Sample records for differentiated basic soil

  1. Kinetics of heterogeneous chemical reactions: a theoretical model for the accumulation of pesticides in soil.

    PubMed

    Lin, S H; Sahai, R; Eyring, H

    1971-04-01

    A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method.

  2. Kinetics of Heterogeneous Chemical Reactions: A Theoretical Model for the Accumulation of Pesticides in Soil

    PubMed Central

    Lin, S. H.; Sahai, R.; Eyring, H.

    1971-01-01

    A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method. PMID:5279519

  3. Differential response of ammonia-oxidizing archaea and bacteria to the wetting of salty arid soil.

    PubMed

    Sher, Yonatan; Ronen, Zeev; Nejidat, Ali

    2016-08-01

    Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were < 1 independent of niche or water content. In contrast, the bacterial amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Crown condition dynamics of oak in southern Sweden 1988-1999.

    PubMed

    Drobyshev, Igor; Anderson, Stefan; Sonesson, Kerstin

    2007-11-01

    Crown defoliation of oak (Quercus robur and Q. petraea) was analysed in 808 trees during three forest condition surveys (1988, 1993, and 1999) in the southern Sweden. From 1988 to 1999 crown defoliation increased by more than 20%. Changes in crown defoliation were related to the pH in the upper 20-30 cm of the mineral soils, which was closely connected to other measures of soil fertility (cation exchange capacity, CEC and C/N ratio). Trees growing on soils with a high pH (> or =4.00, in BaCl2 filtrate), high CEC and low C/N ratio had significantly lower crown defoliation than trees growing on more acid soils (pH <4.00), indicating that less favourable soil conditions may further enhance oak decline. Age did not differentiate trees with respect to crown defoliation, indicating that decline in crown condition was not due to an age-related increase in crown transparency. Considering only trees younger than 100 years, a significant interaction was observed between changes in crown defoliation and soil pH. Trees younger than 100 years old growing on more acidic soils had a greater increase in crown transparency than trees on more basic soils between 1988 and 1999. Trees > or =100 years old had significantly higher defoliation on more acidic than on more basic soils, however defoliation dynamics of these trees over 1988-99 was not related to soil acidity. Two biotic agents (insect and fungal leaf infections) evaluated in this study did not prove to be important drivers of defoliation dynamics.

  5. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  6. Novel diffusive gradients in thin films technique to assess labile sulfate in soil.

    PubMed

    Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas

    2016-09-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate.

  7. Soil profiles' development and differentiation as revealed by their magnetic signal

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana

    2017-04-01

    Soil profiles' development is a major theme in soil science research, as far as it gives basic information on soil genesis and classification. The use of soil magnetic properties as indicators for physical and geochemical conditions during pedogenesis received great attention during the last decade mainly in relation to paleoclimate reconstructions. However, tracking the observed general relationships with respect to degree of soil differentiation would lead to capitalization of this knowledge and its further utilization as pedogenic indicator. Here we present an overview of the observed relationships and depth variations of magnetic characteristics along ten soil profiles of Chernozems, Luvisols and Planosols from Bulgaria. Depending on the general soil group considered, different relationships between depth distribution of the relative amount of superparamagnetic (SP), single domain (SD) and larger pseudo single domain (PSD) to multi domain (MD) ferrimagnetic fractions are revealed. The profiles of the soil group with pronounced accumulation of organic matter in the mineral topsoil (Chernozems and Phaeozems) a systematic shift in the relative maxima of SP- and SD- like concentration proxies is observed with the increase of profile differentiation. In contrast, the group of soils with clay-enriched subsoil horizon (e.g. Luvisols) shows different evolution of the depth distribution of the grain-size proxy parameters. The increase of profile's degradation leads to a decrease in the amount of the SP fraction and a split in its maxima into two depth intervals related to the eluvial and illuvial horizons respectively. Along with this tendency, the maximum of the SD fraction moves to progressively deeper levels of the illuvial horizon. The third soil group of the Planosols is characterized by specific re-distribution of the iron oxides, caused by the oscillating oxidation - reduction fluctuations within the profile. The diagnostic eluvial and illuvial soil horizons are enriched with stable SD magnetite-like fraction, likely originating from ferrihydrite transformations under repeating oxidative - reductive conditions. The major magnetic phase in illuvial horizons is hematite, while in eluvial and C-horizons magnetite dominates. These different trends in the evolution of mineralogy and magnetic grain size fractions along the depth of the various soil groups are useful indicators of the soil chemistry, as well as the dynamics of the main soil forming processes.

  8. Classification of anthropogenic soils by new diagnostic criteria involved in the Slovak Soil Classification System (2014)

    NASA Astrophysics Data System (ADS)

    Sobocká, Jaroslava; Balkovič, Juraj; Bedrna, Zoltán

    2017-04-01

    Anthropogenic soils can be found mostly in SUITMA areas. The issue of adequate and correct description and classification of these soils occurs very often and can result in inconsistent even in contradictory opinions. In the new version of the anthropogenic soil classification system in Slovakia some new diagnostics criteria were involved and applied for better understanding the inherent nature of these soils. The group of the former anthropogenic soils was divided following scheme of soil reference groups in the WRB 2014 (Anthrozem and Technozem). According to the new version of the Slovak anthropogenic soils classification (2014) there have been distinguished 2 groups of anthropogenic soils: 1) cultivated soils group including 2 soil types (in Slovak terminology): Kultizem and Hortizem and 2) technogenic soils group having 2 soil types: Antrozem and Technozem. Cultivated soil group represents soils developing or forming "in-situ" with diagnostic horizons characterized by human deeply influenced cultivated processes. Technogenic soil group are soils developing like "ex-situ" soils. The key features recognizing technogenic soil group are human-transported and altered material (HTAM = ex-situ aspect), and artefacts content. Diagnostic horizons (top and subsoil) were described as various material affected by physical-mechanical excavation, transportation and spread, mixing, and containing artefacts (the new diagnostic feature). Kultizems are differentiated by cultivated horizon(s) and Technozems by anthropogenic horizon(s). Cultivated horizons are mostly well-known described horizon in many scientific references. Anthropogenic horizons for Technozem are developed from the human-induced transported and altered material which origin is from the other ecological locality that adjacent area. Materials (or substrates) can consist of various material (natural, technogenic or their mixing) with thickness ≥ 60 cm. Artefacts are the second diagnostic feature which presence authenticates the "artificial origin" of the soil. Natural material contains ≤ 10 % artefacts; natural-technogenic 10-40 % artefacts; and technogenic ≥ 40 %. In the soil survey anthropogenic transported or altered layer is very simply recognizable in soil profile if it is compared with adjacent natural horizons. The classification problem is to define and distinguish not only artefacts in soil profile but recognize the origin of the material. The completed manual for these issues is missing. In the contribution, there graphically individual basic soil types of Antrozems and Technozems with some subtypes will be illustrated. Also the basic schema of classification units in Slovakia will be depicted.

  9. Basic Soils. Revision.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  10. Regulation of gene expression in roots of the pH-sensitive Vaccinium corymbosum and the pH-tolerant Vaccinium arboreum in response to near neutral pH stress using RNA-Seq.

    PubMed

    Payá-Milans, Miriam; Nunez, Gerardo H; Olmstead, James W; Rinehart, Timothy A; Staton, Margaret

    2017-08-07

    Blueberries are one of the few horticultural crops adapted to grow in acidic soils. Neutral to basic soil pH is detrimental to all commonly cultivated blueberry species, including Vaccinium corymbosum (VC). In contrast, the wild species V. arboreum (VA) is able to tolerate a wider range of soil pH. To assess the molecular mechanisms involved in near neutral pH stress response, plants from pH-sensitive VC (tetraploid) and pH-tolerant VA (diploid) were grown at near neutral pH 6.5 and at the preferred pH of 4.5. Transcriptome sequencing of root RNA was performed for 4 biological replications per species x pH level interaction, for a total of 16 samples. Reads were mapped to the reference genome from diploid V. corymbosum, transforming ~55% of the reads to gene counts. A quasi-likelihood F test identified differential expression due to pH stress in 337 and 4867 genes in VA and VC, respectively. Both species shared regulation of genes involved in nutrient homeostasis and cell wall metabolism. VA and VC exhibited differential regulation of signaling pathways related to abiotic/biotic stress, cellulose and lignin biosynthesis, and nutrient uptake. The specific responses in VA likely facilitate tolerance to higher soil pH. In contrast, response in VC, despite affecting a greater number of genes, is not effective overcoming the stress induced by pH. Further inspection of those genes with differential expression that are specific in VA may provide insight on the mechanisms towards tolerance.

  11. A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature

    ERIC Educational Resources Information Center

    Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.

    2008-01-01

    Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…

  12. A Generalized Model for Transport of Contaminants in Soil by Electric Fields

    PubMed Central

    Paz-Garcia, Juan M.; Baek, Kitae; Alshawabkeh, Iyad D.; Alshawabkeh, Akram N.

    2012-01-01

    A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation hat describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction of enhanced electrokinetic extraction of metals in real world applications. PMID:22242884

  13. From position-specific isotope labeling towards soil fluxomics: a novel toolbox to assess the microbial impact on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Dippold, M. A.; Kuzyakov, Y.

    2015-12-01

    Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations. Quantitative models to assess microbial group specific metabolic pathways can be generated and parameterized by this approach. The knowledge of submolecular C transformation steps and its regulating factors is essential for understanding C cycling and long-term C storage in soils.

  14. Development of a Multi-experience Approach in Introductory Soil and Vegetation Geography Courses.

    ERIC Educational Resources Information Center

    Limbird, Arthur

    1982-01-01

    Describes an introductory college level course in soil and vegetation which uses lecture, audiovisual tutorial, individualized instruction, field trips, films, and games. The course consists of three segments: basic concepts of soils, basic concepts of plants, and soil and vegetation concepts in a spatial context. (KC)

  15. Petrographic and petrological studies of lunar rocks. [Apollo 15 breccias and Russian tektites

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.

    1978-01-01

    Clasts, rind glass, matrix glass, and matrix minerals from five Apollo 15 glass-coated breccias (15255, 15286, 15465, 15466, and 15505) were studied optically and with the SEM/microprobe. Rind glass compositions differ from sample to sample, but are identical, or nearly so, to the local soil, suggesting their origin by fusion of that soil. Most breccia samples contain green or colorless glass spheres identical to the Apollo 15 green glasses. These glasses, along with other glass shards and fragments, indicate a large soil component is present in the breccias. Clast populations include basalts and gabbros containing phases highly enriched in iron, indicative of extreme differentiation or fractional crystallization. Impact melts, anorthosites, and minor amounts of ANT suite material are also present among the clasts. Tektite glasses, impact melts, and breccias from the Zhamanshin structure, USSR, were also studied. Basic tektite glasses were found to be identical in composition to impact melts from the structure, but no satisfactory parent material has been identified in the limited suite of samples available.

  16. Taxonomic and environmental soil diversity of marine terraces of Gronfjord (West Spitsbergen island)

    NASA Astrophysics Data System (ADS)

    Alekseev, Ivan; Abakumov, Evgeny

    2017-04-01

    Soil surveys in polar region are faced to problems of soil diagnostics, evolution, geography and pedogenesis with the aim to assess the actual state and future dynamics of soil cover under changing environmental conditions. This investigation is devoted to specification of taxonomic and environmental soil diversity of marine terraces of Gronfjord (Svalbard archipelago, West Spitsbergen Island). It was established 3 key plots (Grendasselva, Aldegonda rivers and marine terrace in surroundings of Barentsburg aerodrome). Soil diagnostics was carried out according to Russian soil classification system and WRB. Grendasselva river valley is characterized by numerous patterned ground elements combined with lichen-moss and moss-lichen patches with sporadic inclusions of higher plants (mostly Lusula pilosa). Soil cover is represented by Typic Cryosols on elevated sites and Histic Gleysols, Turbic Gleysols and Histosols on well-drained boggy sites. Aldegonda river valley characterizes by predominance of entic soils (soil with non-pronounced profile differentiation) on moraine material (mostly Cryic Leptosols). Vegetation is presented by sporadic plant communities comprised by Lusula pilosa and thin lichen-moss ground layer (developed only in well-moistened micro depression). Marine terrace in surroundings of Barentsburg aerodrome is covered by moss-lichen tundra with sporadic inclusions of Lusula pilosa. On the top of the terrace compressed barren circles are quite abundant. Soil catena has been established within this key plot. Soil types are represented by Typic Cryosols in watershed parts of catena, Gleysols and Histic Gleysols in accumulation positions. The active layer depths have been distinguished using vertical electrical sounding. They ranged from 80-90 cm at Grendasselva and Aldegonda river key plot to 140-150 cm at marine terrace in surroundings of Barentsburg aerodrome. Regional differences in this indicator may be explained not only by local differences in thermal regime of soil and permafrost layers, but also by different ways of anthropogenic forcing on studied key plots. Spatial differentiation of soil types within the studied area is caused mainly by relief conditions (since it determines moisture conditions and gleyzation rates especially) and parent materials. Cryogenic mass transfer, cryoturbations and degree of their manifestation in studied soils depend on active layer thickness and also varies significantly. This study was conducted in cooperation with Arctic and Antarctic Research Institute (Saint Petersburg, Russia) and supported by Russian Foundation for basic research, grant 16-34-60010, Russian presidents' grant for Young Doctors of Science № MD-3615.2015.4.

  17. Aggregate stability as an indicator of soil erodibility and soil physical quality: review and perspectives

    NASA Astrophysics Data System (ADS)

    Le Bissonnais, Yves; Chenu, Claire; Darboux, Frédéric; Duval, Odile; Legout, Cédric; Leguédois, Sophie; Gumiere, Silvio

    2010-05-01

    Aggregate breakdown due to water and rain action may cause surface crusting, slumping, a reduction of infiltration and interrill erosion. Aggregate stability determines the capacity of aggregates to resist the effects of water and rainfall. In this paper, we evaluated and reviewed the relevance of an aggregate stability measurement to characterize soil physical properties as well as to analyse the processes involved in these properties. Stability measurement assesses the sensitivity of soil aggregates to various basic disaggregation mechanisms such as slaking, differential swelling, dispersion and mechanical breakdown. It has been showed that aggregate size distributions of structural stability tests matched the size distributions of eroded aggregates under rainfall simulations and that erosion amount was well predicted using aggregate stability indexes. It means stability tests could be used to estimate both the erodibility and the size fractions that are available for crust formation and erosion processes. Several studies showed that organic matter was one of the main soil properties affecting soil stability. However, it has also been showed that aggregate stability of a given soil could vary within a year or between years. The factors controlling such changes have still to be specified. Aggregate stability appears therefore as a complex property, depending both on permanent soil characteristics and on dynamic factors such as the crusting stage, the climate and the biological activity. Despite, and may be, because of this complexity, aggregate stability seems an integrative and powerful indicator of soil physical quality. Future research efforts should look at the causes of short-term changes of structural stability, in order to fully understand all its aspects.

  18. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  19. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples.

    PubMed

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Development of remote sensing techniques capable of delineating soils as an aid to soil survey

    NASA Technical Reports Server (NTRS)

    Coleman, T. L.; Montgomery, O. L.

    1988-01-01

    Eighty-one benchmark soils from Alabama, Georgia, Florida, Tennessee, and Mississippi were evaluated to determine the feasibility of spectrally differentiating among soil categories. Relationships among spectral properties that occur between soils and within soils were examined, using discriminant analysis. Soil spectral data were obtained from air-dried samples using an Exotech Model 20C field spectroradiometer (0.37 to 2.36 microns). Differentiating among the orders, suborders, great groups, and subgroups using reflectance spectra achieved varying percentages of accuracy. Six distinct reflectance curve forms were developed from the air-dried samples based on the shape and presence or absence of adsorption bands. Iron oxide and organic matter content were the dominant soil parameters affecting the spectral characteristics for differentiating among and between these soils.

  1. Integrating microbial diversity in soil carbon dynamic models parameters

    NASA Astrophysics Data System (ADS)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten sampling time in order to follow the dynamic of residue and soil organic matter mineralization. Diversity, structure and composition of microbial communities have been characterized before incubation time. The dynamic of carbon fluxes through CO2 emissions has been modelled through a simple model. Using statistical tools, relations between parameters of the model and microbial diversity indexes and/or pedological characteristics have been developed and integrated to the model. First results show that global diversity has an impact on the models parameters. Moreover, larger fungi diversity seems to lead to larger parameters representing decomposition rates and/or carbon use efficiencies than bacterial diversity. Classically, pedological factors such as soil pH and texture must also be taken into account.

  2. Exchangeable Sodium Percentage decrease in saline sodic soil after Basic Oxygen Furnace Slag application in a lysimeter trial.

    PubMed

    Pistocchi, Chiara; Ragaglini, Giorgio; Colla, Valentina; Branca, Teresa Annunziata; Tozzini, Cristiano; Romaniello, Lea

    2017-12-01

    The Basic Oxygen Furnace Slag results from the conversion of hot metal into steel. Some properties of this slag, such as the high pH or calcium and magnesium content, makes it suitable for agricultural use as a soil amendment. Slag application to agricultural soils is allowed in some European countries, but to date there is no common regulation in the European Union. In Italy soils in coastal areas are often affected by excess sodium, which has several detrimental effects on the soil structure and crop production. In this study, carried out within an European project, the ability of the Basic Oxygen Furnace Slag to decrease the soil Exchangeable Sodium Percentage of a sodic soil was evaluated. A three-year lysimeter trial with wheat and tomato crops was carried out to assess the effects of two slag doses (D1, 3.5 g kg -1 year -1 and D, 2, 7 g kg -1 year -1 ) on exchangeable cations in comparison with unamended soil. In addition, the accumulation in the topsoil of vanadium and chromium, the two main trace metals present in the Basic Oxygen Furnace Slag, was assessed. After two years, the soil Exchangeable Sodium Percentage was reduced by 40% in D1 and 45% in D2 compared to the control. A concomitant increase in exchangeable bivalent cations (Ca ++ and Mg ++ ) was observed. We concluded that bivalent cations supplied with the slag competed with sodium for the sorption sites in the soil. The slag treatments also had a positive effect on tomato yields, which were higher than the control. Conversely the wheat yield was lower in the slag-amended soil, possibly because of the toxicity of vanadium added with the slag. This study showed that Basic Oxygen Furnace Slag decreased the Exchangeable Sodium Percentage, but precautions are needed to avoid the build up of toxic concentrations of trace metals in the soil, especially vanadium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Delineation of major soil associations using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Parks, W. L.; Bodenheimer, R. E.

    1973-01-01

    The delineation of a major soil association in the loess region of Obion County has been accomplished using ERTS-1 imagery. Channel 7 provides the clearest differentiation. The separation of other smaller soil associations in an intensive row crop agricultural area is somewhat more difficult. Soil differentiation has been accomplished visually as well as electronically using a scanning microdensitometer. Lower altitude aircraft imagery permits a more refined soil association identification and where imagery is of sufficient scale, even individual soils may be identified.

  5. [Classification of Priority Area for Soil Environmental Protection Around Water Sources: Method Proposed and Case Demonstration].

    PubMed

    Li, Lei; Wang, Tie-yu; Wang, Xiaojun; Xiao, Rong-bo; Li, Qi-feng; Peng, Chi; Han, Cun-liang

    2016-04-15

    Based on comprehensive consideration of soil environmental quality, pollution status of river, environmental vulnerability and the stress of pollution sources, a technical method was established for classification of priority area of soil environmental protection around the river-style water sources. Shunde channel as an important drinking water sources of Foshan City, Guangdong province, was studied as a case, of which the classification evaluation system was set up. In detail, several evaluation factors were selected according to the local conditions of nature, society and economy, including the pollution degree of heavy metals in soil and sediment, soil characteristics, groundwater sensitivity, vegetation coverage, the type and location of pollution sources. Data information was mainly obtained by means of field survey, sampling analysis, and remote sensing interpretation. Afterwards, Analytical Hierarchy Process (AHP) was adopted to decide the weight of each factor. The basic spatial data layers were set up respectively and overlaid based on the weighted summation assessment model in Geographical Information System (GIS), resulting in a classification map of soil environmental protection level in priority area of Shunde channel. Accordingly, the area was classified to three levels named as polluted zone, risky zone and safe zone, which respectively accounted for 6.37%, 60.90% and 32.73% of the whole study area. Polluted zone and risky zone were mainly distributed in Lecong, Longjiang and Leliu towns, with pollutants mainly resulted from the long-term development of aquaculture and the industries containing furniture, plastic constructional materials and textile and clothing. In accordance with the main pollution sources of soil, targeted and differentiated strategies were put forward. The newly established evaluation method could be referenced for the protection and sustainable utilization of soil environment around the water sources.

  6. Marginality principle

    USDA-ARS?s Scientific Manuscript database

    Soil is a fragile resource supplying many goods and services. Given the diversity of soil across the world and within a landscape, there are many different capacities among soils to provide the basic soil functions. Marginality of soils is a difficult process to define because the metrics to define ...

  7. Winter wheat: A model for the simulation of growth and yield in winter wheat

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Smika, D. E.; Black, A. L.; Willis, W. O.; Bauer, A. (Principal Investigator)

    1981-01-01

    The basic ideas and constructs for a general physical/physiological process level winter wheat simulation model are documented. It is a materials balance model which calculates daily increments of photosynthate production and respiratory losses in the crop canopy. The partitioning of the resulting dry matter to the active growing tissues in the plant each day, transpiration and the uptake of nitrogen from the soil profile are simulated. It incorporates the RHIZOS model which simulates, in two dimensions, the movement of water, roots, and soluble nutrients through the soil profile. It records the time of initiation of each of the plant organs. These phenological events are calculated from temperature functions with delays resulting from physiological stress. Stress is defined mathematically as an imbalance in the metabolite supply; demand ratio. Physiological stress is also the basis for the calculation of rates of tiller and floret abortion. Thus, tillering and head differentiation are modeled as the resulants of the two processes, morphogenesis and abortion, which may be occurring simulaneously.

  8. A Comparison of Soil Test Kits for Use in the Secondary Classroom

    ERIC Educational Resources Information Center

    Yusten, Jason; Gerber, D. Timothy; Beck, Judy

    2003-01-01

    Because soils provide water, minerals, and a medium to anchor the roots of plants, measuring the basic physical/chemical components of soils is important to maintaining healthy garden plants and agricultural crops. Historically, soil analysis has been practiced to determine fertilizer and lime applications, soil fertility, and soil improvement…

  9. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  10. Estimating Prion Adsorption Capacity of Soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS)

    PubMed Central

    Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043

  11. Estimating prion adsorption capacity of soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS).

    PubMed

    Wyckoff, A Christy; Lockwood, Krista L; Meyerett-Reid, Crystal; Michel, Brady A; Bender, Heather; VerCauteren, Kurt C; Zabel, Mark D

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200 × g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols.

  12. UNSODA UNSATURATED SOIL HYDRAULIC DATABASE USER'S MANUAL VERSION 1.0

    EPA Science Inventory

    This report contains general documentation and serves as a user manual of the UNSODA program. UNSODA is a database of unsaturated soil hydraulic properties (water retention, hydraulic conductivity, and soil water diffusivity), basic soil properties (particle-size distribution, b...

  13. REGIONAL SOIL WATER RETENTION IN THE CONTIGUOUS US: SOURCES OF VARIABILITY AND VOLCANIC SOIL EFFECTS

    EPA Science Inventory

    Water retention of mineral soil is often well predicted using algorithms (pedotransfer functions) with basic soil properties but the spatial variability of these properties has not been well characterized. A further source of uncertainty is that water retention by volcanic soils...

  14. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also related to absorption coefficients of Carbamazepin (R=0.67 and 0.68). Positive correlation was found between Trimetoprim absorption coefficients and Atenolol, Metoprolol or Carbamazepin absorption coefficients. The negative relationship was found between absorption coefficients of Sulfomethoxazol and Clarithromycin (R=-0.80). Sulfamethoxazol absorption coefficient was negatively related to pH_H2O, pH_KCL or sorption complex saturation and positively to the hydrolytic acidity or exchangeable acidity. Trimetoprim absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation or silt content and negatively to particle density or sand content. Clarithromycin absorption coefficient was positively related to pH_H2O, pH_KCL, CaCO3 content, basic cation saturation or sorption complex saturation and negatively to hydrolytic acidity or exchangeable acidity. Atenolol and Metoprolol absorption coefficients were positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation, salinity, clay content or silt content, and negatively to the particle density or sand content. Finally Carbamazepin absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity or basic cation saturation, and negatively to the particle density or sand content. Evaluated pedotransfer rules for different pharmaceuticals included different sets of soil properties. Absorption coefficients could be predicted from: the hydrolytic acidity (Sulfamethoxazol), the oxidable organic carbon content (Trimetoprim and Carbamazepin), the oxidable organic carbon content, hydrolytic acidity and cation exchange capacity (Clarithromycin), the basic cation saturation (Atenolol and Metoprolol). Acknowledgement: Authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S).

  15. Effects of Soil Data and Simulation Unit Resolution on Quantifying Changes of Soil Organic Carbon at Regional Scale with a Biogeochemical Process Model

    PubMed Central

    Zhang, Liming; Yu, Dongsheng; Shi, Xuezheng; Xu, Shengxiang; Xing, Shihe; Zhao, Yongcong

    2014-01-01

    Soil organic carbon (SOC) models were often applied to regions with high heterogeneity, but limited spatially differentiated soil information and simulation unit resolution. This study, carried out in the Tai-Lake region of China, defined the uncertainty derived from application of the DeNitrification-DeComposition (DNDC) biogeochemical model in an area with heterogeneous soil properties and different simulation units. Three different resolution soil attribute databases, a polygonal capture of mapping units at 1∶50,000 (P5), a county-based database of 1∶50,000 (C5) and county-based database of 1∶14,000,000 (C14), were used as inputs for regional DNDC simulation. The P5 and C5 databases were combined with the 1∶50,000 digital soil map, which is the most detailed soil database for the Tai-Lake region. The C14 database was combined with 1∶14,000,000 digital soil map, which is a coarse database and is often used for modeling at a national or regional scale in China. The soil polygons of P5 database and county boundaries of C5 and C14 databases were used as basic simulation units. Results project that from 1982 to 2000, total SOC change in the top layer (0–30 cm) of the 2.3 M ha of paddy soil in the Tai-Lake region was +1.48 Tg C, −3.99 Tg C and −15.38 Tg C based on P5, C5 and C14 databases, respectively. With the total SOC change as modeled with P5 inputs as the baseline, which is the advantages of using detailed, polygon-based soil dataset, the relative deviation of C5 and C14 were 368% and 1126%, respectively. The comparison illustrates that DNDC simulation is strongly influenced by choice of fundamental geographic resolution as well as input soil attribute detail. The results also indicate that improving the framework of DNDC is essential in creating accurate models of the soil carbon cycle. PMID:24523922

  16. Transduction of NeuroD2 protein induced neural cell differentiation.

    PubMed

    Noda, Tomohide; Kawamura, Ryuzo; Funabashi, Hisakage; Mie, Masayasu; Kobatake, Eiry

    2006-11-01

    NeuroD2, one of the neurospecific basic helix-loop-helix transcription factors, has the ability to induce neural differentiation in undifferentiated cells. In this paper, we show that transduction of NeuroD2 protein induced mouse neuroblastoma cell line N1E-115 into neural differentiation. NeuroD2 has two basic-rich domains, one is nuclear localization signal (NLS) and the other is basic region of basic helix-loop-helix (basic). We constructed some mutants of NeuroD2, ND2(Delta100-115) (lack of NLS), ND2(Delta123-134) (lack of basic) and ND2(Delta100-134) (lack of both NLS and basic) for transduction experiments. Using these proteins, we have shown that NLS region of NeuroD2 plays a role of protein transduction. Continuous addition of NeuroD2 protein resulted in N1E-115 cells adopting neural morphology after 4 days and Tau mRNA expression was increased. These results suggest that neural differentiation can be induced by direct addition of NeuroD2 protein.

  17. Introducing Field-Based Geologic Research Using Soil Geomorphology

    ERIC Educational Resources Information Center

    Eppes, Martha Cary

    2009-01-01

    A field-based study of soils and the factors that influence their development is a strong, broad introduction to geologic concepts and research. A course blueprint is detailed where students design and complete a semester-long field-based soil geomorphology project. Students are first taught basic soil concepts and to describe soil, sediment and…

  18. A persuasive concept of research-oriented teaching in Soil Biochemistry

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Kuzyakova, Irina

    2013-04-01

    One of the main problems of existing bachelor programs is disconnection of basic and experimental education: even during practical training the methods learned are not related to characterization of soil field experiments and observed soil processes. We introduce a multi-level research-oriented teaching system involving Bachelor students in four-semesters active study by integration the basic knowledge, experimental techniques, statistical approaches, project design and it's realization.The novelty of research-oriented teaching system is based 1) on linkage of ongoing experiment to the study of statistical methods and 2) on self-responsibility of students for interpretation of soil chemical and biochemical characteristics obtained in the very beginning of their study by analysing the set of soil samples allowing full-factorial data treatment. This experimental data set is related to specific soil stand and is used as a backbone of the teaching system accelerating the student's interest to soil studies and motivating them for application of basic knowledge from lecture courses. The multi-level system includes: 1) basic lecture course on soil biochemistry with analysis of research questions, 2) practical training course on laboratory analytics where small groups of students are responsible for analysis of soil samples related to the specific land-use/forest type/forest age; 3) training course on biotic (e.g. respiration) - abiotic (e.g. temperature, moisture, fire etc.) interactions in the same soil samples; 4) theoretical seminars where students present and make a first attempt to explain soil characteristics of various soil stands as affected by abiotic factors (first semester); 5) lecture and seminar course on soil statistics where students apply newly learned statistical methods to prove their conclusions and to find relationships between soil characteristics obtained during first semester; 6) seminar course on project design where students develop their scientific projects to study the uncertainties revealed in soil responses to abiotic factors (second and third semesters); 7) Lecture, seminar and training courses on estimation of active microbial biomass in soil where students realize their projects applying a new knowledge to the soils from the stands they are responsible for (fourth semester). Thus, during four semesters the students continuously combine the theoretical knowledge from the lectures with their own experimental experience, compare and discuss results of various groups during seminars and obtain the skills in project design. The successful application of research-oriented teaching system in University of Göttingen allowed each student the early-stage revealing knowledge gaps, accelerated their involvement in ongoing research projects, and motivated them to begin own scientific career.

  19. Do We Need a New Definition of Soil?

    NASA Astrophysics Data System (ADS)

    Arnold, Richard W.; Brevik, Eric C.

    2014-05-01

    Effective communication is really desirable to better relate with politicians, an interested lay public, and others not involved in soil science. Soil survey programs are intended to help people understand how soils function in their landscapes to make ecosystems operate better without damaging the environment and to indicate different kinds of suitability for various purposes. The properties of soils as recognized, described, and mapped at detailed scales form the basis for developing diagnostics for a systematic taxonomy that enables scientists to interact with other. In the USA mapping done at scales of 1:15,840± made it possible to define and use so-called "soil series", initially as soil map units, but later as central concepts of a set of soils which could be segregated using phases to indicate important features, primarily for farming. Detailed soil surveys published using a standard format helps maintain uniformity across the country. Soil series are recognized as the basic units of soils within the evolving hierarchical soil taxonomy and diagnostic properties are defined, measured and used to update and modify the scientific classification. Concepts like soil quality and soil function are considered to be "attributes" and not basic properties of soils. They are the collective interpretation of the combination of properties thought to be relevant for communicating important aspects of using, managing, restoring, and protecting the lands of any locality, region, or country. A famous example in the US was the land capability system with classes and subclasses of suitability for agricultural land uses. An updated soil survey in California contains over 500 pages providing details about classes of 30 different functional soil classifications for 155 map units. Over the years soil extension agents were the interpreters of the science to the lay folks and could help them form mental pictures of soils and soil landscapes locally They were the early leaders of what we think of as "field guides to natural resources" such as trees, flowers, birds, and so forth. There were not such books to identify soils but the basics have always been there waiting for proper attention, preparation, and use. At smaller scales the map units are always combinations of the basic units, and now it is possible to use some higher category classes to indicate the central concepts of larger areas. Every year soil scientists around the world observe and describe features and properties of soils in landscapes that are getting more attention than previously. Soil genesis studies help us to better understand the complexity of landscape and soil evolution. Often they indicate that current soils are commonly being formed from parts of previous soils. We do not need a new definition of soil. We do need to work on developing and testing complete interpretive classifications of soils to better meet the needs of societies today. This means "soil quality", "soil functions", and other attributes of soils require more attention, now and in the near future to permit politicians and lay publics to better understand the significance of soils to the future of civilization. "After all is said and done, more is said than done" Aesop, Greek storyteller

  20. Physical properties of forest soils

    Treesearch

    Charles H. Perry; Michael C. Amacher

    2007-01-01

    Why Are Physical Properties of the Soil Important? The soil quality indicator, when combined with other data collected by the FIA program, can indicate the current rates of soil erosion, the extent and intensity of soil compaction, and some basic physical properties of the forest floor and the top 20 cm of soil. In this report, two particular physical properties of the...

  1. Multimodeling with Pedotransfer functions. Documentation and user Manual for PTF Calculator (CalcPTF)

    USDA-ARS?s Scientific Manuscript database

    Simulations of soil water flow are often carried out with parameters estimated using pedotransfer functions (PTFs), which are empirical relationships between the soil hydraulic properties and more easily obtainable basic soil properties available, for example, from soil surveys. The use of pedotrans...

  2. Thermal Properties of Soils

    DTIC Science & Technology

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  3. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    EPA Science Inventory

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  4. Soil bed reactor work of the Environmental Research Lab. of the University of Arizona in support of the research and development of Biosphere 2

    NASA Technical Reports Server (NTRS)

    Frye, Robert

    1990-01-01

    Research at the Environmental Research Lab in support of Biosphere 2 was both basic and applied in nature. One aspect of the applied research involved the use of biological reactors for the scrubbing of trace atmospheric organic contaminants. The research involved a quantitative study of the efficiency of operation of Soil Bed Reactors (SBR) and the optimal operating conditions for contaminant removal. The basic configuration of a SBR is that air is moved through a living soil that supports a population of plants. Upon exposure to the soil, contaminants are either passively adsorbed onto the surface of soil particles, chemically transformed in the soil to usable compounds that are taken up by the plants or microbes as a metabolic energy source and converted to CO2 and water.

  5. The Soil Stack: An Interactive Computer Program Describing Basic Soil Science and Soil Degradation.

    ERIC Educational Resources Information Center

    Cattle, S. R.; And Others

    1995-01-01

    A computer program dealing with numerous aspects of soil degradation has a target audience of high school and university students (16-20 year olds), and is presented in a series of cards grouped together as stacks. Describes use of the software in Australia. (LZ)

  6. FOREST SOIL INFORMATION FOR ENVIRONMENTAL ASSESSMENT IN THE WESTERN OREGON CASCADES BASED ON LANDTYPE MAPPING

    EPA Science Inventory

    Forest health monitoring and other environmental assessments require information on the spatial distribution of basic soil physical and chemical properties. Traditional soil surveys are not available for large areas of forestland in the western US but there are some soil resour...

  7. The Influence of Basic Physical Properties of Soil on its Electrical Resistivity Value under Loose and Dense Condition

    NASA Astrophysics Data System (ADS)

    Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.

    2014-04-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  8. Determination of resilient modulus values for typical plastic soils in Wisconsin.

    DOT National Transportation Integrated Search

    2011-09-01

    "The objectives of this research are to establish a resilient modulus test results database and to develop : correlations for estimating the resilient modulus of Wisconsin fine-grained soils from basic soil properties. A : laboratory testing program ...

  9. Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata.

    PubMed

    Turner, Thomas L; von Wettberg, Eric J; Nuzhdin, Sergey V

    2008-09-11

    Serpentine soil, which is naturally high in heavy metal content and has low calcium to magnesium ratios, comprises a difficult environment for most plants. An impressive number of species are endemic to serpentine, and a wide range of non-endemic plant taxa have been shown to be locally adapted to these soils. Locating genomic polymorphisms which are differentiated between serpentine and non-serpentine populations would provide candidate loci for serpentine adaptation. We have used the Arabidopsis thaliana tiling array, which has 2.85 million probes throughout the genome, to measure genetic differentiation between populations of Arabidopsis lyrata growing on granitic soils and those growing on serpentinic soils. The significant overrepresentation of genes involved in ion transport and other functions provides a starting point for investigating the molecular basis of adaptation to soil ion content, water retention, and other ecologically and economically important variables. One gene in particular, calcium-exchanger 7, appears to be an excellent candidate gene for adaptation to low CaratioMg ratio in A. lyrata.

  10. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner.

    PubMed

    Qian, J; Jiayuan, W; Wenkai, J; Peina, W; Ansheng, Z; Shukai, S; Shafei, Z; Jun, L; Longxing, N

    2015-07-01

    To determine how basic fibroblastic growth factor (bFGF) affected the osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro and in vivo. Basic fibroblastic growth factor stimulation of DPSCs was divided into a pre-treatment period and an osteogenic differentiation period. Alizarin red quantification experiments and alkaline phosphatase activity quantification assay were performed to examine the osteogenic differentiation of DPSCs after different bFGF stimulation. Quantification reverse transcription polymerase chain reaction was used to analyze the osteogenic gene expression of DPSCs after different bFGF stimulation. In addition, DPSCs that received the 1 and 2 weeks bFGF pre-treatments as in the in vitro experiments were mineralized for 1 week and seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) pills and subcutaneously transplanted into naked mice for 2 or 3 months. The transplants were removed, sliced and stained using Modified Ponceau Trichrome Stain to observe the formation of mineralized tissue. Basic fibroblastic growth factor stimulation in the osteogenic differentiation period decreased the in vitro osteogenic differentiation ability of DPSCs. One week pre-treatment with bFGF increased the in vitro osteogenic differentiation ability of DPSCs, whereas 2 weeks pre-treatment with bFGF decreased the in vitro osteogenic differentiation ability of DPSCs. The pre-treatment period was vital for the osteogenic differentiation of DPSCs in vitro. The in vivo results were similar to the in vitro results. Basic fibroblastic growth factor affected the osteogenic differentiation of DPSCs in a treatment-dependent manner both in vitro and in vivo. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. [ZHANG Tangfa's characteristics of acupuncture academic ideology and clinical treatment of syndrome differentiation].

    PubMed

    Zhang, Hongxing

    2015-10-01

    Through collecting and sorting of works, literature and medical cases regarding professor ZHANG Tangfa, it is found that his acupuncture academic ideology and clinical treatment of syndrome differentiation can be summarized as: tracing the source and paying attention to basic theory, especially the meridian theory and conception vessel and governor vessel; focusing on acupuncture manipulation and emphasizing acupuncture basic skills; highly valuing treating spirit, acquiring and maintaining needling sensation; underlining "three differentiations" that is consisted of syndrome differentiation, disease differentiation and meridian differentiation to guide the clinical prescriptions of acupoints; exploring and ingenious use of scalp acupuncture; being concerned on research of difficult and complicated diseases; advocating comparative studies to optimize the clinical treatment plan; proposing the combination of Chinese and western medicine, including diagnosis, treatment and basic theory, to improve the clinical therapeutic effects of acupuncture.

  12. Assessment of the postagrogenic transformation of soddy-podzolic soils: Cartographic and analytic support

    NASA Astrophysics Data System (ADS)

    Sorokina, N. P.; Kozlov, D. N.; Kuznetsova, I. V.

    2013-10-01

    The results of experimental studies of the postagrogenic transformation of loamy soddy-podzolic soils on the southern slope of the Klin-Dmitrov Moraine Ridge are discussed. A chronosequence of soils (arable soils (cropland)-soils under fallow with meadow vegetation-soils under secondary forests of different ages-soils under a conventionally initial native forest) was examined, and the stages of the postagrogenic transformation of the automorphic soddy-podzolic soils were identified. The differentiation of the former plow horizon into the A1 and A1A2 horizons (according to the differences in the humus content, texture, and acidity) served as the major criterion of the soil transformation. A stage of textural differentiation with clay depletion from the uppermost layer was identified in the soils of the 20- to 60-year-old fallows. The specificity of the postagrogenic transformation of the soils on the slopes was demonstrated. From the methodological point of view, it was important to differentiate between the chronosequences of automorphic and semihydromorphic soils of the leveled interfluves and the soils of the slopes. For this purpose, a series of maps reflecting the history of the land use and the soil cover pattern was analyzed. The cartographic model included the attribute data of the soil surveys, the cartographic sources (a series of historical maps of the land use, topographic maps, remote sensing data, and a digital elevation model), and two base maps: (a) the integral map of the land use and (b) the map of the soil combinations with the separation of the zonal automorphic, semihydromorphic, and erosional soil combinations. This scheme served as a matrix for the organization and analysis of the already available and new materials.

  13. Soil catenas on denudation plains in the forest-tundra and northern taiga zones of the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Urusevskaya, I. S.

    2017-07-01

    Morphogenetic features of soils of two catenas developed on sandy to loamy sandy moraine deposits in the forest-tundra and northern taiga zones on denudation plains of the Kola Peninsula are discussed. It is shown that these catenas are similar with respect to the major directions of soil formation, regularities of soil distribution by the elements of mesotopography, and the factors of the soil cover differentiation. The differences between the catenas are of quantitative character and are related to the intensities of manifestation of the particular processes and features. Both catenas are characterized by the pronounced differentiation of soils with respect to their moistening with hydromorphic peat bog soils in the subordinate positions and Al-Fe-humus podzols in the automorphic positions.

  14. Wildfire effects on C stocks in mountain soils

    NASA Astrophysics Data System (ADS)

    Menéndez-Duarte, R.; Fernández, S.; Santin, C.; Gaspar, L.; Navas, A.

    2012-04-01

    Wildfire is the main perturbation agent in mountain soils of the Cantabrian Range (NW of Spain). Fire affects soil organic carbon (SOC) quality and quantity, both directly (e.g. combustion of organic matter and pyrogenic carbon production) and indirectly (e.g. increase of soil erosion and change of the vegetation cover). After fire, the organic fraction of the soil is expected to be enriched with charred compounds (black carbon, biochar or pyrogenic carbon-PyC). PyC mainly contributes to the recalcitrant C pool and therefore to the medium- and long-term C sequestration in soils. Moreover, recurrent fires in these Atlantic mountain ecosystems cause the conversion of the vegetation cover from forest to heathland, altering C transfer from biomass to soil. On the other hand, in this steep terrain, fire enhances soil erosion by creeping and therefore soil loss and the consequent loss of SOC. Thus, a basic but fundamental question arises: which is the net variation of SOC stocks in these mountain soils due to wildfires? To answer this, soils were sampled in a typical quartzite steep mountain in the Somiedo Natural Park (NW of Spain): i) a transect in the South hillside, prone to fires and with an intense fire history, where the vegetation cover is mostly heather and gorse; and ii) a transect in the North hillside, less affected by fire and with a well preserved vegetation cover (beech and oak forest). Samples of the surface soil (0-5 cm) and the whole soil profile were taken and, bulk density and SOC content were determined. On average fire-affected soils in the South transect have a lower soil depth (12.0 cm) and lower bulk density (0.5 g/cm3) than the North transect soils (17.6 cm depth and 1.0 g/cm3 bulk density) but they have also SOC concentrations six times higher than their unburned counterparts (147.5 and 22.8 mg C/g soil, respectively). When considering SOC stocks, differences are not as pronounced but, even so, fire affected soils content twice as much SOC (7.4 kg /m2) than the unburned soils (3.2 kg SOC/m2). Characterisation of SOC is being carried out by thermogravimetry-differential scanning calorimetry to identify the qualitative differences of SOC in burned and unburned soils and to quantify the proportion of PyC, which may play a main role in the potential of these mountain soils as long-term C reservoirs.

  15. Improved δ(13)C analysis of amino sugars in soil by ion chromatography-oxidation-isotope ratio mass spectrometry.

    PubMed

    Dippold, Michaela A; Boesel, Stefanie; Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno

    2014-03-30

    Amino sugars build up microbial cell walls and are important components of soil organic matter. To evaluate their sources and turnover, δ(13)C analysis of soil-derived amino sugars by liquid chromatography was recently suggested. However, amino sugar δ(13)C determination remains challenging due to (1) a strong matrix effect, (2) CO2 -binding by alkaline eluents, and (3) strongly different chromatographic behavior and concentrations of basic and acidic amino sugars. To overcome these difficulties we established an ion chromatography-oxidation-isotope ratio mass spectrometry method to improve and facilitate soil amino sugar analysis. After acid hydrolysis of soil samples, the extract was purified from salts and other components impeding chromatographic resolution. The amino sugar concentrations and δ(13)C values were determined by coupling an ion chromatograph to an isotope ratio mass spectrometer. The accuracy and precision of quantification and δ(13)C determination were assessed. Internal standards enabled correction for losses during analysis, with a relative standard deviation <6%. The higher magnitude peaks of basic than of acidic amino sugars required an amount-dependent correction of δ(13)C values. This correction improved the accuracy of the determination of δ(13)C values to <1.5‰ and the precision to <0.5‰ for basic and acidic amino sugars in a single run. This method enables parallel quantification and δ(13)C determination of basic and acidic amino sugars in a single chromatogram due to the advantages of coupling an ion chromatograph to the isotope ratio mass spectrometer. Small adjustments of sample amount and injection volume are necessary to optimize precision and accuracy for individual soils. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Scientific background for soil monitoring on National Forests and Rangelands: workshop proceedings; April 29-30, 2008; Denver, CO

    Treesearch

    Deborah Page-Dumroese; Daniel Neary; Carl Trettin

    2010-01-01

    This workshop was developed to determine the state-of-the-science for soil monitoring on National Forests and Rangelands. We asked international experts in the field of soil monitoring, soil monitoring indicators, and basic forest soil properties to describe the limits of our knowledge and the ongoing studies that are providing new information. This workshop and the...

  17. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    ERIC Educational Resources Information Center

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  18. Soil quality: Some basic considerations and case studies

    Treesearch

    Dale W. Johnson

    2010-01-01

    Some fundamental properties of soils that pertain to the concept of soil quality are discussed including a discussion of what can and cannot be changed with management.Case studies showing the effects of N-fixing vegetation and N-enrichment effects on invasive species are provided to illustrate the complications that may arise from applying one soil quality standard to...

  19. Properties of 91 Southern Soil Series

    Treesearch

    Basil D. Doss; W. M. Broadfoot

    1956-01-01

    From June 1954 to July 1955 the Vicksburg Infiltration Project collected and analyzed samples of 91 soil series in 7 southern states. The purpose was to supply the U. S. Army with information needed for specialized research on military trafficability, but the basic data on soil properties should be of interest to soil scientists generally. The 91 series may be...

  20. Spatial distribrrtion of soil carbon in southern New England hardwood forest landscapes

    Treesearch

    Aletta A. Davis; Mark H. Stolt; Jana E. Compton

    2004-01-01

    Understanding soil organic C (SOC) spatial variability is critical when developing C budgets, explaining the cause and effects of climate change, and for basic ecosystem characterization. We investigated delineations of four soil series to elucidate teh factors that affect the size, distribution, and varibility of SOC pools from horizon to landscape scales. These soils...

  1. Land Application of Wastes: An Educational Program. Soil as a Treatment Medium - Module 3, Objectives, Script and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…

  2. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  3. Soil Science. III-A-1 to III-D-4. Basic V.A.I.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This packet contains four units of informational materials and transparency masters, with accompanying scripts, for teachers to use in a soil science course in vocational agriculture. Designed especially for use in Texas, the first unit discusses the importance of soils. In the second unit, the nature and properties of soils are discussed,…

  4. An experimental study on stabilization of Pekan clay using polyethylene and polypropylene

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli; Mender, Fatin Nabilah

    2017-10-01

    Many countries are expressing concern over the growing issues of polyethylene terephthalate (PET) bottles and polypropylene (PP) products made by the household sector. The rapid increase in the generation of plastic waste all around the world is due to the economic development and population growth. PP is the world's second-most widely produced synthetic plastic, after polyethylene. Statistics show that nearly 50% of the municipal solid waste in Malaysia comes from the institutional, industrial, residential, and construction waste. This paper presents the results of an investigation on the utilisation of fibres as products of PET bottles and PP products in order to improve the engineering properties of clay soil in Pekan. The soil samples were taken from Kampung Tanjung Medang, Pekan, Pahang. The basic properties of the clay soil were determined as follows; optimum moisture content: 32.5%, maximum dry density: 13.43 kN/m3, specific gravity: 2.51, liquid limit: 74.67%, plastic limit: 45.98%, and plasticity index: 28.69%. This investigation concentrates on the shear strength of the reinforced clay soils with PET and PP in random orientation. The reinforced soil samples were subjected to unconfined compression test (UCT) to differentiate their shear strength with that of the unreinforced soil. The tests found that the waste fibres (PET and PP) improved the strength properties of the Pekan clayey soils. The unconfined compressive strength (UCS) value increased with the increasing percentage of PET fibre and reached the optimum content at 10% reinforcement, where it showed the highest improvement of 365 kN/m2 from 325 kN/m2 and depleted when the optimum content reached 20% reinforcement. For PP fibre, the reinforced soil showed the highest UCS at 20% reinforcement with the improvement of 367 kN/m2. The study concluded that the PET and PP fibres can be utilised successfully as reinforcement materials for the stabilisation of clayey soils. The use of these waste compounds as alternative materials for clay soil stabilisation is reasonable and cost effective since they are constantly available.

