Science.gov

Sample records for differentiated pc12 cells

  1. Effects of vibration on differentiation of cultured PC12 cells.

    PubMed

    Ito, Yukiko; Kimura, Tsuyoshi; Nam, Kwangwoo; Katoh, Ayako; Masuzawa, Toru; Kishida, Akio

    2011-03-01

    Different types of physiological-mechanical stress, such as shear stress in vascular endothelial cells or hydrostatic pressure in chondrocytes are well known as regulators of cell function. In this study, the effects of vibration, a type of non-physiological mechanical stimulation, on differentiation of rat pheochromocytoma (PC12) cells are reported. A nano-vibration system was designed to produce nanometer-scale vibration. The frequency and amplitude of the nano-vibrations were monitored by a capacitance displacement sensor connected to an oscilloscope. When PC12 cells exposed to nerve growth factor were subjected to vibration at 10 kHz, differentiation and elongation of their neurites were promoted earlier in the culture. Vibration promoted differentiation of PC12 cells. This approach could therefore also be promising for determining of the effects of the physical environment on cell differentiation.

  2. Regulation of the differentiation of PC12 pheochromocytoma cells.

    PubMed Central

    Fujita, K; Lazarovici, P; Guroff, G

    1989-01-01

    The PC12 clone, developed from a pheochromocytoma tumor of the rat adrenal medulla, has become a premiere model for the study of neuronal differentiation. When treated in culture with nanomolar concentrations of nerve growth factor, PC12 cells stop dividing, elaborate processes, become electrically excitable, and will make synapses with appropriate muscle cells in culture. The changes induced by nerve growth factor lead to cells that, by any number of criteria, resemble mature sympathetic neurons. These changes are accompanied by a series of biochemical alterations occurring in the membrane, the cytoplasm, and the nucleus of the cell. Some of these events are independent of changes in transcription, while others clearly involve changes in gene expression. A number of the alterations seen in the cells involve increases or decreases in the phosphorylation of key cellular proteins. The information available thus far allows the construction of a hypothesis regarding the biochemical basis of PC12 differentiation. PMID:2647474

  3. Hypergravity Stimulation Enhances PC12 Neuron-Like Cell Differentiation

    PubMed Central

    2015-01-01

    Altered gravity is a strong physical cue able to elicit different cellular responses, representing a largely uninvestigated opportunity for tissue engineering/regenerative medicine applications. Our recent studies have shown that both proliferation and differentiation of C2C12 skeletal muscle cells can be enhanced by hypergravity treatment; given these results, PC12 neuron-like cells were chosen to test the hypothesis that hypergravity stimulation might also affect the behavior of neuronal cells, in particular promoting an enhanced differentiated phenotype. PC12 cells were thus cultured under differentiating conditions for either 12 h or 72 h before being stimulated with different values of hypergravity (50 g and 150 g). Effects of hypergravity were evaluated at transcriptional level 1 h and 48 h after the stimulation, and at protein level 48 h from hypergravity exposure, to assess its influence on neurite development over increasing differentiation times. PC12 differentiation resulted strongly affected by the hypergravity treatments; in particular, neurite length was significantly enhanced after exposure to high acceleration values. The achieved results suggest that hypergravity might induce a faster and higher neuronal differentiation and encourage further investigations on the potential of hypergravity in the preparation of cellular constructs for regenerative medicine and tissue engineering purposes. PMID:25785273

  4. Hypergravity stimulation enhances PC12 neuron-like cell differentiation.

    PubMed

    Genchi, Giada Graziana; Cialdai, Francesca; Monici, Monica; Mazzolai, Barbara; Mattoli, Virgilio; Ciofani, Gianni

    2015-01-01

    Altered gravity is a strong physical cue able to elicit different cellular responses, representing a largely uninvestigated opportunity for tissue engineering/regenerative medicine applications. Our recent studies have shown that both proliferation and differentiation of C2C12 skeletal muscle cells can be enhanced by hypergravity treatment; given these results, PC12 neuron-like cells were chosen to test the hypothesis that hypergravity stimulation might also affect the behavior of neuronal cells, in particular promoting an enhanced differentiated phenotype. PC12 cells were thus cultured under differentiating conditions for either 12 h or 72 h before being stimulated with different values of hypergravity (50 g and 150 g). Effects of hypergravity were evaluated at transcriptional level 1 h and 48 h after the stimulation, and at protein level 48 h from hypergravity exposure, to assess its influence on neurite development over increasing differentiation times. PC12 differentiation resulted strongly affected by the hypergravity treatments; in particular, neurite length was significantly enhanced after exposure to high acceleration values. The achieved results suggest that hypergravity might induce a faster and higher neuronal differentiation and encourage further investigations on the potential of hypergravity in the preparation of cellular constructs for regenerative medicine and tissue engineering purposes.

  5. Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells.

    PubMed

    Klesse, L J; Meyers, K A; Marshall, C J; Parada, L F

    1999-03-25

    Nerve growth factor induces differentiation and survival of rat PC12 pheochromocytoma cells. The activation of the erk cascade has been implicated in transducing the multitude of signals induced by NGF. In order to explore the role of this signaling cascade in NGF mediated survival, differentiation and proliferation, we generated recombinant adenoviruses which express the intermediates of the erk cascade in their wild type, dominant negative and constitutively activated forms. We show that differentiation of PC12 cells requires activity of the ras/erk pathway, whereas inhibition of this pathway had no effect on survival or proliferation. Constitutively active forms of ras, raf and mek induced PC12 cell differentiation, while dominant interfering forms inhibited differentiation. Survival of PC12 cells in serum-free medium did not require activity of the ras/erk pathway. Instead, PI3 Kinase signaling was necessary for PC12 cell survival. Interestingly, constitutively activated versions of raf and mek were able to promote survival, but again this was dependent on activation of PI3 Kinase. Therefore, at least two distinct signaling pathways are required in PC12 cells for mediation of NGF functions.

