta, Roberto

    1993-10-01

    Among the possible phenomena inducing evolution of the globular cluster system in an elliptical galaxy, dynamical friction due to field stars and tidal disruption caused by a central nucleus is of crucial importance. The aim of this paper is the study of the evolution of the globular cluster system in a triaxial galaxy in the presence of these phenomena. In particular, the possibility is examined that some galactic nuclei have been formed by frictionally decayed globular clusters moving in a triaxial potential. We find that the initial rapid growth of the nucleus, due mainly to massive clusters on box orbits falling in a short time scale into the galactic center, is later slowed by tidal disruption induced by the nucleus itself on less massive clusters in the way described by Ostriker, Binney, and Saha. The efficiency of dynamical friction is such to carry to the center of the galaxy enough globular cluster mass available to form a compact nucleus, but the actual modes and results of cluster-cluster encounters in the central potential well are complicated phenomena which remains to be investigated. The mass of the resulting nucleus is determined by the mutual feedback of the described processes, together with the initial spatial, velocity, and mass distributions of the globular cluster family. The effect on the system mass function is studied, showing the development of a low- and high-mass turnover even with an initially flat mass function. Moreover, in this paper is discussed the possibility that the globular cluster fall to the galactic center has been a cause of primordial violent galactic activity. An application of the model to M31 is presented.

  8. Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters

    NASA Astrophysics Data System (ADS)

    Chen, Boquan; D’Onghia, Elena; Pardy, Stephen A.; Pasquali, Anna; Bertelli Motta, Clio; Hanlon, Bret; Grebel, Eva K.

    2018-06-01

    We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.

  9. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - XIII. ACS/WFC parallel-field catalogues

    NASA Astrophysics Data System (ADS)

    Simioni, M.; Bedin, L. R.; Aparicio, A.; Piotto, G.; Milone, A. P.; Nardiello, D.; Anderson, J.; Bellini, A.; Brown, T. M.; Cassisi, S.; Cunial, A.; Granata, V.; Ortolani, S.; van der Marel, R. P.; Vesperini, E.

    2018-05-01

    As part of the Hubble Space Telescope UV Legacy Survey of Galactic globular clusters, 110 parallel fields were observed with the Wide Field Channel of the Advanced Camera for Surveys, in the outskirts of 48 globular clusters, plus the open cluster NGC 6791. Totalling about 0.3 deg2 of observed sky, this is the largest homogeneous Hubble Space Telescope photometric survey of Galalctic globular clusters outskirts to date. In particular, two distinct pointings have been obtained for each target on average, all centred at about 6.5 arcmin from the cluster centre, thus covering a mean area of about 23 arcmin2 for each globular cluster. For each field, at least one exposure in both F475W and F814W filters was collected. In this work, we publicly release the astrometric and photometric catalogues and the astrometrized atlases for each of these fields.

  10. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  11. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE PAGES

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...

    2017-07-27

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  12. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-06-01

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the lower resolution run. The linear extent of the identified regions ranges from a few arc-minutes to about a degree. Conclusions: The majority of extended red regions are associated with major molecular cloud complexes, supporting our hypothesis that the reddening is mostly due to foreground clouds and embedded objects. The reliability of the identified regions is >99.9%. Because we choose to identify object with a high reliability we can not quantify the completeness of the list of regions. Full Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A51

  13. Optical/Near-infrared Selection of Red Quasi-stellar Objects: Evidence for Steep Extinction Curves toward Galactic Centers?

    NASA Astrophysics Data System (ADS)

    Fynbo, J. P. U.; Krogager, J.-K.; Venemans, B.; Noterdaeme, P.; Vestergaard, M.; Møller, P.; Ledoux, C.; Geier, S.

    2013-01-01

    We present the results of a search for red QSOs using a selection based on optical imaging from the Sloan Digital Sky Survey (SDSS) and near-infrared imaging from UKIDSS. Our main goal with the selection is to search for QSOs reddened by foreground dusty absorber galaxies. For a sample of 58 candidates (including 20 objects fulfilling our selection criteria that already have spectra in the SDSS), 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except for a handful at redshifts z >~ 3.5. However, the dust is most likely located in the QSO host galaxies (and for two, the reddening is primarily caused by Galactic dust) rather than in the intervening absorbers. More than half of the QSOs show evidence of associated absorption (BAL absorption). Four (7%) of the candidates turned out to be late-type stars, and another four (7%) are compact galaxies. We could not identify the remaining four objects. In terms of their optical spectra, these QSOs are similar to the QSOs selected in the FIRST-2MASS Red Quasar Survey except they are on average fainter, more distant, and only two are detected in the FIRST survey. As per the usual procedure, we estimate the amount of extinction using the SDSS QSO template reddened by Small-Magellanic-Cloud-(SMC) like dust. It is possible to get a good match to the observed (rest-frame ultraviolet) spectra, but it is not possible to match the observed near-IR photometry from UKIDSS for nearly all the reddened QSOs. The most likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and because the assumed SMC extinction curve is too shallow. Three of the compact galaxies display old stellar populations with ages of several Gyr and masses of about 1010 M ⊙ (based on spectral energy distribution modeling). The inferred stellar densities in these galaxies exceed 1010 M ⊙ kpc-2, which is among the highest measured for early-type galaxies. Our survey has demonstrated that selection of QSOs based on near-IR photometry is an efficient way to select QSOs, including reddened QSOs, with only small contamination from late-type stars and compact galaxies. This will be useful with ongoing and future wide-field near-IR surveys such as the VISTA and EUCLID surveys. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program 088.A-0098, and on observations made with the Nordic Optical Telescope, jointly operated on the island of La Palma by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  14. Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Syarif, J.; Sajuri, Z.; Salleh, M. S.; Alhawari, K. S.

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μm), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network. PMID:24223510

  15. Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel.

    PubMed

    Mohammed, M N; Omar, M Z; Syarif, J; Sajuri, Z; Salleh, M S; Alhawari, K S

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μ m), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network.

  16. Characterization of monomeric DNA-binding protein Histone H1 in Leishmania braziliensis.

    PubMed

    Carmelo, Emma; González, Gloria; Cruz, Teresa; Osuna, Antonio; Hernández, Mariano; Valladares, Basilio

    2011-08-01

    Histone H1 in Leishmania presents relevant differences compared to higher eukaryote counterparts, such as the lack of a DNA-binding central globular domain. Despite that, it is apparently fully functional since its differential expression levels have been related to changes in chromatin condensation and infectivity, among other features. The localization and the aggregation state of L. braziliensis H1 has been determined by immunolocalization, mass spectrometry, cross-linking and electrophoretic mobility shift assays. Analysis of H1 sequences from the Leishmania Genome Database revealed that our protein is included in a very divergent group of histones H1 that is present only in L. braziliensis. An antibody raised against recombinant L. braziliensis H1 recognized specifically that protein by immunoblot in L. braziliensis extracts, but not in other Leishmania species, a consequence of the sequence divergences observed among Leishmania species. Mass spectrometry analysis and in vitro DNA-binding experiments have also proven that L. braziliensis H1 is monomeric in solution, but oligomerizes upon binding to DNA. Finally, despite the lack of a globular domain, L. braziliensis H1 is able to form complexes with DNA in vitro, with higher affinity for supercoiled compared to linear DNA.

  17. Testing fundamental physics with distant star clusters: theoretical models for pressure-supported stellar systems

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Baumgardt, Holger; Kroupa, Pavel; Grebel, Eva K.; Hilker, Michael; Jordi, Katrin

    2009-05-01

    We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N-body code N-MODY, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to 109Msolar and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime (ai, ae << a0), where the motion of stars is either dominated by internal accelerations (ai >> ae) or constant external accelerations (ae >> ai). In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime (ai ~ ae ~ a0). This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.

  18. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  19. Globular clusters as tracers of stellar bimodality in elliptical galaxies: the case of NGC 1399

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.; Faifer, Favio; Geisler, Doug

    2005-02-01

    Globular cluster systems (GCSs) frequently show a bimodal distribution of cluster integrated colours. This work explores the arguments to support the idea that the same feature is shared by the diffuse stellar population of the galaxy they are associated with. The particular case of NGC 1399, one of the dominant central galaxies in the Fornax cluster, for which a new B surface brightness profile and (B-RKC) colours are presented, is discussed taking advantage of a recently published wide-field study of its GCS. The results show that the galaxy brightness profile and colour gradient, as well as the behaviour of the cumulative globular cluster specific frequency, are compatible with the presence of two dominant stellar populations, associated with the so-called `blue' and `red' globular cluster families. These globular families are characterized by different intrinsic specific frequencies (defined in terms of each stellar population): Sn= 3.3 +/- 0.3 in the case of the red globulars and Sn= 14.3 +/- 2.5 for the blue ones. We stress that this result does not necessarily conflict with recent works that point out a clear difference between the metallicity distribution of (resolved) halo stars and globulars when comparing their number statistics. The region within 0.5arcmin of the centre shows a deviation from the model profile (in both surface brightness and colour) that may be explained in terms of the presence of a bulge-like high-metallicity component. Otherwise, the model gives an excellent fit up to 12arcmin (or 66.5Kpc) from the centre, the galactocentric limit of our blue brightness profile. The inferred specific frequencies imply that, in terms of their associated stellar populations, the formation of the blue globulars took place with an efficiency about six times higher than that corresponding to their red counterparts. The similarity of the spatial distribution of the blue globulars with that inferred for dark matter, as well as with that of the X-ray-emitting hot gas associated with NGC 1399, is emphasized. The impact of a relatively inconspicuous low-metallicity population, that shares the properties of the blue globulars, as a possible source of chemical enrichment early in the formation history of the galaxy is also briefly discussed.

  20. First CCD UBVI photometric analysis of six open cluster candidates

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.

    2011-04-01

    We have obtained CCD UBVIKC photometry down to V ˜ 22 for the open cluster candidates Haffner 3, Haffner 5, NGC 2368, Haffner 25, Hogg 3 and Hogg 4 and their surrounding fields. None of these objects have been photometrically studied so far. Our analysis shows that these stellar groups are not genuine open clusters since no clear main sequences or other meaningful features can be seen in their colour-magnitude and colour-colour diagrams. We checked for possible differential reddening across the studied fields that could be hiding the characteristics of real open clusters. However, the dust in the directions to these objects appears to be uniformly distributed. Moreover, star counts carried out within and outside the open cluster candidate fields do not support the hypothesis that these objects are real open clusters or even open cluster remnants.

  1. Galactic Tidal Shocks Effects in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Cruz, F.; Aguilar, L.

    2001-07-01

    We present results of a set of N--Body simulations of 105--particle King models in the presence of a realistic Galactic tidal field. Tidal effects over a cluster are dominated by two processes, differentiated by the way they produc e mass loss in the system. The first one is the Roche lobe overflow, which depend s directly on the ratio of cluster to the Roche lobe size. The second process is tidal heating, produced by the time varying part of the Galactic tide, which injects energy directly on the orbits of the stars inside the cluster.

  2. Testing Metal-Poor Stellar Models and Isochrones with HST Parallaxes of Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Chaboyer, B.; McArthur, B. E.; O'Malley, E.; Benedict, G. F.; Feiden, G. A.; Harrison, T. E.; McWilliam, A.; Nelan, E. P.; Patterson, R. J.; Sarajedini, A.

    2017-02-01

    Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < -1.4) stars. The parallaxes of these stars determined by the new Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes, which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144 μas. These parallax data were combined with HST Advanced Camera for Surveys photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02-0.03 mag. Six of these stars are on the main sequence (MS) (with -2.7 < [Fe/H] < -1.8) and are suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters (GCs). Using the abundances obtained by O’Malley et al., we find that standard stellar models using the VandenBerg & Clem color transformation do a reasonable job of matching five of the MS stars, with HD 54639 ([Fe/H] = -2.5) being anomalous in its location in the color-magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones that fit the parallax stars were used to determine the distances and ages of nine GCs (with -2.4 ≤ [Fe/H] ≤ -1.9). Averaging together the age of all nine clusters led to an absolute age of the oldest, most metal-poor GCs of 12.7 ± 1.0 Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.

  3. New PARSEC data base of α-enhanced stellar evolutionary tracks and isochrones - I. Calibration with 47 Tuc (NGC 104) and the improvement on RGB bump

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Bressan, Alessandro; Marigo, Paola; Girardi, Léo; Montalbán, Josefina; Chen, Yang; Nanni, Ambra

    2018-05-01

    Precise studies on the Galactic bulge, globular cluster, Galactic halo, and Galactic thick disc require stellar models with α enhancement and various values of helium content. These models are also important for extra-Galactic population synthesis studies. For this purpose, we complement the existing PARSEC models, which are based on the solar partition of heavy elements, with α-enhanced partitions. We collect detailed measurements on the metal mixture and helium abundance for the two populations of 47 Tuc (NGC 104) from the literature, and calculate stellar tracks and isochrones with these α-enhanced compositions. By fitting the precise colour-magnitude diagram with HST ACS/WFC data, from low main sequence till horizontal branch (HB), we calibrate some free parameters that are important for the evolution of low mass stars like the mixing at the bottom of the convective envelope. This new calibration significantly improves the prediction of the red giant branch bump (RGBB) brightness. Comparison with the observed RGB and HB luminosity functions also shows that the evolutionary lifetimes are correctly predicted. As a further result of this calibration process, we derive the age, distance modulus, reddening, and the RGB mass-loss for 47 Tuc. We apply the new calibration and α-enhanced mixtures of the two 47 Tuc populations ([α/Fe] ˜ 0.4 and 0.2) to other metallicities. The new models reproduce the RGB bump observations much better than previous models. This new PARSEC data base, with the newly updated α-enhanced stellar evolutionary tracks and isochrones, will also be a part of the new stellar products for Gaia.

  4. APASS Landolt-Sloan BVgri Photometry of RAVE Stars. I. Data, Effective Temperatures, and Reddenings

    NASA Astrophysics Data System (ADS)

    Munari, U.; Henden, A.; Frigo, A.; Zwitter, T.; Bienaymé, O.; Bland-Hawthorn, J.; Boeche, C.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Kordopatis, G.; Levine, S. E.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Smith, T. C.; Steinmetz, M.; Templeton, M.; Terrell, D.; Welch, D. L.; Williams, M.; Wyse, R. F. G.

    2014-11-01

    We provide AAVSO Photometric All-Sky Survey (APASS) photometry in the Landolt BV and Sloan g'r'i' bands for all 425,743 stars included in the fourth RAVE Data Release. The internal accuracy of the APASS photometry of RAVE stars, expressed as the error of the mean of data obtained and separately calibrated over a median of four distinct observing epochs and distributed between 2009 and 2013, is 0.013, 0.012, 0.012, 0.014, and 0.021 mag for the B, V, g', r', and i' bands, respectively. The equally high external accuracy of APASS photometry has been verified on secondary Landolt and Sloan photometric standard stars not involved in the APASS calibration process and on a large body of literature data on field and cluster stars, confirming the absence of offsets and trends. Compared with the Carlsberg Meridian Catalog (CMC-15), APASS astrometry of RAVE stars is accurate to a median value of 0.098 arcsec. Brightness distribution functions for the RAVE stars have been derived in all bands. APASS photometry of RAVE stars, augmented by 2MASS JHK infrared data, has been χ2 fitted to a densely populated synthetic photometric library designed to widely explore temperature, surface gravity, metallicity, and reddening. Resulting T eff and E B - V , computed over a range of options, are provided and discussed, and will be kept updated in response to future APASS and RAVE data releases. In the process, we find that the reddening caused by a homogeneous slab of dust, extending for 140 pc on either side of the Galactic plane and responsible for EpolesB-V = 0.036 ± 0.002 at the Galactic poles, is a suitable approximation of the actual reddening encountered at Galactic latitudes |b| >= 25°.

  5. Finding Hidden Quasars with UKIDSS and AAOmega

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hewett, P. C.; Warren, S. J.; Croom, S. M.

    2007-05-01

    The number of luminous quasars that have thus far eluded optical surveys is a subject of ongoing debate. Dust reddening and significant host galaxy light tend to exclude candidates from traditional UV-excess selection. UKIDSS, the near-infrared counterpart to SDSS, has started to provide the large area NIR data required to quantify the number of quasars missing from optical surveys. The quasar candidate list was chosen from the Early Data Release of the UKIDSS Large Area Survey (LAS), which aims to cover 2000 square degrees in two years. Requiring each object to have K<17, J<19.5 (the detection limit of the LAS) and a detection in SDSS were the only restrictions imposed on the candidates. A simple cut in gJK colour space, exploiting the K-band excess of quasars compared to stars, then separates the quasar candidates from the stellar locus. Optical-NIR colour selection with relaxed restrictions on morphology is less sensitive to dust reddening, so provides a more complete candidate list, suitable for follow-up observation with the new AAOmega spectrograph on the Anglo-Australian Telescope. With spectroscopic observations covering nearly 20 square degrees taken at the AAT, this is by far the largest K-band selected quasar sample to date. Many new quasars have been identified, in addition to known quasars being recovered. Several of the newly discovered quasars lie in regions of colour space typically excluded by UV selection. This study highlights the effectiveness of the K-excess technique in selecting quasars that do not necessarily exhibit the classic UV excess, either due to intrinsic SED shape or dust reddening. Combining upcoming UKIDSS data releases with scheduled AAT observations will increase the area surveyed by several times, thus moving closer to fully quantifying the number of luminous, reddened quasars.

  6. HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS

    PubMed Central

    Godon, Patrick; Sion, Edward M.; Starrfield, Sumner; Livio, Mario; Williams, Robert E.; Woodward, Charles E.; Kuin, Paul; Page, Kim L.

    2018-01-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10−5 M⊙ to 3.3 × 10−4 M⊙, and assuming a mass accretion rate of 10−8−10−7 M⊙ yr−1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E(B − V) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E(B−V) ≤ 0.50) and white dwarf mass (0.70 M⊙ ≤ Mwd ≤ 1.35 M⊙) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening. PMID:29430290

  7. HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS.

    PubMed

    Godon, Patrick; Sion, Edward M; Starrfield, Sumner; Livio, Mario; Williams, Robert E; Woodward, Charles E; Kuin, Paul; Page, Kim L

    2014-04-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10 -5 M ⊙ to 3.3 × 10 -4 M ⊙ , and assuming a mass accretion rate of 10 -8 -10 -7 M ⊙ yr -1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E ( B - V ) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E ( B - V ) ≤ 0.50) and white dwarf mass (0.70 M ⊙ ≤ M wd ≤ 1.35 M ⊙ ) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M ⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening.

  8. A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.

  9. Dust Attenuation and H(alpha) Star Formation Rates of Z Approx. 0.5 Galaxies

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Malkan, Matthew A.; Kashikawa, Nobunari; Ota, Kazuaki; Shimasaku, Kazuhiro; Iye, Masanori; Currie, Thayne

    2012-01-01

    Using deep narrow-band and broad-band imaging, we identify 401 z approximately 0.40 and 249 z approximately 0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alpha luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7(uparrow){+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an "intrinsic" H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z approximately 0.5.

  10. Some remarks on extragalactic globular clusters

    NASA Astrophysics Data System (ADS)

    Richtler, Tom

    2006-03-01

    I comment (in a review fashion) on a few selected topics in the field of extragalactic globular clusters with strong emphasis on recent work. The topics are: bimodality in the colour distribution of cluster systems, young massive clusters, and the brightest old clusters. Globular cluster research, per- haps more than ever, has lead to important (at least to astronomers) progress and problems in galaxy structure and formation.

  11. A self-contamination model for the formation of globular star clusters

    NASA Astrophysics Data System (ADS)

    Brown, James Howard

    Described here is a model of globular cluster formation which allows the self contamination of the cluster by an earlier generation of massive stars. It is first shown that such self-contamination naturally produces an Fe/H in the range from -2.5 to -1.0, precisely the same range observed in the metal poor (halo) globular clusters; this also seems to require that the disk clusters started with a substantial initial metallicity. To minimize the problem of creating homogeneous globular clusters, the second (currently observed) generation of stars is assumed to form in the expanding supershell around the first generation stars. Both numerical and analytic models are used to address this problem. The most important result of this investigation was that the late evolution of the supershell is the most important, and that this phase of the evolution is dominated by the external medium in which the cloud is embedded. This result and the requirement that only the most tightly bound systems may become globular clusters lead to the conclusion that a globular cluster with the mass and binding energy typically observed can be formed at star formation efficiences as low as 10-20 percent. Furthermore, self contamination requires that the typical Fe/H of a bound system be about -1.6, independent of the free parameters of the model, allowing the clusters and field stars to form with different metallicity distributions in spite of their forming at the same time. Since the formation of globular clusters in this model is tied to the external pressure, the halo globular cluster masses and distribution can be used as probes of the early galactic structure. In particular, this model requires an increase in the typical globular cluster mass as one moves out from the galactic center; the masses of the halo clusters are examined, and they show considerable evidence for such a gradient. Based on a pressure distribution derived from this data, the effect of the galactic tidal field on the model is also investigated using an N-body simulation.

  12. Hubble Revisits a Globular Cluster’s Age

    NASA Image and Video Library

    2014-08-13

    This new NASA/ESA Hubble Space Telescope image shows the globular cluster IC 4499. Globular clusters are big balls of old stars that orbit around their host galaxy. It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster's age. For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times. One of the driving forces behind this behavior is thought to be gravity: more massive globulars manage to grab more gas and dust, which can then be transformed into new stars. IC 4499 is a somewhat special case. Its mass lies somewhere between low-mass globulars, which show a single generation build-up, and the more complex and massive globulars which can contain more than one generation of stars. By studying objects like IC 4499 astronomers can therefore explore how mass affects a cluster's contents. Astronomers found no sign of multiple generations of stars in IC 4499 — supporting the idea that less massive clusters in general only consist of a single stellar generation. Hubble observations of IC 4499 have also helped to pinpoint the cluster's age: observations of this cluster from the 1990s suggested a puzzlingly young age when compared to other globular clusters within the Milky Way. However, since those first estimates new Hubble data have been obtained and it has been found to be much more likely that IC 4499 is actually roughly the same age as other Milky Way clusters at approximately 12 billion years old. Credit: ESA and NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Hα Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass†

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2013-07-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the HST-WFC3. Combining our Hα measurements of 854 galaxies at 0.8

  14. Reconstructing galaxy histories from globular clusters.

    PubMed

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  15. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80 billion solar masses. This is an unprecedented factor of 3,000 larger than the stellar mass for the galaxy (obtained from the galaxys luminosity) which means that VCC 1287 has an unusually large dark matter halo given its stellar population.Clues to OriginsThis result makes it unlikely that VCC 1287 is a tidal-dwarf system, since these usually have dark-matter fractions of less than 10%. The authors also dont believe it is a tidally stripped system, since no obvious tidal features were revealed in their imaging. Instead, they think the most probable scenario is that VCC 1287 is a massive dwarf galaxy that had its star formation quenched by gas starvation as it fell into the Virgo cluster long ago.To learn whether VCC 1287 is typical of UDGs, the authors encourage finding additional UDG masses using the same techniques outlined in this study. Additional observations of the globular-cluster populations for UDGs will significantly help understand these unusual galaxies.CitationMichael A. Beasley et al 2016 ApJ 819 L20. doi:10.3847/2041-8205/819/2/L20

  16. Globular and fibrous structure in barley chromosomes revealed by high-resolution scanning electron microscopy.

    PubMed

    Iwano, M; Fukui, K; Takaichi, S; Isogai, A

    1997-08-01

    Barley chromosomes were prepared for high-resolution scanning electron microscopy using a combination of enzyme maceration, treatment in acetic acid and osmium impregnation using thiocarbohydrazide. Using this technique, the three-dimensional ultrastructure of interphase nuclei and mitotic chromosomes was examined. In Interphase, different levels of chromatin condensation were observed, consisting of fibrils 10 nm in diameter, 20- to 40-nm fibres and a higher order complex. In prophase, globular and strand-like structures composed of 20- to 40-nm fibres were dominant. As the cells progressed through the cell cycle and the chromatin condensed, globular and strand-like structures (chromomeres) were coiled and packed to form chromosomes. Chromomeres were observed as globular protuberances on the surface of metaphase chromosomes. These findings indicate that the chromomere is a fundamental substructure of the higher order architecture of the chromosome. In the centromeric region, there were no globular protuberances, but 20- to 40-nm fibres were folded compactly to form a higher level organization surrounding the chromosomal axia.

  17. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison, E-mail: webbjj@mcmaster.ca

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and bluemore » sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.« less

  18. A survey for dwarf galaxy remnants around 14 globular clusters in the outer halo

    NASA Astrophysics Data System (ADS)

    Sollima, A.; Martínez Delgado, D.; Muñoz, R. R.; Carballo-Bello, J. A.; Valls-Gabaud, D.; Grebel, E. K.; Santana, F. A.; Côté, P.; Djorgovski, S. G.

    2018-06-01

    We report the results of a systematic photometric survey of the peripheral regions of a sample of 14 globular clusters in the outer halo of the Milky Way at distances dGC > 25 kpc from the Galactic Centre. The survey is aimed at searching for the remnants of the host satellite galaxies where these clusters could originally have been formed before being accreted on to the Galactic halo. The limiting surface brightness varies within our sample, but reaches μV, lim = 30-32 mag arcsec-2. For only two globular clusters (NGC 7492 and Whiting 1; already suggested to be associated with the Sagittarius galaxy), we detect extended stellar populations that cannot be associated with either the clusters themselves or with the surrounding Galactic field population. We show that the lack of substructures around globular clusters at these Galactocentric distances is still compatible with the predictions of cosmological simulations whereby in the outer halo the Galactic globular cluster system is built up through hierarchical accretion at early epochs.

  19. Blue straggler star populations in globular clusters. I. Dynamical properties of blue straggler stars in NGC 3201, NGC 6218, and ω Centauri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, Mirko; Puzia, Thomas H., E-mail: msimunov@astro.puc.cl, E-mail: tpuzia@astro.puc.cl

    2014-02-10

    We present the first dynamical study of blue straggler stars (BSSs) in three Galactic globular clusters, NGC 3201, NGC 5139 (ω Cen), and NGC 6218, based on medium-resolution spectroscopy (R ≈ 10, 000) obtained with the Inamori-Magellan Areal Camera and Spectrograph mounted at the 6.5 m Baade Magellan telescope. Our BSS candidate selection technique uses HST/ACS and ESO/WFI photometric data out to >4.5 r{sub c} . We use radial velocity measurements to discard non-members and achieve a success rate of ∼93%, which yields a sample of 116 confirmed BSSs. Using the penalized pixel-fitting method (pPXF), we measure the vsin (i)more » values of the sample BSSs and find their distribution functions peaked at slow velocities with a long tail toward fast velocities in each globular cluster. About 90% of the BSS population in NGC 3201 and NGC 6218 exhibits values in the range 10-50 km s{sup –1}, while about 80% of the BSSs in ω Cen show vsin (i) values between 20 and 70 km s{sup –1}. We find that the BSSs in NGC 3201 and NGC 6218 that show vsin (i) > 50 km s{sup –1} are all found in the central cluster regions, inside a projected 2r{sub c} , of their parent clusters. We find a similar result in ω Cen for BSSs with vsin (i) > 70 km s{sup –1}, which are all, except for two, concentrated inside 2r{sub c} . In all globular clusters, we find rapidly rotating BSSs that have relatively high differential radial velocities that likely put them on hyperbolic orbits, suggestive of strong dynamical interactions in the past. Based on stellar spin-down and dynamical crossing timescales, we estimate that all the observed rapidly rotating BSSs are likely to form in their central cluster regions no longer than ∼300 Myr ago and may be subsequently ejected from their host globular clusters. Using dereddened V – I colors of our photometric selection, we show that blue BSSs in ω Cen with (V – I){sub 0} ≲ 0.25 mag show a significantly increased vsin (i) dispersion compared with their red counterparts and all other BSSs in our sample, therefore strongly implying that fast-rotating BSSs in ω Cen are preferentially bluer, i.e., more massive. This may indicate that this particular blue BSS population was formed in a unique formation event and/or through a unique mechanism.« less

  20. Exploring the nature and synchronicity of early cluster formation in the Large Magellanic Cloud - II. Relative ages and distances for six ancient globular clusters

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, R.; Mackey, Dougal; Sarajedini, Ata; Chaboyer, Brian; Cohen, Roger E.; Yang, Soung-Chul; Cummings, Jeffrey D.; Geisler, Doug; Grocholski, Aaron J.

    2017-11-01

    We analyse Hubble Space Telescope observations of six globular clusters in the Large Magellanic Cloud (LMC) from programme GO-14164 in Cycle 23. These are the deepest available observations of the LMC globular cluster population; their uniformity facilitates a precise comparison with globular clusters in the Milky Way. Measuring the magnitude of the main-sequence turn-off point relative to template Galactic globular clusters allows the relative ages of the clusters to be determined with a mean precision of 8.4 per cent, and down to 6 per cent for individual objects. We find that the mean age of our LMC cluster ensemble is identical to the mean age of the oldest metal-poor clusters in the Milky Way halo to 0.2 ± 0.4 Gyr. This provides the most sensitive test to date of the synchronicity of the earliest epoch of globular cluster formation in two independent galaxies. Horizontal branch magnitudes and subdwarf fitting to the main sequence allow us to determine distance estimates for each cluster and examine their geometric distribution in the LMC. Using two different methods, we find an average distance to the LMC of 18.52 ± 0.05.

  1. HST observations of globular clusters in M 31. 1: Surface photometry of 13 objects

    NASA Technical Reports Server (NTRS)

    Pecci, F. Fusi; Battistini, P.; Bendinelli, O.; Bonoli, F.; Cacciari, C.; Djorgovski, S.; Federici, L.; Ferraro, F. R.; Parmeggiani, G.; Weir, N.

    1994-01-01

    We present the initial results of a study of globular clusters in M 31, using the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The sample of objects consists of 13 clusters spanning a range of properties. Three independent image deconvolution techniques were used in order to compensate for the optical problems of the HST, leading to mutually fully consistent results. We present detailed tests and comparisons to determine the reliability and limits of these deconvolution methods, and conclude that high-quality surface photometry of M 31 globulars is possible with the HST data. Surface brightness profiles have been extracted, and core radii, half-light radii, and central surface brightness values have been measured for all of the clusters in the sample. Their comparison with the values from ground-based observations indicates the later to be systematically and strongly biased by the seeing effects, as it may be expected. A comparison of the structural parameters with those of the Galactic globulars shows that the structural properties of the M 31 globulars are very similar to those of their Galactic counterparts. A candidate for a post-core-collapse cluster, Bo 343 = G 105, has been already identified from these data; this is the first such detection in the M 31 globular cluster system.

  2. The structure of the Myo4p globular tail and its function in ASH1 mRNA localization.

    PubMed

    Heuck, Alexander; Fetka, Ingrid; Brewer, Daniel N; Hüls, Daniela; Munson, Mary; Jansen, Ralf-Peter; Niessing, Dierk

    2010-05-03

    Type V myosin (MyoV)-dependent transport of cargo is an essential process in eukaryotes. Studies on yeast and vertebrate MyoV showed that their globular tails mediate binding to the cargo complexes. In Saccharomyces cerevisiae, the MyoV motor Myo4p interacts with She3p to localize asymmetric synthesis of HO 1 (ASH1) mRNA into the bud of dividing cells. A recent study showed that localization of GFP-MS2-tethered ASH1 particles does not require the Myo4p globular tail, challenging the supposed role of this domain. We assessed ASH1 mRNA and Myo4p distribution more directly and found that their localization is impaired in cells expressing globular tail-lacking Myo4p. In vitro studies further show that the globular tail together with a more N-terminal linker region is required for efficient She3p binding. We also determined the x-ray structure of the Myo4p globular tail and identify a conserved surface patch important for She3p binding. The structure shows pronounced similarities to membrane-tethering complexes and indicates that Myo4p may not undergo auto-inhibition of its motor domain.

  3. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    NASA Astrophysics Data System (ADS)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  4. Competition of supermassive black holes and galactic spheroids in the destruction of globular clusters

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Laguna, Pablo

    1995-01-01

    The globular clusters that we observe in galaxies may be only a fraction of the initial population. Among the evolutionary influences on the population is the destruction of globular clusters by tidal forces as the cluster moves through the field of influence of a disk, a bulge, and/or a putative nuclear component (black hole). We have conducted a series of N-body simulations of globular clusters on bound and marginally bound orbits through poetentials that include black hole and speroidal components. The degree of concentration of the spheroidal component can have a considerable impact on the extent to which a globular cluster is disrupted. If half the mass of a 10(exp 10) solar mass spheroid is concentrated within 800 pc, then only black holes with masses greater than 10(exp 9) solar mass can have a significant tidal influence over that already exerted by the bulge. However, if the matter in the spheroidal component is not so strongly concentrated toward the center of the galaxy, a more modest central black hole (down to 10(exp 8) solar mass) could have a dominant influence on the globular cluster distribution, particularly if many of the clusters were initially on highly radial orbits. Our simulations show that the stars that are stripped from a globular cluster follow orbits with roughly the same eccentricity as the initial cluster orbit, spreading out along the orbit like a 'string of pearls.' Since only clusters on close to radial orbits will suffer substantial disruption, the population of stripped stars will be on orbits of high eccentricity.

  5. A photometric study of the Orion OB 1 association. 3: Subgroup analyses

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.; Hesser, J. E.

    1977-01-01

    The four principal subgroups of the association were examined in detail using individual distances and reddening values determined for their B type members. Subgroup 1a appeared not to show a spread in age nor did it show a systematic distance increase with right ascension when fainter members were considered. An eastwardly increase in distance was found for subgroup 1b but the reddening law for the east Belt appeared normal. Small subclusterings in the vicinity of the Orion Nebula appeared not to differ in the evolutionary state but their ages were considerably greater than those of stars in the nebulae and its associated cluster.

  6. The Extinction Toward the Galactic Bulge from RR Lyrae Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, A; Popowski, P; Cook, K

    2007-11-07

    The authors present mean reddenings toward 3525 RR0 Lyrae stars from the Galactic bulge fields of the MACHO Survey. These reddenings are determined using the color at minimum V-band light of the RR0 Lyrae stars themselves and are found to be in general agreement with extinction estimates at the same location obtained from other methods. Using 3256 stars located in the Galactic Bulge, they derive the selective extinction coefficient R{sub V,VR} = A{sub V}/E(V-R) = 4.2 {+-} 0.2. this value is what is expected for a standard extinction law with R{sub V,BV} = 3.1 {+-} 0.3

  7. An analysis of the currently available calibrations in Strömgren photometry by using open clusters

    NASA Astrophysics Data System (ADS)

    Jordi, C.; Masana, E.; Figueras, F.; Torra, J.

    1997-05-01

    In recent years, several authors have revised the calibrations used to compute physical parameters (Mv, Teff, log g, [Fe/H]) from intrinsic colours in the uvby H_beta photometric system. For reddened stars, these intrinsic colours can be computed through the standard relations among colour indices for each of the regions defined by \\cite[Stromgren (1966)]{str66} on the HR diagram. We present a discussion of the coherence of these calibrations for main-sequence stars. Stars from open clusters are used to carry out this analysis. Assuming that individual reddening values and distances should be similar for all the members of a given open cluster, systematic differences among the calibrations used in each of the photometric regions might arise when comparing mean reddening values and distances for the members of each region. To classify the stars into Stromgren's regions we extended the algorithm presented by \\cite[Figueras et al. (1991)]{fig91} to a wider range of spectral types and luminosity classes. The observational ZAMS are compared with the theoretical ZAMS from stellar evolutionary models, in the range 6500-30000 K. The discrepancies are also discussed.

  8. Near-infrared reddening of extra-galactic giant molecular clouds in a face-on geometry

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Juvela, M.; Alves, J.

    2008-04-01

    Aims: We describe the near-infrared reddening signature of giant molecular clouds (GMCs) in external galaxies. In particular, we examine the EJ-H and EH-K color excesses and the effective extinction law observed in discrete GMC regions. We also study the effect of the relative scale height of the GMC distribution to the color excesses, and to the observed mass function of GMCs when the masses are derived using color excess as a linear estimator of mass. Methods: We performed Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions, resembling a face-on geometry. The scattered light is included in the models, and near-infrared color maps were calculated from the simulated data. We performed the simulations with different scale heights of GMCs and compared the color excesses and attenuation of light in different geometries. We extracted GMCs from the simulated color maps and compared the mass functions to the input mass functions. Results: The effective near-infrared reddening law, i.e. the ratio EJ-H/EH-K, has a value close to unity in GMC regions. The ratio depends significantly on the relative scale height of GMCs, ξ, and for ξ values 0.1...0.75, we find the typical ratios of 0.6...1.1. The effective extinction law turns out to be very flat in GMC regions. We find the ratios of apparent extinctions of AH^a/AKa = 1.35...1.55 and AJ^a/AHa = 1.15. The effect of the scattered flux on the effective reddening law, as well as on the effective extinction law, is significant. Regarding the GMC mass function, we find no correlation between the input and observed slopes of the mass functions. Instead, the observed slope reflects the parameter ξ and the dynamical range of the mass function. As the observed slope depends on the geometric parameters, which are not known, it is not possible to constrain the slope of the mass function using this technique. We estimate that only a fraction of 10...20% of the total mass of GMCs is recovered, if the observed color excess values are transformed to masses using the Galactic reddening law. In the case of individual clouds, the fraction can vary between ~0...50%.

  9. Nova-driven winds in globular clusters

    NASA Technical Reports Server (NTRS)

    Scott, E. H.; Durisen, R. H.

    1978-01-01

    Recent sensitive searches for H-alpha emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. It is suggested that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds to globular cluster X-ray sources is also considered.

  10. A Framework for Globular Proteins

    NASA Astrophysics Data System (ADS)

    Lezon, Timothy

    2006-03-01

    Due to their remarkable chemical specificity and diversity, globular proteins play a crucial role in the network of molecular interactions of life. Over the past several decades, much experimental data has been accumulated on proteins, but the overarching principles that govern the general features of proteins remain largely unknown. Here, a novel framework for understanding many key attributes of globular proteins is presented. This framework suggests that the characteristics of globular proteins that make them well-suited for biological function are the emergent properties of a unique phase of matter. Implications of this picture include the provision of a fixed backdrop for molecular evolution and natural selection and design restrictions on molecular machinery. The work described here was carried out in collaboration with Jayanth Banavar and Amos Maritan.

  11. Bayesian Analysis and Characterization of Multiple Populations in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, Rachel A.; Stenning, David; Sarajedini, Ata; von Hippel, Ted; van Dyk, David A.; Robinson, Elliot; Stein, Nathan; Jefferys, William H.; BASE-9, HST UVIS Globular Cluster Treasury Program

    2017-01-01

    Globular clusters have long been important tools to unlock the early history of galaxies. Thus, it is crucial we understand the formation and characteristics of the globular clusters (GCs) themselves. Historically, GCs were thought to be simple and largely homogeneous populations, formed via collapse of a single molecular cloud. However, this classical view has been overwhelmingly invalidated by recent work. It is now clear that the vast majority of globular clusters in our Galaxy host two or more chemically distinct populations of stars, with variations in helium and light elements at discrete abundance levels. No coherent story has arisen that is able to fully explain the formation of multiple populations in globular clusters nor the mechanisms that drive stochastic variations from cluster to cluster.We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic Globular Clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously sample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of 0.04 to 0.11. Because adequate models varying in CNO are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster. We also find that the proportion of the first population of stars increases with mass. Our results are examined in the context of proposed globular cluster formation scenarios.

  12. The "Globularization Hypothesis" of the Language-ready Brain as a Developmental Frame for Prosodic Bootstrapping Theories of Language Acquisition.