  5. Differential thermal analysis of lunar soil simulant

    NASA Technical Reports Server (NTRS)

    Tucker, D.; Setzer, A.

    1991-01-01

    Differential thermal analysis of a lunar soil simulant, 'Minnesota Lunar Simulant-1' (MLS-1) was performed. The MLS-1 was tested in as-received form (in glass form) and with another silica. The silica addition was seen to depress nucleation events which lead to a better glass former.

  6. Genomic Analysis of Differentiation between Soil Types Reveals Candidate Genes for Local Adaptation in Arabidopsis lyrata

    PubMed Central

    Turner, Thomas L.; von Wettberg, Eric J.; Nuzhdin, Sergey V.

    2008-01-01

    Serpentine soil, which is naturally high in heavy metal content and has low calcium to magnesium ratios, comprises a difficult environment for most plants. An impressive number of species are endemic to serpentine, and a wide range of non-endemic plant taxa have been shown to be locally adapted to these soils. Locating genomic polymorphisms which are differentiated between serpentine and non-serpentine populations would provide candidate loci for serpentine adaptation. We have used the Arabidopsis thaliana tiling array, which has 2.85 million probes throughout the genome, to measure genetic differentiation between populations of Arabidopsis lyrata growing on granitic soils and those growing on serpentinic soils. The significant overrepresentation of genes involved in ion transport and other functions provides a starting point for investigating the molecular basis of adaptation to soil ion content, water retention, and other ecologically and economically important variables. One gene in particular, calcium-exchanger 7, appears to be an excellent candidate gene for adaptation to low Ca∶Mg ratio in A. lyrata. PMID:18784841

  7. Hydraulic and thermal soil Parameter combined with TEM data at quaternary coastal regions

    NASA Astrophysics Data System (ADS)

    Grabowski, Ima; Kirsch, Reinhard; Scheer, Wolfgang

    2014-05-01

    In order to generate a more efficient method of planning and dimensioning small- and medium sized geothermal power plants at quaternary subsurface a basic approach has been attempted. Within the EU-project CLIWAT, the coastal region of Denmark, Germany, Netherlands and Belgium has been investigated and air borne electro magnetic data was collected. In this work the regional focus was put on the isle of Föhr. To describe the subsurface with relevant parameters one need the information from drillings and geophysical well logging data. The approach to minimize costs and use existing data from state agencies led the investigation to the combination of specific electrical resistivity data and hydraulic and thermal conductivity. We worked out a basic soil/hydraulic conductivity statistic for the isle of Föhr by gathering all well logging data from the island and sorted the existing soil materials to associated kf -values. We combined specific electrical resistivity with hydraulic soil properties to generate thermal conductivity values by extracting porosity. Until now we generated a set of rough data for kf - values and thermal conductivity. The air borne TEM data sets are reliable up to 150 m below surface, depending on the conductivity of the layers. So we can suppose the same for the differentiated parameters. Since this is a very rough statistic of kf -values, further more investigation has to be made. Although the close connection to each area of investigation either over existing logging data or laboratory soil property values will remain necessary. Literature: Ahmed S, de Marsily G, Talbot A (1988): Combined Use of Hydraulic and Electrical Properties of an Aquifer in a Geostatistical Estimation of Transmissivity. - Groundwater, vol. 26 (1) Burschil T, Scheer W, Wiederhold H, Kirsch R (2012): Groundwater situation on a glacially affected barrier island. Submitted to Hydrology and Earth System Sciences - an Interactive Open Access Journal of the European Geosciences Union Burval Working Group (2006) Groundwater Resources in buried valleys- a challenge for Geosciences. - Leibniz-Institut für Angewandte Geophysik, Hannover Scheer W, König B, Steinmann F (2012): Die Grundwasserverhältnisse von Föhr. - In: Der Untergrund von Föhr: Geologie, Grundwasser und Erdwärme - Ergebnisse des INTERREG-Projektes CLIWAT. - Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, Flintbek

  8. Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun

    2018-02-01

    Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.

  9. Effects of anthropogenic particles on the chemical and geophysical properties of urban soils, Detroit, Michigan

    NASA Astrophysics Data System (ADS)

    Orlicki, Katharine M.

    There is a great need in many cities for a better quality of urban soil maps. This is due to the increasing interest in repurposing vacant land for urban redevelopment, agriculture, and green infrastructure. Mapping vacant urban land in Detroit can be very difficult because anthropogenic soils were often highly variable and frequently contained demolition debris (such as brick), making it difficult to use a hand auger. This study was undertaken in Detroit, MI to create a more efficient way to map urban soils based on their geophysical and chemical properties. This will make the mapping process faster, less labor intensive, and therefore more cost effective. Optical and chemical criteria for the identification and classification of microartifacts (MAs) were made from a set of reference artifacts of a known origin. These MAs were then observed and tested in urban topsoil samples from sites in Detroit, Michigan that represent three different land use types (residential demolition, fly ash-impacted, and industrial). Optical analyses, SEM, EDAX, and XRD showed that reference MAs may be classified into five basic compositional types (carbonaceous, calcareous, siliceous, ferruginous and miscellaneous). Reference MAs were generally distinguishable using optical microscopy by color, luster, fracture and microtexture. MAs that were more difficult to classify were further differentiable when using SEM, EDAX, and XRD. MAs were found in all of the anthropogenic soils studied, but were highly variable. All three study sites had concentrations coal-related wastes were the most common types of MAs observed and often included coal, ash (microspheres, microagglomerate), cinders, and burnt shale. MAs derived from waste building materials such as brick, mortar, and glass, were typically found on residential demolition sites. Manufacturing waste MAs, which included iron-making slag and coked coal were commonly observed on industrial sites. Fly ash-impacted sites were composed of only microspheres and microagglomerate that were concentrated within the soils by airborne deposition, making it widespread. These results support the hypothesis that MA assemblages of distinct composition vary with land use. Therefore, it seems likely that magnetic susceptibility surveying and other geophysical methods will prove effective for mapping anthropogenic soils on vacant urban land. Anthropogenic soils and MAs were assessed for pH, electrical conductivity (EC), and magnetic susceptibility (MS). The A horizons of urban soils at residential demolition, industrial-impacted, and fly ash-impacted sites were found to be distinguishable from those of native soils. Anthropogenic soils were higher by one pH unit or more than the background level, had an EC value two to three times the background level, and had MS measurements up to 20 times greater than the background level. The analysis of reference artifacts suggested that the elevated pH of anthropogenic soils was caused by calcareous building material wastes, the elevated EC were the result of both calcareous and ferruginous wastes, and elevated MS were attributable to ferromagnetic materials. Anthropogenic soils collected at residential demolition sites were differentiable by EC, whereas those at collected form industrial sites were distinguishable using MS. Therefore, anthropogenic soils and native soils have a unique chemical and geophysical signature which can be highly dependent on the concentration of MAs. This suggests that EC and MS surveying methods may be used to remotely sense and map urban soils more effectively than using traditional methods alone.

  10. Relationships between basic soils-engineering equations and basic ground-water flow equations

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1980-01-01

    The many varied though related terms developed by ground-water hydrologists and by soils engineers are useful to each discipline, but their differences in terminology hinder the use of related information in interdisciplinary studies. Equations for the Terzaghi theory of consolidation and equations for ground-water flow are identical under specific conditions. A combination of the two sets of equations relates porosity to void ratio and relates the modulus of elasticity to the coefficient of compressibility, coefficient of volume compressibility, compression index, coefficient of consolidation, specific storage, and ultimate compaction. Also, transient ground-water flow is related to coefficient of consolidation, rate of soil compaction, and hydraulic conductivity. Examples show that soils-engineering data and concepts are useful to solution of problems in ground-water hydrology.

  11. [Soil humus differentiation and correlation with other soil biochemical properties in pure forests in semi-arid low-hilly area of Inner Mongolia, China].

    PubMed

    Zhang, Xiao-Xi; Liu, Zeng-Wen; Bing, Yuan-Hao; Zhu, Bo-Chao; Huang, Liang-Jia

    2014-10-01

    Whether the content and composition of soil humus in pure forest change due to its simple component of litter and specificity of single-species dominant community is a key problem for forest sustainable management. In this study, soils from 6 kind of pure forests in semi-arid low-hilly area of Inner Mongolia were collected and their humus and other biochemical properties were measured to investigate the differentiation of soil humus and the impact factors. The results showed that the soil of Picea asperata and Betula platyphylla pure forests had the highest contents of humus and better condensation degrees and stabilities, followed by that of Populus simonii, Larix principis-rupprechtii and Ulmus pumila pure forests, while the soil of Pinus tabuliformis pure forest had the lowest content of humus, condensation degree and stability. There were significant positive correlations between soil microorganism biomass, activity of phosphatase and the content and stability of soil humus. In contrast, the soil peroxidate, dehydrogenase activity and soil humus content showed significant negative correlations with each other. Furthermore, the enhancement of dehydrogenase activity might decrease the stability of humus. There were significant positive correlations between available N and the content and stability of soil humus, but total Cu, Zn and Fe had negative correlations with them, and total Cu and Fe might reduce the stability of humus as well. The particularity of pure forest environment and litter properties might be the key inducement to soil humus differentiation, thus reforming the pure forest through mixing with other tree species or planting understory vegetation would be the fundamental way to improve the soil humus composition and stability.

  12. DEMONSTRATION BULLETIN: BESCORP SOIL WASHING SYSTEM ALASKAN BATTERY ENTERPRISES SITE - BRICE ENVIRONMENTAL SERVICES CORPORATION

    EPA Science Inventory

    The BESCORP Soil Washing System is an aqueous volume reduction system that utilizes trommel agitation, high-pressure washing, sizing, and density separation to remove lead, lead compounds, and battery casing chips from soil contaminated by broken lead batteries. The basic concept...

  13. Raising awareness about soil diversity: The Education Programme of the Earth Sciences Museum Alexis Dorofeef, Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    Muggler, C.

    2012-04-01

    Soils are usually overlooked as part of geodiversity and geoheritage. Increasing the public awareness about soils is a key issue in our changing world. Furthering public awareness involves developing a better understanding of soils, their functions, importance for environment and society, as well as a personal and collective commitment in the stewardship and protection from degradation and loss. This presentation describes the Soil and Environmental Education and Outreach Programme of the Alexis Dorofeef Earth Sciences Museum of the Soil University Department in Viçosa, Brazil. The program has developed different activities linked to formal and non formal education and its main audience are basic education teachers, school children and the general public. The museum acts in different and diverse fronts, supported on a pedagogical background based on Paulo Freire's educational approach, the social-constructivism, which considers social inclusion, knowledge building, horizontal learning and collective action. In its early years, the museum was mainly focused on formal education and this changed with time as our action was reshaped into a broader outreach action stimulated by the new Brazilian government. The museum's indoor activities consist of accompanied thematic visits, hands on experiments, basic school teacher's courses, development of learning materials and methods and professional training. Beyond of the Museum space local interdisciplinary projects with basic education schools are run along with temporary expositions coupled with short courses and workshops with farmers and social movements. We present the results of the changes in awareness about soils among three main groups: school teachers, basic education children and general public. After 10 years of activities, the Soil Education action of the Museum is recognized and well spread among school communities in the town and its neighbourhood. Many school teachers approach the contents and methodologies they learned at the museum, as well as many of the students that did their practical's at the museum do. As a side result, the Soil Education Program triggered the broadening of the museum themes into three main conceptual lines: Earth's dynamics, Natural resources: use and environmental impacts and, Soils: know to conserve. Today the Museum is spreading its knowledge about soil throughout the region, by means of temporary expositions and educational activities. Despite its achievements, the Museum still faces the challenge to broaden its action, reaching different and wider publics, making both the idea of visiting a museum and the knowledge about soils more popular.

  14. DIFFERENTIATION IN N15 UPTAKE AND THE ORGANIZATION OF AN ARCTIC TUNDRA PLANT COMMUNITY

    EPA Science Inventory

    We used N15 soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most abundant species were well differentiated with respect to...

  15. Resource Legacies of Organic and Conventional Management Differentiate Soil Microbial Carbon Use

    PubMed Central

    Arcand, Melissa M.; Levy-Booth, David J.; Helgason, Bobbi L.

    2017-01-01

    Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with 13C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.5 times higher available phosphorus, 5% more nitrate, and 36% more dissolved organic C. The two management systems harbored distinct glucose-utilizing populations of Proteobacteria and Actinobacteria, with a higher Proteobacteria:Actinobacteria ratio (2.4 vs. 0.7) in conventional soils. Organically managed soils also harbored notable activity of Firmicutes. Thermodynamic efficiency indices were similar between soils, indicating that glucose was metabolized at similar energetic cost. However, differentially abundant glucose utilizers in organically managed soils were positively correlated with soil organic matter (SOM) priming and negatively correlated to soil nutrient and carbon availability, respiration, and heat production. These correlation patterns were strongly reversed in the conventionally managed soils indicating clear differentiation of microbial functioning related to soil resource availability. Fresh C addition caused proportionally more priming of SOM decomposition (57 vs. 51%) in organically managed soils likely due to mineralization of organic nutrients to satisfy microbial demands during glucose utilization in these more resource deprived soils. The additional heat released from SOM oxidation may explain the similar community level thermodynamic efficiencies between management systems. Restoring fertility to soils with a legacy of nutrient limitation requires a balanced supply of both nutrients and energy to protect stable SOM from microbial degradation. These results highlight the need to consider managing C for the energy it provides to ıcritical biological processes that underpin soil health. PMID:29230199

  16. Basic Understanding of Earth Tunneling by Melting : Volume 1. Basic Physical Principles.

    DOT National Transportation Integrated Search

    1974-07-01

    A novel technique, which employs the melting of rocks and soils as a means of excavating or tunneling while simultaneously generating a glass tunnel lining and/or primary support, was studied. The object of the study was to produce a good basic under...

  17. Ordinary differential equations.

    PubMed

    Lebl, Jiří

    2013-01-01

    In this chapter we provide an overview of the basic theory of ordinary differential equations (ODE). We give the basics of analytical methods for their solutions and also review numerical methods. The chapter should serve as a primer for the basic application of ODEs and systems of ODEs in practice. As an example, we work out the equations arising in Michaelis-Menten kinetics and give a short introduction to using Matlab for their numerical solution.

  18. Exploring the multiplicity of soil-human interactions: organic carbon content, agro-forest landscapes and the Italian local communities.

    PubMed

    Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta

    2015-05-01

    Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink.

  19. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  20. Property-tax incentives for implementing soil-conservation programs under constitutional taxing limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, D.T.; Silver, M.B.

    1982-01-01

    This article describes how property-tax incentives can be used to implement soil-conservation programs on agricultural and open-space lands under the differential-assessment statutes and other exceptions to constitutional limitations on taxation powers. The article describes restrictions imposed on taxing powers by the constitutional uniformity clauses and methods for circumventing those limitations; various property-tax incentives available for conservation programs; types of differential or use-value assessments providing property-tax relief for farm, forest, and open-space land preservation; eligibility of lands for differential assessments; methods available to landowners for participation in differential assessments; and determination of value under differential assessment. The article next details howmore » each of the three primary types of differential or use-value assessment statutes for farm, forest, and open-space land preservation provides exceptions to the uniformity clauses for property tax incentives to implement soil-conservation programs. Other methods available for providing exceptions to the uniformity clauses to permit property-tax incentives are also described for each of the three states. Each of these states has statutes giving favorable tax treatment to certain types of property, such as pollution-abatement equipment, alternative energy-producing devices, and even country clubs. These statutes can be used as examples of finding a constitutional method for providing favorabe tax treatment to promote participation in soil-conservation programs.« less

  1. Fingerprints for main varieties of argentinean wines: terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics.

    PubMed

    Di Paola-Naranjo, Romina D; Baroni, Maria V; Podio, Natalia S; Rubinstein, Hector R; Fabani, Maria P; Badini, Raul G; Inga, Marcela; Ostera, Hector A; Cagnoni, Mariana; Gallegos, Ernesto; Gautier, Eduardo; Peral-Garcia, Pilar; Hoogewerff, Jurian; Wunderlin, Daniel A

    2011-07-27

    Our main goal was to investigate if robust chemical fingerprints could be developed for three Argentinean red wines based on organic, inorganic, and isotopic patterns, in relation to the regional soil composition. Soils and wines from three regions (Mendoza, San Juan, and Córdoba) and three varieties (Cabernet Sauvignon, Malbec, and Syrah) were collected. The phenolic profile was determined by HPLC-MS/MS and multielemental composition by ICP-MS; (87)Sr/(86)Sr and δ(13)C were determined by TIMS and IRMS, respectively. Chemometrics allowed robust differentiation between regions, wine varieties, and the same variety from different regions. Among phenolic compounds, resveratrol concentration was the most useful marker for wine differentiation, whereas Mg, K/Rb, Ca/Sr, and (87)Sr/(86)Sr were the main inorganic and isotopic parameters selected. Generalized Procrustes analysis (GPA) using two studied matrices (wine and soil) shows consensus between them and clear differences between studied areas. Finally, we applied a canonical correlation analysis, demonstrating significant correlation (r = 0.99; p < 0.001) between soil and wine composition. To our knowledge this is the first report combining independent variables, constructing a fingerprint including elemental composition, isotopic, and polyphenol patterns to differentiate wines, matching part of this fingerprint with the soil provenance.

  2. Prediction of Soil pH Hyperspectral Spectrum in Guanzhong Area of Shaanxi Province Based on PLS

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Cheng, Jie; Tong, Wei; Wei, Jing

    2017-12-01

    The soil pH of Fufeng County, Yangling County and Wugong County in Shaanxi Province was studied. The spectral reflectance was measured by ASD Field Spec HR portable terrain spectrum, and its spectral characteristics were analyzed. The first deviation of the original spectral reflectance of the soil, the second deviation, the logarithm of the reciprocal logarithm, the first order differential of the reciprocal logarithm and the second order differential of the reciprocal logarithm were used to establish the soil pH Spectral prediction model. The results showed that the correlation between the reflectance spectra after SNV pre-treatment and the soil pH was significantly improved. The optimal prediction model of soil pH established by partial least squares method was a prediction model based on the first order differential of the reciprocal logarithm of spectral reflectance. The principal component factor was 10, the decision coefficient Rc2 = 0.9959, the model root means square error RMSEC = 0.0076, the correction deviation SEC = 0.0077; the verification decision coefficient Rv2 = 0.9893, the predicted root mean square error RMSEP = 0.0157, The deviation of SEP = 0.0160, the model was stable, the fitting ability and the prediction ability were high, and the soil pH can be measured quickly.

  3. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by vineyard management

    USDA-ARS?s Scientific Manuscript database

    Here, we demonstrate how vineyard management practices influence shifts in soil resources, which in turn affects shifts in soil-borne bacterial communities. The objective is to determine the hierarchical effects of management practices, soil attributes and location factors on the structure of soil-b...

  4. The use of soil electrical conductivity to investigate soil homogeneity in Story County, Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture, environmental applications, and land use planning needs have led to calls for more detailed soil maps. A remote sensing technique that can differentiate soils with a high degree of accuracy would be ideal for soil survey purposes. One technique that has shown promise in Iowa i...

  5. Molecular and microscopic insights into the persistence of soil organic matter in a red pine rhizosphere

    USDA-ARS?s Scientific Manuscript database

    Microbially-derived carbon inputs to soils play an important role in stabilization of soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is lacking. This study aimed to investigat...

  6. Forest Soil Disturbance Monitoring Protocol: Volume II: Supplementary methods, statistics, and data collection

    Treesearch

    Deborah S. Page-Dumroese; Ann M. Abbott; Thomas M. Rice

    2009-01-01

    Volume I and volume II of the Forest Soil Disturbance Monitoring Protocol (FSDMP) provide information for a wide range of users, including technicians, field crew leaders, private landowners, land managers, forest professionals, and researchers. Volume I: Rapid Assessment includes the basic methods for establishing forest soil monitoring transects and consistently...

  7. Measuring soil and tree temperatures during prescribed fires with thermocouple probes

    Treesearch

    Stephen S. Sackett; Sally M. Haase

    1992-01-01

    Soil and cambium temperatures must be known to ascertain certain effects of prescribed fires on trees. Thermocouple-based systems were devised for measuring soil and cambium temperatures during prescribed fires. The systems, which incorporate both commercially available and custom components, perform three basic functions: data collection, data retrieval, and data...

  8. Application of multispectral remote sensing to soil survey research in Indiana

    NASA Technical Reports Server (NTRS)

    Zachary, A. L.; Cipra, J. E.; Diderickson, R. I.; Kristof, S. J.; Baumgardner, M. F.

    1972-01-01

    Computer-implemented mappings based on spectral properties of bare soil surfaces were compared with mapping units of interest to soil surveyors. Some soil types could be differentiated by their spectral properties. In other cases, soils with similar surface colors and textures could not be distinguished spectrally. The spectral maps seemed useful for delineating boundaries between soils in many cases.

  9. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem.

    PubMed

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-03-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.

  10. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    PubMed Central

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  11. THE DIRT ON SOILS

    EPA Science Inventory

    This keynote presentation will provide basic information regarding the physical, chemical, and biological importance of soils to 50 second grade teachers within the Cincinnati Public School System as part of a Hamilton County Department of Environmenatl Services Sois Workshop.

  12. [Soil macropore characteristics under typical vegetations in Liupan Mountains].

    PubMed

    Shi, Zhong-Jie; Wang, Yan-Hui; Xu, Li-Hong; Yu, Peng-Tao; Xiong, Wei; Xu, Da-Ping

    2007-12-01

    The radius and density of soil macropores under eight typical vegetations in Liupan Mountains of Northwest China were studied by using water breakthrough curves and Poiseuille equation. The results indicated that the radii of soil macropores ranged from 0.4 mm to 2.3 mm, and the weighted mean radii ranged from 0.57 mm to 1.21 mm, with a mean of 0.89 mm. The density of soil macropores ranged from 57 individuals per dm2 to 1 117 individuals per dm2, with a mean of 408 individuals per dm2. The macropores with radii bigger than 1.4 mm had a lower density, accounting for only 6.86% of the total. The area proportion of soil macropores ranged from 0.76% to 31.26%, with a mean of 10.82%. In study area, the density of soil macropores was higher in broadleaf forest than in coniferous forest, but basically the same in sub-alpine meadow and in broadleaf forest, as well as in shrubs and in coniferous forest. As for the area proportion of soil macropores, it was also higher in broadleaf forest than in coniferous forest, but basically the same in shrubs and in broadleaf forest soil, as well as in sub-alpine meadow and in coniferous forest.

  13. Ponderosa pine progenies: differential response to ultramafic and granitic soils

    Treesearch

    James L. Jenkinson

    1974-01-01

    Progenies of nine ponderosa pines native to one granitic and several ultramafic soils in the northern Sierra Nevada were grown on both soil types in a greenhouse. The progenies differed markedly in first-year growth on infertile ultramafic soils, but not on a fertile granitic soil. Growth differences between progenies were primarily related to differences in calcium...

  14. Transformation and contamination of soils in iron ore mining areas (a review)

    NASA Astrophysics Data System (ADS)

    Zamotaev, I. V.; Ivanov, I. V.; Mikheev, P. V.; Belobrov, V. P.

    2017-03-01

    Current concepts of soil transformation and contamination in iron ore mining areas have been reviewed. Changes of soils and ecosystems in the mining areas are among the largest-scale impacts of economic activity on the nature. Regularities in the radial differentiation, spatial distribution, and accumulation of heavy metals in soils of different natural zones are analyzed. The effects of mining technogenesis and gas-dust emissions from enterprises on soil microbial communities and fauna are considered. In zones of longterm atmotechnogenic impact of mining and processing plants, the stable state of ecosystems is lost and/or a new technoecosystem different from the natural one, with own microbial cenosis, is formed, where communities of soil organisms are in the stress state. In the ore mining regions, embriozems are formed, which pass through specific stages of technogenically-determined development, as well as technosols, chemozems, and technogenic surface formations with variable material compositions and properties. Technogenic soils and soil-like bodies form a soil cover differing from the initial one, whose complexity and contrast are not related to the natural factors of differentiation.

  15. Microbial communities in carbonate rocks-from soil via groundwater to rocks.

    PubMed

    Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2017-09-01

    Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Visual Aid for Teaching Basic Concepts of Soil-Water Physics.

    ERIC Educational Resources Information Center

    Eshel, Amram

    1997-01-01

    Presents a visual aid designed to generate an image of water movement among soil particles using an overhead projector to teach the physical phenomena related to water status and water movement in the soil. Utilizes a base plate of thin transparent plastic, opaque plastic sheets, a plate of glass, and a colored aqueous solution. (AIM)

  17. Materials Testing and Quality Control Soils, 3-28. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This instructional package on material testing and quality control of soils has been adapted from military curriculum materials for use in technical and vocational education programs. This short course presents basic information on soils as well as exploration, field identification, and laboratory procedures that will enable students completing…

  18. Basic Sciences Fertilizing Clinical Microbiology and Infection Management

    PubMed Central

    2017-01-01

    Abstract Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of “practice deconstruction” might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. PMID:28859345

  19. Does the stress-gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems

    USGS Publications Warehouse

    Butterfield, Bradley J.; Bradford, John B.; Armas, Cristina; Prieto, Ivan; Pugnaire, Francisco I.

    2016-01-01

    Taken together, the results of this simulation study suggest that plant effects on soil moisture are predictable based on relatively general relationships between precipitation inputs and differential evaporation and transpiration rates between plant and interspace microsites that are largely driven by temperature. In particular, this study highlights the importance of differentiating between temporal and spatial variation in weather and climate, respectively, in determining plant effects on available soil moisture. Rather than focusing on the somewhat coarse-scale predictions of the SGH, it may be more beneficial to explicitly incorporate plant effects on soil moisture into predictive models of plant-plant interaction outcomes in drylands.

  20. Steam Injection For Soil And Aquifer Remediation

    EPA Pesticide Factsheets

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by...

  1. Semi-Quantitative Evaluation of Secondary Carbonates via Portable X-ray Fluorescence Spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Somsubhra; Weindorf, David; Weindorf, Camille; Duda, Bogdan; Pennington, Sarah; Ortiz, Rebekah

    2017-04-01

    Secondary calcium carbonate commonly occurs in subsoils of semi-arid soils worldwide. In US Soil Taxonomy, such horizons are frequently described as Bk, Bkk, Bkm, Bkkm, or Ck horizons at variable stages of development. Specifically, the Soil Survey Staff uses a qualitative scale of one through six to indicate differential developmental stages. However, considerable disagreement exists even among experienced soil scientists. Evaluating 75 soil samples from across four US states, a portable X-ray fluorescence (PXRF) spectrometer was used to quantify the total soil Ca content and compare it to average developmental stage scores as determined by a panel of Soil Survey Staff personnel. Samples were evaluated both as intact aggregates as well as ground (<2 mm), homogenized powders. PXRF readings of total soil Ca concentration steadily increased under both conditions as developmental stage progressed. However, minimal difference was observed between stage five and six carbonate accumulation. Stage three showed the widest variability in total soil Ca. Given than PXRF cannot distinguish between primary and secondary CaCO3 in soils, interpretation by the analyst remains essential. Nonetheless, PXRF provides an important tool for assessing carbonate laden subsoils providing elemental differentiation beyond that perceived by the human eye.

  2. The soil education technical commission of the Brazilian Soil Science Society: achievements and challenges

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole; Aparecida de Mello, Nilvania

    2013-04-01

    The Soil Education and public awareness technical commission of the Brazilian Soil Science Society was created in 1987 as Soil Science teaching commission at that time. In the 90's of the last century the commission was very active and realized three national symposia in the years 1994 to 1996: in Viçosa, Minas Gerais; Santa Maria, Rio Grande do Sul and Pato Branco, Paraná. The following symposium scheduled to happen in Brasilia, 1997 could not be realized and was followed by a weakening and reduction of the involved group. Those three symposia were focused on the aspects of soil science taught at the university educational level, mainly in agrarian sciences. The concern about what was going on at basic education and perception by society was not much present. The commission was revitalized in 2005 and in 2007 realized its first meeting at the Brazilian Congress of Soil Science in Gramado, Rio Grande do Sul. At that meeting it was already an urge to assume the approach of soil education instead of soil science teaching, within a major concern how society consider soils. It was accepted and adequate under the structural reorganization undergone by the national society following the IUSS main lines. The commission was renamed and got two new mates at the newly created Division IV, Soils, Environment and Society, of the Brazilian Soil Science Society: Soils and Food Safety and History, Epistemology and Sociology of Soil Science. The national symposia were relaunched to happen biannually. An inventory of the soil education experiences around the country started and the geographic distribution of the future symposia intended to rescue and bring together experiences in different parts of the country that would not be known by other means. Three symposia were already realized: Piracicaba, Sao Paulo, 2008 (southeast); Curitiba, Paraná, 2010 (south) and Sobral, Ceará, 2012 (northeast). The next is planned to happen in Recife, Pernambuco in April 2014. The scope of the last three symposia was dramatically changed compared to the former ones, considering both participants and papers: basic school teachers, science mediators instead of university docents and a prevalence of papers on soil education in basic schools and non-formal education. The main challenge for soil scientists remains in how to spread the knowledge about the importance of soil and its care among individuals and society in general. Diversified experiences, strategies and instruments are on the move, still soils are overlooked in the present environmental issues. Within the commission the challenge remains with the popularity of the subject in the academic world: it is marginal, it is an interface between knowledge areas and it is commonly the second subject of researchers, easily abandoned when work pressure grows.

  3. Peatland and water in the northern Lake States.

    Treesearch

    Don H. Boelter; Elon S. Verry

    1977-01-01

    The North Central Forest Experiment Station expanded its watershed research program in 1960 to include basic peatland studies. This paper reviews and summarizes basic principles developed from these studies of peatland hydrology, organic soil characteristics, and streamflow chemistry.

  4. Physical properties of 134 soils in six northeastern states

    Treesearch

    A. R. Eschner; B. O. Jones; R. C. Moyle

    1957-01-01

    From June 1954 to July 1955 the Vicksburg Infiltration Project collected and analyzed samples from 134 sites in six Northeastern States; the samples included 79 soil series and 114 soil types. This work was done to supply the U. S. Army with information needed for specialized research on military traffic ability. The basic data are herein presented because of their...

  5. Keys to soil taxonomy by soil survey staff (sixth edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This publication, Keys to Soil Taxonomy, serves two purposes. It provides the taxonomic keys necessary for the classification of soils according to Soil Taxonomy in a form that can be used easily in the field, and it also acquaints users of Soil Taxonomy with recent changes in the classification system. This volume includes all revisions of the keys that have so far been approved, replacing the original keys in Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (1975), the work on which this abridged version, first published in 1983, is based. This publication incorporatesmore » all amendments approved to date and published in National Soil Taxonomy Handbook (NSTH) Issues 1-17.« less

  6. [Spectral reflectance characteristics and modeling of typical Takyr Solonetzs water content].

    PubMed

    Zhang, Jun-hua; Jia, Ke-li

    2015-03-01

    Based on the analysis of the spectral reflectance of the typical Takyr Solonetzs soil in Ningxia, the relationship of soil water content and spectral reflectance was determined, and a quantitative model for the prediction of soil water content was constructed. The results showed that soil spectral reflectance decreased with the increasing soil water content when it was below the water holding capacity but increased with the increasing soil water content when it was higher than the water holding capacity. Soil water content presented significantly negative correlation with original reflectance (r), smooth reflectance (R), logarithm of reflectance (IgR), and positive correlation with the reciprocal of R and logarithm of reciprocal [lg (1/R)]. The correlation coefficient of soil water content and R in the whole wavelength was 0.0013, 0.0397 higher than r and lgR, respectively. Average correlation coefficient of soil water content with 1/R and [lg (1/R)] at the wavelength of 950-1000 nm was 0.2350 higher than that of 400-950 nm. The relationships of soil water content with the first derivate differential (R') , the first derivate differential of logarithm (lgR)' and the first derivate differential of logarithm of reciprocal [lg(1/R)]' were unstable. Base on the coefficients of r, lg(1/R), R' and (lgR)', different regression models were established to predict soil water content, and the coefficients of determination were 0.7610, 0.8184, 0.8524 and 0.8255, respectively. The determination coefficient for power function model of R'. reached 0.9447, while the fitting degree between the predicted value based on this model and on-site measured value was 0.8279. The model of R' had the highest fitted accuracy, while that of r had the lowest one. The results could provide a scientific basis for soil water content prediction and field irrigation in the Takyr Solonetzs region.

  7. Microwave Dielectric Constant Dependence on Soil Tension.

    DTIC Science & Technology

    1983-10-01

    water to be only a single monolayer thick .1 (OA) with Ice-like dielectric properties EWS = (3.15, JO). The first approach apportions the soil solution Into...mixing model that accounts explicitly for the presence of a hydrationU layer of bound water adjacent to hydrophilic soil particle surfaces. The soil ... solution is differentiated Into (1) a bound, ice-like component and (2) a bulk solution component, by a physical soil model dependent upon either soil

  8. The Generation of Three-Dimensional Body-Fitted Coordinate Systems for Viscous Flow Problems.

    DTIC Science & Technology

    1982-07-01

    Geometries," NASA TM X-3206, 1975. iq p] Papers Written Under The Contract 1. "Basic Differential Models For Coordinate Generation ", Z . U. A. Warsi...8217 Ii (C) (4’) p Figure 1. Coordinate Surfaces fr. I • BASIC DIFFERENTIAL MODELS FOR COORDINATE GENERATION Z . U. A. WARSI* Department of Aerospace

  9. Agricultural soil moisture experiment, Colby, Kansas 1978: Measured and predicted hydrological properties of the soil

    NASA Technical Reports Server (NTRS)

    Arya, L. M. (Principal Investigator)

    1980-01-01

    Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.

  10. Phenotypic and genetic differentiation among yellow monkeyflower populations from thermal and non-thermal soils in Yellowstone National Park.

    PubMed

    Lekberg, Ylva; Roskilly, Beth; Hendrick, Margaret F; Zabinski, Catherine A; Barr, Camille M; Fishman, Lila

    2012-09-01

    In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby (<500 m distant) in non-thermal soils. In simulated thermal and non-thermal environments, thermal plants remained significantly divergent from non-thermal plants in vegetative, floral, mating system, and phenological traits. Plants from both thermal populations flowered closer to the ground, allocated relatively more to sexual reproduction, were more likely to initiate flowering under short daylengths, and made smaller flowers that could efficiently self-fertilize without pollinators. These shared differences are consistent with local adaptation to life in the ephemeral window for growth and reproduction created by winter and spring snowmelt on hot soils. In contrast, habitat type (thermal vs. non-thermal) explained little of the genetic variation at neutral markers. Instead, we found that one thermal population (Agrostis Headquarters; AHQ-T) was strongly differentiated from all other populations (all F (ST) > 0.34), which were only weakly differentiated from each other (all F (ST) < 0.07). Phenotypic differentiation of thermal M. guttatus, but little population genetic evidence of long-term ecotypic divergence, encourages further investigations of the potential for fine-scale adaptation and reproductive isolation across the geothermal gradient in Yellowstone.

  11. Assessment of chemical element migration in soil-plant complex of Urov endemic localities of East Transbaikalia

    NASA Astrophysics Data System (ADS)

    Vadim V., Ermakov; Valentina, Danilova; Sabsbakhor, Khushvakhtova; Aklexander, Degtyarev; Sergey, Tyutikov; Victor, Berezkin; Elena, Karpova

    2014-05-01

    The comparative evaluation of the levels of biologically active chemical elements and their migration in the soil-plant complex of two Urov endemic locations in East Transbaikalia (Zolinsky and Uryumkansky) and background areas (Western Baikal region and the western area of the Trans-Baikal region) was conducted. The predominant soil-forming rocks in East Transbaikalia are weathering products of Proterozoic carbonated granitoids PR2. The surface rocks consist from granite, granodiorite, diorite quartz diorite, gabbro, norite, gabbro-norite and other. Soils - mountain and cryogenic meadow forests, mountain permafrost taiga podzolised, meadow alluvial, peaty meadow [2]. The paludification of narrow valleys and thermokarst phenomena are typical in Urov endemic localities. It reflects on the spotted of soil and differentiation of chemical composition of soils and plants. Most of the chemical elements in soils were determined by means of X-ray fluorescence, and trace elements in soils and plants - by atomic absorption spectrometry. The selenium content was measured by spectrofluorimetric method [3]. The research processed by methods of variation statistics. It was found that the soils of two locations of the Urov subregion of the biosphere were more enriched with iron, barium, calcium, uranium, thorium, phosphorus, and to a lesser extent strontium compared to background soils. The ratio of Ca: P was significantly higher in the soil of background areas, and Ca: Sr, on the contrary, in endemic soils. In assessing the migration of trace elements in soil-plant complex by means of the total content of trace elements and biological absorption coefficient found a marked accumulation by plants manganese, chromium, arsenic and weak plants accumulation of cobalt and nickel. Soil landscape is not much different in content of selenium, but its migration in plants was reduced in places of spread of Urov disease [1]. The concentrators of cadmium (leaves of different species of willow - Salicaceae) and selenium (needles of larch - Larix sibirica L.) were found among the plants. References 1. Ermakov V., Jovanovic L. Characteristics of selenium migration in soil-plant system of East Meshchera and Transbaikalia// J. Geochem. Explor., 2010. Vol. 107, 200-205. 2. Ermakov Vadim, Jovanovic Larisa, Berezkin Victor, Tyutikov Sergey, Danilogorskaya Anastasiya, Danilova Valentina, Krechetova Elena, Degtyarev Alexander, Khushvakhtova Sabsbakhor. Chemical assessment of soil and water of Urov biogeochemical provinces of Eastern Transbaikalia// Ecologica, 2012. Vol. 19, 69, 5-9. 3. Ermakov V.V., Tuytikov S.F. Khushvakhtova S.D., Danilova V.N. Boev V.A., Barabanschikova R.N., Chudinova E.A. Peculiarities of quantitative determination of selenium in biological materials// Bulletin of the Tyumen State University Press, 2010, 3, 206-214. Supported by the Russian Foundation for Basic Research, grant number 12-05-00141a.

  12. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms.

    PubMed

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-06-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH(4)(+)-N per gram of soil) and high (200 μg NH(4)(+)-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil.

  13. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms

    PubMed Central

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-01-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH4+-N per gram of soil) and high (200 μg NH4+-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil. PMID:21228892

  14. Differential sensitivity to climate change of C and N cycling processes across soil horizons in a northern hardwood forest

    Treesearch

    Jorge Durán; Jennifer L. Morse; Alexandra Rodríguez; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer; Peter M. Groffman

    2017-01-01

    Climate of the northern hardwood forests of North America will become significantly warmer in the coming decades. Associated increases in soil temperature, decreases in water availability and changes in winter snow pack and soil frost are likely to affect soil carbon (C) and nitrogen (N) cycling. Most studies of the effects of climate change on soil function have...

  15. Induction of motor neuron differentiation by transduction of Olig2 protein.

    PubMed

    Mie, Masayasu; Kaneko, Mami; Henmi, Fumiaki; Kobatake, Eiry

    2012-10-26

    Olig2 protein, a member of the basic helix-loop-helix transcription factor family, was introduced into the mouse embryonic carcinoma cell line P19 for induction of motor neuron differentiation. We show that Olig2 protein has the ability to permeate the cell membrane without the addition of a protein transduction domain (PTD), similar to other basic helix-loop-helix transcription factors such as MyoD and NeuroD2. Motor neuron differentiation was evaluated for the elongation of neurites and the expression of choline acetyltransferase (ChAT) mRNA, a differentiation marker of motor neurons. By addition of Olig2 protein, motor neuron differentiation was induced in P19 cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Basic Sciences Fertilizing Clinical Microbiology and Infection Management.

    PubMed

    Baquero, Fernando

    2017-08-15

    Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of "practice deconstruction" might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  17. Basic Communication Course Annual. Volume 8.

    ERIC Educational Resources Information Center

    Newburger, Craig, Ed.

    This volume of an annual collection presents 13 essays relating to instruction in the basic communication course. Six of the essays are on the theme of cultural diversity in the basic course. The essays are: "The Differential Impact of a Basic Public Speaking Course on Perceived Communication Competencies in Class, Work, and Social…

  18. SPILL ALERT DEVICE FOR EARTH DAM FAILURE WARNING

    EPA Science Inventory

    A spill alert device for determining earth dam safety based on the monitoring of the acoustic emissions generated in a deforming soil mass was developed and field-tested. The acoustic emissions are related to the basic mechanisms from which soils derive their strength. Laboratory...

  19. Differentiate responses of soil structure to natural vegetation and artificial plantation in landslide hazard region of the West Qinling Mountains, China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Huang, Z.; Zhao, Y.; Hong, M.

    2017-12-01

    Natural vegetation and artificial plantation are the most important measures for ecological restoration in soil erosion and landslide hazard-prone regions of China. Previous studies have demonstrated that both measures can significantly change the soil structure and decrease soil and water erosion. Few reports have compared the effects of the two contrasting measures on mechanical and hydrological properties and further tested the differentiate responses of soil structure. In the study areas, two vegetation restoration measures-natural vegetation restoration (NVR) and artificial plantation restoration (APR) compared with control site, with similar topographical and geological backgrounds were selected to investigate the different effects on soil structure based on eight-year ecological restoration projects. The results showed that the surface vegetation played an important role in releasing soil erosion and enhance soil structure stability through change the soil aggregates (SA) and total soil porosity (TSP). The SA<0.25mm content in NVR (36.13%) was higher than that in APR (32.14%). The study indicated that SA and TSP were the principal components (PCs) related to soil structure variation. Soil organic carbon, soil water retention, clay and vegetation biomass were more strongly correlated with the PCs in NVR than those in APR. The study indicated that NVR was more beneficial for soil structure stability than APR. These findings will provide a theoretical basis for the decisions around reasonable land use for ecological restoration and conservation in geological hazard-prone regions.

  20. Estimating Soil Hydraulic Parameters using Gradient Based Approach

    NASA Astrophysics Data System (ADS)

    Rai, P. K.; Tripathi, S.

    2017-12-01

    The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.

  1. Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil.

    PubMed

    Santos, Jane Meri; Reis, Neyval Costa; Galvão, Elson Silva; Silveira, Alexsander; Goulart, Elisa Valentim; Lima, Ana Teresa

    2017-09-01

    Settleable particulate matter (SPM), especially coarser particles with diameters greater than 10 μm, has been found culprit of high deposition rates in cities affected by hinterland industrial activities. This is the case of Metropolitan Region of Vitoria (MRV), Espirito Santo, Brazil where industrial facilities are located within the urban sprawl and building constructions are intense. Frequent population complaints to the environmental protection agency (IEMA) throughout the years have triggered monitoring campaigns to determine SPM deposition rates and source apportionment. Eight different locations were monitored throughout the MRV, and SPM was quantified and chemically characterized. Sources profiles were defined either by using US EPA SPECIATE data or by experimental analysis. Atmospheric fallout in the MRV ranged between 2 and 20g/(m 2 30-day), with only one monitoring station ranging from 6-10 g/(m 2 30-day). EC, OC, Fe, Al, and Si were found the main constituents of dry deposition in the region. Source apportionment by the chemical mass balance (CMB) model determined that steel and iron ore pelletizing industries were the main contributor to one of the eight locations whereas resuspension, civil construction, and vehicular sources were also very important contributors to the other stations. Quarries and soil were also considered expressive SPM sources, but at the city periphery. CMB model could differentiate contributions from six industrial source groups: thermoelectric; iron ore, pellet, and pellet furnaces; coal coke and coke oven; sintering, blast furnace, and basic oxygen furnace; and soil, resuspension, and vehicles. However, the CMB model was unable to differentiate between iron ore and pellet stockpiles which are present in both steel and iron ore pelletizing industries. Further characterization of source and SPM might be necessary to aid local authorities in decision-making regarding these two industrial sources.

  2. Research progress on expansive soil cracks under changing environment.

    PubMed

    Shi, Bei-xiao; Zheng, Cheng-feng; Wu, Jin-kun

    2014-01-01

    Engineering problems shunned previously rise to the surface gradually with the activities of reforming the natural world in depth, the problem of expansive soil crack under the changing environment becoming a control factor of expansive soil slope stability. The problem of expansive soil crack has gradually become a research hotspot, elaborates the occurrence and development of cracks from the basic properties of expansive soil, and points out the role of controlling the crack of expansive soil strength. We summarize the existing research methods and results of expansive soil crack characteristics. Improving crack measurement and calculation method and researching the crack depth measurement, statistical analysis method, crack depth and surface feature relationship will be the future direction.

  3. Evidence that soil aluminum enforces site fidelity of southern New England forest trees

    Treesearch

    S. W. Bigelow; C. D. Canham

    2010-01-01

    Tree species composition of hardwood forests of the northeastern United States corresponds with soil chemistry, and differential performance along soil calcium (Ca) gradients has been proposed as a mechanism for enforcing this fidelity of species to site. We conducted studies in a southern New England forest to test if surface-soil Ca is more important than other...

  4. Interactions of Multiple Factors in Creating Small Patterned-Ground Features Across the Arctic Bioclimate Gradient

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Epstein, H. E.; Kuss, P.; Michaelson, G. J.; Ping, C. L.; Raynolds, M. K.; Romanovsky, V. E.; Tarnocai, C. T.

    2004-12-01

    Small patterned-ground landforms are described along a bioclimate gradient in northern Canada and Alaska and summarized in tables and figures showing strength of influence of contraction cracking, differential frost heave, and vegetation - within five bioclimate subzones and four major soil texture classes. In the coldest parts of the Arctic (bioclimate subzones A and B), contraction cracking at small scales (10-30 cm between cracks) is the dominant process and contributes to the formation of hummocky terrain; differential frost heave has a small role here except in course rocky terrain where sorted circles are common. The presence of contraction cracks on all surfaces, wet and dry, and on all soil types indicate that the majority of the contraction cracks are caused by thermal processes and not desiccation. Larger mounds, apparently the result of differential frost heave, occur in some areas of Subzone B where there is more vegetation and peat. In the Middle Arctic (bioclimate subzone C), both small turf hummocks and well-developed non-sorted circles occur. Turf hummocks are dominant on hill slopes; erosion of the inter-hummock areas and accumulation of eolian material on the hummock tops creates taller hummocks. Non-sorted stripes occur on many slopes. In the northern Low Arctic (Subzone D), non-sorted circles are the most common features; and turf hummocks are restricted to small areas - generally steep snow beds. The centers of most frost boils are barren or partially vegetated in Subzone D. In the sourthern Low Arctic (Subzone E), the vegetation is very active and able to colonize and totally cover frost boils. Large vegetated mounds are apparently the remnants of once active frost boils. In areas with more clayey soils of subzones D and E, well-developed tightly packed mounds are common, and frost boils often occur on the tops of the mounds. The spacing of the mound centers is often 2-3 m. Mounds are also common south of treeline. Soil texture affects frost boil morphology and heave characteristics. In silty areas of northern Alaska non-sorted circles have annual differential heave in the order of 20 cm - apparently contributing to the strong patterning in many areas (spotted tundra in the Russian literature). Areas with sandy soil have little differential heave and no frost boils in areas of pure sand; whereas, areas with clayey soils have mound shaped frost boils with little annual heave. Vegetation plays a major role in defining the boundaries of the patterned-ground features, possibly affecting differential frost heave by decreasing the soil temperature and thickness of the active layer in the inter-circle areas; however, at two sites on sandy soils with well-developed non-sorted circles only minor differential soil heave was measured. The cause of the barren centers at these sites is probably unrelated to heave and may be due to the accumulation of salts within the frost-boils. Needle ice is another major contributing cause of barrenness on frost boils and appears to develop most strongly on saturated silts.