  6. Neuritin (cpg15) enhances the differentiating effect of NGF on neuronal PC12 cells.

    PubMed

    Cappelletti, Graziella; Galbiati, Mariarita; Ronchi, Cristina; Maggioni, Maria Grazia; Onesto, Elisa; Poletti, Angelo

    2007-09-01

    Neuritin is a small, highly conserved GPI-anchored protein involved in neurite outgrowth. We have analyzed the involvement of neuritin in NGF-induced differentiation of PC12 cells by investigating the time-course of neuritin expression, the effects of its overexpression or silencing, and the possible mechanisms of its regulation and action. Real-time PCR analysis has shown that neuritin gene is upregulated by NGF in PC12 cells hours before neurite outgrowth becomes appreciable. PC12 cells transfected with a plasmid expressing neuritin display a significant increase in the response to NGF: 1) in the levels of SMI312 positive phosphorylated neurofilament proteins (markers for axonal processes) and tyrosine hydroxylase; 2) in the percentage of cells bearing neurites; as well as 3) in the average length of neurites when compared to control cells. On the contrary, neuritin silencing significantly reduces neurite outgrowth. These data suggest that neuritin is a modulator of NGF-induced neurite extension in PC12 cells. We also showed that neuritin potentiated the NGF-induced differentiation of PC12 cells without affecting TrkA or EGF receptor mRNAs expression. Moreover, the S-methylisothiourea (MIU), a potent inhibitor of inducible nitric oxide synthases, partially counteracts the NGF-mediated neuritin induction. These data suggest that NGF regulates neuritin expression in PC12 cells via the signaling pathway triggered by NO. This study reports the first evidence that neuritin plays a role in modulating neurite outgrowth during the progression of NGF-induced differentiation of PC12 cells. PC12 cells could be considered a valuable model to unravel the mechanism of action of neuritin on neurite outgrowth. (c) 2007 Wiley-Liss, Inc. PMID:17335086

  7. Substrate-induced PC12 cell differentiation without filopodial, lamellipodial activity or NGF stimulationa.

    PubMed

    Lamour, Guillaume; Souès, Sylvie; Hamraoui, Ahmed

    2015-03-01

    Nanoscale gradients in energy of adhesion are physical cues from the extracellular environment that can significantly affect cell functions and enhance the neuronal differentiation of PC12 cells. How such surface effects can trigger differentiation and initiate neurite outgrowth, remains to be elucidated. Here we used surface modification, atomic force microscopy and immunofluorescence to analyze PC12 cells. We studied the kinetics of neurites growth under cytochalasin-B treatment, known as an inhibitor of actin polymerization. We found that neither filopodia nor lamellipodia are involved in detecting the surface effects that induce the differentiation of PC12 cells. This finding suggests that the solution to this problem lies beyond identifying a precise cytoskeleton-associated cell-substrate intermediate. Thus, a more comprehensive model is probably required to identify the mechanism by which cell-substrate interactions are eventually translated into a differentiation signal. PMID:25350917

  8. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells.

    PubMed

    Soeda, S; Ochiai, T; Paopong, L; Tanaka, H; Shoyama, Y; Shimeno, H

    2001-11-01

    Crocus sativus L. is used in Chinese traditional medicine to treat some disorders of the central nervous system. Crocin is an ethanol-extractable component of Crocus sativus L.; it is reported to prevent ethanol-induced impairment of learning and memory in mice. In this study, we demonstrate that crocin suppresses the effect of tumor necrosis factor (TNF)-alpha on neuronally differentiated PC-12 cells. PC-12 cells dead from exposure to TNF-alpha show apoptotic morphological changes and DNA fragmentation. These hallmark features of cell death did not appear in cells treated in the co-presence of 10 microM crocin. Moreover, crocin suppressed the TNF-alpha-induced expression of Bcl-Xs and LICE mRNAs and simultaneously restored the cytokine-induced reduction of Bcl-X(L) mRNA expression. The modulating effects of crocin on the expression of Bcl-2 family proteins led to a marked reduction of a TNF-alpha-induced release of cytochrome c from the mitochondria. Crocin also blocked the cytochrome c-induced activation of caspase-3. To learn how crocin exhibits these anti-apoptotic actions in PC-12 cells, we tested the effect of crocin on PC-12 cell death induced by daunorubicin. We found that crocin inhibited the effect of daunorubicin as well. Our findings suggest that crocin inhibits neuronal cell death induced by both internal and external apoptotic stimuli.

  9. PC12 Cells Differentiate into Chromaffin Cell-Like Phenotype in Coculture with Adrenal Medullary Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Mizrachi, Yaffa; Naranjo, Jose R.; Levi, Ben-Zion; Pollard, Harvey B.; Lelkes, Peter I.