    PubMed

    Irurtzun, Aritz

    2015-01-01

    In recent research (Boeckx and Benítez-Burraco, 2014a,b) have advanced the hypothesis that our species-specific language-ready brain should be understood as the outcome of developmental changes that occurred in our species after the split from Neanderthals-Denisovans, which resulted in a more globular braincase configuration in comparison to our closest relatives, who had elongated endocasts. According to these authors, the development of a globular brain is an essential ingredient for the language faculty and in particular, it is the centrality occupied by the thalamus in a globular brain that allows its modulatory or regulatory role, essential for syntactico-semantic computations. Their hypothesis is that the syntactico-semantic capacities arise in humans as a consequence of a process of globularization, which significantly takes place postnatally (cf. Neubauer et al., 2010). In this paper, I show that Boeckx and Benítez-Burraco's hypothesis makes an interesting developmental prediction regarding the path of language acquisition: it teases apart the onset of phonological acquisition and the onset of syntactic acquisition (the latter starting significantly later, after globularization). I argue that this hypothesis provides a developmental rationale for the prosodic bootstrapping hypothesis of language acquisition (cf. i.a. Gleitman and Wanner, 1982; Mehler et al., 1988, et seq.; Gervain and Werker, 2013), which claim that prosodic cues are employed for syntactic parsing. The literature converges in the observation that a large amount of such prosodic cues (in particular, rhythmic cues) are already acquired before the completion of the globularization phase, which paves the way for the premises of the prosodic bootstrapping hypothesis, allowing babies to have a rich knowledge of the prosody of their target language before they can start parsing the primary linguistic data syntactically.

  13. The missing bulge globular clusters in M31 - New optical candidates

    NASA Technical Reports Server (NTRS)

    Wirth, A.; Smarr, L. L.; Bruno, T. L.

    1985-01-01

    A new method to attack the question of the 'missing' globular clusters in the bulge of M31 is used. Image-processing techniques were used on 13 videocamera fields to obtain an accurate photometric census of stellar objects in M31's bulge down to a limiting B magnitude of 21. This luminosity distribution is compared with the Bahcall-Soneira model of galactic foreground stars. A statistically significant excess of bright images in the luminosity range of globular clusters at M31's distance is found. If the optical candidates considered prove to be globular clusters, they would double the number of known globular clusters in the surveyed region. The colors of a subsample of the candidates are the same as those of the known globular clusters. It is concluded that the previously observed flattening away from a de Vaucouleurs law in the radial distribution of M31 may be an observational selection effect. As an offshoot of this analysis, no evidence is found for very luminous stars in the inner bulge of M31. The lack of such stars indicates that there has not been active star formation (with a normal IMF) in the recent past. Coupled with the existence of many planetary nebulae in the bulge, this may strengthen the case for a galactic wind in M31's bulge.

  14. The globular domain of histone H5 is internally located in the 30 nm chromatin fiber: an immunochemical study.

    PubMed Central

    Dimitrov, S I; Russanova, V R; Pashev, I G

    1987-01-01

    The location of the globular domain of histone H5 relative to the axis of the 30 nm chromatin fiber was investigated by following the accessibility of this region of the molecule in chicken erythrocyte chromatin to specific antibodies as a function of chromatin structure. Antibodies to the globular domain of H5 as well as their Fab fragments were found to react with chromatin at ionic strengths ranging from 1-80 mM NaCl, the reaction gradually decreasing upon increase of salt concentration. If, however, Fab fragments were conjugated to ferritin, no reaction of the complex with chromatin was observed at salt concentrations higher than 20 mM. The accessibility of the globular part of H5 in unfolded chromatin to the Fab-ferritin complex was also demonstrated with trypsin-digested chromatin. The experiments were carried out by both solid-phase immunoassay and inhibition experiments. The data obtained are consistent with a structure in which the globular domain of H5 is internally located in the 30 nm chromatin fiber. Images Fig. 1. Fig. 2. PMID:2444434

  15. A black hole in a globular cluster.

    PubMed

    Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L

    2007-01-11

    Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.

  16. Globular Cluster Messier 2 in Aquarius

    NASA Image and Video Library

    2003-12-11

    This image of the Globular cluster Messier 2 (M2) was taken by Galaxy Evolution Explorer on August 20, 2003. This image is a small section of a single All Sky Imaging Survey exposure of only 129 seconds in the constellation Aquarius. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors (colored red). Globular clusters are gravitationally bound systems of hundreds of thousands of stars that orbit in the halos of galaxies. The globular clusters in out Milky Way galaxy contain some of the oldest stars known. M2 lies 33,000 light years from our Sun with stars distributed in a spherical system with a radius of approximately 100 light years. http://photojournal.jpl.nasa.gov/catalog/PIA04926

  17. Sistematización de las diferencias entre las estimaciones de modelos de extinción y las observaciones en la Vía Láctea

    NASA Astrophysics Data System (ADS)

    Perren, G.; Vázquez, R. A.; Navone, H.

    This paper analyses the reliability of the reddening estimates, extended to the entire sky, from two new Galaxy models built by Amores & Lépine (2005), using as a source of empirical data the database of open star clusters WEBDA. We also used the 100 um maps by Schlegel et al. (1998). It is concluded that the predictions of the Amores & Lépine models have a good correlation with empirical values until a relatively close distance to the Sun, while the Schlegel et al. model do not match the reddening estimation within the Milky Way. FULL TEXT IN SPANISH

  18. A Science Portal and Archive for Extragalactic Globular Cluster Systems Data

    NASA Astrophysics Data System (ADS)

    Young, Michael; Rhode, Katherine L.; Gopu, Arvind

    2015-01-01

    For several years we have been carrying out a wide-field imaging survey of the globular cluster populations of a sample of giant spiral, S0, and elliptical galaxies with distances of ~10-30 Mpc. We use mosaic CCD cameras on the WIYN 3.5-m and Kitt Peak 4-m telescopes to acquire deep BVR imaging of each galaxy and then analyze the data to derive global properties of the globular cluster system. In addition to measuring the total numbers, specific frequencies, spatial distributions, and color distributions for the globular cluster populations, we have produced deep, high-quality images and lists of tens to thousands of globular cluster candidates for the ~40 galaxies included in the survey.With the survey nearing completion, we have been exploring how to efficiently disseminate not only the overall results, but also all of the relevant data products, to the astronomical community. Here we present our solution: a scientific portal and archive for extragalactic globular cluster systems data. With a modern and intuitive web interface built on the same framework as the WIYN One Degree Imager Portal, Pipeline, and Archive (ODI-PPA), our system will provide public access to the survey results and the final stacked mosaic images of the target galaxies. In addition, the astrometric and photometric data for thousands of identified globular cluster candidates, as well as for all point sources detected in each field, will be indexed and searchable. Where available, spectroscopic follow-up data will be paired with the candidates. Advanced imaging tools will enable users to overlay the cluster candidates and other sources on the mosaic images within the web interface, while metadata charting tools will allow users to rapidly and seamlessly plot the survey results for each galaxy and the data for hundreds of thousands of individual sources. Finally, we will appeal to other researchers with similar data products and work toward making our portal a central repository for data related to well-studied giant galaxy globular cluster systems. This work is supported by NSF Faculty Early Career Development (CAREER) award AST-0847109.

  19. Globular cluster content and evolutionary history of NGC 147

    NASA Astrophysics Data System (ADS)

    Sharina, M.; Davoust, E.

    2009-04-01

    Context: Globular clusters are representative of the oldest stellar populations. It is thus essential to have a complete census of these systems in dwarf galaxies, from which more massive galaxies are progressively formed in the hierarchical scenario. Aims: We present the results of spectroscopic observations of eight globular cluster candidates in NGC 147, a satellite dwarf elliptical galaxy of M 31. Our goal is to make a complete inventory of the globular cluster system of this galaxy, determine the properties of their stellar populations, and compare these properties with those of systems of globular clusters in other dwarf galaxies. Methods: The candidates were identified on Canada-France-Hawaii telescope photographic plates. Medium resolution spectra were obtained with the SCORPIO spectrograph at the prime focus of the 6 m telescope of the Russian Academy of Sciences. They were analyzed using predictions of stellar population synthesis models. Results: We were able to confirm the nature of all eight candidates, three of which (GC5, GC7, and GC10) are indeed globular clusters, and to estimate evolutionary parameters for the two brightest ones and for Hodge II. The bright clusters GC5 and GC7 appear to have metallicities ([Z/H] -1.5 div -1.8) that are lower than the oldest stars in the galaxy. The fainter GC Hodge II has a metallicity [Z/H] = -1.1, similar to that of the oldest stars in the galaxy. The clusters GC5 and GC7 have low alpha-element abundance ratios. The mean age of the globular clusters in NGC 147 is 9 ± 1 Gyr. We also measured the radial velocities of Hodge II and IV, and derived a mass of NGC 147 in good agreement with the value from the literature. The frequency, Sn = 6.4, and mass fraction, T = 14 of globular clusters in NGC 147 appear to be higher than those for NGC 185 and 205. Conclusions: Our results indicate that the bright clusters GC5, GC7, and Hodge III formed in the main star-forming period 8-10 Gyr ago, while the fainter clusters Hodge I and II formed together with the second generation of field stars.

  20. Globular Clusters for Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions.The most striking feature of these galaxies, however, is that they are surrounded by a large number of compact objects that appear to be globular clusters. From the observations, Van Dokkum and collaborators estimate that Dragonfly 44 and DFX1 have approximately 74 and 62 globulars, respectively significantly more than the low numbers expected for galaxies of this luminosity.Armed with this knowledge, the authors went back and looked at archival observations of 14 other UDGs also located in the Coma cluster. They found that these smaller and fainter galaxies dont host quite as many globular clusters as Dragonfly 44 and DFX1, but more than half also show significant overdensities of globulars.Main panel: relation between the number of globular clusters and total absolute magnitude for Coma UDGs (solid symbols) compared to normal galaxies (open symbols). Top panel: relation between effective radius and absolute magnitude. The UDGs are significantly larger and have more globular clusters than normal galaxies of the same luminosity. [van Dokkum et al. 2017]Evidence of FailureIn general, UDGs appear to have more globular clusters than other galaxies of the same total luminosity, by a factor of nearly 7. These results are consistent with the scenario in which UDGs are failed galaxies: they likely have the halo mass to have formed a large number of globular clusters, but they were quenched before they formed a disk and bulge. Because star formation never got going in UDGs, they are now much dimmer than other galaxies of the same size.The authors suggest that the next step is to obtain dynamical measurements of the UDGs to determine whether these faint galaxies really do have the halo mass suggested by their large numbers of globulars. Future observations will continue to help us pin down the origin of these dim giants.CitationPieter van Dokkum et al 2017 ApJL 844 L11. doi:10.3847/2041-8213/aa7ca2

  1. Galactic reddening in 3D from stellar photometry - an improved map

    NASA Astrophysics Data System (ADS)

    Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas; Rix, Hans-Walter; Martin, Nicolas; Burgett, William; Draper, Peter W.; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Metcalfe, Nigel; Tonry, John L.; Wainscoat, Richard; Waters, Christopher

    2018-07-01

    We present a new 3D map of interstellar dust reddening, covering three quarters of the sky (declinations of δ ≳ -30°) out to a distance of several kiloparsecs. The map is based on high-quality stellar photometry of 800 million stars from Pan-STARRS 1 and 2MASS. We divide the sky into sightlines containing a few hundred stars each, and then infer stellar distances and types, along with the line-of-sight dust distribution. Our new map incorporates a more accurate average extinction law and an additional 1.5 yr of Pan-STARRS 1 data, tracing dust to greater extinctions and at higher angular resolutions than our previous map. Out of the plane of the Galaxy, our map agrees well with 2D reddening maps derived from far-infrared dust emission. After accounting for a 25 per cent difference in scale, we find a mean scatter of ˜10 per cent between our map and the Planck far-infrared emission-based dust map, out to a depth of 0.8 mag in E(gP1 - rP1), with the level of agreement varying over the sky. Our map can be downloaded at http://argonaut.skymaps.info, or from the Harvard Dataverse (Green 2017).

  2. Research to lessen the amounts of curing agents in processed meat through use of rock salt and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Sakata, R.; Takeda, S.; Kinoshita, Y.; Waga, M.

    2017-09-01

    This study was carried out to examine the reddening of meat products due to the addition of natural yellow salt (YS) and carbon monoxide (CO). Following YS or NaCl addition at 2% to pork subsequent to nitrite (0∼100 ppm) treatment, color development due to this addition was analyzed visually. Heme pigment content in the meat was also determined spectrophotometrically. YS was found to bring about greater reddening than NaCl, indicating residual nitrite and nitrate content to be significantly higher in meat containing YS, through the amount of either was quite small. The amount of nitrite required for a red color to develop was noted to vary significantly from one meat product to another. CO treatment of pork caused the formation of carboxy myoglobin (COMb) with consequent reddening of the meat. COMb was shown to be heat-stable and form stably at pH 5.0 to ∼8.0 and to be extractable with water, but was barely extractable at all with acetone. Nitric oxide was found to have greater affinity toward myoglobin (Mb) than CO. Nitrosyl Mb was noted to be stable in all meat products examined. CO was seen to be capable of controlling the extent of lipid oxidation.

  3. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    PubMed

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  4. An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Cohen, Yotam; Danieli, Shany; Kruijssen, J. M. Diederik; Romanowsky, Aaron J.; Merritt, Allison; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O’Sullivan, Ewan; Zhang, Jielai

    2018-04-01

    We recently found an ultra diffuse galaxy (UDG) with a half-light radius of R e = 2.2 kpc and little or no dark matter. The total mass of NGC1052–DF2 was measured from the radial velocities of bright compact objects that are associated with the galaxy. Here, we analyze these objects using a combination of Hubble Space Telescope (HST) imaging and Keck spectroscopy. Their average size is < {r}h> =6.2+/- 0.5 pc and their average ellipticity is < ε > =0.18+/- 0.02. From a stacked Keck spectrum we derive an age of ≳9 Gyr and a metallicity of [Fe/H] = ‑1.35 ± 0.12. Their properties are similar to ω Centauri, the brightest and largest globular cluster in the Milky Way, and our results demonstrate that the luminosity function of metal-poor globular clusters is not universal. The fraction of the total stellar mass that is in the globular cluster system is similar to that in other UDGs, and consistent with “failed galaxy” scenarios, where star formation terminated shortly after the clusters were formed. However, the galaxy is a factor of ∼1000 removed from the relation between globular cluster mass and total galaxy mass that has been found for other galaxies, including other UDGs. We infer that a dark matter halo is not a prerequisite for the formation of metal-poor globular cluster-like objects in high-redshift galaxies.

  5. Two stellar-mass black holes in the globular cluster M22.

    PubMed

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-04

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  6. Simulated space weathering of Fe- and Mg-rich aqueously altered minerals using pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Kaluna, H. M.; Ishii, H. A.; Bradley, J. P.; Gillis-Davis, J. J.; Lucey, P. G.

    2017-08-01

    Simulated space weathering experiments on volatile-rich carbonaceous chondrites (CCs) have resulted in contrasting spectral behaviors (e.g. reddening vs bluing). The aim of this work is to investigate the origin of these contrasting trends by simulating space weathering on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces a small degree of reddening and darkening, but a pronounced reduction in band depths with increasing irradiation. In comparison, irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Post-irradiation analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that nanometer sized metallic iron (npFe0) particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles (μpC) results in the subsequent spectral bluing. The presence of npFe0 and the possible catalytic nature of cronstedtite, an Fe-rich phyllosilicate, likely promotes the synthesis of these carbon-rich, organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg-rich and Fe-rich aqueously altered minerals are dominant at different phases of the aqueous alteration process. Thus, the contrasting spectral slope evolution between the Fe- and Mg-rich samples in these experiments may indicate that space weathering trends of volatile-rich asteroids have a compositional dependency that could be used to determine the aqueous histories of asteroid parent bodies.

  7. Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening.

    PubMed

    Hughes, Nicole M; Carpenter, Kaylyn L; Cannon, Jonathan G

    2013-01-15

    The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψ(π)) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψ(π) during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψ(π,100)) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was -0.7MPa for G. urceolata and -0.8MPa for G. procumbens. In vivo concentrations of anthocyanin (3-10mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψ(π,100) in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψ(π,100). We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an osmoprotectant role. Published by Elsevier GmbH.

  8. Long-term Monitoring of Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Lin, Z.-Y.; Lara, L. M.; Ip, W.-H.

    2013-07-01

    We report the spectrophotometric, photometric, and imaging monitoring results of comet 103P/Hartley 2 obtained at the Lulin (1 m), Calar Alto (2.2 m), and Beijing Astronomical (2.16 m) observatories from 2010 April to December. We found that a dust feature in the sunward direction was detected starting from the end of September until the beginning of December (our last observation from the Lulin and Calar Alto observatories). Two distinct sunward jet features in the processed images were observed on October 11 and after October 29 until November 2. In parallel, the CN images reveal two asymmetrical jet features which are nearly perpendicular to the Sun-nucleus direction, these asymmetrical features imply that the comet was in a nearly side-on view in late October and early November. In addition to the jet features, the average result of the C2-to-CN production rate ratio ranges from 0.7 to 1.5, consistent with 103P/Hartley 2 being of typical cometary chemistry. We found that the rh dependence for the dust production rate, Afρ (5000 km), is -3.75 ± 0.45 before perihelion and -3.44 ± 1.20 during the post-perihelion period. We detected higher dust reddening around the optocenter and decreased reddening along the sunward jet feature. We concluded that higher dust reddening could be associated with strong jet activity while lower dust reddening could be associated with the outburst or might imply changes in the optical properties. The average dust color did not appear to vary significantly as the comet passed through perihelion. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), at Lulin Observatory operated by the Institute of Astronomy, National Central University in Taiwan, and at Xinglong Station inaugurated by the National Astronomical Observatory (BAO), Beijing.

  9. Stellar abundances and ages for metal-rich Milky Way globular clusters. Stellar parameters and elemental abundances for 9 HB stars in NGC 6352

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Primas, F.; Johnson, R. A.

    2009-01-01

    Context: Metal-rich globular clusters provide important tracers of the formation of our Galaxy. Moreover, and not less important, they are very important calibrators for the derivation of properties of extra-galactic metal-rich stellar populations. Nonetheless, only a few of the metal-rich globular clusters in the Milky Way have been studied using high-resolution stellar spectra to derive elemental abundances. Additionally, Rosenberg et al. identified a small group of metal-rich globular clusters that appeared to be about 2 billion years younger than the bulk of the Milky Way globular clusters. However, it is unclear if like is compared with like in this dataset as we do not know the enhancement of α-elements in the clusters and the amount of α-elements is well known to influence the derivation of ages for globular clusters. Aims: We derive elemental abundances for the metal-rich globular cluster NGC 6352 and we present our methods to be used in up-coming studies of other metal-rich globular clusters. Methods: We present a study of elemental abundances for α- and iron-peak elements for nine HB stars in the metal-rich globular cluster NGC 6352. The elemental abundances are based on high-resolution, high signal-to-noise spectra obtained with the UVES spectrograph on VLT. The elemental abundances have been derived using standard LTE calculations and stellar parameters have been derived from the spectra themselves by requiring ionizational as well as excitational equilibrium. Results: We find that NGC 6352 has [Fe/H] = -0.55, is enhanced in the α-elements to about +0.2 dex for Ca, Si, and Ti relative to Fe. For the iron-peak elements we find solar values. Based on the spectroscopically derived stellar parameters we find that an E(B-V) = 0.24 and (m-M) ≃ 14.05 better fits the data than the nominal values. An investigation of log gf-values for suitable Fe i lines lead us to the conclusion that the commonly used correction to the May et al. (1974) data should not be employed. Full Table [see full text] are also only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/493/913 Based on observations collected at the European Southern Observatory, Chile, ESO No. 69.B-0467.

  10. Heavily reddened quasars at z ˜ 2 in the UKIDSS Large Area Survey: a transitional phase in AGN evolution

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; McMahon, Richard G.; Hewett, Paul C.; Alaghband-Zadeh, Susannah; Gonzalez-Solares, Eduardo; Venemans, Bram P.; Hawthorn, Melanie J.

    2012-12-01

    We present a new sample of purely near-infrared-selected KVega < 16.5 [KAB < 18.4] extremely red [(J - K)Vega > 2.5] quasar candidates at z ˜ 2 from ≃900 deg2 of data in the UKIDSS Large Area Survey (LAS). Five of these are spectroscopically confirmed to be heavily reddened type 1 active galactic nuclei (AGN) with broad emission lines bringing our total sample of reddened quasars from the UKIDSS-LAS to 12 at z = 1.4-2.7. At these redshifts, Hα (6563 Å) is in the K band. However, the mean Hα equivalent width of the reddened quasars is only 10 per cent larger than that of the optically selected population and cannot explain the extreme colours. Instead, dust extinction of AV ˜ 2-6 mag is required to reproduce the continuum colours of our sources. This is comparable to the dust extinctions seen in submillimetre galaxies at similar redshifts. We argue that the AGN are likely being observed in a relatively short-lived breakout phase when they are expelling gas and dust following a massive starburst, subsequently turning into UV-luminous quasars. Some of our quasars show direct evidence for strong outflows (v ˜ 800-1000 km s-1) affecting the Hα line consistent with this scenario. We predict that a larger fraction of reddened quasar hosts are likely to be submillimetre bright compared to the UV-luminous quasar population. We use our sample to place new constraints on the fraction of obscured type 1 AGN likely to be missed in optical surveys. Taken at face value our findings suggest that the obscured fraction depends on quasar luminosity. The space density of obscured quasars is approximately five times that inferred for UV-bright quasars from the Sloan Digital Sky Survey (SDSS) luminosity function at Mi < -30 but seems to drop at lower luminosities even accounting for various sources of incompleteness in our sample. We find that at Mi ˜ -28 for example, this fraction is unlikely to be larger than ˜20 per cent although these fractions are highly uncertain at present due to the small size of our sample. A deeper K-band survey for highly obscured quasars is clearly needed to test this hypothesis fully and is now becoming possible with new sensitive all-sky infrared surveys such as the VISTA Hemisphere Survey and the Wide Infrared Survey Explorer (WISE) All Sky Survey.

  11. Remote and Ground Truth Spectral Measurement Comparisons of FORMOSAT III

    NASA Technical Reports Server (NTRS)

    Abercromby, Kira Jorgensen; Hamada, Kris; Guyote, Michael; Okada, Jennifer; Barker, Edwin

    2007-01-01

    FORMOSAT III are a set of six research satellites from Taiwan that were launched in April 2006. The satellites are in 800 km, 71 degree inclination orbits and separated by 24 degrees in ascending node. Laboratory spectral measurements were taken of outer surface materials on FORMOSAT III. From those measurements, a computer model was built to predict the spectral reflectance accounting for both solar phase angle and orientation of the spacecraft relative to the observer. However, materials exposed to the space environment have exhibited spectral changes including a darkening and a "reddening" of the spectra. This "reddening" is characterized by an increase in slope of the reflectance as the wavelength increases. Therefore, the model of pre-flight materials was augmented to include the presumed causative agent: space weathering effects. Remote data were collected on two of the six FORMOSAT satellites using the 1.6 meter telescope at the AMOS (Air Force Maui Optical and Supercomputing) site with the Spica spectrometer. Due to the separation in ascending node, observations were acquired of whichever one of the six satellites was visible on that specific night. Three nights of data were collected using the red (6000 - 9500 angstroms) filter and five nights of data were collected using the blue (3200 - 6600 angstroms) filter. A comparison of the data showed a good match to the pre-flight models for the blue filter region. The absorption feature near 5500 angstroms due to the copper colored Kapton multi-layer insulation (MLI) was very apparent in the remote samples and a good fit to the data was seen in all satellites observed. The features in the red filter regime agreed with the pre-flight model up through 7000 angstroms where the reddening begins and the slope of the remote sample increases. A comparison of the satellites showed similar features in the red and blue filter regions, i.e. the satellite surfaces were aging at the same rate. A comparison of the pre-flight model to the first month of remote measurements showed the amount by which the satellite had reddened. The second month of data observed a satellite at a higher altitude and was therefore, not compared to the first month. A third month of data was collected but of satellites at the lower altitude regime and can only be compared to the first month. One cause of the reddening that was ruled out in early papers was a possible calibration issue.

  12. Lens fiber organization in four avian species: a scanning electron microscopic study.

    PubMed

    Willekens, B; Vrensen, G

    1985-01-01

    The three-dimensional organization of the eye lenses of the chicken, the canary, the song-thrush and the kestrel was studied using light and scanning electron microscopy. The lenses of birds are characterized by the presence of two distinct compartments: the annular pad and the main lens body, separated by a cavum lenticuli. The annular pad fibers had a hexagonal circumference all contained a round nucleus and except for the canary were smooth-surfaced and lacking anchoring devices. In the canary, however, the annular pad fibers were studded with edge protrusions and ball-and-socket junctions. The semicircular main lens body fibers of all four species were studded with ball-and-socket junctions and edge protrusions. In contrast with mammals these anchoring devices were present throughout the lens up to the embryonal nucleus. Superficially the main lens body fibers were extremely flat. Additionally membrane elevations and depressions and globular elements were found on these central fibers in three species, the kestrel being the exception. At the transition between annular pad and main lens body the fibers turned their course and the nuclei became oval and disappeared in the deeper aspect of the main lens body. The cavum lenticuli was filled with globules tied off from the annular pad fibers. It seems attractive to assume that the presence of a separated annular pad, a cavum lenticuli filled with globular elements, the extreme flatness of the superficial central fibers and the studding of these central fibers with anchoring devices up to the embryonal nucleus are morphological expressions of the mouldability of the bird's eye lenses and consequently would explain their efficient accommodative mechanism including formation of a lenticonus. The presence of nuclei in the annular pad fibers and their typical change at the transitional zone between annular pad and main lens body are suggestive for a two-phased differentiation in bird's lens fibers: differentiation of the germinative epithelial cells to annular pad fibers which migrate to the main lens body after which they differentiate further to main lens body fibers.

  13. Supra-galactic colour patterns in globular cluster systems

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.

    2017-07-01

    An analysis of globular cluster systems associated with galaxies included in the Virgo and Fornax Hubble Space Telescope-Advanced Camera Surveys reveals distinct (g - z) colour modulation patterns. These features appear on composite samples of globular clusters and, most evidently, in galaxies with absolute magnitudes Mg in the range from -20.2 to -19.2. These colour modulations are also detectable on some samples of globular clusters in the central galaxies NGC 1399 and NGC 4486 (and confirmed on data sets obtained with different instruments and photometric systems), as well as in other bright galaxies in these clusters. After discarding field contamination, photometric errors and statistical effects, we conclude that these supra-galactic colour patterns are real and reflect some previously unknown characteristic. These features suggest that the globular cluster formation process was not entirely stochastic but included a fraction of clusters that formed in a rather synchronized fashion over large spatial scales, and in a tentative time lapse of about 1.5 Gy at redshifts z between 2 and 4. We speculate that the putative mechanism leading to that synchronism may be associated with large scale feedback effects connected with violent star-forming events and/or with supermassive black holes.

  14. Temperature-accelerated molecular dynamics gives insights into globular conformations sampled in the free state of the AC catalytic domain.

    PubMed

    Selwa, Edithe; Huynh, Tru; Ciccotti, Giovanni; Maragliano, Luca; Malliavin, Thérèse E

    2014-10-01

    The catalytic domain of the adenyl cyclase (AC) toxin from Bordetella pertussis is activated by interaction with calmodulin (CaM), resulting in cAMP overproduction in the infected cell. In the X-ray crystallographic structure of the complex between AC and the C terminal lobe of CaM, the toxin displays a markedly elongated shape. As for the structure of the isolated protein, experimental results support the hypothesis that more globular conformations are sampled, but information at atomic resolution is still lacking. Here, we use temperature-accelerated molecular dynamics (TAMD) simulations to generate putative all-atom models of globular conformations sampled by CaM-free AC. As collective variables, we use centers of mass coordinates of groups of residues selected from the analysis of standard molecular dynamics (MD) simulations. Results show that TAMD allows extended conformational sampling and generates AC conformations that are more globular than in the complexed state. These structures are then refined via energy minimization and further unrestrained MD simulations to optimize inter-domain packing interactions, thus resulting in the identification of a set of hydrogen bonds present in the globular conformations. © 2014 Wiley Periodicals, Inc.

  15. Disrupted globular clusters and the gamma-ray excess in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Antonini, Fabio; Gnedin, Oleg Y.

    2018-04-01

    The Fermi Large Area Telescope has provided the most detailed view towards the Galactic Centre (GC) in high-energy gamma-rays. Besides the interstellar emission and point source contributions, the data suggest a residual diffuse gamma-ray excess. The similarity of its spatial distribution with the expected profile of dark matter has led to claims that this may be evidence for dark matter particle annihilation. Here, we investigate an alternative explanation that the signal originates from millisecond pulsars (MSPs) formed in dense globular clusters and deposited at the GC as a consequence of cluster inspiral and tidal disruption. We use a semi-analytical model to calculate the formation, migration, and disruption of globular clusters in the Galaxy. Our model reproduces the mass of the nuclear star cluster and the present-day radial and mass distribution of globular clusters. For the first time, we calculate the evolution of MSPs from disrupted globular clusters throughout the age of the Galaxy and consistently include the effect of the MSP spin-down due to magnetic-dipole braking. The final gamma-ray amplitude and spatial distribution are in good agreement with the Fermi observations and provide a natural astrophysical explanation for the GC excess.

  16. Oldest Known Objects May Be Surprisingly Immature

    NASA Astrophysics Data System (ADS)

    2008-04-01

    Some of the oldest objects in the Universe may still have a long way to go, according to a new study using NASA’s Chandra X-ray Observatory. These new results indicate that globular clusters might be surprisingly less mature in their development than previously thought. Globular clusters, dense bunches of up to millions of stars found in all galaxies, are among the oldest known objects in the Universe, with most estimates of their ages ranging from 9 to 13 billions of years old. As such they contain some of the first stars to form in a galaxy and understanding their evolution is critical to understanding the evolution of galaxies. Animation The Evolution of a Globular Cluster "For many years, globular clusters have been used as wonderful natural laboratories to study the evolution and interaction of stars," said John Fregeau of Northwestern University, who conducted the study. "So, it’s exciting to discover something that may be new and fundamental about the way they evolve." Conventional wisdom is that globular clusters pass through three phases of evolution or development of their structure, corresponding to adolescence, middle age, and old age. These "ages" refer to the evolutionary state of the cluster, not the physical ages of the individual stars. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Discovery of Most Recent Supernova in Our Galaxy Action Replay of Powerful Stellar Explosion Jet Power and Black Hole Assortment Revealed in New Chandra Image In the adolescent phase, the stars near the center of the cluster collapse inward. Middle age refers to a phase when the interactions of double stars near the center of the cluster prevents it from further collapse. Finally, old age describes when binaries in the center of the cluster are disrupted or ejected, and the center of the cluster collapses inwards. For years, it has been thought that most globular clusters are middle- aged with a few being toward the end of their evolution. However, Chandra data along with theoretical work suggest this may not be the case. When single and double stars interact in the crowded centers of globular clusters, double stars can form that transfer mass and give off X-rays. Since such double stars are expected to mostly be formed in the middle of a globular cluster’s evolution and then lost in old age, the relative number of X-ray sources gives clues about the stage of evolution the cluster is in. A new study by Fregeau of 13 globular clusters in the Milky Way shows that three of them have unusually large number of X-ray sources, or X- ray binaries, suggesting the clusters are middle-aged. Previously, these globular clusters had been classified as being in old age because they had very tight concentrations of stars in their centers, another litmus test of age used by astronomers. The implication is that most globular clusters, including the other ten studied by Fregeau, are not in the middle age of their evolution, as previously thought, but are actually in adolescence. "It’s remarkable that these objects, which are thought to be some of the oldest in the Universe, may really be very immature in their development," said Fregeau whose paper appears in The Astrophysical Journal. "This would represent a major change in thinking about the current evolutionary status of globular clusters." If confirmed, this result would help reconcile other observations with recent theoretical work that suggest the tightness of the central concentration of stars in the most evolved globular clusters is consistent with them being in a middle, rather than an advanced phase of evolution. Other theoretical studies have suggested it can take longer than the current age of the Universe for globular clusters to reach old age. Besides improving the understanding of the basic evolution of globular clusters, this result has implications for understanding stellar interactions in dense environments. It also removes the need for exotic mechanisms - some involving black holes - that were thought to be needed to prevent the many middle-aged clusters from collapsing. "Some exotic scenarios, including some of my own, have been invoked to try to make sense of the observations and save the old theory," said Fregeau. "If this result holds up, we don't have to worry about the exotic scenarios any more." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency’s Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  17. The Formation of Cluster Populations Through Direct Galaxy Collisions

    NASA Astrophysics Data System (ADS)

    Peterson, Bradley W.; Smith, Beverly J.; Struck, Curtis

    2016-01-01

    Much progress has been made on the question of how globular clusters form. In particular, the study of extragalactic populations of young, high-mass clusters ("super star clusters") has revealed a class of objects can evolve into globular clusters. The process by which these clusters form, and how many survive long enough to become globular clusters, is not wholly understood. Here, we use new data on the colliding galaxy system Arp 261 to investigate the possibility that young, massive clusters form in greater numbers during direct galaxy collisions, compared to less direct tidal collisions.

  18. Sistemas de cúmulos globulares extragalácticos

    NASA Astrophysics Data System (ADS)

    Forte, J. C.

    Se describen las características de los sistemas de cúmulos globulares asociados a galaxias elípticas en una variedad de medios y, en particular, aquellas vinculadas con la distribución espacial, frecuencia específica y composición química. Esta discusión se hace dentro de un conjunto de esquemas orientados a explicar las primeras fases de la formación de las galaxias dominantes en cúmulos y del rol de los sistemas de cúmulos globulares en esos procesos.

  19. Blue Straggler Stars in the Globular Cluster M53

    NASA Astrophysics Data System (ADS)

    Rey, S. C.; Lee, Young-Wook; Chun, Mun-Suk; Byun, Yong-Ik

    The first large-format CCD color-magnitude diagram (CMD) in the B and V passbands is presented for the Galactic globular cluster M53 (NGC 5024). We have discovered more than 100 new blue straggler (BS) candidates in the field of M53. The analysis of bright BS stars (V < 19.0) clearly shows a bimodal radial distribution, with a high frequency in the inner and outer regions. The distribution is similar to that found in M3, a globular cluster with similar central density and concentration.

  20. Horizontal branch stars, and galactic and magellanic cloud globular clusters

    NASA Technical Reports Server (NTRS)

    Deboer, K. S.

    1981-01-01

    Seven blue horizontal branch stars in the field were observed and a few HB stars were isolated in globular clusters. Energy distributions are compared to assess possible differences and also used in comparison with model atmospheres. Observed energy distributions of HB stars in NGC 6397 are used to estimate the total number of HB stars which produced the integrated fluxes as observed by ANS. Preliminary results are given for colors of globular clusters observed in the Magellanic Clouds and for their extent, based on the Washburn IUE extraction.

  1. Predictions of a population of cataclysmic variables in globular clusters

    NASA Technical Reports Server (NTRS)

    Di Stefano, R.; Rappaport, S.

    1994-01-01

    We have studied the number of cataclysmic variables (CVs) that should be active in globular clusters during the present epoch as a result of binary formation via two-body tidal capture. We predict the orbital period and luminosity distributions of CVs in globular clusters. The results arebased on Monte Carlo simulations combined with evolution calculations appropriate to each system formed during the lifetime of two specific globular clusters, omega Cen and 47 Tuc. From our study of these two clusters, which represent the range of core densities and states of mass segregation that are likely to be interesting, we extrapolate our results to the Galactic globlular cluster system. Although there is at present little direct observational evidence of CVs in globular clusters, we find that there should be a large number of active systems. We predict that there should be more than approximately 100 CVs in both 47 Tuc and omega Cen and several thousand in the Galactic globular cluster system. These numbers are based on two-body processes alone and represent a lower bound on the number of systems that may have been formed as a result of stellar interaction within globular clusters. The relation between these calculations and the paucity of optically detected CVs in globular clusters is discussed. Should future observations fail to find convincing evidence of a substantial population of cluster CVs, then the two-body tidal capture scenario is likely to be seriously constrained. Of the CVs we espect in 47 Tuc and omega Cen, approximately 45 and 20, respectively, should have accretion luminosities above 10(exp 33) ergs/s. If one utilizes a relation for converting accretion luminosity to hard X-ray luminosity that is based on observations of Galactic plane CVs, even these sources will not exhibit X-ray luminosities above 10(exp 33) ergs/s. While we cannot account directly for the most luminous subset of the low-luminosity globular cluster X-ray sources without assuming an evolutionary pattern that is different from that of the majority of CVs in the disk, we are able to account for all of the observed lower luminosity subset of these sources, many of which have been recently discovered through ROSAT observations. In order for our predicted integrated cluster X-ray luminosities to be consistent with observational upper limits, the relation between accretion and X-ray luminosities should be something like that inferred from the Galactic plane population of CVs. Our calculations predict a large number of systems with L(sub acc) is less than 10(exp 32) ergs/s. Although our calculations imply that globular clusters should have an enhancement of CVs relative to the number thought to be present in the Galactic disk, this enhancement is at most roughly an order of magnitude, not comparable to the factor of approximately 100 for low-mass X-ray binaries (LMXBs).

  2. p-capture reaction cycles in rotating massive stars and their impact on elemental abundances in globular cluster stars: A case study of O, Na and Al

    NASA Astrophysics Data System (ADS)

    Mahanta, Upakul; Goswami, Aruna; Duorah, Hiralal; Duorah, Kalpana

    2017-08-01

    Elemental abundance patterns of globular cluster stars can provide important clues for understanding cluster formation and early chemical evolution. The origin of the abundance patterns, however, still remains poorly understood. We have studied the impact of p-capture reaction cycles on the abundances of oxygen, sodium and aluminium considering nuclear reaction cycles of carbon-nitrogen-oxygen-fluorine, neon-sodium and magnesium-aluminium in massive stars in stellar conditions of temperature range 2×107 to 10×107 K and typical density of 102 gm cc-1. We have estimated abundances of oxygen, sodium and aluminium with respect to Fe, which are then assumed to be ejected from those stars because of rotation reaching a critical limit. These ejected abundances of elements are then compared with their counterparts that have been observed in some metal-poor evolved stars, mainly giants and red giants, of globular clusters M3, M4, M13 and NGC 6752. We observe an excellent agreement with [O/Fe] between the estimated and observed abundance values for globular clusters M3 and M4 with a correlation coefficient above 0.9 and a strong linear correlation for the remaining two clusters with a correlation coefficient above 0.7. The estimated [Na/Fe] is found to have a correlation coefficient above 0.7, thus implying a strong correlation for all four globular clusters. As far as [Al/Fe] is concerned, it also shows a strong correlation between the estimated abundance and the observed abundance for globular clusters M13 and NGC 6752, since here also the correlation coefficient is above 0.7 whereas for globular cluster M4 there is a moderate correlation found with a correlation coefficient above 0.6. Possible sources of these discrepancies are discussed.

  3. HD 38452 - J. R. Hind's star that changed colour

    NASA Technical Reports Server (NTRS)

    Warner, Brian; Sneden, Christopher

    1988-01-01

    In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in color. It is shown that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra, and ground-based photometry, HD 38451 is found to be a normal A21V shell star. Its current values of E(B-V) of about 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time.

  4. Spectrophotometric observations of symbiotic stars and related objects

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Feibelman, W. A.; Michalitsianos, A. G.; Stencel, R. E.

    1983-01-01

    Calibrated optical spectrophotometric observations of 16 symbiotic and symbiotic-like objects are presented. The objects observed include Z And, T CrB, CH Cyg, CI Cyg, V1016 Cyg, V1329 Cyg, AG Dra, YY Her, RS Oph, XX Oph, AG Peg, AX Per, CL Sco, HM Sge, AS 289, and M1-2. Integrated emission-line intensities are tabulated for comparison with ultraviolet and infrared data, as well as with previous optical studies. The reddening to each of the objects is derived by assuming that Balmer lines are emitted in their case B recombination ratios. However, the values so derived are often systematically higher than reddening estimates from the ultraviolet 2200 A feature. Comparisons with the available data from other wavelength ranges are noted.