  5. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    PubMed

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition.

  6. Self-organized multi-species vegetation patterns: the role of connectivity of environmental niches in natural water harvesting ecosystems

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Ursino, Nadia

    2016-04-01

    Self-organizing vegetation patterns are natural water harvesting systems in arid and semi-arid regions of the world and should be imitated when designing man-managed water-harvesting systems for rain-fed crop. Disconnected vegetated and bare zones, functioning as a source-sink system of resources, sustain vegetation growth and reduce water and soil losses. Mechanisms such as soil crusting over bare areas and soil loosening in vegetated areas feed back to the local net facilitation effect and contribute to maintain the patterned landscape structure. Dis-connectivity of run-off production and run-on infiltration sites reduces runoff production at the landscape scale, and increases water retention in the vegetated patches. What is the effect of species adaptation to different resource niches on the landscape structure? A minimal model for two coexisting species and soil moisture balance was formulated, to improve our understanding of the effects of species differentiation on the dynamics of plants and water at single-pattern and landscape scale within a tiger bush type ecosystem. A basic assumption of our model was that soil moisture availability is a proxy for the environmental niche of plant species. Connectivity and dis-connectivity of specific niches of adaptation of two differing plant species was an input parameter of our model, in order to test the effect of coexistence on the ecosystem structure. The ecosystem structure is the model outcome, including: patterns persistence of coexisting species; patterns persistence of one species with exclusion of the other; patterns decline with just one species surviving in a non organized structure; bare landscape with loss of both species. Results suggest that pattern-forming-species communities arise as a result of complementary niche adaptation (niche dis-connecivity), whereas niche superposition (niche connectivity) may lead to impoverishment of environmental resources and loss of vegetation cover and diversity.

  7. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    NASA Astrophysics Data System (ADS)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited different NH3 oxidation rates. In addition, the enrichment cultures provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota-AOA lineage. Our results indicate that AOA are functionally heterogeneous, and that the selection of distinct AOA populations by the environment can be determinant for nitrification activity and N availability in soils. Furthermore, our observations emphasize the fact that, disturbances in populations of specific microbial functional groups, such as nitrifiers, constitute potential response mechanisms to environmental changes. These findings are not only relevant for Arctic environments, but have implications for the role of AOA in nitrification in all soils.

  8. Integrated watershed management for saturation excess generated runoff, erosion and nutrient control

    USDA-ARS?s Scientific Manuscript database

    Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...

  9. GROUND WATER ISSUE: STEAM INJECTION FOR SOIL AND AQUIFER REMEDIATION

    EPA Science Inventory

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by volatile or semivolatile organic c...

  10. Retention behavior of hydrophobic organic chemicals as a function of temperature in soil leaching column chromatography.

    PubMed

    Liang, Xinmiao; Xu, Feng; Lin, Bingcheng; Su, Fan; Schramm, Karl-Werner; Kettrup, Antonius

    2002-11-01

    To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degrees C was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degrees C (k'30/k'40) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former.

  11. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe.

    PubMed

    Tian, Qiuying; Liu, Nana; Bai, Wenming; Li, Linghao; Chen, Jiquan; Reich, Peter B; Yu, Qiang; Guo, Dali; Smith, Melinda D; Knapp, Alan K; Cheng, Weixin; Lu, Peng; Gao, Yan; Yang, An; Wang, Tianzuo; Li, Xin; Wang, Zhengwen; Ma, Yibing; Han, Xingguo; Zhang, Wen-Hao

    2016-01-01

    Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels. In Inner Mongolia steppes, increasing the N supply shifted plant community composition from grass-forb codominance (primarily Stipa krylovii and Artemisia frigida, respectively) to exclusive dominance by grass, with associated declines in overall species richness. Reduced abundance of forbs was linked to soil acidification that increased mobilization of soil Mn, with a 10-fold greater accumulation of Mn in forbs than in grasses. The enhanced accumulation of Mn in forbs was correlated with reduced photosynthetic rates and growth, and is consistent with the loss of forb species. Differential accumulation of Mn between forbs and grasses can be linked to fundamental differences between dicots and monocots in the biochemical pathways regulating metal transport. These findings provide a mechanistic explanation for N-induced species loss in temperate grasslands by linking metal mobilization in soil to differential metal acquisition and impacts on key functional groups in these ecosystems.

  12. Tropical rainforests dominate multi-decadal variability of the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.

    2017-12-01

    Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.

  13. The effects of the physical and chemical properties of soils on the spectral reflectance of soils

    NASA Technical Reports Server (NTRS)

    Montgomery, O. L.; Baumgardner, M. F.

    1974-01-01

    The effects of organic matter, free iron oxides, texture, moisture content, and cation exchange capacity on the spectral reflectance of soils were investigated along with techniques for differentiating soil orders by computer analysis of multispectral data. By collecting soil samples of benchmark soils from the different climatic regions within the United States and using the extended wavelength field spectroradiometer to obtain reflectance values and curves for each sample, average curves were constructed for each soil order. Results indicate that multispectral analysis may be a valuable tool for delineating and quantifying differences between soils.

  14. An estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning method

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Šimūnek, Jiří; Sławiński, Cezary; Lamorska, Joanna

    2017-02-01

    In this paper, we estimated using the machine learning methodology the main wetting branch of the soil water retention curve based on the knowledge of the main drying branch and other, optional, basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific surface). The support vector machine algorithm was used for the models' development. The data needed by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples. Models relying on different sets of input parameters were developed and validated. The analysis showed that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter content, or soil specific surface) than information about the drying branch of the SWRC has essentially no impact on the models' estimations. Developed models are validated and compared with well-known models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker (1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation errors (RMSE = 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE = 0.025 m3/m3) or KP87 (RMSE = 0. 047 m3/m3) models.

  15. Soil awareness raising - activities in schools and for the general public in Austria

    NASA Astrophysics Data System (ADS)

    Huber, Sigbert; Birli, Barbara; Schwarz, Sigrid; Tulipan, Monika; Berthold, Helene; Englisch, Michael; Foldal, Cecilie

    2017-04-01

    Too few people know just how important soil really is and how to manage it properly. This is why a number of activities have been launched by the Austrian Soil Science Society and its members to provide basic soil information to "non-soil experts" promoting the various services soil provides for society and raising awareness as to what each individual can do to protect and manage soil. Environment Agency Austria and Umweltdachverband [1] have developed teaching material based on the principles of "Education for Sustainable Development". These booklets provide basic knowledge about soil combined with appealing and creative tasks. These tasks were developed to fit into biology or geography courses as well as into other courses such as mathematics, language training, chemistry, history, informatics, etc. Pupils and students may actively explore soil properties, soil formation, soil functions and soil organisms in the course of workshops (called "Boden macht Schule") in schools and in kindergartens [2],[3]. Key elements are the identification of soil animals, creative tasks and experiments appropriate to the pupils' age showing soiĺs ability to clean and retain water. The workshops for kindergartens revolve around feeling the soil texture, exploring soil biota and drawing. A special challenge for students is the Soil Orientation Run, a combination of physical effort, testing onés own soil knowledge and cooperating as a team. At the Vienna Zzoo many people get in touch with soil and its properties during the Vienna species conservation days. 2017 a new soil trail with 13 boards will open in Vienna, focusing on the genesis, geology, biology and important functions of the Viennese urban soil. A team of 10 scientists worked on the implementation of this soil trail which will raise soil awareness of the citizens and visitors of Vienna. The Soil Awareness Guide as a tool of the Austrian Soil Platform shows activities and materials to raise awareness in Austria. Due to these activities up to now several thousand people were able to get an idea of the importance of soil for our life. By asking children to discuss these topics with their parents, we hope to reach also todaýs decision makers and land users while teaching those of tomorrow. Footnotes: [1] http://www.umweltdachverband.at/ [2] https://bodenschutz.wordpress.com/ [3] http://www.umweltbundesamt.at/umweltsituation/boden/schule/

  16. Soil properties discriminating Araucaria forests with different disturbance levels.

    PubMed

    Bertini, Simone Cristina Braga; Azevedo, Lucas Carvalho Basilio; Stromberger, Mary E; Cardoso, Elke Jurandy Bran Nogueira

    2015-04-01

    Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at São Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2- oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery.

  17. Why farming with high tech methods should integrate elements of organic agriculture.

    PubMed

    Ammann, Klaus

    2009-09-01

    In the previous article [Ammann, K. (2008) Feature: integrated farming: why organic farmers should use transgenic crops. New Biotechnol. 25, 101-107], in a plea for the introduction of transgenic crops into organic and integrated farming, it was announced that the complementary topic, namely that high tech farmers should integrate elements of organic agriculture, will be a follow up. Some selected arguments for such a view are summarised here. Basically, they comprise a differentiated view on agro-biodiversity outside the field of production; landscape management methods to enhance biodiversity levels. Both elements are compatible with basic ideas of organic farming. First, Precision Farming is given as one example of the many ways to support agricultural production through high technology, with the aim of reducing energy input, maintaining excellent soil conditions and enhancing yield. It is clear from this analysis that modern agriculture and certain elements of organic-integrated agriculture are compatible. There are sectors of high tech farming, such as the introduction of a better recycling scheme and also a better focus on socio-economic aspects, which need to be taken up seriously from organic-integrated farming, a system which puts a lot of emphasis on those elements and for which important research data are available. In the final part a new concept of dynamic sustainability is presented.

  18. Selective Separation and Determination of Heavy Metals (Cd, Pb, Cr) Speciation Forms from Hortic Antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.

    2009-04-01

    The speciation, inter-phases distribution and biodisponibility of heavy metals in soils represent one of main problem of environmental geochemistry and agro-chemistry. This problem is very important in case of hortic antrosols (soils from glasshouses) for the elimination of agricultural products (fruits, vegetables) contamination with heavy metals. In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have bee performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07).

  19. Microrelief and vegetation as the factors of spatial redistribution of nutrients in the soils of forest ecosystems

    NASA Astrophysics Data System (ADS)

    Chernitsova, Olga; Krechetov, Pavel

    2017-04-01

    The study is aimed at the identifying factors and mechanisms controlling the redistribution of nutrients in the profile of sod-podzolic soils (Umbric Albeluvisols Abruptic in WRB, 2006). The data of chemical analyzes of soil samples of soddy-pale-podzolic soils under mixed coniferous-deciduous forests, picked from the genetic horizons of 28 soil profiles up to the depth of 120-150 cm in the key area with a polygonal-block microrelief (58.39°N, 56.52°E) were used. Soil profiles were placed at the key area considering vegetation and microrelief. Samples were analyzed for humus content, available forms of N, P, K, Ca, Mg and soil texture. Published data on the capacity and the structure of biogeochemical cycling in forest phytocenoses of different ages in the southern taiga were summarized. Field sketches were used for the construction of the digital elevation model of the key area and for plotting the vegetation map showing the crowns' projections of trees and shrubs of different species. Using spatial interpolation in GIS, series of schematic maps were created that characterize the depth of the lower boundary of genetic horizons and their thickness, as well as the texture of the different soil horizons, humus content and distribution of nutrients at different depths. These schematic maps were analyzed for patterns of radial and lateral differentiation of all examined features. Pronounced textural differentiation of soils of micro-elevations and poor textural differentiation of soil of micro-depressions are revealed. It is shown that in the soils with the positions from micro-elevations through flat surfaces to micro-depressions the humus content in the upper layers (horizon A) increases 1.6-1.7 times, the content of nitrogen ‒ 1.4-1.5, phosphorus ‒ 2.6 8.4, calcium and magnesium cations ‒ 1.8-2.9 times. This differentiation in nutrients' content is coming along with the settlement of more demanding to soil fertility plants in micro-depressions. Also the bimodal distribution of the available forms of potassium, phosphorus, calcium, magnesium in the soil profile was revealed. The first maximum of nutrients content is detected in the humus-accumulative horizon A, the second - in the illuvial horizon Bt. The eluvial horizons EL are characterized by the minimum values. Considering the thickness of soil horizons, supplies of available forms of phosphorus, potassium, calcium and magnesium were estimated, which are 1.5-2.5 times higher in deeper soil horizons than in the upper ones. The complex ecological and geochemical structure of forest ecosystems is regulated by both the lateral additional supply of mobile chemical compounds by the surface and subsurface runoff, including melted snow water, as well as the peculiarities of biogeochemical cycling (the age of the forest, the penetration depth of suction roots of various species of trees, the chemical composition of the litter).

  20. DEMONSTRATION BULLETIN: THE BASIC EXTRACTIVE SLUDGE TREATMENT (B.E.S.T.) RESOURCES CONSERVATION COMPANY (RCC)

    EPA Science Inventory

    The Basic Extractive Sludge Treatment (B.E.S.T.®) process is a solvent extraction system that separates organic contaminants from sludges, soils, and sediments. The primary distinguishing feature of the process is the extraction agent, triethylamine. The key to the success of tri...

  1. Basic Understanding of Earth Tunneling by Melting : Volume 2. Earth Structure and Design Solutions.

    DOT National Transportation Integrated Search

    1974-07-01

    A novel technique, which employs the melting of rocks and soils as a means of excavating or tunneling while simultaneously generating a glass tunnel lining and/or primary support, was studied. The object of the study was to produce a good basic under...

  2. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    PubMed

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  3. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features

    USDA-ARS?s Scientific Manuscript database

    Here, we examine soil-borne microbial biogeography as a function of the features that 31 define an American Viticultural Area (AVA), a geographically delimited American wine grape32 growing region, defined for its distinguishing features of climate, geology, soils, physical 33 features (topography a...

  4. A differential nursery for testing nodulation effectiveness of rhizobium strains in common beans

    USDA-ARS?s Scientific Manuscript database

    Most common beans (Phaseolus vulgaris L.) in Central America are produced on soils having low nitrogen (N) and phosphorous content. The small-scale farmers do not have resources to use fertilizers or implement soil management practices. Strategies to improve the adaptation of beans to low N soils in...

  5. Assessment of Mitigation Systems on Vapor Intrusion ...

    EPA Pesticide Factsheets

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor environments are often negatively pressurized with respect to outdoor air and soil gas (for example, from exhaust fans or the stack effect), and this pressure difference allows soil gas containing subsurface vapors to flow into indoor air through advection. In addition, concentration differentials cause VOCs and radon to migrate from areas of higher to lower concentrations through diffusion, which is another cause of vapor intrusion. Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evidence is considered definitive, and direct measurements of vapor intrusion can be costly, especially where significant spatial and temporal variability require repeated measurements at multiple locations to accurately assess the chronic risks of long-term exposure to volatile organic compounds (VOCs) like chloroform, perchloroethylene (PCE), and trichloroethylene (TCE).

  6. Differentiation characteristics and source analysis of heavy metals in typical brown soil under different vegetation

    NASA Astrophysics Data System (ADS)

    Dong, Zhicheng; Zhang, Lina; Li, Xueshuang; Lv, Shuangyan; He, Shijie; Liu, Ying; Ma, Xuanxuan

    2017-08-01

    Anomalous enrichment of soil elements (especially heavy metals) has aroused popular attention in China. In order to discuss distribution characteristics and analyze sources of elements in brown soil, field investigation and sample collection were carried out under different vegetation (cherry, apple, bamboos and pine) in Qixia, a typical apple production base in China. Element contents, pH, electrical conductivity (EC) and magnetic susceptibility (MS) were tested. Results showed that element concentrations were about roughly 2.48 times as China’s background values, while significantly lower than the class ii of National soil Environment Quality Standard (Ni excepted). Meanwhile, vertical distribution and accumulation characteristics of elements in typical brown soil were significantly different under different vegetation. In detail, elements (Zn excepted) of Pine soil accumulated in surface, while they (Cd, Arsenic excepted) increased with depth under other vegetation. Moreover, pH and EC changed like elements, while MS was exactly opposite. It was found that those differences above were mainly caused by human activities (such as improper use of fertilizer, pesticide and inadequate use of organic fertilizer, etc.). Additionally, differences in composition and decomposition rate of vegetation litter also resulted in vertical differentiations of soil elements under different vegetation.

  7. Characterization of the N2O isotopic composition (15N, 18O and N2O isotopomers) emitted from incubated Amazon forest soils. Implications for the global N2O isotope budget

    NASA Astrophysics Data System (ADS)

    Pérez, T.; García, D.; Trumbore, S.; Tyler, S.; de Camargo, P.; Moreira, M.; Piccolo, M.; Park, S.; Boering, K.; Cerri, C.

    2003-04-01

    Tropical rain forest soils are the largest natural source of N2O to the atmosphere. Uncertainty in the signature of this source limits the utility of isotopes in constraining the global N2O budget. Differentiating the relative contribution of nitrification and denitrification to the emitted N2O using stable isotopes has been difficult due to the lack of enrichment factors values for each process measured in situ. We have devised a method for measuring enrichment factors using soil incubation experiments. We selected three Amazon rain forest soils: (1) Clay and (2) Sandy from Santarem, Pará State, and (3) Sandy from Nova Vida Farm, Rondonia State, Brazil. The enrichment factor values for nitrification and denitrification are: -97.8±4.2 and -9.9±3.8 per mil for clay Santarem soil, -86.8±4.3 and -45.2±4.5 per mil for sandy Santarem soil and-112.6±3.8 and -10.4±3.5 per mil for Nova Vida Farm soils, respectively. Our results show that enrichment factors for both processes differ with soil texture and location. The enrichment factors for nitrification are significantly smaller than the range reported in the literature (-66 to -42 per mil). Also, the enrichment factors for the Santarem soils (clay and sandy) differ significantly implying that soil texture (which will affect the soil air filled pore space at a given water content) is influencing the bacteria isotopic discrimination. However, the enrichment factors for the Santarem clay sand Nova Vida sandy soils do not differ by much. This suggests that the enrichment factors not only can be affected by texture but also by the microbial fauna present in these soils. We also determined the measurement of the N2O positional dependence. N2O is a linear molecule with two nitrogen atoms. The 15N isotope can be located in either the central nitrogen (alpha position) or in the terminal nitrogen (beta position). The isotopomer site preference (15N alpha - 15N beta) can be used to differentiate processes of production and consumption of N2O as a potential method to determine the contributions of nitrification and denitrification. We measured the isotopomer composition of the incubated soils and calculated the site preference of each process for each soils. The site preference for nitrification and denitrification are: -114.5 and 56.6 per mil for clay Santarem soil, -75.2 and 11.8 per mil for sandy Santarem soil and -209.7 and 28.8 per mil for Nova Vida Farm soils, respectively. To our knowledge these are the first N2O isotopomer characterizations for nitrification and denitrification in soils. The results show that nitrifying bacteria population has 15N site preference fingerprints smaller by up to 200 per mil than denitrifying bacteria. This data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial processes producing N2O. We can conclude that nitrifiers produce N2O with a smaller site preference values and more negative del 15N beta than do denitrifiers. These results show a new proxy to differentiate N2O formation processes in soil and will contribute to produce interpretations of the site preference isotopomeric N2O values found in the troposphere.

  8. Student Physical Therapists' Competence and Self-Confidence in Basic Clinical Assessment and Musculoskeletal Differential Diagnosis.

    PubMed

    Alexander, Kathleen M; Olsen, Janette; Seiger, Cindy; Peterson, Teri S

    2016-01-01

    Student physical therapists are expected to learn and confidently perform technical skills while integrating nontechnical behavioral and cognitive skills in their examinations and interventions. The purpose of this study was to compare the self-confidence of entry-level doctoral student physical therapists during foundational assessment and musculoskeletal differential diagnosis courses and the students' competencies based on skills examinations. Methods using qualitative and quantitative procedures. Student physical therapists (n=27) participated in a basic assessment course followed by a musculoskeletal differential diagnosis course. The students completed confidence surveys prior to skills examinations in both courses. A random sample of students participated in focus groups, led by a researcher outside the physical therapy department. Student confidence did not correlate with competency scores. At the end of the basic clinical assessment course and the beginning of the differential diagnosis course, students' confidence was significantly below baseline. However, by the end of the differential diagnosis course, student confidence had returned to original baseline levels. Over three semesters, the students lost confidence and then regained confidence in their abilities. Additional experience and practice influenced perceived confidence. However, increased competence may have been associated with poor self-appraisal skills instead of increased competency.

  9. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    PubMed

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.

  10. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)

    PubMed Central

    Valliyodan, Babu; Van Toai, Tara T.; Alves, Jose Donizeti; de Fátima P. Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B.; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J. Grover; Nguyen, Henry T.

    2014-01-01

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars. PMID:25268626

  11. A versatile system for biological and soil chemical tests on a planetary landing craft. II - Hardware development

    NASA Technical Reports Server (NTRS)

    Martin, J. P.; Kok, B.; Radmer, R.

    1976-01-01

    A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.

  12. Basic numerical competences in large-scale assessment data: Structure and long-term relevance.

    PubMed

    Hirsch, Stefa; Lambert, Katharina; Coppens, Karien; Moeller, Korbinian

    2018-03-01

    Basic numerical competences are seen as building blocks for later numerical and mathematical achievement. The current study aimed at investigating the structure of early numeracy reflected by different basic numerical competences in kindergarten and its predictive value for mathematical achievement 6 years later using data from large-scale assessment. This allowed analyses based on considerably large sample sizes (N > 1700). A confirmatory factor analysis indicated that a model differentiating five basic numerical competences at the end of kindergarten fitted the data better than a one-factor model of early numeracy representing a comprehensive number sense. In addition, these basic numerical competences were observed to reliably predict performance in a curricular mathematics test in Grade 6 even after controlling for influences of general cognitive ability. Thus, our results indicated a differentiated view on early numeracy considering basic numerical competences in kindergarten reflected in large-scale assessment data. Consideration of different basic numerical competences allows for evaluating their specific predictive value for later mathematical achievement but also mathematical learning difficulties. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Water Intake by Soil, Experiments for High School Students.

    ERIC Educational Resources Information Center

    1969

    Presented are a variety of surface run-off experiments for high school students. The experiments are analogies to basic concepts about water intake, as related to water delivery, soil properties and management, floods, and conservation measures. The materials needed to perform the experiments are easily obtainable. The experiments are followed by…

  14. Soil quality and water redistribution influences on plant production over low hillslopes on reclaimed mined land

    USDA-ARS?s Scientific Manuscript database

    A basic part of soils’ delivery of ecosystem services is the interaction between plant growth response to soil quality (SQ) factors at point scale and water redistribution effects at hillslope scale. To study the influence of SQ-indicator properties and water redistribution, we examined hillslope pr...

  15. Effects of rainfall and surface flow on chemical diffusion from soil to runoff water

    USDA-ARS?s Scientific Manuscript database

    Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...

  16. Soil Nutrients and pH in Southern Hardwood Nurseries

    Treesearch

    F. T. Bonner; W. M. Broadfoot

    1964-01-01

    The rapidly expanding interest in hardwoods in the South has caused many forest nurseries, to begin growing hardwood as well as pine seedlings. Apparently most nurserymen have been able to accomplish this change without great difficulty. Nursery sites and soil conditions suitable for pines should be basically satisfactory for hardwoods also.

  17. Survey of L Band Tower and Airborne Sensor Systems Relevant to Upcoming Soil Moisture Missions

    USDA-ARS?s Scientific Manuscript database

    Basic research on the physics of microwave remote sensing of soil moisture has been conducted for almost thirty years using ground-based (tower- or truck-mounted) microwave instruments at L band frequencies. Early small point-scale studies were aimed at improved understanding and verification of mi...

  18. Comparison of basic laboratory test results with more sophisticated laboratory and in-situ tests methods on soils in southeastern Wisconsin : final report, March 21, 2009.

    DOT National Transportation Integrated Search

    2009-03-21

    This study investigates all of the generated soils data in an attempt to use the more 'routine' laboratory tests to determine geotechnical design parameters (such as phiangle, cohesion, wet unit weight, unconfined compression, consolidation character...

  19. Initiating Long-Term Soil Productivity Research in Missouri

    Treesearch

    Felix Ponder

    1997-01-01

    Management practices necessary for sustaining long-term soil productivity (LTSP) afforest lands are being defined from a network of coordinated, long-term experiments established in vartous ecosystems across the United States and British Columbia according to the same basic study plan. The study was established in the Ozark Region of southeastem Missouri in Shannon...

  20. Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei

    2016-10-01

    Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.

  1. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?

    PubMed

    Zabłudowska, E; Kowalska, J; Jedynak, L; Wojas, S; Skłodowska, A; Antosiewicz, D M

    2009-10-01

    The main aim of the study was to evaluate the strategies for coping with arsenic toxicity developed by the mine species (Calamagrostis arundinacea, Fragaria vesca, Stachys sylvatica, and Epilobium parviflorum), and to compare results obtained from plants exposed to arsenic present in contaminated soil (2000-3500 mg/kg dw) and in hydroponic solution (2 microM and 12 microM arsenate). Here we report basic differences in plant responses to arsenic depending on growth conditions (hydroponic/soil) with respect to uptake, root-to-shoot translocation, distribution, and detoxification/speciation. Calamagrostis has the highest level of As-tolerance among the tested species. When grown in soil, it accumulated the highest amount of As in roots and shoots relative to other species, however, when exposed to arsenic in hydroponics, it had lower As concentrations. The efficiency of arsenic root-to-shoot translocation was also different, being less effective in soil-grown Calamagrostis compared with hydroponics. Furthermore, in Calamagrostis exposed to arsenate in liquid medium, As(III) was the predominant arsenic form, in contrast to plants grown in As-contaminated soil, in which As(V) predominated. In addition, comparison of the level of phytochelatins showed that only PC2 was detected in plants from hydroponics, whereas in those from soil, additionally PC3 and PC4 were found. The results show that the basic components of a plant's response to arsenic, including uptake, accumulation as well as detoxification, change depending on the experimental conditions (arsenic in liquid medium or contaminated soil).

  2. Chromated copper arsenate-treated fence posts in the agronomic landscape: soil properties controlling arsenic speciation and spatial distribution.

    PubMed

    Schwer Iii, Donald R; McNear, David H

    2011-01-01

    Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (∼8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. DNA-polyfluorophore Chemosensors for Environmental Remediation: Vapor-phase Identification of Petroleum Products in Contaminated Soil†

    PubMed Central

    Jiang, Wei; Wang, Shenliang; Yuen, Lik Hang; Kwon, Hyukin; Ono, Toshikazu

    2013-01-01

    Contamination of soil and groundwater by petroleum-based products is an extremely widespread and important environmental problem. Here we have tested a simple optical approach for detecting and identifying such industrial contaminants in soil samples, using a set of fluorescent DNA-based chemosensors in pattern-based sensing. We used a set of diverse industrial volatile chemicals to screen and identify a set of five short oligomeric DNA fluorophores on PEG-polystyrene microbeads that could differentiate the entire set after exposure to their vapors in air. We then tested this set of five fluorescent chemosensor compounds for their ability to respond with fluorescence changes when exposed to headgas over soil samples contaminated with one of ten different samples of crude oil, petroleum distillates, fuels, lubricants and additives. Statistical analysis of the quantitative fluorescence change data (as Δ(R,G,B) emission intensities) revealed that these five chemosensors on beads could differentiate all ten product mixtures at 1000 ppm in soil within 30 minutes. Tests of sensitivity with three of the contaminant mixtures showed that they could be detected and differentiated in amounts at least as low as one part per million in soil. The results establish that DNA-polyfluorophores may have practical utility in monitoring the extent and identity of environmental spills and leaks, while they occur and during their remediation. PMID:23878719

  4. Investigations of vegetation and soils information contained in LANDSAT Thematic Mapper and Multispectral Scanner data

    NASA Technical Reports Server (NTRS)

    Crist, E. P.; Laurin, R.; Colwell, J. E.; Kauth, R. J.

    1984-01-01

    An extension of the TM tasseled cap transformation to reflectance factor data is presented, and the basic concepts underlying the tasseled cap transformations are described. The ratio of TM bands 5 and 7, and TM tasseled cap wetness, are both shown to offer promise of direct detection of available soil moisture. Some effects of organic matter and other soil characteristics or constituents on TM tasseled cap spectral response are also considered.

  5. Differential soil water sourcing of managed Loblolly Pine and Sweet Gum revealed by stable isotopes in the Upper Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.

    2017-12-01

    Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.

  6. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Treesearch

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  7. Differential soil respiration responses to changing hydrologic regimes

    Treesearch

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Howard E. Epstein; Daniel L. Welsch

    2009-01-01

    Soil respiration is tightly coupled to the hydrologic cycle (i.e., snowmelt and precipitation timing and magnitude). We examined riparian and hillslope soil respiration across a wet (2005) and a dry (2006) growing season in a subalpine catchment. When comparing the riparian zones, cumulative CO2 efflux was 33% higher, and peak efflux occurred 17 days earlier during the...

  8. Kansas Vocational Agriculture Education. Basic Core Curriculum Project, Horticulture II.

    ERIC Educational Resources Information Center

    Albracht, James, Ed.

    This second horticulture guide is one of a set of three designated as the basic core of instruction for horticulture programs in Kansas. Units of instruction are presented in eight sections: (1) Leadership, (2) Supervised Occupational Experience, (3) Plant Propagation, (4) Soil and Plant Growth Media, (5) Fertilizers, (6) Greenhouse, (7) Plant…

  9. Differential settlement of a geosynthetic reinforced soil abutment : full-scale investigation.

    DOT National Transportation Integrated Search

    2015-05-01

    The Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS) uses alternating layers of closely spaced : geosynthetic reinforcement and well-compacted granular fill to support the bridge superstructure and form an integrated roadway : approach...

  10. Nonlinear Acoustic Characterization of Targets

    DTIC Science & Technology

    2008-01-01

    these technologies, however, are limited in their ability to differentiate targets from other debris in the soil . 2 Furthermore, they must heavily rely...for landmine detection in which two tones are used to insonify the soil . Here insonify is used to describe the process of exposing the target to...the surrounding soil . Because of the compliant nature of the landmine top plate, a nonlinear interaction is created between it and the soil above. It is

  11. Study on Hyperspectral Estimation Model of Total Nitrogen Content in Soil of Shaanxi Province

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Dong, Zhenyu; Chen, Xi

    2018-01-01

    The development of hyperspectral remote sensing technology has been widely used in soil nutrient prediction. The soil is the representative soil type in Shaanxi Province. In this study, the soil total nitrogen content in Shaanxi soil was used as the research target, and the soil samples were measured by reflectance spectroscopy using ASD method. Pre-treatment, the first order differential, second order differential and reflectance logarithmic transformation of the reflected spectrum after pre-treatment, and the hyperspectral estimation model is established by using the least squares regression method and the principal component regression method. The results show that the correlation between the reflectance spectrum and the total nitrogen content of the soil is significantly improved. The correlation coefficient between the original reflectance and soil total nitrogen content is in the range of 350 ~ 2500nm. The correlation coefficient of soil total nitrogen content and first deviation of reflectance is more than 0.5 at 142nm, 1963nm, 2204nm and 2307nm, the second deviation has a significant positive correlation at 1114nm, 1470nm, 1967nm, 2372nm and 2402nm, respectively. After the reciprocal logarithmic transformation of the reflectance with the total nitrogen content of the correlation analysis found that the effect is not obvious. Rc2 = 0.7102, RMSEC = 0.0788; Rv2 = 0.8480, RMSEP = 0.0663, which can achieve the rapid prediction of the total nitrogen content in the region. The results show that the principal component regression model is the best.

  12. The 1D Richards' equation in two layered soils: a Filippov approach to treat discontinuities

    NASA Astrophysics Data System (ADS)

    Berardi, Marco; Difonzo, Fabio; Vurro, Michele; Lopez, Luciano

    2018-05-01

    The infiltration process into the soil is generally modeled by the Richards' partial differential equation (PDE). In this paper a new approach for modeling the infiltration process through the interface of two different soils is proposed, where the interface is seen as a discontinuity surface defined by suitable state variables. Thus, the original 1D Richards' PDE, enriched by a particular choice of the boundary conditions, is first approximated by means of a time semidiscretization, that is by means of the transversal method of lines (TMOL). In such a way a sequence of discontinuous initial value problems, described by a sequence of second order differential systems in the space variable, is derived. Then, Filippov theory on discontinuous dynamical systems may be applied in order to study the relevant dynamics of the problem. The numerical integration of the semidiscretized differential system will be performed by using a one-step method, which employs an event driven procedure to locate the discontinuity surface and to adequately change the vector field.

  13. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil.

    PubMed

    Ke, Xiubin; Angel, Roey; Lu, Yahai; Conrad, Ralf

    2013-08-01

    The dynamics of populations and activities of ammonia-oxidizing and nitrite-oxidizing microorganisms were investigated in rice microcosms treated with two levels of nitrogen. Different soil compartments (surface, bulk, rhizospheric soil) and roots (young and old roots) were collected at three time points (the panicle initiation, heading and maturity periods) of the season. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of their amoA genes (coding for a subunit of ammonia monooxygenase), that of nitrite oxidizers (NOB) by quantifying the nxrA gene (coding for a subunit of nitrite oxidase of Nitrobacter spp.) and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by measuring the rates of potential ammonia oxidation and nitrite oxidation and by quantifying the copy numbers of amoA and nxrA transcripts. Potential nitrite oxidation activity was much higher than potential ammonia oxidation activity and was not directly affected by nitrogen amendment demonstrating the importance of ammonia oxidizers as pace makers for nitrite oxidizer populations. Marked differences in the distribution of bacterial and archaeal ammonia oxidizers, and of Nitrobacter-like and Nitrospira-like nitrite oxidizers were found in the different compartments of planted paddy soil indicating niche differentiation. In bulk soil, ammonia-oxidizing bacteria (Nitrosospira and Nitrosomonas) were at low abundance and displayed no activity, but in surface soil their activity and abundance was high. Nitrite oxidation in surface soil was dominated by Nitrospira spp. By contrast, ammonia-oxidizing Thaumarchaeota and Nitrobacter spp. seemed to dominate nitrification in rhizospheric soil and on rice roots. In contrast to soil compartment, the level of N fertilization and the time point of sampling had only little effect on the abundance, composition and activity of the nitrifying communities. The results of our study show that in rice fields population dynamics and activity of nitrifiers is mainly differentiated by the soil compartments rather than by nitrogen amendment or season. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Saturation behavior: a general relationship described by a simple second-order differential equation.

    PubMed

    Kepner, Gordon R

    2010-04-13

    The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.

  15. Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer.

    PubMed

    Rieder, R; Gellert, R; Anderson, R C; Brückner, J; Clark, B C; Dreibus, G; Economou, T; Klingelhöfer, G; Lugmair, G W; Ming, D W; Squyres, S W; d'Uston, C; Wänke, H; Yen, A; Zipfel, J

    2004-12-03

    The Alpha Particle X-ray Spectrometer on the Opportunity rover determined major and minor elements of soils and rocks in Meridiani Planum. Chemical compositions differentiate between basaltic rocks, evaporite-rich rocks, basaltic soils, and hematite-rich soils. Although soils are compositionally similar to those at previous landing sites, differences in iron and some minor element concentrations signify the addition of local components. Rocky outcrops are rich in sulfur and variably enriched in bromine relative to chlorine. The interaction with water in the past is indicated by the chemical features in rocks and soils at this site.

  16. Valorisation of N and P from waste water by using natural reactive hybrid sorbents: Nutrients (N,P,K) release evaluation in amended soils by dynamic experiments.

    PubMed

    Guaya, Diana; Valderrama, César; Farran, Adriana; Sauras, Teresa; Cortina, José Luis

    2018-01-15

    The removal of nutrients (nitrogen (N), phosphorous (P)) from waste water has become a resource recovery option in recent regulations worldwide, as observed in the European Union. Although both of these nutrients could be recovered from the sludge line, >70-75% of the N and P is discharged into the water line. Efforts to improve the nutrient recovery ratios have focused on developing low-cost technologies that use sorption processes. In this study, a natural zeolite (clinoptilolite type) in its potassium (K) form was impregnated with hydrated metal oxides and used to prepare natural hybrid reactive sorbents (HRS) for the simultaneous recovery of ammonium (NH 4 + ) and phosphate (PO 4 3- ) from treated urban waste water. Three unfertile soils (e.g., one acidic and two basic) amended with N-P-K charged HRS were leached with deionized water (e.g. to simulate infiltration in the field) at two- and three-day time intervals over 15 different leaching cycles (equivalent to 15 bed volumes). The N-P-K leaching profiles for the three charged hybrid sorbents exhibited continuous nutrient release, with their values dependent on the composition of minerals in the soils. In the basic soil that is rich in illite and calcite, the release of potassium (K + ) and ammonium (NH 4 + ) is favoured by-ion exchange with calcium (Ca 2+ ) and accordingly diminishes the release of phosphate (PO 4 3- ) due to its limited solubility in saturated calcite solutions (pH8 to 9). The opposite is true for sandy soils that are rich in albite (both acidic and basic), whereas the release of NH 4 + and K + was limited and the values of both ions measured in the leaching solutions were below 1mg/L. Their leaching solutions were poor in Ca 2+ , and the release of PO 4 3- was higher (up to 12mgP-PO 4 3- /L). The nutrient releases necessary for plant growth were provided continuously and were controlled primarily by the soil mineral dissolution rates fixing the soil aqueous solution composition (e.g. pH and ionic composition; in particular, the presence of calcite is a determinant for nutrient release, especially in alkaline soils). The N-P-K charged HRS sorbents that were used for soil amendment may be an alternative for avoiding nutrient leaching and reaching the goals of soil sustainability in agriculture and reducing the nutrient overloading of surface waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Differential settlement of a geosynthetic reinforced soil abutment : full-scale investigation : summary report.

    DOT National Transportation Integrated Search

    2015-05-01

    The Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS) uses alternating layers of closely spaced : geosynthetic reinforcement and well-compacted granular fill to support the bridge superstructure and form an integrated roadway : approach...

  18. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously. This involved an intensive C recycling within the microorganisms that was observed not only for cytosolic compounds but also for cell wall polymers. Fungal metabolism and fluxes were slower than bacterial intracellular C recycling and turnover. Furthermore, position-specific labeling of glutamate and subsequent 13C analysis of microbial phospholipid fatty acids (PLFA) revealed starvation pathways, which were only active in specific microbial groups in soils. These studies revealed that position-specific labeling enables the reconstruction of metabolic pathways of LMWOS within diverse microbial communities in complex media such as soil. Processes occurring simultaneously in soil i.e. 1) within individual, reversible metabolic pathways and 2) in various microbial groups could be traced by position-specific labeling in soils in situ. Tracing these pathways and understanding their regulating factors are crucial for soil C fluxomics, the extremely complex network of transformations towards mineralization versus the formation of microbial biomass compounds. Quantitative models to assess microbial group specific metabolic networks can be generated and parameterized by this approach. The submolecular knowledge of transformation steps and biochemical pathways in soils and their regulating factors is essential for understanding C cycling and long-term C storage in soils.

  19. BDEN: A timesaving computer program for calculating soil bulk density and water content.

    Treesearch

    Lynn G. Starr; Michael J. Geist

    1983-01-01

    This paper presents an interactive computer program written in BASIC language that will calculate soil bulk density and moisture percentage by weight and volume. Coarse fragment weights are required. The program will also summarize the resulting data giving mean, standard deviation, and 95-percent confidence interval on one or more groupings of data.

  20. Soils. Science Education Research Unit. Working Paper 201.

    ERIC Educational Resources Information Center

    Happs, John C.

    The Learning in Science Project has adopted the view that science teaching might be improved if teachers can be given some appreciation of students' views of the world and the beliefs, expectations, and language that learners bring to new learning situations. This investigation looks at the topic of soil, one of the basic resources of New Zealand…

  1. Differentiated Staffing.

    ERIC Educational Resources Information Center

    Nassau County Board of Cooperative Educational Services, Westbury, NY.

    This is a compilation of articles examining many aspects of differentiated staffing and creating a basic document for all school districts. The articles are grouped into seven sections: 1) "Why Change?"; 2) "A Consideration of Staffing Problems"; 3) "Critics and Crusaders: An Analysis of Differentiated Staffing" (subsections on concept and…

  2. Interactive effects between plant functional types and soil factors on tundra species diversity and community composition.

    PubMed

    Iturrate-Garcia, Maitane; O'Brien, Michael J; Khitun, Olga; Abiven, Samuel; Niklaus, Pascal A; Schaepman-Strub, Gabriela

    2016-11-01

    Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis : Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation-soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.

  3. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  4. Evaluation of the Feasibility of Biodegrading Explosives-Contaminated Soils and Groundwater at the Newport Army Ammunition Plant (NAAP)

    DTIC Science & Technology

    1991-06-01

    undamaged to its original location. 9 3 Biodegradation Studies The NAAP soils were used for both the basic microbiological studies and the bench scale...reactor studies. The microbiological studies were directed at measuring (1) the growth potential of bacteria present in the soil samples and (2) the...clear and odorless, and no TNT was detected in them. The detection limit for TNT in the water samples was 0.5 mg/L. Microbiological characterization

  5. Toxic Chemicals in the Soil Environment. Volume 2. Interactions of Some Toxic Chemicals/Chemical Warfare Agents and Soils

    DTIC Science & Technology

    1985-06-01

    ELEMENT. PROJECT, TASK U Oklahomar OK AREA A WORK UNIT NUMBERS and I-M-4657-10-D49 Technical Analysis & Info Office, DPG It. CONTROLLING OFFICE NAME AND...and fragmented. The data that were found resulted from research that showed evidence of a lack of understanding of the basic concepts of soil...organic matter after exhaus- tive extraction with polar and non -polar solvents." Rowever, these residues are not necessarily restricted to the organic

  6. Selective determination of heavy metals (Cd, Pb, Cr) speciation forms from hortic anthrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, Dumitru; Bulgariu, Laura; Filipov, Feodor; Astefanei, Dan; Stoleru, Vasile

    2010-05-01

    In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have been performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 and project PNCDI 2 - D5 no. 52-141 / 2008).

  7. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach.

    PubMed

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-11-01

    Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Dissipation of phenanthrene and pyrene at the aerobic-anaerobic soil interface: differentiation induced by the rhizosphere of PAH-tolerant and PAH-sensitive rice (Oryza sativa L.) cultivars.

    PubMed

    He, Yan; Xia, Wen; Li, Xinfeng; Lin, Jiajiang; Wu, Jianjun; Xu, Jianming

    2015-03-01

    A pot experiment was conducted to reveal the removal of two polycyclic aromatic hydrocarbons (PAHs) (phenanthrene, PHE, and pyrene, PYR) during rice cultivation in a paddy field. The rhizosphere effect on facilitating dissipation of PAHs varied simultaneously as a function of soil properties, PAH types, cultivation time, and genotypes within rice cultivars, with differences performed for PYR but not PHE. Changes in soil PLFA profiles evidenced that the growth of rice roots modified the dominant species within rhizosphere microbial communities and induced a selective enrichment of Gram-negative aerobic bacteria capable of degrading, thereby resulting in the differentiated dissipation of PYR. While the insignificant differences in PHE dissipation might be attributed to its higher solubility and availability under flooded condition that concealed the differences in improvement of bioavailability for microorganisms between rhizosphere and non-rhizosphere, and between both soils and both rice cultivars. Our findings illustrate that the removal of PAHs in paddy soils was more complex relative to those in dryland soils. This was possibly due to the specialty of rice roots for oxygen secretion that provides development of redox heterogeneous microbial habitats at root-soil interface under flooded condition.

  9. Differential priming of soil carbon driven by soil depth and root impacts on carbon availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Graaff, Marie-Anne; Jastrow, Julie D.; Gillette, Shay

    2013-11-15

    Enhanced root-exudate inputs can stimulate decomposition of soil carbon (C) by priming soil microbial activity, but the mechanisms controlling the magnitude and direction of the priming effect remain poorly understood. With this study we evaluated how differences in soil C availability affect the impact of simulated root exudate inputs on priming. We conducted a 60-day laboratory incubation with soils collected (60 cm depth) from under six switchgrass (Panicum virgatum) cultivars. Differences in specific root length (SRL) among cultivars were expected to result in small differences in soil C inputs and thereby create small differences in the availability of recent labilemore » soil C; whereas soil depth was expected to create large overall differences in soil C availability. Soil cores from under each cultivar (roots removed) were divided into depth increments of 0–10, 20–30, and 40–60 cm and incubated with addition of either: (1) water or (2) 13C-labeled synthetic root exudates (0.7 mg C/g soil). We measured CO2 respiration throughout the experiment. The natural difference in 13C signature between C3 soils and C4 plants was used to quantify cultivar-induced differences in soil C availability. Amendment with 13C-labeled synthetic root-exudate enabled evaluation of SOC priming. Our experiment produced three main results: (1) switchgrass cultivars differentially influenced soil C availability across the soil profile; (2) small differences in soil C availability derived from recent root C inputs did not affect the impact of exudate-C additions on priming; but (3) priming was greater in soils from shallow depths (relatively high total soil C and high ratio of labile-to-stable C) compared to soils from deep depths (relatively low total soil C and low ratio of labile-to-stable C). These findings suggest that the magnitude of the priming effect is affected, in part, by the ratio of root exudate C inputs to total soil C and that the impact of changes in exudate inputs on the priming of SOC is regulated differently in surface soil compared to subsoil.« less

  10. Variability and correlation of physical attributes of soils cultivated with cacao trees in two climate zones in southern Bahia, Brazil

    USDA-ARS?s Scientific Manuscript database

    Cacao (Theobroma cacao) is a very important crop in southern Bahia, Brazil, which needs good climate and soil conditions and management for great productivity. In this region, the culture is developed in a large variety of soils, which indicates differentiated products. The aim of this study was to ...

  11. Fine and coarse root parameters from mature black spruce displaying genetic x soil moisture interaction in growth

    Treesearch

    John E. Major; Kurt H. Johnsen; Debby C. Barsi; Moira Campbell

    2012-01-01

    Fine and coarse root biomass, C, and N mass parameters were assessed by root size and soil depths from soil cores in plots of 32-year-old black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and wet...

  12. Nematodes as Sentinels of Heavy Metals and Organic Toxicants in the Soil

    PubMed Central

    Ekschmitt, Klemens; Korthals, Gerard W.

    2006-01-01

    Field and laboratory research has repeatedly shown that free-living soil nematodes differ in their sensitivity to soil pollution. In this paper, we analyze whether nematode genera proved sensitive or tolerant toward heavy metals and organic pollutants in six long-term field experiments. We discuss overlaps between nematode physiological responses to heavy metals and to organic pollutants, which may explain why nematodes can exhibit co-tolerance toward several contaminants. We propose a simple method for separating direct effects of soil contamination on nematode populations from indirect effects mediated through the food chain. Finally, we analyze the extent to which nematodes exhibited consistent responses across the experiments analyzed. Our results show that (a) indirect effects of pollution were generally strong; (b) fewer nematode genera were tolerant than sensitive; (c) many genera, including practically all Adenophorea, exhibited a common response pattern to contaminants; and (d) several genera of the Secernentea exhibited differential tolerance toward particular pollutants. We conclude that bioindication of soil contamination should preferentially be based on tolerant, and less on sensitive, nematodes. We provide a list of nematode genera that may potentially serve as differential bioindicators for specific soil contaminants. PMID:19259425

  13. Back to the Basics: Birmingham, Alabama, Measurement and Scale

    ERIC Educational Resources Information Center

    Handley, Lawrence R.; Lockwood, Catherine M.; Handley, Nathan

    2005-01-01

    "Back to the Basics: Birmingham, Alabama" is the fourth in a series of workshops that focus on teaching foundational map reading and spatial differentiation skills. It is the second published exercise from the Back to the Basics series developed by the Wetland Education through Maps and Aerial Photography (WETMAAP) Program (see…

  14. Back to the Basics: Lake Tahoe, California/Nevada--Spatial Measurement

    ERIC Educational Resources Information Center

    Handley, Lawrence R.; Lockwood, Catherine M.; Handley, Nathan

    2006-01-01

    "Back to the Basics: South Lake Tahoe, California/Nevada" continues the series of exercises on teaching foundational map reading and spatial differentiation skills. It is the third published exercise from the Back to the Basics series developed by the Wetland Education through Maps and Aerial Photography (WETMAAP) Program. The current…

  15. FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS

    EPA Science Inventory

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...