    1990-08-01

    Previously we described specific in vitro interactions between PC12 cells, a cloned, catecholamine-secreting pheochromocytoma cell line derived from the rat adrenal medulla, and bovine adrenal medullary endothelial cells. We now demonstrate that these interactions induce the PC12 cells to acquire physical and biochemical characteristics reminiscent of chromaffin cells. Under coculture conditions involving direct cell-cell contact, the endothelial cells and the PC12 cells reduced their rates of proliferation; upon prolonged coculture PC12 cells clustered into nests of cells similar to the organization of chromaffin cells seen in vivo. Within 3 days in coculture with endothelial cells, but not with unrelated control cells, PC12 cells synthesized increased levels of [Met]enkephalin. In addition, PC12 cells, growing on confluent endothelial monolayers, failed to extend neurites in response to nerve growth factor. Neither medium conditioned by endothelial cells nor fixed endothelial cells could by themselves induce all of these different phenomena in the PC12 cells. These results suggest that under coculture conditions PC12 cells change their state of differentiation toward a chromaffin cell-like phenotype. The rapid, transient increase in the expression of the protooncogene c-fos suggests that the mechanism(s) inducing the change in the state of differentiation in PC12 cells in coculture with the endothelial cells may be distinct from that described for the differentiation of PC12 cells--e.g., by glucocorticoids. We propose that similar interactions between endothelial cells and chromaffin cell precursors may occur during embryonic development and that these interactions might be instrumental for the organ-specific differentiation of the adrenal medulla in vivo.

  10. Mechanisms of manganese-induced rat pheochromocytoma (PC12) cell death and cell differentiation.

    PubMed

    Roth, Jerome A; Horbinski, Craig; Higgins, Dennis; Lein, Pamela; Garrick, Michael D

    2002-07-01

    Mn is a neurotoxin that leads to a syndrome resembling Parkinson's disease after prolonged exposure to high concentrations. Our laboratory has been investigating the mechanism by which Mn induces neuronal cell death. To accomplish this, we have utilized rat pheochromocytoma (PC12) cells as a model since they possess much of the biochemical machinery associated with dopaminergic neurons. Mn, like nerve growth factor (NGF), can induce neuronal differentiation of PC12 cells but Mn-induced cell differentiation is dependent on its interaction with the cell surface integrin receptors and basement membrane proteins, vitronectin or fibronectin. Similar to NGF, Mn-induced neurite outgrowth is dependent on the phosphorylation and activation of the MAP kinases, ERK1 and 2 (p44/42). Unlike NGF, Mn is also cytotoxic having an IC50 value of approximately 600 microM. Although many apoptotic signals are turned on by Mn, cell death is caused ultimately by disruption of mitochondrial function leading to loss of ATP. RT-PCR and immunoblotting studies suggest that some uptake of Mn into PC12 cells depends on the divalent metal transporter 1 (DMT1). DMT1 exists in two isoforms resulting from alternate splicing of a single gene product with one of the two mRNA species containing an iron response element (IRE) motif downstream from the stop codon. The presence of the IRE provides a binding site for the iron response proteins (IRP1 and 2); binding of either of these proteins could stabilize DMT1 mRNA and would increase expression of the +IRE form of the transporter. Iron and Mn compete for transport into PC12 cells via DMT1, so removal of iron from the culture media enhances Mn toxicity. The two isoforms of DMT1 (+/-IRE) are distributed in different subcellular compartments with the -IRE species selectively present in the nucleus of neuronal and neuronal-like cells. PMID:12224755

  11. DIFFERENTIAL MODULATION OF CATECHOLAMINES BY CHLOROTRIAZINE HERBICIDES IN PHEOCHROMOCYTOMA (PC12) CELLS IN VITRO

    EPA Science Inventory

    Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro.

    Das PC, McElroy WK, Cooper RL.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599, USA.

    Epidemiological, wildlife, and lab...

  12. Effect of diode laser on proliferation and differentiation of PC12 cells.

    PubMed

    Saito, Kensuke; Hashimoto, Sadamitsu; Jung, Han-Sung; Shimono, Masaki; Nakagawa, Kan-Ichi

    2011-01-01

    This study investigated the effects of diode (GaAlAs) laser irradiation at an effective energy density of 5 or 20 J/cm(2) on cell growth factor-induced differentiation and proliferation in pheochromocytoma cells (PC12 cells), and whether those effects were related to activation of the p38 pathway. Laser irradiation at 20 J/cm(2) significantly decreased the number of PC12 cells, while no difference was seen between the 5 J/cm(2) group and the control group (p<0.05). Western blotting revealed marked expression of neurofilament and β-tubulin, indicating greater neurite differentiation in the irradiation groups than in the control group at 48 hr. Irradiation also enhanced expression of phospho-p38. The decrease in number of cells after laser irradiation was accelerated by p38 inhibitor, while neurite differentiation was up-regulated by laser irradiation, even when the p38 pathway was blocked. This suggests that laser irradiation up-regulated neurite differentiation in PC12 cells involving p38 and another pathway.

  13. SB203580 promotes EGF-stimulated early morphological differentiation in PC12 cell through activating ERK pathway.

    PubMed

    New, L; Li, Y; Ge, B; Zhong, H; Mansbridge, J; Liu, K; Han, J

    2001-01-01

    MAP kinases have important role in PC12 cell differentiation, since the activities of both extracellular regulated protein kinase (ERK) and p38 have been indicated as necessary signal for PC12 cell differentiation. Epidermal growth factor (EGF) and NGF both activate ERK and p38 in PC12 cells, but only NGF trigger differentiation. It has been proposed that the duration of ERK activation determines the switch from proliferation to differentiation, since EGF causes more transient activation of ERK than NGF in PC12 cells. Here we report that treatment of PC12 cells with EGF in the presence of SB203580, a widely used p38 inhibitor, caused differentiation. The pro-differentiation effect of SB203580 in EGF-treated PC12 cells was found to be independent of its function of p38 inhibition but was through an effect on the ERK pathway that has been recently reported (Kalmes et al. [1999] FEBS Lett. 444: 71-74; Hall-Jackson et al. [1999] Onc. 18: 2047-2054). We found that SB203580 by itself did not affect the activity of ERK1/2 but significantly extended EGF-induced ERK activation in PC12 cells, which resulted in early morphological differentiation. Our data indicated that although both ERK and p38 are required for PC12 cell differentiation, activation of p38 is not required when ERK is superactivated. Our data provided further evidence for the threshold theory that differentiation is determined by the duration of ERK activation.