  5. The dwarf spheroidal galaxy in Draco. I - New BV photometry. II - Galactic foreground reddening

    NASA Technical Reports Server (NTRS)

    Stetson, P. B.

    1979-01-01

    BV photoelectric photometry for 39 stars and BV photographic photometry for 514 stars in the field of the Draco dwarf spheroidal galaxy are presented. The color-magnitude diagram for 512 of these field stars is found to display a well-defined red horizontal branch as well as a red giant branch whose observed width is comparable to the accidental photometric error. The results also indicate that a more diffuse sequence of stars lies about 0.1 mag to the blue of the giant branch and that an upper horizontal branch of more massive core helium-burning stars may also be present. The foreground reddening toward Draco is then determined by narrow-band uvby-beta photometry of galactic B-A-F stars.

  6. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  7. LUMINOSITY FUNCTIONS OF LMXBs IN CENTAURUS A: GLOBULAR CLUSTERS VERSUS THE FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Rasmus; Gilfanov, Marat; Sivakoff, Gregory R.

    2009-08-10

    We study the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXB) in the nearby early-type galaxy Centaurus A, concentrating primarily on two aspects of binary populations: the XLF behavior at the low-luminosity limit and the comparison between globular cluster and field sources. The 800 ksec exposure of the deep Chandra VLP program allows us to reach a limiting luminosity of {approx}8 x 10{sup 35} erg s{sup -1}, about {approx}2-3 times deeper than previous investigations. We confirm the presence of the low-luminosity break of the overall LMXB XLF at log(L{sub X} ) {approx} 37.2-37.6, below which the luminosity distribution followsmore » a dN/d(ln L) {approx} const law. Separating globular cluster and field sources, we find a statistically significant difference between the two luminosity distributions with a relative underabundance of faint sources in the globular cluster population. This demonstrates that the samples are drawn from distinct parent populations and may disprove the hypothesis that the entire LMXB population in early-type galaxies is created dynamically in globular clusters. As a plausible explanation for this difference in the XLFs, we suggest an enhanced fraction of helium-accreting systems in globular clusters, which are created in collisions between red giants and neutron stars. Due to the four times higher ionization temperature of He, such systems are subject to accretion disk instabilities at {approx}20 times higher mass accretion rate and, therefore, are not observed as persistent sources at low luminosities.« less

  8. Hubble Sees an Ancient Globular Cluster

    NASA Image and Video Library

    2017-12-08

    This image captures the stunning NGC 6535, a globular cluster 22,000 light-years away in the constellation of Serpens (The Serpent) that measures one light-year across. Globular clusters are tightly bound groups of stars which orbit galaxies. The large mass in the rich stellar centre of the globular cluster pulls the stars inward to form a ball of stars. The word globulus, from which these clusters take their name, is Latin for small sphere. Globular clusters are generally very ancient objects formed around the same time as their host galaxy. To date, no new star formation has been observed within a globular cluster, which explains the abundance of aging yellow stars in this image, most of them containing very few heavy elements. NGC 6535 was first discovered in 1852 by English astronomer John Russell Hind. The cluster would have appeared to Hind as a small, faint smudge through his telescope. Now, over 160 years later, instruments like the Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) on the NASA/ European Space Agency (ESA) Hubble Space Telescope allow us to marvel at the cluster and its contents in greater detail. Credit: ESA/Hubble & NASA, Acknowledgement: Gilles Chapdelaine NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. A home for old stars

    NASA Image and Video Library

    2015-12-14

    This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20 000 light-years from us in the constellation of Scorpius (The Scorpion), it is one of about 150 globular clusters belonging to our galaxy, the Milky Way. Typical globular clusters are collections of around a hundred thousand stars, held together by their mutual gravitational attraction in a spherical shape a few hundred light-years across. It is thought that every galaxy has a population of globular clusters. Some, like the Milky Way, have a few hundred, while giant elliptical galaxies can have several thousand. They contain some of the oldest stars in a galaxy, hence the reddish colours of the stars in this image — the bright blue ones are foreground stars, not part of the cluster. The ages of the stars in the globular cluster tell us that they were formed during the early stages of galaxy formation! Studying them can also help us to understand how galaxies formed. Terzan 1, like many globular clusters, is a source of X-rays. It is likely that these X-rays come from binary star systems that contain a dense neutron star and a normal star. The neutron star drags material from the companion star, causing a burst of X-ray emission. The system then enters a quiescent phase in which the neutron star cools, giving off X-ray emission with different characteristics, before enough material from the companion builds up to trigger another outburst.

  10. Establishment of Constraints on Amyloid Formation Imposed by Steric Exclusion of Globular Domains.

    PubMed

    Azizyan, Rafayel A; Garro, Adriana; Radkova, Zinaida; Anikeenko, Alexey; Bakulina, Anastasia; Dumas, Christian; Kajava, Andrey V

    2018-06-01

    In many disease-related and functional amyloids, the amyloid-forming regions of proteins are flanked by globular domains. When located in close vicinity of the amyloid regions along the chain, the globular domains can prevent the formation of amyloids because of the steric repulsion. Experimental tests of this effect are few in number and non-systematic, and their interpretation is hampered by polymorphism of amyloid structures. In this situation, modeling approaches that use such a clear-cut criterion as the steric tension can give us highly trustworthy results. In this work, we evaluated this steric effect by using molecular modeling and dynamics. As an example, we tested hybrid proteins containing an amyloid-forming fragment of Aβ peptide (17-42) linked to one or two globular domains of GFP. Searching for the shortest possible linker, we constructed models with pseudo-helical arrangements of the densely packed GFPs around the Aβ amyloid core. The molecular modeling showed that linkers of 7 and more residues allow fibrillogenesis of the Aβ-peptide flanked by GFP on one side and 18 and more residues when Aβ-peptide is flanked by GFPs on both sides. Furthermore, we were able to establish a more general relationship between the size of the globular domains and the length of the linkers by using analytical expressions and rigid body simulations. Our results will find use in planning and interpretation of experiments, improvement of the prediction of amyloidogenic regions in proteins, and design of new functional amyloids carrying globular domains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellarmore » features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.« less

  12. Astrometry in the globular cluster M13. II. Membership probabilities from old proper motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cudworth, K.

    Astrometric cluster membership probabilities have been derived from proper motions measured by other authors for stars in the region of the globular cluster M13. Several stars of individual interest are discussed.

  13. Shaping Globular Clusters with Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation, single and binary star evolution, galactic tides, and multi-body encounters. From their grid of models with varying input parameters, the authors then determine which fit best to NGC 3201s final observational properties.Surface brightness profiles for all globular-cluster models at late times compared to observations of NGC 3201 (yellow circles). Blue lines represent models with few retained black holes; black lines represent models with many retained black holes. [Kremer et al. 2018]Retention MattersKremer and collaborators find that the models that best represent NGC 3201 all retain more than 200 black holes at the end of the simulation; models that lost too many black holes due to natal kicks did not match observations of NGC 3201 as well. The models with large numbers of retained black holes also harbored binaries just like the one recently detected in NGC 3201.Models that retain few black holes, on the other hand, may instead be good descriptions of so-called core-collapsed globular clusters observed in the Milky Way. The authors demonstrate that these clusters could contain black holes in binaries with stars known as blue stragglers, which may also be detectable with radial velocity techniques.Kremer and collaborators results suggest that globular clusters similar to NGC 3201 contain hundreds of invisible black holes waiting to be discovered, and they indicate some of the differences in cluster properties caused by hosting such a large population of black holes. We can hope that future observations and modeling will continue to illuminate the complicated relationship between globular clusters and the black holes that live in them.CitationKyle Kremer et al 2018 ApJL 855 L15. doi:10.3847/2041-8213/aab26c

  14. Observing RR Lyrae Variables in the M3 Globular Cluster with the BYU West Mountain Observatory (Abstract)

    NASA Astrophysics Data System (ADS)

    Joner, M. D.

    2016-06-01

    (Abstract only) We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on the northern hemisphere globular cluster NGC 5272 (M3). We made 216 observations in the V filter spaced between March and August 2012. We present light curves of the M3 RR Lyrae stars using different techniques. We compare light curves produced using DAOPHOT and ISIS software packages for stars in both the halo and core regions of this globular cluster. The light curve fitting is done using FITLC.

  15. Stellar black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve

    1993-01-01

    The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.

  16. Detection of high-energy gamma-ray emission from the globular cluster 47 Tucanae with Fermi.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Wang, P; Webb, N; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.

  17. Dating the Tidal Disruption of Globular Clusters with GAIA Data on Their Stellar Streams

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Ginsburg, Idan; Loeb, Abraham

    2018-05-01

    The Gaia mission promises to deliver precision astrometry at an unprecedented level, heralding a new era for discerning the kinematic and spatial coordinates of stars in our Galaxy. Here, we present a new technique for estimating the age of tidally disrupted globular cluster streams using the proper motions and parallaxes of tracer stars. We evolve the collisional dynamics of globular clusters within the evolving potential of a Milky Way-like halo extracted from a cosmological ΛCDM simulation and analyze the resultant streams as they would be observed by Gaia. The simulations sample a variety of globular cluster orbits, and account for stellar evolution and the gravitational influence of the disk of the Milky Way. We show that a characteristic timescale, obtained from the dispersion of the proper motions and parallaxes of stars within the stream, is a good indicator for the time elapsed since the stream has been freely expanding away due to the tidal disruption of the globular cluster. This timescale, in turn, places a lower limit on the age of the cluster. The age can be deduced from astrometry using a modest number of stars, with the error on this estimate depending on the proximity of the stream and the number of tracer stars used.

  18. Star Streams and the Assembly History of the Galaxy

    NASA Astrophysics Data System (ADS)

    Carlberg, Raymond G.

    2017-03-01

    Thin halo star streams originate from the evaporation of globular clusters and therefore provide information about the early epoch globular cluster population. The observed tidal tails from halo globular clusters in the Milky Way are much shorter than expected from a star cluster orbiting for 10 Gyr. The discrepancy is likely the result of the assumptions that nearly nonevolving clusters have been orbiting in a nonevolving galactic halo for a Hubble time. As a first step toward more realistic stream histories, a toy model that combines an idealized merger model with a simplified model of the internal collisional relaxation of individual star clusters is developed. On average, the resulting stream velocity dispersion increases with distance, causing the density of the stream to decline with distance. The accretion time sets an upper limit to the length of the readily visible stream, with the internal evolution of the cluster usually playing the dominant role in limiting the sky visibility of the older parts of streams. Nevertheless, the high surface density segment of the stellar streams created from the evaporation of the more massive globular clusters should all be visible in low-obscuration parts of the sky if closer than about 30 kpc. The Pan-STARRS1 halo volume is used to compare the numbers of halo streams and globular clusters.

  19. Abundances of Local Group Globular Clusters Using High Resolution Integrated Light Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; McWilliam, A.; Venn, K.; Shetrone, M. D.; Dotter, A. L.; Mackey, D.

    2014-01-01

    Abundances and kinematics of extragalactic globular clusters provide valuable clues about galaxy and globular cluster formation in a wide variety of environments. In order to obtain such information about distant, unresolved systems, specific observational techniques are required. An Integrated Light Spectrum (ILS) provides a single spectrum from an entire stellar population, and can therefore be used to determine integrated cluster abundances. This dissertation investigates the accuracy of high resolution ILS analysis methods, using ILS (taken with the Hobby-Eberly Telescope) of globular clusters associated with the Milky Way (47 Tuc, M3, M13, NGC 7006, and M15) and then applies the method to globular clusters in the outer halo of M31 (from the Pan-Andromeda Archaeological Survey, or PAndAS). Results show that: a) as expected, the high resolution method reproduces individual stellar abundances for elements that do not vary within a cluster; b) the presence of multiple populations does affect the abundances of elements that vary within the cluster; c) certain abundance ratios are very sensitive to systematic effects, while others are not; and d) certain abundance ratios (e.g. [Ca/Fe]) can be accurately obtained from unresolved systems. Applications of ILABUNDS to the PAndAS clusters reveal that accretion may have played an important role in the formation of M31's outer halo.

  20. Unraveling the Planar-Globular Transition in Gold Nanoclusters through Evolutionary Search

    DOE PAGES

    Kinaci, Alper; Narayanan, Badri; Sen, Fatih G.; ...

    2016-11-28

    Au nanoclusters are of technological relevance for catalysis, photonics, sensors, and of fundamental scientific interest owing to planar to globular structural transformation at an anomalously high number of atoms i.e. in the range 12-14. The nature and causes of this transition remain a mystery. In order to unravel this conundrum, high throughput density functional theory (DFT) calculations, coupled with a global structural optimization scheme based on a modified genetic algorithm (GA) are conducted. Furthermore, more than 20,000 Au 12, Au 13, and Au 14 nanoclusters are evaluated. With any DFT functional, globular and planar structures coexist across the size rangemore » of interest. Contrary to what was previously believed, the planar-globular transition is gradual at room temperature rather than a sharp transition. The effects of anionicity, s-d band hybridization and long range interactions on the dimensional transition are quantified by using the structures adjacent to minima. Anionicity marginally changes the relative stability of the clusters. The degree of s-d hybridization is varied via changing the Hubbard U value which corroborate that s-d hybridization alone does not stabilize planar structures. van der Waals interactions, on the other hand, stabilize globular structures. Our results elucidate the balance between the different reasons of the dimensional transition in gold nanoclusters.« less

  1. Host Galaxies of Dust-Reddened QSOs

    NASA Astrophysics Data System (ADS)

    Urrutia, T.; Lacy, M.; Becker, R.; Gregg, M.; Helfand, D.; White, R.

    2005-12-01

    We present Hubble/ACS observations of 13 dust-reddened Type 1 quasars to study the properties of their host galaxies. The quasars have a mean reddening of E(B-V) = 0.8 and lie at moderate redshifts (0.4 < z < 1.0). Images were taken in I and g' band during one or two Hubble orbits. After correcting for absorption the absolute magnitudes of the quasars lie around MV = -27. We are just probing the tip of the luminosity iceberg and there must be many more obscured quasars at these redshifts. The images show extensive merger activity such as tidal tails and various compact halos even before subtracting the quasar contribution. The red quasar phenomenon is likely to be an evolutionary effect. The young quasar is obscured while the dust of the merging galaxies is still settling in. None of the quasars fit a perfect elliptical profile after subtracting the PSF as all of them show many irregularities. The host galaxies also seem to be having bluer colors that typical galaxies, although there is a large scatter in the data. This would argue for recent star-formation most likely triggered my the merger, in concordance with models arguing the emergence of AGN from dusty Starburst galaxies. This work was partly performed under the auspices of the US Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  2. A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker

    2018-04-01

    We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.

  3. DUST-CORRECTED COLORS REVEAL BIMODALITY IN THE HOST-GALAXY COLORS OF ACTIVE GALACTIC NUCLEI AT z {approx} 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardamone, Carolin N.; Megan Urry, C.; Brammer, Gabriel

    2010-09-20

    Using new, highly accurate photometric redshifts from the MUSYC medium-band survey in the Extended Chandra Deep Field-South (ECDF-S), we fit synthetic stellar population models to compare active galactic nucleus (AGN) host galaxies to inactive galaxies at 0.8 {<=} z {<=} 1.2. We find that AGN host galaxies are predominantly massive galaxies on the red sequence and in the green valley of the color-mass diagram. Because both passive and dusty galaxies can appear red in optical colors, we use rest-frame near-infrared colors to separate passively evolving stellar populations from galaxies that are reddened by dust. As with the overall galaxy population,more » {approx}25% of the 'red' AGN host galaxies and {approx}75% of the 'green' AGN host galaxies have colors consistent with young stellar populations reddened by dust. The dust-corrected rest-frame optical colors are the blue colors of star-forming galaxies, which imply that these AGN hosts are not passively aging to the red sequence. At z {approx} 1, AGN activity is roughly evenly split between two modes of black hole growth: the first in passively evolving host galaxies, which may be heating up the galaxy's gas and preventing future episodes of star formation, and the second in dust-reddened young galaxies, which may be ionizing the galaxy's interstellar medium and shutting down star formation.« less

  4. Space Weathering of Silicates Simulated by Successive Laser Irradiation: In Situ Reflectance Measurements of Fo90, Fo99+, and Sio2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Dukes, C. A.; Christoffersen, R.; Baragiola, R. A.

    2016-01-01

    Pulsed-laser irradiation causes the visible-near-infrared spectral slope of olivine (Fo90 and Fo99+) and SiO2 to increase (redden), while the olivine samples darken and the SiO2 samples brighten slightly. XPS analysis shows that irradiation of Fo90 produces metallic Fe. Analytical SEM and TEM measurements confirm that reddening in the Fo90 olivine samples correlates with the production of nanophase metallic Fe (npFe0) grains, 2050 nm in size. The reddening observed in the SiO2 sample is consistent with the formation of SiO or other SiOx species that absorb in the visible. The weak spectral brightening induced by laser irradiation of SiO2 is consistent with a change in surface topography of the sample. The darkening observed in the olivine samples is likely caused by the formation of larger npFe0 particles, such as the 100400 nm diameter npFe0 identified during our TEM analysis of Fo90 samples. The Fo90 reflectance spectra are qualitatively similar to those in previous experiments suggesting that in all cases formation of npFe0 is causing the spectral alteration. Finally, we find that the accumulation of successive laserpulses cause continued sample darkening in the Vis-NIR, which suggests that repeated surface impacts are an efficient way to darken airless body surfaces.

  5. Cirrhosis

    MedlinePlus

    ... weight loss Nausea or belly pain Small, red spider-like blood vessels on the skin As liver ... result of too much fluid Reddened palms Red spider-like blood vessels on the skin Small testicles ...

  6. Evidence of differential tidal effects in the old globular cluster population of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Mackey, A. D.

    2018-04-01

    We present for the first time extended stellar density and/or surface brightness radial profiles for almost all the known Large Magellanic Cloud (LMC) old globular clusters (GCs). These were built from DECam images and reach out to ˜ 4 times the GCs' tidal radii. The background subtracted radial profiles reveal that the GCs located closer than ˜ 5 kpc from the LMC centre contain an excess of stars in their outermost regions with respect to the stellar density expected from a King profile. Such a residual amount of stars - not seen in GCs located farther than ˜ 5 kpc from the LMC centre-, as well as the GCs' dimensions, show a clear dependence with the GCs' positions in the galaxy, in the sense that, the farther the GC from the centre of the LMC, the larger both the excess of stars in its outskirts and size. Although the masses of GCs located inside and outside ˜ 5 kpc are commensurate, the outermost regions of GCs located closer than ˜ 5 kpc from the LMC centre appear to have dynamically evolved more quickly. These outcomes can be fully interpreted in the light of the known GC radial velocity disc-like kinematics, from which GCs have been somehow mostly experiencing the influence of the LMC gravitational field at their respective mean distances from the LMC centre.

  7. A class of spherical, truncated, anisotropic models for application to globular clusters

    NASA Astrophysics Data System (ADS)

    de Vita, Ruggero; Bertin, Giuseppe; Zocchi, Alice

    2016-05-01

    Recently, a class of non-truncated, radially anisotropic models (the so-called f(ν)-models), originally constructed in the context of violent relaxation and modelling of elliptical galaxies, has been found to possess interesting qualities in relation to observed and simulated globular clusters. In view of new applications to globular clusters, we improve this class of models along two directions. To make them more suitable for the description of small stellar systems hosted by galaxies, we introduce a "tidal" truncation by means of a procedure that guarantees full continuity of the distribution function. The new fT(ν)-models are shown to provide a better fit to the observed photometric and spectroscopic profiles for a sample of 13 globular clusters studied earlier by means of non-truncated models; interestingly, the best-fit models also perform better with respect to the radial-orbit instability. Then, we design a flexible but simple two-component family of truncated models to study the separate issues of mass segregation and multiple populations. We do not aim at a fully realistic description of globular clusters to compete with the description currently obtained by means of dedicated simulations. The goal here is to try to identify the simplest models, that is, those with the smallest number of free parameters, but still have the capacity to provide a reasonable description for clusters that are evidently beyond the reach of one-component models. With this tool, we aim at identifying the key factors that characterize mass segregation or the presence of multiple populations. To reduce the relevant parameter space, we formulate a few physical arguments based on recent observations and simulations. A first application to two well-studied globular clusters is briefly described and discussed.

  8. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  9. The Nature and Origin of UCDs in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Tully, R. Brent; Madrid, Juan; Phillipps, Steven; Carter, David; Peng, Eric

    2018-01-01

    UCDs are super massive star clusters found largely in dense regions but have also been found around individual galaxies and in smaller groups. Their origin is still under debate but currently favored scenarios include formation as giant star clusters, either as the brightest globular clusters or through mergers of super star clusters, themselves formed during major galaxy mergers, or as remnant nuclei from tidal stripping of nucleated dwarf ellipticals. Establishing the nature of these enigmatic objects has important implications for our understanding of star formation, star cluster formation, the missing satellite problem, and galaxy evolution. We are attempting to disentangle these competing formation scenarios with a large survey of UCDs in the Coma cluster. Using ACS two-passband imaging from the HST/ACS Coma Cluster Treasury Survey, we are using colors and sizes to identify the UCD cluster members. With a large size limited sample of the UCD population within the core region of the Coma cluster, we are investigating the population size, properties, and spatial distribution, and comparing that with the Coma globular cluster and nuclear star cluster populations to discriminate between the threshing and globular cluster scenarios. In previous work, we had found a possible correlation of UCD colors with host galaxy and a possible excess of UCDs around a non-central giant galaxy with an unusually large globular cluster population, both suggestive of a globular cluster origin. With a larger sample size and additional imaging fields that encompass the regions around these giant galaxies, we have found that the color correlation with host persists and the giant galaxy with unusually large globular cluster population does appear to host a large UCD population as well. We present the current status of the survey.

  10. Assessing the Milky Way Satellites Associated with the Sagittarius Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Law, David R.; Majewski, Steven R.

    2010-08-01

    Numerical models of the tidal disruption of the Sagittarius (Sgr) dwarf galaxy have recently been developed that for the first time simultaneously satisfy most observational constraints on the angular position, distance, and radial velocity trends of both leading and trailing tidal streams emanating from the dwarf. We use these dynamical models in combination with extant three-dimensional position and velocity data for Galactic globular clusters and dSph galaxies to identify those Milky Way satellites that are likely to have originally formed in the gravitational potential well of the Sgr dwarf, and have been stripped from Sgr during its extended interaction with the Milky Way. We conclude that the globular clusters Arp 2, M 54, NGC 5634, Terzan 8, and Whiting 1 are almost certainly associated with the Sgr dwarf, and that Berkeley 29, NGC 5053, Pal 12, and Terzan 7 are likely to be as well (albeit at lower confidence). The initial Sgr system therefore may have contained five to nine globular clusters, corresponding to a specific frequency SN = 5-9 for an initial Sgr luminosity MV = -15.0. Our result is consistent with the 8 ± 2 genuine Sgr globular clusters expected on the basis of statistical modeling of the Galactic globular cluster distribution and the corresponding false-association rate due to chance alignments with the Sgr streams. The globular clusters identified as most likely to be associated with Sgr are consistent with previous reconstructions of the Sgr age-metallicity relation, and show no evidence for a second-parameter effect shaping their horizontal branch morphologies. We find no statistically significant evidence to suggest that any of the recently discovered population of ultrafaint dwarf galaxies are associated with the Sgr tidal streams, but are unable to rule out this possibility conclusively for all systems.

  11. Mass to Luminosity Ratios of Some Clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sohn, Young-Jong; Chun, Mun-Suk

    1990-12-01

    Luminosity profiles and dynamical parameters of 12 globular clusters in the Large Magellanic Cloud(SB(s)m) are obtained from the concentric aperture photoelectric photometry of 3 different aged clusters and the collected photometric data of 9 clusters. The total masses of the globular clusters are the calculated using the equation M = Mrt3(4¥Ø2-k2), which is derived from the theoretical rotation curve for the exponential disk(Chun 1987). These masses lie between 0.3 x 104 and 15.8 x 104 M . From the determined total mass and luminosity ratios are also derived. The M/L ratio of a cluster increases with the cluster age; about 0.03 for the youngest clusters(SWB ¥°) and about 0.24 for the oldest clusters(SUB ¥¶). There is a difference in M/L by a factor of 10 between the galactic globular clusters and the old globular clusters in the LCM.

  12. VizieR Online Data Catalog: RR Lyrae in 15 Galactic globular clusters (Dambis+, 2014)

    NASA Astrophysics Data System (ADS)

    Dambis, A. K.; Rastorguev, A. S.; Zabolotskikh, M. V.

    2014-11-01

    Last year, the WISE All-Sky Data Release (Cutri et al., 2012, Cat. II/328) was made public, mapping the entire sky in four mid-infrared bands W1, W2, W3 and W4 with the effective wavelengths of 3.368, 4.618, 12.082 and 22.194um, respectively. We cross-correlated the WISE single-exposure data base with the Catalogue of Galactic globular-cluster variables by Clement et al. (2001AJ....122.2587C), the Catalogue of Accurate Equatorial Coordinates for Variable Stars in Globular Clusters by Samus et al. (2009PASP..121.1378S, Cat. J/PASP/121/1378) and the catalogue of Sawyer Hogg (1973PDDO....3....6S, Cat. V/97) (for ω Cen, NGC 6723 and NGC 6934) to compute (via Fourier fits) the intensity-mean average W1- and W2-band magnitudes, and , for a total of 357 and 272 RR Lyrae type variables in 15 and 9 Galactic globular clusters, respectively. (1 data file).

  13. No sign (yet) of intergalactic globular clusters in the Local Group

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Beasley, M. A.; Leaman, R.

    2016-07-01

    We present Gemini Multi-Object Spectrograph (GMOS) imaging of 12 candidate intergalactic globular clusters (IGCs) in the Local Group, identified in a recent survey of the Sloan Digital Sky Survey (SDSS) footprint by di Tullio Zinn & Zinn. Our image quality is sufficiently high, at ˜0.4-0.7 arcsec, that we are able to unambiguously classify all 12 targets as distant galaxies. To reinforce this conclusion we use GMOS images of globular clusters in the M31 halo, taken under very similar conditions, to show that any genuine clusters in the putative IGC sample would be straightforward to distinguish. Based on the stated sensitivity of the di Tullio Zinn & Zinn search algorithm, we conclude that there cannot be a significant number of IGCs with MV ≤ -6 lying unseen in the SDSS area if their properties mirror those of globular clusters in the outskirts of M31 - even a population of 4 would have only a ≈1 per cent chance of non-detection.

  14. The Structural Parameters of the Globular Clusters in M31 with PAndAS

    NASA Astrophysics Data System (ADS)

    Woodley, Kristin; Pan-Andromeda Archaeological Survey (PAndAS)

    2012-05-01

    The Pan-Andromeda Archaeological Survey (PAndAS) has obtained images with the Canada France Hawaii Telescope using the instrument MegaCam, covering over 400 square degrees in the sky and extending beyond 150 kpc in radius from the center of M31. With this extensive data set, we have measured the structural parameters of all confirmed globular clusters in M31 as well as for a large fraction of the candidate globular clusters in the Revised Bologna Catalog V.4 (Galleti et al. 2004, A&A, 416, 917). In this paper, we present their parameters, including their core-, effective (half-light)-, and tidal radii, as well as their ellipticities measured in a homogeneous manner with ISHAPE (Larsen 1999, A&AS, 139, 393). We examine these parameters as functions of radial position, luminosity, color, metallicity, and age. We also use our measurements as an additional parameter to help constrain the candidacy of the unconfirmed globular clusters.

  15. Globular cluster formation - The fossil record

    NASA Technical Reports Server (NTRS)

    Murray, Stephen D.; Lin, Douglas N. C.

    1992-01-01

    Properties of globular clusters which have remained unchanged since their formation are used to infer the internal pressures, cooling times, and dynamical times of the protocluster clouds immediately prior to the onset of star formation. For all globular clusters examined, it is found that the cooling times are much less than the dynamical times, implying that the protoclusters must have been maintained in thermal equilibrium by external heat sources, with fluxes consistent with those found in previous work, and giving the observed rho-T relation. Self-gravitating clouds cannot be stably heated, so that the Jeans mass forms an upper limit to the cluster masses. The observed dependence of protocluster pressure upon galactocentric position implies that the protocluster clouds were in hydrostatic equilibrium after their formation. The pressure dependence is well fitted by that expected for a quasi-statically evolving background hot gas, shock heated to its virial temperature. The observations and inferences are combined with previous theoretical work to construct a picture of globular cluster formation.

  16. Interdependence of the rad50 hook and globular domain functions.

    PubMed

    Hohl, Marcel; Kochańczyk, Tomasz; Tous, Cristina; Aguilera, Andrés; Krężel, Artur; Petrini, John H J

    2015-02-05

    Rad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double-strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end joining, and DNA double-strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled-coil and globular ATPase domains, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. DOES THE OOSTERHOFF DICHOTOMY EXIST IN THE ANDROMEDA GALAXY? I. THE CASE OF G11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras Ramos, Rodrigo; Clementini, Gisella; Federici, Luciana, E-mail: rodrigo.contreras@oabo.inaf.it, E-mail: gisella.clementini@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it

    We present the first evidence that Oosterhoff type II globular clusters exist in the Andromeda galaxy (M31). On the basis of time-series photometry of the moderately metal-poor ([Fe/H] {approx}-1.6 dex) M31 globular cluster G11, obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope, we detected and derived periods for 14 RR Lyrae stars, of which five are found to lie inside the cluster tidal radius. They include three fundamental-mode (RRab) and two first-overtone (RRc) pulsators, with average periods (P{sub ab} ) = 0.70 days, and (P{sub c} ) = 0.40 days, respectively. These mean periodsmore » and the position of the cluster variable stars in the period-amplitude and period-metallicity diagrams all suggest that G11 is likely to be an Oosterhoff type II globular cluster. This appears to be in agreement with the general behavior of Milky Way globular clusters with similar metallicity and horizontal branch morphology.« less

  18. Folding energy landscape and network dynamics of small globular proteins

    PubMed Central

    Hori, Naoto; Chikenji, George; Berry, R. Stephen; Takada, Shoji

    2009-01-01

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties. PMID:19114654

  19. Folding energy landscape and network dynamics of small globular proteins.

    PubMed

    Hori, Naoto; Chikenji, George; Berry, R Stephen; Takada, Shoji

    2009-01-06

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties.

  20. Exploring the Internal Dynamics of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration

    2018-01-01

    Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.

  1. Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Jianwei; Zeng, Weidong; Jia, Zhiqiang; Sun, Xin; Zhao, Yawei

    2016-03-01

    The effects of alpha/beta heat treatment on microstructure evolution of Ti-17 alloy with a lamellar colony structure are established. Heat treatment experiments are conducted at 1103 or 1063 K for times ranging from 10 min to 8 h. The main features of microstructure evolution during heat treatment comprise static globularization and coarsening of primary alpha phase. Such behaviors can be accelerated by higher heat treatment temperature. Furthermore, globularization and coarsening behaviors show a faster rate at higher prestrain. In order to better understand the microstructure evolution of Ti-17 alloy during alpha/beta heat treatment, static globularization and coarsening behaviors are modeled in the theoretical frame of the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) and Lifshitz-Slyozov-Wagner (LSW) theories, respectively. The JMAK and LSW kinetics parameters are derived under different experimental conditions. Agreements between measurements and predictions are found, indicating that the JMAK and LSW theories can be used to predict and trace static globularization and coarsening processes of Ti-17 alloy during alpha/beta heat treatment.

  2. Kinematics of B-F Stars as a Function of Their Dereddened Color from Gaia and PCRV Data

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2018-04-01

    Parallaxes with an accuracy better than 10% and proper motions from the Gaia DR1 TGAS catalogue, radial velocities from the Pulkovo Compilation of Radial Velocities (PCRV), accurate Tycho-2 photometry, theoretical PARSEC, MIST, YaPSI, BaSTI isochrones, and the most accurate reddening and interstellar extinction estimates have been used to analyze the kinematics of 9543 thin-disk B-F stars as a function of their dereddened color. The stars under consideration are located on the Hertzsprung-Russell diagram relative to the isochrones with an accuracy of a few hundredths of a magnitude, i.e., at the level of uncertainty in the parallax, photometry, reddening, extinction, and the isochrones themselves. This has allowed us to choose the most plausible reddening and extinction estimates and to conclude that the reddening and extinction were significantly underestimated in some kinematic studies of other authors. Owing to the higher accuracy of TGAS parallaxes than that of Hipparcos ones, the median accuracy of the velocity components U, V, W in this study has improved to 1.7 km s-1, although outside the range -0.1 m < ( B T - V T )0 < 0.5 m the kinematic characteristics are noticeably biased due to the incompleteness of the sample. We have confirmed the variations in the mean velocity of stars relative to the Sun and the stellar velocity dispersion as a function of their dereddened color known from the Hipparcos data. Given the age estimates for the stars under consideration from the TRILEGAL model and the Geneva-Copenhagen survey, these variations may be considered as variations as a function of the stellar age. A comparison of our results with the results of other studies of the stellar kinematics near the Sun has shown that selection and reddening underestimation explain almost completely the discrepancies between the results. The dispersions and mean velocities from the results of reliable studies fit into a ±2 km s-1 corridor, while the ratios σ V / σ U and σ W / σ U fit into ±0.05. Based on all reliable studies in the range -0.1 m < ( B T - V T )0 < 0.5m, i.e., for an age from 0.23 to 2.4 Gyr, we have found: W ⊙ = 7.15 km s-1, {σ _U} = 16.0{e^{1.29({B_T} - {V_T})o}} , {σ _V} = 10.9{e^{1.11({B_T} - {V_T})o}} , {σ _W} = 6.8{e^{1.46({B_T} - {V_T})o}} , the stellar velocity dispersions in km s-1 are proportional to the age in Gyr raised to the power β U = 0.33, β V = 0.285, and β W = 0.37.

  3. 21 CFR 558.325 - Lincomycin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... directions: “CAUTION: Do not allow rabbits, hamsters, guinea pigs, horses, or ruminants access to feeds... rare occasions, some pigs may show reddening of the skin and irritable behavior. These conditions have...

  4. 21 CFR 558.325 - Lincomycin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: “CAUTION: Do not allow rabbits, hamsters, guinea pigs, horses, or ruminants access to feeds containing... pigs may show reddening of the skin and irritable behavior. These conditions have been self-correcting...

  5. 21 CFR 558.325 - Lincomycin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: “CAUTION: Do not allow rabbits, hamsters, guinea pigs, horses, or ruminants access to feeds containing... pigs may show reddening of the skin and irritable behavior. These conditions have been self-correcting...

  6. 21 CFR 558.325 - Lincomycin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: “CAUTION: Do not allow rabbits, hamsters, guinea pigs, horses, or ruminants access to feeds containing... pigs may show reddening of the skin and irritable behavior. These conditions have been self-correcting...

  7. 21 CFR 558.325 - Lincomycin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: “CAUTION: Do not allow rabbits, hamsters, guinea pigs, horses, or ruminants access to feeds containing... pigs may show reddening of the skin and irritable behavior. These conditions have been self-correcting...

  8. Supergiants and their shells in young globular clusters

    NASA Astrophysics Data System (ADS)

    Szécsi, Dorottya; Mackey, Jonathan; Langer, Norbert

    2018-04-01

    Context. Anomalous surface abundances are observed in a fraction of the low-mass stars of Galactic globular clusters, that may originate from hot-hydrogen-burning products ejected by a previous generation of massive stars. Aims: We aim to present and investigate a scenario in which the second generation of polluted low-mass stars can form in shells around cool supergiant stars within a young globular cluster. Methods: Simulations of low-metallicity massive stars (Mi 150-600 M⊙) show that both core-hydrogen-burning cool supergiants and hot ionizing stellar sources are expected to be present simulaneously in young globular clusters. Under these conditions, photoionization-confined shells form around the supergiants. We have simulated such a shell, investigated its stability and analysed its composition. Results: We find that the shell is gravitationally unstable on a timescale that is shorter than the lifetime of the supergiant, and the Bonnor-Ebert mass of the overdense regions is low enough to allow star formation. Since the low-mass stellar generation formed in this shell is made up of the material lost from the supergiant, its composition necessarily reflects the composition of the supergiant wind. We show that the wind contains hot-hydrogen-burning products, and that the shell-stars therefore have very similar abundance anomalies that are observed in the second generation stars of globular clusters. Considering the mass-budget required for the second generation star-formation, we offer two solutions. Either a top-heavy initial mass function is needed with an index of -1.71 to -2.07. Alternatively, we suggest the shell-stars to have a truncated mass distribution, and solve the mass budget problem by justifiably accounting for only a fraction of the first generation. Conclusions: Star-forming shells around cool supergiants could form the second generation of low-mass stars in Galactic globular clusters. Even without forming a photoionizaton-confined shell, the cool supergiant stars predicted at low-metallicity could contribute to the pollution of the interstellar medium of the cluster from which the second generation was born. Thus, the cool supergiant stars should be regarded as important contributors to the evolution of globular clusters.

  9. Millisecond radio pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Verbunt, Frank; Lewin, Walter H. G.; Vanparadijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  10. Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry.

    PubMed

    Mnatsakanyan, Hayk; Rico, Patricia; Grigoriou, Eleni; Candelas, Aarón Maturana; Rodrigo-Navarro, Aleixandre; Salmeron-Sanchez, Manuel; Sabater i Serra, Roser

    2015-08-19

    Fibronectin fibrillogenesis is the physiological process by which cells elaborate a fibrous FN matrix. Poly(ethyl acrylate), PEA, has been described to induce a similar process upon simple adsorption of fibronectin (FN) from a protein solution-in the absence of cells-leading to the so-called material-driven fibronectin fibrillogenesis. Poly(methyl acrylate), PMA, is a polymer with very similar chemistry to PEA, on which FN is adsorbed, keeping the globular conformation of the protein in solution. We have used radical polymerization to synthesize copolymers with controlled EA/MA ratio, seeking to modulate the degree of FN fibrillogenesis. The physicochemical properties of the system were studied using dynamic-mechanical analysis, differential scanning calorimetry, and water contact angle. Both the degree of FN fibrillogenesis and the availability of the integrin binding region of FN directly depend on the percentage of EA in the copolymer, whereas the same total amount of FN was adsorbed regardless the EA/MA ratio. Cell morphology adhesion and differentiation of murine C2C12 were shown to depend on the degree of FN fibrillogenesis previously attained on the material surface. Myogenic differentiation was enhanced on the copolymers with higher EA content, i.e. more interconnected FN fibrils.

  11. Multiple Populations in Globular Clusters - The Spectroscopic View

    NASA Astrophysics Data System (ADS)

    Cohen, Judith G.

    2015-03-01

    I review the evidence supporting and characterizing multiple populations within globular clusters (GCs) based on spectroscopy, i.e. on abundance variations within the stellar population of an individual GC, which dates back to almost 40 years ago. I discuss some of my recent work in this area.

  12. The Next Possible Outburst of P Cygni

    NASA Astrophysics Data System (ADS)

    Kochiashvili, Nino; Beradze, Sopia; Kochiashvili, Ia; Natsvlishvili, Rezo; Vardosanidze, Manana

    2017-11-01

    On the basis of long-term UBV observations of P Cygni, which were made by Eugene Kharadze and Nino Magalashvili between 1951-1983, is evident that P Cygni undergone reddening during those observations. P cygni is a LBV and a supernova impostor. Corrected on the reddening B-V color has values between about -0.4 (at the beginning of 1950-ies) and -0.1 (for the 1980-ies). It means that the star probably had earlier spectral type at the beginning of 20-th century and accordingly, we are witnesses of its evolutionary changes. It means also that on the HR diagram the star moves gradually to the instability strip of LBVs in Outburst. So, if the rate of the reddening of the P Cygni will the same in near future then the star will have the next eruption (or even supernova explosion) after approximately 80-120 years. The long (approximately 1500 d, 1160 d, 760 d, 580 d) quasi-periods and the shorter ones (approximatelly 130 d, 68 d and 15-18 days) were revealed using the above observations. We observed P Cygni on July 23 - October 20, 2014 with the 48 cm Cassegrain telescope and standard B,V,R,I filters. HD 228793 has been used as a comparison star. We revealed that during our observations the star underwent light variations with the mean amplitude of approximately 0.1 magnitudes in all pass-bands and the period of this change was approximately 68 days. There is also a relation between brightness and the Hα EW variability. Therefore, we think that the cause of this behavior may be a variability of rate of the stellar wind that is very strong in this star. Changes in the rate of the stellar wind, on the other hand, maybe due to the pulsation of the star. It seems that quasi-periods of the brightness variability are almost the exact multiples of each other which probably also indicates on pulsation of the star. According to the new photometric observations of 2014 the star continues reddening.