  16. Characteristics and engineering properties of residual soil of volcanic deposits

    NASA Astrophysics Data System (ADS)

    Wibawa, Y. S.; Sugiarti, K.; Soebowo, E.

    2018-02-01

    Residual soil knowledge of volcanic-sedimentary rock products provides important information on the soil bearing capacity and its engineering properties. The residual soil is the result of weathering commonly found in unsaturated conditions, having varied geotechnical characteristics at each level of weathering. This paper summarizes the results of the research from the basic engineering properties of residual soil of volcanic-sedimentary rocks from several different locations. The main engineering properties of residual soil such as specific gravity, porosity, grain size, clay content (X-Ray test) and soil shear strength are performed on volcanic rock deposits. The results show that the variation of the index and engineering properties and the microstructure properties of residual soil have the correlation between the depths of weathering levels. Pore volume and pore size distribution on weathered rock profiles can be used as an indication of weathering levels in the tropics.

  17. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  18. A microwave systems approach to measuring root zone soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Paris, J. F.; Clark, B. V.

    1983-01-01

    Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.

  19. Use of planetary soils within CELSS: The plant viewpoint

    NASA Astrophysics Data System (ADS)

    Art Spomer, L.

    1994-11-01

    The major functions of soil relative to plant growth include retention and supply of water and minerals, provision of anchorage and support for the root, and provision of an otherwise adequate physical and chemical environment to ensure an extensive, functioning root system. The physical and chemical nature of the solid matrix constituting a soil interacts with the soil confinement configuration, the growing environment, and plant requirements to determine the soil's suitability for plant growth. A wide range of natural and manufactured terrestrial materials have proven adequate soils provided they are not chemically harmful to plants (or animals eating the plants), are suitably prepared for the specific use, and are used in a compatible confinement system. It is presumed this same rationale can be applied to planetary soils for growing plants within any controlled environment life support system (CELSS). The basic concepts of soil and soil-plant interactions are reviewed relative to using soils constituted from local planetary materials for growing plants.

  20. Effects of imidacloprid on soil microbial communities in different saline soils.

    PubMed

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  1. Study on Hyperspectral Characteristics and Estimation Model of Soil Mercury Content

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Dong, Zhenyu; Sun, Zenghui; Ma, Hongchao; Shi, Lei

    2017-12-01

    In this study, the mercury content of 44 soil samples in Guan Zhong area of Shaanxi Province was used as the data source, and the reflectance spectrum of soil was obtained by ASD Field Spec HR (350-2500 nm) Comparing the reflection characteristics of different contents and the effect of different pre-treatment methods on the establishment of soil heavy metal spectral inversion model. The first order differential, second order differential and reflectance logarithmic transformations were carried out after the pre-treatment of NOR, MSC and SNV, and the sensitive bands of reflectance and mercury content in different mathematical transformations were selected. A hyperspectral estimation model is established by regression method. The results of chemical analysis show that there is a serious Hg pollution in the study area. The results show that: (1) the reflectivity decreases with the increase of mercury content, and the sensitive regions of mercury are located at 392 ~ 455nm, 923nm ~ 1040nm and 1806nm ~ 1969nm. (2) The combination of NOR, MSC and SNV transformations combined with differential transformations can improve the information of heavy metal elements in the soil, and the combination of high correlation band can improve the stability and prediction ability of the model. (3) The partial least squares regression model based on the logarithm of the original reflectance is better and the precision is higher, Rc2 = 0.9912, RMSEC = 0.665; Rv2 = 0.9506, RMSEP = 1.93, which can achieve the mercury content in this region Quick forecast.

  2. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    PubMed Central

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  3. Lung Epithelial Healing: A Modified Seed and Soil Concept

    PubMed Central

    Brechbuhl, Heather M.; Smith, Mary Kathryn; Smith, Russell W.; Ghosh, Moumita

    2012-01-01

    Airway epithelial healing is defined as restoration of health or soundness; to cure. Our research indicates that two types of progenitor cells participate in this process: the tissue-specific stem cell (TSC) and the facultative basal progenitor (FBP). The TSC restores the epithelium to its normal structure and function. Thus, the TSC regenerates the epithelium. In contrast, the FBP-derived epithelium is characterized by regions of cellular hyperplasia and hypoplasia. Since the FBP-derived epithelium deviates from normal, we term the FBP-mediated process repair. Our work indicates that the TSC responds to signals from other epithelial cells, including the FBP. These signals instruct the TSC to proliferate or to select one of several differentiation pathways. We interpret these data in the context of Stephen Padget’s “seed and soil” paradigm. Therein, Padget explained that metastasis of a tumor, the seed, to a specific site, the soil, was determined by the growth and differentiation requirements of the tumor cell. By extending the seed and soil paradigm to airway epithelial healing, we suggest that proliferation and differentiation of the TSC, the seed, is determined by its interactions with other cell types, the soil. Based on this concept, we provide a set of suggestions for development of cell-based therapies that are directed toward chronic airways disease. PMID:22550238

  4. Calcium carbonates: induced biomineralization with controlled macromorphology

    NASA Astrophysics Data System (ADS)

    Meier, Aileen; Kastner, Anne; Harries, Dennis; Wierzbicka-Wieczorek, Maria; Majzlan, Juraj; Büchel, Georg; Kothe, Erika

    2017-11-01

    Biomineralization of (magnesium) calcite and vaterite by bacterial isolates has been known for quite some time. However, the extracellular precipitation has hardly ever been linked to different morphologies of the minerals that are observed. Here, isolates from limestone-associated groundwater, rock and soil were shown to form calcite, magnesium calcite or vaterite. More than 92 % of isolates were indeed able to form carbonates, while abiotic controls failed to form minerals. The crystal morphologies varied, including rhombohedra, prisms and pyramid-like macromorphologies. Different conditions like varying temperature, pH or media components, but also cocultivation to test for collaborative effects of sympatric bacteria, were used to differentiate between mechanisms of calcium carbonate formation. Single crystallites were cemented with bacterial cells; these may have served as nucleation sites by providing a basic pH at short distance from the cells. A calculation of potential calcite formation of up to 2 g L-1 of solution made it possible to link the microbial activity to geological processes.

  5. Basic and applied problems in developmental biology and immunobiology of cestode infections: Hymenolepis, Taenia and Echinococcus.

    PubMed

    Ito, A

    2015-02-01

    Differentiation and development of parasites, including longevity in host animals, are thought to be governed by host-parasite interactions. In this review, several topics on the developmental biology of cestode infections are discussed from immunobiological perspective with a focus on Hymenolepis, Taenia and Echinococcus infections. The basic premise of this review is that 'differentiation and development of cestodes' are somehow affected by host immune responses with an evolutionary history. © 2014 John Wiley & Sons Ltd.

  6. Leadership for Differentiating Schools & Classrooms.

    ERIC Educational Resources Information Center

    Tomlinson, Carol Ann; Allan, Susan Demirsky

    Differentiation is simply a teacher attending to the learning needs of a particular student or small group of students, rather than teaching a class as though all individuals in it were basically alike. This book explores in 10 chapters how school leaders can develop responsive, personalized, and differentiated classrooms: (1) "Understanding…

  7. Product and Quotient Rules from Logarithmic Differentiation

    ERIC Educational Resources Information Center

    Chen, Zhibo

    2012-01-01

    A new application of logarithmic differentiation is presented, which provides an alternative elegant proof of two basic rules of differentiation: the product rule and the quotient rule. The proof can intrigue students, help promote their critical thinking and rigorous reasoning and deepen their understanding of previously encountered concepts. The…

  8. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil.

    PubMed

    Al-Sadi, Abdullah M; Al-Oweisi, Fatma A; Edwards, Simon G; Al-Nadabi, Hamed; Al-Fahdi, Ahmed M

    2015-07-28

    Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T. asperellum, T. ghanense, T. longibrachiatum and T. orientalis.

  9. Heavy metals in garden soils along roads in Szeged, Hungary

    NASA Astrophysics Data System (ADS)

    Szolnoki, Zsuzsanna; Farsang, Andrea

    2010-05-01

    The soils of the urban environment, owing to the various anthropogenic activities, can be contaminated by heavy metals. The traffic is well-known for more decades to be main source of heavy metals mostly in cities. The accumulation of these elements can have different effects, either directly endangering the natural soil functions, or indirectly endangering the biosphere by bio-accumulation and inclusion in the food chain. The hobby gardens and the vegetable gardens directly along roads can be potential risky for people since unknown amount of heavy metals can be accumulated into organization of local residents due to consumption of vegetables and fruits grown in their own garden. The aim of this study was to determine the heavy metal content of garden soils directly along roads with heavy traffic in order to assess possible risk for human health. The total content and the mobile content of Cd, Co, Cr, Cu, Ni, Pb and Zn have been determined in samples from garden soils along 5 busy roads of Szeged, South Hungary. Enrichment factor has been calculated with the help of control soil samples far from roads. The soil properties basically influencing on metal mobility have also been examined. Finally, the human health risk of these garden soils has been modelled by determination of health risk quotient (HRQ). As a result of our investigations, it can be claimed that mostly Cu, Zn and to a lesser degree the Ni, Cr and Pb accumulated in garden soils along roads depending on the traffic density. In general, the topsoils (0-10 cm) had higher amount of these metals rather than the subsoils (40-50 cm). Ni of these metals has approached; Cu has exceeded limit value while Pb is under it. Cd is very high in both soils along roads and control ones far from roads. Garden soils along the roads have such basic soil parameters (pH, mechanical soil type, humus content) that prove fairly high metal-binding capacity for these soils. Total risk of usage of these gardens (ingestion of soil, dermal contact, consumption of vegetables) has not exceeded the moderate level in normal case. However, the degree of risk has considerably increased if you consume exclusively vegetables in contaminated garden soils. In this case the risk can be relatively high for the more sensitive children.

  10. Soil chemical and physical properties that differentiate urban land-use and cover types

    Treesearch

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  11. Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles

    ERIC Educational Resources Information Center

    Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick

    2010-01-01

    Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.

  12. Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians

    Treesearch

    Barton D. Clinton

    2003-01-01

    Small canopy openings often alter understory microclimate, leading to changes in forest structure and composition. It is generally accepted that physical changes in the understory (i.e., microclimatic) due to canopy removal drive changes in basic forest processes, particularly seedling recruitment which is intrinsically linked to soil moisture availability, light and,...

  13. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].

    PubMed

    Murase, Kenya

    2014-01-01

    Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.

  14. A result on differential inequalities and its application to higher order trajectory derivatives

    NASA Technical Reports Server (NTRS)

    Gunderson, R. W.

    1973-01-01

    A result on differential inequalities is obtained by considering the adjoint differential equation of the variational equation of the right side of the inequality. The main theorem is proved using basic results on differentiability of solutions with respect to initial conditions. The result is then applied to the problem of determining solution behavior using comparison techniques.

  15. [Interrelationships between soil fauna and soil environmental factors in China: research advance].

    PubMed

    Wang, Yi; Wei, Wei; Yang, Xing-zhong; Chen, Li-ding; Yang, Lei

    2010-09-01

    Soil fauna has close relations with various environmental factors in soil ecosystem. To explore the interrelationships between soil fauna and soil environmental factors is of vital importance to deep understand the dynamics of soil ecosystem and to assess the functioning of the ecosystem. The environmental factors affecting soil fauna can be classified as soil properties and soil external environment. The former contains soil basic physical and chemical properties, soil moisture, and soil pollution. The latter includes vegetation, land use type, landform, and climate, etc. From these aspects, this paper summarized the published literatures in China on the interrelationships between soil fauna and soil environmental factors. It was considered that several problems were existed in related studies, e.g., fewer researches were made in integrating soil fauna's bio-indicator function, research methods were needed to be improved, and the studies on the multi-environmental factors and their large scale spatial-temporal variability were in deficiency. Corresponding suggestions were proposed, i.e., more work should be done according to the practical needs, advanced experiences from abroad should be referenced, and comprehensive studies on multi-environmental factors and long-term monitoring should be conducted on large scale areas.

  16. Cytochemical evaluation of the Guard procedure a regressive staining method for demonstrating chromosomal basic proteins. I. Effects of fixation, blocking reactions, selective extractions, and polyacid "differentiation".

    PubMed

    Cowden, R R; Rasch, E M; Curtis, S K

    1976-08-12

    Appropriately fixed preparations stained by a modification of the Guard (1959) reaction for "sex chromatin" display selective staining of interphase chromatin and mitotic or meiotic chromosomes. This is a regressive staining method which seems to depend on the selective displacement of an acidic dye from less basic structures, and retention of the dye at more basic sites. The results obtained with the reaction can be controlled by the length of time that the preparations are "differentiated" in solutions containing phosphomolybdic and phosphotungstic acids (polyacids). After three- or four-hour exposures to polyacid solutions, all chromatin is stained. However, with longer differentiation, "condensed" chromatin can be stained preferentially. Of a number of fixatives investigated, only 10% formalin, ethanol-acetic acid (3:1), and Bouin's solution proved useful. Others resulted in diminished specificity or a total loss of selectivity. The most intense staining was obtained after formalin fixation. Less intense dyebinding was observed after fixation in 3:1 - probably due to extraction of some histone fractions-and the least amount of dye was bound in Bouin's-fixed chromatin - probably due to blockage of arginine residues by picric acid. The reaction was not affected by enzymatic removal of nucleic acids or the extraction of lipids. It was diminished by treatment with trypsin or weak acetylation, and it was completely prevented by strong acetylation, deamination, or extraction of basic proteins with HCl. The results presented suggest that the modified Guard (1959) procedure selectively demonstrates basic nucleoproteins. Further, by the use of regressive differentiation in polyacid solutions, the retention of dye in more condensed chromatin can be favored.

  17. Erodibility of selected soils and estimates of sediment yields in the San Juan Basin, New Mexico

    USGS Publications Warehouse

    Summer, Rebecca M.

    1981-01-01

    Onsite rainfall-simulation experiments were conducted to derive field-erodibility indexes for rangeland soils and soils disturbed by mining in coal fields of northwestern New Mexico. Mean indexes on rangeland soils range from 0 grams (of detached soil) on dune soil to 121 grams on wash-transport zones. Mean field-erodibility-index values of soils disturbed by mining range from 16 to 32 grams; they can be extrapolted to nearby coal fields where future mining is expected. Because field-erodibility-index data allow differentiation of erodibilities across a variable landscape, these indexes were used to adjust values of K, the erodibility factor of the Universal Soil Loss Equation. Estimates of soil loss and sediment yield were then calculated for a small basin following mining. (USGS)

  18. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland

    NASA Astrophysics Data System (ADS)

    Cai, Jiangping; Luo, Wentao; Liu, Heyong; Feng, Xue; Zhang, Yongyong; Wang, Ruzhen; Xu, Zhuwen; Zhang, Yuge; Jiang, Yong

    2017-12-01

    Atmospheric nitrogen (N) deposition can result in soil acidification and reduce soil acid buffering capacity. However, it remains poorly understood how changes in precipitation regimes with elevated atmospheric N deposition affect soil acidification processes in a water-limited grassland. Here, we conducted a 9-year split-plot experiment with water addition as the main factor and N addition as the second factor. Results showed that soil acid buffering capacity significantly decreased with increased N inputs, mainly due to the decline of soil effective cation exchange capacity (ECEC) and exchangeable basic cations (especially Ca2+), indicating an acceleration of soil acidification status in this steppes. Significant interactive N and water effects were detected on the soil acid buffering capacity. Water addition enhanced the soil ECEC and exchangeable base cations and thus alleviated the decrease of soil acid buffering capacity under N addition. Our findings suggested that precipitation can mitigate the impact of increased N deposition on soil acidification in semi-arid grasslands. This knowledge should be used to improve models predicting soil acidification processes in terrestrial ecosystems under changing environmental conditions.

  19. Planning and problem-solving training for patients with schizophrenia: a randomized controlled trial

    PubMed Central

    2011-01-01

    Background The purpose of this study was to assess whether planning and problem-solving training is more effective in improving functional capacity in patients with schizophrenia than a training program addressing basic cognitive functions. Methods Eighty-nine patients with schizophrenia were randomly assigned either to a computer assisted training of planning and problem-solving or a training of basic cognition. Outcome variables included planning and problem-solving ability as well as functional capacity, which represents a proxy measure for functional outcome. Results Planning and problem-solving training improved one measure of planning and problem-solving more strongly than basic cognition training, while two other measures of planning did not show a differential effect. Participants in both groups improved over time in functional capacity. There was no differential effect of the interventions on functional capacity. Conclusion A differential effect of targeting specific cognitive functions on functional capacity could not be established. Small differences on cognitive outcome variables indicate a potential for differential effects. This will have to be addressed in further research including longer treatment programs and other settings. Trial registration ClinicalTrials.gov NCT00507988 PMID:21527028

  20. Lesson Plans for Teaching Basic Vocational Agriculture. Section III. Introduction to Soil Management and Classification.

    ERIC Educational Resources Information Center

    McCully, James S., Jr., Comp.

    This publication, one of five sections, was developed for use in first and second year basic agriculture courses in secondary schools in Mississippi. The five lessons focus on the measurement and description of property and the classification of land. The purposes of the lessons are to (1) introduce the units and methods used to measure distance…

  1. On the sputter alteration of regoliths of outer solar system bodies

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce

    1987-01-01

    Several processes that are expected to occur when the porous regoliths of outer solar system bodies (without atmospheres) are subjected to energetic ion bombardment are discussed. The conclusions reached in much of the literature addressing sputtering are quantitatively or qualitatively incorrect because effects of soil porosity have been neglected. It is shown theoretically and experimentally that porosity reduces the effective sputtering yield of a soil by more than an order of magnitude. Between 90 and 97% of the sputtered atoms are trapped within the regolith, where they are factionated by differential desorption. Experiments indicate that more volatile species have higher desorption probabilities. This process is the most important way in which alteration of chemical and optical properties occurs when a regolith is sputtered. When a basic silicate soil is irradiated these effects lead to sputter-deposited films enriched in metallic iron, while O, Na and K are preferentially lost. The Na and K are present in the atmosphere above the sputtered silicate in quantities much greater than their abundances in the regolith. Icy regoliths of SO2 should be enriched in elemental S and/or S2O. This prediction is supported by the probable identification of S2O and polysulfur oxide bands in the IR spectra of H-sputtered SO2 reported by Moore. When porous mixtures of water, ammonia and methane frosts are sputtered, the loss of H and surface reactions of C, N and O in the deposits should produce complex hydrocarbons and carbohydrates, some of which may be quite dark. Such reactions may have played a role in the formation of the matrix material of carbonaceous chondrites prior to agglomeration.

  2. The Vapor Deposition Model of Space Weathering: A Strawman Paradigm for the Moon

    NASA Astrophysics Data System (ADS)

    Hapke, Bruce W.

    1998-01-01

    Understanding space weathering on the lunar surface is essential to solving a number of major problems, including correctly interpreting lunar remote-sensing observations, understanding physical and chemical processes in the lunar regolith, and extrapolating to other bodies, especially Mercury, the asteroids, and the parent bodies of the ordinary chondrites. Hence, it is of great importance to correctly identify the process or processes that dominate lunar space weathering. The vapor deposition model postulates that lunar space weathering occurs as a result of the production of submicrscopic metallic iron (SMFe, also called superparamagnetic iron and nanophase iron) particles in the regolith by the intrinsic differentiation that accompanies the deposition of silicate vapor produced by both solar wind sputtering and micrometeorite impacts. This is the only process that has been demonstrated repeatedly by laboratory experiments to be capable of selectively producing SMFe. Hence, at present, it must be regarded as the leading contender for the correct model of lunar space weathering. This paper reviews the features of the vapor deposition model. The basic mechanism of the model relies on the fact that the porous microrelief of the lunar regolith allows most of the vapor produced by sputtering and impacts to be retained in the soil, rather than escaping from the Moon. As the individual vapor atoms impact the soil grain surfaces, they are first weakly bound by physical adsorption processes, and so have a finite probability of desorbing and escaping. Since the O is the most volatile, it escapes preferentially. The remaining atoms become chemically bound and form amorphous coatings on lunar soil grains. Because Fe is the most easily reduced of the major cations in the soil, the O deficiency manifests itself in the form of interstitial Fe0 in the glass deposits. Subsequent heating by impacts allows the Feo atoms to congregate together by solid-state diffusion to form SMFe grains. The impacts dislodge some of the coatings, which form an additional component of the soil, and also shock-weld the mineral grains, impact-vitrified glass, and vapor-deposited glass into agglutinates. Glass generated by impact vitrification probably plays a negligible role in lunar optical properties.

  3. DOES NITROGEN PARTITIONING PROMOTE SPECIES DIVERSITY IN ARCTIC TUSSOCK TUNDRA?

    EPA Science Inventory

    We used 15N soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most productive species were well differentiated with respect ...

  4. Dialogic and integrated approach to promote soils at different school levels: a Brazilian experience

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole

    2017-04-01

    From ancient civilizations to present technological societies, soil is the material and immaterial ground of our existence. Soil is essential to life as are water, air and sun light. Nevertheless, it is overlooked and has its functions and importance not known and recognized by people. In formal education and in most school curricula, soil contents are not approached in the same way and intensity other environmental components are. In its essence, soils are an interdisciplinary subject, crossing over different disciplines. It has a great potential as unifying theme that links and synthesizes different contents and areas of knowledge, especially hard sciences as physics, chemistry and biology. Furthermore, soils are familiar and tangible to everyone, making them a meaningful subject that helps to build an efficient learning process. The challenge remains on how to bring such teaching-learning possibilities to formal education at all levels. Soil education deals with the significance of soil to people. What makes soil meaningful? What are the bases for effective learning about soil? The answers are very much related with subjective perceptions and life experiences carried by each individual. Those dimensions have been considered by the pedagogical approach based on Paulo Freire's socio constructivism which considers social inclusion, knowledge building, horizontal learning and collective action. This approach has been applied within the soil (science) education spaces of the Federal University of Viçosa, Minas Gerais, Brazil, both with university students and basic education pupils. At the university an average of 200 students per semester follow a 60 hours Soil Genesis course. With primary and secondary schools the activities are developed through the Soil Education Programme (PES) of the Earth Sciences Museum. In the classes and activities, materials, methods and learning strategies are developed to stimulate involvement, dialogues and exchange of experiences and knowledge between students themselves and between students and teachers in order to build and re-build their understanding of soils. Those strategies include hands-on activities, field visits, landscape observations, collective productions and artistic works among other strategies. They are done in a dialogic and horizontal way where each ones' perceptions and experiences is valued and considered for the building of knowledge on soils. Good achievements have been obtained when university students are involved in outreach activities aimed to basic education schools and to general public, in a "teach to learn" approach.

  5. Granular Mechanics and Surface Systems Lab

    NASA Technical Reports Server (NTRS)

    Randle, Leah

    2007-01-01

    The cratering of sand under gas jets is observed to further understanding of soil in hopes to further understand lunar soil. Lunar soil is important to understand because it is causing problems with the materials taken into space including the shuttle. Lunar soil is not rounded like beach sand. Lunar soil is sharp like little particles of glass, and some times when blown they can hook on to one another and become bigger particles. The experiments are designed to help to understand some of the basic physics in how the shuttle jets will interact with lunar soil and how to control the lunar soil. These experiments investigate the diameter of the gas jet and the size of the sand grains to determine how these parameters affect the erosion rate and the cratering processes. Therefore, the experiments preformed will point out what is dependent and what is independent.

  6. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  7. The effects of grazing intensity on soil processes in a Mediterranean protected area.

    PubMed

    Panayiotou, Evaggelia; Dimou, Maria; Monokrousos, Nikolaos

    2017-08-08

    We investigated the temporal and among-site differentiation of soil functionality properties in fields under different grazing intensities (heavy and light) and compared them to those found in their adjacent hedgerows, consisting either of wooden shrubs (Rubus canescens) or of high trees (Populus sp.), during the cold and humid seasons of the year. We hypothesized that greater intensity of grazing would result in higher degradation of the soil system. The grazing factor had a significant effect on soil organic C and N, microbial biomass C, microbial biomass N, microbial activity, and β-glucosidase, while acid phosphatase and urease activity were not found to differ significantly among the management systems. The intensity of grazing affected mostly the chemical properties of soil (organic C and N) and altered significantly the composition of the soil microbial community, as lower C:N ratio of the microbial biomass indicates the dominance of bacteria over fungi in the heavily grazed fields. All estimated biological variables presented higher values in the humid period, although the pattern of differentiation was similar at both sampling times, revealing that site-specific variations were more pronounced than the time-specific ones. Our results indicate that not all C, N, and P dynamics were equally affected by grazing. Management plans applied to pastures, in order to improve soil quality properties and accelerate passive reforestation, should aim at the improvement of soil parameters related primarily to C and secondly to N cycle.

  8. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    PubMed

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance.

  9. Soil salinity detection. [Starr and Cameron Counties, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J.; Gausman, H. W.; Leamer, R. W.; Gerbermann, A. H.; Everitt, J. H.; Cuellar, J. A. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Growth forms and herbage biomass production varied considerably among saline and nonsaline soil range sites in Starr County. Grasses on saline soil sites were shallow-rooted and short whereas on nonsaline sites there was an intermixture of short and midgrass species. Differentiation between primarily undisturbed saline and nonsaline rangelands, in Starr County, is partially possible using film optical density readings from Skylab imagery. Differentiation among eight saline and nonsaline soil sites in Cameron County, using black and white and color film was not possible according to statistical results from both DMRT and correlation analysis. Linear analysis showed that Bendix 24-band MSS data (aircraft) collected at 1700 m and 4800 m, as well as Skylab and LANDSAT-1 MSS data, were significantly correlated to electrical conductivity readings. In Starr County, the best spectral band for detection of saline soil levels, using black and white SO-022 film, was in the 0.6 to 0.7 micron spectral region. In Cameron County, the best spectral bands for detection of saline soil levels were the 2.3 to 2.43 micron, 0.72 to 0.76 micron, 0.69 to 1.75 micron, and 0.7 to 1.1 micron spectral regions.

  10. Characterization and Molecular Interpretation of the Photosynthetic Traits of Lonicera confusa in Karst Environment

    PubMed Central

    Gan, Lu; Fu, Chunhua; Zhang, Libin; Yu, Longjiang; Li, Maoteng

    2014-01-01

    Lonicera confusa was a medical plant which could adapt to the Ca-rich environment in the karst area of China. The photosynthesis, relative chlorophyll content,differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) of L. confusa that cultivated in calcareous and sandstone soils were investigated. The results showed that the relative chlorophyll content and net photosynthesis rate of L. confusa in calcareous soil are much higher than that planted in sandstone soil, the higher content of calcium might play a role in keeping the chloroplast from harm and showed higher photosynthesis rate. The transpiration and stomata conductance were decreased in calcareous soil, which might result from the closure of stomata. The GeneFishing and proteomic results showed that the expression of DEGs and DEPs were critical for photosynthesis and stomata closure, such as RuBisCO, photosynthetic electron transfer c and malate dehydrogenase varied in the leaves of L. confusa that cultivated in different soils. These DEGs or DEPs were further found to be directly or indirectly regulated by calcium sensor proteins. This study enriched our knowledge of the molecular mechanism of high net photosynthesis rate and lower transpiration of L. confusa that cultivated in the calcareous soil in some degree. PMID:24959829

  11. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis.

    PubMed

    Voltas, Jordi; Lucabaugh, Devon; Chambel, Maria Regina; Ferrio, Juan Pedro

    2015-12-01

    The relevance of interspecific variation in the use of plant water sources has been recognized in drought-prone environments. By contrast, the characterization of intraspecific differences in water uptake patterns remains elusive, although preferential access to particular soil layers may be an important adaptive response for species along aridity gradients. Stable water isotopes were analysed in soil and xylem samples of 56 populations of the drought-avoidant conifer Pinus halepensis grown in a common garden test. We found that most populations reverted to deep soil layers as the main plant water source during seasonal summer droughts. More specifically, we detected a clear geographical differentiation among populations in water uptake patterns even under relatively mild drought conditions (early autumn), with populations originating from more arid regions taking up more water from deep soil layers. However, the preferential access to deep soil water was largely independent of aboveground growth. Our findings highlight the high plasticity and adaptive relevance of the differential access to soil water pools among Aleppo pine populations. The observed ecotypic patterns point to the adaptive relevance of resource investment in deep roots as a strategy towards securing a source of water in dry environments for P. halepensis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Differential geometric methods in system theory.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.

    1971-01-01

    Discussion of certain problems in system theory which have been or might be solved using some basic concepts from differential geometry. The problems considered involve differential equations, controllability, optimal control, qualitative behavior, stochastic processes, and bilinear systems. The main goal is to extend the essentials of linear theory to some nonlinear classes of problems.

  13. [M.S. Gilyarov's Scientific School of Soil Zoology].

    PubMed

    Chesnova, L V

    2005-01-01

    The role of M.S. Gilyarov's scientific school in the development of the subject and methodology of a new complex discipline formed in the mid-20th century--soil zoology--was considered. The establishment and evolution of the proper scientific school was periodized. The creative continuity and development of the basic laws and technical approaches included in the teacher's scientific program was demonstrated by scientific historical analysis.

  14. Effects of afforestation on soil structure formation in two climatic regions of the Czech Republic

    Treesearch

    V. Podrazsky; O. Holubik; J. Vopravil; T. Khel; W. K. Moser; H. Prknova

    2015-01-01

    The aim of this study was to determine the effect of agricultural land afforestation on soil characteristics. Two sites in two regions of the Czech Republic were evaluated, at lower as well as higher submountain elevations: in the regions of the Orlicke hory Mts. and Kostelec nad Cernymi lesy, afforested, arable and pasture lands were compared for basic chemical and...

  15. THEORETICAL BACKGROUND AND DERIVATION OF SELECTED EQUATIONS FROM THE REPORT STUDY OF BLAST EFFECTS IN SOIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlers, O.K.; Grum, A.F.

    1959-03-27

    An amplification and clarification of the report Study of Blast Effects in Soil by M. A. Chaszeyka and F. B. Porzel of the Armour Research Foundation is presented. The basic thermodynamic relationships that are essential to the understanding of the Armour Report are given, and the more complex equations of the Armour Report are derived. (auth)

  16. Plant uptake of elements in soil and pore water: field observations versus model assumptions.

    PubMed

    Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo

    2013-09-15

    Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Evidence for ecological divergence across a mosaic of soil types in an Amazonian tropical tree: Protium subserratum (Burseraceae).

    PubMed

    Misiewicz, Tracy M; Fine, Paul V A

    2014-05-01

    Soil heterogeneity is an important driver of divergent natural selection in plants. Neotropical forests have the highest tree diversity on earth, and frequently, soil specialist congeners are distributed parapatrically. While the role of edaphic heterogeneity in the origin and maintenance of tropical tree diversity is unknown, it has been posited that natural selection across the patchwork of soils in the Amazon rainforest is important in driving and maintaining tree diversity. We examined genetic and morphological differentiation among populations of the tropical tree Protium subserratum growing parapatrically on the mosaic of white-sand, brown-sand and clay soils found throughout western Amazonia. Nuclear microsatellites and leaf morphology were used to (i) quantify the extent of phenotypic and genetic divergence across habitat types, (ii) assess the importance of natural selection vs. drift in population divergence, (iii) determine the extent of hybridization and introgression across habitat types, (iv) estimate migration rates among populations. We found significant morphological variation correlated with soil type. Higher levels of genetic differentiation and lower migration rates were observed between adjacent populations found on different soil types than between geographically distant populations on the same soil type. PST -FST comparisons indicate a role for natural selection in population divergence among soil types. A small number of hybrids were detected suggesting that gene flow among soil specialist populations may occur at low frequencies. Our results suggest that edaphic specialization has occurred multiple times in P. subserratum and that divergent natural selection across edaphic boundaries may be a general mechanism promoting and maintaining Amazonian tree diversity. © 2014 John Wiley & Sons Ltd.

  18. Examination of the Film "My Father and My Son" According to the Basic Concepts of Multigenerational Family Therapy

    ERIC Educational Resources Information Center

    Acar, Tulin; Voltan-Acar, Nilufer

    2013-01-01

    The aim of this study was to evaluate the basic concepts of multigenerational Family Therapy and to evaluate the scenes of the film ''My Father and My Son'' according to these concepts. For these purposes firstly basic concepts of Multigenerational Family Therapy such as differentiation of self, triangles/triangulation, nuclear family emotional…

  19. Limiting Factors for Agricultural Production and Differentiation of Soil Management in Romania

    NASA Astrophysics Data System (ADS)

    Ioana Moraru, Paula; Rusu, Teodor; Bogdan, Ileana; Ioan Pop, Adrian; Pop, Horia

    2017-04-01

    Romania's land area is 23,839,100 ha; 0.16% of the world's surface. Worldwide, Romania is ranked #83 for areal extent, and it consitutes 4.81% of the Europe's surface (ranked #12). Romania has 14,856,800 ha of agricultural land which represents 62.3% of the total surface; 0.65 ha per capita. At the national level, 72.5% and 27.5% of soils in Romania can be broadly classed as very poor and good/very good, respectively, based on intrinsic soil characteristics, climate, topography, and ground water. Romania has a specific geographical situation, namely: i) Romanian territory is located in the southeast portion of Central Europe at the cross roads of several high and low pressure centers that form regularly at the borders. The influence of these air masses is altered by the presence in the central regions of the Carpathian mountain chain resulting in a diverse climate with average annual rain fall amounts between 350 to 1,400 mm and average annual temperatures between 2 and 11.5°C. ii) At the national level, almost all soils in the international classification system are present in Romania; each soil type having specific properties and characteristics. iii) On approximately 12.5 million ha (7.5 million ha arable), soil fertility is adversely affected by erosion, acidity, low humus content, extreme texture (clay, sand), excessive moisture, chemical pollution etc. These natural and anthropogenic factors dramatically influence agricultural production. Furthermore, soil, climate, topography, etc. vary widely not only across the country, but also on smaller scales, even across fields within the same farm. In Steppe zone limitative climatic factors, which require differentiation towards soil management use, include: long periods of drought, high temperatures, high frequency winds (wind erosion in area of sands), low relative air humidity, and harsh frosts during winter. Negative phenomena most commonly encountered in this area are salinization, excess water, temporary deficit of rainfall, and poor to very poor supply of humus, phosphorus, and potassium. In Forest-Steppe zone limiting factors of the area include: drought, erosion, temporary excessive moisture, soil compaction, slope, exposition, groundwater depth, occurrence of white frost period, and early/late frosts; climate is also highly variable from one sub-area to another. Irrigation and water conservation measures in the soil have a very important role in the forest steppe. Most lands in the forest steppe are situated on slopes so the tillage system must include anti-erosion agrotechnics. Furthermore, finding the optimal timing of tillage is very important for avoiding secondary compaction of the soil. In Forest area limiting factors of the area include mixed relief, reduced field surface, excess surface moisture, lower soil fertility compared to previously studied areas, soil erosion, landslides, primary and secondary soil compaction, soil acidity, pronounced diverse spectrum of weeds and vegetative development opportunities compared to previous areas. Harnessing the sustainable arable lands on slopes and their conservation implies that the organization of the territory and differentiated soil management will achieve the following: i) cultivation of an assortment of plants suitable for the purposes and conditions offered by the slopes and design of crop rotations with an anti-erosion role; ii) use of anti-erosion culture systems on slopes, level curve direction in strips, grassed strips and arable terraces; iii) application of differentiated soil management elements, respecting regional planning projects; iv) execution of soil tillage on the general direction of level curves; v) adaptation of agro-components such as: fertilization, integrated control of weeds (especially herbicide application), and the maintenance, mechanization, and harvesting of the specific land. Acknowledgments This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0884.

  20. GENDER BASED DIFFERENCES IN ENDOCRINE AND REPRODUCTIVE TOXICITY

    EPA Science Inventory

    Basic differences in male versus female reproductive physiology lead to differentials in their respective susceptibilities to chemical insult as evidenced by a variety of observations. As individuals undergo maturation from prenatal sex differentiation through pubertal developme...

  1. Application of basic physics principles to clinical neuroradiology: differentiating artifacts from true pathology on MRI.

    PubMed

    Hakky, Michael; Pandey, Shilpa; Kwak, Ellie; Jara, Hernan; Erbay, Sami H

    2013-08-01

    This article outlines artifactual findings commonly encountered in neuroradiologic MRI studies and offers clues to differentiate them from true pathology on the basis of their physical properties. Basic MR physics concepts are used to shed light on the causes of these artifacts. MRI is one of the most commonly used techniques in neuroradiology. Unfortunately, MRI is prone to image distortion and artifacts that can be difficult to identify. Using the provided case illustrations, practical clues, and relevant physical applications, radiologists may devise algorithms to troubleshoot these artifacts.

  2. Use of Lightweight Cellular Mats to Reduce the Settlement of Structure on Soft Soil

    NASA Astrophysics Data System (ADS)

    Ganasan, R.; Lim, A. J. M. S.; Wijeyesekera, D. C.

    2016-07-01

    Construction of structures on soft soils gives rise to some difficulties in Malaysia and other country especially in settlement both in short and long term. The focus of this research is to minimize the differential and non-uniform settlement on peat soil with the use of an innovative cellular mat. The behaviour and performance of the lightweight geo-material (in block form) is critically investigated and in particular the use as a fill in embankment on soft ground. Hemic peat soil, sponge and innovative cellular mat will be used as the main material in this study. The monitoring in settlement behavior from this part of research will be done as laboratory testing only. The uneven settlement in this problem was uniquely monitored photographically using spot markers. In the end of the research, it is seen that the innovative cellular mat has reduce the excessive and differential settlement up to 50% compare to flexible and rigid foundations. This had improve the stiffness of soils as well as the porous contain in cellular structure which help in allowing water/moisture to flow through in or out thus resulting in prevent the condition of floating.

  3. SaLEM (v1.0) - the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Conrad, Olaf; Günther, Andreas; Gehrt, Ernst; Baritz, Rainer; Böhner, Jürgen

    2018-04-01

    We propose the implementation of the Soil and Landscape Evolution Model (SaLEM) for the spatiotemporal investigation of soil parent material evolution following a lithologically differentiated approach. Relevant parts of the established Geomorphic/Orogenic Landscape Evolution Model (GOLEM) have been adapted for an operational Geographical Information System (GIS) tool within the open-source software framework System for Automated Geoscientific Analyses (SAGA), thus taking advantage of SAGA's capabilities for geomorphometric analyses. The model is driven by palaeoclimatic data (temperature, precipitation) representative of periglacial areas in northern Germany over the last 50 000 years. The initial conditions have been determined for a test site by a digital terrain model and a geological model. Weathering, erosion and transport functions are calibrated using extrinsic (climatic) and intrinsic (lithologic) parameter data. First results indicate that our differentiated SaLEM approach shows some evidence for the spatiotemporal prediction of important soil parental material properties (particularly its depth). Future research will focus on the validation of the results against field data, and the influence of discrete events (mass movements, floods) on soil parent material formation has to be evaluated.

  4. Processing Protocol for Soil Samples Potentially ...

    EPA Pesticide Factsheets

    Method Operating Procedures This protocol describes the processing steps for 45 g and 9 g soil samples potentially contaminated with Bacillus anthracis spores. The protocol is designed to separate and concentrate the spores from bulk soil down to a pellet that can be used for further analysis. Soil extraction solution and mechanical shaking are used to disrupt soil particle aggregates and to aid in the separation of spores from soil particles. Soil samples are washed twice with soil extraction solution to maximize recovery. Differential centrifugation is used to separate spores from the majority of the soil material. The 45 g protocol has been demonstrated by two laboratories using both loamy and sandy soil types. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol would be robust enough to use at multiple laboratories while achieving comparable recoveries. The 45 g protocol has demonstrated a matrix limit of detection at 14 spores/gram of soil for loamy and sandy soils.

  5. Processing protocol for soil samples potentially contaminated with Bacillus anthracis spores [HS7.52.02 - 514

    USGS Publications Warehouse

    Silvestri, Erin E.; Griffin, Dale W.

    2017-01-01

    This protocol describes the processing steps for 45 g and 9 g soil samples potentially contaminated with Bacillus anthracis spores. The protocol is designed to separate and concentrate the spores from bulk soil down to a pellet that can be used for further analysis. Soil extraction solution and mechanical shaking are used to disrupt soil particle aggregates and to aid in the separation of spores from soil particles. Soil samples are washed twice with soil extraction solution to maximize recovery. Differential centrifugation is used to separate spores from the majority of the soil material. The 45 g protocol has been demonstrated by two laboratories using both loamy and sandy soil types. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol would be robust enough to use at multiple laboratories while achieving comparable recoveries. The 45 g protocol has demonstrated a matrix limit of detection at 14 spores/gram of soil for loamy and sandy soils.

  6. Size-Differentiated Chemical Composition of Re-Suspended Soil Dust from the Desert Southwest United States

    EPA Science Inventory

    As part of the Desert Southwest Coarse Particulate Matter Study which characterized the composition of fine and coarse particulate matter in Pinal County, AZ, several source samples were collected from several different soil types to assist in source apportionment analysis of the...

  7. Wastewater Applications in Forest Ecosystems,

    DTIC Science & Technology

    1982-08-01

    profiles of various vegetative canopies ................ 5 4. Nitrate-N concentration in soil solution collected at 180 cm under three different...I .,-I --- ’I’ ’’ I’ ~Poplar Seedling 30- 20. 𔃻 1974 1975 1976 1977 1978 Figure 4. Nitrate-N concentration in soil solution collected at 180 cm

  8. REE Distribution in Cultivated and No Cultivated Soils in Two Viticultural Areas of Central Chile: Mineralogical, Pedological and Anthropic Influences

    NASA Astrophysics Data System (ADS)

    Castillo, P.; Townley, B.; Aburto, F.

    2017-12-01

    Within the scope of a Corfo-Innova Project (I+D Wines of Chile-University of Chile) we have recognized remarkable REE patterns in soils of two vineyards located in traditional vinicultural areas: Casablanca and Santa Cruz. Both vineyards have granitic parent rock, with similar petrographic features and REE patterns. We studied REE distribution on twelve cultivated soil profiles at each vineyard, where a full mineralogical, geochemical and pedogenic sampling and characterization was performed. To establish the effect of management no cultivated soil profiles were included from each vineyard location. REE in soil samples were measured by ICP-MS using two digestion methods: lithium metaborate/tetraborate fusion to obtain REE contents in total soil and MMI® partial extraction technique for REE contents on bioavailable phases.Soils display similar signatures of REEs respect to the rock source at both vineyards, but showing relative enrichments in soils of Casablanca and depletion in soils of Santa Cruz. Bioavailable phase data indicates a relative depletion of LREEs compared to HREEs and different anomalies for Ce (positive vs negative) in different areas of the same vineyard. Similar patterns of soils and parent rock suggest that REEs are adequate tracers of lithological source. Enrichments and/or depletions of REE patterns in soils respect to the rock source and Ce anomalies, evidence differential pedogenetic processes occurring at each sampled site. Results of bioavailable phase are coherent with the immobilization and fractionation of LREEs by stable minerals within soils as clays and Fe oxides. Mineralogical results in soil thin sections of Casablanca evidence the occurrence of Ti phases as sphene, ilmenite and rutile, which probably control the relative REE enrichment, since these minerals are considered more stable under pedogenic conditions.Finally, cultivated soils show a depleted but analogous pattern of REE regarding to no cultivated soil, indicating the REEs loss due to agricultural land use. Our preliminary hypothesis is the existence of organometallic complexes that retain REEs in natural soils, which are degraded with vinicultural management. However other factors as differential weathering rates of minerals, clays mineralogy and fractionation of REE by plants must be considered.

  9. Rich in life but poor in data: the known knowns and known unknowns of modelling how soil biology drives soil structure

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; Ogden, Mike

    2015-04-01

    Soil biology has a fascinating capacity to manipulate pore structure by altering or overcoming hydrological and mechanical properties of soil. Many have postulated, quite rightly, that this capacity of soil biology to 'engineer' its habitat drives its diversity, improves competitiveness and increases resilience to external stresses. A large body of observational research has quantified pore structure evolution accompanied by the growth of organisms in soil. Specific compounds that are exuded by organisms or the biological structures they create have been isolated and found to correlate well with observed changes to pore structure or soil stability. This presentation will provide an overview of basic mechanical and hydrological properties of soil that are affected by biology, and consider missing data that are essential to model how they impact soil structure evolution. Major knowledge gaps that prevent progress will be identified and suggestions will be made of how research in this area should progress. We call for more research to gain a process based understanding of structure formation by biology, to complement observational studies of soil structure before and after imposed biological activity. Significant advancement has already been made in modelling soil stabilisation by plant roots, by combining data on root biomechanics, root-soil interactions and soil mechanical properties. Approaches for this work were developed from earlier materials science and geotechnical engineering research, and the same ethos should be adopted to model the impacts of other biological compounds. Fungal hyphae likely reinforce soils in a similar way to plant roots, with successful biomechanical measurements of these micron diameter structures achieved with micromechanical test frames. Extending root reinforcement models to fungi would not be a straightforward exercise, however, as interparticle bonding and changes to pore water caused by fungal exudates could have a major impact on structure formation and stability. Biological exudates from fungi, bacteria or roots have been found to decrease surface tension and increase viscosity of pore water, with observed impacts to soil strength and water retention. Modelling approaches developed in granular mechanics and geotechnical engineering could be built upon to incorporate biological transformations of hydrological and mechanical properties of soil. With new testing approaches, adapted from materials science, pore scale hydromechanical impacts from biological exudates can be quantified. The research can be complemented with model organisms with differences in biological structures (e.g. root hair mutants), exudation or other properties. Coupled with technological advances that provide 4D imaging of soil structure at relatively rapid capture rates, the potential opportunities to disentangle and model how biology drives soil structure evolution and stability are vast. By quantifying basic soil hydrological and mechanical processes that are driven by soil biology, unknown unknowns may also emerge, providing new insight into how soils function.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report was prepared at the request of the Lawrence Livermore Laboratory (LLL) to provide background information for analyzing soil-structure interaction by the frequency-independent impedance function approach. LLL is conducting such analyses as part of its seismic review of selected operating plants under the Systematic Evaluation Program for the US Nuclear Regulatory Commission. The analytical background and basic assumptionsof the impedance function theory are briefly reviewed, and the role of radiation damping in soil-structure interaction analysis is discussed. The validity of modeling soil-structure interaction by using frequency-independent functions is evaluated based on data from several field tests. Finally, the recommendedmore » procedures for performing soil-structure interaction analyses are discussed with emphasis on the modal superposition method.« less

  11. High yield of functional metagenomic library from mangroves constructed in fosmid vector.

    PubMed

    Gonçalves, A C S; dos Santos, A C F; dos Santos, T F; Pessoa, T B A; Dias, J C T; Rezende, R P

    2015-10-02

    In the present study, metagenomic technique and fosmid vectors were used to construct a library of clones for exploring the biotechnological potential of mangrove soils by isolation of functional genes encoding hydrolytic enzymes. The library was built with genomic DNA from the soil samples of mangrove sediments and the functional screening of 1824 clones (~64 Mbp) was performed to detect the hydrolytic activity specific for cellulases, amylases (at acidic, neutral and basic pH), lipases/esterases, proteases, and nitrilases. Significant numbers of clones, positive for the tested enzyme activities were obtained. Our results indicate the importance and biotechnological potential of mangrove soils especially when compared to those obtained using other soil metagenomic libraries.

  12. Contemporary overview of soil creep phenomenon

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Dobak, Paweł

    2017-06-01

    Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.

  13. Hanford Soil Inventory Model (SIM-v2) Calculated Radionuclide Inventory of Direct Liquid Discharges to Soil in the Hanford Site's 200 Areas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, William E.; Zaher, U.; Agnew, S.

    The Hanford soil inventory model (SIM) provides the basic radionuclide and chemical soil inventories from historical liquid discharges to about 400 sites at the Hanford Site. Although liquid discharge inventory for chemicals is part of the SIM implementation, only radionuclide inventory is discussed here since the focus of this ECF is on providing radionuclides inputs for the composite analysis (CA) per DOE Order 435.1, Radioactive Waste Management, requirements. Furthermore, discharged inventories are only estimated for the soluble portions of the liquid discharges to waste sites/waste management areas located on the 200 Area of the Hanford Site (Central Plateau).