  14. Carnosine protects against Abeta42-induced neurotoxicity in differentiated rat PC12 cells.

    PubMed

    Fu, Qiuli; Dai, Haibin; Hu, Weiwei; Fan, Yanying; Shen, Yao; Zhang, Weiping; Chen, Zhong

    2008-02-01

    (1) The present study was designed to investigate whether histamine is involved in the protective effect of carnosine on Abeta42-induced impairment in differentiated PC12 cells. (2) PC12 cells were exposed to Abeta42 (5 muM) for 24 h after carnosine (5 mM) applied for 18 h. Histamine receptor antagonists (diphenhydramine, zolantidine, thioperamide, clobenpropit) or histidine decarboxylase inhibitor (alpha-fluoromethylhistidine) were added 15 min before carnosine. Cell viability, glutamate release or cell surface expression of NMDA receptor was examined. (3) Abeta42 caused a concentration-dependent reduction of viability in PC12 cells and pretreatment with carnosine ameliorated this impairment. This amelioration was reversed by the H(3) receptor antagonists thioperamide and clobenpropit, but not by either the H(1) receptor antagonist diphenhydramine or the H(2) receptor antagonist zolantidine. Further, alpha-fluoromethylhistidine, an irreversible inhibitor of histidine decarboxylase, also had no effect. In the presence of Abeta42, carnosine significantly decreased glutamate release and carnosine increased the surface expression of NMDA receptor. (4) These results indicate that the mechanism by which carnosine attenuates Abeta42-induced neurotoxicity is independent of the carnosine-histidine-histamine pathway, but may act through regulation of glutamate release and NMDA receptor trafficking.

  15. Differentiation induced by Achyrocline satureioides (Lam) infusion in PC12 cells.

    PubMed

    Blasina, M F; Vaamonde, L; Morquio, A; Echeverry, C; Arredondo, F; Dajas, F

    2009-09-01

    Epidemiological studies have shown that flavonoid-rich plants induce beneficial health effects that are likely beyond their potent antioxidant capacity. Thus, the mechanisms by which Achyrocline satureioides (AS), a popular South American medicinal plant, protects cells and neurons in culture, are still unclear. In this sense, a recently described trophic capacity for flavonoids, similar to that evoked by growth factors, could be one of the mechanisms involved in AS cellular protection. Since this trophic activity causes differentiation of PC12 cells, the cell differentiation capacity of AS and some of its flavonoids were evaluated. PC12 cells were treated with AS infusion (10 or 20 microg/mL of total polyphenols), quercetin (Q) (12.5 or 25 microm), luteolin (L) (25 microm), Q + L (12.5 microm each one) or nerve growth factor (NGF) for 3 days. Four morphological parameters (percentage of cells with neurites longer than one cell body diameter, percentage of cells with neurites, average number of neurites per cell and percentage of fusiform cells) were explored. The AS infusion showed differentiation capacity on all parameters with similar potency when compared with NGF. Besides, AS was more potent than some of its constituent flavonoids: Q, L or their combination.

  16. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments

    SciTech Connect

    Raza, Haider . E-mail: h.raza@uaeu.ac.ae; John, Annie

    2005-09-15

    Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibited by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo.

  17. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation

    PubMed Central

    Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L.; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2016-01-01

    The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation. PMID:27148350

  18. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation.

    PubMed

    Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2016-01-01

    The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.

  19. The Ubiquitin Ligase Praja1 Reduces NRAGE Expression and Inhibits Neuronal Differentiation of PC12 Cells

    PubMed Central

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  20. NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells

    NASA Astrophysics Data System (ADS)

    Marcus, M.; Skaat, H.; Alon, N.; Margel, S.; Shefi, O.

    2014-12-01

    The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short biological half-life. In our study, we describe a new nano-based approach to enhance the NGF activity resulting in promoted neuronal differentiation. We covalently conjugated NGF to iron oxide nanoparticles (NGF-NPs) and studied the effect of the novel complex on the differentiation of PC12 cells. We found that the NGF-NP treatment, at the same concentration as free NGF, significantly promoted neurite outgrowth and increased the complexity of the neuronal branching trees. Examination of neuronal differentiation gene markers demonstrated higher levels of expression in PC12 cells treated with the conjugated factor. By manipulating the NGF specific receptor, TrkA, we have demonstrated that NGF-NPs induce cell differentiation via the regular pathway. Importantly, we have shown that NGF-NPs undergo slower degradation than free NGF, extending their half-life and increasing NGF availability. Even a low concentration of conjugated NGF treatment has led to an effective response. We propose the use of the NGF-NP complex which has magnetic characteristics, also as a useful method to enhance NGF efficiency and activity, thus, paving the way for substantial neuronal repair therapeutics.The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short

  1. Expression of PKC iota affects neuronal differentiation of PC12 cells at least partly independent of kinase function

    PubMed Central

    Doonachar, Alana; Schoenfeld, Alan R.