  13. Compositional Analyses and Implications of Visible/Near-Infrared Spectra of Outer Irregular Jovian Satellites

    NASA Astrophysics Data System (ADS)

    Vilas, Faith; Hendrix, Amanda

    2017-10-01

    The existence of a visible-near infrared absorption feature attributed to aqueous alteration products has been suggested in both grey and reddened broadband photometry of some outer irregular jovian satellites. Moderate resolution VNIR narrowband spectroscopy was obtained of the jovian irregular satellites JVI Himalia, JVII Elara, JVIII Pasiphae, JIX Sinope, JX Lysithea, JXI Carme, JXII Ananke and JXVII Callirrhoe in 2006, 2008, 2009, and 2010 using the MMT Observatory facility Red Channel spectrograph to confirm the presence of this feature. The spectra are centered near 0.64 μm in order to cover the 0.7-μm feature entirely (generally ranging from 0.57 to 0.83 μm). The spectra generally have a dispersion/element of ~0.6 nm (6Å) some spectra are smoothed. These spectra sample three prograde (i = 28o), four retrograde (i = 149o, 165o) and one independent satellite.We observe these findings among the spectra:- An absorption feature centered near 0.7 µm exists in the spectra of the three prograde (i = 28o) satellites. This feature is spectrally broader than the 0.7-µm feature observed in C-complex asteroids. None appears spectrally reddened. This suggests that these prograde satellites have a common parent body.- A different absorption feature appears in the spectra of the three retrograde (i = 149o) satellites, also suggesting a common parent body. Varying reddening is observed. This feature is similar in spectral location and width to the 0.7-µm feature.- Reddening is observed in the individual observation of JXI Carme (i = 165o), and independent satellite JIX Sinope, similar to the D-class asteroid spectra dominating the Trojan population. A suggested absorption feature is being investigated.Mixing modeling of combinations of both expected and proposed compositions including carbonaceous materials, phyllosilicates, mafic silicates, and other opaque materials, is currently underway. Results will be reported and discussed at the meeting.Acknowledgments: The MMT Observatory is a joint facility of the University of Arizona and the Smithsonian Institution. This research has been supported by SSERVI CLASS.

  14. Young accreted globular clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Veljanoski, J.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. R.

    2013-02-01

    We report on observations of two newly discovered globular clusters in the outskirts of M31 made using the Gemini Multi-Object Spectrograph (GMOS) instrument on Gemini North. These objects, PAndAS-7 (PA-7) and PAndAS-8 (PA-8), lie at a galactocentric radius of ≈87 kpc and are projected, with separation ≈19 kpc, on to a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 ± 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.

  15. A CN Band Survey of Red Giants in the Globular Cluster M53

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smith, G. H.

    2004-12-01

    We investigate the star-to-star variations in λ 3883 CN bandstrength among red giant stars in the low-metallicity globular cluster M53 ([Fe/H] = --2.0). Our data were taken with the Kast spectrograph on the 3-meter Shane telescope at Lick Observatory in April 2001. Star-to-star variations in CN bandstrength are common in intermediate- and high-metallicity globular clusters ([Fe/H] ≥ --1.6). Our data were obtained to test whether that variation will also be present in a low-metallicity globular cluster, or whether it will be suppressed by the overall lack of metals in the stars. Our preliminary result is that the λ 3883 CN band is weak in our program stars, which span the brightest magnitude of the red giant branch. On visual inspection, the M53 giants appear to be similar in their CN bandstrength to the four CN-weak giants in NGC 6752 whose average spectrum is plotted in Fig. 4 of Norris et al. (1981, ApJ, 244, 205). This work is planned to form part of a larger study of the metallicity dependence of CN bandstrength and carbon abundance behavior on the upper giant branch of globular clusters. This work is supported by NSF grant AST 00-98453 and by an award from the ARCS foundation, Northern California Chapter.

  16. The ACS Survey of Galactic Globular Clusters. VIII. Effects of Environment on Globular Cluster Global Mass Functions

    NASA Astrophysics Data System (ADS)

    Paust, Nathaniel E. Q.; Reid, I. Neill; Piotto, Giampaolo; Aparicio, Antonio; Anderson, Jay; Sarajedini, Ata; Bedin, Luigi R.; Chaboyer, Brian; Dotter, Aaron; Hempel, Maren; Majewski, Steven; Marín-Franch, A.; Milone, Antonino; Rosenberg, Alfred; Siegel, Michael

    2010-02-01

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, ≈0.8 M sun, to 0.2-0.3 M sun on the lower main sequence. The slopes of those power-law fits, α, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between α and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, μ V , and inferred central density, ρ0. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining α. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  17. The Secrets of the Nearest Starburst Cluster. II. The Present-Day Mass Function in NGC 3603

    NASA Astrophysics Data System (ADS)

    Stolte, Andrea; Brandner, Wolfgang; Brandl, Bernhard; Zinnecker, Hans

    2006-07-01

    Based on deep Very Large Telescope Infrared Spectrometer and Array Camera JHK photometry, we have derived the present-day mass function (MF) of the central starburst cluster NGC 3603 YC (Young Cluster) in the giant H II region NGC 3603. The effects of field contamination, individual reddening, and a possible binary contribution are investigated. The MF slopes resulting from the different methods are compared and lead to a surprisingly consistent cluster MF with a slope of Γ=-0.9+/-0.15. Analyzing different radial annuli around the cluster core, no significant change in the slope of the MF is observed. However, mass segregation in the cluster is evidenced by the increasing depletion of the high-mass tail of the stellar mass distribution with increasing radius. We discuss the indications of mass segregation with respect to the changes observed in the binned and cumulative stellar MFs and argue that the cumulative function, as well as the fraction of high- to low-mass stars, provides better indicators for mass segregation than the MF slope alone. Finally, the observed MF and starburst morphology of NGC 3603 YC are discussed in the context of massive local star-forming regions such as the Galactic center Arches cluster, R136/30 Dor in the LMC, and the Orion Trapezium cluster, all providing resolved templates for extragalactic star formation. Despite the similarity in the observed MF slopes, dynamical considerations suggest that the starburst clusters do not form gravitationally bound systems over a Hubble time. Both the environment (gravitational potential of the Milky Way) and the concentration of stars in the cluster core determine the dynamical stability of a dense star cluster, such that the long-term evolution of a starburst is not exclusively determined by the stellar evolution of its members, as frequently assumed for globular cluster systems. Based on observations obtained at the ESO Very Large Telescope on Paranal, Chile, under programs 63.I-0015 and 65.I-0135.

  18. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  19. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  20. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  1. VizieR Online Data Catalog: Globular cluster candidates in NGC253 (Cantiello+, 2018)

    NASA Astrophysics Data System (ADS)

    Cantiello, M.; Grado, A.; Rejkuba, M.; Arnaboldi, M.; Capaccioli, M.; Greggio, L.; Iodice, E.; Limatola, L.

    2017-11-01

    Photometric catalogs for globular cluster (GC) candidates over the 1 sq. degree area around NGC253. The catalogues are based on ugri-band photometry from the VST data, and JKs photometry from VISTA. Aperture magnitudes, corrected for aperture correction are reported. (1 data file).

  2. Close Encounters of the Stellar Kind

    NASA Astrophysics Data System (ADS)

    2003-07-01

    NASA's Chandra X-ray Observatory has confirmed that close encounters between stars form X-ray emitting, double-star systems in dense globular star clusters. These X-ray binaries have a different birth process than their cousins outside globular clusters, and should have a profound influence on the cluster's evolution. A team of scientists led by David Pooley of the Massachusetts Institute of Technology in Cambridge took advantage of Chandra's unique ability to precisely locate and resolve individual sources to determine the number of X-ray sources in 12 globular clusters in our Galaxy. Most of the sources are binary systems containing a collapsed star such as a neutron star or a white dwarf star that is pulling matter off a normal, Sun-like companion star. "We found that the number of X-ray binaries is closely correlated with the rate of encounters between stars in the clusters," said Pooley. "Our conclusion is that the binaries are formed as a consequence of these encounters. It is a case of nurture not nature." A similar study led by Craig Heinke of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. confirmed this conclusion, and showed that roughly 10 percent of these X-ray binary systems contain neutron stars. Most of these neutron stars are usually quiet, spending less than 10% of their time actively feeding from their companion. NGC 7099 NGC 7099 A globular cluster is a spherical collection of hundreds of thousands or even millions of stars buzzing around each other in a gravitationally-bound stellar beehive that is about a hundred light years in diameter. The stars in a globular cluster are often only about a tenth of a light year apart. For comparison, the nearest star to the Sun, Proxima Centauri, is 4.2 light years away. With so many stars moving so close together, interactions between stars occur frequently in globular clusters. The stars, while rarely colliding, do get close enough to form binary star systems or cause binary stars to exchange partners in intricate dances. The data suggest that X-ray binary systems are formed in dense clusters known as globular clusters about once a day somewhere in the universe. Observations by NASA's Uhuru X-ray satellite in the 1970's showed that globular clusters seemed to contain a disproportionately large number of X-ray binary sources compared to the Galaxy as a whole. Normally only one in a billion stars is a member of an X-ray binary system containing a neutron star, whereas in globular clusters, the fraction is more like one in a million. The present research confirms earlier suggestions that the chance of forming an X-ray binary system is dramatically increased by the congestion in a globular cluster. Under these conditions two processes, known as three-star exchange collisions, and tidal captures, can lead to a thousandfold increase in the number of X-ray sources in globular clusters. 47 Tucanae 47 Tucanae In an exchange collision, a lone neutron star encounters a pair of ordinary stars. The intense gravity of the neutron star can induce the most massive ordinary star to "change partners," and pair up with the neutron star while ejecting the lighter star. A neutron star could also make a grazing collision with a single normal star, and the intense gravity of the neutron star could distort the gravity of the normal star in the process. The energy lost in the distortion, could prevent the normal star from escaping from the neutron star, leading to what is called tidal capture. "In addition to solving a long-standing mystery, Chandra data offer an opportunity for a deeper understanding of globular cluster evolution," said Heinke. "For example, the energy released in the formation of close binary systems could keep the central parts of the cluster from collapsing to form a massive black hole." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The image and additional information are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  3. Optical and near-infrared photometric study of NGC 6724

    NASA Astrophysics Data System (ADS)

    Bendary, Reda; Tadross, Ashraf; Hasan, Priya; Osman, Anas; Essam, Ahmed

    2018-02-01

    BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V∼20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74-inch telescope at Kottamia Astronomical Observatory in Egypt. Also, the 2MASS - JHK system is used to confirm the results we obtained. The main photometric parameters have been estimated for the present object; the diameter is found to be 6 arcmin, the distance is 1530±60 pc from the Sun and the age is 900±50 Myr. The optical reddening E(B-V)=0.65 {mag}, while the infrared reddening is E(J-H)=0.20 {mag}. The slope of the mass function distribution and the relaxation time estimations indicate that cluster NGC 6724 is dynamically relaxed.

  4. Seeing Through the Clouds: AGN Geometry with the Swift BAT Sample

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Urry, M.; Schawinski, K.; Koss, M. J.; Winter, L. M.; Elitzur, M.; Wilkin, W. H.

    2011-01-01

    We investigate the intrinsic structure of the clouds surrounding AGN which give rise to their X-ray and optical emission properties. Using a complete sample of Swift BAT AGN selected in hard X-rays (14-195 keV), which is unbiased with respect to obscuration and extinction, we compute the reddening in the broad line region along the line of sight to the nucleus of each source using Balmer decrement from the ratio of the broad components of H-alpha/H-beta. We compare reddening from dust in the broad line clouds to the hydrogen column density (NH) obtained from their X-ray spectra. The distribution of the gas-to-dust ratios over many lines of sight allow us to test models of AGN structure and probe the immediate environment of the accreting supermassive black holes.

  5. Spectral Models of Kuiper Belt Objects and Centaurs

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale; Ore, Christina M. Dalle

    2003-01-01

    We present models of the spectral reflectances of groups of outer Solar System objects defined primarily by their colors in the spectral region 0.4 -1.2 microns, and which have geometric albedo 0.04 at wavelength 0.55 microns. Our models of the groups with the strongest reflectance gradients (reddest colors) use combinations of organic tholins. We test the hypothesis that metal-reddened igneous rock-forming minerals contribute to the red colors of Centaurs and KBOs by using the space-weathered lunar soil as one of the components of our models. We find that our models can admit the presence of moderate amounts of space-weathered (metal-reddened) minerals, but that they do not require this material to achieve the red colors of the reddest outer Solar System bodies. Our models with organic tholins are consistent with the results of other investigators.

  6. The color of the Martian sky and its influence on the illumination of the Martian surface

    USGS Publications Warehouse

    Thomas, N.; Markiewicz, W.J.; Sablotny, R.M.; Wuttke, M.W.; Keller, H.U.; Johnson, J. R.; Reid, R.J.; Smith, R.H.

    1999-01-01

    The dust in the atmosphere above the Mars Pathfinder landing site produced a bright, red sky that increases in redness toward the horizon at midday. There is also evidence for an absorption band in the scattered light from the sky at 860 nm. A model of the sky brightness has been developed [Markiewicz et al., this issue] and tested against Imager for Mars Pathfinder (IMP) observations of calibration targets on the lander. The resulting model has been used to quantify the total diffuse flux onto a surface parallel to the local level for several solar elevation angles and optical depths. The model shows that the diffuse illumination in shadowed areas is strongly reddened while areas illuminated directly by the Sun (and the blue forward scattering peak) see a more solar-type spectrum, in agreement with Viking and IMP observations. Quantitative corrections for the reddening in shadowed areas are demonstrated. It is shown quantitatively that the unusual appearance of the rock Yogi (the east face of which appeared relatively blue in images taken during the morning but relatively red during the afternoon) can be explained purely by the changing illumination geometry. We conclude that any spectrophotometric analysis of surfaces on Mars must take into account the diffuse flux. Specifically, the reflectances of surfaces viewed under different illumination geometries cannot be investigated for spectral diversity unless a correction has been applied which removes the influence of the reddened diffuse flux. Copyright 1999 by the American Geophysical Union.

  7. Space Weathering of Silicates Simulated by Successive Laser Irradiation: in Situ Reflectance Measurements of Fo90, Fo99+, and SiO2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Dukes, C. A.; Christoffersen, R.; Baragiola, R. A.

    2016-01-01

    Pulsed-laser irradiation causes the visible-near-infrared spectral slope of olivine (Fo90 and Fo99+) and SiO2 to increase (redden), while the olivine samples darken and the SiO2 samples brighten slightly. XPS analysis shows that irradiation of Fo90 produces metallic Fe. Analytical SEM and TEM measurements confirm that reddening in the Fo90 olivine samples correlates with the production of "nanophase" metallic Fe (npFe0) grains, 20-50 nm in size. The reddening observed in the SiO2 sample is consistent with the formation of SiO or other SiOx species that absorb in the visible. The weak spectral brightening induced by laser irradiation of SiO2 is consistent with a change in surface topography of the sample. The darkening observed in the olivine samples is likely caused by the formation of larger npFe0 particles, such as the 100-400 nm diameter npFe0 identified during our TEM analysis of Fo90 samples. The Fo90 reflectance spectra are qualitatively similar to those in previous experiments suggesting that in all cases formation of npFe0 is causing the spectral alteration. Finally, we find that the accumulation of successive laser pulses cause continued sample darkening in the Vis-NIR, which suggests that repeated surface impacts are an efficient way to darken airless body surfaces.

  8. Estimating dust distances to Type Ia supernovae from colour excess time evolution

    NASA Astrophysics Data System (ADS)

    Bulla, M.; Goobar, A.; Amanullah, R.; Feindt, U.; Ferretti, R.

    2018-01-01

    We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time evolution of the light-curve shape and especially of the colour excess E(B - V) places strong constraints on the distance between dust and the supernova. We apply our approach to two highly reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(B - V) and from this derive a distance of 27.5^{+9.0}_{-4.9} or 22.1^{+6.0}_{-3.8} pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(B - V) consistent with dust at distances larger than ∼50 and 38 pc for LMC- and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.

  9. Redox-Active Star Molecules Incorporating the 4-Benzolypyridinium Cation: Implications for the Charge Transfer Efficiency Along Branches versus Across the Perimeter in Dendrimers

    NASA Technical Reports Server (NTRS)

    Yang, Jin-Hua; Rawashdeh, Abdel Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia; Leventis, Nicholas

    2003-01-01

    We report the redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches, but remains constant at fixed radii. Voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that only two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers of a branch are accessible electrochemically within the same time frame. These results are discussed in terms of slow through-space charge transfer and the globular 3-D folding of the molecules.

  10. Rates of collapse and evaporation of globular clusters

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Djorgovski, S.

    1992-01-01

    Observational estimates of the dynamical relaxation times of Galactic globular clusters are used here to estimate the present rate at which core collapse and evaporation are occurring in them. A core collapse rate of 2 +/- 1 per Gyr is found, which for a Galactic age of about 12 Gyr agrees well with the fact that 27 clusters have surface brightness profiles with the morphology expected for the postcollapse phase. A destruction and evaporation rate of 5 +/- 3 per Gyr is found, suggesting that a significant fraction of the Galaxy's original complement of globular clusters have perished through the combined effects of mechanisms such as relaxation-driven evaporation and shocking due to interaction with the Galactic disk and bulge.

  11. Binaries in globular clusters

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin

    1992-01-01

    Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.

  12. New bound on neutrino dipole moments from globular-cluster stars

    NASA Technical Reports Server (NTRS)

    Raffelt, Georg G.

    1990-01-01

    Neutrino dipole moments mu(nu) would increase the core mass of red giants at the helium flash by delta(Mc) = 0.015 solar mass x mu(nu)/10 to the -12th muB (where muB is the Bohr magneton) because of enhanced neutrino losses. Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters, number counts of horizontal-branch stars and red giants in 15 globular clusters, and statistical parallax determinations of field RR Lyr luminosities yield delta(Mc) = 0.009 + or - 0.012 solar mass, so that conservatively mu(nu) is less than 3 x 10 to the -12th muB.

  13. Determination of the mass of globular cluster X-ray sources

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Hertz, P.; Steiner, J. E.; Murray, S. S.; Lightman, A. P.

    1984-01-01

    The precise positions of the luminous X-ray sources in eight globular clusters have been measured with the Einstein X-Ray Observatory. When combined with similarly precise measurements of the dynamical centers and core radii of the globular clusters, the distribution of the X-ray source mass is determined to be in the range 0.9-1.9 solar mass. The X-ray source positions and the detailed optical studies indicate that (1) the sources are probably all of similar mass, (2) the gravitational potentials in these high-central density clusters are relatively smooth and isothermal, and (3) the X-ray sources are compact binaries and are probably formed by tidal capture.

  14. Star Family Seen Through Dusty Fog

    NASA Astrophysics Data System (ADS)

    2007-03-01

    Images made with ESO's New Technology Telescope at La Silla by a team of German astronomers reveal a rich circular cluster of stars in the inner parts of our Galaxy. Located 30,000 light-years away, this previously unknown closely-packed group of about 100,000 stars is most likely a new globular cluster. Star clusters provide us with unique laboratory conditions to investigate various aspects of astrophysics. They represent groups of stars with similar ages, chemical element abundances and distances. Globular clusters, in particular, are fossils in the Milky Way that provide useful information. With ages of about 10 billion years, they are among the oldest objects in our Galaxy - almost as old as the Universe itself. These massive, spherical shaped star clusters are therefore witnesses of the early, mysterious ages of the Universe. ESO PR Photo 12/07 ESO PR Photo 12/07 The Newly Identified Cluster "Moreover, the properties of globular clusters are deeply connected with the history of their host galaxy," says Dirk Froebrich from the University of Kent, and lead-author of the paper presenting the results. "We believe today that galaxy collisions, galaxy cannibalism, as well as galaxy mergers leave their imprint in the globular cluster population of any given galaxy. Thus, when investigating globular clusters we hope to be able to use them as an acid test for our understanding of the formation and evolution of galaxies," he adds. In our own Galaxy about 150 globular clusters are known, each containing many hundreds of thousands of stars. In contrast to their smaller and less regularly shaped siblings - open clusters - globular clusters are not concentrated in the galactic disc; rather they are spherically distributed in the galactic halo, with increasing concentration towards the centre of the Galaxy. Until the mid 1990s, globular clusters were identified mostly by eye - from visual inspection of photographic plates. However, these early searches are likely to have missed a significant number of globular clusters, particularly close to the disc of the Galaxy, where dense clouds of dust and gas obscure the view. In the early times of extragalactic astronomy this area was called the 'Zone of Avoidance' because extragalactic stellar systems appeared to be very rare in this part of the sky. Searching for the missing globular clusters in our Galaxy requires observations in the infrared, because infrared radiation is able to penetrate the thick 'galactic fog'. Using modern, sensitive infrared detectors, this is now possible. Completing the census is not only a challenge for its own sake, as finding new globular clusters is useful for several additional reasons. For example, analysing their orbits allows astronomers to draw conclusions about the distribution of mass in the Galaxy. Star clusters can therefore be used as probes for the large-scale structure of the Milky Way. "It has been estimated that the region close to the Galactic Centre might contain about 10 so far unknown globular clusters and we have started a large campaign to unveil and characterise them," explains Helmut Meusinger, from the Thüringer Landessternwarte Tautenburg, Germany, and part of the team. The astronomers carried out a systematic and automated large-scale (14,400 square degrees) search for globular cluster candidates in the entire Galactic Plane, based on the near-infrared Two Micron All Sky Survey (2MASS). Eventually, only about a dozen candidate objects remained. The astronomers observed these candidates with the SofI instrument attached to ESO's New Technology Telescope (NTT) at La Silla (Chile), taking images through three different near-infrared filters. The new images are ten times deeper and have a much better angular resolution than the original 2MASS images, thereby allowing the astronomers to resolve at least partly the dense accumulation of stars in the globular cluster candidates. One of these candidates had the number 1735 in the list of Froebrich, Scholz, and Raftery, and is therefore denoted as FSR 1735. "The unique images we have obtained reveal that the nebulous appearance of the cluster in previous images is in fact due to a large number of faint stars," says Froebrich. "The images show a beautiful, rich, and circular accumulation of stars." From a detailed analysis of the properties of the cluster, the astronomers arrive at the conclusion that the cluster is about 30,000 light-years away from us and only 10,000 light-years away from the Galactic Centre, close to the Galactic Plane. "All the evidence supports the interpretation that FSR 1735 is a new globular cluster in the inner Milky Way," says Aleks Scholz, from the University of St Andrews, UK, and another member of the team. "However, to be sure, we now need to measure the age of the cluster accurately, and this requires still deeper observations." The cluster is about 7 light-years wide (slightly less than twice the distance between the Sun and its nearest star, Proxima Centauri) but contains about 100,000 stars for a total estimated mass of 65,000 times the mass of the Sun. The stars contain between 5 and 8 times less heavy elements than the Sun. "On its way to our Solar System, the light coming from the stars in the FSR 1735 cluster has to penetrate a thick cloud of dust and gas," says Meusinger. "This is one of the reasons why this cluster was hard to find in previous surveys." "Is this now the last missing globular cluster in our galaxy?," asks Scholz. "We really can't be sure. The opaque interiors of the Milky Way may well have more surprises in store."

  15. Trazando la materia oscura con cúmulos globulares

    NASA Astrophysics Data System (ADS)

    Forte, J. C.

    Se describe la estrategia adoptada para mapear la distribución de materia oscura y bariónica en galaxias elípticas cuyos cúmulos globulares están siendo observados con los telescopios VLT y Gemini. Se ejemplifican los resultados con los datos obtenidos en el cúmulo de Fornax.

  16. DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Ramos, Rodrigo Contreras; Zoccali, Manuela

    Galactic nuclei, such as that of the Milky Way, are extreme regions with high stellar densities, and in most cases, the hosts of a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is merging of primordial globular clusters. An implication of this model is that this region should host stars that are characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore are regularly found in globular clusters. Here we report the discovery of a dozen RRmore » Lyrae type ab stars in the vicinity of the Galactic center, i.e., in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to the build-up of the high stellar density in the nuclear stellar bulge of the Milky Way.« less

  17. Gravitational microlensing by low-mass objects in the globular cluster M22.

    PubMed

    Sahu, K C; Casertano, S; Livio, M; Gilliland, R L; Panagia, N; Albrow, M D; Potter, M

    2001-06-28

    Gravitational microlensing offers a means of determining directly the masses of objects ranging from planets to stars, provided that the distances and motions of the lenses and sources can be determined. A globular cluster observed against the dense stellar field of the Galactic bulge presents ideal conditions for such observations because the probability of lensing is high and the distances and kinematics of the lenses and sources are well constrained. The abundance of low-mass objects in a globular cluster is of particular interest, because it may be representative of the very early stages of star formation in the Universe, and therefore indicative of the amount of dark baryonic matter in such clusters. Here we report a microlensing event associated with the globular cluster M22. We determine the mass of the lens to be 0.13(+0.03)(-0.02) solar masses. We have also detected six events that are unresolved in time. If these are also microlensing events, they imply that a non-negligible fraction of the cluster mass resides in the form of free-floating planetary-mass objects.

  18. Featured Image: Globular Cluster Orbits

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    This figure (click for the full view) shows the meridional galactic orbits of 12 globular clusters that orbit the Milky Way. The recent release of stellar parallax data from Gaia allowed a team of scientists at Dartmouth College to improve measurements of a number of galactic globular clusters very old clusters of stars that can either orbit within the galactic disk and bulge or more distantly in the galactic halo. In a recent publication led by Erin OMalley, the team presents their findings and combines their new measurements for the clusters with proper motions from past studies to calculate the orbits that these globulars take. These calculations show us whether the clusters reside in the galactic disk and bulge (as only NGC 104 does in the sample shown here, since its orbit is confined to 8 kpc radially and 4 kpc vertically of the galactic center), or if they are halo clusters. To learn more about the authors work, you can check out the paper below!CitationErin M. OMalley et al 2017 ApJ 838 162. doi:10.3847/1538-4357/aa6574

  19. The blue globular pattern in dermoscopy.

    PubMed

    Roberti, V; Devirgiliis, V; Curzio, M; Gobbi, S; Coppola, R; Calvieri, S; Panasiti, V

    2013-01-01

    Seborrheic keratosis (SK) is a frequent benign epithelial skin tumor. Generally its diagnosis is clinical, however SK can sometimes clinically simulate a melanocytic lesion; therefore we need dermoscopy to reach a correct diagnosis. Milia-like cysts and comedo-like openings are the common dermoscopic features of SK, but it is not a rare finding that SK can display one or more dermoscopic patterns suggestive of a melanocytic origin. We describe a case series of SKs with a blue globular pattern simulating a melanocytic lesion. We retrospectively evaluated 224 SKs seen during 2011 at the Dermatoscopy Unit of the Department of Dermatology, University of Rome 'Sapienza'. Five SKs showed a blue globular pattern, without the SK main features generally seen in dermoscopy; globules were multiple, round or oval, well-demarcated, small and medium-sized, blue-colored and equally distributed within the lesion. Histopathologic examination was consistent with acanthotic SK. Identification of the blue globular pattern can be helpful for the dermoscopic diagnosis of SK, especially when its common dermoscopic features are absent. Copyright © 2013 S. Karger AG, Basel.

  20. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    NASA Astrophysics Data System (ADS)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  1. On 7Li Enrichment by Low-Mass Metal-Poor Red Giant Branch Stars.

    PubMed

    de La Reza R; da Silva L; Drake; Terra

    2000-06-01

    First-ascent red giants with strong and very strong Li lines have just been discovered in globular clusters. Using the stellar internal prompt (7)Li enrichment-mass-loss scenario, we explore the possibility of (7)Li enrichment in the interstellar matter of the globular cluster M3 produced by these Li-rich giants. We found that enrichment as large as 70% or more compared to the initial (7)Li content of M3 can be obtained during the entire life of this cluster. However, because M3 will cross into the Galactic plane several times, the new (7)Li will be very probably removed by ram pressure into the disk. Globular clusters appear then as possible new sources of (7)Li in the Galactic disk. It is also suggested that the known Na/Al variations in stars of globular clusters could be somehow related to the (7)Li variations and that the cool bottom process mixing mechanism acting in the case of (7)Li could also play a role in the case of Na and Al surface enrichments.

  2. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  3. Globular bodies: a primary cause of the opacity in senile and diabetic posterior cortical subcapsular cataracts?

    PubMed

    Creighton, M O; Trevithick, J R; Mousa, G Y; Percy, D H; McKinna, A J; Dyson, C; Maisel, H; Bradley, R

    1978-07-01

    We examined 9 cataracts from maturity onset diabetics and 4 senile posterior subcapsular cataracts by scanning electron microscopy, transmission electron microscopy, immunofluorescence for crystallin proteins and actin, histochemical methods and x-ray diffraction. The cataractous regions contained spherical globules up to 20 mu in diameter, often in a fibrous matrix. Some were extracellular Morgagnian globules, apparently formed by blebbing from the cell surface; others appeared to have been formed intracellularly. The area of globular degeneration was usually 300 mu deep, but had deeper fusiform extensions. Morphological changes in the cell cytoplasm varied according to their depth in the cataract. Electron microscopy showed intracellular and extracellular globules, many of them were bounded by lipid bilayer membranes. Immunofluorescent staining showed that all the globules contained gamma-crystallin; some contained alpha- and beta-crystallins and actin. All the globules contained higher concentrations of cysteine or cystine than the surrounding lens tissue but they did not react to stains for carbohydrate or calcium. X-ray diffraction studies showed that crystalline calcium salts were absent. Globules and cavities averaged 45% of the total area in cross section. Assuming an area of cataract to be 300 micron thick and that globules 1 mu in diameter scattered, while 2--20 mu in diameter reflected light, we calculated that light passing through such a thickness would be reduced by 65%. Thus the globules could account for most of the opacity of the cataractous area. Presumably the fibrous degeneration of the cells causes enough light scattering to account for the remainder of the reduction. Cataract patients complain of decreased visual acuity, a golden halo around objects, and difficulties when driving while facing oncoming traffic at night. These probably result from light scattering. In our previous experiments, globular bodies containing gamma-crystallin were found in cells grown in tissue culture, and blebs with increased acitn content similar to Morgagnian globules were formed in tissue culture by treating differentiated rat lens cells of stage 2 by cytochalasin D (which impaired microfilament function). These results suggest the possibility of simulating in tissue culture the morphological alterations seen in the cataractous cell.

  4. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  5. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  6. Spectrum syntheses of high-resolution integrated light spectra of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Shetrone, Matthew; Venn, Kim; McWilliam, Andrew; Dotter, Aaron

    2013-09-01

    Spectrum syntheses for three elements (Mg, Na and Eu) in high-resolution integrated light spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006 and M15 are presented, along with calibration syntheses of the solar and Arcturus spectra. Iron abundances in the target clusters are also derived from integrated light equivalent width analyses. Line profiles in the spectra of these five globular clusters are well fitted after careful consideration of the atomic and molecular spectral features, providing levels of precision that are better than equivalent width analyses of the same integrated light spectra, and that are comparable to the precision in individual stellar analyses. The integrated light abundances from the 5528 and 5711 Å Mg I lines, the 6154 and 6160 Å Na I lines, and the 6645 Å Eu II line fall within the observed ranges from individual stars; however, these integrated light abundances do not always agree with the average literature abundances. Tests with the second parameter clusters M3, M13 and NGC 7006 show that assuming an incorrect horizontal branch morphology is likely to have only a small ( ≲ 0.06 dex) effect on these Mg, Na and Eu abundances. These tests therefore show that integrated light spectrum syntheses can be applied to unresolved globular clusters over a wide range of metallicities and horizontal branch morphologies. Such high precision in integrated light spectrum syntheses is valuable for interpreting the chemical abundances of globular cluster systems around other galaxies.

  7. Black hole binaries dynamically formed in globular clusters

    NASA Astrophysics Data System (ADS)

    Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof

    2017-08-01

    We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.

  8. VizieR Online Data Catalog: Trumpler 5 photometric BV catalog (Donati+, 2015)

    NASA Astrophysics Data System (ADS)

    Donati, P.; Cocozza, G.; Bragaglia, A.; Pancino, E.; Cantat-Gaudin, T.; Carrera, R.; Tosi, M.

    2014-11-01

    We combined high-quality photometric observations obtained with WFI and high-resolution spectra obtained with FLAMES to determine accurate cluster parameters, namely age, distance, reddening, and metallicity. (2 data files).

  9. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    PubMed Central

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana. PMID:21826225

  10. Hubble Checks out a Home for Old Stars

    NASA Image and Video Library

    2017-12-08

    This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20,000 light-years from us in the constellation of Scorpius (The Scorpion), it is one of about 150 globular clusters belonging to our galaxy, the Milky Way. Typical globular clusters are collections of around a hundred thousand stars, held together by their mutual gravitational attraction in a spherical shape a few hundred light-years across. It is thought that every galaxy has a population of globular clusters. Some, like the Milky Way, have a few hundred, while giant elliptical galaxies can have several thousand. They contain some of the oldest stars in a galaxy, hence the reddish colors of the stars in this image — the bright blue ones are foreground stars, not part of the cluster. The ages of the stars in the globular cluster tell us that they were formed during the early stages of galaxy formation! Studying them can also help us to understand how galaxies formed. Terzan 1, like many globular clusters, is a source of X-rays. It is likely that these X-rays come from binary star systems that contain a dense neutron star and a normal star. The neutron star drags material from the companion star, causing a burst of X-ray emission. The system then enters a quiescent phase in which the neutron star cools, giving off X-ray emission with different characteristics, before enough material from the companion builds up to trigger another outburst. Image credit: NASA & ESA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Effects of Dynamical Evolution on Globular Clusters’ Internal Kinematics

    NASA Astrophysics Data System (ADS)

    Tiongco, Maria; Vesperini, Enrico; Varri, Anna Lisa

    2018-01-01

    The synergy between recent photometric, spectroscopic, and astrometric studies is revealing that globular clusters deviate from the traditional picture of dynamically simple and single stellar population systems. Complex kinematical features such as velocity anisotropy and rotation, and the existence of multiple stellar populations are some of the key observational findings. My thesis work has aimed to build a theoretical framework to interpret these new observational results and to understand their link with a globular cluster’s dynamical history.I have focused on the study of the evolution of globular clusters' internal kinematics, as driven by two-body relaxation, and the interplay between internal angular momentum and the external Galactic tidal field. With a specifically-designed, large survey of direct N-body simulations, I have explored the three-dimensional structure of the velocity space of tidally-perturbed clusters, by characterizing their degree of anisotropy and their rotational properties. These studies have proved that a cluster's kinematical properties contain a distinct imprints of the cluster’s initial structural properties, dynamical history, and tidal environment. By relaxing a number of simplifying assumptions that are traditionally imposed, I have also showed how the interplay between a cluster's internal evolution and the interaction with the host galaxy can produce complex morphological and kinematical properties, such as a counter-rotating core and a twisting of the projected isodensity contours.Building on this fundamental understanding, I have then studied the dynamics of multiple stellar populations in globular clusters, with attention to the largely unexplored role of angular momentum. I have analyzed the evolution of clusters with stellar populations characterized by different initial structural and kinematical properties to determine how long these differences are preserved, and in what cases they could still be observable in present-day systems.This body of results provides essential guidance for a meaningful interpretation of the emerging dynamical complexity of globular clusters in the era of Gaia and other upcoming large spectroscopic surveys.

  12. Shapiro effect as a possible cause of the low-frequency pulsar timing noise in globular clusters

    NASA Astrophysics Data System (ADS)

    Larchenkova, T. I.; Kopeikin, S. M.

    2006-01-01

    A prolonged timing of millisecond pulsars has revealed low-frequency uncorrelated (infrared) noise, presumably of astrophysical origin, in the pulse arrival time (PAT) residuals for some of them. Currently available pulsar timing methods allow the statistical parameters of this noise to be reliably measured by decomposing the PAT residual function into orthogonal Fourier harmonics. In most cases, pulsars in globular clusters show a low-frequency modulation of their rotational phase and spin rate. The relativistic time delay of the pulsar signal in the curved spacetime of randomly distributed and moving globular cluster stars (the Shapiro effect) is suggested as a possible cause of this modulation. Extremely important (from an astrophysical point of view) information about the structure of the globular cluster core, which is inaccessible to study by other observational methods, could be obtained by analyzing the spectral parameters of the low-frequency noise caused by the Shapiro effect and attributable to the random passages of stars near the line of sight to the pulsar. Given the smallness of the aberration corrections that arise from the nonstationarity of the gravitational field of the randomly distributed ensemble of stars under consideration, a formula is derived for the Shapiro effect for a pulsar in a globular cluster. The derived formula is used to calculate the autocorrelation function of the low-frequency pulsar noise, the slope of its power spectrum, and the behavior of the σz statistic that characterizes the spectral properties of this noise in the form of a time function. The Shapiro effect under discussion is shown to manifest itself for large impact parameters as a low-frequency noise of the pulsar spin rate with a spectral index of n = -1.8 that depends weakly on the specific model distribution of stars in the globular cluster. For small impact parameters, the spectral index of the noise is n = -1.5.

  13. Empirically Constrained Color-Temperature Relations. II. uvby

    NASA Astrophysics Data System (ADS)

    Clem, James L.; VandenBerg, Don A.; Grundahl, Frank; Bell, Roger A.

    2004-02-01

    A new grid of theoretical color indices for the Strömgren uvby photometric system has been derived from MARCS model atmospheres and SSG synthetic spectra for cool dwarf and giant stars having -3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. At warmer temperatures (i.e., 8000-2.0. To overcome this problem, the theoretical indices at intermediate and high metallicities have been corrected using a set of color calibrations based on field stars having well-determined distances from Hipparcos, accurate Teff estimates from the infrared flux method, and spectroscopic [Fe/H] values. In contrast with Paper I, star clusters played only a minor role in this analysis in that they provided a supplementary constraint on the color corrections for cool dwarf stars with Teff<=5500 K. They were mainly used to test the color-Teff relations and, encouragingly, isochrones that employ the transformations derived in this study are able to reproduce the observed CMDs (involving u-v, v-b, and b-y colors) for a number of open and globular clusters (including M67, the Hyades, and 47 Tuc) rather well. Moreover, our interpretations of such data are very similar, if not identical, with those given in Paper I from a consideration of BV(RI)C observations for the same clusters-which provides a compelling argument in support of the color-Teff relations that are reported in both studies. In the present investigation, we have also analyzed the observed Strömgren photometry for the classic Population II subdwarfs, compared our ``final'' (b-y)-Teff relationship with those derived empirically in a number of recent studies and examined in some detail the dependence of the m1 index on [Fe/H]. Based, in part, on observations made with the Nordic Optical Telescope, operated jointly on the island of La Palma by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based, in part, on observations obtained with the Danish 1.54 m telescope at the European Southern Observatory, La Silla, Chile.