  14. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    USGS Publications Warehouse

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  15. [The status of soil contamination in areas of northern and northwestern Bohemia affected by pollution].

    PubMed

    Podlesáková, E; Nĕmecek, J; Vácha, R

    1999-10-20

    A regional study of soil contamination in North and Northwest immission-impacted Bohemian regions present the results of the assessment of soil loads of agricultural soils by hazardous trace elements and organic xenobiotic substances. The evaluation is based on the exceeding of background values of contaminants (upper limit of their variability). Two forms of soil loads by trace elements are differentiated, the anthropogenic and geogenic one. They occur simultaneously on the territory under study. Geogenic "loads" prevail (basalts, metallogenic zones). Anthropogenic contamination by both hazardous elements and organic xenobiotic substances occurs only in some parts of these severely immission-impacted regions.

  16. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  17. Basic mechanisms governing solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

    1976-01-01

    The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.

  18. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  19. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania

    Treesearch

    Katie P. Gaines; Jane W. Stanley; Frederick C. Meinzer; Katherine A. McCulloh; David R. Woodruff; Weile Chen; Thomas S. Adams; Henry Lin; David M. Eissenstat; Nathan Phillips

    2015-01-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process...

  20. Site preparation burning to improve southern Appalachian pine-hardwood stands: nitrogen responses in soil, soil water, and streams

    Treesearch

    Jennifer D. Knoepp; Wayne T. Swank

    1993-01-01

    Few studies have examined the consequences of site preparation burning in an ecosystem context. As Swift et al. (1993) explain in detail, a major study is being conducted in the southern Appalachians to understand the effects of a fell and bum site preparation treatment on basic ecosystem processes and the integrated response to disturbance. The intent is to determine...

  1. Soil Conservation Techniques for Hillside Farms. A Guide for Peace Corps Volunteers. Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Reprint Series No. R-62.

    ERIC Educational Resources Information Center

    Crozier, Carl

    This guide provides agricultural extensionists with basic information that will help them design plans for the conservation of soils and the management of water runoff in specific agricultural plots. It is based on experiences with small hillside farms in Honduras and takes into account the resources and constraints commonly encountered there.…

  2. Considering the spatial-scale factor when modelling sustainable land management.

    NASA Astrophysics Data System (ADS)

    Bouma, Johan

    2015-04-01

    Considering the spatial-scale factor when modelling sustainable land management. J.Bouma Em.prof. soil science, Wageningen University, Netherlands. Modelling soil-plant processes is a necessity when exploring future effects of climate change and innovative soil management on agricultural productivity. Soil data are needed to run models and traditional soil maps and the associated databases (based on various soil Taxonomies ), have widely been applied to provide such data obtained at "representative" points in the field. Pedotransferfunctions (PTF)are used to feed simulation models, statistically relating soil survey data ( obtained at a given point in the landscape) to physical parameters for simulation, thus providing a link with soil functionality. Soil science has a basic problem: their object of study is invisible. Only point data are obtained by augering or in pits. Only occasionally roadcuts provide a better view. Extrapolating point to area data is essential for all applications and presents a basic problem for soil science, because mapping units on soil maps, named for a given soil type,may also contain other soil types and quantitative information about the composition of soil map units is usually not available. For detailed work at farm level ( 1:5000-1:10000), an alternative procedure is proposed. Based on a geostatistical analysis, onsite soil observations are made in a grid pattern with spacings based on a geostatistical analysis. Multi-year simulations are made for each point of the functional properties that are relevant for the case being studied, such as the moisture supply capacity, nitrate leaching etc. under standardized boundary conditions to allow comparisons. Functional spatial units are derived next by aggregating functional point data. These units, which have successfully functioned as the basis for precision agriculture, do not necessarily correspond with Taxonomic units but when they do the Taxonomic names should be noted . At lower landscape and watershed scale ( 1:25.000 -1:50000) digital soil mapping can provide soil data for small grids that can be used for modeling, again through pedotransferfunctions. There is a risk, however, that digital mapping results in an isolated series of projects that don't increase the knowledge base on soil functionality, e.g.linking Taxonomic names ( such as soil series) to functionality, allowing predictions of soil behavior at new sites where certain soil series occur. We therefore suggest that aside from collecting 13 soil characteristics for each grid, as occurs in digital soil mapping, also the Taxonomic name of the representative soil in the grid is recorded. At spatial scales of 1:50000 and smaller, use of Taxonomic names becomes ever more attractive because at such small scales relations between soil types and landscape features become more pronounced. But in all cases, selection of procedures should not be science-based but based on the type of questions being asked including their level of generalization. These questions are quite different at the different spatial-scale levels and so should be the procedures.

  3. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil.

    PubMed

    Ramadan, Bimastyaji Surya; Sari, Gina Lova; Rosmalina, Raden Tina; Effendi, Agus Jatnika; Hadrah

    2018-07-15

    Combination of electrokinetic soil flushing and bioremediation (EKSF-Bio) technology has attracted many researchers attention in the last few decades. Electrokinetic is used to increase biodegradation rate of microorganisms in soil pores. Therefore, it is necessary to use solubilizing agents such as surfactants that can improve biodegradation process. This paper describes the basic understanding and recent development associated with electrokinetic soil flushing, bioremediation, and its combination as innovative hybrid solution for treating hydrocarbon contaminated soil. Surfactant has been widely used in many studies and practical applications in remediation of hydrocarbon contaminant, but specific review about those combination technology cannot be found. Surfactants and other flushing/solubilizing agents have significant effects to increase hydrocarbon remediation efficiency. Thus, this paper is expected to provide clear information about fundamental interaction between electrokinetic, flushing agents and bioremediation, principal factors, and an inspiration for ongoing and future research benefit. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Swelling soils in the road structures

    NASA Astrophysics Data System (ADS)

    Pruška, Jan; Šedivý, Miroslav

    2017-09-01

    There are frequent problems with the soil swelling in the road construction in the past time. This phenomenon is known for decades. This situation is notably given by insufficient knowledge of this problem and difficulties with input parameters describing the swelling process. The paper in the first part proposed regression relations to predict swelling pressure, time of swelling and swelling strain for different initial water contents for soils and improvement soils. The relations were developed by using artificial neural network and QCExpert Professional software (on the data from site investigations by GeoTec-GS, a.s. and experimental data from CTU in Prague). The advantage of the relations is based on using the results of the basic soil tests (plasticity index, consistency index and colloidal activity) as input parameters. The authors inform the technical public with their current knowledge of the problems with the soil swelling on the motorway in the second part of the paper.

  5. Dynamic Analysis of Soil Erosion in Songhua River Watershed

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    In this paper, based on RS and GIS technology and Revised Universal Soil Loss Equation (RUSLE), the soil erosion dynamic changes during the two periods of 1990 and 2010 in Bin County was analyzed by using the Landsat TM data of the two periods, so as to reveal the soil erosion spatial distribution pattern and spatial and temporal dynamic evolution rule in the region. The results showed that: the overall patterns of soil erosion were basically the same in both periods, mainly featuring slight erosion and mild erosion, with the area proportions of 80.68% and 74.71% respectively. The slight and extremely intensive erosion changing rates showed a narrowing trend; mild, moderate and intensive erosion was increasing, with a trend of increased soil erosion; mild and intensive erosion were developing towards moderate erosion and moderate and extremely intensive erosion were progressing towards intensive erosion.

  6. The impact of warfare on the soil environment

    NASA Astrophysics Data System (ADS)

    Certini, Giacomo; Scalenghe, Riccardo; Woods, William I.

    2013-12-01

    One of the most dramatic ways humans can affect soil properties is through the performance of military activities. Warfare-induced disturbances to soil are basically of three types - physical, chemical, and biological - and are aimed at causing direct problems to enemies or, more often, are indirect, undesired ramifications. Physical disturbances to soil include sealing due to building of defensive infrastructures, excavation of trenches or tunnels, compaction by traffic of machinery and troops, or cratering by bombs. Chemical disturbances consist of the input of pollutants such as oil, heavy metals, nitroaromatic explosives, organophosphorus nerve agents, dioxins from herbicides, or radioactive elements. Biological disturbances occur as unintentional consequences of the impact on the physical and chemical properties of soil or the deliberate introduction of microorganisms lethal to higher animals and humans such as botulin or anthrax. Soil represents a secure niche where such pathogens can perpetuate their virulence for decades.

  7. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    EPA Science Inventory

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  8. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation

    PubMed Central

    Vivant, Anne-Laure; Garmyn, Dominique; Gal, Laurent; Hartmann, Alain

    2015-01-01

    In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil. PMID:26002901

  9. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation.

    PubMed

    Vivant, Anne-Laure; Garmyn, Dominique; Gal, Laurent; Hartmann, Alain; Piveteau, Pascal

    2015-08-01

    In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Ecological evaluation of rangeland quality in dry subtropics of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Gasanova, A. F.

    2014-12-01

    The results of ecological evaluation of soil-landscape complexes of winter rangelands of Gobustan with the use of energy criteria are discussed. The diagnostic characteristics of soil fertility and correction coefficients for the thickness of texture of soil horizons, soil salinization, soil erosion, and microelemental composition of soils have been used to separate the soils of winter rangelands into several quality groups. A larger part of the soils belongs to the medium quality group with the mean weighted quality factor (bonitet) of 52. Special assessment scales have been suggested for the differential ecological assessment and monitoring of the rangelands. In the past 40 years, the area of steppe landscapes has decreased from 22.7 to 12%, whereas the area of semideserts has increased up to 64%. The area of best-quality soils within the studied rangelands had decreased by three times, and their average quality factor has decreased from 92 to 86.

  11. Differential distribution patterns of ammonia-oxidizing archaea and bacteria in acidic soils of Nanling National Nature Reserve forests in subtropical China.

    PubMed

    Gan, Xian-Hua; Zhang, Fang-Qiu; Gu, Ji-Dong; Guo, Yue-Dong; Li, Zhao-Qing; Zhang, Wei-Qiang; Xu, Xiu-Yu; Zhou, Yi; Wen, Xiao-Ying; Xie, Guo-Guang; Wang, Yong-Feng

    2016-02-01

    In addition to ammonia-oxidizing bacteria (AOB) the more recently discovered ammonia-oxidizing archaea (AOA) can also oxidize ammonia, but little is known about AOA community structure and abundance in subtropical forest soils. In this study, both AOA and AOB were investigated with molecular techniques in eight types of forests at surface soils (0-2 cm) and deep layers (18-20 cm) in Nanling National Nature Reserve in subtropical China. The results showed that the forest soils, all acidic (pH 4.24-5.10), harbored a wide range of AOA phylotypes, including the genera Nitrosotalea, Nitrososphaera, and another 6 clusters, one of which was reported for the first time. For AOB, only members of Nitrosospira were retrieved. Moreover, the abundance of the ammonia monooxygenase gene (amoA) from AOA dominated over AOB in most soil samples (13/16). Soil depth, rather than forest type, was an important factor shaping the community structure of AOA and AOB. The distribution patterns of AOA and AOB in soil layers were reversed: AOA diversity and abundances in the deep layers were higher than those in the surface layers; on the contrary, AOB diversity and abundances in the deep layers were lower than those in the surface layers. Interestingly, the diversity of AOA was positively correlated with pH, but negatively correlated with organic carbon, total nitrogen and total phosphorus, and the abundance of AOA was negatively correlated with available phosphorus. Our results demonstrated that AOA and AOB were differentially distributed in acidic soils in subtropical forests and affected differently by soil characteristics.

  12. Differential Abundance of Microbial Functional Groups along the Elevation Gradient from the Coast to the Luquillo Mountains

    EPA Science Inventory

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradi...

  13. Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients.

    PubMed

    Duchesne, Louis; Ouimet, Rock; Houle, Daniel

    2002-01-01

    Previous studies have shown in noncalcareous soils that acid deposition may have increased soil leaching of basic cations above the input rate from soil weathering and atmospheric depositions. This phenomenon may have increased soil acidity levels, and, as a consequence, may have reduced the availability of these essential nutrients for forest growth. Fourteen plots of the Forest Ecosystem Research and Monitoring Network in Québec were used to examine the relation between post-industrial growth trends of sugar maple (Acer saccharum Marsh.) and acid deposition (N and S), stand decline rate, and soil exchangeable nutrient concentrations. Atmospheric N and S deposition and soil exchangeable acidity were positively associated with stand decline rate, and negatively with the average tree basal area increment trend. The growth rate reduction reached on average 17% in declining stands compared with healthy ones. The results showed a significant sugar maple growth rate reduction since 1960 on acid soils. The appearance of the forest decline phenomenon in Québec can be attributed, at least partially, to soil acidification and acid deposition levels.

  14. Educational Brief: Using Space for a Better Foundation on Earth Mechanics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Dooling, Dave (Editor)

    2002-01-01

    Soils are three-phase composite materials that consist of soil, solid particles, and voids filled with water and/or air. Based on the particle-size distribution, they are generally classified as fine-grained (clays and plastic silts) and coarse-grained soils (nonplastic silts, sand, and gravel). Soil's resistance to external loadings is mainly derived from friction between particles and cohesion. Friction resistance is due to particles' surface-to-surface friction, interlocking, crushing, rearrangement, and dilation (or expansion) during shearing. Cohesion can be due to chemical cementation between particles, electrostatic and electromagnetic forces, and soil-water reaction and equilibrium. The basic factor responsible for the strength of coarse-grained soils is friction. Cohesion can be ignored. This educational brief focuses on measuring shear strength of sands (typical example of coarse-grained soils) where, for the same material, packing density is a main factor to be considered when one asks about the shear strength value. As the external load is applied, the soil's resistance is attained through shearing resistance, which causes the soil volume to increase (expand) or decrease (compress) depending on the initial packing density.

  15. Simulations of the Viking Gas Exchange Experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs: implications for the surface composition of Mars.

    PubMed

    Quinn, R; Orenberg, J

    1993-10-01

    Simulations of the Gas Exchange Experiment (GEX), one of the Viking Lander Biology Experiments, were run using palagonite and Fe-rich montmorillonite as terrestrial analogs of the Martian soil. These terrestrial analogs were exposed to a nutrient solution of the same composition as that of the Viking Landers under humid (no contact with nutrient) and wet (intimate contact) conditions. The headspace gases in the GEX sample cell were sampled and then analyzed by gas chromatography under both humid and wet conditions. Five gases were monitored: CO2, N2, O2, Ar, and Kr. It was determined that in order to simulate the CO2 gas changes of the Viking GEX experiment, the mixture of soil analog mineral plus nutrient medium must be slightly (pH = 7.4) to moderately basic (pH = 8.7). This conclusion suggests constraints upon the composition of terrestrial analogs to the Mars soil; acidic components may be present, but the overall mixture must be basic in order to simulate the Viking GEX results.

  16. Simulations of the Viking gas exchange experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs - Implications for the surface composition of Mars

    NASA Astrophysics Data System (ADS)

    Quinn, Richard; Orenberg, James

    1993-10-01

    Simulations of the Gas Exchange Experiment (GEX), one of the Viking Lander Biology Experiments, were run using palagonite and Fe-rich montmorillonite as terrestrial analogs of the Martian soil. These terrestrial analogs were exposed to a nutrient solution of the same composition as that of the Viking Landers under humid (no contact with nutrient) and wet (intimate contact) conditions. The headspace gases in the GEX sample cell were sampled and then analyzed by gas chromatography under both humid and wet conditions. Five gases were monitored: CO2, N2, O2, Ar, and Kr. It was determined that in order to simulate the CO2 gas changes of the Viking GEX experiment, the mixture of soil analog mineral plus nutrient medium must be slightly (pH = 7.4) to moderately basic (pH = 8.7). This conclusion suggests constraints upon the composition of terrestrial analogs of the Mars soil; acidic components may be present, but the overall mixture must be basic in order to simulate the Viking GEX results.

  17. Application of the digital image correlation method in the study of cohesive coarse soil deformations

    NASA Astrophysics Data System (ADS)

    Kogut, Janusz P.; Tekieli, Marcin

    2018-04-01

    Non-contact video measurement methods are used to extend the capabilities of standard measurement systems, based on strain gauges or accelerometers. In most cases, they are able to provide more accurate information about the material or construction being tested than traditional sensors, while maintaining a high resolution and measurement stability. With the use of optical methods, it is possible to generate a full field of displacement on the surface of the test sample. The displacement value is the basic (primary) value determined using optical methods, and it is possible to determine the size of the derivative in the form of a sample deformation. This paper presents the application of a non-contact optical method to investigate the deformation of coarse soil material. For this type of soil, it is particularly difficult to obtain basic strength parameters. The use of a non-contact optical method, followed by a digital image correlation (DIC) study of the sample obtained during the tests, effectively completes the description of the behaviour of this type of material.

  18. D{sub {infinity}}-differential A{sub {infinity}}-algebras and spectral sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapin, S V

    2002-02-28

    In the present paper the construction of a D{sub {infinity}}-differential A{sub {infinity}}-(co)algebra is introduced and basic homotopy properties of this construction are studied. The connection between D{sub {infinity}}-differential A{sub {infinity}}-(co)algebras and spectral sequences is established, which enables us to construct the structure of an A{sub {infinity}} -coalgebra on the Milnor coalgebra directly from the differentials of the Adams spectral sequence.

  19. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium.

    PubMed

    Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.

  20. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    PubMed Central

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  1. Effect of Harvest Residue Management on Tree Productivity and Carbon Pools during Early Stand Development in a Loblolly Pine Plantation

    Treesearch

    Chris A. Maier; Kurt H. Johnsen; Phillip Dougherty; Daniel McInnis; Pete Anderson; Steve Patterson

    2012-01-01

    Soil incorporation of postharvest forest floor or logging residues during site preparation increased mineral soil carbon (C) and nitrogen (N) concentration and had a differential effect on early stand growth in a clonal loblolly pine (Pinus taeda L.) plantation. Incorporating 25 Mg ha

  2. Atmospheric CO2 and O3 alter competition for soil nitrogen in developing forests

    Treesearch

    Donald R. Zak; Mark E. Kubiske; Kurt S. Pregitzer; Andrew J. Burton

    2012-01-01

    Plant growth responses to rising atmospheric CO2 and O3 vary among genotypes and between species, which could plausibly influence the strength of competitive interactions for soil N. Ascribable to the size-symmetric nature of belowground competition, we reasoned that differential growth responses to CO2...

  3. Stem growth and respiration in loblolly pine plantations differing in soil resource availability

    Treesearch

    Chris A. Maier

    2001-01-01

    Stem respiration and growth in 10-year-old loblolly pine (Pinus taeda L.) plantations were measured monthly during the third year of fertilization and irrigation treatments to determine whether soil resource availability differentially altered growth and respiration in stem tissue. Fertilized trees had significantly greater stem biomass, stem...

  4. Assessment of Mitigation Systems on Vapor Intrusion: Temporal Trends, Attenuation Factors, and Contaminant Migration Routes under Mitigated and Non-mitigated Conditions

    EPA Science Inventory

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor ...

  5. A new Downscaling Approach for SMAP, SMOS and ASCAT by predicting sub-grid Soil Moisture Variability based on Soil Texture

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.

    2017-12-01

    Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.

  6. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  7. Performance evaluation of a second-generation elastic loop mobility system

    NASA Technical Reports Server (NTRS)

    Melzer, K. J.; Swanson, G. D.

    1974-01-01

    Tests were conducted to evaluate the mobility performance of a second-generation Elastic Loop Mobility System (ELMS II). Performance on level test lanes and slopes of lunar soil simulant (LSS) and obstacle-surmounting and crevasse-crossing capabilities were investigated. In addition, internal losses and contact pressure distributions were evaluated. To evaluate the soft-soil performance, two basic soil conditions were tested: loose (LSS1) and dense (LSS5). These conditions embrace the spectrum of soil strengths tested during recent studies for NASA related to the mobility performance of the LRV. Data indicated that for the tested range of the various performance parameters, performance was independent of unit load (contact pressure) and ELMS II drum angular velocity, but was influenced by soil strength and ELMS pitch mode. Power requirements were smaller at a given system output for dense soil than for loose soil. The total system output in terms of pull developed or slope-climbing capability was larger for the ELMS II operating in restrained-pitch mode than in free-pitch mode.

  8. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil

    PubMed Central

    Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

    2013-01-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  9. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  10. Identification of Candidate Genes Underlying an Iron Efficiency Quantitative Trait Locus in Soybean1

    PubMed Central

    Peiffer, Gregory A.; King, Keith E.; Severin, Andrew J.; May, Gregory D.; Cianzio, Silvia R.; Lin, Shun Fu; Lauter, Nicholas C.; Shoemaker, Randy C.

    2012-01-01

    Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean (Glycine max) commercial plantings, the identification and use of iron-efficient genotypes has proven to be the best form of managing this soil-related plant stress. Previous studies conducted in soybean identified a significant iron efficiency quantitative trait locus (QTL) explaining more than 70% of the phenotypic variation for the trait. In this research, we identified candidate genes underlying this QTL through molecular breeding, mapping, and transcriptome sequencing. Introgression mapping was performed using two related near-isogenic lines in which a region located on soybean chromosome 3 required for iron efficiency was identified. The region corresponds to the previously reported iron efficiency QTL. The location was further confirmed through QTL mapping conducted in this study. Transcriptome sequencing and quantitative real-time-polymerase chain reaction identified two genes encoding transcription factors within the region that were significantly induced in soybean roots under iron stress. The two induced transcription factors were identified as homologs of the subgroup lb basic helix-loop-helix (bHLH) genes that are known to regulate the strategy I response in Arabidopsis (Arabidopsis thaliana). Resequencing of these differentially expressed genes unveiled a significant deletion within a predicted dimerization domain. We hypothesize that this deletion disrupts the Fe-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)/bHLH heterodimer that has been shown to induce known iron acquisition genes. PMID:22319075

  11. Possible Exposure Pathways During Emergencies

    EPA Pesticide Factsheets

    There are three basic ways a person may be exposed to a hazardous substance: inhalation, ingestion, or direct contact. Points of contact include groundwater or surface water; soil, sediment, or dust; air; or food.

  12. Major and trace element chemistry of Luna 24 samples from Mare Crisium

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P.; Brannon, J. C.; Aaboe, E.; Budahn, J. R.

    1978-01-01

    Atomic absorption spectrometry and instrumental neutron activation analysis were employed to analyze six Luna 24 soils for major and trace elements. The analysis revealed well-mixed soils, though size fractions of each of the soils showed quite dissimilar compositions. Thus the regolith apparently has not been extensively reworked. Noritic breccia admixed preferentially to the finest size fractions and differential comminution of one or more other soil components accounted for the observed elemental distributions as a function of grain size. The ferrobasalt composition and one or more components with higher MgO contents have been identified in the samples.

  13. 5 CFR 532.501 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of seven consecutive calendar days. Basic workweek for full time employees means the days and hours... scheduled administrative workweek. Night shift differential means the differential paid the employee when... day or in excess of 40 hours in an administrative workweek, and includes irregular or occasional...

  14. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    PubMed

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  15. Salinity and spectral reflectance of soils

    NASA Technical Reports Server (NTRS)

    Szilagyi, A.; Baumgardner, M. F.

    1991-01-01

    The basic spectral response related to the salt content of soils in the visible and reflective IR wavelengths is analyzed in order to explore remote sensing applications for monitoring processes of the earth system. The bidirectional reflectance factor (BRF) was determined at 10 nm of increments over the 520-2320-nm spectral range. The effect of salts on reflectance was analyzed on the basis of 162 spectral measurements. MSS and TM bands were simulated within the measured spectral region. A strong relationship was found in variations of reflectance and soil characteristics pertaining to salinization and desalinization. Although the individual MSS bands had high R-squared values and 75-79 percent of soil/treatment combinations were separable, there was a large number of soil/treatment combinations not distinguished by any of the four highly correlated MSS bands under consideration.

  16. Functional interpretation of representative soil spatial-temporal variability at the Central region of European territory of Russia

    NASA Astrophysics Data System (ADS)

    Vasenev, I.

    2012-04-01

    The essential spatial and temporal variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest and forest-steppe soils has been further complicated by a specific land-use history and different-direction soil successions due to environmental changes and human impacts. For demand-driven land-use planning and decision making the quantitative analysis, modeling and functional-ecological interpretation of representative soil cover patterns spatial variability is an important and challenging task that receives increasing attention from scientific society, private companies, governmental and environmental bodies. On basis of long-term different-scale soil mapping, key plot investigation, land quality and land-use evaluation, soil forming and degradation processes modeling, functional-ecological typology of the zonal set of elementary soil cover patterns (ESCP) has been done in representative natural and man transformed ecosystems of the forest, forest-steppe and steppe zones at the Central region of European territory of Russia (ETR). The validation and ranging of the limiting factors of functional quality and ecological state have been made for dominating and most dynamical components of ESCP regional-typological forms - with application of local GIS, traditional regression kriging and correlation tree models. Development, zonal-regional differentiation and verification of the basic set of criteria and algorithms for logically formalized distinguishing of the most "stable" & "hot" areas in soil cover patterns make it possible for quantitative assessment of dominating in them elementary landscape, soil-forming and degradation processes. The received data essentially expand known ranges of the soil forming processes (SFP) rate «in situ». In case of mature forests mutual for them the windthrow impacts and lateral processes make SFPs more active and complex both in soils of windthrow mounds and holes: CO2 emission increases by 30-60 %; proteolytic activities - by 50-200 %, average humification rate exceeds 100-1000 g/m2year, and the rate of aggressive fulvic acid formation - 40-300 g/m2year. The average lessivage rate may reach 2-3 kg*cm/m2year and the rate of oxalate extractable Fe2O3, Al2O3migration is 0.6-1.3 kg*cm/ m2year. Eluvial horizons can go deep on 6-18 cm per 50-150 yeas - depending on depth of initial impacts and on morphogenetic profile of background soil. The carried out analysis of Chernozem regional-typological degradation processes has shown qualitative expansion of their set. The outcomes of statistical modeling show essential amplification of dehumification processes due to current violation of traditional balances of organic matter in agrolandscapes. A drop of humus content below threshold values (4.5-6.5 % for different Chernozems) considerably reduces farming effectiveness. Mean annual rate of humus decreasing and increasing varies from 0.1 up to 1.3 g/kg per year, acidification and alkalization - from 0.01 up to 0.13 dp per year, salinity - from 5 up to 18 mg/kg per year. Succession analysis of modern evolution of natural and man-changed soils essentially increases accuracy of quantitative assessments of dominant SFPs' rate and potential, their influence on landscape and soil cover quality and diversity. Their results allow developing the regional and landscape adapted versions of automated systems of land agroecological evaluation (RASLEV) and demand-driven land-use DSS (LODSSAL).

  17. Soil moisture mapping by ground and airborne microwave radiometry

    NASA Technical Reports Server (NTRS)

    Poe, G.; Edgerton, A. T.

    1972-01-01

    Extensive ground-based and airborne investigations were undertaken in conjunction with laboratory dielectric measurements of soils and analytical modeling. Radiometric measurements were made in the vicinity of Phoenix, Arizona at observational wavelengths ranging from 0.81 to 21 cm. Ground experiments were conducted with a microwave field laboratory and airborne measurements were obtained from a CV-990 aircraft. Research activities were focused on establishing basic relationships between microwave emission and the distribution of moisture.

  18. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    Rice paddies constitute almost a fifth of global cropland and provide more than half of the world's population with staple food. At the same time, they are a major source of methane and therewith significantly contribute to the current warming of Earth's atmosphere. Despite their apparent importance in the cycling of carbon and other elements, however, the microorganisms thriving in rice paddies are insufficiently characterized with respect to their biomolecules. Hardly any information exists on human-induced alteration of biomolecules from natural microbial communities in paddy soils through varying management types (affecting, e.g., soil or water redox conditions, cultivated plants). Here, we determined the influence of different land use types on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs), which serve as molecular indicators for microbial community structures, in rice paddy (periodically flooded) and adjacent upland (non-flooded) soils and, for further comparison, forest, bushland and marsh soils. To differentiate local effects on GDGT distribution patterns, we collected soil samples in locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general, upland soil had higher crenarchaeol contents than paddy soil, which by contrast was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio, indicating the enhanced presence of methanogenic archaea, was 3-27 times higher in paddy soils compared to other soils and increased with the number of rice cultivation cycles per year. The index of tetraethers consisting of 86 carbons (TEX86) values were 1.3 times higher in upland, bushland and forest soils than in paddy soils, potentially due to differences in soil temperature. In all soils brGDGT predominated over iGDGTs with the relative abundance of brGDGTs increasing from subtropical to tropical soils. Higher branched vs. isoprenoid tetraether (BIT) values in paddy soils compared to upland soils together with higher BIT values in soils from subtropical climates indicated effects on the amounts of brGDGT induced by differences in management as well as climate. In acidic soils cyclization ratio of branched tetraethers (CBT) values correlated well with soil pH. In neutral to alkaline soils, however, no correlation but an offset in CBT between paddy and upland managed soils was detected. This is interpreted as indicating soil moisture exerting an additional control on the CBT in these soils. Lower modified methylation index of branched tetraether (MBT') values and temperatures calculated from this (TMC) in paddy soils compared to upland soils are attributed to a management-induced (e.g. enhanced soil moisture via flooding) effect on mean annual soil temperature (MST).

  19. Soils developed from marine and moraine deposits on the Billefjord coast, West Spitsbergen

    NASA Astrophysics Data System (ADS)

    Pereverzev, V. N.

    2012-11-01

    Morphogenetic features of soils developed from noncalcareous and calcareous deposits of the marine and glacial origins on the coasts of Billefjord and Petunia Bay in West Spitsbergen are studied. Grayhumus (soddy) soils develop from noncalcareous deposits; they consist of the AO-AY-C horizons and differ from analogous soils in other locations in a higher bulk content of calcium, a close to neutral reaction, and a relatively high degree of base saturation. Gray-humus residually calcareous soils (AO-AYca-Cca) developed from calcareous deposits have a neutral or slightly alkaline reaction; their exchange complex is almost completely saturated with bases. The soils that developed from both marine and moraine deposits are generally similar in their major genetic features. The profiles of all the soils are not differentiated with respect to the contents of major elements, including oxalate-soluble forms of aluminum and iron. Gley features are also absent in the profiles of these soils.

  20. 36 CFR 200.3 - Forest Service functions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and (G) Physical and resource improvements needed to develop, protect, and use all resources are built..., including the five basic resources of timber, forest soil and water, range forage, wildlife and fish habitat...

  1. Radionuclide Basics: Thorium

    EPA Pesticide Factsheets

    Thorium is a naturally occurring radioactive metal found at trace levels in soil, rocks, plants and animals. Thorium is used very little in industry, but can be found in heat-resistant alloys and paints and optical lenses.

  2. A Visual Basic program for analyzing oedometer test results and evaluating intergranular void ratio

    NASA Astrophysics Data System (ADS)

    Monkul, M. Murat; Önal, Okan

    2006-06-01

    A visual basic program (POCI) is proposed and explained in order to analyze oedometer test results. Oedometer test results have vital importance from geotechnical point of view, since settlement requirements usually control the design of foundations. The software POCI is developed in order perform the necessary calculations for convential oedometer test. The change of global void ratio and stress-strain characteristics can be observed both numerically and graphically. It enables the users to calculate some parameters such as coefficient of consolidation, compression index, recompression index, and preconsolidation pressure depending on the type and stress history of the soil. Moreover, it adopts the concept of intergranular void ratio which may be important especially in the compression behavior of sandy soils. POCI shows the variation of intergranular void ratio and also enables the users to calculate granular compression index.

  3. Hydrological connectivity: From hillslopes to watersheds

    NASA Astrophysics Data System (ADS)

    McDonnell, Jeffrey; Ameli, Ali; Coles, Anna

    2017-04-01

    Research on runoff processes has focused on the differences between the main divisions of runoff partitioning. Indeed, our major advancements in runoff theory have come with new differentiations of various forms of overland flow and subsurface stormflow. These studies of 'how runoff processes are different' have resulted in our current summaries of runoff regimes conceptually (e.g. the Variable Source Area concept) and codified in our models (e.g. TOPMODEL and its derivatives). While such process differentiation was useful as new dominant forms of runoff were "discovered" in different climates with different soils, slope morphologies and vegetation cover continued differentiation does not appear helpful for improved understanding of soil runoff dynamics and streamflow generation. We seem to have exhausted the main list of runoff classes some decades ago, with perhaps the last wave of minor updates to these processes coming in the 1980s and early 1990s in response to isotope tracing demonstrating the importance of stored water and clarifying the differences between soil water velocities and celerities. This talk explores the similarities (and not differences) between all forms of runoff. Our main thesis is that across diverse environments and scales, one key prerequisite for runoff generation exists: connectivity. We will show how the sequence of soil filling and spilling, transmission loss along the flowpath and resulting threshold runoff are all connectivity-based—and we hypothesize, common to all overland and subsurface forms of runoff. We suggest that by asking if 'all runoff processes are the same' this may be a new way to come at improved process measurement, understanding and prediction across diverse regions. We use a connectivity perspective to examine specific questions of: What can we learn about subsurface stormflow from overland flow (and vice versa)? Can we recognize things on the soil surface (where boundary conditions are visible) that may help guide new theory for the subsurface where such soil boundary controls are hidden? Examples are given from hillslope and watershed scales, frozen and unfrozen soils and field-model combinations from sites in the Georgia, South Carolina, Oregon and Saskatchewan.

  4. Aggregate Stability and Erodibility of Purple Soil on Sloping Farmland as affected by different Soil Thickness

    NASA Astrophysics Data System (ADS)

    Huang, Xinjun; Zhang, Qingwen; Chen, Shanghong; Dong, Yuequn; Xiao, Meijia; Hamed, Lamy Mamdoh Mohamed

    2017-04-01

    Soil thickness is basic limiting condition for purple soil, not only due to its effect on crop production, but also its effect on soil structure. Steady-state of soil thickness will be achieved over time, as result the soil aggregate which the key factor of soil erodibility can be enhanced as well. However, the effect of soil thickness on aggregates stability and the characteristics of soil erodibility in sloping land have not yet fully understood.A field survey was conducted in hilly area of Sichuan region located in southeast China to study the relationship between soil aggregate stability and soil erodibility on sloping farmland under different four thickness (100cm, 80cm, 60cm, 30cm) of purple soil. Based on two different sieving methods (Dry and Wet sieving), we analyzed soil aggregate stability and its effect on soil erodibility within depth of 0-30cm soil layers. The results indicated that: Water stable aggregate on sloping farmland was ranged between 37.9% to 58.6%, where it increased with increasing the soil thickness. Moreover, fractal dimension calculated from dry-sieving and wet-sieving was 2.06-2.49 and 2.70-2.85 respectively, where it decreased with decreasing the soil thickness. The overall soil erodibility was 0.05-1.00 and a negative significant correlation was found between soil aggregate stability and erodibility(P<0.01). Moreover, farmland with thick soil profile tended to be high in soil erodibility within the top soil layer (0-30cm). The results reveal that soil thickness can affect soil aggregate stability as well as erodibility. As soil thickness increased, the top soil became more stable and less erodible. Keywords:purple soil; soil thickness; soil aggregate;soil erodibility

  5. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  6. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-05-17

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing.

  7. Geometric Error Analysis in Applied Calculus Problem Solving

    ERIC Educational Resources Information Center

    Usman, Ahmed Ibrahim

    2017-01-01

    The paper investigates geometric errors students made as they tried to use their basic geometric knowledge in the solution of the Applied Calculus Optimization Problem (ACOP). Inaccuracies related to the drawing of geometric diagrams (visualization skills) and those associated with the application of basic differentiation concepts into ACOP…

  8. Differanisole A, an inducer of the differentiation of Friend leukemic cells, induces stalk cell differentiation in Dictyostelium discoideum.

    PubMed

    Kubohara, Y; Okamoto, K; Tanaka, Y; Asahi, K; Sakurai, A; Takahashi, N

    1993-05-03

    Differanisole A isolated from the conditioned medium of a soil microorganism, Chaetomium strain RB-001, is an inducer of the differentiation of the Friend leukemic cells (mouse leukemia cells). The chemical structure of this substance is very similar to that of stalk cell differentiation-inducing factor (DIF) isolated from the cellular slime mould, Dictyostelium discoideum. We examined the effects of differanisole A on Dictyostelium HM44 cells, a mutant strain which is defective in DIF production, and found this substance to be an inducer of stalk cell differentiation in D. discoideum.

  9. Soil erodibility for water erosion: A perspective and Chinese experiences

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  10. Effect of addition of GGBS and lime in soil stabilisation for stabilising local village roads in Thanjavur region

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Udhayakumar, T.; Dinesh, S.; Venkatasubramanian, C.; Muthu, D.

    2017-07-01

    Construction of pavements uses various filling materials and due to the cost factor, the local soil is used for pavement construction. The strength of the soil is improved by stabilisation. This stabilisation increases the load bearing capacities of soil for heavy wheeled vehicle traffic. GGBS, silica fume, rice husk are the basic waste materials used as a waste material, which improves the quality of soil and reduces the cost of pavements. In this study, a detailed investigation is made on the Ground Granulated Blast-furnace Slag (GGBS), activated by lime, in the stabilisation of low bearing capacity sand and clay soils collected from Thanjavur district (Budalur, Sengipatti, Vallam and Palliahgraharam villages). The tests are carried out as per Indian Standards. The test procedures separated into two phases, namely Stage-I and Stage-II. In Stage-I the soil tests include soil type, particle size distribution, soil index properties, standard proctor tests, shear tests and CBR test. In Stage-II the soil tests include shear tests and CBR test for the suitable required proportions of GGBS along with lime in the collected soil samples. The test results from stage-I and stage-II are compared and from the study, it is inferred that the application of GGBS is a useful material for soil stabilisation.

  11. Runoff and Erosion Effects after Prescribed Fire and Wildfire on Volcanic Ash-Cap Soils

    Treesearch

    P. R. Robichaud; F. B. Pierson; R. E. Brown

    2007-01-01

    After prescribed burns at three locations and one wildfire, rainfall simulations studies were completed to compare postfire runoff rates and sediment yields on ash-cap soil in conifer forest regions of northern Idaho and western Montana. The measured fire effects were differentiated by burn severity (unburned, low, moderate, and high). Results...

  12. Differentiation in the fertility of Inceptisols as related to land use in the upper Solimões river region, western Amazon.

    PubMed

    Moreira, Fatima Maria de Souza; Nóbrega, Rafaela Simão Abrahão; Jesus, Ederson da Conceição; Ferreira, Daniel Furtado; Pérez, Daniel Vidal

    2009-12-20

    The Upper Solimões river region, western Amazon, is the homeland of indigenous populations and contains small-scale agricultural systems that are important for biodiversity conservation. Although traditional slash-and-burn agriculture is being practiced over many years, deforestation there is relatively small compared to other Amazon regions. Pastures are restricted to the vicinity of cities and do not spread to the small communities along the river. Inceptisols are the main soil order (>90%) in the area and have unique attributes including high Al content and high cation exchange capacity (CEC) due to the enrichment of the clay fraction with 2:1 secondary aluminosilicates. Despite its importance, few studies have focussed on this soil order when considering land use effects on the fertility of Amazon soils. Thus, the objective of this study was to evaluate changes in soil fertility of representative land use systems (LUSs) in the Upper Solimões region, namely: primary rainforest, old secondary forest, young secondary forest, agroforestry, pasture and agriculture. LUSs were significantly differentiated by the chemical attributes of their topsoil (0-20 cm). Secondary forests presented soil chemical attributes more similar to primary rainforest areas, while pastures exhibited the highest dissimilarity from all the other LUSs. As a whole, soil chemical changes among Inceptisols dominated LUSs showed patterns that were distinct from those reported from other Amazon soils like Oxisols and Ultisols. This is probably related to the presence of high-activity clays enriched in exchangeable aluminum that heavily influenced the soil chemical reactions over the expected importance of organic matter found in most studies conducted over Oxisol and Ultisol.

  13. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: Implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (p ??? 0.05) as a function of soil x counterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, NH4+, and HPO42-, the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.

  14. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  15. High-resolution stable isotope monitoring reveals differential vegetation-soil water feedbacks among plant functional types

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Haberer, K.; Troch, P. A. A.; Gessler, A.; Weiler, M.

    2016-12-01

    Understanding the linked dynamics of rain water recharge to soils and its utilization by plants is critical for predicting the impact of climate and land use changes on the productivity of ecosystems and the hydrologic cycle. While plants require vast quantities of water from the soil to sustain growth and function, they exert important direct and indirect controls on the movement of water through the rooted soil horizons, thereby potentially affecting their own resource availability. However, the specific ecohydrological belowground processes associated with different plant types and their rooting systems have been difficult to quantify with traditional methods. Here, we report on the use of techniques for monitoring stable isotopes in soil and plant water pools that allow us to track water infiltration and root uptake dynamics non-destructively and in high resolution. The techniques were applied in controlled rain pulse experiments with distinct plant types (grass, deciduous trees, grapevine) that we let develop on an initially uniform soil for two years. Our results show that plant species and types differed widely in their plasticity and pattern of root uptake under variable water availability. Thereby, and through notably co-acting indirect effects related to differential root system traits and co-evolution of soil properties, the different plants induced contrasting hydrological dynamics in the soil they had inhabited for only a short period of time. Taken together, our data suggest that the studied soil-vegetation systems evolved a positive infiltration-uptake feedback in which hydrological flow pathways underlying different species diverged in a way that complemented their specific water utilization strategy. Such a feedback could present an indirect competitive mechanism by which plants improve their own water supply and modulate hydrological cycling at the land surface. The ability to directly measure this feedback using in situ isotope methodology highlights the great potential for stable isotope research to improve our understanding of the soil-vegetation-atmosphere system.

  16. Development and Application of Pyrolysis Gas Chromatography/Mass Spectrometry for the Analysis of Bound Trinitrotoluene Residues in Soil

    USGS Publications Warehouse

    Weiss, J.M.; Mckay, A.J.; Derito, C.; Watanabe, C.; Thorn, K.A.; Madsen, E.L.

    2004-01-01

    TNT (trinitrotoluene) is a contaminant of global environmental significance, yet determining its environmental fate has posed longstanding challenges. To date, only differential extraction-based approaches have been able to determine the presence of covalently bound, reduced forms of TNT in field soils. Here, we employed thermal elution, pyrolysis, and gas chromatography/mass spectrometry (GC/MS) to distinguish between covalently bound and noncovalently bound reduced forms of TNT in soil. Model soil organic matter-based matrixes were used to develop an assay in which noncovalently bound (monomeric) aminodinitrotoluene (ADNT) and diaminonitrotoluene (DANT) were desorbed from the matrix and analyzed at a lower temperature than covalently bound forms of these same compounds. A thermal desorption technique, evolved gas analysis, was initially employed to differentiate between covalently bound and added 15N-labeled monomeric compounds. A refined thermal elution procedure, termed "double-shot analysis" (DSA), allowed a sample to be sequentially analyzed in two phases. In phase 1, all of an added 15N-labeled monomeric contaminant was eluted from the sample at relatively low temperature. In phase 2 during high-temperature pyrolysis, the remaining covalently bound contaminants were detected. DSA analysis of soil from the Louisiana Army Ammunition Plant (LAAP; ???5000 ppm TNT) revealed the presence of DANT, ADNT, and TNT. After scrutinizing the DSA data and comparing them to results from solvent-extracted and base/acid-hydrolyzed LAAP soil, we concluded that the TNT was a noncovalently bound "carryover" from phase 1. Thus, the pyrolysis-GC/MS technique successfully defined covalently bound pools of ADNT and DANT in the field soil sample.

  17. New strategies for submicron characterization the carbon binding of reactive minerals in long-term contrasting fertilized soils: implications for soil carbon storage

    NASA Astrophysics Data System (ADS)

    Xiao, Jian; He, Xinhua; Hao, Jialong; Zhou, Ying; Zheng, Lirong; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2016-06-01

    Mineral binding is a major mechanism for soil carbon (C) stabilization. However, the submicron information about the in situ mechanisms of different fertilization practices affecting organo-mineral complexes and associated C preservation remains unclear. Here, we applied nano-scale secondary ion mass spectrometry (NanoSIMS), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure spectroscopy (XAFS) to examine differentiating effects of inorganic versus organic fertilization on interactions between highly reactive minerals and soil C preservation. To examine such interactions, soils and their extracted colloids were collected during a 24-year long-term fertilization period (1990-2014) (no fertilization, control; chemical nitrogen (N), phosphorus (P), and potassium (K) fertilization, NPK; and NPK plus swine manure fertilization, NPKM). The results for different fertilization conditions showed a ranked soil organic matter concentration with NPKM > NPK > control. Meanwhile, oxalate-extracted Al (Alo), Fe (Feo), short-range ordered Al (Alxps), Fe (Fexps), and dissolved organic carbon (DOC) ranked with NPKM > control > NPK, but the ratios of DOC / Alxps and DOC / Fexps ranked with NPKM > NPK > control. Compared with the NPK treatment, the NPKM treatment enhanced the C-binding loadings of Al and Fe minerals in soil colloids at the submicron scale. Furthermore, a greater concentration of highly reactive Al and Fe minerals was presented under NPKM than under NPK. Together, these submicron-scale findings suggest that both the reactive mineral species and their associations with C are differentially affected by 24-year long-term inorganic and organic fertilization.

  18. Bradyrhizobium-Lupinus mariae-josephae: a unique symbiosis endemic of a basic soil in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Durán, D.; Sánchez-Cañizares, C.; Navarro, A.; Rey, L.; Imperial, J.; Ruiz-Argüeso, T.

    2012-04-01

    Lupinus mariae-josephae is an intriguing lupine species recently discovered in the Mediterranean region and constitutes an endemism of a small area of Eastern Spain (Valencia province; Pascual, 2004; Mahé et al. 2011). It opens new perspectives for ecological and agronomic interests, as it represents the sole lupine species that preferentially grows in basic soils, while almost all other lupine species occur in acid to neutral soils. The L. mariae-josephae symbionts isolated from soils of calcareous areas of Valencia are extremely slow-growing bacteria belonging to the Bradyrhrizobium genus and showing symbiotic specificity that prevents nodulation of other Lupinus spp. such as L. angustifolius or L. luteus typically thriving in acid soils (Sanchez-Cañizares et al, 2011). Their phylogenetic analysis based on housekeeping and symbiotic genes showed that L. mariae-josephae symbionts belong to an evolutionary lineage that also includes endosymbiotic bacteria from Retama spp. of Northern Algeria basic soils (Boulila et al. 2009). Conversely, this new lineage is phylogenetically distinct from that of endosymbiotic bacteria from other Lupinus spp. native of the Iberian Peninsula, which were nested mainly within B. canariense and B. japonicum lineages. A genomic diversity study of the indigenous bradyrhizobia population of the calcareous areas in Valencia, based on fingerprint and phylogenetic analysis, showed the existence of a large diversity of genotypes, some of which are related to bacteria from the Retama spp. symbiosis in Algeria. This singular genomic divergence of L. mariae-josephae symbiotic bacteria in such a small geographical area fosters attractive studies on the origin, ecology and evolution of both partners of the symbiosis. Furthermore, it is expected that ongoing seed inoculation experiments with selected strains will allow us to extend the extant distribution spots of L. mariae-josephae plants in Valencia area, and also to determine whether the observed edaphic restrictions represent a limitation to the expansion of L. mariae-josephae crops to wide areas of poor calcareous soils in the Mediterranean region. Work supported by FBBVA Contract BIOCON08-078 to TRA and MICINN Project CGL2011-26932 to JI. Mahé et al. 2010 Genet Resour Crop Evol 58, 101-114. Pascual, H. 2004 Anal Jardín Botán Madrid 61(1): 69-72. Sánchez-Cañizares et al 2011 Syst Appl Microbiol 34 207-215 Boulila et al 2009 Syst. Appl. Microbiol. 32, 245-255.

  19. Permanent Ground Anchors : Nicholson Design Criteria

    DOT National Transportation Integrated Search

    1982-09-01

    This study discusses the methods used by Nicholson Construction Company in the design of permanent ground anchors specifically as related to retaining walls. Basic soil parameters, design concepts, drilling and grouting methods for ground anchors are...

  20. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  1. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  2. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  3. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  4. Three-phase Discussion Sessions.