    2014-01-01

    Atypical PKC (aPKC) plays a role in establishing cell polarity and has been indicated in neuronal differentiation and polarization, including neurite formation in rat pheochromocytoma PC12 cells, albeit by unclear mechanisms. Here, the role of the aPKC isoform, PKC iota (PKCι), in the early neuronal differentiation of PC12 cells was investigated. NGF-treated PC12 cells with stably expressed exogenous wild-type PKCι showed decreased expression of a neuroendocrine marker, increased expression of a neuronal marker, and increased neurite formation. Stable expression of a kinase- inactive PKCι, but not constitutively active PKCι lacking a regulatory domain, had similar although less potent effects. Pharmacological inhibition of endogenous aPKC kinase activity in parental PC12 cells did not inhibit neurite formation, suggesting that some of the observed effects of PKCι expression on neuronal differentiation are kinase- independent. Interestingly, exogenous expression of wild-type and kinase-inactive PKCι had little effect on overall PKCι activity, but caused a decrease in PKC zeta (PKCζ) kinase activity, suggesting an interplay between the two isoforms that may underlie the observed results. Overall, these findings suggest that in PC12 and perhaps other neuroendocrine precursor cells, PKCι influences an early differentiation decision between the neuroendocrine (chromaffin) and sympathetic neuron cell lineages, potentially by affecting PKCζ function. PMID:24910851

  2. c-Fos activated phospholipid synthesis is required for neurite elongation in differentiating PC12 cells.

    PubMed

    Gil, Germán A; Bussolino, Daniela F; Portal, Maximiliano M; Alfonso Pecchio, Adolfo; Renner, Marianne L; Borioli, Graciela A; Guido, Mario E; Caputto, Beatriz L

    2004-04-01

    We have previously shown that c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. Herein, using PC12 cells induced to differentiate by nerve growth factor, the genomic effect of c-Fos in initiating neurite outgrowth is shown as distinct from its nongenomic effect of activating phospholipid synthesis and sustaining neurite elongation. Blocking c-Fos expression inhibited differentiation, phospholipid synthesis activation, and neuritogenesis. In cells primed to grow, blocking c-Fos expression determined neurite retraction. However, transfected cells expressing c-Fos or c-Fos deletion mutants with capacity to activate phospholipid synthesis sustain neurite outgrowth and elongation in the absence of nerve growth factor. Results disclose a dual function of c-Fos: it first releases the genomic program for differentiation and then associates to the endoplasmic reticulum and activates phospholipid synthesis. Because phospholipids are key membrane components, we hypothesize this latter phenomenon as crucial to support membrane genesis demands required for cell growth and neurite elongation. PMID:14767061

  3. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth.

    PubMed

    Hsiao, Yu-Sheng; Liao, Yan-Hao; Chen, Huan-Lin; Chen, Peilin; Chen, Fang-Chung

    2016-04-13

    Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--β-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (β-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics. PMID:26999636

  4. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth.

    PubMed

    Hsiao, Yu-Sheng; Liao, Yan-Hao; Chen, Huan-Lin; Chen, Peilin; Chen, Fang-Chung

    2016-04-13

    Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--β-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (β-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics.

  5. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation

    NASA Astrophysics Data System (ADS)

    Yu, Yadong; Lü, Xiaoying; Ding, Fei

    2015-08-01

    Objective. Aligned nanofibers (AFs) are regarded as promising biomaterials in nerve tissue engineering. However, a full understanding of the biocompatibility of AFs at the molecular level is still challenging. Therefore, the present study focused on identifying the microRNA (miRNA)-mediated regulatory mechanism by which poly-L-lactic acid (PLLA) AFs influence PC12 cell differentiation. Approach. Firstly, the effects of PLLA random nanofibers (RFs)/AFs and PLLA films (control) on the biological responses of PC12 cells that are associated with neuronal differentiation were examined. Then, SOLiD sequencing and cDNA microarray were employed to profile the expressions of miRNAs and mRNAs. The target genes of the misregulated miRNAs were predicted and compared with the mRNA profile data. Functions of the matched target genes (the intersection between the predicted target genes and the experimentally-determined, misregulated genes) were analyzed. Main results. The results revealed that neurites spread in various directions in control and RF groups. In the AF group, most neurites extended in parallel with each other. The glucose consumption and lactic acid production in the RF and AF groups were higher than those in the control group. Compared with the control group, 42 and 94 miRNAs were significantly dysregulated in the RF and AF groups, respectively. By comparing the predicted target genes with the mRNA profile data, five and 87 matched target genes were found in the RF and AF groups, respectively. Three of the matched target genes in the AF group were found to be associated with neuronal differentiation, whereas none had this association in the RF group. The PLLA AFs induced the dysregulation of miRNAs that regulate many biological functions, including axonal guidance, lipid metabolism and long-term potentiation. In particular, two miRNA-matched target gene-biological function modules associated with neuronal differentiation were identified as follows: (1) miR-23b, mi