  14. New Constraints on a Complex Relation between Globular Cluster Colors and Environment

    NASA Astrophysics Data System (ADS)

    Powalka, Mathieu; Puzia, Thomas H.; Lançon, Ariane; Peng, Eric W.; Schönebeck, Frederik; Alamo-Martínez, Karla; Ángel, Simón; Blakeslee, John P.; Côté, Patrick; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Ferrarese, Laura; Grebel, Eva K.; Guhathakurta, Puragra; Gwyn, S. D. J.; Kuntschner, Harald; Lim, Sungsoon; Liu, Chengze; Lyubenova, Mariya; Mihos, J. Christopher; Muñoz, Roberto P.; Ordenes-Briceño, Yasna; Roediger, Joel; Sánchez-Janssen, Rubén; Spengler, Chelsea; Toloba, Elisa; Zhang, Hongxin

    2016-09-01

    We present an analysis of high-quality photometry for globular clusters (GCs) in the Virgo cluster core region, based on data from the Next Generation Virgo Cluster Survey (NGVS) pilot field, and in the Milky Way (MW), based on Very Large Telescope/X-Shooter spectrophotometry. We find significant discrepancies in color-color diagrams between sub-samples from different environments, confirming that the environment has a strong influence on the integrated colors of GCs. GC color distributions along a single color are not sufficient to capture the differences we observe in color-color space. While the average photometric colors become bluer with increasing radial distance to the cD galaxy M87, we also find a relation between the environment and the slope and intercept of the color-color relations. A denser environment seems to produce a larger dynamic range in certain color indices. We argue that these results are not due solely to differential extinction, Initial Mass Function variations, calibration uncertainties, or overall age/metallicity variations. We therefore suggest that the relation between the environment and GC colors is, at least in part, due to chemical abundance variations, which affect stellar spectra and stellar evolution tracks. Our results demonstrate that stellar population diagnostics derived from model predictions which are calibrated on one particular sample of GCs may not be appropriate for all extragalactic GCs. These results advocate a more complex model of the assembly history of GC systems in massive galaxies that goes beyond the simple bimodality found in previous decades.

  15. On the blind use of statistical tools in the analysis of globular cluster stars

    NASA Astrophysics Data System (ADS)

    D'Antona, Francesca; Caloi, Vittoria; Tailo, Marco

    2018-04-01

    As with most data analysis methods, the Bayesian method must be handled with care. We show that its application to determine stellar evolution parameters within globular clusters can lead to paradoxical results if used without the necessary precautions. This is a cautionary tale on the use of statistical tools for big data analysis.

  16. Predicting the helix packing of globular proteins by self-correcting distance geometry.

    PubMed

    Mumenthaler, C; Braun, W

    1995-05-01

    A new self-correcting distance geometry method for predicting the three-dimensional structure of small globular proteins was assessed with a test set of 8 helical proteins. With the knowledge of the amino acid sequence and the helical segments, our completely automated method calculated the correct backbone topology of six proteins. The accuracy of the predicted structures ranged from 2.3 A to 3.1 A for the helical segments compared to the experimentally determined structures. For two proteins, the predicted constraints were not restrictive enough to yield a conclusive prediction. The method can be applied to all small globular proteins, provided the secondary structure is known from NMR analysis or can be predicted with high reliability.

  17. (F)UV Spectroscopy of K648: Abundance Determination of Trace Elements

    NASA Astrophysics Data System (ADS)

    Mohamad-Yob, S. J.; Ziegler, M.; Rauch, T.; Werner, K.

    2010-11-01

    We present preliminary results of an ongoing spectral analysis of K 648, the central star of the planetary nebula Ps 1, based on high resolution FUV spectra. K 648, in M 15 is one of only four known PNe in globular clusters. The formation of this post-AGB object in a globular cluster is still unclear. Our aim is to determine Teff, log g, and the abundances of trace elements, in order to improve our understanding of post-AGB evolution of extremely metal-poor stars, especially PN formation in globular clusters. We analyzed FUSE, HST/STIS, and HST/FOS observations. A grid of stellar model atmospheres was calculated using the Tübingen NLTE Model Atmosphere Package (TMAP).

  18. The Milky Way and the Local Group: playing with great circles.

    NASA Astrophysics Data System (ADS)

    Fusi Pecci, F.; Bellazzini, M.; Ferraro, F. R.

    The small group of recently discovered galactic globular clusters (Pal 12, Ter 7, Rup 106, Arp 2) significantly younger than the average cluster population of the Galaxy are shown to lie near great circles passing in the proximity of most satellite galaxies of the Milky Way. Assuming that these great circles are in some way preferential planes of interaction between the Galaxy and its companions, the authors identified along one of them another candidate "young" globular cluster, IC 4499. Within this observational framework, the possibility that the sample of young globulars found in the halo of the Galaxy could have been captured from a satellite galaxy or formed during a close interaction between the Milky Way and one of its companions is briefly discussed.

  19. Constraints on Helium Enhancement in the Globular Cluster M3 (NGC 5272): The Horizontal Branch Test

    NASA Technical Reports Server (NTRS)

    Catelan, M.; Grundahl, F.; Sweigart, A. V.; Valcarce, A. A. R.; Cortes, C.

    2007-01-01

    It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is a common feature among globular star clusters. In this scenario, such a helium enhancement would be particularly apparent in the enhanced luminosity of thc blue horizontal branch (HB) stars compared to the red HB stars. In this Letter, wc test this scenario in the case of the Galactic globular cluster M3 (NGC 5272), using high-precision Stromgren photometry and spectroscopic gravities for blue HB stars. We find that any helium enhancement among the cluster's blue HB stars must be significantly less than I%, thus ruling out the much higher helium enhancements that have been proposed in the literature.

  20. Eclipsing Binary V1178 Tau: A Reddening Independent Determination of the Age and Distance to NGC 1817

    NASA Astrophysics Data System (ADS)

    Hedlund, Anne; Sandquist, Eric L.; Arentoft, Torben; Brogaard, Karsten; Grundahl, Frank; Stello, Dennis; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico; Molenda-Zakowicz, Joanna; Vanderburg, Andrew

    2018-06-01

    V1178 Tau is a double-lined spectroscopic eclipsing binary in NGC1817, one of the more massive clusters observed in the K2 mission. We have determined the orbital period (P = 2.20 d) for the first time, and we model radial velocity measurements from the HARPS and ALFOSC spectrographs, light curves collected by Kepler, and ground based light curves using the Eclipsing Light Curve code (ELC, Orosz & Hauschildt 2000). We present masses and radii for the stars in the binary, allowing for a reddening-independent means of determining the cluster age. V1178 Tau is particularly useful for calculating the age of the cluster because the stars are close to the cluster turnoff, providing a more precise age determination. Furthermore, because one of the stars in the binary is a delta Scuti variable, the analysis provides improved insight into their pulsations.

  1. The distribution of rotational velocities for low-mass stars in the Pleiades

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Hartmann, Lee W.

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula.

  2. Star formation and abundances in the nearby irregular galaxy VII ZW 403

    NASA Astrophysics Data System (ADS)

    Tully, R. B.; Boesgaard, A. M.; Dyck, H. M.; Schempp, W. V.

    1981-05-01

    Photometry in J, H, and K bands reveals that there is an unresolved source of infrared emission associated with the brightest H II region in VII Zw 403, and the colors suggest the presence of a substantial number of K and M supergiants in addition to the hot O stars that must be present to account for the ionized gas. Spectrophotometry of this emission region indicates that reddening is substantial, and that the interpretation of the observed Balmer decrement in terms of reddening is not straightforward. The primary nucleosynthesis products O, S, and Ne are underabundant compared with the sun by a factor of 15; N is underabundant compared with the sun by a factor of 160; and the helium abundance suggests that either there could have been only a small number of star formation episodes or the galaxy is younger than the time scale of the process that deposits N in the interstellar medium.

  3. Discovery of a Wolf-Rayet Star through Detection of Its Photometric Variability

    NASA Astrophysics Data System (ADS)

    Littlefield, Colin; Garnavich, Peter; Marion, G. H. Howie; Vinkó, József; McClelland, Colin; Rettig, Terrence; Wheeler, J. Craig

    2012-06-01

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 Å, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 Å line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocular Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 ± 0.3 kpc.

  4. Featured Image: Extinction in Our Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-11-01

    In this map of the innermost galaxy, which spans only a few square degrees at the Milky Ways center, we can seethe locations of more than 31 million objects obtained from the VISTA Variables in the Va Lctea (VVV) survey. This near-infrared atlas traces stellar populations in the inner Milky Way that are dimmed and reddened by interstellar dust and gas a process known as extinction in a predictable way. Led by Javier Alonso-Garca (University of Antofagasta and the Millennium Institute of Astrophysics in Chile), a team of scientists has now used the VVV measurements of these stars to better understand the distribution of gas and dust that causes extinction in our inner galaxy particularly in the most central, highly reddened, and crowded areas of the Milky Way. For more information, check out the paper below.CitationJavier Alonso-Garca et al 2017 ApJL 849 L13. doi:10.3847/2041-8213/aa92c3

  5. The composition of the Trojan asteroids

    NASA Technical Reports Server (NTRS)

    Gradie, J.; Veverka, J.

    1980-01-01

    Consideration is given to the composition of those Trojan asteroids, Hilda asteroids and 944 Hidalgo with very low albedos and spectral reddening between 0.4 and 1.1 microns with respect to the C asteroids, termed RD objects. It is proposed that the albedo and reddening of these objects can be explained by the presence of very opaque, very red, polymer-type organic compounds structurally similar to kerogen, presumably resulting from Fischer-Tropsch-type reactions in the early solar nebula. The spectra and various mixtures of powdered montmorillonite, magnetite, coal-tar residue containing kerogen substances and carbon black are shown to provide a good match to the RD asteroid spectral properties. It is suggested that the nonsoluble carbonaceous residue may have required lower temperatures for its formation and preservation than carbonaceous materials in the carbonaceous chondrites and C asteroids, and thus explain the absence of RD objects closer than 4 AU from the sun.

  6. Ages of LMC star clusters using ASAD2

    NASA Astrophysics Data System (ADS)

    Asa'd, Randa S.; Vazdekis, Alexandre; Zeinelabdin, Sami

    2016-04-01

    We use ASAD2, the new version of ASAD (Analyzer of Spectra for Age Determination), to obtain the age and reddening of 27 Large Magellanic Cloud (LMC) clusters from full fitting of integrated spectra using different statistical methods [χ2 and Kolmogorov-Smirnov (KS) test] and a set of stellar population models including GALAXEV and MILES. We show that our results are in good agreement with the colour-magnitude diagram (CMD) ages for both models, and that metallicity does not affect the age determination for the full spectrum fitting method regardless of the model used for ages with log (age/year) < 9. We discuss the results obtained by the two statistical results for both GALAXEV and MILES versus three factors: age, signal-to-noise ratio and resolution (full width at half maximum). The predicted reddening values when using the χ2 minimization method are within the range found in the literature for resolved clusters (I.e. <0.35); however the KS test can predict E(B - V) higher values. The sharp spectrum transition originated at ages around the supergiants contribution, at either side of the AGB peak around log (age/year) 9.0 and log (age/year) 7.8 are limiting our ability to provide values in agreement with the CMD estimates and as a result the reddening determination is not accurate. We provide the detailed results of four clusters spanning a wide range of ages. ASAD2 is a user-friendly program available for download on the Web and can be immediately used at http://randaasad.wordpress.com/asad-package/.

  7. IUE Spectra and photoionization models of the Seyfert 2 glaxies NGC 7674 and I Zw 92

    NASA Technical Reports Server (NTRS)

    Kraemer, Steven B.; Wu, Chi-Chao; Crenshaw, D. Michael; Harrington, J. Patrick

    1994-01-01

    The physical conditions in the narrow-line regions of two Seyfert 2 galaxies, NGC 7674 and I Zw 92, are examined using IUE spectra, published optical spectra and multifrequency observations, and photoionization models. For each Seyfert galaxy, the emission-line fluxes were dereddened using the He II lambda(1640)/lambda(4686) ratio. Photoionization models were calculated using a power-law index determined from the He II lambda(4686)/H-beta ratio; the index is very similar to that obtained from a fit to the observed multifrequency continuum from the infrared to the X-rays. The models were calculated in a way that minimized the number of assumptions, and given the uncertainties in the reddening corrections, the calculated ratios match nearly all of the dereddened ratios successfully. a multicomponent model (three components with different densities and ionization parameters) was required to fit the spectrum of I Zw 92, whereas a single component was sufficient for NGC 7674. The CNO abundances are close to solar, although a reduced abundance of up to one-third solar for one or more of the heavy elements is possible. In contrast to a previous study of Mrk 3, dust inside the narrow-line region (NLR) louds was not required to fit the spectra of these two Seyfert galaxies, although the emission lines experience considerable reddening from external dust. Higher signal-to-noise spectra in the UV are essential for placing further restrictions on the reddening and physical conditions in the narrow-line regions of Seyfert galaxies.

  8. A multi-wavelength investigation of Seyfert 1.8 and 1.9 galaxies

    NASA Astrophysics Data System (ADS)

    Trippe, Margaret L.

    We focus on determining the underlying physical cause of a Seyfert galaxy's appearance as type a 1.8 or 1.9. Are these "intermediate" Seyfert types typical Seyfert 1 nuclei reddened by central dusty tori or by nuclear dust lanes/spirals in the narrow-line region? Or, are they similar to NGC 2992, objects that have intrinsically weak continua and weak broad emission lines? Our study compares measurements of the reddenings of the narrow and broad-line regions with each other and with the X-ray column derived from XMM Newton 0.5--10 keV spectra to determine the presence and location of dust in the line of sight for a sample of 35 Seyfert 1.8s and 1.9s. From this, we find that Seyfert 1.9s are an almost equal mix of low-flux objects with unreddened broad line regions, and objects with broad line regions reddened by an internal dust source, either the torus or dust structures on the same size scale as the narrow line region. The 1.9s that recieved this designation due to a low continuum flux state showed variable type classifications. All three of the Seyfert 1.8s in our study are probably in low continuum states. Many objects have been misclassified as Seyfert 1.8/1.9s in the past, probably due to improper [N II]/Halpha deconvolution leading to a false detection of weak broad Halpha. INDEX WORDS: Active galaxies, Seyfert galaxies, Optical spectroscopy, X-ray spectroscopy, Astronomical dust

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, F. S.; Jiang, Dongfei; Li, Yao

    The rest-frame UV–optical (i.e., NUV − B ) color index is sensitive to the low-level recent star formation and dust extinction, but it is insensitive to the metallicity. In this Letter, we have measured the rest-frame NUV − B color gradients in ∼1400 large ( r {sub e} > 0.″18), nearly face-on ( b / a > 0.5) main sequence star-forming galaxies (SFGs) between redshift 0.5 and 1.5 in the CANDELS/GOODS-S and UDS fields. With this sample, we study the origin of UV–optical color gradients in the SFGs at z ∼ 1 and discuss their link with the buildup ofmore » stellar mass. We find that the more massive, centrally compact, and more dust extinguished SFGs tend to have statistically more negative raw color gradients (redder centers) than the less massive, centrally diffuse, and less dusty SFGs. After correcting for dust reddening based on optical-spectral energy distribution fitting, the color gradients in the low-mass ( M {sub *} < 10{sup 10} M {sub ⊙}) SFGs generally become quite flat, while most of the high-mass ( M {sub *} > 10{sup 10.5} M {sub ⊙}) SFGs still retain shallow negative color gradients. These findings imply that dust reddening is likely the principal cause of negative color gradients in the low-mass SFGs, while both increased central dust reddening and buildup of compact old bulges are likely the origins of negative color gradients in the high-mass SFGs. These findings also imply that at these redshifts the low-mass SFGs buildup their stellar masses in a self-similar way, while the high-mass SFGs grow inside out.« less

  10. OPEN CLUSTERS AS PROBES OF THE GALACTIC MAGNETIC FIELD. I. CLUSTER PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoq, Sadia; Clemens, D. P., E-mail: shoq@bu.edu, E-mail: clemens@bu.edu

    2015-10-15

    Stars in open clusters are powerful probes of the intervening Galactic magnetic field via background starlight polarimetry because they provide constraints on the magnetic field distances. We use 2MASS photometric data for a sample of 31 clusters in the outer Galaxy for which near-IR polarimetric data were obtained to determine the cluster distances, ages, and reddenings via fitting theoretical isochrones to cluster color–magnitude diagrams. The fitting approach uses an objective χ{sup 2} minimization technique to derive the cluster properties and their uncertainties. We found the ages, distances, and reddenings for 24 of the clusters, and the distances and reddenings formore » 6 additional clusters that were either sparse or faint in the near-IR. The derived ranges of log(age), distance, and E(B−V) were 7.25–9.63, ∼670–6160 pc, and 0.02–1.46 mag, respectively. The distance uncertainties ranged from ∼8% to 20%. The derived parameters were compared to previous studies, and most cluster parameters agree within our uncertainties. To test the accuracy of the fitting technique, synthetic clusters with 50, 100, or 200 cluster members and a wide range of ages were fit. These tests recovered the input parameters within their uncertainties for more than 90% of the individual synthetic cluster parameters. These results indicate that the fitting technique likely provides reliable estimates of cluster properties. The distances derived will be used in an upcoming study of the Galactic magnetic field in the outer Galaxy.« less

  11. The Optical Variability of SDSS Quasars from Multi-epoch Spectroscopy. III. A Sudden UV Cutoff in Quasar SDSS J2317+0005

    NASA Astrophysics Data System (ADS)

    Guo, Hengxiao; Malkan, Matthew A.; Gu, Minfeng; Li, Linlin; Prochaska, J. Xavier; Ma, Jingzhe; You, Bei; Zafar, Tayyaba; Liao, Mai

    2016-08-01

    We have collected near-infrared to X-ray data of 20 multi-epoch heavily reddened SDSS quasars to investigate the physical mechanism of reddening. Of these, J2317+0005 is found to be a UV cutoff quasar. Its continuum, which usually appears normal, decreases by a factor 3.5 at 3000 Å, compared to its more typical bright state during an interval of 23 days. During this sudden continuum cut-off the broad emission line fluxes do not change, perhaps due to the large size of the broad-line region (BLR), r \\gt 23/(1+z) days. The UV continuum may have suffered a dramatic drop out. However, there are some difficulties with this explanation. Another possibility is that the intrinsic continuum did not change but was temporarily blocked out, at least toward our line of sight. As indicated by X-ray observations, the continuum rapidly recovers after 42 days. A comparison of the bright state and dim states would imply an eclipse by a dusty cloud with a reddening curve having a remarkably sharp rise shortward of 3500 Å. Under the assumption of being eclipsed by a Keplerian dusty cloud, we characterized the cloud size with our observations, however, which is a little smaller than the 3000 Å continuum-emitting size inferred from accretion disk models. Therefore, we speculate that this is due to a rapid outflow or inflow with a dusty cloud passing through our line of sight to the center.

  12. A new catalogue of Galactic novae: investigation of the MMRD relation and spatial distribution

    NASA Astrophysics Data System (ADS)

    Özdönmez, Aykut; Ege, Ergün; Güver, Tolga; Ak, Tansel

    2018-05-01

    In this study, a new Galactic novae catalogue is introduced collecting important parameters of these sources such as their light-curve parameters, classifications, full width half-maximum (FWHM) of Hα line, distances and interstellar reddening estimates. The catalogue is also published on a website with a search option via a SQL query and an online tool to re-calculate the distance/reddening of a nova from the derived reddening-distance relations. Using the novae in the catalogue, the existence of a maximum magnitude-rate of decline (MMRD) relation in the Galaxy is investigated. Although an MMRD relation was obtained, a significant scattering in the resulting MMRD distribution still exists. We suggest that the MMRD relation likely depends on other parameters in addition to the decline time, as FWHM Hα, the light-curve shapes. Using two different samples depending on the distances in the catalogue and from the derived MMRD relation, the spatial distributions of Galactic novae as a function of their spectral and speed classes were studied. The investigation on the Galactic model parameters implies that best estimates for the local outburst density are 3.6 and 4.2 × 10-10 pc-3 yr-1 with a scale height of 148 and 175 pc, while the space density changes in the range of 0.4-16 × 10-6 pc-3. The local outburst density and scale height obtained in this study infer that the disc nova rate in the Galaxy is in the range of ˜20 to ˜100 yr-1 with an average estimate 67^{+21}_{-17} yr-1.

  13. M31 Globular Clusters and Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Gregg, M. D.; Karick, A. M.

    2005-12-01

    The brightest globular cluster in the halo of M31, cluster G1, has properties which suggest that it is not an ordinary globular but an ultra-compact dwarf galaxy: its velocity dispersion, M/L, and ellipticity are all atypically large, and its color-magnitude diagram suggests an abundance spread. Using the Keck Laser Guide Star Adaptive Optics system with NIRC2, we have begun an imaging campaign of globular clusters in M31 to measure their core sizes. Combining these data with high dispersion spectroscopy will produce masses and M/L ratios to determine if there are additional UCDs masquerading as M31 globulars. UCDs are thought to be the remnant nuclei from tidally stripped dwarf ellipticals or small spirals; finding additional examples in the cluster system of M31 has implications for galaxy formation processes. The K-band image quality during our first LGS run was very stable over many hours, with Strehl ratios of 0.35 or better, producing point sources with FWHM of 0\\farcs05. The core sizes of the clusters, which range from 0\\farcs2 to 0\\farcs8 can be easily measured from these data. The observing conditions were nearly as good in the J-band, and we obtained both colors for a number of clusters. We discuss our efforts to produce photometrically-calibrated color-magnitude diagrams of the clusters. This work is supported by National Science Foundation Grant No. 0407445 and was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  14. LBT/MODS spectroscopy of globular clusters in the irregular galaxy NGC 4449

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Morandi, E.; Watkins, L. L.; Tosi, M.; Aloisi, A.; Buzzoni, A.; Cusano, F.; Fumana, M.; Marchetti, A.; Mignoli, M.; Mucciarelli, A.; Romano, D.; van der Marel, R. P.

    2018-05-01

    We present intermediate-resolution (R ˜ 1000) spectra in the ˜3500-10 000 Å range of 14 globular clusters in the Magellanic irregular galaxy NGC 4449 acquired with the Multi-Object Double Spectrograph on the Large Binocular Telescope. We derived Lick indices in the optical and the Ca II triplet index in the near-infrared in order to infer the clusters' stellar population properties. The inferred cluster ages are typically older than ˜9 Gyr, although ages are derived with large uncertainties. The clusters exhibit intermediate metallicities, in the range -1.2 ≲ [Fe/H] ≲ -0.7, and typically sub-solar [α/Fe] ratios, with a peak at ˜-0.4. These properties suggest that (i) during the first few Gyr NGC 4449 formed stars slowly and inefficiently, with galactic winds having possibly contributed to the expulsion of the α-elements, and (ii) globular clusters in NGC 4449 formed relatively `late', from a medium already enriched in the products of Type Ia supernovae. The majority of clusters appear also underabundant in CN compared to Milky Way halo globular clusters, perhaps because of the lack of a conspicuous N-enriched, second generation of stars like that observed in Galactic globular clusters. Using the cluster velocities, we infer the dynamical mass of NGC 4449 inside 2.88 kpc to be M(<2.88 kpc) = 3.15^{+3.16}_{-0.75} × 10^9 M_{\\odot }. We also report the serendipitous discovery of a planetary nebula within one of the targeted clusters, a rather rare event.

  15. The end of the White Dwarf Cooling Sequence of NGC 6752

    NASA Astrophysics Data System (ADS)

    Bedin, Luigi

    2017-08-01

    We propose to study the last HST-accessible white dwarf (WD) cooling sequence (CS) for a nearby globular cluster (GC), the chemically complex, extreme blue horizontal branch cluster NGC 6752. Over 97% of stars end their lives as WDs, and the WD CS provides constraints not only on the age, but also potentially the star formation history of a GC. The CS of WDs also lies in the least-explored region of the color-magnitude diagram of old stellar populations. Recent deep imaging with HST has successfully reached the end of the WD CS in only three classical old GCs, M4, NGC 6397 and 47 Tuc, and reveals an unexpectedly complex, and double-peaked, WD CS in the metal rich old open cluster NGC 6791. One more investigation is in progress on the massive globular Omega Centauri, where over 14 sub-populations are known to exist.While almost every cluster is known to host multiple populations, every single cluster is unique. NGC 6752 is a bridge between the relatively simple globular clusters, and Omega Cen, the most complex globular cluster known. NGC 6752 has an extended blue horizontal branch, a collapsed core and 3 chemically distinct populations. It is our last chance to add diversity to our very limited sample of WD CS, so far containing only 3 globular clusters, one old open cluster, and the complex Omega Cen system. We need to undertake this investigation while HST is still operational, as there is no foreseeable opportunity in the post-HST era to have one extra WD CS in the homogeneus optical photometric system of HST.

  16. NGC 6273: Towards Defining A New Class of Galactic Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, Robert Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario L.; Ira Bailey, John; Crane, Jeffrey D.

    2016-01-01

    A growing number of observations have found that several Galactic globular clusters exhibit abundance dispersions beyond the well-known light element (anti-)correlations. These clusters tend to be very massive, have >0.1 dex intrinsic metallicity dispersions, have complex sub-giant branch morphologies, and have correlated [Fe/H] and s-process element enhancements. Interestingly, nearly all of these clusters discovered so far have [Fe/H]~-1.7. In this context, we have examined the chemical composition of 18 red giant branch (RGB) stars in the massive, metal-poor Galactic bulge globular cluster NGC 6273 using high signal-to-noise, high resolution (R~27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph mounted on the Magellan-Clay 6.5m telescope at Las Campanas Observatory. We find that the cluster exhibits a metallicity range from [Fe/H]=-1.80 to -1.30 and is composed of two dominant populations separated in [Fe/H] and [La/Fe] abundance. The increase in [La/Eu] as a function of [La/H] suggests that the increase in [La/Fe] with [Fe/H] is due to almost pure s-process enrichment. The most metal-rich star in our sample is not strongly La-enhanced, but is α-poor and may belong to a third "anomalous" stellar population. The two dominant populations exhibit the same [Na/Fe]-[Al/Fe] correlation found in other "normal" globular clusters. Therefore, NGC 6273 joins ω Centauri, M 22, M 2, and NGC 5286 as a possible new class of Galactic globular clusters.

  17. Observing globular cluster RR Lyraes with the BYU West Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Jeffery, E. J.; Joner, M. D.; Walton, R. S.

    2016-05-01

    We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on six northern hemi- sphere globular clusters. Here we present observations of RR Lyrae stars located in these clusters. We compare light curves produced using both DAOPHOT and ISIS software packages. Light curve fitting is done with FITLC.

  18. Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases

    PubMed Central

    Castillo, Virginia; Ventura, Salvador

    2009-01-01

    Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins. PMID:19696882

  19. ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins

    PubMed Central

    Puntervoll, Pål; Linding, Rune; Gemünd, Christine; Chabanis-Davidson, Sophie; Mattingsdal, Morten; Cameron, Scott; Martin, David M. A.; Ausiello, Gabriele; Brannetti, Barbara; Costantini, Anna; Ferrè, Fabrizio; Maselli, Vincenza; Via, Allegra; Cesareni, Gianni; Diella, Francesca; Superti-Furga, Giulio; Wyrwicz, Lucjan; Ramu, Chenna; McGuigan, Caroline; Gudavalli, Rambabu; Letunic, Ivica; Bork, Peer; Rychlewski, Leszek; Küster, Bernhard; Helmer-Citterich, Manuela; Hunter, William N.; Aasland, Rein; Gibson, Toby J.

    2003-01-01

    Multidomain proteins predominate in eukaryotic proteomes. Individual functions assigned to different sequence segments combine to create a complex function for the whole protein. While on-line resources are available for revealing globular domains in sequences, there has hitherto been no comprehensive collection of small functional sites/motifs comparable to the globular domain resources, yet these are as important for the function of multidomain proteins. Short linear peptide motifs are used for cell compartment targeting, protein–protein interaction, regulation by phosphorylation, acetylation, glycosylation and a host of other post-translational modifications. ELM, the Eukaryotic Linear Motif server at http://elm.eu.org/, is a new bioinformatics resource for investigating candidate short non-globular functional motifs in eukaryotic proteins, aiming to fill the void in bioinformatics tools. Sequence comparisons with short motifs are difficult to evaluate because the usual significance assessments are inappropriate. Therefore the server is implemented with several logical filters to eliminate false positives. Current filters are for cell compartment, globular domain clash and taxonomic range. In favourable cases, the filters can reduce the number of retained matches by an order of magnitude or more. PMID:12824381

  20. Testing modified gravity with globular clusters: the case of NGC 2419

    NASA Astrophysics Data System (ADS)

    Llinares, Claudio

    2018-05-01

    The dynamics of globular clusters has been studied in great detail in the context of general relativity as well as with modifications of gravity that strongly depart from the standard paradigm such as Modified Newtonian Dynamics. However, at present there are no studies that aim to test the impact that less extreme modifications of gravity (e.g. models constructed as alternatives to dark energy) have on the behaviour of globular clusters. This Letter presents fits to the velocity dispersion profile of the cluster NGC 2419 under the symmetron-modified gravity model. The data show an increase in the velocity dispersion towards the centre of the cluster which could be difficult to explain within general relativity. By finding the best-fitting solution associated with the symmetron model, we show that this tension does not exist in modified gravity. However, the best-fitting parameters give a model that is inconsistent with the dynamics of the Solar system. Exploration of different screening mechanisms should give us the chance to understand if it is possible to maintain the appealing properties of the symmetron model when it comes to globular clusters and at the same time recover the Solar system dynamics properly.

  1. Abundances in the Young Globulars Ruprecht 106 and PAL 12

    NASA Astrophysics Data System (ADS)

    Brown, J. A.; Wallerstein, G.; Zucker, D.

    1995-12-01

    We have observed two red giants in each of the young globular clusters Ruprecht 106 and Pal 12 with the CTIO 4m echelle and analyzed the spectra for chemical composition. We find for Rup 106 [Fe/H] =~ -1.5, [O/Fe] =~ 0.0, and [alpha /Fe] =~ -0.2. For Pal 12 we find [Fe/H] =~ -1.0 and [alpha /Fe] =~ -0.05; we have no information on oxygen in Pal 12. The light odd-Z metals Na and Al are both overdeficient in both clusters' stars. The stars are all CN-weak compared to similar giants in nearby globulars of comparable [Fe/H]. The abundance results for Rup 106 rule out the possibility that the apparent youth of the cluster as derived from its color-magnitude diagram is caused by an anomalous composition; the lack of results for oxygen prevent us from making a similar statement for Pal 12. These abundances imply a very different star formation history for the material from which these clusters formed, compared to the well-studied old nearby globulars, and are consistent with the suggestion that these clusters are accreted objects, and were not formed in the same environment as the old clusters.

  2. Protoenzymes: the case of hyperbranched polyesters

    NASA Astrophysics Data System (ADS)

    Mamajanov, Irena; Cody, George D.

    2017-11-01

    Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyperbranched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  3. Do We Really Have an Age/H_0 Conflict?

    NASA Astrophysics Data System (ADS)

    Baum, W. A.

    1997-12-01

    Two independent methods for estimating the age of the universe can both be linked to the absolute magnitudes of the RR Lyrae stars, one based on stellar evolution in globular clusters and the other based on the Hubble Constant derived from globular clusters as distance indicators. The latter has recently been extracted from HST-WFPC2 data for globular clusters in the Coma Cluster galaxy IC 4051 (Baum et al. 1997, AJ, 113, 1483). If RR Lyrae stars are brighter than we have previously thought, the stellar-evolution age estimate is shortened whereas the Hubble age is increased, so we can ask a very simple question: For what RR Lyrae magnitude zero point would the stellar-evolution age coincide with the Hubble age, and is it a reasonable value? Allowing 1 Gyr for globular clusters to have formed, and assuming a classical Einstein-deSitter universe with Lambda = 0, I find the two ages to coincide if M_V(RR) ~ 0.16[Fe/H] + 0.46, which (among other things) puts the Large Magellanic Cloud at (m-M) = 18.78 +/- 0.17 mag. The implied age of the universe is 11.0 +/- 1.4 Gyr, and the corresponding H_0 = 59 +/- 8 km/s per Mpc.

  4. A Swarm of Ancient Stars

    NASA Astrophysics Data System (ADS)

    2010-12-01

    We know of about 150 of the rich collections of old stars called globular clusters that orbit our galaxy, the Milky Way. This sharp new image of Messier 107, captured by the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, displays the structure of one such globular cluster in exquisite detail. Studying these stellar swarms has revealed much about the history of our galaxy and how stars evolve. The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concentrated into a space that is only about twenty times the distance between our Sun and its nearest stellar neighbour, Alpha Centauri, across. A significant number of these stars have already evolved into red giants, one of the last stages of a star's life, and have a yellowish colour in this image. Globular clusters are among the oldest objects in the Universe. And since the stars within a globular cluster formed from the same cloud of interstellar matter at roughly the same time - typically over 10 billion years ago - they are all low-mass stars, as lightweights burn their hydrogen fuel supply much more slowly than stellar behemoths. Globular clusters formed during the earliest stages in the formation of their host galaxies and therefore studying these objects can give significant insights into how galaxies, and their component stars, evolve. Messier 107 has undergone intensive observations, being one of the 160 stellar fields that was selected for the Pre-FLAMES Survey - a preliminary survey conducted between 1999 and 2002 using the 2.2-metre telescope at ESO's La Silla Observatory in Chile, to find suitable stars for follow-up observations with the VLT's spectroscopic instrument FLAMES [1]. Using FLAMES, it is possible to observe up to 130 targets at the same time, making it particularly well suited to the spectroscopic study of densely populated stellar fields, such as globular clusters. M107 is not visible to the naked eye, but, with an apparent magnitude of about eight, it can easily be observed from a dark site with binoculars or a small telescope. The globular cluster is about 13 arcminutes across, which corresponds to about 80 light-years at its distance, and it is found in the constellation of Ophiuchus, north of the pincers of Scorpius. Roughly half of the Milky Way's known globular clusters are actually found in the constellations of Sagittarius, Scorpius and Ophiuchus, in the general direction of the centre of the Milky Way. This is because they are all in elongated orbits around the central region and are on average most likely to be seen in this direction. Messier 107 was discovered by Pierre Méchain in April 1782 and it was added to the list of seven Additional Messier Objects that were originally not included in the final version of Messier's catalogue, which was published the previous year. On 12 May 1793, it was independently rediscovered by William Herschel, who was able to resolve this globular cluster into stars for the first time. But it was not until 1947 that this globular cluster finally took its place in Messier's catalogue as M107, making it the most recent star cluster to be added to this famous list. This image is composed from exposures taken through the blue, green and near-infrared filters by the Wide Field Camera (WFI) on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. Notes [1] Fibre Large Array Multi-Element Spectrograph More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. A Revised Velocity for the Globular Cluster GC-98 in the Ultra Diffuse Galaxy NGC 1052-DF2

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Cohen, Yotam; Danieli, Shany; Romanowsky, Aaron; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Kruijssen, J. M. Diederik; Lokhorst, Deborah; Merritt, Allison; Mowla, Lamiya; Zhang, Jielai

    2018-06-01

    We recently published velocity measurements of luminous globular clusters in the galaxy NGC1052-DF2, concluding that it lies far off the canonical stellar mass - halo mass relation. Here we present a revised velocity for one of the globular clusters, GC-98, and a revised velocity dispersion measurement for the galaxy. We find that the intrinsic dispersion $\\sigma=5.6^{+5.2}_{-3.8}$ km/s using Approximate Bayesian Computation, or $\\sigma=7.8^{+5.2}_{-2.2}$ km/s using the likelihood. The expected dispersion from the stars alone is ~7 km/s. Responding to a request from the Editors of ApJ Letters and RNAAS, we also briefly comment on the recent analysis of our measurements by Martin et al. (2018).

  6. Formation of black hole x-ray binaries in globular clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl; Rasio, Frederic

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes within globular clusters. We show that it is possible to form mass-transferring binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in globular clusters spanning a large range in present-day properties. We show that the presence of mass-transferring black hole systems has little correlation with the total number of black holes within the cluster at any time. In addition to mass-transferring binaries retained within their host clusters at late times, we also examine the black hole and neutron star binaries that are ejected from their host clusters. These ejected systems may contribute to the low-mass x-ray binary population in the galactic field.

  7. VizieR Online Data Catalog: Globular and open clusters observed by SDSS/SEGUE (Morrison+, 2016)

    NASA Astrophysics Data System (ADS)

    Morrison, H. L.; Ma, Z.; Clem, J. L.; An, D.; Connor, T.; Schechtman-Rook, A.; Casagrande, L.; Rockosi, C.; Yanny, B.; Harding, P.; Beers, T. C.; Johnson, J. A.; Schneider, D. P.

    2018-03-01

    The SEGUE project observed a number of globular and open clusters for calibration purposes. For calibration of the red giants, we selected the globular clusters M92, M13 and M71 (spanning metallicities from -2.4 to -0.8) and the open clusters Be 29, NGC 7789 and NGC 6791, whose [Fe/H] values range from -0.4 to +0.4. In all but one case, the clusters are within the SDSS footprint and so ugriz photometry is available for the cluster stars. The SDSS cluster images were analyzed using DAOPHOT (Stetson 1987PASP...99..191S) by An et al. (2008ApJS..179..326A) because the SDSS photometric pipeline was not designed to handle crowded fields. (8 data files).