    ERIC Educational Resources Information Center

    Karr, M. C.; And Others

    1988-01-01

    Describes the procedures, organizational pattern and design of basic soils course used by teaching assistants. Cites studies which support small-group discussion for promoting higher levels of intellectual functioning. Presents tables showing survey evaluation results of this method. (RT)

  5. Differential Facial Responses to Four Basic Tastes in Newborns.

    ERIC Educational Resources Information Center

    Rosentstein, Diana; Oster, Harriet

    1988-01-01

    Investigated the distinctiveness and recognizability of taste-elicited facial expressions in 12 newborns two hours of age. Findings demonstrated that newborns differentiate sour and bitter from each other and from salty, and discriminate between sweet and nonsweet. Judges accurately identified newborns' responses to sucrose, but systematically…

  6. Soil Particle Size Analysis by Laser Diffractometry: Result Comparison with Pipette Method

    NASA Astrophysics Data System (ADS)

    Šinkovičová, Miroslava; Igaz, Dušan; Kondrlová, Elena; Jarošová, Miriam

    2017-10-01

    Soil texture as the basic soil physical property provides a basic information on the soil grain size distribution as well as grain size fraction representation. Currently, there are several methods of particle dimension measurement available that are based on different physical principles. Pipette method based on the different sedimentation velocity of particles with different diameter is considered to be one of the standard methods of individual grain size fraction distribution determination. Following the technical advancement, optical methods such as laser diffraction can be also used nowadays for grain size distribution determination in the soil. According to the literature review of domestic as well as international sources related to this topic, it is obvious that the results obtained by laser diffractometry do not correspond with the results obtained by pipette method. The main aim of this paper was to analyse 132 samples of medium fine soil, taken from the Nitra River catchment in Slovakia, from depths of 15-20 cm and 40-45 cm, respectively, using laser analysers: ANALYSETTE 22 MicroTec plus (Fritsch GmbH) and Mastersizer 2000 (Malvern Instruments Ltd). The results obtained by laser diffractometry were compared with pipette method and the regression relationships using linear, exponential, power and polynomial trend were derived. Regressions with the three highest regression coefficients (R2) were further investigated. The fit with the highest tightness was observed for the polynomial regression. In view of the results obtained, we recommend using the estimate of the representation of the clay fraction (<0.01 mm) polynomial regression, to achieve a highest confidence value R2 at the depths of 15-20 cm 0.72 (Analysette 22 MicroTec plus) and 0.95 (Mastersizer 2000), from a depth of 40-45 cm 0.90 (Analysette 22 MicroTec plus) and 0.96 (Mastersizer 2000). Since the percentage representation of clayey particles (2nd fraction according to the methodology of Complex Soil Survey done in Slovakia) in soil is the determinant for soil type specification, we recommend using the derived relationships in soil science when the soil texture analysis is done according to laser diffractometry. The advantages of laser diffraction method comprise the short analysis time, usage of small sample amount, application for the various grain size fraction and soil type classification systems, and a wide range of determined fractions. Therefore, it is necessary to focus on this issue further to address the needs of soil science research and attempt to replace the standard pipette method with more progressive laser diffraction method.

  7. Terra e Arte Project: Soils connecting Art and Education

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole; Rozenberg, Bianca; de Cássia Francisco, Talita; Gramacho de Oliveira, Elisa

    2015-04-01

    The "Terra e Arte" project was designed to combine science and art by approaching soil contents in basic education schools in Viçosa, Minas Gerais, Brazil. The project was developed to awake, sensitize and create awareness about soils and their importance to life and environment within school communities. It was proposed and realized by the Earth Sciences Museum Alexis Dorofeef (MCTAD) of the Federal University of Viçosa (UFV), as part of the celebrations of its 20th anniversary. Since all the schools of the town visit the museum at least once a year and most of them have received and carried out pedagogic projects on soil themes in the last 20 years, it was proposed to them to develop a soil subject with any of their groups and combine it with painting using soil materials. Each group interested in joining the project received a basic set of material to produce soil paints. They were expected to develop a soil theme and its contents for a few weeks and to finalize it with a figurative and textual collective creation that synthetized their learning. 16 of the 24 visited schools joined the project and realized it for an average of two months. During this time, the school groups visited the museum and/or borrowed the itinerant exposition on soils from the museum to work with in in the school community. At the end of the projects, the productions were presented at the Knowledge Market (Feira do Conhecimento) that happens every year in the central square of the town, as part of the National Week of Science and Technology. At the event, 58 works were presented by 14 schools, involving directly 700 pupils and their teachers. They approached themes from soil formation and properties to agroecology and urban occupation and impacts on the soils. 30 of the works were selected for a commemorative exposition and 12 were chosen for a table calendar 2014. The movement created around the project mobilized many people and had strong impact on the school communities, especially after the distribution of the calendar to all schools. The result stimulated the museum to propose another project for the 21st anniversary that was intensely sought after by all schools of the town. The mobilization that has been created by those projects contributes to expand and to strengthen the word about soils within the schools and to increase the perception of soils in the town community.

  8. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.

    PubMed

    Marchiol, L; Assolari, S; Sacco, P; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  9. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe.

    PubMed

    Xia, Jianyang; Chen, Shiping; Wan, Shiqiang

    2010-06-15

    One feature of climate warming is that increases in daily minimum temperature are greater than those in daily maximum temperature. Changes in soil microclimate in response to the asymmetrically diurnal warming scenarios can help to explain responses of ecosystem processes. In the present study, we examined the impacts of day, night, and continuous warming on soil microclimate in a temperate steppe in northern China. Our results showed that day, night, and continuous warming (approximately 13Wm(-2) with constant power mode) significantly increased daily mean soil temperature at 10cm depth by 0.71, 0.78, and 1.71 degrees C, respectively. Night warming caused greater increases in nighttime mean and daily minimum soil temperatures (0.74 and 0.99 degrees C) than day warming did (0.60 and 0.66 degrees C). However, there were no differences in the increases in daytime mean and daily maximum soil temperature between day (0.81 and 1.13 degrees C) and night (0.81 and 1.10 degrees C) warming. The differential effects of day and night warming on soil temperature varied with environmental factors, including photosynthetic active radiation, vapor-pressure deficit, and wind speed. When compared with the effect of continuous warming on soil temperature, the summed effects of day and night warming were lower during daytime, but greater at night, thus leading to equality at daily scale. Mean volumetric soil moisture at the depth of 0-40cm significantly decreased under continuous warming in both 2006 (1.44 V/V%) and 2007 (0.76 V/V%). Day warming significantly reduced volumetric soil moisture only in 2006, whereas night warming had no effect on volumetric soil moisture in both 2006 and 2007. Given the different diurnal warming patterns and variability of environmental factors among ecosystems, these results highlight the importance of incorporating the differential impacts of day and night warming on soil microclimate into the predictions of terrestrial ecosystem responses to climate warming. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Agricultural management legacy affects microbial energetics, resource utilization and active bacterial community membership during 13C-glucose consumption

    NASA Astrophysics Data System (ADS)

    Helgason, B. L.; Levy-Booth, D.; Arcand, M. M.

    2017-12-01

    Over the long-term, differences in soil management can result in fundamental changes in biogeochemical cycling. The Alternative Cropping Systems (ACS) Study at Scott, SK, Canada (est. 1994) compares organic (ORG) vs. conventionally (CON) managed crop rotations in a loamy Typic Borall. Nitrogen (N) and phosphorus (P) deficiency in the ORG systems have limited crop growth and thus plant carbon (C) inputs for over two decades, ultimately resulting in a C deficiency which has further altered biogeochemical cycling. We conducted a short-term microcosm experiment using 13C-glucose stable isotope probing (SIP) of DNA to test whether ORG soils have greater microbial C use efficiency due to long term resource limitation. Glucose-utilizing populations were dominated by Proteobacteria and Actinobacteria, with differing species-level identities and physiological capacities between CON and ORG systems. Of the 13C-utilizing taxa, relative abundance of Proteobacteria was greater in CON while Actinobacteria (and notably Firmicutes) were more dominant in ORG soils. Using isothermal calorimetry, we measured a thermodynamic efficiency (ηeff) of 0.68, which was not significantly different between soils indicating that the metabolic cost of glucose utilization was similar in CON and ORG soils. In spite of this, differential abundance analysis of 13C-labelled OTUs revealed that ORG soils had distinct active bacterial populations that were positively correlated with ηeff, ηsoil (glucose energy retained in soil) and primed soil organic matter (pSOM). In contrast, differentially abundant OTUs in the CON soils were negatively correlated with measures of thermodynamic efficiency but positively correlated with glucose-derived heat and CO2 production as well as NO3- and PO4- availability. ORG bacterial communities may co-metabolize other resources (N and P) from SOM to meet their metabolic requirements during glucose utilization, while the active bacteria in the CON soils could access these resources from existing available pools, resulting in similar ηeff during glucose utilization. Our work combining isothermal calorimetry coupled with 13C DNA-SIP demonstrates a legacy effect of agricultural management on fundamental aspects microbial ecology and bioenergetics of soil.

  11. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, Jayne; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (pa??0.05) as a function of soilcounterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, and the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.

  12. The History of the Soil Science Society of Nigeria

    NASA Astrophysics Data System (ADS)

    Okechukwu Chude, Victor

    2013-04-01

    The Soil Science Society of Nigeria (SSSN) founded in 1968, is a registered member of the African Soil Science Association, International Union of Soil Science and the Global Soil Partnership. The Society aims at promoting and fostering better understanding of basic and applied Soil Science in Nigeria. The society also strives to enhance the dissemination of knowledge in all aspects of Soil science and shares ideas with National and International Societies through conferences, symposium, lectures, seminars and journal publications. The numerical strength of the society is 600 members (student, ordinary ,life and corporate). The soil science society of Nigeria has provided invaluable services in the formulation of agricultural land and fertilizer use strategies and policies of the country. The existing reconnaissance soil map of Nigeria typifies one of the major professional services rendered to the country by the society and its members. Despite the numerous contributions the society has made to the advancement of soil science in the country, the larger society is not aware of the its existence. This is largely because of our limited soil extension activities to land users due to lack of funds. If the society can attract donor funds, this will go a long way in enhancing the capacity and capability of the society.

  13. Observation and difference analysis of carbon fluxes in different types of soil in Tianjin coastal zone

    NASA Astrophysics Data System (ADS)

    Li, Ya-Juan; Wang, Ting-Feng; Mao, Tian-Yu

    2018-02-01

    Tianjin Coastal Zone is located in the coastal area of the Bohai Sea, belonging to the typical coastal wetland, with high carbon value. Over the past decade the development of great intensity, there are obvious characteristics of artificial influence. This study focuses on observing the carbon fluxes of different soil types in the coastal area under strong artificial disturbance, summarizing the carbon sink calculation formula according to the soil type, and analyzing the main influencing factors affecting the carbon flux. The results show that there are representative intertidal zones in Tianjin, and the respiration of soil and secondary soil are different. The main influencing factors are soil surface temperature or air temperature. Coastal zones with different ecosystems can basically establish the relationship between temperature and soil carbon flux. (R2 = 0.5990), the relationship between artificial backfill is Q = 0.2061 - 0.2129T - 0.0391T2 (R2 = 0.7469), and the artificial soil is restored by artificial soil and the herbaceous greening is carried out., The relationship is Q = -0.1019 + 0.0327T‧ (R2 = 0.6621), T-soil temperature, T’-air temperature. At the same temperature, soil carbon fluxes in shoal wetlands are generally stronger than artificial backfill, showing more carbon source emissions.

  14. Tungstate adsorption onto Italian soils with different characteristics.

    PubMed

    Petruzzelli, Gianniantonio; Pedron, Francesca

    2017-08-01

    The study of tungsten in the environment is currently of considerable interest because of the growing concerns resulting from its possible toxicity and carcinogenicity. Adsorption reactions are some of the fundamental processes governing the fate and transport of tungsten compounds in soil. This paper reports data on the adsorption of tungstate ions in three different Italian soils, which are characteristic of the Mediterranean region. The results show that pH is the most important factor governing the adsorption of tungstate in these soils. The data interpreted according to the Langmuir equation show that the maximum value of adsorption is approximately 30 mmol kg -1 for the most acidic soil (pH = 4.50) and approximately 9 mmol kg -1 for the most basic soil (pH = 7.40). In addition, soil organic matter is shown to play a fundamental role in adsorption processes, which are favored in soils with a higher organic matter content. The data could contribute to a better understanding of the behavior of tungsten compounds in Italian soils for which current knowledge is very scarce, also in view of environmental regulations, which are currently lacking.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.G.

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggestmore » that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.« less

  16. Utilizing a polymerase chain reaction method for the detection of Toxocara canis and T. cati eggs in soil.

    PubMed

    Fogt-Wyrwas, R; Jarosz, W; Mizgajska-Wiktor, H

    2007-03-01

    A polymerase chain reaction (PCR) technique has been used for the differentiation of T. canis and T. cati eggs isolated from soil and previously identified from microscopical observations. The method, using specific primers for the identification of the two Toxocara species, was assessed in both the field and laboratory. Successful results were obtained when only a single or large numbers of eggs were recovered from 40 g soil samples. The method is sensitive, allows analysis of material independent of the stage of egg development and can be adapted for the recovery of other species of parasites from soil.

  17. New Model for Agglutinitic Glass Formation from LSCC Data

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Taylor, L. A.

    2003-01-01

    Since the return of the first lunar samples it has been well known that glass-welded aggregates (agglutinates) accumulate in lunar soil as the result of multiple processes, many of which are driven by micrometeorite impacts. The proportion of agglutinates increases with increasing exposure to the space environment, and for an individual soil the proportion of agglutinates also increases with decreasing particle size. Detailed chemical and petrographic analyses of a suite of mare soils and their agglutinate constituents prepared by the Lunar Soil Characterization Consortium appeared to confirm the "Fusion of the Finest Fraction" model for agglutinate formation (or F3) proposed by Papike et al. However, recent LSCC data for highland soils are not consistent with the F3 model and alternate models for agglutinate formation must be revisited. Instead, we suggest differential melting of soil species may be more consistent with the full range of soil data to date.

  18. Heavy metal solubility in podzolic soils exposed to the alkalizing effect of air pollutants.

    PubMed

    Haapala, H; Goltsova, N; Lodenius, M

    2001-01-01

    The heavy metal content of pine forest soil was studied near the boundary between Russia and Estonia, an area characterized by large amounts of acidic and basic air pollutants, mainly sulfur dioxide and calcium. Alkalization dominates the processes in soil, since sulfur is adsorbed only in small quantities, and calcium is much better adsorbed. In addition to Ca, great amounts of Al, Fe, K, and Mg are accumulated in the humus layer due to air pollution. The heavy metal content has increased. The exchangeable content of heavy metals was in many cases much higher in polluted alkaline soils than in non-polluted acidic soils, even the ratio of exchangeable to total metal content being higher in alkaline plots. To avoid a dangerous increase in soluble heavy metal content, it is important to decrease not only the large sulfur emissions of local pollutant sources, but also the alkaline pollutants. A similar concern must be taken into account when liming of acidic forest soils is planned.

  19. Assessments of Potential Rock Coatings at Rocknest, Gale Crater with ChemCam

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Anderson, R.; Berger, G.; Bridges, J.; Bridges, N.; Clark, B.; Clegg, S.; Ehlman, B.; Goetz, W.; King, P.; hide

    2013-01-01

    Many locations on Mars have low color contrast between the rocks and soils due to the rocks being "dusty"--basically having a surface that is spectrally similar to Martian soil. In general this has been interpreted as soil and/or dust clinging to the rock though either mechanical or electrostic processes. However, given the apparent mobility of thin films of water forming cemented soils on Mars and at Gale Crater, the possibility exists that some of these "dusty" surfaces may actually be coatings formed by thin films of water locally mobilizing soil/air fall material at the rock interface. This type of coating was observed by Spirit during an investigation of the rock Mazatzal which showed enhanced salts above "normal soil" and an enhancement of nano phase iron oxide that was 10 micronmeters thick. We decided to use ChemCam to investigate the possibility of similar rock coatings forming at the Rocknest site at Gale Crater.

  20. Fractional vector calculus and fluid mechanics

    NASA Astrophysics Data System (ADS)

    Lazopoulos, Konstantinos A.; Lazopoulos, Anastasios K.

    2017-04-01

    Basic fluid mechanics equations are studied and revised under the prism of fractional continuum mechanics (FCM), a very promising research field that satisfies both experimental and theoretical demands. The geometry of the fractional differential has been clarified corrected and the geometry of the fractional tangent spaces of a manifold has been studied in Lazopoulos and Lazopoulos (Lazopoulos KA, Lazopoulos AK. Progr. Fract. Differ. Appl. 2016, 2, 85-104), providing the bases of the missing fractional differential geometry. Therefore, a lot can be contributed to fractional hydrodynamics: the basic fractional fluid equations (Navier Stokes, Euler and Bernoulli) are derived and fractional Darcy's flow in porous media is studied.

  1. Can earthworms survive fire retardants?

    USGS Publications Warehouse

    Beyer, W.N.; Olson, A.

    1996-01-01

    Most common fire retardants are foams or are similar to common agricultural fertilizers, such as ammonium sulfate and ammonium phosphate. Although fire retardants are widely applied to soils, we lack basic information about their toxicities to soil organisms. We measured the toxicity of five fire retardants (Firetrol LCG-R, Firetrol GTS-R, Silv-Ex Foam Concentrate, Phos-chek D-75, and Phos-chek WD-881) to earthworms using the pesticide toxicity test developed for earthworms by the European Economic Community. None was lethal at 1,000 ppm in the soil, which was suggested as a relatively high exposure under normal applications. We concluded that the fire retardants tested are relatively nontoxic to soil organisms compared with other environmental chemicals and that they probably do not reduce earthworm populations when applied under usual firefighting conditions.

  2. Influence of human behavior on cholera dynamics

    PubMed Central

    Wang, Xueying; Gao, Daozhou; Wang, Jin

    2015-01-01

    This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera ordinary differential equation (ODE) model that incorporates human behavior via modeling disease prevalence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic reproduction number of the PDE model. Our results show that human behavior can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection (characterized by the basic reproduction number). PMID:26119824

  3. The enhancement of atrazine sorption and microbial transformation in biochars amended black soils.

    PubMed

    Yang, Fan; Zhang, Wei; Li, Jinmei; Wang, Shuyao; Tao, Yue; Wang, Yifan; Zhang, Ying

    2017-12-01

    Generally, biochar plays an important role in controlling migration and accumulation of pollutants in soil. In this dissertation, biochars derived from wheat straws at various pyrolysis temperatures are used to investigate how biochar amendment affects adsorption and microbial degradation of atrazine (typical diffuse herbicide) in soils. In order to explore the influence of soil components, soil samples with different organic matter content are collected from typical agricultural sites, which are characterized as black soils in the northeast region of China. The basic sorption characteristics of biochars from wheat straws prepared at diverse pyrolysis temperature are analyzed, along with the comparisons of the sorption difference in the raw soil and soil amended with biochars at four levels of ratio (0.1%, 0.5%, 1.0% and 2.0%). By incubation experiments, atrazine degradation in non-sterile and sterile soils and effects of atrazine degradation rate after biochar amendment are also studied. Atrazine degradation is significantly enhanced in biochar amended soils, which may be because that biochar supplement can promote the growth and metabolism of microorganisms in the soil. Our findings reveal that wheatstraw- derived biochars may be effective remediation reagents for activating degradation of the soil functional microorganism and enhancing sorption of organic matter content, which can be applied to environmental-friendly accelerate the remediation of atrazine contaminated black soils. Copyright © 2017. Published by Elsevier Ltd.

  4. Law and Foreign Policy: Problems in Intercultural Communications.

    ERIC Educational Resources Information Center

    Bozeman, Adda B.

    The values and norms of Western law are not universally accepted as basic values and norms in other cultures. Therefore, the contractual processes of Western law should not be considered the basic foundation for all foreign policy negotiations. In Western cultures, principles of law are differentiated from other values based on religion, ethics,…

  5. Measuring Individual Differences in Sensitivities to Basic Emotions in Faces

    ERIC Educational Resources Information Center

    Suzuki, Atsunobu; Hoshino, Takahiro; Shigemasu, Kazuo

    2006-01-01

    The assessment of individual differences in facial expression recognition is normally required to address two major issues: (1) high agreement level (ceiling effect) and (2) differential difficulty levels across emotions. We propose a new assessment method designed to quantify individual differences in the recognition of the six basic emotions,…

  6. Language Management Theory as One Approach in Language Policy and Planning

    ERIC Educational Resources Information Center

    Nekvapil, Jirí

    2016-01-01

    Language Policy and Planning is currently a significantly diversified research area and thus it is not easy to find common denominators that help to define basic approaches within it. Richard B. Baldauf attempted to do so by differentiating between four basic approaches: (1) the classical approach, (2) the language management approach (Language…

  7. Differentiation for Gifted Learners: Going beyond the Basics

    ERIC Educational Resources Information Center

    Heacox, Diane; Cash, Richard M.

    2014-01-01

    Within a group of advanced learners, the variety of abilities, talents, interests, and learning styles can be formidable. For the first time, this book connects the unique learning differences among gifted students to the specific teaching methods used to tailor their educational experiences. Differentiated instruction for gifted and talented…

  8. Determining Dissolved Oxygen Levels

    ERIC Educational Resources Information Center

    Boucher, Randy

    2010-01-01

    This project was used in a mathematical modeling and introduction to differential equations course for first-year college students. The students worked in two-person groups and were given three weeks to complete the project. Students were given this project three weeks into the course, after basic first order linear differential equation and…

  9. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate nitrogen during soil development. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Use of Mass-Flux Measurement and Vapor-Phase Tomography to Quantify Vadose-Zone Source Strength and Distribution

    DTIC Science & Technology

    2016-01-01

    noted i) K = Permeability (Pa-Pb)i = Pressure differential between the sampling location and the extraction well µ= Viscosity Values for permeability...A case study of soil-gas 29 sampling in silt and clay -rich (low-permeability) soils. Ground Water Monitor. Remed. 29: 144-152. Ni, C.F. and T-CJ

  11. Nitrogen acquisition by plants and microorganisms in a temperate grassland

    PubMed Central

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-01-01

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term 15N experiments with NH4+, NO3−, and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4+ and NO3−, while plants preferred NO3−. Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0–5 cm soil layer and 33% from the 5–15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands. PMID:26961252

  12. Nitrogen acquisition by plants and microorganisms in a temperate grassland.

    PubMed

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-03-10

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.

  13. Radionuclide Basics: Americium-241

    EPA Pesticide Factsheets

    Americium (chemical symbol Am) is a man-made radioactive metal that is solid under normal conditions. Exposure to a significant amount of Am-241 is generally unlikely. Small amounts are found in the soil, plants and water from nuclear weapons testing.

  14. How Heat Can Enhance In-Situ Soil and Aquifer Remediation

    EPA Pesticide Factsheets

    The purpose of this Issue Paper and the three companion Issue Papers (Davis, 1997a, b, c) is to provide to those involved in assessing remediation technologies some basic information on the thermal remediation techniques.

  15. Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica

    USGS Publications Warehouse

    Connell, L.; Redman, R.; Craig, S.; Rodriguez, R.

    2006-01-01

    The occurrence and distribution of culturable fungi in Taylor Valley, Antarctica was assessed in terms of soil habitat. Soil transects throughout the valley revealed differential habitat utilization between filamentous and non-filamentous (yeast and yeast-like) fungi. In addition, there were significant differences in species distribution patterns with respect to soil pH, moisture, distance from marine coastline, carbon, chlorophyll a, salinity, elevation and solar inputs. Filamentous fungal abundance is most closely associated with habitats having higher pH, and soil moistures. These close associations were not found with yeast and yeast-like fungi demonstrating that yeast and yeast-like fungi utilize a broader range of habitat. An intensive survey of the Victoria Land is necessary to gain a better understanding of their role in soil functioning and nutrient cycling processes. ?? 2006 Elsevier Ltd. All rights reserved.

  16. Soil settlement analysis in soft soil by using preloading system and prefabricated vertical draining runway of Kualanamu Airport

    NASA Astrophysics Data System (ADS)

    Roesyanto; Iskandar, R.; Silalahi, S. A.; Fadliansyah

    2018-02-01

    The method of soil improvement, using the combination of prefabricated vertical drain (PVD) and preloading, was used to accelerate the process of consolidation and the consolidation settlement in the runway of Kualanamu International Airport, which was constructed on the soft soil sediment like silty clay. In this research, the investigated area was the runway of Kualanamu International Airport zone I which had 11 meter-thickness of soft soil. Geotechnic instruments surveyed was settlement plate. Monitoring was done toward the behavior of landfill such as basic soil settlement. The result were compared with the analysis of finite element method of full scale in Mohr-Coulomb model by verifying the vertical drain of asymmetric unit cell and equivalent plane strain unit cell condition. The results of the research showed that there were an interesting behavior between the data in field observation and finite element of Mohr-Coulomb model. It was also found that the result of soil settlement of finite element method of Mohr-Coulomb model was closed to the result of settlement plate monitoring.

  17. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site

    NASA Astrophysics Data System (ADS)

    Kanmani, S.; Gandhimathi, R.

    2013-03-01

    The concentration of heavy metals was studied in the soil samples collected around the municipal solid waste (MSW) open dumpsite, Ariyamangalam, Tiruchirappalli, Tamilnadu to understand the heavy metal contamination due to leachate migration from an open dumping site. The dump site receives approximately 400-470 tonnes of municipal solid waste. Solid waste characterization was carried out for the fresh and old municipal solid waste to know the basic composition of solid waste which is dumped in the dumping site. The heavy metal concentration in the municipal solid waste fine fraction and soil samples were analyzed. The heavy metal concentration in the collected soil sample was found in the following order: Mn > Pb > Cu > Cd. The presence of heavy metals in soil sample indicates that there is appreciable contamination of the soil by leachate migration from an open dumping site. However, these pollutants species will continuously migrated and attenuated through the soil strata and after certain period of time they might contaminate the groundwater system if there is no action to be taken to prevent this phenomenon.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, W.G.

    Scapteriscus vicinus is the most important pest of turf and pasture grasses in Florida. This study develops a method of correlating sample results with true population density and provides the first quantitative information on spatial distribution and movement patterns of mole crickets. Three basic techniques for sampling mole crickets were compared: soil flushes, soil corer, and pitfall trapping. No statistical difference was found between the soil corer and soil flushing. Soil flushing was shown to be more sensitive to changes in population density than pitfall trapping. No technique was effective for sampling adults. Regression analysis provided a means of adjustingmore » for the effects of soil moisture and showed soil temperature to be unimportant in predicting efficiency of flush sampling. Cesium-137 was used to label females for subsequent location underground. Comparison of mean distance to nearest neighbor with the distance predicted by a random distribution model showed that the observed distance in the spring was significantly greater than hypothesized (Student's T-test, p < 0.05). Fall adult nearest neighbor distance was not different than predicted by the random distribution hypothesis.« less

  19. Impacts of acidic deposition: context and case studies of forest soils in the southeastern US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binkley, D.; Driscoll, C.T.; Allen, H.L.

    1988-12-01

    The authors designed their assessment to include both the basic foundation needed by non-experts and the detailed information needed by experts. Their assessment includes background information on acidic deposition (Chap. 1), an in-depth discussion of the nature of soil acidity and ecosystem H(1+) budgets (Chap. 2), and a summary of rates of deposition in the Southeastern U.S. (Chap. 3). A discussion of the nature of forest soils in the region (Chap. 4) is followed by an overview of previous assessments of soil sensitivity to acidification (Chap. 5). The potential impacts of acidic deposition on forest nutrition are described in themore » context of the degree of current nutrient limitation on forest productivity (Chap. 6). The results of simulations with the MAGIC model provided evaluations of the likely sensitivity of a variety of soils representative of forest soils in the South (Chap. 7), as well as a test of soil sensitivity criteria. The authors' synthesis and recommendations for research (Chap. 8) also serve as an executive summary.« less

  20. Study on stability of rake teeth inserting soil of chain rake type mulching film recovery machine based on Adams

    NASA Astrophysics Data System (ADS)

    Guo, Wensong; Jian, Jianming; San, Yunlong; Lui, Rui; Li, Gang; Hou, Shulin

    2017-08-01

    Traditional rake type mulching film recycling machine has the problem of difficulty in unloading and packing film, poor continuity of the work. In order to solve such problems, this paper designs a kind of chain rake type mulching film recycling machine which can realize continuous raking film, collecting film, transporting film, shaking off soil, unloading film. Rake teeth is the basic part of chain rake mulching recycling machine. The stability of rake teeth's inserting soil is an important factor to ensure recovery efficiency of the plastic film recovery. By virtual prototype simulation, this paper study the influence of different factors on the stability of rake teeth inserting soil. The results are as follows: The speed of chain rake has no significant effect on the stability of rake teeth inserting soil; Reducing resistance of rake teeth in the process of working, is conducive to improve the stability of rake teeth inserting soil; Appropriate increasing elastic modulus of chain rake, is helpful to enhance the stability of rake teeth inserting soil.

  1. Enhancing the engineering properties of expansive soil using bagasse ash

    NASA Astrophysics Data System (ADS)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  2. Pedodiversity and Its Significance in the Context of Modern Soil Geography

    NASA Astrophysics Data System (ADS)

    Krasilnikov, P. V.; Gerasimova, M. I.; Golovanov, D. L.; Konyushkova, M. V.; Sidorova, V. A.; Sorokin, A. S.

    2018-01-01

    Methodological basics of the study and quantitative assessment of pedodiversity are discussed. It is shown that the application of various indices and models of pedodiversity can be feasible for solving three major issues in pedology: a comparative geographical analysis of different territories, a comparative historical analysis of soil development in the course of landscape evolution, and the analysis of relationships between biodiversity and pedodiversity. Analogous geographic concepts of geodiversity and landscape diversity are also discussed. Certain limitations in the use of quantitative estimates of pedodiversity related to their linkage to the particular soil classification systems and with the initial soil maps are considered. Problems of the interpretation of the results of pedodiversity assessments are emphasized. It is shown that scientific explanations of biodiversity cannot be adequately applied in soil studies. Promising directions of further studies of pedodiversity are outlined. They include the assessment of the functional diversity of soils on the basis of data on their properties, integration with geostatistical methods of evaluation of soil variability, and assessment of pedodiversity on different scales.

  3. Soil Oxidation-Reduction in Wetlands and Its Impact on Plant Functioning

    PubMed Central

    Pezeshki, S. R.; DeLaune, R. D.

    2012-01-01

    Soil flooding in wetlands is accompanied by changes in soil physical and chemical characteristics. These changes include the lowering of soil redox potential (Eh) leading to increasing demand for oxygen within the soil profile as well as production of soil phytotoxins that are by-products of soil reduction and thus, imposing potentially severe stress on plant roots. Various methods are utilized for quantifying plant responses to reducing soil conditions that include measurement of radial oxygen transport, plant enzymatic responses, and assessment of anatomical/morphological changes. However, the chemical properties and reducing nature of soil environment in which plant roots are grown, including oxygen demand, and other associated processes that occur in wetland soils, pose a challenge to evaluation and comparison of plant responses that are reported in the literature. This review emphasizes soil-plant interactions in wetlands, drawing attention to the importance of quantifying the intensity and capacity of soil reduction for proper evaluation of wetland plant responses, particularly at the process and whole-plant levels. Furthermore, while root oxygen-deficiency may partially account for plant stress responses, the importance of soil phytotoxins, produced as by-products of low soil Eh conditions, is discussed and the need for development of methods to allow differentiation of plant responses to reduced or anaerobic soil conditions vs. soil phytotoxins is emphasized. PMID:24832223

  4. Spatial patterns of soil pH and the factors that influence them in plantation forests of northern China

    NASA Astrophysics Data System (ADS)

    Hong, Songbai; Liu, Yongwen; Piao, Shilong

    2017-04-01

    Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, p<0.001), whereas increasing temperature significantly increased soil pH (0.13 for every degree centigrade, p<0.001). Nitrogen deposition, especially nitrate nitrogen, significantly decreased soil pH (p<0.01). All these factors impact soil pH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.

  5. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of sustainable development.

  6. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes.

    PubMed

    Hellinga, Jacqueline R; Garduño, Rafael A; Kormish, Jay D; Tanner, Jennifer R; Khan, Deirdre; Buchko, Kristyn; Jimenez, Celine; Pinette, Mathieu M; Brassinga, Ann Karen C

    2015-08-01

    Legionella pneumophila, a causative agent of Legionnaires' disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. A computer program for the simulation of heat and moisture flow in soils

    NASA Technical Reports Server (NTRS)

    Camillo, P.; Schmugge, T. J.

    1981-01-01

    A computer program that simulates the flow of heat and moisture in soils is described. The space-time dependence of temperature and moisture content is described by a set of diffusion-type partial differential equations. The simulator uses a predictor/corrector to numerically integrate them, giving wetness and temperature profiles as a function of time. The simulator was used to generate solutions to diffusion-type partial differential equations for which analytical solutions are known. These equations include both constant and variable diffusivities, and both flux and constant concentration boundary conditions. In all cases, the simulated and analytic solutions agreed to within the error bounds which were imposed on the integrator. Simulations of heat and moisture flow under actual field conditions were also performed. Ground truth data were used for the boundary conditions and soil transport properties. The qualitative agreement between simulated and measured profiles is an indication that the model equations are reasonably accurate representations of the physical processes involved.

  8. Differentiation of bacterial feeding nematodes in soil ecological studies by means of arbitrarily primed PCR

    USGS Publications Warehouse

    Van Der Knaap, Esther; Rodriguez, Russell J.; Freckman, Diana W.

    1993-01-01

    Arbitrarily-primed polymerase chain reaction (ap-PCR) was used to differentiate closely related bacterial-feeding nematodes of the genera: Caenorhabditis, Acrobeloides, Cephalobus and Zeldia. Average percentage similarity of bands generated by ap-PCR with seven different primers between 14 isolates of Caenorhabditis elegans was ⪢ 90%, whereas between C. elegans, C. briggsae and C. remanei similarity was < 20%. Based on intra- and inter-specific similarity between Caenorhabditis isolates, analysis of Acrobeloides, Cephalobus and Zeldia isolates revealed either similar or different genotypes. Distinct genotypes were verified by morphological analyses. In addition, the genotypes obtained from single egg-derived nematode populations were also obtained from ap-PCR analysis of single worms. Due to the difficulty of identification of soil nematodes, the ap-PCR offers potential as a rapid and reliable technique to assess biodiversity. Ap-PCR will make it feasible, for the first time, to study the ecological interactions of unique nematode genotypes in soil habitats.

  9. Uncertainty in Pedotransfer Functions from Soil Survey Data

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Rawls, W. J.

    2002-05-01

    Pedotransfer functions (PTFs) are empirical relationships between hard-to-get soil parameters, i.e. hydraulic properties, and more easily obtainable basic soil properties, such as texture. Use of PTFs in large-scale projects and pilot studies relies on data of soil survey that provides soil basic data as a categorical information. Unlike numerical variables, categorical data cannot be directly used in statistical regressions or neural networks to develop PTFs. Objectives of this work were (a) to find and test techniques to develop PTFs for soil water retention and saturated hydraulic conductivity with soil categorical data as inputs, (b) to evaluate sources of uncertainty in results of such PTFs and to research opportunities of mitigating the uncertainty. We used a subset of about 12,000 samples from the US National Soil characterization database to estimate water retention, and the data set for circa 1000 hydraulic conductivity measurements done in the US. Regression trees and polynomial neural networks based on dummy coding were the techniques tried for the PTF development. The jackknife validation was used to prevent the over-parameterization. Both techniques were equally efficient in developing PTFs, but regression trees gave much more transparent results. Textural class was the leading predictor with RMSE values of about 6.5 and 4.1 vol.% for water retention at -33 and -1500 kPa, respectively. The RMSE values decreased 10% when the laboratory textural analysis was used to establish the textural class. Textural class in the field was determined correctly only in 41% of all cases. To mitigate this source of error, we added slopes, position on the slope classes, and land surface shape classes to the list of PTF inputs. Regression trees generated topotextural groups that encompassed several textural classes. Using topographic variables and soil horizon appeared to be the way to make up for errors made in field determination of texture. Adding field descriptors of soil structure to the field-determined textural class gave similar results. No large improvement was achieved probably because textural class, topographic descriptors and structure descriptors were correlated predictors in many cases. Both median values and uncertainty of the saturated hydraulic conductivity had a power-law decrease as clay content increased. Defining two classes of bulk density helped to estimate hydraulic conductivity within textural classes. We conclude that categorical field soil survey data can be used in PTF-based estimating soil water retention and saturated hydraulic conductivity with quantified uncertainty

  10. The Effect of Acid Neutralization on Analytical Results Produced from SW846 Method 8330 after the Alkaline Hydrolysis of Explosives in Soil

    DTIC Science & Technology

    2012-09-01

    basic form of phosphoric acid or sodium phosphate NO2- Nitrite OH- Hydroxide ion ERDC/EL TR-12-14 1 1 Introduction Alkaline hydrolysis has...into amber sample vials and refrigerated until analyzed. TNT analyses were conducted by high performance liquid chromatography (HPLC) with a C-18...The explosives concentrations of the different soils were quantified using a DIONEX HPLC system equipped with a C-18 reverse phase column and a

  11. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  12. Soil Organic Matter Content Effects on Dermal Pesticide ...

    EPA Pesticide Factsheets

    Agricultural landscapes serve as active amphibian breeding grounds despite their seemingly poor habitat value. Activity of adults and dispersal of metamorphs to and from agricultural ponds occurs in most species from spring through late summer or early fall, a time that coincides with pesticide applications on farm fields and crops. In terrestrial landscapes, dermal contact with contaminated soil and plant matter may lead to bioconcentration as well as lethal and sublethal effects in amphibians.Although the physiological structure of the amphibian dermis may facilitate pesticide uptake, soil properties may ultimately dictate bioavailability of pesticides in terrestrial habitats. The organic matter fraction of soil readily binds to pesticides, potentially decreasing the availability of pesticides adhering to biological matter. Soil partition coefficient

  13. Soils of Sub-Antarctic tundras: diversity and basic chemical characteristics

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny; Vlasov, Dmitry; Mukhametova, Nadezhda

    2014-05-01

    Antarctic peninsula is known as specific part of Antarctica, which is characterizes by humid and relatively warm climate of so-called sub Antarctic (maritime) zone. Annual precipitation and long above zero period provides the possibility of sustainable tundra's ecosystem formation. Therefore, the soil diversity of these tundra landscapes is maximal in the whole Antarctic. Moreover, the thickness of parent material debris's is also highest and achieves a 1 or 2 meters as highest. The presence of higher vascular plants Deshampsia antarctica which is considered as one of the main edificators provides the development of humus accumulation in upper solum. Penguins activity provides an intensive soil fertilization and development of plant communities with increased density. All these factors leads to formation of specific and quite diverse soil cover in sub Antarctic tundra's. These ecosystems are presented by following permafrost affected soils: Leptosols, Lithoosols, Crysols, Gleysols, Peats and Ornhitosols. Also the post Ornhitosols are widely spreaded in subantarcic ecosystems, they forms on the penguin rockeries during the plant succession development, leaching of nutrients and organic matter mineralization. "Amphibious" soils are specific for seasonal lakes, which evaporates in the end if Australian summer. These soils have specific features of bio sediments and soils as well. Soil chemical characteristic as well as organic matter features discussed in comparison with Antacrtic continental soil in presentation.

  14. Differential abundance of microbial functional groups along the elevation gradient from the coast to the Luquillo Mountains

    Treesearch

    Sharon A. Cantrell; D. Jean Lodge; Carlos A. Cruz; Luis M. García; Jose R. Pérez-Jiménez; Marirosa Molina

    2013-01-01

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradient in eastern Puerto Rico. Previous studies within the Luquillo Mountains showed that...

  15. Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foye, Kevin C.; Soong, Te-Yang

    2012-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the wastemore » mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)« less

  16. Forms of acid hydrolysis and gley formation and their role in the development of light-colored acid eluvial (Podzolic) horizons

    NASA Astrophysics Data System (ADS)

    Zaidel'Man, F. R.

    2010-04-01

    Nowadays, three processes, namely lessivage, acid hydrolysis, and gleying, are considered as responsible for the development of loamy and clayey podzolic soils. However, as was shown earlier, lessivage is not obligatory for their origin. In view of assessing the reasons for the formation of light-colored acid eluvial horizons, this article deals with the role of acid hydrolysis under aerobic conditions against the background of a percolative water regime and of two forms of gleying in the development of the horizons mentioned above. One form of gleying occurs under permanent anaerobic conditions against the background of a stagnant water regime; the other one is formed under pulsating anaerobic-aerobic conditions against the background of a stagnant-percolative water regime. As a result, three large genetically individual groups of soils are formed: nondifferentiated brown and gley, and differentiated podzolic soils on different parent rocks. The two latter forms of gleying are identical in their effects on the mineral substrates. They cause the iron removal from the soils. Among the three processes considered, the last one (gleying under a stagnant-percolative water regime) is the single reason for the leaching of most of the metals, the formation of light-colored acid eluvial horizons and their clay depletion, and for the differentiation of the soil profile.

  17. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    PubMed

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  19. The magnetic susceptibility of soils in Krakow, southern Poland

    NASA Astrophysics Data System (ADS)

    Wojas, Anna

    2017-06-01

    Studies into the magnetic susceptibility have been used to assess the soils contamination in the Krakow area. The results of topsoil (over a 2 × 2 km grid), subsoil (37 shallow holes) and soil samples (112) measurements were presented as maps of soil magnetic susceptibility (both volume and mass) illustrating the distribution of parameters in topsoil horizon (0-10 cm) and differential magnetic susceptibility maps between topsoil horizon and subsoil (40-60 cm). All evidence leads to the finding that the highest values of magnetic susceptibility of soil are found exclusively in industrial areas. Taking into consideration the type of land use, the high median value (89.8 × 10-8 m3kg-1) was obtained for samples of cultivated soils and is likely to be connected with occurrence of fertile soil (chernozem). Moreover, enrichment of soils with Pb and Zn accompanies magnetic susceptibility anomalies in the vicinity of the high roads and in the steelworks area, respectively.

  20. Soils of mountainous forest-steppe in the southwestern part of Khentei Ridge (Mongolia)

    NASA Astrophysics Data System (ADS)

    Ubugunova, V. I.; Baldanov, B. Ts.; Gunin, P. D.; Bazha, S. N.

    2017-09-01

    The study of soil cover in the mountainous forest-steppe on the southwestern macroslope of Khentei Ridge has shown that the spatial distribution of soils is controlled by the ruggedness of topography, slope aspects, geocryological conditions, and the thickness of loose deposits. The soils belong to the orders of lithozems and organo-accumulative soils (Mollic Leptosols) of the postlithogenic trunk of pedogenesis. Dark-humus and mucky-dark-humus horizons of the organic matter accumulation are characteristic features of these soils. The investigated area is differentiated according to the soil moistening conditions on the slopes of different aspects. Favorable growth conditions for dwarf birch and Siberian larch at the southern boundary of the boreal forests in Mongolia are explained by the relatively high moistening of mucky-darkhumus lithozems and mucky-dark-humus soils developed on windward northern slopes and on mountain terraces in places of the local snow accumulation by wind. An important role in preservation of forest vegetation belongs to permafrost in small cirque-like depressions.

  1. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed Central

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-01-01

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing. PMID:27196922

  2. The effect of aging on sequestration and bioaccessibility of oxytetracycline in soils.

    PubMed

    Liu, Yuxia; Bao, Yanyu; Cai, Zhang; Zhang, Zhenzihao; Cao, Peilin; Li, Xinqian; Zhou, Qixing

    2015-07-01

    Veterinary antibiotics introduced into soil environment may change the composition and functioning of soil microbial communities and promote the spreading of antibiotic resistance. Actual risks depend on the antibiotic's bioaccessibility and sequestration in soils, which may vary with contact time and soil properties. We elucidated changes in the horsebean plant's bioaccessible oxytetracycline with increasing contact time in three different soils (cinnamon, red, and brown soil) and observed discrepancy in oxytetracycline dissipation using sequential extractions with H2O-, 0.01 M CaCl2-, and Mcllvaine- in the same three soils. The results showed lower quantities of oxytetracycline with increasing contact time over 20 days than the level in freshly contaminated soils but hugely discrepant quantities among the three tested soils. In addition, aging largely reduced dissipation of H2O-, 0.01 M CaCl2-, and Mcllvaine- extracted oxytetracycline in soils before planting. However, bioturbation helped increase the H2O-, CaCl2-, and Mcllvaine- extracted oxytetracyline from cinnamon and brown soils with aging. Lastly, correlation analysis indicated that bioaccessibility of oxytetracycline significantly correlates with the total of H2O-, CaCl2-, and Mcllvaine- extracted oxytetracycline (0.676**, p < 0.01) in soils, especially the H2O- (0.789**, p < 0.01) and Mcllvaine- (0.686**, p < 0.01) extracted oxytetracycline with aging. Overall, this study provides some basic understanding of the aging effect on sequestration and bioaccessibility of veterinary antibiotics in soils.

  3. Evaluation of the Use of Supercritical Fluids for the Extraction of Explosives and Their Degradation Products from Soil

    DTIC Science & Technology

    1994-04-01

    and nontoxic is a major pounds. advantage . The accepted analytical method for explosives, The basic equipment required to conduct SFE is SW846 Method...theoretical advantage of SFE tion (SlE) with 18-hour sonic extraction with ACN. compared to conventional solvent extraction. II T r Figure 1. Phase...diagram of C0 2.Temperature 31"C Shut-off Hewler Figure 2. Design for a basic SFE apparaztus. (After Hawthorne 1993.) The advantages of extraction

  4. Soil biogeochemistry in the age of big data

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Barré, Pierre; Coissac, Eric; Plante, Alain; Rasse, Daniel

    2015-04-01

    Data is becoming one of the key resource of the XXIst century. Soil biogeochemistry is not spared by this new movement. The conservation of soils and their services recently came into the political agenda. However, clear knowledge on the links between soil characteristics and the various processes ensuring the provision of soil services is rare at the molecular or the plot scale, and does not exist at the landscape scale. This split between society's expectations on its natural capital, and scientific knowledge on the most complex material on earth has lead to an increasing number of studies on soils, using an increasing number of techniques of increasing complexity, with an increasing spatial and temporal coverage. From data scarcity with a basic data management system, soil biogeochemistry is now facing a proliferation of data, with few quality controls from data collection to publication and few skills to deal with them. Based on this observation, here we (1) address how big data could help in making sense of all these soil biogeochemical data, (2) point out several shortcomings of big data that most biogeochemists will experience in their future career. Massive storage of data is now common and recent opportunities for cloud storage enables data sharing among researchers all over the world. The need for integrative and collaborative computational databases in soil biogeochemistry is emerging through pioneering initiatives in this direction (molTERdb; earthcube), following soil microbiologists (GenBank). We expect that a series of data storage and management systems will rapidly revolutionize the way of accessing raw biogeochemical data, published or not. Data mining techniques combined with cluster or cloud computing hold significant promises for facilitating the use of complex analytical methods, and for revealing new insights previously hidden in complex data on soil mineralogy, organic matter and biodiversity. Indeed, important scientific advances have already been made thanks to meta-analysis, chemometrics, machine-learning systems and bioinformatics. Some techniques like structural equation modeling eventually propose to explore causalities opening a way towards the mechanistic understanding of soil big data rather than simple correlations. We claim that data science should be fully integrated into soil biogeochemists basic education schemes. We expect the blooming of a new generation of soil biogeochemists highly skilled in manipulating big data. Will big data represent a net gain for soil biogeochemistry? Increasing the amount of data will increase associated biases that may further be exacerbated by the increasing distance between data manipulators, soil sampling and data acquisition. Integrating data science into soil biogeochemistry should thus not be done at the expenses of pedology and metrology. We further expect that the more data, the more spurious correlations will appear leading to possible misinterpretation of data. Finally, big data on soils characteristics and processes will always need to be confronted to biogeochemical theories and socio-economic knowledge to be useful. Big data could revolutionize soil biogeochemistry, fostering new scientific and business models around the conservation of the soil natural capital, but our community should go into this new era with clear-sightedness and discernment.

  5. Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.

    1976-01-01

    A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.