  6. Triptolide Inhibited Cytotoxicity of Differentiated PC12 Cells Induced by Amyloid-Beta25–35 via the Autophagy Pathway

    PubMed Central

    Xu, Pengjuan; Li, Zhigui; Wang, Hui; Zhang, Xiaochen; Yang, Zhuo

    2015-01-01

    Evidence shows that an abnormal deposition of amyloid beta-peptide25–35 (Aβ25–35) was the primary cause of the pathogenesis of Alzheimer’s disease (AD). And the elimination of Aβ25–35 is considered an important target for the treatment of AD. Triptolide (TP), isolated from Tripterygium wilfordii Hook.f. (TWHF), has been shown to possess a broad spectrum of biological profiles, including neurotrophic and neuroprotective effects. In our study investigating the effect and potential mechanism of triptolide on cytotoxicity of differentiated rat pheochromocytoma cell line (the PC12 cell line is often used as a neuronal developmental model) induced by Amyloid-Beta25–35 (Aβ25–35), we used 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay, flow cytometry, Western blot, and acridine orange staining to detect whether triptolide could inhibit Aβ25–35–induced cell apoptosis. We focused on the potential role of the autophagy pathway in Aβ25–35-treated differentiated PC12 cells. Our experiments show that cell viability is significantly decreased, and the apoptosis increased in Aβ25–35-treated differentiated PC12 cells. Meanwhile, Aβ25–35 treatment increased the expression of microtubule-associated protein light chain 3 II (LC3 II), which indicates an activation of autophagy. However, triptolide could protect differentiated PC12 cells against Aβ25–35-induced cytotoxicity and attenuate Aβ25–35-induced differentiated PC12 cell apoptosis. Triptolide could also suppress the level of autophagy. In order to assess the effect of autophagy on the protective effects of triptolide in differentiated PC12 cells treated with Aβ25–35, we used 3-Methyladenine (3-MA, an autophagy inhibitor) and rapamycin (an autophagy activator). MTT assay showed that 3-MA elevated cell viability compared with the Aβ25–35-treated group and rapamycin inhibits the protection of triptolide. These results suggest that triptolide will repair the

  7. The H3 receptor antagonist clobenpropit protects against Abeta42-induced neurotoxicity in differentiated rat PC12 cells.

    PubMed

    Fu, Qiuli; Dai, Haibin; He, Ping; Hu, Weiwei; Fan, Yanying; Zhang, Weiping; Chen, Zhong

    2010-04-01

    The present study was designed to investigate the effect of the H3 antagonist clobenpropit on neurotoxicity induced by Abeta42 in differentiated rat PC12 cells. PC12 cells were exposed to Abeta42 (5 microM) for 24h after clobenpropit applied for 18 h. Cell viability, glutamate release or cell surface expression of NMDA receptors were examined. Pretreatment with clobenpropit ameliorated cell impairment induced by Abeta42. In the presence of Abeta42, clobenpropit increased glutamate release, although there were no differences between the Abeta42-treated sample and control. Meanwhile, in the absence of Abeta42, clobenpropit increased the surface expression of NMDA receptors when the total expression of NMDA receptors was not influenced. These results indicate that one of the mechanisms by which clobenpropit attenuates Abeta42-induced neurotoxicity may act through regulation of glutamate release and NMDA receptor trafficking.

  8. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Chen, Linfeng; Varadan, Vijay K.; Yancey, Justin; Srivatsan, Malathi

    2008-03-01

    In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration.

  9. [NEURONAL DIFFERENTIATION OF PC12 CELL LINE AND MURINE NEURAL STEM CELLS ON THE CARBON NANOTUBES FILMS].

    PubMed

    Posypanova, G A; Gaiduchenko, A I; Moskaleva, E Yu; Fedorov, G E

    2016-01-01

    The study of the interaction of nerve cells with specially designed substrates (scaffolds) with different surface characteristics at the nanoscale is a necessary step in the development of methods of stimulation of regeneration of nervous tissues, as well as to create next generation of bioelectronic devices. A promising material for such scaffolds may be carbon nanotubes (CNT) that are flexible films of graphene rolled into nano-sized cylindrical tubes. CNT were produced by chemical deposition from the gas phase. The analysis of the PC12 cells cultivated on quartz glass coated by carbon nanotubes films using electron and light microscopy has shown that CNT stimulate the proliferation and do not inhibit neuronal differentiation of PC12 cells. We have found that it is possible to obtain differentiated neurons from murine neural stem cells on the quartz glasses covered with CNT films. The data obtained indicate that the CNT films produced by chemical deposition from the gas phase onto quartz glass may be used as the electro conductive scaffold to obtain and study the functions of neural cells and possibly of mature neurons.

  10. 3,4,5-tricaffeoylquinic acid attenuates proteasome inhibition-mediated programmed cell death in differentiated PC12 cells.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Kim, Yun Jeong; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Min Sung; Lee, Chung Soo

    2014-08-01

    The dysfunction of the proteasome system is suggested to be implicated in neuronal degeneration. Caffeoylquinic acid derivatives have demonstrated anti-oxidant and anti-inflammatory effects. However, the effect of 3,4,5-tricaffeoylquinic acid on the neuronal cell death induced by proteasome inhibition has not been studied. Therefore, in the respect of cell death process, we assessed the effect of 3,4,5-tricaffeoylquinic acid on the proteasome inhibition-induced programmed cell death using differentiated PC12 cells. The proteasome inhibitors MG132 and MG115 induced a decrease in Bid, Bcl-2, and survivin protein levels, an increase in Bax, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9 and -3), and an increase in the tumor suppressor p53 levels. Treatment with 3,4,5-tricaffeoylquinic acid attenuated the proteasome inhibitor-induced changes in the programmed cell death-related protein levels, formation of reactive oxygen species, GSH depletion and cell death. The results show that 3,4,5-tricaffeoylquinic acid may attenuate the proteasome inhibitor-induced programmed cell death in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The preventive effect of 3,4,5-tricaffeoylquinic acid appears to be attributed to its inhibitory effect on the formation of reactive oxygen species and depletion of GSH.