  8. Ashes from the Elder Brethren

    NASA Astrophysics Data System (ADS)

    2001-03-01

    UVES Observes Stellar Abundance Anomalies in Globular Clusters Summary Globular clusters are very massive assemblies of stars. More than 100 are known in the Milky Way galaxy and most of them harbour several million stars. They are very dense - at their centers, the typical distance between individual stars is comparable to the size of the Solar System, or 100 to 1000 times closer than the corresponding distances between stars in the solar neighborhood. Globular clusters are among the oldest objects known , with estimated ages of 11 to 15 billion years [1]. All stars in a globular cluster were formed at nearly the same moment, and from the same parent cloud of gas and dust. The original chemical composition of all stars is therefore the same. But now, an international group of astronomers [2], working with the UVES Spectrograph at the ESO Very Large Telescope (VLT) , have obtained some unexpected results during a detailed analysis of dwarf stars in some globular clusters . Such stars have about the same mass as our Sun and like it, they evolve very slowly. Thus they still ought to have about the same abundances of most chemical elements. Nevertheless, the astronomers found large abundance variations from star to star, especially for the common elements Oxygen, Sodium, Magnesium and Aluminium . This phenomenon has never been seen in such stars before . It appears that those stars must somehow have received "burnt" stellar material from more massive stars that died many billion years ago. In their final phase - as "planetary nebulae" - they eject stellar material that has been enriched with certain chemical elements which were produced by the nuclear processes in their interiors during their active life. Such an acquisition of material from other stars has been proposed but has never before been seen in globular clusters . This new discovery obviously sets stars in globular cluster apart from those in less dense environments, like the solar neighbourhood. PR Photo 06a/01 : The globular cluster NGC 6752 . PR Photo 06b/01 : Spectra of dwarf stars in NGC 6752 Globular clusters ESO PR Photo 06a/01 ESO PR Photo 06a/01 [Preview - JPEG: 400 x 467 pix - 136k] [Normal - JPEG: 800 x 934 pix - 424k] [Hires - JPEG: 3000 x 3503 pix - 3.0M] Caption : PR Photo 06a/01 is an image of the globular cluster NGC 6752 ; stars for which spectra were obtained in the present programme are marked by small circles (only visible in the high-resolution version of this photo). NGC 6752 is a typical globular cluster, containing many hundreds of thousands of stars, of which some tens of thousands are visible in this photo. It is located at a distance of approximately 13,000 light-years and is one of the oldest known objects in the Universe. The bright, round object to the lower right of the cluster is the overexposed image of the 7th magnitude star HD 177999 . Technical information about this photo is available below. Globular clusters are very massive and extremely dense agglomerates of stars: typical distances between stars at their centres are comparable to the size of the Solar System. They were formed very early in the Universe and have very low metal content, down to about 1/200 of the Solar abundance. They are among the oldest objects for which relatively accurate ages can be determined for individual stars by means of their observed colours (for information about the "radioactive" method, see ESO Press Release 02/01. The study of globular clusters therefore plays a basic role in our understanding of the evolution of the Universe and of our own Galaxy. The globular clusters are quite distant and most are located in the Milky Way halo, far above or below the main plane of this galaxy. The nearest globular cluster is Messier 4 (NGC 6121) , about 7,000 light-years away. The globular cluster NGC 6752 , shown in PR Photo 06a/01 , is a typical representative of this class of celestial objects. Its distance is estimated at 13,000 light-years Spectral analysis supports distance and age determinations The vast majority of stars in globular clusters are "dwarfs" like our own Sun. They burn Hydrogen into Helium in their central regions, and like the Sun they spend billions of years in this particular evolutionary phase. When their light is dispersed with a spectrograph , thousands of narrow spectral lines are revealed that are caused by chemical elements like Iron, Sodium, Oxygen, Magnesium and Lithium, present in the outer atmospheres of these stars. "Spectral analysis" is one of the basic tools of astronomy, during which the accurate chemical composition of a star is determined by means of a detailed study of the lines seen in its spectrum. In this context, very detailed observations of dwarf stars in globular clusters are of great importance. They allow to compare directly the properties of stars in distant clusters with those of much closer - and hence more easily observable - similar stars in the solar neighbourhood. Such a comparison contributes to reducing current uncertainties in the determination of distances and ages of the globular clusters. Studies like these will ultimately yield a better determination of the age of our own Galaxy and the Universe, as well as the universal distance scale. Variations in chemical abundances ESO PR Photo 06b/01 ESO PR Photo 06b/01 [Preview - JPEG: 400 x 457 pix - 96k] [Normal - JPEG: 800 x 914 pix - 264k] Caption : PR Photo 06b/01 displays a series of spectra of dwarf stars in the globular cluster NGC 6752 , obtained with the UVES high-dispersion spectrograph at the 8.2-m VLT KUEYEN telescope. Sodium (Na) and Oxygen (O) lines are marked, and the spectra are arranged according to the strength of the Sodium lines, with the strongest at the top. It is obvious that stars with stronger Sodium lines (and therefore with a higher Sodium abundance) have weaker Oxygen lines (and are therefore poorer in Oxygen). Even with UVES, the most powerful high-resolution astronomical spectrograph in the world, exposures of up to 4.5 hours were required to record good spectra of these faint objects (V-mag = 17.2). Detailed observations of dwarf stars in globular clusters are rather difficult because they are quite faint objects; The brightest are at least 10,000 times fainter than the dimmest stars observable with the unaided eye. Nevertheless, the closest globular clusters are seen in the southern sky and with the high efficiency of the UVES spectrograph mounted at the KUEYEN 8.2-m telescope at Paranal (Chile), it has now become possible for the first time to obtain excellent spectra for a significant number of dwarf stars in globular clusters, cf. PR Photo 06b/01 . The UVES spectra cover a wide wavelength interval (350 - 900 nm) and display a very large number of spectral lines that originate from many different elements. The first results obtained from the excellent data for this observational programme immediately brought a great surprise to Raffaele Gratton and his co-investigators. The Italian astronomer reports that "our detailed analysis revealed that, while heavy elements like Iron display an impressively similar abundance in all of the observed dwarf stars, other elements, such as Oxygen, Sodium, Magnesium and Aluminium show large abundance variations from star to star". Moreover, "these variations are apparently not completely random, as there is evidence that certain elements change in a similar pattern from star to star". Evidence for accretion? This result is indeed unexpected, since the dwarf stars in globular clusters originated from the same interstellar material. Which effect may therefore produce the observed variations ? And why are such variations not observed in dwarf stars in the solar neighborhood ? The scientists think they have the answer. It has been known since the early 1970's that large star-to-star variations in the abundances of light elements like Carbon, Nitrogen, Oxygen, Sodium, Magnesium and Aluminium may occur in giant stars . Contrary to dwarf stars that still burn Hydrogen at their centres into Helium, giant stars have exhausted their Hydrogen supplies and have become much more luminous. Most investigators attributed the observed variations to the fact that in giant stars a certain amount of "mixing" occurs between the upper atmospheric layers (that emit the light we see) and the deeper (warmer) layers, in which some nuclear burning is going on, transforming Carbon into Nitrogen, etc. However, it is a well established fact of stellar evolution theory that such mixing and, consequently, the presence of abundance anomalies in the upper atmosphere can only occur in bright, evolved giant stars. It does not happen in dwarf stars, because the central temperature of those objects is not high enough to burn Oxygen or Magnesium, and to produce Sodium and Aluminium. It seems therefore not possible that the abundance anomalies are produced in those stars where they are observed. They should have been produced elsewhere, and transported in some way to the surface layers of the stars where we observe them [3]. ESO astronomer Luca Pasquini from the team explains that "we therefore believe that these observations provide evidence that a certain fraction of stars in some globular cluster has received "burnt" material from more massive stars." He adds that "the stars of that elder generation ended their active lifetimes a long time ago by ejecting their material into surrounding space during a "planetary nebula" phase and have now become very dim "white dwarf stars" [4]. The acquisition of material from other stars is a phenomenon that is apparently unique to globular clusters (except that it has also been observed in a few close binary stars). It clearly distinguishes stars in globular cluster from those found in less dense environments, like the solar neighborhood. More information The research paper ("The O-Na and Mg-Al Anticorrelations in Turn-Off and early Subgiants in Globular Clusters") on which this Press Release is based is now in press in the European journal Astronomy & Astrophysics. It is also available on the web as astro-ph/0012457. Notes [1]: 1 billion = 1,000 million. [2]: The team members in the ESO Large Program 165-L0263 devoted to the analysis of globular cluster dwarf stars, described in this Press Release, are: Raffaele Gratton (PI), Eugenio Carretta , Riccardo Claudi , Silvano Desidera , Sara Lucatello (Osservatorio Astronomico di Padova, Italy), Gisella Clementini , Angela Bragaglia (Osservatorio Astronomico di Bologna, Italy), Paolo Molaro , Piercarlo Bonifacio , Miriam Centurion (Osservatorio Astronomico di Trieste, Italy), Francesca D' Antona (Osservatorio Astronomico di Roma, Italy), Vittorio Castellani (Universita' di Pisa, Italy), Alessandro Chieffi (CNR-IAS, Italy), Oscar Straniero (Osservatorio di Teramo, Italy), Luca Pasquini , Patrick Francois (ESO), Francois Spite , Monique Spite (Observatoire de Meudon, France), Chris Sneden (University of Texas at Austin, USA), Frank Grundahl (University of Aarhus, Denmark). [3]: While it is apparent that some mass is transferred from the Planetary Nebulae to the stars, the details of this process are not clear. It may have happened before the stars here observed were formed, or later. In the latter case, the accretion may have occurred only during a particular evolutionary phase, some 100 million years after the cluster formed, i.e. about 11 to 15 billion years ago, and in very dense environments. Moreover, the accretion rate will depend on the relative velocities: only stars that move slowly with respect to the interstellar medium has a good chance of accreting matter. This may also be (part of) an explanation of the observed, large differences from star to star. [4]: A photo of a large planetary nebula is available as PR Photo 38a/98 and information about VLT observations of white dwarf stars in globular clusters are described in PR 20/99. Technical information about the photo PR Photo 06a/01 The image has been obtained through a v-band filter with the DFOSC multi-mode instrument the Danish 1.5-m Telescope at the ESO La Silla Observatory (Chile). The diameter of the field-of-view is 9 arcmin; the exposure time was 10 min, and the seeing was 1.3 arcsec. A few CCD columns suffer from imaging defects.

  9. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor.

    PubMed

    Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K

    2017-07-28

    Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Chemical composition of stars in Ruprecht 106 .

    NASA Astrophysics Data System (ADS)

    François, P.

    High resolution spectra of 9 stars belonging to the globular cluster Rup 106 have been used to determine their chemical composition. The results reveal that Ruprecht 106 exhibits abundance anomalies when compared to galactic globular cluster of similar metallicity. The chemical composition of these stars is similar to what is found in Dwarf spheroidal galaxies favoring the hypothesis that Rup 106 has not been formed in our Galaxy.

  11. La galaxia NGC 6876 y su sistema de cúmulos globulares

    NASA Astrophysics Data System (ADS)

    Ennis, A. I.; Bassino, L. P.; Caso, J. P.

    2017-10-01

    We present preliminary results of the deep photometric study of the elliptical galaxy NGC6876, located at the center of the Pavo group, and its globular cluster system. We use images obtained with the GMOS camera mounted on the Gemini South telescope, in the and bands, with the purpose of disentangling the evolutionary history of the galaxy on the basis of their characteristics.

  12. M13

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    M13 is a globular cluster in Hercules (2.5 degrees south of η Herculis), the `Great Hercules Globular Cluster' discovered by Edmund Halley in 1714 who noted that `it shows itself to the naked eye when the sky is serene and the Moon absent'. It was first resolved by William Herschel and has since been the target of much professional and amateur interest, mainly because it is very bright and easily...

  13. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the Searching for the Galactic Halo project using the CFHT, organized by the Korea Astronomy and Space Science Institute.

  14. A dynamical study of Galactic globular clusters under different relaxation conditions

    NASA Astrophysics Data System (ADS)

    Zocchi, A.; Bertin, G.; Varri, A. L.

    2012-03-01

    Aims: We perform a systematic combined photometric and kinematic analysis of a sample of globular clusters under different relaxation conditions, based on their core relaxation time (as listed in available catalogs), by means of two well-known families of spherical stellar dynamical models. Systems characterized by shorter relaxation time scales are expected to be better described by isotropic King models, while less relaxed systems might be interpreted by means of non-truncated, radially-biased anisotropic f(ν) models, originally designed to represent stellar systems produced by a violent relaxation formation process and applied here for the first time to the study of globular clusters. Methods: The comparison between dynamical models and observations is performed by fitting simultaneously surface brightness and velocity dispersion profiles. For each globular cluster, the best-fit model in each family is identified, along with a full error analysis on the relevant parameters. Detailed structural properties and mass-to-light ratios are also explicitly derived. Results: We find that King models usually offer a good representation of the observed photometric profiles, but often lead to less satisfactory fits to the kinematic profiles, independently of the relaxation condition of the systems. For some less relaxed clusters, f(ν) models provide a good description of both observed profiles. Some derived structural characteristics, such as the total mass or the half-mass radius, turn out to be significantly model-dependent. The analysis confirms that, to answer some important dynamical questions that bear on the formation and evolution of globular clusters, it would be highly desirable to acquire larger numbers of accurate kinematic data-points, well distributed over the cluster field. Appendices are available in electronic form at http://www.aanda.org

  15. MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397. I. The first comprehensive HRD of a globular cluster

    NASA Astrophysics Data System (ADS)

    Husser, Tim-Oliver; Kamann, Sebastian; Dreizler, Stefan; Wendt, Martin; Wulff, Nina; Bacon, Roland; Wisotzki, Lutz; Brinchmann, Jarle; Weilbacher, Peter M.; Roth, Martin M.; Monreal-Ibero, Ana

    2016-04-01

    Aims: We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods: The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results: We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of vrad = 17.84 ± 0.07 km s-1 and a mean metallicity of [Fe/H] = -2.120 ± 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion. Data products are available at http://muse-vlt.eu/scienceBased on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Paranal, Chile (ESO Programme ID 60.A-9100(C)).

  16. Confirmation of an Intermediate-Mass Black Hole in an Extragalactic Globular Cluster

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy

    2015-10-01

    The long and controversial search for black holes within globular clusters has reached the point where extragalactic globular clusters provide fertile hunting grounds for finding black holes of both stellar and intermediate-mass (IMBH) varieties. While a luminous X-ray point source within a cluster can indicate the presence of a black hole, little can generally be said of its mass without further observation. In the event that a black hole tidally disrupts a passing star in the cluster, optical/UV emission lines from the X-ray-illuminated debris can not only demonstrate the existence of a black hole in the cluster, but can also provide powerful constraints on the mass of the black hole, the composition of the disrupted star, and even the time since the tidal disruption event took place. We propose an HST COS G140L UV spectrum of a globular cluster within the Fornax elliptical galaxy NGC1399 that exhibits unusual optical [N II] and [O III] forbidden emission lines that are believed to result from such a tidal disruption event by a 100 solar mass black hole. Our models predict that the ratios of the expected emission lines from carbon, nitrogen, and oxygen that should be present in the UV spectrum of the source will be able to distinguish a stellar-mass black hole from an IMBH as the disruptor, as well as determine the nature of the disrupted star. If the mass of the black hole is constrained to be in excess of 100 solar masses, this would provide one of the most compelling pieces of evidence to date that IMBHs exist within globular clusters.

  17. The Discovery of a Second Luminous Low-Mass X-Ray Binary in the Globular Cluster M15

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Angelini, Lorella

    2001-01-01

    We report an observation by the Chandra X-Ray Observatory of 4U 2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U 2127+119 is in fact two bright sources, separated by 2.7 arcsec. One source is associated with AC 211, the previously identified optical counterpart to 4U 2127+119, a low-mass X-ray binary (LMXB). The second source, M15 X-2, is coincident with a 19th U magnitude blue star that is 3.3 arcsec from the cluster core. The Chandra count rate of M15 X-2 is 2.5 times higher than that of AC 211. Prior to the 0.5 arcsec imaging capability of Chandra, the presence of two so closely separated bright sources would not have been resolved. The optical counterpart, X-ray luminosity, and spectrum of M15 X-2 are consistent with it also being an LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long-standing puzzle where the properties of AC 211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U 2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U 2127+119 into two sources suggests that the X-ray bursts did not come from AC 211 but rather from M15 X-2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in globular clusters as well as X-ray observations of globular clusters in nearby galaxies.

  18. Evolution of redback radio pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.

    2017-02-01

    Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims: We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods: We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results: We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions: The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration.

  19. Where are Low Mass X-ray Binaries Formed?

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Maccarone, T. J.; Zepf, S. E.

    2004-08-01

    Chandra images of nearby galaxies reveal large numbers of low mass X-ray binaries (LMXBs). As in the Galaxy, a significant fraction of these are associated with globular clusters. We exploit the LMXB-globular cluster link in order to probe both the physical properties of globular clusters that promote the formation of LMXBs within clusters with specific characteristics, and to study whether the non-cluster field LMXB population was originally formed in clusters and then released into the field. The large population of globular clusters around nearby galaxies and the range of properties such as age, metallicity and host galaxy environment spanned by these objects enables us to identify and probe the link between these characteristics and the formation of LMXBs. We present the results of our study of a large sample of elliptical and S0 galaxies which reveals among other things that bright LMXBs definitively prefer metal-rich cluster hosts and that this relationship is unlikely to be driven by age effects. The ancestry of the non-cluster field LMXBs is a matter of some debate with suggestions that they they might have formed in the field, or created in globular clusters and then subsequently released into the field either by being ejected from clusters by dynamical processes or as remnants of dynamically destroyed clusters. Each of these scenarios has a specific spatial signature that can be tested by our combined optical and X-ray study. Furthermore, these scenarios predict additional statistical variations that may be driven by the specific host galaxy environment. We present a detailed analysis of our sample galaxies and comment on the probability that the field sources were actually formed in clusters.

  20. Observing Stellar Clusters in the Computer

    NASA Astrophysics Data System (ADS)

    Borch, A.; Spurzem, R.; Hurley, J.

    2006-08-01

    We present a new approach to combine direct N-body simulations to stellar population synthesis modeling in order to model the dynamical evolution and color evolution of globular clusters at the same time. This allows us to model the spectrum, colors and luminosities of each star in the simulated cluster. For this purpose the NBODY6++ code (Spurzem 1999) is used, which is a parallel version of the NBODY code. J. Hurley implemented simple recipes to follow the changes of stellar masses, radii, and luminosities due to stellar evolution into the NBODY6++ code (Hurley et al. 2001), in the sense that each simulation particle represents one star. These prescriptions cover all evolutionary phases and solar to globular cluster metallicities. We used the stellar parameters obtained by this stellar evolution routine and coupled them to the stellar library BaSeL 2.0 (Lejeune et al. 1997). As a first application we investigated the integrated broad band colors of simulated clusters. We modeled tidally disrupted globular clusters and compared the results with isolated globular clusters. Due to energy equipartition we expected a relative blueing of tidally disrupted clusters, because of the higher escape probability of red, low-mass stars. This behaviour we actually observe for concentrated globular clusters. The mass-to-light ratio of isolated clusters follows exactly a color-M/L correlation, similar as described in Bell and de Jong (2001) in the case of spiral galaxies. At variance to this correlation, in tidally disrupted clusters the M/L ratio becomes significantly lower at the time of cluster dissolution. Hence, for isolated clusters the behavior of the stellar population is not influenced by dynamical evolution, whereas the stellar population of tidally disrupted clusters is strongly influenced by dynamical effects.

  1. Fukuyoa paulensis gen. et sp. nov., a New Genus for the Globular Species of the Dinoflagellate Gambierdiscus (Dinophyceae)

    PubMed Central

    Gómez, Fernando; Qiu, Dajun; Lopes, Rubens M.; Lin, Senjie

    2015-01-01

    The marine epiphytic dinoflagellate Gambierdiscus is a toxicologically important genus responsible for ciguatera fish poisoning, the principal cause of non-bacterial illness associated with fish consumption. The genus currently contains species exhibiting either globular or anterior-posteriorly compressed morphologies with marked differences in cell shape and plate arrangement. Here we report a third globular, epiphytic and tychoplanktonic species from the coasts of Ubatuba, Brazil. The new species can be distinguished from G. yasumotoi and G. ruetzleri by its broader first apical plate that occupies a larger portion of the epitheca. Accordingly, phylogenetic trees from small subunit (SSU) and large subunit (LSU) ribosomal DNA sequences also showed strongly supported separation of the new species from the G. yasumotoi / G. ruetzleri group albeit with short distance. The molecular phylogenies, which included new sequences of the planktonic species Goniodoma polyedricum, further indicated that the globular species of Gambierdiscus formed a tight clade, clearly separated (with strong bootstrap support) from the clade of lenticular species including the type for Gambierdiscus. The morphological and molecular data in concert support the split of Gambierdiscus sensu lato into two genera. Gambierdiscus sensu stricto should be reserved for the species with lenticular shapes, highly compressed anterioposteriorly, with short-shank fishhook apical pore plate, large 2' plate, low and ascending cingular displacement, and pouch-like sulcal morphology. The new genus name Fukuyoa gen. nov. should be applied to the globular species, slightly laterally compressed, with long-shank fishhook apical pore plate, large 1' plate, greater and descending cingular displacement, and not pouch-like vertically-oriented sulcal morphology. Fukuyoa contains the new species Fukuyoa paulensis gen. et sp. nov., and F. yasumotoi comb. nov. and F. ruetzleri comb. nov. PMID:25831082

  2. A Globular Cluster Luminosity Function Distance to NGC 4993 Hosting a Binary Neutron Star Merger GW170817/GRB 170817A

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Kang, Jisu; Im, Myungshin

    2018-05-01

    NGC 4993 hosts a binary neutron star merger, GW170817/GRB 170817A, emitting gravitational waves and electromagnetic waves. The distance to this galaxy is not well established. We select the globular cluster candidates from the Hubble Space Telescope (HST)/ACS F606W images of NGC 4993 in the archive, using the structural parameters of the detected sources. The radial number density distribution of these candidates shows a significant central concentration around the galaxy center at the galactocentric distance r < 50″, showing that they are mostly the members of NGC 4993. Also, the luminosity function of these candidates is fit well by a Gaussian function. Therefore, the selected candidates at r < 50″ are mostly considered to be globular clusters in NGC 4993. We derive an extinction-corrected turnover Vega magnitude in the luminosity function of the globular clusters at 20″ < r < 50″, F606W (max)0 = 25.36 ± 0.08 (V 0 = 25.52 ± 0.11) mag. Adopting the calibration of the turnover magnitudes of the globular clusters, M V (max) = ‑7.58 ± 0.11, we derive a distance to NGC 4993, d = 41.65 ± 3.00 Mpc ({(m-M)}0 = 33.10+/- 0.16). The systematic error of this method can be as large as ±0.3 mag. This value is consistent with the previous distance estimates based on the fundamental plane relation and the gravitational wave method in the literature. The distance in this study can be used to constrain the values of the parameters including the inclination angle of the binary system in the models of gravitational wave analysis.

  3. Beyond the brim of the hat: Kinematics of globular clusters out to large radii in the Sombrero galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, Jessica L.; Rhode, Katherine L.; Bridges, Terry J.

    2014-06-01

    We have obtained radial velocity measurements for 51 new globular clusters around the Sombrero galaxy. These measurements were obtained using spectroscopic observations from the AAOmega spectrograph on the Anglo-Australian Telescope and the Hydra spectrograph at WIYN. Combining our own past measurements and velocity measurements obtained from the literature, we have constructed a large database of radial velocities that contains a total of 360 confirmed globular clusters. Previous studies' analyses of the kinematics and mass profile of the Sombrero globular cluster system have been constrained to the inner ∼9' (∼24 kpc or ∼5R{sub e} ), but our new measurements have increasedmore » the radial coverage of the data, allowing us to determine the kinematic properties of M104 out to ∼15' (∼41 kpc or ∼9R{sub e} ). We use our set of radial velocities to study the GC system kinematics and to determine the mass profile and V-band mass-to-light profile of the galaxy. We find that M/L{sub V} increases from 4.5 at the center to a value of 20.9 at 41 kpc (∼9R{sub e} or 15'), which implies that the dark matter halo extends to the edge of our available data set. We compare our mass profile at 20 kpc (∼4R{sub e} or ∼7.'4) to the mass computed from X-ray data and find good agreement. We also use our data to look for rotation in the globular cluster system as a whole, as well as in the red and blue subpopulations. We find no evidence for significant rotation in any of these samples.« less

  4. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Statistical interior properties of globular proteins

    NASA Astrophysics Data System (ADS)

    Jiang, Zhou-Ting; Zhang, Lin-Xi; Sun, Ting-Ting; Wu, Tai-Quan

    2009-10-01

    The character of forming long-range contacts affects the three-dimensional structure of globular proteins deeply. As the different ability to form long-range contacts between 20 types of amino acids and 4 categories of globular proteins, the statistical properties are thoroughly discussed in this paper. Two parameters NC and ND are defined to confine the valid residues in detail. The relationship between hydrophobicity scales and valid residue percentage of each amino acid is given in the present work and the linear functions are shown in our statistical results. It is concluded that the hydrophobicity scale defined by chemical derivatives of the amino acids and nonpolar phase of large unilamellar vesicle membranes is the most effective technique to characterise the hydrophobic behavior of amino acid residues. Meanwhile, residue percentage Pi and sequential residue length Li of a certain protein i are calculated under different conditions. The statistical results show that the average value of Pi as well as Li of all-α proteins has a minimum among these 4 classes of globular proteins, indicating that all-α proteins are hardly capable of forming long-range contacts one by one along their linear amino acid sequences. All-β proteins have a higher tendency to construct long-range contacts along their primary sequences related to the secondary configurations, i.e. parallel and anti-parallel configurations of β sheets. The investigation of the interior properties of globular proteins give us the connection between the three-dimensional structure and its primary sequence data or secondary configurations, and help us to understand the structure of protein and its folding process well.

  5. Hα Equivalent Widths from the 3D-HST Survey: Evolution with Redshift and Dependence on Stellar Mass

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2012-10-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope Wide Field Camera 3. Combining our Hα measurements of 854 galaxies at 0.8 < z < 1.5 with those of ground-based surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Hα) distribution from z = 0 to z = 2.2. We find that at all masses the characteristic EW(Hα) is decreasing toward the present epoch, and that at each redshift the EW(Hα) is lower for high-mass galaxies. We find EW(Hα) ~(1 + z)1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star-forming galaxies with redshift. A quantitative conversion of EW(Hα) to specific star formation rate (sSFR) is model dependent because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ~ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1 + z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 12177, 12328.

  6. Chemical Abundances of Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Gratton, Raffaele G.; Bragaglia, Angela; Carretta, Eugenio; D'Orazi, Valentina; Lucatello, Sara

    A large fraction of stars form in clusters. According to a widespread paradigma, stellar clusters are prototypes of single stellar populations. According to this concept, they formed on a very short time scale, and all their stars share the same chemical composition. Recently it has been understood that massive stellar clusters (the globular clusters) rather host various stellar populations, characterized by different chemical composition: these stellar populations have also slightly different ages, stars of the second generations being formed from the ejecta of part of those of an earlier one. Furthermore, it is becoming clear that the efficiency of the process is quite low: many more stars formed within this process than currently present in the clusters. This implies that a significant, perhaps even dominant fraction of the ancient population of galaxies formed within the episodes that lead to formation the globular clusters.

  7. Follow up of stellar migrants from globular clusters using the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Shetrone, Matthew D.; Martell, Sarah L.

    2017-01-01

    Nearly all globular clusters contain at least two populations of stars. The first generation has abundances very similar to that of the average Milky Way halo stars at that metallicity. The second generation, presumably polluted by the massive stars of the first generation, have abundance patterns which include lower abundances of C, O, and Mg and higher abundances of N, Al and Na compared to first generation. Martell & Grebel (2010) identified a number of potential second generation stars using the CH and CN bandstrengths from SDSS-II/SEGUE spectra. We have followed up these candidates with moderate resolution spectra using HRS on the Hobby-Eberly Telescope. We present the success rate of finding globular cluster migrants and discuss the reasons why some stars exhibit a CN false positive signal in CN and CH.

  8. Neutrino and axion bounds from the globular cluster M5 (NGC 5904).

    PubMed

    Viaux, N; Catelan, M; Stetson, P B; Raffelt, G G; Redondo, J; Valcarce, A A R; Weiss, A

    2013-12-06

    The red-giant branch (RGB) in globular clusters is extended to larger brightness if the degenerate helium core loses too much energy in "dark channels." Based on a large set of archival observations, we provide high-precision photometry for the Galactic globular cluster M5 (NGC 5904), allowing for a detailed comparison between the observed tip of the RGB with predictions based on contemporary stellar evolution theory. In particular, we derive 95% confidence limits of g(ae)<4.3×10(-13) on the axion-electron coupling and μ(ν)<4.5×10(-12)μ(B) (Bohr magneton μ(B)=e/2m(e)) on a neutrino dipole moment, based on a detailed analysis of statistical and systematic uncertainties. The cluster distance is the single largest source of uncertainty and can be improved in the future.

  9. 75 FR 8720 - Ocean Transportation Intermediary License Revocations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    .... 74th Ave., Suite 13 & 14, Medley, FL 33166. Date Revoked: January 4, 2010. Reason: Failed to maintain a.... Reason: Surrendered license voluntarily. License Number: 739F. Name: Charles A. Redden, Inc. Address: 1609 Vauxhall Road, Second Floor, Union, NJ 07083. [[Page 8721

  10. Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration.

    PubMed

    Schram, Kristin; Ganguly, Riya; No, Eun Kyung; Fang, Xiangping; Thong, Farah S L; Sweeney, Gary

    2011-05-01

    Altered leptin action has been implicated in the pathophysiology of heart failure in obesity, a hallmark of which is extracellular matrix remodeling. Here, we characterize the direct influence of leptin on matrix metalloproteinase (MMP) activity in primary adult rat cardiac fibroblasts and focus on elucidating the molecular mechanisms responsible. Leptin increased expression and cell surface localization of membrane type 1 (MT1)-MMP, measured by cell surface biotinylation assay and antibody-based colorimetric detection of an exofacial epitope in intact cells. Coimmunoprecipitation analysis showed that leptin also induced the formation of a cluster of differentiation 44/MT1-MMP complex. Qualitative analysis using rhodamine-conjugated phalloidin immunofluorescence indicated that leptin stimulated actin cytoskeletal reorganization and enhanced stress fiber formation. Hence, we analyzed activation of Ras homolog gene family (Rho), member A GTPase activity and found a rapid increase in response to leptin that corresponded with increased phosphorylation of cofilin. Quantitative analysis of cytoskeleton reorganization upon separation of globular and filamentous actin by differential centrifugation confirmed the significant increase in filamentous to globular actin ratio in response to leptin, which was prevented by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated coiled-coil-forming protein kinase (ROCK) (Y-27632). Inhibition of Rho or ROCK also attenuated leptin-stimulated increases in cell surface MT1-MMP content. Pro-MMP-2 is a known MT1-MMP substrate, and we observed that enhanced cell surface MT1-MMP in response to leptin resulted in enhanced extracellular activation of pro-MMP-2 measured by gelatin zymography, which was again attenuated by inhibition of Rho or ROCK. Using wound scratch assays, we observed enhanced cell migration, but not proliferation, measured by 5-bromo2'-deoxy-uridine incorporation, in response to leptin, again via a Rho-dependent signaling mechanism. Our results suggest that leptin regulates myocardial matrix remodeling by regulating the cell surface localization of MT1-MMP in adult cardiac fibroblasts via Rho/ROCK-dependent actin cytoskeleton reorganization. Subsequent pro-MMP-2 activation then contributes to stimulation of cell migration.

  11. NEW CONSTRAINTS ON A COMPLEX RELATION BETWEEN GLOBULAR CLUSTER COLORS AND ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powalka, Mathieu; Lançon, Ariane; Puzia, Thomas H.

    We present an analysis of high-quality photometry for globular clusters (GCs) in the Virgo cluster core region, based on data from the Next Generation Virgo Cluster Survey (NGVS) pilot field, and in the Milky Way (MW), based on Very Large Telescope/X-Shooter spectrophotometry. We find significant discrepancies in color–color diagrams between sub-samples from different environments, confirming that the environment has a strong influence on the integrated colors of GCs. GC color distributions along a single color are not sufficient to capture the differences we observe in color–color space. While the average photometric colors become bluer with increasing radial distance to themore » cD galaxy M87, we also find a relation between the environment and the slope and intercept of the color–color relations. A denser environment seems to produce a larger dynamic range in certain color indices. We argue that these results are not due solely to differential extinction, Initial Mass Function variations, calibration uncertainties, or overall age/metallicity variations. We therefore suggest that the relation between the environment and GC colors is, at least in part, due to chemical abundance variations, which affect stellar spectra and stellar evolution tracks. Our results demonstrate that stellar population diagnostics derived from model predictions which are calibrated on one particular sample of GCs may not be appropriate for all extragalactic GCs. These results advocate a more complex model of the assembly history of GC systems in massive galaxies that goes beyond the simple bimodality found in previous decades.« less

  12. Dermoscopy of pigmented lesions on mucocutaneous junction and mucous membrane.

    PubMed

    Lin, J; Koga, H; Takata, M; Saida, T

    2009-12-01

    The dermoscopic features of pigmented lesions on the mucocutaneous junction and mucous membrane are different from those on hairy skin. Differentiation between benign lesions and malignant melanomas of these sites is often difficult. To define the dermoscopic patterns of lesions on the mucocutaneous junction and mucous membrane, and assess the applicability of standard dermoscopic algorithms to these lesions. An unselected consecutive series of 40 lesions on the mucocutaneous junction and mucous membrane was studied. All the lesions were imaged using dermoscopy devices, analysed for dermoscopic patterns and scored with algorithms including the ABCD rule, Menzies method, 7-point checklist, 3-point checklist and the CASH algorithm. Benign pigmented lesions of the mucocutaneous junction and mucous membrane frequently presented a dotted-globular pattern (25%), a homogeneous pattern (25%), a fish scale-like pattern (18.8%) and a hyphal pattern (18.8%), while melanomas of these sites showed a multicomponent pattern (75%) and a homogeneous pattern (25%). The fish scale-like pattern and hyphal pattern were considered to be variants of the ring-like pattern. The sensitivities of the ABCD rule, Menzies method, 7-point checklist, 3-point checklist and CASH algorithm in diagnosing mucosal melanomas were 100%, 100%, 63%, 88% and 100%; and the specificities were 100%, 94%, 100%, 94% and 100%, respectively. The ring-like pattern and its variants (fish scale-like pattern and hyphal pattern) are frequently observed as well as the dotted-globular pattern and homogeneous pattern in mucosal melanotic macules. The algorithms for pigmented lesions on hairy skin also apply to those on the mucocutaneous junction and mucous membrane with high sensitivity and specificity.

  13. Globular cluster systems - Comparative evolution of Galactic halos

    NASA Astrophysics Data System (ADS)

    Harris, William E.

    Space distributions, metallicity/age distributions, and kinematics are considered for the Milky Way halo system. Comparisons are made with other systems, and time scales for dynamical evolution are considered. It is noted that the globular cluster subsystems of halos resemble each other more closely than their parent galaxies do; this forms a reasonable basis for supposing that they represent a kind of underlying unity in the protogalaxy formation process.

  14. The Optical/Near-infrared Extinction Law in Highly Reddened Regions

    NASA Astrophysics Data System (ADS)

    Hosek, Matthew W., Jr.; Lu, Jessica R.; Anderson, Jay; Do, Tuan; Schlafly, Edward F.; Ghez, Andrea M.; Clarkson, William I.; Morris, Mark R.; Albers, Saundra M.

    2018-03-01

    A precise extinction law is a critical input when interpreting observations of highly reddened sources such as young star clusters and the Galactic Center (GC). We use Hubble Space Telescope observations of a region of moderate extinction and a region of high extinction to measure the optical and near-infrared extinction law (0.8–2.2 μm). The moderate-extinction region is the young massive cluster Westerlund 1 (Wd1; A Ks ∼ 0.6 mag), where 453 proper-motion selected main-sequence stars are used to measure the shape of the extinction law. To quantify the shape, we define the parameter {{ \\mathcal S }}1/λ , which behaves similarly to a color-excess ratio, but is continuous as a function of wavelength. The high-extinction region is the GC (A Ks ∼ 2.5 mag), where 819 red clump stars are used to determine the normalization of the law. The best-fit extinction law is able to reproduce the Wd1 main-sequence colors, which previous laws misestimate by 10%–30%. The law is inconsistent with a single power law, even when only the near-infrared filters are considered, and has A F125W/A Ks and A F814W/A Ks values that are 18% and 24% higher than the commonly used Nishiyama et al. law, respectively. Using this law, we recalculate the Wd1 distance to be 3905 ± 422 pc from published observations of the eclipsing binary W13. This new extinction law should be used for highly reddened populations in the Milky Way, such as the Quintuplet cluster and Young Nuclear Cluster. A python code is provided to generate the law for future use.

  15. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly fullmore » coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.« less

  16. OPTICAL PHOTOMETRIC AND POLARIMETRIC INVESTIGATION OF NGC 1931

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, A. K.; Eswaraiah, C.; Sharma, Saurabh

    We present optical photometric and polarimetric observations of stars toward NGC 1931 with the aim of deriving cluster parameters such as distance, reddening, age, and luminosity/mass function as well as understanding dust properties and star formation in the region. The distance to the cluster is found to be 2.3 {+-} 0.3 kpc and the reddening E(B - V) in the region is found to be variable. The stellar density contours reveal two clusters in the region. The observations suggest a differing reddening law within the cluster region. Polarization efficiency of the dust grains toward the direction of the cluster ismore » found to be less than that for the general diffuse interstellar medium (ISM). The slope of the mass function (-0.98 {+-} 0.22) in the southern region in the mass range of 0.8 < M/M {sub Sun} < 9.8 is found to be shallower in comparison to that in the northern region (-1.26 {+-} 0.23), which is comparable to the Salpeter value (-1.35). The K-band luminosity function (KLF) of the region is found to be comparable to the average value of the slope ({approx}0.4) for young clusters obtained by Lada and Lada; however, the slope of the KLF is steeper in the northern region as compared to the southern region. The region is probably ionized by two B2 main-sequence-type stars. The mean age of the young stellar objects (YSOs) is found to be 2 {+-} 1 Myr, which suggests that the identified YSOs could be younger than the ionizing sources of the region. The morphology of the region, the distribution and ages of the YSOs, and ionizing sources indicate a triggered star formation in the region.« less

  17. The VISTA ZYJHKs photometric system: calibration from 2MASS

    NASA Astrophysics Data System (ADS)

    González-Fernández, C.; Hodgkin, S. T.; Irwin, M. J.; González-Solares, E.; Koposov, S. E.; Lewis, J. R.; Emerson, J. P.; Hewett, P. C.; Yoldaş, A. K.; Riello, M.

    2018-03-01

    In this paper, we describe the routine photometric calibration of data taken with the VISTA infrared camera (VIRCAM) instrument on the ESO Visible and Infrared Survey Telescope for Astronomy (VISTA) telescope. The broad-band ZYJHKs data are directly calibrated from Two Micron all Sky Survey (2MASS) point sources visible in every VISTA image. We present the empirical transformations between the 2MASS and VISTA, and Wide-Field Camera and VISTA, photometric systems for regions of low reddening. We investigate the long-term performance of VISTA+VIRCAM. An investigation of the dependence of the photometric calibration on interstellar reddening leads to these conclusions: (1) For all broad-band filters, a linear colour-dependent correction compensates the gross effects of reddening where E(B - V) < 5.0. (2) For Z and Y, there is a significantly larger scatter above E(B - V) = 5.0, and insufficient measurements to adequately constrain the relation beyond this value. (3) The JHKs filters can be corrected to a few per cent up to E(B - V) = 10.0. We analyse spatial systematics over month-long time-scales, both inter- and intradetector and show that these are present only at very low levels in VISTA. We monitor and remove residual detector-to-detector offsets. We compare the calibration of the main pipeline products: pawprints and tiles. We show how variable seeing and transparency affect the final calibration accuracy of VISTA tiles, and discuss a technique, grouting, for mitigating these effects. Comparison between repeated reference fields is used to demonstrate that the VISTA photometry is precise to better than ≃ 2 per cent for the YJHKs bands and 3 per cent for the Z bands. Finally, we present empirically determined offsets to transform VISTA magnitudes into a true Vega system.

  18. Hubble Space Telescope discovery of candidate young globular clusters in the merger remnant NGC 7252

    NASA Technical Reports Server (NTRS)

    Whitmore, Bradley C.; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle

    1993-01-01

    New, high-resolution images of the central region of NGC 7252 obtained with the Planetary Camera of the HST are presented. NGC 7252 is a prototypical example of a remnant of two merged disk galaxies. Our most striking result is the discovery of a population of about 40 blue pointlike objects in this galaxy. The mean absolute magnitude of these objects is Mv = -13 mag; the mean color is V-I = 0.7 mag; and the mean effective radius is 10 pc. The luminosities, colors, projected spatial distribution, and sizes are all compatible with the hypothesis that these objects formed within the last 1 Gyr following the collision of two spiral galaxies, and that they are young globular clusters. It therefore appears that the number of globular clusters may increase during the merger of gas-rich galaxies. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals do. NGC 7252 shows a single, semistellar nucleus; relatively bright spiral structure is seen within 1.6 kpc of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy.

  19. Image-Subtraction Photometry of Variable Stars in the Globular Clusters NGC 6388 and NGC 6441

    NASA Technical Reports Server (NTRS)

    Corwin, Michael T.; Sumerel, Andrew N.; Pritzl, Barton J.; Smith, Horace A.; Catelan, M.; Sweigart, Allen V.; Stetson, Peter B.

    2006-01-01

    We have applied Alard's image subtraction method (ISIS v2.1) to the observations of the globular clusters NGC 6388 and NGC 6441 previously analyzed using standard photometric techniques (DAOPHOT, ALLFRAME). In this reanalysis of observations obtained at CTIO, besides recovering the variables previously detected on the basis of our ground-based images, we have also been able to recover most of the RR Lyrae variables previously detected only in the analysis of Hubble Space Telescope WFPC2 observations of the inner region of NGC 6441. In addition, we report five possible new variables not found in the analysis of the EST observations of NGC 6441. This dramatically illustrates the capabilities of image subtraction techniques applied to ground-based data to recover variables in extremely crowded fields. We have also detected twelve new variables and six possible variables in NGC 6388 not found in our previous groundbased studies. Revised mean periods for RRab stars in NGC 6388 and NGC 6441 are 0.676 day and 0.756 day, respectively. These values are among the largest known for any galactic globular cluster. Additional probable type II Cepheids were identified in NGC 6388, confirming its status as a metal-rich globular cluster rich in Cepheids.