  6. Airstream fractionation of vesicular-arbuscular mycorrhizal fungi: concentration and enumeration of propagules.

    PubMed

    Tommerup, I C

    1982-09-01

    Spores and fragments of vesicular-arbuscular mycorrhizal fungi in dry soils were concentrated up to 100-fold when the soils were partitioned by fluidization and elutriation with a series of upward airstreams at progressively increasing velocities. The propagules were transported with the finer soil particles according to their equivalent spherical diameters. The system was used to predict the transport of propagules by wind. Concentrated propagules were rapidly separated from the soil particles in each soil fraction by an aqueous flotation method. The technique is proposed as a quantitative method for estimating the numbers of spores and fragments of mycorrhizae. The scheme includes a viability test that was used to differentiate between potentially infective propagules and those that were either dormant or incapable of regrowth.

  7. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils

    PubMed Central

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-01-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3−-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly dominated by Nitrospira rather than Nitrobacter. A significant correlation was observed between the active AOA/AOB ratio and the soil oxidation capacity, implying a greater advantage of AOA over AOB under microaerophilic conditions. These results suggest the important roles of soil physiochemical properties in determining the activities of ammonia oxidizers and nitrite oxidizers. PMID:25303715

  8. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils.

    PubMed

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-05-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3(-)-N g(-1) dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in (13)C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of (13)CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the (13)C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The (13)C-NOB was overwhelmingly dominated by Nitrospira rather than Nitrobacter. A significant correlation was observed between the active AOA/AOB ratio and the soil oxidation capacity, implying a greater advantage of AOA over AOB under microaerophilic conditions. These results suggest the important roles of soil physiochemical properties in determining the activities of ammonia oxidizers and nitrite oxidizers.

  9. Research of the diurnal soil respiration dynamic in two typical vegetation communities in Tianjin estuarine wetland

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Meng, W. Q.; Li, H. Y.

    2016-08-01

    Understanding the differences and diurnal variations of soil respiration in different vegetation communities in coastal wetland is to provide basic reliable scientific evidence for the carbon "source" function of wetland ecosystems in Tianjin.Measured soil respiration rate which changed during a day between two typical vegetation communities (Phragmites australis, Suaeda salsa) in coastal wetland in October, 2015. Soil temperature and moisture were measured at the same time. Each of the diurnal curves of soil temperature in two communities had a single peak value, and the diurnal variations of soil moisture showed a "two peak-one valley" trend. The diurnal dynamic of soil respiration under the two communities had obvious volatility which showed a single peak form with its maximum between 12:00-14:00 and minimum during 18:00. The diurnal average of soil respiration rate in Phragmites australis communities was 3.37 times of that in Suaeda salsa communities. Significant relationships were found by regression analysis among soil temperature, soil moisture and soil respiration rate in Suaeda salsa communities. There could be well described by exponential models which was y = -0.245e0.105t between soil respiration rate and soil temperature, by quadratic models which was y = -0.276×2 + 15.277× - 209.566 between soil respiration rate and soil moisture. But the results of this study showed that there were no significant correlations between soil respiration and soil temperature and soil moisture in Phragmites australis communities (P > 0.05). Therefore, under the specific wetland environment conditions in Tianjin, soil temperature and moisture were not main factors influencing the diurnal variations of soil respiration rate in Phragmites australis communities.

  10. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  11. Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays.

    PubMed

    Loureiro, Susana; Ferreira, Abel L G; Soares, Amadeu M V M; Nogueira, António J A

    2005-10-01

    Soil contamination can be one path for streams and groundwater contamination. As a complement of chemical analysis and total contaminants determination, bioassays can provide information on the bioavailable fraction of chemical compounds, focusing on the retention and habitat function of soils. In this study the evaluation of the toxicity of two soils from the abandoned Jales Mine (Portugal) regarded both functions. The buffer capacity of soils was tested with bioassays carried out using the cladoceran Daphnia magna and the marine bacteria Vibrio fischeri. The habitat function of soils was evaluated with the reproduction bioassay with the collembolan Folsomia candida. The Microtox solid-phase test was performed with V. fischeri using soil as test medium, and soil elutriates were extracted to perform the Microtox basic test, and an immobilization and reproduction bioassay with D. magna. The marine bacteria showed high sensitivity to the soil with low heavy metal content (JNC soil) and to JNC soil elutriates, while the soil with highest heavy metal content (JC soil) or soil elutriates exposure did not cause any toxic effect. In the bioassays with D. magna, organisms showed sensitivity to JNC and also to JC soil elutriates. Both mobilization and reproduction features were inhibited. The bioassay with F. candida did not reflect any influence of the contaminants on their reproduction. Although JNC soil presented lower heavy metal contents, elutriates showed different patterns of contamination when compared to JC soil and elutriates, which indicates different retention and buffer capacities between soils. Results obtained in this study underlined the sensitivity and importance of soil elutriate bioassays with aquatic organisms in the evaluation strategy in soil ERA processes.

  12. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    PubMed

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  13. Social Concepts and Judgments: A Semantic Differential Analysis of the Concepts Feminist, Man, and Woman

    ERIC Educational Resources Information Center

    Pierce, W. David; Sydie, R. A.; Stratkotter, Rainer

    2003-01-01

    Male and female participants (N = 274) made judgments about the social concepts of "feminist," "man," and "woman" on 63 semantic differential items. Factor analysis identified three basic dimensions termed evaluative, potency, and activity as well as two secondary factors called expressiveness and sexuality. Results for the evaluative dimension…

  14. Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy.

    PubMed

    Sun, Wenjuan; Li, Xinju; Niu, Beibei

    2018-01-01

    Coal mining has led to increasingly serious land subsidence, and the reclamation of the subsided land has become a hot topic of concern for governments and scholars. Soil quality of reclaimed land is the key indicator to the evaluation of the reclamation effect; hence, rapid monitoring and evaluation of reclaimed land is of great significance. Visible-near infrared (Vis-NIR) spectroscopy has been shown to be a rapid, timely and efficient tool for the prediction of soil organic carbon (SOC). In this study, 104 soil samples were collected from the Baodian mining area of Shandong province. Vis-NIR reflectance spectra and soil organic carbon content were then measured under laboratory conditions. The spectral data were first denoised using the Savitzky-Golay (SG) convolution smoothing method or the multiple scattering correction (MSC) method, after which the spectral reflectance (R) was subjected to reciprocal, reciprocal logarithm and differential transformations to improve spectral sensitivity. Finally, regression models for estimating the SOC content by the spectral data were constructed using partial least squares regression (PLSR). The results showed that: (1) The SOC content in the mining area was generally low (at the below-average level) and exhibited great variability. (2) The spectral reflectance increased with the decrease of soil organic carbon content. In addition, the sensitivity of the spectrum to the change in SOC content, especially that in the near-infrared band of the original reflectance, decreased when the SOC content was low. (3) The modeling results performed best when the spectral reflectance was preprocessed by Savitzky-Golay (SG) smoothing coupled with multiple scattering correction (MSC) and first-order differential transformation (modeling R2 = 0.86, RMSE = 2.00 g/kg, verification R2 = 0.78, RMSE = 1.81 g/kg, and RPD = 2.69). In addition, the first-order differential of R combined with SG, MSC with R, SG together with MSC and R also produced better modeling results than other pretreatment combinations. Vis-NIR modeling with specific spectral preprocessing methods could predict SOC content effectively.

  15. Differential Group-Velocity Detection of Fluid Paths Leland Timothy Long

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Leland Timothy

    2003-06-01

    The objective of differential surface-wave interpretation is to identify and locate temporal perturbations in the shear-wave velocity. Perturbations in phase velocity are created when the stress and/or fluid content of soils changes, such as in pumping to remove or flush out contaminants. Differential surface wave analysis is a potential method to track the movement of fluids during remediation programs. This proposal is to develop and test this new technology to aid in the selection and design of remediation options in shallow aquifers.

  16. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stilianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-05-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  17. Methane emissions from MBT landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance atmore » MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.« less

  18. Simultaneous quantitative analysis of arsenic, bismuth, selenium, and tellurium in soil samples using multi-channel hydride-generation atomic fluorescence spectrometry.

    PubMed

    Wang, Fang; Zhang, Gai

    2011-03-01

    The basic principles and the application of hydride-generation multi-channel atomic fluorescence spectrometry (HG-MC-AFS) in soil analysis are described. It is generally understood that only one or two elements can be simultaneously detected by commonly used one- or two-channel HG-AFS. In this work, a new sample-sensitive and effective method for the analysis of arsenic, bismuth, tellurium, and selenium in soil samples by simultaneous detection using HG-MC-AFS was developed. The method detection limits for arsenic, bismuth, tellurium, and selenium are 0.19 μg/g, 0.10 μg/g, 0.11 μg/g, and 0.08 μg/g, respectively. This method was successfully applied to the simultaneous determination of arsenic, bismuth, tellurium, and selenium in soil samples.

  19. Phoenix Lander's Thermal Evolved Gas Analyzer: Differential Scanning Calorimeter and Mass Spectrometer Database Development

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Lauer, H. V.; Golden, D. C.; Ming, D. W.; Boynton, W. V.

    2008-01-01

    The Mars Scout Phoenix lander will land in the north polar region of Mars in May, 2008. One objective of the Phoenix lander is to search for evidence of past life in the form of molecular organics that may be preserved in the subsurface soil. The Thermal Evolved Gas Analyzer (TEGA) was developed to detect these organics by coupling a simultaneous differential thermal analyzer (SDTA) with a mass spectrometer. Martian soil will be heated to approx.1000 C and potential organic decomposition products such as CO2, CH4 etc. will be examined for with the MS. TEGA s SDTA will also assess the presence of endothermic and exothermic reactions that are characteristic of soil organics and minerals as the soil is heated. The MS in addition to detecting organic decompositon products, will also assess the levels of soil inorganic volatiles such as H2O, SO2, and CO2. Organic detection has a high priority for this mission; however, TEGA has the ability to provide valuable insight into the mineralogical composition of the soil. The overall goal of this work is to develop a TEGA database of minerals that will serve as a reference for the interpretation of Phoenix-TEGA. Previous databases for the ill-fated Mars Polar Lander (MPL)-TEGA instrument only went to 725 C. Furthermore, the MPL-TEGA could only detect CO2 and H2O while the Phoenix-TEGA MS can examine up to 144 atomic mass units. The higher temperature Phoenix-TEGA SDTA coupled with the more capable MS indicates that a higher temperature database is required for TEGA interpretation. The overall goal of this work is to develop a differential scanning calorimeter (DSC) database of minerals along with corresponding MS data of evolved gases that can used to interpret TEGA data during and after mission operations. While SDTA and DSC measurement techniques are slightly different (SDTA does not use a reference pan), the results are fundamentally similar and thus DSC is a useful technique in providing comparative data for the TEGA database. The objectives of this work is to conduct DSC and MS analysis up to 1000 C of select minerals that may be found in the martian soil.

  20. Building a Global Network of Hydro-climatology Sites in Cloud-affected Tropical Montane Forests

    NASA Astrophysics Data System (ADS)

    Moore, G. W.; Asbjornsen, H.; Bruijnzeel, S., Sr.; Berry, Z. C.; Giambelluca, T. W.; Martin, P.; Mulligan, M.

    2015-12-01

    Tropical montane forests are characteristically wet environments with low evapotranspiration and sometimes significant contributions from fog interception. They are often located at headwater catchments critical for water supplies, but ecohydroclimate data in these regions are sparse. Such evidence may be crucial for assessing climate alterations in these sensitive ecosystems. As part of a global effort led by the Tropical Montane Cloud Forest Research Coordination Network (Cloudnet - http://cloudnet.agsci.colostate.edu), we aim to extend the network of tropical montane forest sites and establish robust protocols for measuring key ecohydroclimatic parameters, including fog interception, windblown rain, throughfall, leaf wetness, and micrometeorological conditions. Specific recommendations for standardized protocols include (1) rain and fog collectors uniquely designed to separately quantify fog interception from direct rain inputs, even in windy conditions, (2) trough-style throughfall gages that collect 40 times the area of a typical tipping bucket gage with added features to reduce splash-out, (3) clusters of leaf wetness sensors to differentiate frequency and duration of wetness caused by rain and fog on windward and leeward exposures, and (4) basic micrometeorological sensors for solar radiation, temperature, humidity, and wind. At sites where resources allow for additional measurements, we developed protocols for quantifying soil moisture, soil saturation, and plant water uptake from both roots and leaves (i.e. foliar absorption), since these are also important drivers in these systems. Participating sites will be invited to contribute to a global meta-analysis that will provide new insights into the ecohydrology of cloud-affected tropical montane forests.

  1. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  2. A radiosity-based model to compute the radiation transfer of soil surface

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  3. Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation.

    PubMed

    Xu, Xihui; Zhang, Zhou; Hu, Shunli; Ruan, Zhepu; Jiang, Jiandong; Chen, Chen; Shen, Zhenguo

    2017-01-01

    Soil provides a critical environment for microbial community development. However, microorganisms may be sensitive to substances such as heavy metals (HMs), which are common soil contaminants. This study investigated bacterial communities using 16S ribosomal RNA (rRNA) gene fragment sequencing in geographic regions with and without HM pollution to elucidate the effects of soil properties and HMs on bacterial communities. No obvious changes in the richness or diversity of bacterial communities were observed between samples from mining and control areas. Significant differences in bacterial richness and diversity were detected between samples from different geographic regions, indicating that the basic soil characteristics were the most important factors affecting bacterial communities other than HMs. However, the abundances of several phyla and genera differed significantly between mining and control samples, suggesting that Zn and Pb pollution may impact the soil bacterial community composition. Moreover, regression analyses showed that the relative abundances of these phyla and genera were correlated significantly with the soil-available Zn and Pb contents. Redundancy analysis indicated that the soil K, ammoniacal nitrogen (NH 4 + -N), total Cu, and available Zn and Cu contents were the most important factors. Our results not only suggested that the soil bacteria were sensitive to HM stresses but also indicated that other soil properties may affect soil microorganisms to a greater extent.

  4. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants--implications for phytoremediation.

    PubMed

    Anjum, Naser A; Umar, Shahid; Iqbal, Muhammad

    2014-09-01

    This study, based on a greenhouse pot culture experiment conducted with 15-day-old rapeseed (Brassica campestris L. cv. Pusa Gold; family Brassicaceae) and moong bean (Vigna radiata L. Wilczek cv. Pusa Ratna; family Fabaceae) plants treated with cadmium (Cd) concentrations (0, 50, and 100 mg kg(-1) soil), investigates their potential for Cd accumulation and tolerance, and dissects the underlying basic physiological/biochemical mechanisms. In both species, plant dry mass decreased, while Cd concentration of both root and shoot increased with increase in soil Cd. Roots harbored a higher amount of Cd (vs. shoot) in B. campestris, while the reverse applied to V. radiata. By comparison, root Cd concentration was higher in B. campestris than in V. radiata. The high Cd concentrations in B. campestris roots and V. radiata shoots led to significant elevation in oxidative indices, as measured in terms of electrolyte leakage, H2O2 content, and lipid peroxidation. Both plants displayed differential adaptation strategies to counteract the Cd burden-caused anomalies in their roots and shoots. In B. campestris, increasing Cd burden led to a significantly decreased reduced glutathione (GSH) content but a significant increase in activities of GSH reductase (GR), GSH peroxidase (GPX), and GSH sulfotransferase (GST). However, in V. radiata, increasing Cd burden caused significant increase in GSH content and GR activity, but a significant decline in activities of GPX and GST. Cross talks on Cd burden of tissues and the adapted Cd tolerance strategies against Cd burden-accrued toxicity indicated that B. campestris and V. radiata are good Cd stabilizer and Cd extractor, respectively, wherein a fine tuning among the major components (GR, GPX, GST, GSH) of the GSH redox system helped the plants to counteract differentially the Cd load-induced anomalies in tissues. On the whole, the physiological/biochemical characterization of the B. campestris and V. radiata responses to varying Cd concentrations can be of great help in elaborating the innovative plant-based remediation technologies for metal/metalloid-contaminated sites.

  5. Mapping soil texture targeting predefined depth range or synthetizing from standard layers?

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Dezső Kaposi, András; Szatmári, Gábor; Takács, Katalin; Pásztor, László

    2017-04-01

    There are increasing demands nowadays on spatial soil information in order to support environmental related and land use management decisions. Physical soil properties, especially particle size distribution play important role in this context. A few of the requirements can be satisfied by the sand-, silt-, and clay content maps compiled according to global standards such as GlobalSoilMap (GSM) or Soil Grids. Soil texture classes (e. g. according to USDA classification) can be derived from these three fraction data, in this way texture map can be compiled based on the proper separate maps. Soil texture class as well as fraction information represent direct input of crop-, meteorological- and hydrological models. The model inputs frequently require maps representing soil features of 0-30 cm depth, which is covered by three consecutive depth intervals according to standard specifications: 0-5 cm, 5-15 cm, 15-30 cm. Becoming GSM and SoilGrids the most detailed freely available spatial soil data sources, the common model users (e. g. meteorologists, agronomists, or hydrologists) would produce input map from (the weighted mean of) these three layers. However, if the basic soil data and proper knowledge is obtainable, a soil texture map targeting directly the 0-30 cm layer could be independently compiled. In our work we compared Hungary's soil texture maps compiled using the same reference and auxiliary data and inference methods but for differing layer distribution. We produced the 0-30 cm clay, silt and sand map as well as the maps for the three standard layers (0-5 cm, 5-15 cm, 15-30 cm). Maps of sand, silt and clay percentage were computed through regression kriging (RK) applying Additive Log-Ratio (alr) transformation. In addition to the Hungarian Soil Information and Monitoring System as reference soil data, digital elevation model and its derived components, soil physical property maps, remotely sensed images, land use -, geological-, as well as meteorological data were applied as auxiliary variables. We compared the directly compiled and the synthetized clay-, sand content, and texture class maps by different tools. In addition to pairwise comparison of basic statistical features (histograms, scatter plots), we examined the spatial distribution of the differences. We quantified the taxonomical distances of the textural classes, in order to investigate the differences of the map-pairs. We concluded that the directly computed and the synthetized maps show various differences. In the case of clay-, and sand content maps, the map-pairs have to be considered statistically different. On the other hand, the differences of the texture class maps are not significant. However, in all cases, the differences rather concern the extreme ranges and categories. Using of synthetized maps can intensify extremities by error propagation in models and scenarios. Based on our results, we suggest the usage of the directly composed maps.

  6. Compensation of Emergency Medical Technician (EMT)-Basics and Paramedics.

    PubMed

    Studnek, Jonathan R

    2016-12-01

    The objective of this paper is to identify factors associated with compensation for Emergency Medical Technician (EMT)-Basics and Paramedics and assess whether these associations have changed over the period 1999-2008. Data obtained from the Longitudinal EMT Attributes and Demographic Study (LEADS) surveys, a mail survey of a random, stratified sample of nationally certified EMT-Basics and Paramedics, were analyzed. For the 1999-2003 period, analyses included all respondents providing Emergency Medical Services (EMS). With the addition of a survey in 2004 about volunteers, it was possible to exclude volunteers from these analyses. Over 60% of EMT-Basics reported being either compensated or noncompensated volunteers in the 2004-2008 period. This was substantially and significantly greater than the proportion of EMT-Paramedic volunteers (<25%). The EMT-Paramedics earned significantly more than EMT-Basics, with differentials of $11,000-$18,000 over the course of the study. The major source of earnings disparity was type of organization: respondents employed by fire-based EMS agencies reported significantly higher earnings than other respondents, at both the EMT-Basic and EMT-Paramedic levels. Males also earned significantly more than females, with annual earnings differentials ranging from $7,000 to $15,000. There are a number of factors associated with compensation disparities within the EMS profession. These include type of service (ie, fire-based vs. other types of agencies) and gender. The reasons for these disparities warrant further investigation. Studnek JR . Compensation of Emergency Medical Technician (EMT)-Basics and Paramedics. Prehosp Disaster Med. 2016;31(Suppl. 1):s87-s95.

  7. Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome

    DOE PAGES

    Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe; ...

    2014-06-16

    Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less

  8. Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe

    Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less

  9. The solonetzic process in surface soils and buried paleosols and its reflection in the mineralogical soil memory

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Kovda, I. V.; Borisov, A. V.; Shishlina, N. I.

    2009-10-01

    The development of the solonetzic process in paleosols buried under kurgans and in the modern surface soils has been studied on the basis of the analysis of the clay (<1 µm) fraction. The revealed changes in the textural differentiation of the soils and the mineralogical composition of the clay fraction during 4500 years are assessed from the viewpoint of the “memory“ of the solid-phase soil components. The mineralogical characteristics show that the solonetzic process in the modern background soil is more developed. The mineralogical approach allows us to reveal the long-term changes in the soil status; it is less useful for studying the effect of short-term bioclimatic fluctuations. In the latter case, more labile soil characteristics should be used. The mineralogical method, combined with other methods, becomes more informative upon the study of soil chronosequences. Our studies have shown that the data on the clay minerals in the buried paleosols may contain specific information useful for paleoreconstructions that is not provided by other methods.

  10. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities.

    PubMed

    Adetutu, E M; Ball, A S; Osborn, A M

    2008-12-01

    To provide an independent assessment of azoxystrobin effects on nontarget soil bacteria and fungi and generate some baseline information on azoxystrobin's persistence in soil. Plate based assay showed that azoxystrobin exhibited differential toxicity upon cultured fungi at different application rates. While (14)C labelled isotopes experiments showed that less than 1% of azoxystrobin was mineralized, degradation studies revealed over 60% azoxystrobin breakdown over 21 days. PCR DGGE analysis of 16S and 18S rRNA genes from different soil microcosms showed that azoxystrobin had some effects on fungal community after 21 days (up to 84 days) of incubation in either light or dark soil microcosms. Light incubations increased fungal diversity while dark incubations reduced fungal diversity. Bacterial diversity was unaffected. Significant biotic breakdown of parent azoxystrobin occurred within 21 days even in the absence of light. Azoxystrobin under certain conditions can reduce fungal soil diversity. One of the few independent assessments of azoxystrobin (a widely used strobilurins fungicide) effects on soil fungi when used at the recommended rate. Azoxystrobin and metabolites may persist after 21 days and affect soil fungi.

  11. [The assessment of radionuclide contamination and toxicity of soils sampled from "experimental field" site of Semipalatinsk nuclear test site].

    PubMed

    Evseeva, T I; Maĭstrenko, T A; Belykh, E S; Geras'kin, S A; Kriazheva, E Iu

    2009-01-01

    Large-scale maps (1:25000) of soil contamination with radionuclides, lateral distribution of 137Cs, 90Sr, Fe and Mn water-soluble compounds and soil toxicity in "Experimental field" site of Semipalatinsk nuclear test site were charted. At present soils from studied site (4 km2) according to basic sanitary standards of radiation safety adopted in Russian Federation (OSPORB) do not attributed to radioactive wastes with respect to data on artificial radionuclide concentration, but they do in compliance with IAEA safety guide. The soils studied can not be released from regulatory control due to radioactive decay of 137Cs and 90Sr and accumulation-decay of 241Am up to 2106 year according to IAEA concept of exclusion, exemption and clearance. Data on bioassay "increase of Chlorella vulgaris Beijer biomass production in aqueous extract from soils" show that the largest part of soils from the studied site (74%) belongs to stimulating or insignificantly influencing on the algae reproduction due to water-soluble compounds effect. Toxic soils occupy 26% of the territory. The main factors effecting the algae reproduction in the aqueous extracts from soil are Fe concentration and 90Sr specific activity: 90Sr inhibits but Fe stimulates algae biomass production.

  12. Chiral separation and enantioselective degradation of vinclozolin in soils.

    PubMed

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  13. Changes in soil erosion and sediment transport based on the RUSLE model in Zhifanggou watershed, China

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Qian, Ju; Qi, Wen-Yan; Li, Sheng-Shuang; Chen, Jian-Long

    2018-04-01

    In this paper, changes of sediment yield and sediment transport were assessed using the Revised Universal Soil Loss Equation (RUSLE) and Geographical Information Systems (GIS). This model was based on the integrated use of precipitation data, Landsat images in 2000, 2005 and 2010, terrain parameters (slope gradient and slope length) and soil composition in Zhifanggou watershed, Gansu Province, Northwestern China. The obtained results were basically consistent with the measured values. The results showed that the mean modulus of soil erosion is 1224, 1118 and 875 t km-2 yr-1 and annual soil loss is 23 130, 21 130 and 16 536 in 2000, 2005 and 2010 respectively. The measured mean erosion modulus were 1581 and 1377 t km-2 yr-1, and the measured annual soil loss were 29 872 and 26 022 t in 2000 and 2005. From 2000 to 2010, the amount of soil erosion was reduced yearly. Very low erosion and low erosion dominated the soil loss status in the three periods, and moderate erosion followed. The zones classified as very low erosion were increasing, whereas the zones with low or moderate erosion were decreasing. In 2010, no zones were classified as high or very high soil erosion.

  14. Relationship between assimilable-nutrient content and physicochemical properties of topsoil

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Przemysław; Bednarek, Wiesław; Dresler, Sławomir; Krzyszczak, Jaromir; Baranowski, Piotr; Sławiński, Cezary

    2017-10-01

    In the years 2008-2011, an environmental study was conducted for Polish soils, focusing on the south-eastern Poland soils, as they exhibit significant acidification. This study aimed at assessing the current pHKCl and the supply of basic macro- (P, K, Mg and S-SO4) and microelements (B, Cu, Fe, Mn and Zn) in the collected soil samples, and also at determining their relationship with the soil agronomic category, humus content and pH class. Soil reaction and humus and macronutrient content were positively correlated with the amount of colloidal clay and particles < 0.02 mm. In the majority of cases, the macro-element content in the soil was positively correlated with soil pH and humus content. As for microelements, a usually significant and positive correlation was found between the soil agronomic category and the content of manganese, iron and zinc, whereas for the content of boron and copper, no such relationship was observed. A significant and positive correlation between soil reaction and the content of manganese, iron and boron was also found. Such correlations were not observed in relation to copper and zinc content. Statistical analysis indicated that the content of boron and manganese depended to the greatest extent on the investigated physicochemical properties.

  15. Metabolism of two Go alpha isoforms in neuronal cells during differentiation.

    PubMed

    Brabet, P; Pantaloni, C; Bockaert, J; Homburger, V

    1991-07-15

    We have previously shown that undifferentiated N1E-115 neuroblastoma cells express only one isoform of Go alpha (pI = 5.8), whereas differentiated neuroblastoma cells expressed, in addition to this isoform, another Go alpha with a more acidic pI (5.55). Moreover, primary cultures of cerebellar granule cells, which are extremely well differentiated cells yielding a high density of synapses, expressed only a single Go alpha isoform with a pI of 5.55 (Brabet, P., Pantaloni, C., Rodriguez Martinez, J., Bockaert, J., and Homburger, V. (1990) J. Neurochem. 54, 1310-1320). In this report, using biosynthetic labeling with [35S]methionine and specific quantitative immunoprecipitation with a polyclonal antibody raised against the purified Go alpha protein, we have determined 1) the degradation rate of total Go alpha (sum of the two isoforms) in differentiated as well as in undifferentiated neuroblastoma cells and in cerebellar granule cells, 2) the degradation rates of each isoform in differentiated neuroblastoma cells. The t 1/2 for total Go alpha protein degradation was very different in the three neuronal cell populations and was 28 +/- 5 h (n = 5), 58 +/- 9 h (n = 5), and 154 +/- 22 h (n = 6) in undifferentiated, differentiated neuroblastoma, and granule cells, respectively. Using two-dimensional gel analysis of immunoprecipitates, we have also determined the individual t 1/2 for degradation of each Go alpha isoform in differentiated neuroblastoma cells, in which the two Go alpha isoforms were expressed. Results indicated that the two Go alpha isoforms exhibit similar t1/2 for degradation (49 +/- 5 h, n = 3). Thus, the t1/2 for degradation of the more basic Go alpha isoform is higher in differentiated neuroblastoma cells (49 +/- 5 h, n = 3) than in undifferentiated neuroblastoma cells (28 +/- 5 h, n = 5) which expressed only the more basic Go alpha isoform. It can be concluded that the degradation rate of the more basic Go alpha isoform is not a characteristic of the protein itself but depends on the state of the cell differentiation. The comparison between the t1/2 for degradation of the more acidic Go alpha isoform is differentiated neuroblastoma cells (51 +/- 6 h, n = 3) with that of cerebellar granule cells (154 +/- 22 h, n = 6) suggests that there is also a decrease in the degradation rate of the more acidic Go alpha isoform during differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. Nitrate leaching index

    USDA-ARS?s Scientific Manuscript database

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  17. SW-846 Test Method 1340: In Vitro Bioaccessibility Assay for Lead in Soil

    EPA Pesticide Factsheets

    Describes assay procedures written on the assumption that they will be performed by analysts who are formally trained in at least the basic principles of chemical analysis and in the use of the subject technology.

  18. ASBESTOS EXPOSURE RESEARCH - AIR, SOIL AND BULK MATERIAL SCENARIOS

    EPA Science Inventory

    Presently, asbestos and other mineral fibers are monitored in the workplace and in the environment using several basic analytical techniques, based primarily upon observing the fiber by either optical or electron microscopy. EPA is conducting research to determine which sampling ...

  19. Quality control analysis : part II : soil and aggregate base course.

    DOT National Transportation Integrated Search

    1966-07-01

    This is the second of the three reports on the quality control analysis of highway construction materials. : It deals with the statistical evaluation of results from several construction projects to determine the basic pattern of variability with res...

  20. [Correlation Among Soil Organic Carbon, Soil Inorganic Carbon and the Environmental Factors in a Typical Oasis in the Southern Edge of the Tarim Basin].

    PubMed

    Gong, Lu; Zhu, Mei-ling; Liu, Zeng-yuan; Zhang, Xue-ni; Xie, Li-na

    2016-04-15

    We analyzed the differentiation among the environmental factors and soil organic/inorganic carbon contents of irrigated desert soil, brown desert soil, saline soil and aeolian sandy soil by classical statistics methods, and studied the correlation between soil carbon contents and the environmental factor by redundancy analysis (RDA) in a typical oasis of Yutian in the southern edge of the Tarim Basin. The results showed that the average contents of soil organic carbon and soil inorganic carbon were 2.51 g · kg⁻¹ and 25.63 g · kg⁻¹ respectively. The soil organic carbon content of the irrigated desert soil was significantly higher than those of brown desert soil, saline soil and aeolian sandy soil, while the inorganic carbon content of aeolian sandy soil was significantly higher than those of other soil types. The soil moisture and nutrient content were the highest in the irrigated desert soil and the lowest in the aeolian sandy sail. All soil types had high degree of salinization except the irrigated desert soil. The RDA results showed that the impacts of environmental factors on soil carbon contents ranked in order of importance were total nitrogen > available phosphorus > soil moisture > ground water depth > available potassium > pH > total salt. The soil carbon contents correlated extremely significantly with total nitrogen, available phosphorus, soil moisture and ground water depth (P < 0.01), and it correlated significantly with available potassium and pH (P < 0.05). There was no significant correlation between soil carbon contents and other environmental factors (P > 0.05).

  1. Presence of Trifolium repens Promotes Complementarity of Water Use and N Facilitation in Diverse Grass Mixtures.

    PubMed

    Hernandez, Pauline; Picon-Cochard, Catherine

    2016-01-01

    Legume species promote productivity and increase the digestibility of herbage in grasslands. Considerable experimental data also indicate that communities with legumes produce more above-ground biomass than is expected from monocultures. While it has been attributed to N facilitation, evidence to identify the mechanisms involved is still lacking and the role of complementarity in soil water acquisition by vertical root differentiation remains unclear. We used a 20-months mesocosm experiment to investigate the effects of species richness (single species, two- and five-species mixtures) and functional diversity (presence of the legume Trifolium repens) on a set of traits related to light, N and water use and measured at community level. We found a positive effect of Trifolium presence and abundance on biomass production and complementarity effects in the two-species mixtures from the second year. In addition the community traits related to water and N acquisition and use (leaf area, N, water-use efficiency, and deep root growth) were higher in the presence of Trifolium. With a multiple regression approach, we showed that the traits related to water acquisition and use were with N the main determinants of biomass production and complementarity effects in diverse mixtures. At shallow soil layers, lower root mass of Trifolium and higher soil moisture should increase soil water availability for the associated grass species. Conversely at deep soil layer, higher root growth and lower soil moisture mirror soil resource use increase of mixtures. Altogether, these results highlight N facilitation but almost soil vertical differentiation and thus complementarity for water acquisition and use in mixtures with Trifolium. Contrary to grass-Trifolium mixtures, no significant over-yielding was measured for grass mixtures even those having complementary traits (short and shallow vs. tall and deep). Thus, vertical complementarity for soil resources uptake in mixtures was not only dependant on the inherent root system architecture but also on root plasticity. We also observed a time-dependence for positive complementarity effects due to the slow development of Trifolium in mixtures, possibly induced by competition with grasses. Overall, our data underlined that soil water resource was an important driver of over-yielding and complementarity effects in Trifolium-grass mixtures.

  2. Evidence of climatic effects on soil, vegetation and landform in temperate forests of south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Inbar, Assaf; Nyman, Petter; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Water and radiation are unevenly distributed across the landscape due to variations in topography, which in turn causes water availability differences on the terrain according to elevation and aspect orientation. These differences in water availability can cause differential distribution of vegetation types and indirectly influence the development of soil and even landform, as expressed in hillslope asymmetry. While most of the research on the effects of climate on the vegetation and soil development and landscape evolution has been concentrated in drier semi-arid areas, temperate forested areas has been poorly studied, particularly in South Eastern Australia. This study uses soil profile descriptions and data on soil depth and landform across climatic gradients to explore the degrees to which coevolution of vegetation, soils and landform are controlled by radiative forcing and rainfall. Soil depth measurements were made on polar and equatorial facing hillslopes located at 3 sites along a climatic gradient (mean annual rainfall between 700 - 1800 mm yr-1) in the Victorian Highlands, where forest types range from dry open woodland to closed temperate rainforest. Profile descriptions were taken from soil pits dag on planar hillslopes (50 m from ridge), and samples were taken from each horizon for physical and chemical properties analysis. Hillslope asymmetry in different precipitation regimes of the study region was quantified from Digital Elevation Models (DEMs). Significant vegetation differences between aspects were noted in lower and intermediate rainfall sites, where polar facing aspects expressed higher overall biomass than the drier equatorial slope. Within the study domain, soil depth was strongly correlated with forest type and above ground biomass. Soil depths and chemical properties varied between topographic aspects and along the precipitation gradient, where wetter conditions facilitate deeper and more weathered soils. Furthermore, soil depths showed different patterns as a function of contributing area. While soils on the polar facing slope became deeper, soils on the equatorial facing slope kept a uniform depth with increasing contributing area, pointing to different governing geomorphic processes at work. Using slope-area relationships analysis, polar facing slopes were found to be generally steeper and with longer distance to channel initiation point (if existent) than that of the equatorial facing slopes, strengthening the evidence of climate-affected differential geomorphic processes shaping the hillslope form. The results point out to the effect of climate on the development and coevolution of soil, vegetation and landform in the temperate part of Australia.

  3. Soil microbial community profiles and functional diversity in limestone cedar glades

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram

    2016-01-01

    Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.

  4. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review

    NASA Astrophysics Data System (ADS)

    Jamiołkowska, Agnieszka; Księżniak, Andrzej; Gałązka, Anna; Hetman, Beata; Kopacki, Marek; Skwaryło-Bednarz, Barbara

    2018-01-01

    Arbuscular mycorrhizal fungi inhabiting soil play an important role for vascular plants. Interaction between arbuscular mycorrhizal fungi, plants and soil microorganisms leads to many mutual advantages. However, the effectiveness of mycorrhizal fungi depends not only on biotic, but also abiotic factors such as physico-chemical properties of the soil, availability of water and biogenic elements, agricultural practices, and climatic conditions. First of all, it is important to adapt the arbuscular mycorrhizal fungi species to changing environmental conditions. The compactness of the soil and its structure have a huge impact on its biological activity. Soil pH reaction has a substantial impact on the mobility of ions in soil dilutions and their uptake by plants and soil microflora. Water excess can be a factor negatively affecting arbuscular mycorrhizal fungi because these microorganisms are sensitive to a lower availability of oxygen. Mechanical cultivation of the soil has a marginal impact on the arbuscular mycorrhizal fungi spores. However, soil translocation can cause changes to the population of the arbuscular mycorrhizal fungi abundance in the soil profile. The geographical location and topographic differentiation of cultivated soils, as well as the variability of climatic factors affect the population of the arbuscular mycorrhizal fungi in the soils and their symbiotic activity.

  5. Quantum κ-deformed differential geometry and field theory

    NASA Astrophysics Data System (ADS)

    Mercati, Flavio

    2016-03-01

    I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.

  6. On computing Gröbner bases in rings of differential operators

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Sun, Yao; Wang, Dingkang

    2011-05-01

    Insa and Pauer presented a basic theory of Groebner basis for differential operators with coefficients in a commutative ring in 1998, and a criterion was proposed to determine if a set of differential operators is a Groebner basis. In this paper, we will give a new criterion such that Insa and Pauer's criterion could be concluded as a special case and one could compute the Groebner basis more efficiently by this new criterion.

  7. Differential diagnosis of hyperkalemia: an update to a complex problem.

    PubMed

    Eleftheriadis, T; Leivaditis, K; Antoniadi, G; Liakopoulos, V

    2012-10-01

    Hyperkalemia is a relative common and sometimes life threatening electorlyte disorder. Although its symptomatic treatment is relatively easy, since precise therapeutic algorithms are available, its differential diagnosis is more complicated. The present review aims to unfold the differential diagnosis of hypekalemia using a pathophysiological, albeit clinically useful, approach. The basic elements of potassium homeostasis are provided, the causes of hyperkalemia are categorized and analysed and finally the required for the diferrential diagnosis laboratory tests are mentioned.

  8. A Model for coupled heat and moisture transfer in permafrost regions of three rivers source areas, Qinghai, China

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Xiang, X. H.; Wang, C. H.; Shao, Q. Q.

    2012-04-01

    Soil freezing occurs in winter in many parts of the world. The transfer of heat and moisture in freezing and thawing soil is interrelated, and this heat and moisture transport plays an important role in hydrological activity of seasonal frozen region especially for three rivers sources area of China. Soil freezing depth and ice content in frozen zone will significantly influence runoff and groundwater recharge. The purpose of this research is to develop a numerical model to simulate water and heat movement in the soil under freezing and thawing conditions. The basic elements of the model are the heat and water flow equations, which are heat conduction equation and unsaturated soil fluid mass conservation equation. A full-implicit finite volume scheme is used to solve the coupled equations in space. The model is calibrated and verified against the observed moisture and temperature of soil during freezing and thawing period from 2005 to 2007. Different characters of heat and moisture transfer are testified, such as frozen depth, temperature field of 40 cm depth and topsoil moisture content, et al. The model is calibrated and verified against observed value, which indicate that the new model can be used successfully to simulate numerically the coupled heat and mass transfer process in permafrost regions. By simulating the runoff generation process and the driven factors of seasonal changes, the agreement illustrates that the coupled model can be used to describe the local phonemes of hydrologic activities and provide a support to the local Ecosystem services. This research was supported by the National Natural Science Foundation of China (No. 51009045; 40930635; 41001011; 41101018; 51079038), the National Key Program for Developing Basic Science (No. 2009CB421105), the Fundamental Research Funds for the Central Universities (No. 2009B06614; 2010B00414), the National Non Profit Research Program of China (No. 200905013-8; 201101024; 20101224).

  9. Mechanisms of Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough understanding of the processes, factors and causes of SOC and SIC dynamics in soils of natural and managed ecosystems.

  10. Effect of the historical land use on the structure of forest soils in European Russia

    NASA Astrophysics Data System (ADS)

    Bobrovskii, M. V.

    2010-12-01

    The morphological structure of the soils in the forest areas of European Russia was analyzed. It was shown that most of the soils were formed under the impact of both biotic and anthropogenic factors. Soils with poorly differentiated profiles without podzolization features are typical for the least disturbed forest ecosystems. The presence of an eluvial (EL) horizon is associated with the signs of old plowing and (or) fires. The character and rate of the soil cover transformation under various impacts of the historical land use (felling, plowing, pasturing, burning, etc.) are discussed. The technologies of the main traditional farming systems in the forest zone of European Russia (slash-and-burn, fallow, and shifting farming systems) are considered; their effect on the long-term dynamics of the soil cover is estimated. Farming and the related impacts of historical land use can be a major reason for the formation of degraded soils in the forest zone of European Russia.

  11. Diagnostics of hydromorphism in soils of autonomous positions on the Severo-Sos'vinsk Upland (Western Siberia)

    NASA Astrophysics Data System (ADS)

    Avetov, N. A.; Sopova, E. O.; Golovleva, Yu. A.; Kiryushin, A. V.; Krasilnikov, P. V.

    2014-11-01

    The complex studies of hydromorphism features in taiga weakly differentiated soils using morphological (color), chemical (iron content in different extracts, indicators of reducing conditions (IRIS)), and geobotanic (using the Ramenskii scale) methods have led to ambiguous conclusions. In all the soils, surface gleying was manifested. According to the results obtained by different methods, the maximum reduction processes were related to either the sublitter or the next deeper horizon. The Schwertmann coefficient, the criterion of Bodegom, and the Ramenskii scale indicated an increase of hydromorphism in the soils studied in the following sequence: the lower part of the ridge slopes drained by the small gullies < the middle part of the slopes < the flat tops of the ridges < the depression between the ridges. The morphological diagnostics of gleying proved to be a less sensitive method, which can recognize only the most contrasting hydromorphic soils. The lower horizons in some taiga soils have a bluish gray color probably not related to the recent soil hydromorphism.

  12. Back to the basics: Birmingham, Alabama, measurement and scale

    USGS Publications Warehouse

    Handley, L.R.; Lockwood, C.M.; Handley, N.

    2005-01-01

    Back to the Basics: Birmingham, Alabama is the fourth in a series of workshops that focus on teaching foundational map reading and spatial differentiation skills. It is the second published exercise from the Back to the Basics series developed by the Wetland Education through Maps and Aerial Photography (WETMAAP) Program (see Journal of Geography 103, 5: 226-230). Like its predecessor, the current exercise is modified from the Birmingham Back to the Basics workshop offered during the annual National Council for Geographic Education meeting. The focus of this exercise is on scale and measurement, foundational skills for spatial thinking and analysis. ?? 2005 National Council for Geographic Education.

  13. Geometric parameters determination of the installation for oil-contaminated soils decontamination in Russia, the Siberian region and the Arctic zones climatic conditions with reagent encapsulating

    NASA Astrophysics Data System (ADS)

    Shtripling, L. O.; Kholkin, E. G.

    2018-01-01

    The article presents the procedure for determining the basic geometrical setting parameters for the oil-contaminated soils decontamination with reagent encapsulation method. An installation is considered for the operational elimination of the emergency consequences accompanied with oil spills, and the installation is adapted to winter conditions. In the installations exothermic process thermal energy of chemical neutralization of oil-contaminated soils released during the decontamination is used to thaw frozen subsequent portions of oil-contaminated soil. Installation for oil-contaminated soil decontamination as compared with other units has an important advantage, and it is, if necessary (e.g., in winter) in using the heat energy released at each decontamination process stage of oil-contaminated soil, in normal conditions the heat is dispersed into the environment. In addition, the short-term forced carbon dioxide delivery at the decontamination process final stage to a high concentration directly into the installation allows replacing the long process of microcapsule shells formation and hardening that occur in natural conditions in the open air.

  14. From agricultural geology to hydropedology: Forging links within the twenty-first-century geoscience community

    USGS Publications Warehouse

    Landa, E.R.; ,

    2006-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late-twentieth century. The shift in recent decades within both disciplines, towards greater emphasis on environmental-quality issues and a systems approach, has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere and lithosphere, introductory and advanced soil-science classes are now taught in a number of Earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface to groundwater 'critical zone' requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable Earth-science specialty area for graduate study. ?? The Geological Society of London 2006.

  15. The Mars oxidant experiment (MOx) for Mars '96

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Grunthaner, F. J.; Lane, A. L.; Herring, M.; Bartman, R. K.; Ksendzov, A.; Manning, C. M.; Lamb, J. L.; Williams, R. M.; Ricco, A. J.; hide

    1998-01-01

    The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.

  16. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  17. Instability improvement of the subgrade soils by lime addition at Borg El-Arab, Alexandria, Egypt

    NASA Astrophysics Data System (ADS)

    El Shinawi, A.

    2017-06-01

    Subgrade soils can affect the stability of any construction elsewhere, instability problems were found at Borg El-Arab, Alexandria, Egypt. This paper investigates geoengineering properties of lime treated subgrade soils at Borg El-Arab. Basic laboratory tests, such as water content, wet and dry density, grain size, specific gravity and Atterberg limits, were performed for twenty-five samples. Moisture-density (compaction); California Bearing Ratio (CBR) and Unconfined Compression Strength (UCS) were conducted on treated and natural soils. The measured geotechnical parameters of the treated soil shows that 6% lime is good enough to stabilize the subgrade soils. It was found that by adding lime, samples shifted to coarser side, Atterberg limits values of the treated soil samples decreased and this will improve the soil to be more stable. On the other hand, Subgrade soils improved as a result of the bonding fine particles, cemented together to form larger size and reduce the plastiCity index which increase soils strength. The environmental scanning electron microscope (ESEM) is point to the presence of innovative aggregated cement materials which reduce the porosity and increase the strength as a long-term curing. Consequently, the mixture of soil with the lime has acceptable mechanical characteristics where, it composed of a high strength base or sub-base materials and this mixture considered as subgrade soil for stabilizations and mitigation the instability problems that found at Borg Al-Arab, Egypt.

  18. Spatial variability of soil hydraulics and remotely sensed soil parameters

    NASA Technical Reports Server (NTRS)

    Lascano, R. J.; Van Bavel, C. H. M.

    1982-01-01

    The development of methods to correctly interpret remotely sensed information about soil moisture and soil temperature requires an understanding of water and energy flow in soil, because the signals originate from the surface, or from a shallow surface layer, but reflect processes in the entire profile. One formidable difficulty in this application of soil physics is the spatial heterogeneity of natural soils. Earlier work has suggested that the heterogeneity of soil hydraulic properties may be described by the frequency distribution of a single scale factor. The sensitivity of hydraulic and energetic processes to the variation of this scale factor is explored with a suitable numerical model. It is believed that such an analysis can help in deciding how accurately and extensively basic physical properties of field soils need to be known in order to interpret thermal or radar waveband signals. It appears that the saturated hydraulic conductivity needs to be known only to its order of magnitude, and that the required accuracy of the soil water retention function is about 0.02 volume fraction. Furthermore, the results may be helpful in deciding how the total scene or view field, as perceived through a sensor, is composed from the actual mosaic of transient soil properties, such as surface temperature or surface soil moisture. However, the latter proposition presupposes a random distribution of permanent properties, a condition that may not be met in many instances, and no solution of the problem is apparent.

  19. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  20. Total below-ground carbon and nitrogen partitioning of mature black spruce displaying genetic x soil moisture interaction in growth

    Treesearch

    John E. Major; Kurt H. Johnsen; Debby C. Barsi; Moira Campbell

    2012-01-01

    Total belowground biomass, soil C, and N mass were measured in plots of 32-year-old black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and a wet site. Stump root biomass was greater on the wet than on the dry site;...