  11. Further characterization of scrapie replication in PC12 cells.

    PubMed

    Rubenstein, R; Scalici, C L; Papini, M C; Callahan, S M; Carp, R I

    1990-04-01

    The rat pheochromocytoma cell line, PC12, undergoes neuron-like morphological, biochemical and electrophysiological differentiation, in the presence of low concentrations of nerve growth factor (NGF). NGF-treated PC12 cells have been shown previously to support 139A scrapie agent replication. In the present report we extended these findings and analysed the cellular conditions necessary for agent replication. Following the infection of differentiated PC12 cells, scrapie replicated to relatively high titres as determined by an incubation period assay. The removal of NGF, which causes the gradual dedifferentiation of PC12 cells, resulted in the inability of scrapie to replicate. The scrapie infectivity detected in PC12 cultures is cell-associated and not released into the medium. Cells in infected cultures did not show any change in morphology when compared to cells in mock-infected cultures. Titration studies of scrapie infectivity in PC12 cells have indicated that up to 4 LD50 units per cell can be obtained although a yield of 1 LD50 per cell was more common. Using an approximate m.o.i. of 1, only differentiated PC12 cells supported 139A scrapie agent replication when compared to two other differentiated, neuronal cell types, indicating that PC12 cells are more susceptible to agent replication. These studies support further the suitability of using differentiated PC12 cells as an in vitro model to study scrapie agent replication.

  12. Earthworm extracts facilitate PC12 cell differentiation and promote axonal sprouting in peripheral nerve injury.

    PubMed

    Chen, Chao-Tsung; Lin, Jaung-Geng; Lu, Tung-Wu; Tsai, Fuu-Jen; Huang, Chih-Yang; Yao, Chun-Hsu; Chen, Yueh-Sheng

    2010-01-01

    The present study provides in vitro and in vivo evaluations of earthworm (Pheretima aspergilum) on peripheral nerve regeneration. In the in vitro study, we found the earthworm (EW) water extracts caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as the expressions of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with EW extracts were used to bridge a 10 mm sciatic nerve defect in rats. Eight weeks after implantation, the group receiving EW extracts had a much higher success percentage of regeneration (90%) compared to the control (60%) receiving the saline. In addition, quantitative histology of the successfully regenerated nerves revealed that myelinated axons in EW group at 31.25 microg/ml was significantly more than those in the controls (p < 0.05). These results showed that EW extracts can be a potential growth-promoting factor on regenerating peripheral nerves. PMID:20503471

  13. Silencing of Plasma Membrane Ca2+-ATPase Isoforms 2 and 3 Impairs Energy Metabolism in Differentiating PC12 Cells

    PubMed Central

    Ferenc, Bozena; Wiktorska, Magdalena

    2014-01-01

    A close link between Ca2+, ATP level, and neurogenesis is apparent; however, the molecular mechanisms of this relationship have not been completely elucidated. Transient elevations of cytosolic Ca2+ may boost ATP synthesis, but ATP is also consumed by ion pumps to maintain a low Ca2+ in cytosol. In differentiation process plasma membrane Ca2+ ATPase (PMCA) is considered as one of the major players for Ca2+ homeostasis. From four PMCA isoforms, the fastest PMCA2 and PMCA3 are expressed predominantly in excitable cells. In the present study we assessed whether PMCA isoform composition may affect energy balance in differentiating PC12 cells. We found that PMCA2-downregulated cells showed higher basal O2 consumption, lower NAD(P)H level, and increased activity of ETC. These changes associated with higher [Ca2+]c resulted in elevated ATP level. Since PMCA2-reduced cells demonstrated greatest sensitivity to ETC inhibition, we suppose that the main source of energy for PMCA isoforms 1, 3, and 4 was oxidative phosphorylation. Contrary, cells with unchanged PMCA2 expression exhibited prevalence of glycolysis in ATP generation. Our results with PMCA2- or PMCA3-downregulated lines provide an evidence of a novel role of PMCA isoforms in regulation of bioenergetic pathways, and mitochondrial activity and maintenance of ATP level during PC12 cells differentiation. PMID:25276815

  14. A role for the SHP-2 tyrosine phosphatase in nerve growth-induced PC12 cell differentiation.

    PubMed Central

    Wright, J H; Drueckes, P; Bartoe, J; Zhao, Z; Shen, S H; Krebs, E G

    1997-01-01

    SHP-1 and SHP-2 are intracellular protein tyrosine phosphatases containing two adjacent src homology 2 domains that target these phosphatases to cell surface receptor signaling complexes and play a role in receptor signal transduction. In this report the PC12 cell system was used to investigate the potential roles of SHP-1 and SHP-2 in the induction of neuronal differentiation by nerve growth factor (NGF). By using neurite outgrowth as a marker for differentiation, the effects of transfected constructs of SHP-1 and SHP-2 were assessed. Overexpression of a catalytically inactive SHP-2, but not a catalytically inactive SHP-1, blocked NGF-stimulated neurite outgrowth. The mitogen-activated protein kinase (MAPK) signaling cascade is important for the morphological differentiation in PC12 cells, and both SHP-1 and SHP-2 have been implicated to act upstream of MAPK in other receptor signaling systems. A positive role for SHP-2 but not SHP-1 in the activation of MAPK by NGF was demonstrated by introduction of the SHP-2 phosphatase mutants along with hemagglutinin-tagged MAPK. Coexpression studies with the SHP-2 mutant along with mutant forms of MAPK kinase suggested that SHP-2 functions upstream of MAPK kinase and MAPK in NGF-induced neurite outgrowth. Images PMID:9285826

  15. Cot protooncoprotein activates the dual specificity kinases MEK-1 and SEK-1 and induces differentiation of PC12 cells.