  20. Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Pellerin, S.; Castillon, Q.; Boutaghane, A.; Dzierzega, K.; Zielinska, S.; Pellerin, N.; Briand, F.

    2013-06-01

    The gas metal arc welding (GMAW) process is strongly influenced by the composition of the shielding gas. In particular, addition of CO2 increases the threshold current for the transition from unstable globular to more stable spray transfer mode. We report on the diagnostics—using optical emission spectroscopy—of a GMAW plasma in pure argon and in mixtures of argon, CO2 and N2 while operated in spray and globular transfer modes. The spatially resolved plasma parameters are obtained by applying the Abel transformation to laterally integrated emission data. The Stark widths of some iron lines are used to determine both electron density and temperature, and line intensities yield relative contents of neutral and ionized iron to argon. Our experimental results indicate a temperature drop on the arc axis in the case of spray arc transfer. This drop reduces with addition of N2 and disappears in globular transfer mode when CO2 is added. Despite the temperature increase, the electron density decreases with CO2 concentration. The highest concentration of iron is observed in the plasma column upper part (close to the anode) and for GMAW with CO2. Our results are compared with recently published works where the effect of non-homogeneous metal vapour concentration has been taken into account.

  1. Spectroscopic studies of conformational changes of β-lactoglobulin adsorbed on gold nanoparticle surfaces.

    PubMed

    Winuprasith, Thunnalin; Suphantharika, Manop; McClements, David Julian; He, Lili

    2014-02-15

    In this work, we investigated the conformational changes of a globular protein (β-lactoglobulin, β-lg) coated on the surface of 200 nm gold nanoparticles (GNPs) using a number of analytical techniques: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); localized surface plasmon resonance (LSPR) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The β-lg (pH 3) concentration had a pronounced effect on the aggregation and surface charge of β-lg-coated GNPs. The surface charge of GNPs changed from negative to positive as increasing amounts of β-lg molecule were added, indicating that the globular protein molecules adsorbed to the surfaces of the particles. Extensive particle aggregation occurred when β-lg did not saturate the GNP surfaces, which was attributed to electrostatic bridging flocculation. Modifications in LSPR and SERS spectra after addition of β-lg to the GNP suspensions supported the adsorption of β-lg to the particle surfaces. Moreover, SERS highlighted the importance of a number of specific molecular groups in the binding interaction, and suggested conformational changes of the globular protein after adsorption. This research provides useful information for characterizing and understanding the interactions between globular proteins and colloidal particles. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. High pressure effects on the structural functionality of condensed globular-protein matrices.

    PubMed

    Savadkoohi, Sobhan; Kasapis, Stefan

    2016-07-01

    High pressure technology is the outcome of consumer demand for better quality control of processed foods. There is great potential to apply HPP to condensed systems of globular proteins for the generation of industry-relevant biomaterials with advanced techno- and biofunctionality. To this end, research demonstrates that application of high hydrostatic pressure generates a coherent structure and preserves the native conformation in condensed globular proteins, which is an entirely unexpected but interesting outcome on both scientific and technological grounds. In microbiological challenge tests, high pressure at conventional commercial conditions, demonstrated to effectively reduce the concentration of typical Gram negative or Gram positive foodborne pathogens, and proteolytic enzymes in high-solid protein samples. This may have industrial significance in relation to the formulation and stabilisation of "functional food" products as well as in protein ingredients and concentrates by replacing spray dried powders with condensed HPP-treated pastes that maintain structure and bioactivity. Fundamental concepts and structural functionality of condensed matrices of globular proteins are the primary interest in this mini-review, which may lead to opportunities for industrial exploitation, but earlier work on low-solid systems is also summarised presently to put recent developments in context of this rapidly growing field. Copyright © 2016. Published by Elsevier B.V.

  3. Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension.

    PubMed

    Galář, Pavel; Khun, Josef; Kopecký, Dušan; Scholtz, Vladimír; Trchová, Miroslava; Fučíková, Anna; Jirešová, Jana; Fišer, Ladislav

    2017-11-08

    Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.

  4. Cryopreservation of embryogenic tissues from mature holm oak trees.

    PubMed

    Barra-Jiménez, Azahara; Aronen, Tuija S; Alegre, Jesús; Toribio, Mariano

    2015-06-01

    The development of a vitrification method for cryopreservation of embryogenic lines from mature holm oak (Quercus ilex L.) trees is reported. Globular embryogenic clusters of three embryogenic lines grown on gelled medium, and embryogenic clumps of one line collected from liquid cultures, were used as samples. The effect of both high-sucrose preculture and dehydration by incubation in the PVS2 solution for 30-90 min, on both survival and maintenance of the differentiation ability was evaluated in somatic embryo explants with and without immersion into liquid nitrogen. Growth recovery of the treated samples and ability to differentiate cotyledonary embryos largely depended on genotype. Overall, high growth recovery frequencies on gelled medium and increase of fresh weight in liquid medium were obtained in all the tested lines, also after freezing. However, the differentiation ability of the embryogenic lines was severely hampered following immersion into LN. Two of the embryogenic lines from gelled medium were able to recover the differentiation ability, one not. In the lines with reduced or no differentiation ability, variation in the microsatellite markers was observed when comparing samples taken prior to and after cryopreservation. The best results were achieved in the genotype Q8 in which 80% of explants grown on gelled medium differentiated into cotyledonary embryos following cryopreservation when they were precultured on medium with 0.3M sucrose and then incubated for 30 min in the PVS2 solution. Explants of the same genotype from liquid medium were unable to recover the differentiation ability. A 4-weeks storage period both in liquid nitrogen and in an ultra-low temperature freezer at -80°C was also evaluated with four embryogenic lines from gelled medium using the best vitrification treatment. Growth recovery frequencies of all lines from the two storage systems were very high, but their differentiation ability was completely lost. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Observations of Sk-69 deg 203 and the interstellar extinction towards SN 1987A

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Edward L.; Walborn, Nolan R.

    1990-01-01

    Optical and UV spectroscopic observations of the Large Magellanic Cloud (LMC) star Sk-69 deg 203 are discussed. The optical data reveal Sk-69 deg 203 to be a BO.7 Ia supergiant with a moderate nitrogen enhancement, and its UV spectrum is consistent with this classification. UV interstellar extinction curves were constructed for the star using, as flux standards, two lightly reddened LMS supergiants, which bracket Sk-69 deg 203's spectral type. The resultant extinction curves are consistent with the extinction law derived previously for the 30 Doradus region, and the results for Sk-69 deg 203 suggest that the general 30 Doradus extinction law is appropriate for dereddening the observed fluxes of SN 1987A. Published H I 21 observations place SN 1987A in a region with a strong E-W gradient in the total hydrogen content. Comparison with the H I column density implied by the reddening indicates that the supernova is imbedded approximately in the middle of the main H I complex.

  6. Reddening and extinction towards H II regions

    NASA Technical Reports Server (NTRS)

    Caplan, James; Deharveng, Lise

    1989-01-01

    The light emitted by the gas in H II regions is attenuated by dust. This extinction can be measured by comparing H alpha, H beta, and radio continuum fluxes, since the intrinsic ratios of the Balmer line and thermal radio continuum emissivities are nearly constant for reasonable conditions in H II regions. In the case of giant extragalactic H II regions, the extinction was found to be considerably greater than expected. The dust between the Earth and the emitting gas may have an optical thickness which varies. The dust may be close enough to the source that scattered light contributes to the flux, or the dust may be actually mixed with the emitting gas. It is difficult to decide which configuration is correct. A rediscussion of this question in light of recent observations, with the Fabry-Perot spectrophotometers, of the large Galactic H II region is presented. The color excesses are compared for stars embedded in these H II regions with those derived (assuming the standard law) from the nebular extinction and reddening.

  7. DISCOVERY OF A WOLF-RAYET STAR THROUGH DETECTION OF ITS PHOTOMETRIC VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlefield, Colin; Garnavich, Peter; McClelland, Colin

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 A, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 A line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocularmore » Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 {+-} 0.3 kpc.« less

  8. Study of II Galactic quadrant of Milky Way Galaxy using open clusters

    NASA Astrophysics Data System (ADS)

    Bisht, Devendra; Ganesh, Shashikiran; Baliyan, Kiran Singh; Yadav, Ramakant Singh; Durgapal, Alok

    2018-04-01

    We have made UBV I CCD observations for the open clusters Teutsch 1, Riddle 4 and Czernik 6 using 1.04-m Sampurnanand telescope located at the ARIES observatory (Manora peak, Nainital, India). We have used 2MASS JHKS data for the clusters Teutsch 126, Teutsch 54 and Czernik 3. For the estimation of fundamental parameters, we have plotted radial density profiles, colour-magnitude and colour-colour diagrams. Using these inputs, we have studied the structure of Milky Way Galaxy in the second Galactic quadrant. We have considered the open clusters that are younger than 1 Gyrs and lay in the longitude range from 90 to 180 deg. Our study shows that up to 3.5 Kpc, the Galactic disc bends towards the southern hemisphere while after 3.5 Kpc it bends towards the northern hemisphere. The distribution of reddening with longitude and age shows a decreasing trend with the longitude and age of the clusters. Our study also indicates that younger clusters have more reddening than older ones.

  9. The discovery of the peculiar L dwarf ULAS J222711-004547

    NASA Astrophysics Data System (ADS)

    Marocco, F.; Day-Jones, A. C.; Jones, H. R. A.; Pinfield, D. J.; Burningham, B.; Zhang, Z. H.

    We present the discovery of a very peculiar L dwarf from the UKIDSS Large Area Survey (LAS), ULAS J222711-004547. Its very red infrared colours (MKO J-K = 2.79) make it the reddest brown dwarf discovered so far. The object was discovered as part of a large spectroscopic campaign aimed at constraining the sub-stellar birth rate. We obtained a moderate resolution spectrum of this target using the echelle spectrograph XSHOOTER on VLT/UT2, and classified it as L7pec, confirming its very red nature. We show that applying a simple de-reddening curve to the spectrum of ULAS J222711-004547, this becomes very similar to the spectrum of a L7 spectroscopic standard. Therefore we conclude that the reddening of the spectrum is mostly due to an excess of dust in the photosphere of the object. This new discovery joins the list of unusually red L dwarfs, whose nature is not yet fully understood, and poses a new important challenge to atmospheric modeling of substellar objects.

  10. Ultraviolet observations of P Cygni with Copernicus

    NASA Technical Reports Server (NTRS)

    Ambartsumian, V. A.; Snow, T. P., Jr.; Mirzoian, L.

    1979-01-01

    Copernicus ultraviolet scans of the peculiar mass-losing star P Cyg are described. From the L-alpha profile and diffuse band strengths reported in the literature, a value of interstellar reddening E(B V) of approximately 0.35 mag is derived, leading to the conclusion that the star is intrinsically reddened. This value for the color excess leads to an estimated distance for P Cyg of 0.6-1.8 kpc, on the basis of which a revised visual absolute magnitude of -7.6 to -5.2 is obtained. The wind from P Cyg is quite unlike that for other early B supergiants, displaying a low terminal velocity and low ionization. This difference is connected with the great extension of its photosphere and with the fact that the acceleration of the flow begins below the photosphere. It is suggested that the wind in P Cyg results from dynamical instabilities quite distinct from the mechanism which initiates the winds in other OB stars.

  11. Characteristics of the Variable Star P Cygni Determined from Cluster Membership

    NASA Technical Reports Server (NTRS)

    Turner, David G.; Welch, Gary; Graham, Marianne; Fairweather, David; Horsford, Andrew; Seymour, Michael; Feibelman, Walter; Fisher, Richard (Technical Monitor)

    2001-01-01

    Empirical information on the luminosity, reddening, age, and mass of the variable B2 Oe supergiant P Cygni is derived from its assumed membership in the sparse anonymous cluster on which it is projected, as well as its association with the spatially adjacent cluster IC 4996, which forms a double cluster with the P Cyg cluster. Evidence for the high luminosity of P Cyg is confirmed by its derived absolute magnitude of M(sub V)= -8.46 +/- 0.03, which translates to log (L/L(sun)) = 5.54 +/- 0.02 for an effective temperature consistent with the star's derived space reddening (E(sub B-V) = 0.53 +/- 0.02). More surprising is an age for the associated clusters of 6 (+/- 1.5) x 10(exp 6) years, corresponding to a turnoff point mass of 25.1 (+/- 5.5) M(sun). By inference, P Cygni, as a post main-sequence object, should have a mass of no more than approximately 23-35 M(sun).

  12. The DECam Plane Survey: Optical photometry of two billion objects in the southern Galactic plane

    NASA Astrophysics Data System (ADS)

    Schlafly, Edward; Green, Gregory M.; Lang, Dustin; Daylan, Tansu; Finkbeiner, Douglas; Lee, Albert; Meisner, Aaron; Schlegel, David; Valdes, Francisco

    2018-01-01

    The DECam Plane Survey is a five-band optical and near-infrared survey of the southern Galactic plane with the Dark Energy Camera at Cerro Tololo. The survey is designed to reach past the main-sequence turn-off at the distance of the Galactic center through a reddening E(B-V) of 1.5 mag. Typical single-exposure depths are 23.7, 22.8, 22.3, 21.9, and 21.0 mag in the grizY bands, with seeing around 1 arcsecond. The footprint covers the Galactic plane with |b| < 4°, 5° > l > -120°. The survey pipeline simultaneously solves for the positions and fluxes of tens of thousands of sources in each image, delivering positions and fluxes of roughly two billion stars with better than 10 mmag precision. Most of these objects are highly reddened and deep in the Galactic disk, probing the structure and properties of the Milky Way and its interstellar medium. The full survey is publicly available.

  13. A QUANTITATIVE ANALYSIS OF DISTANT OPEN CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janes, Kenneth A.; Hoq, Sadia

    2011-03-15

    The oldest open star clusters are important for tracing the history of the Galactic disk, but many of the more distant clusters are heavily reddened and projected against the rich stellar background of the Galaxy. We have undertaken an investigation of several distant clusters (Berkeley 19, Berkeley 44, King 25, NGC 6802, NGC 6827, Berkeley 52, Berkeley 56, NGC 7142, NGC 7245, and King 9) to develop procedures for separating probable cluster members from the background field. We next created a simple quantitative approach for finding approximate cluster distances, reddenings, and ages. We first conclude that with the possible exceptionmore » of King 25 they are probably all physical clusters. We also find that for these distant clusters our typical errors are about {+-}0.07 in E(B - V), {+-}0.15 in log(age), and {+-}0.25 in (m - M){sub o}. The clusters range in age from 470 Myr to 7 Gyr and range from 7.1 to 16.4 kpc from the Galactic center.« less

  14. Ultraviolet photometry from the orbiting astronomical observatory. XVI - The stellar Lyman-alpha absorption line

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Panek, R. J.

    1974-01-01

    The stellar Lyman-alpha line at 1216 A was observed in 29 lightly reddened stars of spectral type B2.5 to B9 by a far-UV spectrophotometer on OAO-2. The equivalent widths obtained range from 15 A at type B2.5 to 65 A at type B8; in the late-B stars, the L-alpha line removes 2 to 3% of the total stellar flux. In this sampling, the strength of the L-alpha line correlates well with measures of the Balmer discontinuity and Balmer line strengths; luminosity classification does not seem to affect the line strength. The observed line widths also agree with the predictions of Mihala's grid of non-LTE model atmospheres. In some cases, the L-alpha line influences the interstellar column densities reported in the interstellar OAO-2 L-alpha survey. Hence, these data toward lightly reddened B2 and B1.5 stars should be regarded as upper limits only.

  15. A HST/WFC3 Search for Substellar Companions in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Strampelli, Giovanni Maria; Aguilar, Jonathan; Aparicio, Antonio; Piotto, Giampaolo; Pueyo, Laurent; Robberto, Massimo

    2018-01-01

    We present new results relative to the population of substellar binaries in the Orion Nebula Cluster. We reprocessed HST/WFC3 data using an analysis technique developed to detect close companions in the wings of the stellar PSFs, based on the PyKLIP implementation of the KLIP PSF subtraction algorithm. Starting from a sample of ~1200 stars selected over the range J=11-15 mag, we were able to uncover ~80 candidate companions in the magnitude range J=16-23 mag. We use the presence of the 1.4 micron H2O absorption feature in the companion photosphere to discriminate 32 bona-fide substellar candidates from a population of reddened background objects. We derive an estimate of the companion mass assuming a 2Myr isochrone and the reddening of their primary. With 8 stellar companions, 19 brown dwarfs and 5 planetary mass objects, our study provide us with an unbiased sample of companions at the low-mass end of the IMF, probing the transition from binary to planetary systems.

  16. Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon

    PubMed Central

    2012-01-01

    Background Remipedia, a group of homonomously segmented, cave-dwelling, eyeless arthropods have been regarded as basal crustaceans in most early morphological and taxonomic studies. However, molecular sequence information together with the discovery of a highly differentiated brain led to a reconsideration of their phylogenetic position. Various conflicting hypotheses have been proposed including the claim for a basal position of Remipedia up to a close relationship with Malacostraca or Hexapoda. To provide new morphological characters that may allow phylogenetic insights, we have analyzed the architecture of the remipede brain in more detail using immunocytochemistry (serotonin, acetylated α-tubulin, synapsin) combined with confocal laser-scanning microscopy and image reconstruction techniques. This approach allows for a comprehensive neuroanatomical comparison with other crustacean and hexapod taxa. Results The dominant structures of the brain are the deutocerebral olfactory neuropils, which are linked by the olfactory globular tracts to the protocerebral hemiellipsoid bodies. The olfactory globular tracts form a characteristic chiasm in the center of the brain. In Speleonectes tulumensis, each brain hemisphere contains about 120 serotonin immunoreactive neurons, which are distributed in distinct cell groups supplying fine, profusely branching neurites to 16 neuropilar domains. The olfactory neuropil comprises more than 300 spherical olfactory glomeruli arranged in sublobes. Eight serotonin immunoreactive neurons homogeneously innervate the olfactory glomeruli. In the protocerebrum, serotonin immunoreactivity revealed several structures, which, based on their position and connectivity resemble a central complex comprising a central body, a protocerebral bridge, W-, X-, Y-, Z-tracts, and lateral accessory lobes. Conclusions The brain of Remipedia shows several plesiomorphic features shared with other Mandibulata, such as deutocerebral olfactory neuropils with a glomerular organization, innervations by serotonin immunoreactive interneurons, and connections to protocerebral neuropils. Also, we provided tentative evidence for W-, X-, Y-, Z-tracts in the remipedian central complex like in the brain of Malacostraca, and Hexapoda. Furthermore, Remipedia display several synapomorphies with Malacostraca supporting a sister group relationship between both taxa. These homologies include a chiasm of the olfactory globular tract, which connects the olfactory neuropils with the lateral protocerebrum and the presence of hemiellipsoid bodies. Even though a growing number of molecular investigations unites Remipedia and Cephalocarida, our neuroanatomical comparison does not provide support for such a sister group relationship. PMID:22947030

  17. Pyroelectricity in globular protein lysozyme films

    NASA Astrophysics Data System (ADS)

    Stapleton, A.; Noor, M. R.; Haq, E. U.; Silien, C.; Soulimane, T.; Tofail, S. A. M.

    2018-03-01

    Pyroelectricity is the ability of certain non-centrosymmetric materials to generate an electric charge in response to a change in temperature and finds use in a range of applications from burglar alarms to thermal imaging. Some biological materials also exhibit pyroelectricity but the examples of the effect are limited to fibrous proteins, polypeptides, and tissues and organs of animals and plants. Here, we report pyroelectricity in polycrystalline aggregate films of lysozyme, a globular protein.

  18. Comparison of calculated and observed integral magnitudes for the globular cluster M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerashchenko, A.N.; Kadla, Z.I.

    On the basis of a study of the distribution of stars in the central region of the globular cluster M13 it is found that integral photoelectric observations cover stars down to about the point of turnoff from the main sequence. Here the distribution of giants and stars of the horizontal branch as a function of distance from the center of the cluster is the same within limits of 0

  19. Nanofibers made of globular proteins.

    PubMed

    Dror, Yael; Ziv, Tamar; Makarov, Vadim; Wolf, Hila; Admon, Arie; Zussman, Eyal

    2008-10-01

    Strong nanofibers composed entirely of a model globular protein, namely, bovine serum albumin (BSA), were produced by electrospinning directly from a BSA solution without the use of chemical cross-linkers. Control of the spinnability and the mechanical properties of the produced nanofibers was achieved by manipulating the protein conformation, protein aggregation, and intra/intermolecular disulfide bonds exchange. In this manner, a low-viscosity globular protein solution could be modified into a polymer-like spinnable solution and easily spun into fibers whose mechanical properties were as good as those of natural fibers made of fibrous protein. We demonstrate here that newly formed disulfide bonds (intra/intermolecular) have a dominant role in both the formation of the nanofibers and in providing them with superior mechanical properties. Our approach to engineer proteins into biocompatible fibrous structures may be used in a wide range of biomedical applications such as suturing, wound dressing, and wound closure.

  20. Origins of structure in globular proteins.

    PubMed Central

    Chan, H S; Dill, K A

    1990-01-01

    The principal forces of protein folding--hydrophobicity and conformational entropy--are nonspecific. A long-standing puzzle has, therefore, been: What forces drive the formation of the specific internal architectures in globular proteins? We find that any self-avoiding flexible polymer molecule will develop large amounts of secondary structure, helices and parallel and antiparallel sheets, as it is driven to increasing compactness by any force of attraction among the chain monomers. Thus structure formation arises from the severity of steric constraints in compact polymers. This steric principle of organization can account for why short helices are stable in globular proteins, why there are parallel and anti-parallel sheets in proteins, and why weakly unfolded proteins have some secondary structure. On this basis, it should be possible to construct copolymers, not necessarily using amino acids, that can collapse to maximum compactness in incompatible solvents and that should then have structural organization resembling that of proteins. Images PMID:2385597

  1. A detached stellar-mass black hole candidate in the globular cluster NGC 3201

    NASA Astrophysics Data System (ADS)

    Giesers, Benjamin; Dreizler, Stefan; Husser, Tim-Oliver; Kamann, Sebastian; Anglada Escudé, Guillem; Brinchmann, Jarle; Carollo, C. Marcella; Roth, Martin M.; Weilbacher, Peter M.; Wisotzki, Lutz

    2018-03-01

    As part of our massive spectroscopic survey of 25 Galactic globular clusters with MUSE, we performed multiple epoch observations of NGC 3201 with the aim of constraining the binary fraction. In this cluster, we found one curious star at the main-sequence turn-off with radial velocity variations of the order of 100 km s- 1, indicating the membership to a binary system with an unseen component since no other variations appear in the spectra. Using an adapted variant of the generalized Lomb-Scargle periodogram, we could calculate the orbital parameters and found the companion to be a detached stellar-mass black hole with a minimum mass of 4.36 ± 0.41 M⊙. The result is an important constraint for binary and black hole evolution models in globular clusters as well as in the context of gravitational wave sources.

  2. Globular cluster seeding by primordial black hole population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A.; Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com

    Primordial black holes (PBHs) that form in the early Universe in the modified Affleck-Dine (AD) mechanism of baryogenesis should have intrinsic log-normal mass distribution of PBHs. We show that the parameters of this distribution adjusted to provide the required spatial density of massive seeds (≥ 10{sup 4} M {sub ⊙}) for early galaxy formation and not violating the dark matter density constraints, predict the existence of the population of intermediate-mass PBHs with a number density of 0∼ 100 Mpc{sup −3}. We argue that the population of intermediate-mass AD PBHs can also seed the formation of globular clusters in galaxies. Inmore » this scenario, each globular cluster should host an intermediate-mass black hole with a mass of a few thousand solar masses, and should not obligatorily be immersed in a massive dark matter halo.« less

  3. Blue Stragglers and Other Stars of Mass Consumption in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Panurach, Teresa; Leigh, Nathan

    2018-01-01

    Simulations of globular clusters suggest that collisions between main-sequence (MS) stars happen frequently. Stellar evolution models show that these collision products can be photometrically identified, appearing off the MS locus. These collision products can appear brighter and bluer than the MS turnoff, called “blue stragglers,” or even less massive and redder than the MS. We use proper motion-cleaned photometry from the Hubble Space Telescope of 38 globular clusters to identify candidate collision products. We compare the spectral energy distributions of our candidates to theoretical templates for single and multiple star systems, to constrain the possible presence of a binary companion and test consistency with theoretical stellar evolution models for collision products. For the BSs, we also compare the observed velocities from the proper motion catalog along with mass estimates derived from isochrone-fitting to theoretical predictions for both the collision and binary mass transfer models and find better agreement with the former.

  4. VizieR Online Data Catalog: Spitzer photometry of globulars in 2 galaxies (Spitler+, 2008)

    NASA Astrophysics Data System (ADS)

    Spitler, L. R.; Forbes, D. A.; Beasley, M. A.

    2010-06-01

    Catalogues are described in Spitler et al. (2008MNRAS.389.1150S) All photometry is corrected for Galactic dust extinction and are on the Vega photometric system. NGC 5128 optical photometry is from Peng et al. (2004ApJS..150..367P), as compiled in Woodley et al. (2007AJ....134..494W). Globular cluster identification numbers are from Woodley et al. (2007, Cat. J/AJ/134/494). NGC 4594 optical photometry is from Spitler et al. (2006AJ....132.1593S) updated with new aperture corrections as described in Harris et al. (2010MNRAS.401.1965H). Identification number, globular cluster half-light radii and the assumed distance modulus for the half-light radii are from Spitler et al. (2006, Cat. J/AJ/132/1593). A ultra-compact dwarf galaxy is included in this catalogue with ID="ucd" (see also Hau et al. 2009MNRAS.394L..97H). (2 data files).

  5. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    PubMed

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  6. Structure of transcription factor HetR required for heterocyst differentiation in cyanobacteria

    PubMed Central

    Kim, Youngchang; Joachimiak, Grazyna; Ye, Zi; Binkowski, T. Andrew; Zhang, Rongguang; Gornicki, Piotr; Callahan, Sean M.; Hess, Wolfgang R.; Haselkorn, Robert; Joachimiak, Andrzej

    2011-01-01

    HetR is an essential regulator of heterocyst development in cyanobacteria. HetR binds to a DNA palindrome upstream of the hetP gene. We report the crystal structure of HetR from Fischerella at 3.0 Å. The protein is a dimer comprised of a central DNA-binding unit containing the N-terminal regions of the two subunits organized with two helix-turn-helix motifs; two globular flaps extending in opposite directions; and a hood over the central core formed from the C-terminal subdomains. The flaps and hood have no structural precedent in the protein database, therefore representing new folds. The structural assignments are supported by site-directed mutagenesis and DNA-binding studies. We suggest that HetR serves as a scaffold for assembly of transcription components critical for heterocyst development. PMID:21628585

  7. Central stars of planetary nebulae in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Hultzsch, P. J. N.; Puls, J.; Méndez, R. H.; Pauldrach, A. W. A.; Kudritzki, R.-P.; Hoffmann, T. L.; McCarthy, J. K.

    2007-06-01

    Context: Optical high-resolution spectra of five central stars of planetary nebulae (CSPN) in the Galactic bulge have been obtained with Keck/HIRES in order to derive their parameters. Since the distance of the objects is quite well known, such a method has the advantage that stellar luminosities and masses can in principle be determined without relying on theoretical relations between both quantities. Aims: By alternatively combining the results of our spectroscopic investigation with evolutionary tracks, we obtain so-called spectroscopic distances, which can be compared with the known (average) distance of the bulge-CSPN. This offers the possibility to test the validity of model atmospheres and present date post-AGB evolution. Methods: We analyze optical H/He profiles of five Galactic bulge CSPN (plus one comparison object) by means of profile fitting based on state of the art non-LTE modeling tools, to constrain their basic atmospheric parameters (Teff, log g, helium abundance and wind strength). Masses and other stellar radius dependent quantities are obtained from both the known distances and from evolutionary tracks, and the results from both approaches are compared. Results: The major result of the present investigation is that the derived spectroscopic distances depend crucially on the applied reddening law. Assuming either standard reddening or values based on radio-Hβ extinctions, we find a mean distance of 9.0±1.6 kpc and 12.2±2.1 kpc, respectively. An “average extinction law” leads to a distance of 10.7±1.2 kpc, which is still considerably larger than the Galactic center distance of 8 kpc. In all cases, however, we find a remarkable internal agreement of the individual spectroscopic distances of our sample objects, within ±10% to ±15% for the different reddening laws. Conclusions: Due to the uncertain reddening correction, the analysis presented here cannot yet be regarded as a consistency check for our method, and a rigorous test of the CSPN evolution theory becomes only possible if this problem has been solved. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Appendix A is only available in electronic form at http://www.aanda.org

  8. Standard Giant Branches in the Washington Photometric System

    NASA Technical Reports Server (NTRS)

    Geisler, Doug; Sarajedini, Ata

    1998-01-01

    We have obtained CCD photometry in the Washington system C, T(sub 1) filters for some 850,000 objects associated with 10 Galactic globular clusters and 2 old open clusters. These clusters have well-known metal abundances, spanning a metallicity range of 2.5 dex from [Fe/H] approx -2.25 to +0.25 at a spacing of approx. 0.2 dex. Two independent observations were obtained for each cluster and internal checks, as well as external comparisons with existing photoelectric photometry, indicate that the final colors and magnitudes have overall uncertainties of 0.03 mag. Analogous to the method employed by Da Costa and Armandroff for V, I photometry , we then proceed to construct standard ((M(sub T),(C - T(sub 1))(sub 0)) giant branches for these clusters adopting the Lee et distance scale, using some 350 stars per globular cluster to define the giant branch. We then determine the metallicity sensitivity of the ((C - T(sub 1))(sub 0) color at a given M((sub T)(sub 1)) value. The Washington system technique is found to have three times the metallicity sensitivity of the V, I technique. At M((sub T)(sub 1)) = -2 (about a magnitude below the tip of the giant branch, roughly equivalent to M(sub I) = -3), the giant branches of 47 Tuc and M15 are separated by 1.16 magnitudes in (V - l)(sub 0) and only 0.38 magnitudes in (V - I)(sub 0). Thus, for a given photometric accuracy, metallicities can be determined three times more precisely with the Washington technique. We find a linear relationship between (C - T(sub l)(sub 0) (at M(sub T)(sub 1) = -2) and metallicity exists over the full metallicity range, with an rms of only 0.04 dex. We also derive metallicity calibrations for M(sub T)(sub 1) = -2.5 and -1.5, as well as for two other metallicity scales. The Washington technique retains almost the same metallicity sensitivity at faint magnitudes , and indeed the standard giant branches are still well separated even below the horizontal branch. The photometry is used to set upper limits in the range 0.03 - 0.09 dex for any intrinsic metallicity dispersion in the calibrating clusters. The calibrations are applicable to objects with ages approx. greater than 5 Gyr - any age effects are small or negligible for such objects. This new technique is found to have many advantages over the old two-color diagram technique for deriving metallicities from Washington photometry. In addition to only requiring 2 filters instead of 3 or 4, the new technique is generally much less sensitive to reddening and photometric errors, and the metallicity sensitivity is many times higher. The new technique is especially advantageous for metal-poor objects. The five metal-poor clusters determined by Geisler et al., using the old technique, to be much more metal-poor than previous indications, yield metallicities using the new technique which are in excellent agreement with the Zinn scale.

  9. Statistical Mechanical Foundation for the Two-State Transition in Protein Folding of Small Globular Proteins

    NASA Astrophysics Data System (ADS)

    Iguchi, Kazumoto

    We discuss the statistical mechanical foundation for the two-state transition in the protein folding of small globular proteins. In the standard arguments of protein folding, the statistical search for the ground state is carried out from astronomically many conformations in the configuration space. This leads us to the famous Levinthal's paradox. To resolve the paradox, Gō first postulated that the two-state transition - all-or-none type transition - is very crucial for the protein folding of small globular proteins and used the Gō's lattice model to show the two-state transition nature. Recently, there have been accumulated many experimental results that support the two-state transition for small globular proteins. Stimulated by such recent experiments, Zwanzig has introduced a minimal statistical mechanical model that exhibits the two-state transition. Also, Finkelstein and coworkers have discussed the solution of the paradox by considering the sequential folding of a small globular protein. On the other hand, recently Iguchi have introduced a toy model of protein folding using the Rubik's magic snake model, in which all folded structures are exactly known and mathematically represented in terms of the four types of conformations: cis-, trans-, left and right gauche-configurations between the unit polyhedrons. In this paper, we study the relationship between the Gō's two-state transition, the Zwanzig's statistical mechanics model and the Finkelsteinapos;s sequential folding model by applying them to the Rubik's magic snake models. We show that the foundation of the Gō's two-state transition model relies on the search within the equienergy surface that is labeled by the contact order of the hydrophobic condensation. This idea reproduces the Zwanzig's statistical model as a special case, realizes the Finkelstein's sequential folding model and fits together to understand the nature of the two-state transition of a small globular protein by calculating the physical quantities such as the free energy, the contact order and the specific heat. We point out the similarity between the liquid-gas transition in statistical mechanics and the two-state transition of protein folding. We also study morphology of the Rubik's magic snake models to give a prototype model for understanding the differences between α-helices proteins and β-sheets proteins.

  10. Developmentally regulated HEART STOPPER, a mitochondrially targeted L18 ribosomal protein gene, is required for cell division, differentiation, and seed development in Arabidopsis

    PubMed Central

    Zhang, Hongyu; Luo, Ming; Day, Robert C.; Talbot, Mark J.; Ivanova, Aneta; Ashton, Anthony R.; Chaudhury, Abed M.; Macknight, Richard C.; Hrmova, Maria; Koltunow, Anna M.

    2015-01-01

    Evidence is presented for the role of a mitochondrial ribosomal (mitoribosomal) L18 protein in cell division, differentiation, and seed development after the characterization of a recessive mutant, heart stopper (hes). The hes mutant produced uncellularized endosperm and embryos arrested at the late globular stage. The mutant embryos differentiated partially on rescue medium with some forming callus. HES (At1g08845) encodes a mitochondrially targeted member of a highly diverged L18 ribosomal protein family. The substitution of a conserved amino residue in the hes mutant potentially perturbs mitoribosomal function via altered binding of 5S rRNA and/or influences the stability of the 50S ribosomal subunit, affecting mRNA binding and translation. Consistent with this, marker genes for mitochondrial dysfunction were up-regulated in the mutant. The slow growth of the endosperm and embryo indicates a defect in cell cycle progression, which is evidenced by the down-regulation of cell cycle genes. The down-regulation of other genes such as EMBRYO DEFECTIVE genes links the mitochondria to the regulation of many aspects of seed development. HES expression is developmentally regulated, being preferentially expressed in tissues with active cell division and differentiation, including developing embryos and the root tips. The divergence of the L18 family, the tissue type restricted expression of HES, and the failure of other L18 members to complement the hes phenotype suggest that the L18 proteins are involved in modulating development. This is likely via heterogeneous mitoribosomes containing different L18 members, which may result in differential mitochondrial functions in response to different physiological situations during development. PMID:26105995

  11. [Study of beta-turns in globular proteins].

    PubMed

    Amirova, S R; Milchevskiĭ, Iu V; Filatov, I V; Esipova, N G; Tumanian, V G

    2005-01-01

    The formation of beta-turns in globular proteins has been studied by the method of molecular mechanics. Statistical method of discriminant analysis was applied to calculate energy components and sequences of oligopeptide segments, and after this prediction of I type beta-turns has been drawn. The accuracy of true positive prediction is 65%. Components of conformational energy considerably affecting beta-turn formation were delineated. There are torsional energy, energy of hydrogen bonds, and van der Waals energy.

  12. Carbon and nitrogen abundances in the giant stars of the globular clusters M3 and M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suntzeff, N.B.

    Carbon and nitrogen abundances, as well as the strengths of calcium II H and K and the ..delta..v = 0 cyanogen band, have been measured in red giant stars in the globular clusters M3 and M13. The data consist of spectrophotometric scans of low resolution (10 A) of 29 giants in M3 and 35 giants in M13 in the wavelength region 3000--5000 A.

  13. No Evidence for Multiple Stellar Populations in the Low-mass Galactic Globular Cluster E 3

    NASA Astrophysics Data System (ADS)

    Salinas, Ricardo; Strader, Jay

    2015-08-01

    Multiple stellar populations are a widespread phenomenon among Galactic globular clusters. Even though the origin of the enriched material from which new generations of stars are produced remains unclear, it is likely that self-enrichment will be feasible only in clusters massive enough to retain this enriched material. We searched for multiple populations in the low mass (M˜ 1.4× {10}4 {M}⊙ ) globular cluster E3, analyzing SOAR/Goodman multi-object spectroscopy centered on the blue cyanogen (CN) absorption features of 23 red giant branch stars. We find that the CN abundance does not present the typical bimodal behavior seen in clusters hosting multistellar populations, but rather a unimodal distribution that indicates the presence of a genuine single stellar population, or a level of enrichment much lower than in clusters that show evidence for two populations from high-resolution spectroscopy. E3 would be the first bona fide Galactic old globular cluster where no sign of self-enrichment is found. Based on observations obtained at the Southern Astrophysical Research (SOAR) Telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  14. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    PubMed Central

    Fenley, Andrew T.; Adams, David A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a description based on an idealized geometry with one based on the atomistic structure of the nucleosome, and the model consistently accounts for both the electrostatic and nonelectrostatic contributions to the nucleosome free energy. Under physiological conditions, isolated nucleosomes are predicted to be very stable (38 ± 7 kcal/mol). However, a decrease in the charge of the globular histone core by one unit charge, for example due to acetylation of a single lysine residue, can lead to a significant decrease in the strength of association with its DNA. In contrast to the globular histone core, comparable changes in the charge state of the histone tail regions have relatively little effect on the nucleosome's stability. The combination of high stability and sensitivity explains how the nucleosome is able to satisfy the seemingly contradictory requirements for thermodynamic stability while allowing quick access to its DNA informational content when needed by specific cellular processes such as transcription. PMID:20816070

  15. The extended stellar substructures of four metal-poor globular clusters in the galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2015-08-01

    We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  16. New Observational Evidence of Flash Mixing on the White Dwarf Cooling Curve

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; Lanz, T.; Sweigart, A. V.; Cracraft, Misty; Hubeny, Ivan; Landsman, W. B.

    2011-01-01

    Blue hook stars are a class of subluminous extreme horizontal branch stars that were discovered in UV images of the massive globular clusters w Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium-core flash on the white dwarf cooling curve. This "flash mixing" produces hotter-than-normal EHB stars with atmospheres significantly enhanced in helium and carbon. The larger bolometric correction, combined with the decrease in hydrogen opacity, makes these stars appear sub luminous in the optical and UV. Flash mixing is more likely to occur in stars born with a high helium abundance, due to their lower mass at the main sequence turnoff. For this reason, the phenomenon is more common in those massive globular clusters that show evidence for secondary populations enhanced in helium. However, a high helium abundance does not, by itself, explain the presence of blue hook stars in massive globular clusters. Here, we present new observational evidence for flash mixing, using recent HST observations. These include UV color-magnitude diagrams of six massive globular clusters and far-UV spectroscopy of hot subdwarfs in one of these clusters (NGC 2808).