  1. Vertical distribution of heavy metals associated with the coarse and medium sand fraction in the forest soils of European Russia

    NASA Astrophysics Data System (ADS)

    Samonova, Olga; Aseyeva, Elena

    2015-04-01

    To accurately model metal behavior in soils, studies on possible geochemical changes occurring within a specific grain-size fraction during pedogenesis are needed. In the present study we analyze concentrations and vertical distributions of heavy metals associated with the coarse and medium sand fraction (1-0.25mm) for soils in the middle Protva basin, situated in the mixed forest zone of European Russia. Two soil types were analyzed: well-differentiated sod-podzolic soils (podzoluvisols) with AEBtC-profile, the major soil type in the study area occupying the interfluve's sub-horizontal surfaces and gentle slopes; and poorly differentiated soddy soils of subordinate positions: soddy soils, soddy gleyic soils and soddy soils with buried fluvial soil horizons. In total 27 samples, collected from 4 soil profiles, were analyzed for Fe, Ti, Mn, Cu, Ni, Co, Cr, Zn, Pb and Zr contents in the partitioned coarse and medium sand fraction. The median concentrations calculated are for Fe - 4%, for Mn - 760 ppm; for Ti - 980 ppm; for Zr - 130 ppm; for Zn - 30 ppm; and for Cu, Pb, Co, Cr, Ni - 67, 13, 11, 38, 33 ppm, respectively. The metal concentrations in total sample population vary differently, with the variation coefficients diminishing from Mn (171%) and Fe (112%) to Zr, Ni and Pb (53%). Comparing the chemical composition of coarse and medium sand fractions in the vertical sequence of horizons within a soil profile showed that in the sod-podzolic soil developed on mantle loam metals are enriched in the sand fraction of the upper A and AE horizons. The second but less distinct maximum levels for Cu, Ni, Fe, Cr, Mn and Co were found in the subsoil with gleyic features (Cg horizon). In soddy soils developed on diluvium on the steep section of the slope the studied sand fraction generally showed larger amounts of metals in A and AC horizons. In similar soils with gleyic features the concentrations of Fe, Cr, Co, Ni, Cu are the highest in the uppermost horizon, while the levels of Mn, Pb, Ti, Zr are higher in the ACg horizon. In the genetically heterogeneous soil profile combining horizons typical for contemporary soddy soils and buried fluvial soils the metal concentrations depend on the genesis of the sand fraction, with higher concentrations found in the contemporary soil horizons and lower concentrations in the buried fluvial soils. Thus, our results imply that during soil formation, under the influence of soil and geochemical processes conditioned by a humid temperate climate, the composition of the sand fraction in relation to metal contents changes. In most cases the enrichment of the sand fraction with a wide spectrum of metals was found in upper soil horizons of the studied soil types where humus accumulation, active biogeochemical processes and sand grain weathering takes place. Periodic saturation of the soils with water might also have contributed to metal accumulation in the sand fraction through the formation of iron and manganese compounds which can serve as sinks for metals.

  2. Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils.

    PubMed

    Meeboon, Naruemon; Leewis, Mary-Cathrine; Kaewsuwan, Sireewan; Maneerat, Suppasil; Leigh, Mary Beth

    2017-08-01

    Used lubricating oil (ULO) is a widespread contaminant, particularly throughout tropical regions, and may be a candidate for bioremediation. However, little is known about the biodegradation potential or basic microbial ecology of ULO-contaminated soils. This study aims to determine the effects of used ULO on bacterial community structure and diversity. Using a combination of culture-based (agar plate counts) and molecular techniques (16S rRNA gene sequencing and DGGE), we investigated changes in soil bacterial communities from three different ULO-contaminated soils collected from motorcycle mechanical workshops (soil A, B, and C). We further explored the relationship between bacterial community structure, physiochemical soil parameters, and ULO composition in three ULO-contaminated soils. Results indicated that the three investigated soils had different community structures, which may be a result of the different ULO characteristics and physiochemical soil parameters of each site. Soil C had the highest ULO concentration and also the greatest diversity and richness of bacteria, which may be a result of higher nutrient retention, organic matter and cation exchange capacity, as well as freshness of oil compared to the other soils. In soils A and B, Proteobacteria (esp. Gammaproteobacteria) dominated the bacterial community, and in soil C, Actinobacteria and Firmicutes dominated. The genus Enterobacter, a member of the class Gammaproteobacteria, is known to include ULO-degraders, and this genus was the only one found in all three soils, suggesting that it could play a key role in the in situ degradation of ULO-contaminated tropical Thai soils. This study provides insights into our understanding of soil microbial richness, diversity, composition, and structure in tropical ULO-contaminated soils, and may be useful for the development of strategies to improve bioremediation.

  3. Differential Reinforcement of Alternative Behavior Increases Resistance to Extinction: Clinical Demonstration, Animal Modeling, and Clinical Test of One Solution

    ERIC Educational Resources Information Center

    Mace, F. Charles; McComas, Jennifer J.; Mauro, Benjamin C.; Progar, Patrick R.; Taylor, Bridget; Ervin, Ruth; Zangrillo, Amanda N.

    2010-01-01

    Basic research with pigeons on behavioral momentum suggests that differential reinforcement of alternative behavior (DRA) can increase the resistance of target behavior to change. This finding suggests that clinical applications of DRA may inadvertently increase the persistence of target behavior even as it decreases its frequency. We conducted…

  4. Climate Modeling in the Calculus and Differential Equations Classroom

    ERIC Educational Resources Information Center

    Kose, Emek; Kunze, Jennifer

    2013-01-01

    Students in college-level mathematics classes can build the differential equations of an energy balance model of the Earth's climate themselves, from a basic understanding of the background science. Here we use variable albedo and qualitative analysis to find stable and unstable equilibria of such a model, providing a problem or perhaps a…

  5. Back to Basics: Incomplete Knowledge of Differential Object Marking in Spanish Heritage Speakers

    ERIC Educational Resources Information Center

    Montrul, Silvina; Bowles, Melissa

    2009-01-01

    The obligatory use of the preposition a with animate, specific direct objects in Spanish ("Juan conoce a Maria" "Juan knows Maria") is a well-known instance of Differential Object Marking (DOM; Torrego, 1998; Leonetti, 2004). Recent studies have documented the loss and/or incomplete acquisition of several grammatical features in Spanish heritage…

  6. Gender Differentials in Returns to Education in Spain

    ERIC Educational Resources Information Center

    Arrazola, Maria; De Hevia, Jose

    2006-01-01

    In this article, rates of return to education for men and women have been estimated for the Spanish case, controlling for the biases appearing in the least squares estimation of the basic Mincerian equation. The results show that the returns for women are greater than those for men. The gender differential increases when taking into account the…

  7. "Something You Have to Do"--Why Do Parents of Children with Developmental Disabilities Seek a Differential Diagnosis?

    ERIC Educational Resources Information Center

    Watson, Shelley L.

    2008-01-01

    This basic interpretive study addressed the reasons why parents seek a differential diagnosis for their child who has a developmental disability. Fourteen parents were interviewed about why they sought a label for the disabilities of their child. Participants included six parents of children with identified genetic conditions, three parents of…

  8. Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus

    NASA Astrophysics Data System (ADS)

    Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.

    2016-07-01

    Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.

  9. The hidden impact of forest management on the decomposition of soil organic matter

    NASA Astrophysics Data System (ADS)

    Schöning, Ingo; Schrumpf, Marion

    2017-04-01

    Decomposition in soils is a key ecosystem function. Extracellular enzymes mediate the decomposition of soil organic matter and the mineralization of carbon (C), nitrogen (N), sulfur (S) and phosphorus (P). Forest management is assumed to affect decomposition processes through tree species selection, thinning and harvesting. In this study, we assessed the impact of forest management on the magnitude of soil enzymatic activities and soil respiration using the silvicultural management intensity indicator (SMI) introduced by Schall & Ammer (2013). We collected mineral soil samples (0-10 cm) from 150 forest plots in three different German regions (Schorfheide-Chorin, Hainich-Dün, Schwäbische Alb) and determined basic properties such as pH, soil texture, soil C and N contents. An aliquot of each soil sample was used to determine potential activities of enzymes involved in the C, N, P and S cycle (ß-glucosidase, N-actyl-glucosaminidase, phosphatase, sulfatase). Another aliquot was incubated (20 ̊C, 60% WHC) for 14 days and the evolving CO2 was determined. The main drivers of potential enzymatic activities and soil respiration were the site conditions such as clay contents and pH values. The effects of forest management were much lower but still significant. This shows that forest management has an impact on decomposition which is only detectable with high number of replicates.

  10. Improving watershed management practices in humid regions

    USDA-ARS?s Scientific Manuscript database

    Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. To improve the understanding we used watershed studies on three continents. The results show that in well vegetated (sub) humid and temperate watersheds ...

  11. MNA TO ACHIEVE SITE OBJECTIVES: BACK TO BASICS

    EPA Science Inventory

    The U.S. EPA recognizes a three-tiered approach to evaluate site specific data in support of monitored natural attenuation (1) historical groundwater and/or soil chemistry data that demonstrate a clean and meaningful trend of decreasing contaminant mass and/or concentration over ...

  12. Slash disposal and seedbed preparation by tractor

    Treesearch

    Donald T. Gordon

    1956-01-01

    Creating ground conditions favorable to regeneration immediately after the final harvest cutting is basic to forest management wherever advance growth is deficient. Ponderosa (Pinus ponderosa Laws) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) seeds require bare mineral soil for satisfactory germination. Pine seedlings,...

  13. Effect on physical properties of laterite soil with difference percentage of sodium bentonite

    NASA Astrophysics Data System (ADS)

    Kasim, Nur Aisyah; Azmi, Nor Azizah Che; Mukri, Mazidah; Noor, Siti Nur Aishah Mohd

    2017-08-01

    This research was carried out in an attempt to know the physical properties of laterite soil with the appearance of difference percentage of sodium bentonite. Lateritic soils usually develop in tropical and other regions with similar hot and humid climate, where heavy rainfall, warm temperature and well drainage lead to the formation of thick horizons of reddish lateritic soil profiles rich in iron and aluminium. When sodium predominates, a large amount of water can be absorbed in the interlayer, resulting in the remarkable swelling properties observed with hydrating sodium bentonite. There are some basic physical properties test conducted in this research which are Specific Gravity Test, pH Test, Sieve Analysis, Hydrometer Test, Shrinkage Limit and Atterberg Limit. The test will be conducted with 0%, 5%, 10%, 15% and 20% of sodium bentonite. Each test will be repeated three times for the accuracy of the result. From the physical properties test the soil properties characteristic react with the sodium bentonite can be determine. Therefore the best percentage of sodium bentonite admixture can be determined for laterite soil. The outcomes of this study give positive results due to the potential of sodium bentonite to improve the laterite soil particle.

  14. Crop moisture estimation over the southern Great Plains with dual polarization 1.66 centimeter passive microwave data from Nimbus 7

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.; Harder, P. H., II; Wilke, G. D.; Huebner, G. L., Jr.

    1984-01-01

    Moisture content of snow-free, unfrozen soil is inferred using passive microwave brightness temperatures from the scanning multichannel microwave radiometer (SMMR) on Nimbus-7. Investigation is restricted to the two polarizations of the 1.66 cm wavelength sensor. Passive microwave estimates of soil moisture are of two basic categories; those based upon soil emissivity and those based upon the polarization of soil emission. The two methods are compared and contrasted through the investigation of 54 potential functions of polarized brightness temperatures and, in some cases, ground-based temperature measurements. Of these indices, three are selected for the estimated emissivity, the difference between polarized brightness temperatures, and the normalized polarization difference. Each of these indices is about equally effective for monitoring soil moisture. Using an antecedent precipitation index (API) as ground control data, temporal and spatial analyses show that emissivity data consistently give slightly better soil moisture estimates than depolarization data. The difference, however, is not statistically significant. It is concluded that polarization data alone can provide estimates of soil moisture in areas where the emissivity cannot be inferred due to nonavailability of surface temperature data.

  15. Ecological status of soils in Moscow Zoo

    NASA Astrophysics Data System (ADS)

    Yurkova, N. E.; Yurkov, A. M.; Smagin, A. V.

    2009-03-01

    The quantitative assessment of the status of soils in Moscow Zoo was performed using traditional and original methods based on the differentiated system of indices. The studies were conducted in animal open-air cages and on plots available for visitors. The dynamics of the temperature and water-air regimes in the root-inhabited layer, the density, the acidity, and the salinity of the soils were studied. The level of the biological activity was assessed according to the intensity of the organic matter decomposition and the substrate-induced respiration. In the background of the rather satisfactory status of the soils, negative factors were found: a periodic excess or deficit of moisture and, for the most part, low biological activity (low respiration and decomposition of the lignin-cellulose test material). Recommendations for the improvement of the status of the soil cover in Moscow Zoo are proposed.

  16. Differential extraction of radiocarbon associated with soil biomass and humus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, C.W.; Bartha, R.

    To detect the humification of organic compounds in soil that bypasses biomass incorporation, selective extraction procedures for radiocarbon from soil biomass and humus were evaluated. Following the incubation of [sup 14]C-glucose and [sup 14]C-benzoate in soil, fumigation--0.5 M K[sub 2]SO[sub 4] extraction and 0.15 M Na[sub 4]P[sub 2]O[sub 7] extraction selectively removed biomass-associated and humus-associated radiocarbon, respectively. Applying the recovery correction of 3.4[times] to biomass and 3.5[times] to humus, radiocarbon balances of 95 to 107% were obtained during a time window following the degradation of these substrates. Negligible overlap between the extractions renders the technique suitable for investigating the fatemore » of organics that, through cometabolism, attain unusual radiocarbon distributions in soil.« less

  17. Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production

    NASA Astrophysics Data System (ADS)

    Couto, F. M.; Sthel, M. S.; Castro, M. P. P.; da Silva, M. G.; Rocha, M. V.; Tavares, J. R.; Veiga, C. F. M.; Vargas, H.

    2014-12-01

    In order to investigate the generation of greenhouse gases in sugarcane ethanol production chain, a comparative study of N2O emission in artificially fertilized soils and soils free from fertilizers was carried out. Photoacoustic spectroscopy using quantum cascade laser with an emission ranging from 7.71 to 7.88 µm and differential photoacoustic cell were applied to detect nitrous oxide (N2O), an important greenhouse gas emitted from soils cultivated with sugar cane. Owing to calibrate the experimental setup, an initial N2O concentration was diluted with pure nitrogen and detection limit of 50 ppbv was achieved. The proposed methodology was selective and sensitive enough to detect N2O from no fertilized and artificially fertilized soils. The measured N2O concentration ranged from ppmv to ppbv.

  18. Extractable Al and Si compounds in pale-podzolic soils of the Central Forest Reserve: Contents and distribution along the profile and by size fractions

    NASA Astrophysics Data System (ADS)

    Sokolova, T. A.; Tolpeshta, I. I.; Izosimova, Yu. G.

    2017-06-01

    The profile distributions of oxalate- and pyrophosphate-soluble Al compounds and oxalate-soluble Si compounds in the main horizons of pale-podzolic soils of the Central Forest Reserve and the fractions <1. 1-5, and >5 μm have been considered. In the clay-eluvial part of soil profile, the content of these compounds is differentiated by the eluvial-illuvial type with a clear accumulation in the EL horizon compared to the AEL horizon. This distribution is largely ensured by their differentiation in the clay and fine silt fractions, while an accumulative distribution of mobile Al compounds is observed in fractions >5 μm. The high correlation between the Al and Si contents in the Tamm extracts from the clay and fine silt fractions with the (Alox-Alpy)/Siox molar ratios, which are in the range of 1-3 in the EL horizon, confirms that mobile compounds are accumulated in these fractions in the form of amorphous aluminosilicates. In the AEL and EL horizons, an additional amount of Al can pass into the oxalate solution from the fine fractions due to the dissolution of Al hydroxide interlayers of soil chlorites. The eluvial-illuvial distribution of mobile Al and Si compounds typical for Al-Fe-humus podzols within the clay-illuvial part of profiles of the soils under study can be considered as an example of superimposed evolution.

  19. Influence of Soil Properties on Soldierless Termite Distribution.

    PubMed

    Bourguignon, Thomas; Drouet, Thomas; Šobotník, Jan; Hanus, Robert; Roisin, Yves

    2015-01-01

    In tropical rainforests, termites constitute an important part of the soil fauna biomass, and as for other soil arthropods, variations in soil composition create opportunities for niche partitioning. The aim of this study was twofold: first, we tested whether soil-feeding termite species differ in the foraging substrate; second, we investigated whether soil-feeding termites select their foraging sites to enhance nutrients intake. To do so, we collected termites and analysed the composition and structure of their feeding substrates. Although Anoplotermes-group members are all considered soil-feeders, our results show that some species specifically feed on abandoned termite nests and very rotten wood, and that this substrate selection is correlated with previous stable isotope analyses, suggesting that one component of niche differentiation among species is substrate selection. Our results show that the composition and structure of bare soils on which different termite species foraged do not differ, suggesting that there is no species specialization for a particular type of bare soil. Finally, the bare soil on which termites forage does not differ from random soil samples. Overall, our results suggest that few species of the Anoplotermes-group are specialized toward substrates rich in organic matter, but that the vast majority forage on soil independently of its structural and chemical composition, being ecologically equivalent for this factor.

  20. Processes affecting soil and groundwater contamination by DNAPL in low-permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWhorter, D.B.

    1996-08-01

    This paper is one of a set of focus papers intended to document the current knowledge relevant to the contamination and remediation of soils and ground water by dense, nonaqueous phase liquids (DNAPL). The emphasis is on low permeability media such as fractured clay and till and unconsolidated, stratified formations. Basic concepts pertaining to immiscible-fluid mixtures are described and used to discuss such aspects as DNAPL transport, dissolved-phase transport, and equilibrium mass distributions. Several implications for remediation are presented. 27 refs., 8 figs., 4 tabs.

  1. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    PubMed

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  2. The Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Meloy, Thomas P.; Marshall, John; Hecht, Michael

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm (figures I and 2). The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Using an array of ion-specific electrodes (ISEs), cyclic voltammetry, and electrochemical techniques, the chemistry cells will wet soil samples for measurement of basic soil properties of pH, redox potential, and conductivity. Total dissolved material, as well as targeted ions will be detected to the ppm level, including important exobiological ions such as Na, K+, Ca++, Mg++, NH4+, Cl, S04-, HC03, as well as more toxic ions such as Cu++, Pb++, Cd++, Hg++, and C104-. MECA's microscopy station combines optical and atomic-force microscopy (AFM) to image dust and soil particles from millimeters to nanometers in size. Illumination by red, green, and blue LEDs is augmented by an ultraviolet LED intended to excite fluorescence in the sample. Substrates were chosen to allow experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. To aid in the detection of potentially dangerous quartz dust, an abrasion tool measures sample hardness relative to quartz and a hard glass (Zerodur).

  3. Fate and transport of radionuclides in soil-water environment. Review.

    NASA Astrophysics Data System (ADS)

    Konoplev, Aleksei

    2017-04-01

    The ease in which radionuclides move through the environment and are taken up by plants and animals is governed by their chemical forms and by site-specific environmental characteristics. The objective of this paper is to review basic mechanisms of the behavior of radiocesium and radiostrontium in the environment after the nuclear accident. Our understanding of radionuclide's speciation and migration processes seems to be adequate and explains similarities and differences of radiocesium (r-Cs) behavior in the environment after Fukushima and Chernobyl accidents. Climate and geographical conditions in Fukushima Prefecture of Japan and Chernobyl's near-field zone are obviously different. In particular, precipitation differs substantially, with the annual average for Fukushima being about 3 times higher than at Chernobyl. The landscapes and soils also differ significantly. What is more, the speciation of r-Cs in the releases was distinct (large fraction of radionuclides was deposited as fuel particles in 30-km zone around Chernobyl NPP, while in Fukushima radiocesium is mostly part of condensation particles including glassy hot particles). Radiocesium (r-Cs) in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.), which is associated with two basic processes - high selective reversible sorption and fixation. The r-Cs distribution coefficient Kd in Fukushima rivers was found to be 1-2 orders of magnitude higher than corresponding values for rivers and surface runoff of Chernobyl area. This is indicative of higher ability of Fukushima soils and sediments to bind r-Cs. Dissolved r-Cs wash-off for Fukushima river watersheds is essentially slower than those for Chernobyl. However, steeper slopes and higher precipitation in Fukushima area cause higher erosion and higher particulate r-Cs wash-off. For a comparable time after the accident the total r-Cs wash-off from contaminated catchments in Fukushima is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.

  4. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution. [South Dakota

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J. L.

    1980-01-01

    The author has identified the following significant results. Day thermal data were analyzed to assess depth to groundwater in the test site. HCMM apparent temperature was corrected for atmospheric effects using lake temperature of the Oahe Reservoir in central South Dakota. Soil surface temperatures were estimated using an equation developed for ground studies. A significant relationship was found between surface soil temperature and depth to groundwater, as well as between the surface soil-maximum air temperature differential and soil water content (% of field capacity) in the 0 cm and 4 cm layer of the profile. Land use for the data points consisted of row crops, small grains, stubble, and pasture.

  5. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion

    PubMed Central

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M.

    2017-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft® Excel® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet. PMID:28163564

  6. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    PubMed

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  7. Use of remote sensing techniques for inventorying and planning utilization of land resources in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I.; Frazee, C. J.; Rusche, A. E.; Moore, D. G.; Nelson, G. D.; Westin, F. C.

    1974-01-01

    The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery.

  8. Differential regulation of oligodendrocyte markers by glucocorticoids: Post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Cole, R.; Chiappelli, F.

    During neonatal development glucocorticoids potentiate oligodendrocyte differentiation and myelinogenesis by regulating the expression of myelin basic protein, proteolipid protein, and glycerol phosphate dehydrogenase. The actual locus at which hydrocortisone exerts its developmental influence on glial physiology is, however, not well understood. Gycerol phosphate dehydrogenase is glucocorticoid-inducible in oligodendrocytes at all stages of development both in vivo and in vitro. In newborn rat cerebral cultures, between 9 and 15 days in vitro, a 2- to 3-fold increase in myelin basic protein and proteolipid protein mRNA levels occurs in oligodendrocytes within 12 hr of hydrocortisone treatment. Immunostaining demonstrates that this increase inmore » mRNAs is followed by a 2- to 3-fold increase in the protein levels within 24 hr. In vitro transcription assays performed with oligodendrocyte nuclei show an 11-fold increase in the transcriptional activity of glycerol phosphate dehydrogenase in response to hydrocortisone but no increase in transcription of myelin basic protein or proteolipid protein. These results indicate that during early myelinogeneis, glucocorticoids influence the expression of key oligodendroglial markers by different processes: The expression of glycerol phosphate dehydrogenase is regulated at the transcriptional level, whereas the expression of myelin basic protein and proteolipid protein is modulated via a different, yet uncharacterized, mechanism involving post-transcriptional regulation.« less

  9. Research progress of on-the-go soil parameter sensors based on NIRS

    NASA Astrophysics Data System (ADS)

    An, Xiaofei; Meng, Zhijun; Wu, Guangwei; Guo, Jianhua

    2014-11-01

    Both the ever-increasing prices of fertilizer and growing ecological concern over chemical run-off into sources of drinking water have brought the issues of precision agriculture and site-specific management to the forefront of present technological development within agriculture and ecology. Soil is an important and basic element in agriculture production. Acquisition of soil information plays an important role in precision agriculture. The soil parameters include soil total nitrogen, phosporus, potassium, soil organic matter, soil moisture, electrical conductivity and pH value and so on. Field rapid acquisition to all the kinds of soil physical and chemical parameters is one of the most important research directions. And soil parameter real-time monitoring is also the trend of future development in precision agriculture. While developments in precision agriculture and site-specific management procedures have made significant in-roads on these issues and many researchers have developed effective means to determine soil properties, routinely obtaining robust on-the-go measurements of soil properties which are reliable enough to drive effective fertilizer application remains a challenge. NIRS technology provides a new method to obtain soil parameter with low cost and rapid advantage. In this paper, research progresses of soil on-the-go spectral sensors at domestic and abroad was combed and analyzed. There is a need for the sensing system to perform at least six key indexes for any on-the-go soil spectral sensor to be successful. The six indexes are detection limit, specificity, robustness, accuracy, cost and easy-to-use. Both the research status and problems were discussed. Finally, combining the national conditions of china, development tendency of on-the-go soil spectral sensors was proposed. In the future, on-the-go soil spectral sensors with reliable enough, sensitive enough and continuous detection would become popular in precision agriculture.

  10. Mucilage from seeds of chia (Salvia hispanica L.) used as soil conditioner; effects on the sorption-desorption of four herbicides in three different soils.

    PubMed

    Di Marsico, A; Scrano, L; Amato, M; Gàmiz, B; Real, M; Cox, L

    2018-06-01

    The objective of this work was to determine the effect of the mucilage extracted from Chia seeds (Salvia hispanica L.) as soil amendment on soil physical properties and on the sorption-desorption behaviour of four herbicides (MCPA, Diuron, Clomazone and Terbuthylazine) used in cereal crops. Three soils of different texture (sandy-loam, loam and clay-loam) were selected, and mercury intrusion porosimetry and surface area analysis were used to examine changes in the microstructural characteristics caused by the reactions that occur between the mucilage and soil particles. Laboratory studies were conducted to characterise the selected herbicides with regard their sorption on tested soils added or not with the mucilage. Mucilage amendment resulted in a reduction in soil porosity, basically due to a reduction in larger pores (radius>10μm) and an important increase in finer pores (radius<10μm) and in partcles' surface. A higher herbicide sorption in the amended soils was ascertained when compared to unamended soils. The sorption percentage of herbicides in soils treated with mucilage increased in the order; sandy-loam

  11. Chromatin in embryonic stem cell neuronal differentiation.

    PubMed

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  12. Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2011-06-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  13. Use of insoluble polyacrylate polymers to aid phytostabilization of mine soils: effects on plant growth and soil characteristics.

    PubMed

    Qu, G; de Varennes, A; Cunha-Queda, C

    2010-01-01

    We evaluated the use of polyacrylate polymers to aid phytostabilization of mine soils. In a pot experiment, perennial ryegrass was grown in a mine soil and in uncontaminated soil. Growth was stimulated in the polymer-amended mine soil compared with an unamended control, and water-extractable levels of soil Cu and Zn decreased after polymer application. In an experiment performed in six 60-cm-diameter cylinders filled with fertilized mine soil, polymers were applied to three cylinders, with the remainder used as unamended control. Total biomass produced by indigenous plant species sown in polymer-amended soil was 1.8 (Spring-Summer) or 2.4 times (Fall-Winter) greater than that of plants from unamended soil. The application of polymers to the mine soil led to the greatest activity of soil enzymes. Soil pH, biomass of Spergularia purpurea and Chaetopogon fasciculatus, and activities of protease and cellulase had large loadings on principal component (PC)1, whereas growth of Briza maxima and the activities of urease, acid phosphatase, and beta-glucosidase had large loadings on PC2. The treatments corresponding to controls were located on the negative side of PC1 and PC2. Amended treatments were on the positive side of PC2 (Spring-Summer) or on the positive side of PC1 (Fall-Winter), demonstrating differential responses of plants and soil parameters in the two growth cycles.

  14. Differential diagnosis of hyperkalemia: an update to a complex problem

    PubMed Central

    Eleftheriadis, T; Leivaditis, K; Antoniadi, G; Liakopoulos, V

    2012-01-01

    Hyperkalemia is a relative common and sometimes life threatening electorlyte disorder. Although its symptomatic treatment is relatively easy, since precise therapeutic algorithms are available, its differential diagnosis is more complicated. The present review aims to unfold the differential diagnosis of hypekalemia using a pathophysiological, albeit clinically useful, approach. The basic elements of potassium homeostasis are provided, the causes of hyperkalemia are categorized and analysed and finally the required for the diferrential diagnosis laboratory tests are mentioned. PMID:23935306

  15. Effects of 1-Alkyl-3-Methylimidazolium Nitrate on Soil Physical and Chemical Properties and Microbial Biomass.

    PubMed

    Zhou, Tongtong; Wang, Jun; Ma, Zhiqiang; Du, Zhongkun; Zhang, Cheng; Zhu, Lusheng; Wang, Jinhua

    2018-05-01

    Ionic liquids (ILs), also called room temperature ILs, are widely applied in many fields on the basis of their unique physical and chemical properties. However, numerous ILs may be released into and gradually accumulate in the environment due to their extensive use and absolute solubility. The effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 , n = 4, 6, 8) on soil pH, conductivity, cation exchange capacity, microbial biomass carbon, and microbial biomass nitrogen were examined at the doses of 1, 10, and 100 mg/kg on days 10, 20, 30, and 40. The results demonstrated that the soil pH decreased and the conductivity increased with increasing IL doses. No significant differences were observed in the soil cation-exchange capacity. All three of the tested ILs decreased the soil microbial biomass carbon and nitrogen. Additionally, there were few differences among the ILs with different alkyl chain lengths on the tested indicators except for the microbial biomass nitrogen. The present study addressed a gap in the literature regarding the effects of the aforementioned ILs with different alkyl side chains on the physicochemical properties of soil, and the results could provide the basic data for future studies on their toxicity to soil organisms, such as earthworms and soil microbes.

  16. Expansive Soil Crack Depth under Cumulative Damage

    PubMed Central

    Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng

    2014-01-01

    The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974

  17. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    PubMed

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.

  18. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid

    PubMed Central

    Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D.

    2014-01-01

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  19. Soil science and geology: Connects, disconnects and new opportunities in geoscience education

    USGS Publications Warehouse

    Landa, E.R.

    2004-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.

  20. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

    PubMed

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D

    2014-12-30

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.

  1. Sequential extractions of selenium soils from Stewart Lake: total selenium and speciation measurements with ICP-MS detection.

    PubMed

    Ponce de León, Claudia A; DeNicola, Katie; Montes Bayón, Maria; Caruso, Joseph A

    2003-06-01

    Different techniques have been employed in order to evaluate the most efficient procedure for the extraction of selenium from soil as required for speciation. Selenium contaminated sediments from Stewart Lake Wetland, California were used. A strong acid mineralization of the samples gives quantitative total selenium, which is then used to estimate recoveries for the milder extraction methods. The different extraction methodologies involve the sequential use of water, buffer (phosphate, pH 7) and either acid solution (e.g. HNO3 or HCl) or basic solutions (e.g. ammonium acetate, NaOH or TMAH). Pyrophosphate extraction was also evaluated and showed that selenium was not associated with humic acids. The extractants were subsequently analyzed by size exclusion chromatography (SEC) with UV (254 and 400 nm) and on-line ICP-MS detection; anion exchange chromatography, and ion-pair reversed phase chromatography with ICP-MS detection. For sequential extractions the extraction efficiencies showed that the basic extractions were more efficient than the acidic. The difference between the acidic and the basic extraction efficiency is carried to the sulfite extraction, suggesting that whatever is not extracted by the acid is subsequently extracted by the sulfite. The species identified with the different chromatographies were selenate, selenite, elemental selenium and some organic selenium.

  2. Plasmablasts and plasma cells: reconsidering teleost immune system organization.

    PubMed

    Ye, Jianmin; Kaattari, Ilsa; Kaattari, Stephen

    2011-12-01

    Comparative immunologists have expended extensive efforts in the characterization of early fish B cell development; however, analysis of the post-antigen induction stages of antibody secreting cell (ASC) differentiation has been limited. In contrast, work with murine ASCs has resolved the physically and functionally distinct cells known as plasmablasts, the short-lived plasma cells and long-lived plasma cells. Teleost ASCs are now known to also possess comparable subpopulations, which can greatly differ in such basic functions as lifespan, antigen sensitivity, antibody secretion rate, differentiative potential, and distribution within the body. Understanding the mechanisms by which these subpopulations are produced and distributed is essential for both basic understanding in comparative immunology and practical vaccine engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Basic methods for measuring the reflectance color of iron oxides

    NASA Astrophysics Data System (ADS)

    Pospisil, Jaroslav; Hrdy, Jan; Hrdy Jan, Jr.

    2007-06-01

    The main contribution of the present article consists in coherent description and interpretation of the principles of basic measuring methods and colorimeters for color classification and evaluation of light reflecting samples containing iron oxides. The chosen relevant theoretical background is based on the CIE tristimulus colorimetric system (X,Y,Z), the CIE colorimetric system (L*,a*,b*) and the Munsell colorimetric system (H,V,C). As an example of color identification and evaluation, some specific mathematical and graphical relationships between the soil redness rate and the corresponding hematite content are shown.

  4. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant.

    PubMed

    Gałązka, Ann; Gałązka, Rafał

    2015-01-01

    The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.

  5. Superabsorbent hydrogels coating increased degradation and decreased bound residues formation of carbendazim in soil.

    PubMed

    Yang, Yatian; Zhang, Sufen; Yang, Jingying; Bai, Chan; Tang, Shenghua; Ye, Qingfu; Wang, Haiyan

    2018-07-15

    The intensive use of pesticides has caused serious environmental pollution and ecological issues. Thus, it is imperative to explore an efficient way to minimize the pesticide residues and pollution. In the present study, we employed the superabsorbent hydrogels (SHs)-coated pesticide 14 C-carbendazim (H- 14 C-MBC) to investigate the fate of MBC in aerobic soils and to assess the soil microbial state during incubation. The results showed that after coating with SHs, MBC dissipation was improved significantly by 34.2-54.1% compared with that in the control (p<0.05), reducing the persistence of MBC in soil matrix. At 100d, the release of 14 C-CO 2 was enhanced by 68.0% and 46.6% in neutral loamy soil and basic saline soil, respectively, with respect to the control, resulting in more complete degradation and detoxification of MBC. Additionally, the bound residue in soils, which was associated with potential environmental risk and pollution, was reduced by 15.2% and 14.2%, respectively, compared with that in control soils. The microbial diversity of post-H- 14 C-MBC soil varied, and microbial composition and abundance remained different from the control, even with the refreshment of soil stability and fertility compared with the blank soil. These results demonstrate the environmental behavior of SHs-coated MBC in soils, and illustrate that SHs-encapsulated formulations would be a promising measure for reducing the soil-residue pollution and environmental risk of pesticides. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    NASA Astrophysics Data System (ADS)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  7. Principles of control automation of soil compacting machine operating mechanism

    NASA Astrophysics Data System (ADS)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  8. AROMATIC AMINES IN AND NEAR THE BUFFALO RIVER

    EPA Science Inventory

    Three sediment samples taken from the Buffalo River and two soil samples taken near its bank have been analyzed for 2-propanol-extractable, basic organic compounds by using GC/MS. Eleven aromatic amines related to the commercial production of malachite green and crystal violet we...

  9. Conservation Awareness Guide.

    ERIC Educational Resources Information Center

    Santa Rosa County Board of Public Instruction, Milton, FL.

    Recommendations for incorporating conservation education into the K-5 curriculum comprise this teacher's guide. Examined are eight natural resources: air, energy, forests and plant life, human resources, minerals, soil, water, and wildlife. Each of these topics is considered in two ways: (1) a chart depicts concepts basic to understanding the…

  10. Modeling the surface and interior structure of comet nuclei using a multidisciplinary approach

    NASA Technical Reports Server (NTRS)

    Odell, C. R.; Dakoulas, Panos C.; Pharr, George M.

    1991-01-01

    The goal was to investigate the structural properties of the surface of comet nucleus and how the surface should change with time under effect of solar radiation. The basic model that was adopted was that the nucleus is an aggregate of frosty particles loosely bound together, so that it is essentially a soil. The nucleus must mostly be composed of dust particles. The observed mass ratios of dust to gas in the coma is never much greater than unity, but this ratio is probably a much lower limit than that of the nucleus because it is vastly easier to remove the gaseous component by sublimation than by carrying off the dust. Therefore the described models assumed that the particles in the soil were frost covered grains of submicron basic size, closely resembling the interstellar grains. The surface properties of such a nucleus under the effects of heating and cooling as the nucleus approaches and recedes from the Sun generally characterized.

  11. Effects of sand burial and wind disturbances on moss soil crusts in a revegetated area of the Tennger Desert, Northern China

    NASA Astrophysics Data System (ADS)

    Jia, R. L.; Li, X. R.; Liu, L. C.; Gao, Y. H.

    2012-04-01

    Sand burial and wind are two predominant natural disturbances in the desert ecosystems worldwide. However, the effects of sand burial and wind disturbances on moss soil crusts are still largely unexplored. In this study, two sets of experiments were conducted separately to evaluated the effects of sand burial (sand depth of 0, 1, 2, 3 and 4 mm) and wind blowing (wind speed of 0.2, 3, 6 and 9ms-1) on ecophysiological variables of two moss soil crusts collected from a revegetated area of the Tengger Desert, Northern China. Firstly, the results from the sand burial experiment revealed that respiration rate was significantly decreased and that moss shoot elongation was significantly increased after burial. In addition, Bryum argenteum crust showed the fastest speed of emergence and highest tolerance index, followed by Didymodon vinealis crust. This sequence was consistent with the successional order of the two moss crusts that happened in our study area, indicating that differential sand burial tolerance explains their succession sequence. Secondly, the results from the wind experiment showed that CO2 exchange, PSII photochemical efficiency, photosynthetic pigments, shoot upgrowth, productivity and regeneration potential of the two moss soil crust mentioned above were all substantially depressed. Furthermore, D. vinealis crust exhibited stronger wind resistance than B. argenteum crust from all aspects mentioned above. And this is comparison was identical with their contrasting microhabitats with B. argenteum crust being excluded from higher wind speed microsites in the windward slopes, suggesting that the differential wind resistance of moss soil crusts explains their microdistribution pattern. In conclusion, the ecogeomorphological processes of moss soil crusts in desert ecosystems can be largely determined by natural disturbances caused by sand burial and wind blowing in desert ecosystems.

  12. Differential diagnosis of degenerative dementias using basic neuropsychological tests: multivariable logistic regression analysis of 301 patients.

    PubMed

    Jiménez-Huete, Adolfo; Riva, Elena; Toledano, Rafael; Campo, Pablo; Esteban, Jesús; Barrio, Antonio Del; Franch, Oriol

    2014-12-01

    The validity of neuropsychological tests for the differential diagnosis of degenerative dementias may depend on the clinical context. We constructed a series of logistic models taking into account this factor. We retrospectively analyzed the demographic and neuropsychological data of 301 patients with probable Alzheimer's disease (AD), frontotemporal degeneration (FTLD), or dementia with Lewy bodies (DLB). Nine models were constructed taking into account the diagnostic question (eg, AD vs DLB) and subpopulation (incident vs prevalent). The AD versus DLB model for all patients, including memory recovery and phonological fluency, was highly accurate (area under the curve = 0.919, sensitivity = 90%, and specificity = 80%). The results were comparable in incident and prevalent cases. The FTLD versus AD and DLB versus FTLD models were both inaccurate. The models constructed from basic neuropsychological variables allowed an accurate differential diagnosis of AD versus DLB but not of FTLD versus AD or DLB. © The Author(s) 2014.

  13. Microbial carbon turnover in the plant-rhizosphere-soil continuum

    NASA Astrophysics Data System (ADS)

    Malik, Ashish; Dannert, Helena; Griffiths, Robert; Thomson, Bruce; Gleixner, Gerd

    2014-05-01

    Soil microbial biomass contributes significantly to maintenance of soil organic matter (SOM). It is well known that biochemical fractions of soil microorganisms have varying turnover and therefore contribute differentially to soil C storage. Here we compare the turnover rates of different microbial biochemical fractions using a pulse chase 13CO2 plant labelling experiment. The isotope signal was temporally traced into rhizosphere soil microorganisms using the following biomarkers: DNA, RNA, fatty acids and chloroform fumigation extraction derived microbial biomass size classes. C flow into soil microbial functional groups was assessed through phospholipid and neutral lipid fatty acid (PLFA/NLFA) analyses. Highest 13C enrichment was seen in the low molecular weight (LMW) size class of microbial biomass (Δδ13C =151) and in nucleic acids (DNA: 38o RNA: 66) immediately after the pulse followed by a sharp drop. The amount of 13C in the high molecular weight (HMW) microbial biomass (17-81) and total fatty acids (32-54) was lower initially and stayed relatively steady over the 4 weeks experimental period. We found significant differences in turnover rates of different microbial biochemical and size fractions. We infer that LMW cytosolic soluble compounds are rapidly metabolized and linked to respiratory C fluxes, whereas mid-sized products of microbial degradation and HMW polymeric compounds have lower renewal rate in that order. The turnover of cell wall fatty acids was also very slow. DNA and RNA showed faster turnover rate; and as expected RNA renewal was the fastest due to its rapid production by active microorganisms independent of cell replication. 13C incorporation into different functional groups confirmed that mutualistic arbuscular mycorrhizal fungi rely on root C and are important in the initial plant C flux. We substantiated through measurements of isotope incorporation into bacterial RNA that rhizosphere bacteria are also important in the initial C conduit from plants. Other saprophytic fungi and bacteria show a delayed 13C incorporation pattern which could suggest secondary 13C assimilation often indicative of trophic interactions. Thus, different soil microbial biochemical fractions as well as functional groups show differential C turnover which could have implications on soil C storage.

  14. Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use

    PubMed Central

    Falco, Liliana B.; Sandler, Rosana V.; Coviella, Carlos E.

    2015-01-01

    Plant decomposition is dependant on the activity of the soil biota and its interactions with climate, soil properties, and plant residue inputs. This work assessed the roles of different groups of the soil biota on litter decomposition, and the way they are modulated by soil use. Litterbags of different mesh sizes for the selective exclusion of soil fauna by size (macro, meso, and microfauna) were filled with standardized dried leaves and placed on the same soil under different use intensities: naturalized grasslands, recent agriculture, and intensive agriculture fields. During five months, litterbags of each mesh size were collected once a month per system with five replicates. The remaining mass was measured and decomposition rates calculated. Differences were found for the different biota groups, and they were dependant on soil use. Within systems, the results show that in the naturalized grasslands, the macrofauna had the highest contribution to decomposition. In the recent agricultural system it was the combined activity of the macro- and mesofauna, and in the intensive agricultural use it was the mesofauna activity. These results underscore the relative importance and activity of the different groups of the edaphic biota and the effects of different soil uses on soil biota activity. PMID:25780777

  15. Comparative study of soil erodibility and critical shear stress between loess and purple soils

    NASA Astrophysics Data System (ADS)

    Xing, Hang; Huang, Yu-han; Chen, Xiao-yan; Luo, Bang-lin; Mi, Hong-xing

    2018-03-01

    Loess and purple soils are two very important cultivated soils, with the former in the loess region and the latter in southern sub-tropical region of China, featured with high-risks of erosion, considerable differences of soil structures due to differences in mineral and nutrient compositions. Study on soil erodibility (Kr) and critical shear stress (τc) of these two soils is beneficial to predict soil erosion with such models as WEPP. In this study, rill erosion experimental data sets of the two soils are used for estimating their Kr and τc before they are compared to understand their differences of rill erosion behaviors. The maximum detachment rates of the loess and purple soils are calculated under different hydrodynamic conditions (flow rates: 2, 4, 8 L/min; slope gradients: 5°, 10°, 15°, 20°, 25°) through analytical and numerical methods respectively. Analytical method used the derivative of the function between sediment concentration and rill length to estimate potential detachment rates, at the rill beginning. Numerical method estimated potential detachment rates with the experimental data, at the rill beginning and 0.5 m location. The Kr and τc of these two soils are determined by the linear equation based on experimental data. Results show that the methods could well estimate the Kr and τc of these two soils as they remain basically unchanged under different hydrodynamic conditions. The Kr value of loess soil is about twice of the purple soil, whereas the τc is about half of that. The numerical results have good correlations with the analytical values. These results can be useful in modeling rill erosion processes of loess and purple soils.

  16. What is the philosophy of modelling soil moisture movement?

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wu, Y.

    2009-12-01

    In laboratory, the soil moisture movement in the different soil textures has been analysed. From field investigation, at a spot, the soil moisture movement in the root zone, vadose zone and shallow aquifer has been explored. In addition, on ground slopes, the interflow in the near surface soil layers has been studied. Along the regions near river reaches, the expansion and shrink of the saturated area due to rainfall occurrences have been observed. From those previous explorations regarding soil moisture movement, numerical models to represent this hydrologic process have been developed. However, generally, due to high heterogeneity and stratification of soil in a basin, modelling soil moisture movement is rather challenging. Normally, some empirical equations or artificial manipulation are employed to adjust the soil moisture movement in various numerical models. In this study, we inspect the soil moisture movement equations used in a watershed model, SWAT (Soil and Water Assessment Tool) (Neitsch et al., 2005), to examine the limitations of our knowledge in such a hydrologic process. Then, we adopt the features of a topographic-information based on a hydrologic model, TOPMODEL (Beven and Kirkby, 1979), to enhance the representation of soil moisture movement in SWAT. Basically, the results of the study reveal, to some extent, the philosophy of modelling soil moisture movement in numerical models, which will be presented in the conference. Beven, K.J. and Kirkby, M.J., 1979. A physically based variable contributing area model of basin hydrology. Hydrol. Science Bulletin, 24: 43-69. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. and King, K.W., 2005. Soil and Water Assessment Tool Theoretical Documentation, Grassland, soil and research service, Temple, TX.

  17. Effect of land management on soil properties in flood irrigated citrus orchards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; García-Orenes, F.; Cerdà, A.

    2015-01-01

    Agricultural land management greatly affects soil properties. Microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. Citrus orchards frequently have degraded soils and this paper evaluates how land management in citrus orchards can improve soil quality. A field experiment was performed in an orchard of orange trees (Citrus Sinensis) in the Alcoleja Experimental Station (Eastern Spain) with clay-loam agricultural soils to assess the long-term effects of herbicides with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (P) and organic farming (O) on the soil microbial properties, and to study the relationship between them. Nine soil samples were taken from each agricultural management plot. In all the samples the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic matter, total nitrogen, available phosphorus, available potassium, aggregate stability, cation exchange capacity, pH, texture, macronutrients (Na, Ca and Mg), micronutrients (Fe, Mn, Zn and Cu), calcium carbonate equivalent, calcium carbonate content of limestone and enzimatic activities (urease, dehydrogenase, β-glucosidase and acid phosphatase) were determined. The results showed a substantial level of differentiation in the microbial properties, which were highly associated with soil organic matter content. The management practices including herbicides and intensive ploughing had similar results on microbial soil properties. O management contributed to an increase in the soil biology quality, aggregate stability and organic matter content.

  18. Sex Differences in Item Functioning in the Comprehensive Inventory of Basic Skills-II Vocabulary Assessments

    ERIC Educational Resources Information Center

    French, Brian F.; Gotch, Chad M.

    2013-01-01

    The Brigance Comprehensive Inventory of Basic Skills-II (CIBS-II) is a diagnostic battery intended for children in grades 1st through 6th. The aim of this study was to test for item invariance, or differential item functioning (DIF), of the CIBS-II across sex in the standardization sample through the use of item response theory DIF detection…

  19. The Transmission Channel Tower Identification and Landslide Disaster Monitoring Based on Insar

    NASA Astrophysics Data System (ADS)

    Li, G.; Tan, Q.; Xie, C.; Fei, X.; Ma, X.; Zhao, B.; Ou, W.; Yang, Z.; Wang, J.; Fang, H.

    2018-04-01

    The transmission distance of transmission lines is long, the line affected by the diversity of climate and topography of the corridors of transmission lines, differences in regional geological structure conditions, variability of rock and soil types, and the complexity of groundwater. Under the influence of extreme weather conditions (ice-covered, strong wind, etc.) and sudden geological disasters (such as mudslides, flash floods, earthquakes, etc.), catastrophic damage and basic deformation problems of the tower foundations are prone, and even tower collapse accidents occur in severe cases, which affect the safe operation of transmission lines. Monitoring the deformation of power transmission towers and surrounding grounds, it is critical to ensuring the normal operation of transmission lines by assessing and controlling potential risks in advance. In this paper, using ALOS-2 PALSAR radar satellite data, differential interferometry was used to monitor surface deformation near the Sichuan Jinsu line transmission channel. The analysis found that a significant landslide hazard was found near the transmission channel tower in Yibin-Zhaotong section of Jinsu, Sichuan Province, the cumulative deformation reaches 9cm. The results of this paper can provide new monitoring means for safety monitoring of transmission towers.

  20. Toward linking maize chemistry to archaeological agricultural sites in the North American Southwest

    USGS Publications Warehouse

    Cordell, L.S.; Durand, S.R.; Antweiler, Ronald C.; Taylor, Howard E.

    2001-01-01

    Maize (Zea mays L.) was the staple domestic food crop for Ancestral Pueblo people throughout the northern American Southwest. It is thought to have been the basic food of the inhabitants of Chaco Canyon. New Mexico, a location that was a major centre of Ancestral Pueblo building and population during the 11th and early 12th centuries AD. Modern heirloom varieties of Native American corn have been difficult to grow in experimental fields in Chaco Canyon. Given an abundance of apparent storage structures in Chacoan buildings, it is possible that some corn recovered from archaeological contexts, was imported from surrounding areas. The ultimate goal of this research is to determine whether the corn in Chaco Canyon was grown locally or imported. This paper establishes the feasibility of a method to accomplish this goal. This study reports the results of using inductively coupled plasma-mass spectrometric (ICP-MS) instrumentation to determine chemical constituents of experimental fields and modern heirloom varieties of Native American corn. Analysis of 19 elements is adequate to differentiate soil and corn from three field areas. These results are promising: however, a number of problems, including post-depositional alterations in maize, remain to be solved. ?? 2001 Academic Press.

Top