  17. Chemical analysis of eight giant stars of the globular cluster NGC 6366

    NASA Astrophysics Data System (ADS)

    Puls, Arthur A.; Alves-Brito, Alan; Campos, Fabíola; Dias, Bruno; Barbuy, Beatriz

    2018-05-01

    The metal-rich Galactic globular cluster NGC 6366 is the fifth closest to the Sun. Despite its interest, it has received scarce attention, and little is known about its internal structure. Its kinematics suggests a link to the halo, but its metallicity indicates otherwise. We present a detailed chemical analysis of eight giant stars of NGC 6366, using high-resolution and high-quality spectra (R > 40 000, S/N > 60) obtained at the VLT (8.2 m) and CFHT (3.6 m) telescopes. We attempted to characterize its chemistry and to search for evidence of multiple stellar populations. The atmospheric parameters were derived using the method of excitation and ionization equilibrium of Fe I and Fe II lines and from those atmospheric parameters we calculated the abundances for other elements and found that none of the elements measured presents star-to-star variation greater than the uncertainties. We compared the derived abundances with those of other globular clusters and field stars available in the literature. We determined a mean [Fe/H] = -0.60 ± 0.03 for NGC 6366 and found some similarity of this object with M 71, another inner halo globular cluster. The Na-O anticorrelation extension is short and no star-to-star variation in Al is found. The presence of second generation stars is not evident in NGC 6366.

  18. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. IMPLICATIONS FROM THE NEARLY UNIVERSAL NATURE OF HORIZONTAL BRANCH DISCONTINUITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T. M.; Bellini, A.; Anderson, J.

    2016-05-01

    The UV-initiative Hubble Space Telescope Treasury survey of Galactic globular clusters provides a new window into the phenomena that shape the morphological features of the horizontal branch (HB). Using this large and homogeneous catalog of UV and blue photometry, we demonstrate that the HB exhibits discontinuities that are remarkably consistent in color (effective temperature). This consistency is apparent even among some of the most massive clusters hosting multiple distinct sub-populations (such as NGC 2808, ω Cen, and NGC 6715), demonstrating that these phenomena are primarily driven by atmospheric physics that is independent of the underlying population properties. However, inconsistencies arisemore » in the metal-rich clusters NGC 6388 and NGC 6441, where the discontinuity within the blue HB (BHB) distribution shifts ∼1000–2000 K hotter. We demonstrate that this shift is likely due to a large helium enhancement in the BHB stars of these clusters, which in turn affects the surface convection and evolution of such stars. Our survey also increases the number of Galactic globular clusters known to host blue-hook stars (also known as late hot flashers) from 6 to 23 clusters. These clusters are biased toward the bright end of the globular cluster luminosity function, confirming that blue-hook stars tend to form in the most massive clusters with significant self-enrichment.« less

  19. Hydrophobicity diversity in globular and nonglobular proteins measured with the Gini index.

    PubMed

    Carugo, Oliviero

    2017-12-01

    Amino acids and their properties are variably distributed in proteins and different compositions determine all protein features, ranging from solubility to stability and functionality. Gini index, a tool to estimate distribution uniformity, is widely used in macroeconomics and has numerous statistical applications. Here, Gini index is used to analyze the distribution of hydrophobicity in proteins and to compare hydrophobicity distribution in globular and intrinsically disordered proteins. Based on the analysis of carefully selected high-quality data sets of proteins extracted from the Protein Data Bank (http://www.rcsb.org) and from the DisProt database (http://www.disprot.org/), it is observed that hydrophobicity is distributed in a more diverse way in intrinsically disordered proteins than in folded and soluble globular proteins. This correlates with the observation that the amino acid composition deviates from the uniformity (estimate with the Shannon and the Gini-Simpson indices) more in intrinsically disordered proteins than in globular and soluble proteins. Although statistical tools tike the Gini index have received little attention in molecular biology, these results show that they allow one to estimate sequence diversity and that they are useful to delineate trends that can hardly be described, otherwise, in simple and concise ways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. The Discovery of a Second Luminous Low Mass X-Ray Binary System in the Globular Cluster M15

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Angelini, Lorella

    2001-01-01

    Using the Chandra X-ray Observatory we have discovered a second bright X-ray source in the globular cluster M15 that is 2.7" to the west of AC211, the previously known low mass X-ray binary (LMXB) in this system. Prior to the 0.5" imaging capability of Chandra this second source could not have been resolved from AC211. The luminosity and spectrum of this new source, which we call M15-X2, are consistent with it also being a LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The new source, M15-X2, is coincident with a 18th U magnitude very blue star. The discovery of a second LMXB in M15 clears up a long standing puzzle where the X-ray and optical properties of AC211 appear consistent with the central source being hidden behind an accretion disk corona, and yet also showed a luminous X-ray burst suggesting the neutron star is directly visible. This discovery suggests instead that the X-ray burst did not come from AC211, but rather from the newly discovered X-ray source. We discuss the implications of this discovery for X-ray observations of globular clusters in nearby galaxies.

  1. Lost Men on Campus. Commentary

    ERIC Educational Resources Information Center

    Stebleton, Michael

    2010-01-01

    Elizabeth Redden, author of the "Inside Higher Ed" article, "Lost Men on Campus," succinctly articulated the growing concerns about many college men at postsecondary institutions. Her review of results and issues presented at the "ND Conference on College Men" highlighted decreased rates of enrollment for men, underrepresentation of men in campus…

  2. Reaching Black Men. Commentary

    ERIC Educational Resources Information Center

    Gassman, Marybeth

    2010-01-01

    Journalist Elizabeth Redden brings to the surface several salient issues in her article entitled, "Reaching Black Men." First, she illuminates that fact that access is not enough when it comes to educating African American men. Second, she points to the importance of having campus-wide initiatives to support the success of Black men. And…

  3. The old open cluster NGC 2112: updated estimates of fundamental parameters based on a membership analysis†

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Villanova, S.; Demarque, P.; Moni Bidin, C.; McSwain, M. V.

    2008-05-01

    We report on a new, wide-field (20 × 20 arcmin2), multicolour (UBVI), photometric campaign in the area of the nearby old open cluster NGC 2112. At the same time, we provide medium-resolution spectroscopy of 35 (and high-resolution of additional 5) red giant and turn-off stars. This material is analysed with the aim to update the fundamental parameters of this traditionally difficult cluster, which is very sparse and suffers from heavy field star contamination. Among the 40 stars with spectra, we identified 21 bona fide radial velocity members which allow us to put more solid constraints on the cluster's metal abundance, long suggested to be as low as the metallicity of globulars. As indicated earlier by us on a purely photometric basis, the cluster [Fe/H] abundance is slightly supersolar ([Fe/H] = 0.16 +/- 0.03) and close to the Hyades value, as inferred from a detailed abundance analysis of three of the five stars with higher resolution spectra. Abundance ratios are also marginally supersolar. Based on this result, we revise the properties of NGC 2112 using stellar models from the Padova and Yale-Yonsei groups. For this metal abundance, we find that the cluster's age, reddening and distance values are 1.8 Gyr, 0.60 mag and 940 pc, respectively. Both the Yale-Yonsei and Padova models predict the same values for the fundamental parameters within the errors. Overall, NGC 2112 is a typical solar neighbourhood, thin-disc star cluster, sharing the same chemical properties of F-G stars and open clusters close to the Sun. This investigation outlines the importance of a detailed membership analysis in the study of disc star clusters. This paper includes data gathered with the 6.5 Magellan Telescopes, located at Las Campanas Observatory, Chile. The data discussed in this paper will be made available at the WEBDA open cluster data base http://www.univie.ac.at/webda, which is maintained by E. Paunzen and J.-C. Mermilliod. ‡ E-mail: gcarraro@eso.org (GC); sandro.villanova@unipd.it (SV); demarque@astro.yale.edu (PD); mbidin@das.uchile.cl (CMB); mcswain@lehigh.edu(MVM)

  4. Integrated K-band spectra of old and intermediate-age globular clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Lyubenova, M.; Kuntschner, H.; Rejkuba, M.; Silva, D. R.; Kissler-Patig, M.; Tacconi-Garman, L. E.; Larsen, S. S.

    2010-02-01

    Current stellar population models have arguably the largest uncertainties in the near-IR wavelength range, partly due to a lack of large and well calibrated empirical spectral libraries. In this paper we present a project whose aim it is to provide the first library of luminosity weighted integrated near-IR spectra of globular clusters to be used to test the current stellar population models and serve as calibrators for future ones. Our pilot study presents spatially integrated K-band spectra of three old (≥10 Gyr) and metal poor ([Fe/H] ~ -1.4), and three intermediate age (1-2 Gyr) and more metal rich ([Fe/H] ~ - 0.4) globular clusters in the LMC. We measured the line strengths of the Na I, Ca I and 12CO (2-0) absorption features. The Na I index decreases with increasing age and decreasing metallicity of the clusters. The DCO index, used to measure the 12CO (2-0) line strength, is significantly reduced by the presence of carbon-rich TP-AGB stars in the globular clusters with age ~1 Gyr. This is in contradiction to the predictions of the stellar population models of Maraston (2005, MNRAS, 362, 799). We find that this disagreement is due to the different CO absorption strength of carbon-rich Milky Way TP-AGB stars used in the models and the LMC carbon stars in our sample. For globular clusters with age ≥ 2 Gyr we find DCO index measurements consistent with the model predictions. Based on observation collected at the ESO Paranal La Silla Observatory, Chile, Prog. ID 078.B-0205.Spectra in FITS format are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A19

  5. Rubidium and Lead Abundances in Giant Stars of the Globular Clusters M13 and NGC 6752

    NASA Astrophysics Data System (ADS)

    Yong, David; Aoki, Wako; Lambert, David L.; Paulson, Diane B.

    2006-03-01

    We present measurements of the neutron-capture elements Rb and Pb in five giant stars of the globular cluster NGC 6752 and Pb measurements in four giants of the globular cluster M13. The abundances were derived by comparing synthetic spectra with high-resolution, high signal-to-noise ratio spectra obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope. The program stars span the range of the O-Al abundance variation. In NGC 6752, the mean abundances are [Rb/Fe]=-0.17+/-0.06 (σ=0.14), [Rb/Zr]=-0.12+/-0.06 (σ=0.13), and [Pb/Fe]=-0.17+/-0.04 (σ=0.08). In M13 the mean abundance is [Pb/Fe]=-0.28+/-0.03 (σ=0.06). Within the measurement uncertainties, we find no evidence for star-to-star variation for either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe], [Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample of field stars at the same metallicity. For M13 and NGC 6752 the Pb abundances are in accord with predictions from a Galactic chemical evolution model. If metal-poor intermediate-mass asymptotic giant branch stars did produce the globular cluster abundance anomalies, then such stars do not synthesize significant quantities of Rb or Pb. Alternatively, if such stars do synthesize large amounts of Rb or Pb, then they are not responsible for the abundance anomalies seen in globular clusters. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations made with the Magellan Clay Telescope at Las Campanas Observatory.

  6. Blue stragglers in the core of the globular cluster 47 Tucanae

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Meylan, G.; Shara, M.; Baxter, D.; Greenfield, P.

    1991-01-01

    High-resolution observations of the core of the globular cluster 47 Tucanae with the Faint Object Camera on the Hubble Space Telescope reveal a high density of 'blue straggler' stars, occupying the upper end of the main sequence from which all stars in the cluster should have long since evolved. Their presence in the dense core supports the hypothesis that they formed by stellar collision and coalescence, and, as the heaviest objects in the cluster, have drifted to the core.

  7. VizieR Online Data Catalog: Updated catalog of variable stars in globular clusters (Clement+ 2017)

    NASA Astrophysics Data System (ADS)

    Clement, C. M.

    2017-02-01

    This Catalogue is an update to Helen Sawyer Hogg's Third Catalogue on Variable Stars in Globular Clusters (1973, David Dunlap Observatory Publications, Volume 3, Number 6: 1973PDDO....3....6S; see Cat V/97; see also Clement+, 2001AJ....122.2587C). This catalogue is based on the individual cluster files downloaded on http://www.astro.utoronto.ca/~cclement/cat/listngc.html on the 01-Feb-2017. Later updates are indicated in clusters.dat; column "Update". (7 data files).

  8. First optical candidate for a recovered classical nova in a globular cluster - Nova 1938 in M14

    NASA Technical Reports Server (NTRS)

    Shara, Michael M.; Potter, Michael; Moffat, Anthony F. J.; Hogg, Helen S.; Wehlau, Amelia

    1986-01-01

    U, B, V, R, and H-alpha CCD frames of the field of the nova which appeared in the globular cluster M14 in 1938 have been compared with the nova discovery images. On the basis of positional coincidence, brightness, and blue color, a candidate nova was identified and its right ascension and declination to within 1 arcsec each. Confirmation of the candidate and detailed study of the quiescent nova will probably require Hubble Space Telescope observations.

  9. Features of globular cluster's dynamics with an intermediate-mass black hole

    NASA Astrophysics Data System (ADS)

    Ryabova, Marina V.; Gorban, Alena S.; Shchekinov, Yuri A.; Vasiliev, Evgenii O.

    2018-02-01

    In this paper, we address the question of how a central intermediate-mass black hole (IMBH) in a globular cluster (GC) affects dynamics, core collapse, and formation of the binary population. It is shown that the central IMBH forms a binary system that affects dynamics of stars in the cluster significantly. The presence of an intermediate-mass black hole with mass ≥ 1.0-1.7%of the total stellar mass in the cluster inhibits the formation of binary stars population.

  10. HST Proper Motions of Distant Globular Clusters: Constraining the Formation & Mass of the Milky Way

    NASA Astrophysics Data System (ADS)

    Sohn, S. Tony; van der Marel, Roeland P.; Deason, Alis; Bellini, Andrea; Besla, Gurtina; Watkins, Laura

    2018-04-01

    Proper motions (PMs) are required to calculate accurate orbits of globular clusters (GCs) in the Milky Way (MW) halo. We present our HST program to create a PM database for 20 GCs at distances of R GC = 10-100 kpc. Targets are discussed along with PM measurement methods. We also describe how our PM results can be used for Gaia as an external check, and discuss the synergy between HST and Gaia as astrometric instruments in the coming years.

  11. Why human milk is more nutritious than cow milk

    NASA Astrophysics Data System (ADS)

    Voorhoeve, Niels; Allan, Douglas C.; Moret, M. A.; Zebende, G. F.; Phillips, J. C.

    2018-05-01

    The evolution of milk, the key infant nutrient, is analyzed using a novel thermodynamic molecular method. The method is general, and it has many advantages compared to conventional molecular dynamics simulations. It is much simpler, and it connects amino acid sequences directly to function, often without knowing detailed "folded" globular structures. It emphasizes synchronized critical fluctuations due to long-range correlations in globular curvatures. The titled question has not been answered, or even discussed successfully, by other molecular methods.

  12. The properties of the disk system of globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1989-01-01

    A large refined data sample is used to study the properties and origin of the disk system of globular clusters. A scale height for the disk cluster system of 800-1500 pc is found which is consistent with scale-height determinations for samples of field stars identified with the Galactic thick disk. A rotational velocity of 193 + or - 29 km/s and a line-of-sight velocity dispersion of 59 + or - 14 km/s have been found for the metal-rich clusters.

  13. Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form.

    PubMed Central

    Sikorav, J L; Duval, N; Anselmet, A; Bon, S; Krejci, E; Legay, C; Osterlund, M; Reimund, B; Massoulié, J

    1988-01-01

    In this paper, we show the existence of alternative splicing in the 3' region of the coding sequence of Torpedo acetylcholinesterase (AChE). We describe two cDNA structures which both diverge from the previously described coding sequence of the catalytic subunit of asymmetric (A) forms (Schumacher et al., 1986; Sikorav et al., 1987). They both contain a coding sequence followed by a non-coding sequence and a poly(A) stretch. Both of these structures were shown to exist in poly(A)+ RNAs, by S1 mapping experiments. The divergent region encoded by the first sequence corresponds to the precursor of the globular dimeric form (G2a), since it contains the expected C-terminal amino acids, Ala-Cys. These amino acids are followed by a 29 amino acid extension which contains a hydrophobic segment and must be replaced by a glycolipid in the mature protein. Analyses of intact G2a AChE showed that the common domain of the protein contains intersubunit disulphide bonds. The divergent region of the second type of cDNA consists of an adjacent genomic sequence, which is removed as an intron in A and Ga mRNAs, but may encode a distinct, less abundant catalytic subunit. The structures of the cDNA clones indicate that they are derived from minor mRNAs, shorter than the three major transcripts which have been described previously (14.5, 10.5 and 5.5 kb). Oligonucleotide probes specific for the asymmetric and globular terminal regions hybridize with the three major transcripts, indicating that their size is determined by 3'-untranslated regions which are not related to the differential splicing leading to A and Ga forms. Images PMID:3181125

  14. Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan: Implications for carbon-recycling in subduction zone

    NASA Astrophysics Data System (ADS)

    Yang, Wu-Bin; Niu, He-Cai; Shan, Qiang; Chen, Hua-Yong; Hollings, Pete; Li, Ning-Bo; Yan, Shuang; Zartman, Robert E.

    2014-10-01

    Arc magmatism plays an important role in the recycling of subducted carbon and returning it to the surface. However, the transfer mechanisms of carbon are poorly understood. In this study, the contribution of subducted carbonate-rich sediments to the genesis of the carbonate-bearing K-rich igneous rocks from western Tianshan was investigated. Four key triggers are involved, including sediments subduction, slab decarbonation, partial melting and magma segregation. The globular carbonate ocelli show C-O isotope signatures intermediate between oceanic sediments and mantle, suggesting that the carbon of the primary carbonate ocelli was derived from recycled subducted sediments in the mantle. Decarbonation of the subducted slab is regarded as the primary agent to carbonize the mantle wedge. Geochemical features indicate that the carbonate ocelli are primary, and that the parental K- and carbon-rich mafic alkaline magma was derived from partial melting of carbonated mantle wedge veined with phlogopite. Major and trace element compositions indicate that globular carbonate ocelli hosted in the Bugula K-rich igneous rocks are calcio-carbonate and formed primarily by segregation of the differentiated CO2-rich alkaline magma after crystallization fractionation. The K-rich alkaline magma, which formed from partial melting of metasomatized (i.e., phlogopite bearing) mantle wedge in the sub-arc region, is a favorable agent to transport subducted carbon back to the Earth's surface during carbon recycling in subduction zones, because of the high CO2 solubility in alkaline mafic magma. We therefore propose a model for the petrogenesis of the carbonate-bearing K-rich igneous rocks in western Tianshan, which are significant for revealing the mechanism of carbon recycling in subduction zones.

  15. CARd-3D: Carbon Distribution in 3D Structure Program for Globular Proteins

    PubMed Central

    Ekambaram, Rajasekaran; Kannaiyan, Akila; Marimuthu, Vijayasarathy; Swaminathan, Vinobha Chinnaiah; Renganathan, Senthil; Perumal, Ananda Gopu

    2014-01-01

    Spatial arrangement of carbon in protein structure is analyzed here. Particularly, the carbon fractions around individual atoms are compared. It is hoped that it follows the principle of 31.45% carbon around individual atoms. The results reveal that globular protein's atoms follow this principle. A comparative study on monomer versus dimer reveal that carbon is better distributed in dimeric form than in its monomeric form. Similar study on solid versus liquid structures reveals that the liquid (NMR) structure has better carbon distribution over the corresponding solid (X-Ray) structure. The carbon fraction distributions in fiber and toxin protein are compared. Fiber proteins follow the principle of carbon fraction distribution. At the same time it has another broad spectrum of carbon distribution than in globular proteins. The toxin protein follows an abnormal carbon fraction distribution. The carbon fraction distribution plays an important role in deciding the structure and shape of proteins. It is hoped to help in understanding the protein folding and function. PMID:24748753

  16. Disorder in Milk Proteins: α-Lactalbumin. Part B. A Multifunctional Whey Protein Acting as an Oligomeric Molten Globular "Oil Container" in the Anti-Tumorigenic Drugs, Liprotides.

    PubMed

    Uversky, Vladimir N; Permyakov, Serge E; Breydo, Leonid; Redwan, Elrashdy M; Almehdar, Hussein A; Permyakov, Eugene A

    2016-07-15

    This is a second part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We continue to describe α-lactalbumin, a small globular Ca2+-binding protein, which besides being one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland, possesses a multitude of other functions. In fact, recent studies indicated that some partially folded forms of this protein possess noticeable bactericidal activity and other forms might be related to induction of the apoptosis of tumor cells. In its anti-tumorigenic function, oligomeric α-lactalbumin serves as a founding member of a new family of anticancer drugs termed liprotides (for lipids and partially denatured proteins), where an oligomeric molten globular protein acts as an "oil container" or cargo for the delivery of oleic acid to the cell membranes.

  17. Tails and streams around the Galactic globular clusters NGC 1851, NGC 1904, NGC 2298 and NGC 2808

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Martínez-Delgado, David; Navarrete, Camila; Catelan, Márcio; Muñoz, Ricardo R.; Antoja, Teresa; Sollima, Antonio

    2018-02-01

    We present Dark Energy Camera imaging for the peculiar Galactic globular clusters NGC 1851, NGC 1904 (M 79), NGC 2298 and NGC 2808. Our deep photometry reveals that all the clusters have an important contribution of stars beyond their King tidal radii and present tails with different morphologies. We have also explored the surroundings of the clusters where the presence of the Canis Major overdensity and/or the low Galactic latitude Monoceros ring at d⊙ ˜ 8 kpc is evident. A second stellar system is found at d⊙ ˜ 17 kpc and spans at least 18 deg × 15 deg in the sky. As one of the possible scenarios to explain that feature, we propose that the unveiled system is part of Monoceros explained as a density wave moving towards the outer Milky Way. Alternatively, the unveiled system might be connected with other known halo substructures or associated with the progenitor dwarf galaxy of NGC 1851 and NGC 1904, which are widely considered accreted globular clusters.

  18. Influence of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding

    NASA Astrophysics Data System (ADS)

    Cai, Chuang; Feng, Jiecai; Li, Liqun; Chen, Yanbin

    2016-09-01

    The effects of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding were studied. Transfer sequence of a droplet, welding current wave and morphology of plasma in the three modes of arc welding and hybrid welding were comparatively investigated. Compared with arc welding, the transfer frequency and landing location of droplet in the three modes of hybrid welding changed. In short-circuiting and globular modes, the droplet transfer was promoted by the laser, while the droplet transfer was hindered by the laser in spray mode. The magnitudes and directions of electromagnetic force and plasma drag force acting on the droplet were the keys to affect the droplet behavior. The magnitudes and directions of electromagnetic force and plasma drag force were converted due to the variation of the current distribution into the droplet, which were caused by the laser induced plasma with low ionization potential.

  19. A stellar audit: the computation of encounter rates for 47 Tucanae and omega Centauri

    NASA Astrophysics Data System (ADS)

    Davies, Melvyn B.; Benz, Willy

    1995-10-01

    Using King-Mitchie models, we compute encounter rates between the various stellar species in the globular clusters omega Cen and 47 Tuc. We also compute event rates for encounters between single stars and a population of primordial binaries. Using these rates, and what we have learnt from hydrodynamical simulations of encounters performed earlier, we compute the production rates of objects such as low-mass X-ray binaries (LMXBs), smothered neutron stars and blue stragglers (massive main-sequence stars). If 10 per cent of the stars are contained in primordial binaries, the production rate of interesting objects from encounters involving these binaries is as large as that from encounters between single stars. For example, encounters involving binaries produce a significant number of blue stragglers in both globular cluster models. The number of smothered neutron stars may exceed the number of LMXBs by a factor of 5-20, which may help to explain why millisecond pulsars are observed to outnumber LMXBs in globular clusters.

  20. The Fornax-Leo-Sculptor stream revisited

    NASA Technical Reports Server (NTRS)

    Majewski, Steven R.

    1994-01-01

    Lynden-Bell first demonstrated that the satellites of the Milky Way appear situated along two great 'streams' in the sky: the 'Magellanic stream' and the 'Fornax-Leo-Sculptor (FLS) stream.' Further exploration of the three-dimensional distribution of Galactic satellites reveals that the recently discovered Sextans and Phoenix dwarf spheroidal galaxies also lie near the plane defined by the FLS galaxies, and therefore strengthens the evidence in favor of the FLS stream. Moreover, a specific group of globular clusters -- those exhibiting the reddest horizontal branches (HBs) among those identified as 'young halo' by Zinn -- appear to populate the FLS stream. As previously demonstrated by Zinn, the spatial distribution of old halo globulars appears to be flattened toward the Galactic plane, and therefore the old halo clusters are typically anti-correlated to the nearly orthogonal FLS stream. A scenario is postulated wherein the Galactic satellites of the FLS stream and the red HB, young halo globular clusters share a common origin in the accretion of a formerly larger, parent satellite galaxy or Searle & Zinn 'fragment.'

  1. Two distinct sequences of blue straggler stars in the globular cluster M 30.

    PubMed

    Ferraro, F R; Beccari, G; Dalessandro, E; Lanzoni, B; Sills, A; Rood, R T; Pecci, F Fusi; Karakas, A I; Miocchi, P; Bovinelli, S

    2009-12-24

    Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.

  2. Evolutionary models of rotating dense stellar systems: challenges in software and hardware

    NASA Astrophysics Data System (ADS)

    Fiestas, Jose

    2016-02-01

    We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of initial axisymmetry due to rotation. Central black hole seeds are alternatively included in our models, and black hole growth due to consumption of stellar matter is simulated until the central potential dominates the kinematics in the core. Goal is to study the long-term evolution (~ Gyr) of relaxed dense stellar systems, which deviate from spherical symmetry, their morphology and final kinematics. With this purpose, we developed a 2D Fokker-Planck analytical code, which results we confirm by detailed N-Body techniques, applying a high performance code, developed for GPU machines. We compare our models to available observations of galactic rotating globular clusters, and conclude that initial rotation modifies significantly the shape and lifetime of these systems, and can not be neglected in studying the evolution of globular clusters, and the galaxy itself.

  3. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centeredmore » SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.« less

  4. Low-luminosity stellar mass functions in globular clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richer, H.B.; Fahlman, G.G.; Buonanno, R.

    New data are presented on cluster luminosity functions and mass functions for selected fields in the globular clusters M13 and M71, extending down the main sequence to at least 0.2 solar mass. In this experiment, CCD photometry data were obtained at the prime focus of the CFHT on the cluster fields that were far from the cluster center. Luminosity functions were constructed, using the ADDSTAR routine to correct for the background, and mass functions were derived using the available models. The mass functions obtained for M13 and M71 were compared to existing data for NGC 6397. Results show that (1)more » all three globular clusters display a marked change in slope at about 0.4 solar mass, with the slopes becoming considerably steeper toward lower masses; (2) there is no correlation between the slope of the mass function and metallicity; and (3) the low-mass slope of the mass function for M13 is much steeper than for NGC 6397 and M71. 22 refs.« less

  5. The small angle x-ray scattering of globular proteins in solution during heat denaturation

    NASA Astrophysics Data System (ADS)

    Banuelos, Jose; Urquidi, Jacob

    2008-10-01

    The ability of proteins to change their conformation in response to changes in their environment has consequences in biological processes like metabolism, chemical regulation in cells, and is believed to play a role in the onset of several neurodegenerative diseases. Factors such as a change in temperature, pressure, and the introduction of ions into the aqueous environment of a protein can give rise to the folding/unfolding of a protein. As a protein unfolds, the ratio of nonpolar to polar groups exposed to water changes, affecting a protein's thermodynamic properties. Using small angle x-ray scattering (SAXS), we are currently studying the intermediate protein conformations that arise during the folding/unfolding process as a function of temperature for five globular proteins. Trends in the observed intermediate structures of these globular proteins, along with correlations with data on protein thermodynamics may help elucidate shared characteristics between all proteins in the folding/unfolding process. Experimental design considerations will be discussed and preliminary results for some of these systems will be presented.

  6. A Large C+N+O Abundance Spread in Giant Stars of the Globular Cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Yong, David; Grundahl, Frank; D'Antona, Francesca; Karakas, Amanda I.; Lattanzio, John C.; Norris, John E.

    2009-04-01

    Abundances of C, N, and O are determined in four bright red giants that span the known abundance range for light (Na and Al) and s-process (Zr and La) elements in the globular cluster NGC 1851. The abundance sum C+N+O exhibits a range of 0.6 dex, a factor of 4, in contrast to other clusters in which no significant C+N+O spread is found. Such an abundance range offers support for the Cassisi et al. scenario in which the double subgiant branch populations are coeval but with different mixtures of C+N+O abundances. Further, the Na, Al, Zr, and La abundances are correlated with C+N+O, and therefore NGC 1851 is the first cluster to provide strong support for the scenario in which asymptotic giant branch stars are responsible for the globular cluster light element abundance variations. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. Ancient Planet in a Globular Cluster Core

    NASA Image and Video Library

    2010-03-31

    Release Date: July 10, 2003 A rich starry sky fills the view from an ancient gas-giant planet in the core of the globular star cluster M4, as imagined in this artist's concept. The 13-billion-year-old planet orbits a helium white-dwarf star and the millisecond pulsar B1620-26, seen at lower left. The globular cluster is deficient in heavier elements for making planets, so the existence of such a world implies that planet formation may have been quite efficient and common in the early universe. Object Names: B1620-26, M4 Image Type: Artwork Illustration Credit: NASA and G. Bacon (STScI) To learn more about this image go to: www.nasa.gov/centers/goddard/news/topstory/2003/0709hstss... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  8. Effect of a low-frequency magnetic field on the structure of globular blood proteins

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Ulashchik, V. S.; Mit'kovskaya, N. P.; Laskina, O. V.; Kuchinskii, A. V.

    2007-09-01

    We used IR Fourier absorption spectra of blood to study changes in the structure of globular blood proteins with extracorporeal autohemomagnetotherapy, used to treat ischemic heart disease. We compare the spectra of blood before and after magnetotherapy in the regions: amide I (1655 cm-1), amide II (1545 cm-1), amide III (1230-1350 cm-1), amide IV and amide V (400-700 cm-1). We have shown that pronounced changes in the spectra in the indicated regions on direct exposure of blood in vivo to a low-frequency pulsed magnetic field are connected with conformational changes in the secondary structure of globular blood proteins, which are apparent in the increase in the contribution of the α-helix conformation. We discuss the magnetotherapy-initiated appearance of new IR absorption bands at 1018 and 1038 cm-1 and an increase in the intensity of a number of other bands located in the 1000-1200 cm-1 region, which suggests a change in the concentration of some blood components.

  9. Comparative pulsation calculations with OP and OPAL opacities

    NASA Technical Reports Server (NTRS)

    Kanbur, Shashi M.; Simon, Norman R.

    1994-01-01

    Comparative linear nonadiabatic pulsation calculations are presented using the OPAL and Opacity Project opacities. The two sets of opacities include effects due to intermediate coupling and fine structure as well as new abundances. We used two mass luminosity (M-L) relations, one standard (BIT), and one employing substantial convective core overshoot (COV). The two sets of opacities cannot be differentiated on the basis of the stellar pulsation calculations presented here. The BIT relation can model the beat and bump Cepheids with masses between 4 and 7 solar mass, while if the overshoot relation is used, masses between 2 and 6 solar mass are required. In the RR Lyrae regime, we find the inferred masses of globular cluster RRd stars to be little influenced by the choice of OPAL or OP. Finally, the limited modeling we have done is not able to constrain the Cepheid M-L relation based upon period ratios observed in the beat and bump stars.

  10. Protein-Water and Protein-Buffer Interactions in the Aqueous Solution of an Intrinsically Unstructured Plant Dehydrin: NMR Intensity and DSC Aspects

    PubMed Central

    Tompa, P.; Bánki, P.; Bokor, M.; Kamasa, P.; Kovács, D.; Lasanda, G.; Tompa, K.

    2006-01-01

    Proton NMR intensity and differential scanning calorimetry measurements were carried out on an intrinsically unstructured late embryogenesis abundant protein, ERD10, the globular BSA, and various buffer solutions to characterize water and ion binding of proteins by this novel combination of experimental approaches. By quantifying the number of hydration water molecules, the results demonstrate the interaction between the protein and NaCl and between buffer and NaCl on a microscopic level. The findings overall provide direct evidence that the intrinsically unstructured ERD10 not only has a high hydration capacity but can also bind a large amount of charged solute ions. In accord, the dehydration stress function of this protein probably results from its simultaneous action of retaining water in the drying cells and preventing an adverse increase in ionic strength, thus countering deleterious effects such as protein denaturation. PMID:16798808

  11. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  12. Mass loss in M67 giants - Evidence from isochrone fitting

    NASA Technical Reports Server (NTRS)

    Tripicco, Michael J.; Dorman, Ben; Bell, R. A.

    1993-01-01

    A comparison between the color-magnitude diagram of M67 and a new set of theoretical evolutionary models which include all phases from the unevolved main-sequence through core-helium burning and onto the AGB is presented. The present 5-Gyr solar abundance isochrone is found to yield an excellent fit to the whole of the M67 color-magnitude diagram. A differential technique that compares the gap in color between clump giants and normal red giants, on one hand, with the temperature gap between core He-burning tracks and first-ascent RGB tracks, on the other, strongly indicates that the clump giants in M67 have masses of 0.70 solar mass or less. The extremely large amount of mass loss that is deduced is well in excess of that found for globular cluster stars. Possible resolutions of this problem are that degree of mass loss increases with total stellar mass, or with metallicity.

  13. Kinematical Focus on NGC 7086

    NASA Astrophysics Data System (ADS)

    Tadross, A. L.

    2005-12-01

    The main physical parameters; the cluster center, distance, radius, age, reddening, and visual absorbtion; have been re-estimated and improved for the open cluster NGC 7086. The metal abundance, galactic distances, membership richness, luminosity function, mass function, and the total mass of NGC 7086 have been examined for the first time here using Monet et al. (2003) catalog.

  14. Stolbur Phytoplasma Transmission to Maize by Reptalus panzeri and the Disease Cycle of Maize Redness in Serbia

    USDA-ARS?s Scientific Manuscript database

    Maize redness (MR), induced by stolbur phytoplasma (Candidatus Phytoplasma solani, subgroup 16SrXII-A), is characterized by midrib, leaf and stalk reddening and abnormal ear development. MR has been reported from Serbia, Romania and Bulgaria for 50 years, and recent epiphytotics reduced yields by 4...

  15. The highly obscured nucleus of 3C 219

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Willner, S. P.; Carleton, N. P; Elvis, M.

    1986-01-01

    The detection of a strong, and possibly broad, Paschen-alpha line from the narrow-line radio galaxy 3C 219 is reported. The detected flux is larger than predicted from the H-alpha line and the case B recombination. This implies the presence of a highly reddened line-emitting region in the nucleus.

  16. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    NASA Astrophysics Data System (ADS)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  17. Panchromatic observations of dwarf starburst galaxies: Infant super star clusters and a low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Reines, Amy Ellen

    2011-01-01

    Globular star clusters and supermassive black holes are fundamental components of today's massive galaxies, with origins dating back to the very early universe. Both globular clusters and the seeds of supermassive black holes are believed to have formed in the progenitors of modern massive galaxies, although the details are poorly understood. Direct observations of these low-mass, distant, and hence faint systems are unobtainable with current capabilities. However, gas-rich dwarf starburst galaxies in the local universe, analogous in many ways to protogalaxies at high-redshift, can provide critical insight into the early stages of galaxy evolution including the formation of globular clusters and massive black holes. This thesis presents a panchromatic study of nearby dwarf starburst galaxies harboring nascent globular clusters still embedded in their birth material. Infant clusters are identified via their production of thermal radio emission at centimeter wavelengths, which comes from dense gas ionized by young massive stars. By combining radio observations with complementary data at ultraviolet, optical and infrared wavelengths, we obtain a comprehensive view of massive clusters emerging from their gaseous and dusty birth cocoons. This thesis also presents the first example of a nearby dwarf starburst galaxy hosting an actively accreting massive central black hole. The black hole in this dwarf galaxy is unusual in that it is not associated with a bulge, a nuclear star cluster, or any other well-defined nucleus, likely reflecting an early phase of black hole and galaxy evolution that has not been previously observed.

  18. The most metal-poor Galactic globular cluster: the first spectroscopic observations of ESO280-SC06

    NASA Astrophysics Data System (ADS)

    Simpson, Jeffrey D.

    2018-07-01

    We present the first spectroscopic observations of the very metal-poor Milky Way globular cluster ESO280-SC06. Using spectra acquired with the 2dF/AAOmega spectrograph on the Anglo-Australian Telescope, we have identified 13 members of the cluster, and estimate from their infrared calcium triplet lines that the cluster has a metallicity of [Fe/H]=-2.48^{+0.06 }_{ -0.11}. This would make it the most metal-poor globular cluster known in the Milky Way. This result was verified with comparisons to three other metal-poor globular clusters that had been observed and analysed in the same manner. We also present new photometry of the cluster from EFOSC2 and SkyMapper and confirm that the cluster is located 22.9 ± 2.1 kpc from the Sun and 15.2 ± 2.1 kpc from the Galactic Centre, and has a radial velocity of 92.5^{+2.4 }_{ -1.6} km s-1. These new data finds the cluster to have a radius about half that previously estimated, and we find that the cluster has a dynamical mass of the cluster of (12 ± 2) × 103 M⊙. Unfortunately, we lack reliable proper motions to fully characterize its orbit about the Galaxy. Intriguingly, the photometry suggests that the cluster lacks a well-populated horizontal branch, something that has not been observed in a cluster so ancient or metal poor.

  19. The primordial and evolutionary abundance variations in globular-cluster stars: a problem with two unknowns

    NASA Astrophysics Data System (ADS)

    Denissenkov, P. A.; VandenBerg, D. A.; Hartwick, F. D. A.; Herwig, F.; Weiss, A.; Paxton, B.

    2015-04-01

    We demonstrate that among the potential sources of the primordial abundance variations of the proton-capture elements in globular-cluster stars proposed so far, such as the hot-bottom burning in massive asymptotic giant branch stars and H burning in the convective cores of supermassive and fast-rotating massive main-sequence (MS) stars, only the supermassive MS stars with M > 104 M⊙ can explain all the observed abundance correlations without any fine-tuning of model parameters. We use our assumed chemical composition for the pristine gas in M13 (NGC 6205) and its mixtures with 50 and 90 per cent of the material partially processed in H burning in the 6 × 104 M⊙ MS model star as the initial compositions for the normal, intermediate, and extreme populations of low-mass stars in this globular cluster, as suggested by its O-Na anticorrelation. We evolve these stars from the zero-age MS to the red giant branch (RGB) tip with the thermohaline and parametric prescriptions for the RGB extra mixing. We find that the 3He-driven thermohaline convection cannot explain the evolutionary decline of [C/Fe] in M13 RGB stars, which, on the other hand, is well reproduced with the universal values for the mixing depth and rate calibrated using the observed decrease of [C/Fe] with MV in the globular cluster NGC5466 that does not have the primordial abundance variations.

  20. The crystal structure of the streptococcal collagen-like protein 2 globular domain from invasive M3-type group A Streptococcus shows significant similarity to immunomodulatory HIV protein gp41.

    PubMed

    Squeglia, Flavia; Bachert, Beth; De Simone, Alfonso; Lukomski, Slawomir; Berisio, Rita

    2014-02-21

    The arsenal of virulence factors deployed by streptococci includes streptococcal collagen-like (Scl) proteins. These proteins, which are characterized by a globular domain and a collagen-like domain, play key roles in host adhesion, host immune defense evasion, and biofilm formation. In this work, we demonstrate that the Scl2.3 protein is expressed on the surface of invasive M3-type strain MGAS315 of Streptococcus pyogenes. We report the crystal structure of Scl2.3 globular domain, the first of any Scl. This structure shows a novel fold among collagen trimerization domains of either bacterial or human origin. Despite there being low sequence identity, we observed that Scl2.3 globular domain structurally resembles the gp41 subunit of the envelope glycoprotein from human immunodeficiency virus type 1, an essential subunit for viral fusion to human T cells. We combined crystallographic data with modeling and molecular dynamics techniques to gather information on the entire lollipop-like Scl2.3 structure. Molecular dynamics data evidence a high flexibility of Scl2.3 with remarkable interdomain motions that are likely instrumental to the protein biological function in mediating adhesive or immune-modulatory functions in host-pathogen interactions. Altogether, our results provide molecular tools for the understanding of Scl-mediated streptococcal pathogenesis and important structural insights for the future design of small molecular inhibitors of streptococcal invasion.

Top