    PubMed

    Hagemann, D; Troppmair, J; Rapp, U R

    1999-02-18

    Mitogenic signals initiated at the plasma membrane are transmitted to the nucleus through an intricate signalling network. We identified the protooncoprotein Cot as a new component of mitogenic signalling cascades, which activates both the classic cytoplasmic cascade and the SAPK stress pathway. Wildtype and activated Cot phosphorylate and activate MEK-1 and SEK-1 in vitro. These findings are consistent with the sequence homology between Cot and the rat gene Tpl-2. Expression of oncogenic Cot in 293, NIH3T3 and PC12 cells leads to in vivo phosphorylation of endogenous c-Jun and Erk-1/2 suggesting that the serine/threonine kinase Cot functions beside c-Raf-1 and Mos as a direct activator of MEK-1. Furthermore, we have examined the biological effects of Cot on the phenotype of fibroblastic and neuronal cells. In order to test a potential c-Raf-1 dependency of Cot transformation, the effect of oncogenic Cot on Raf revertant CHP25 cells was determined. Cot could restore the transformed phenotype indicating that Cot transformation is not dependent on active c-Raf-1 and that Cot is not a target for the putative Raf inhibitor, which is presumably active in the revertant cell line. Expression of oncogenic versions of Raf as well as v-Mos leads to differentiation of PC12 cells. Cot also induces neurite outgrowth of PC12 cells. These data are consistent with the role of Cot in the classic mitogenic cascade and suggest that the simultaneously activated JNK/SAPK stress pathway has no antagonistic effects in this context.

  16. GTPase-deficient G alpha 16 and G alpha q induce PC12 cell differentiation and persistent activation of cJun NH2-terminal kinases.

    PubMed Central

    Heasley, L E; Storey, B; Fanger, G R; Butterfield, L; Zamarripa, J; Blumberg, D; Maue, R A

    1996-01-01

    Persistent stimulation of specific protein kinase pathways has been proposed as a key feature of receptor tyrosine kinases and intracellular oncoproteins that signal neuronal differentiation of rat pheochromocytoma (PC12) cells. Among the protein serine/threonine kinases identified to date, the p42/44 mitogen-activated protein (MAP) kinases have been highlighted for their potential role in signalling PC12 cell differentiation. We report here that retrovirus-mediated expression of GTPase-deficient, constitutively active forms of the heterotrimeric Gq family members, G alpha qQ209L and G alpha 16Q212L, in PC12 cells induces neuronal differentiation as indicated by neurite outgrowth and the increased expression of voltage-dependent sodium channels. Differentiation was not observed after cellular expression of GTPase-deficient forms of alpha i2 or alpha 0, indicating selectivity for the Gq family of G proteins. As predicted, overexpression of alpha qQ209L and alpha 16Q212L constitutively elevated basal phospholipase C activity approximately 10-fold in PC12 cells. Significantly, little or no p42/44 MAP kinase activity was detected in PC12 cells differentiated with alpha 16Q212L or alpha qQ209L, although these proteins were strongly activated following expression of constitutively active cRaf-1. Rather, a persistent threefold activation of the cJun NH2-terminal kinases (JNKs) was observed in PC12 cells expressing alpha qQ209L and alpha 16Q212L. This level of JNK activation was similar to that achieved with nerve growth factor, a strong inducer of PC12 cell differentiation. Supportive of a role for JNK activation in PC12 cell differentiation, retrovirus-mediated overexpression of cJun, a JNK target, in PC12 cells induced neurite outgrowth. The results define a p42/44 MAP kinase-independent mechanism for differentiation of PC12 cells and suggest that persistent activation of the JNK members of the proline-directed protein kinase family by GTPase-deficient G alpha q and G

  17. MECHANISMS OF MANGANESE-INDUCED RAT PHEOCHROMOCYTOMA (PC12) CELL DEATH AND CELL DIFFERENTIATION. (R826248)

    EPA Science Inventory

    Mn is a neurotoxin that leads to a syndrome resembling Parkinson's disease after prolonged exposure to high concentrations. Our laboratory has been investigating the mechanism by which Mn induces neuronal cell death. To accomplish this, we have utilized rat pheochromocytom...

  18. Concomitant inhibition of prolyl hydroxylases and ROCK initiates differentiation of mesenchymal stem cells and PC12 towards the neuronal lineage.

    PubMed

    Pacary, Emilie; Petit, Edwige; Bernaudin, Myriam

    2008-12-12

    This study demonstrates that a prolyl hydroxylase inhibitor, FG-0041, is able, in combination with the ROCK inhibitor, Y-27632, to initiate differentiation of mesenchymal stem cells (MSCs) into neuron-like cells. FG-0041/Y-27632 co-treatment provokes morphological changes into neuron-like cells, increases neuronal marker expression and provokes modifications of cell cycle-related gene expression consistent with a cell cycle arrest of MSC, three events showing the engagement of MSC towards the neuronal lineage. Moreover, as we observed in our previous studies with cobalt chloride and desferroxamine, the activation of HIF-1 by this prolyl hydroxylase inhibitor is potentiated by Y-27632 which could explain at least in part the effect of this co-treatment on MSC neuronal differentiation. In addition, we show that this co-treatment enhances neurite outgrowth and tyrosine hydroxylase expression in PC12 cells. Altogether, these results evidence that concomitant inhibition of prolyl hydroxylases and ROCK represents a relevant protocol to initiate neuronal differentiation.

  19. [Synthesis and protective effect of ligustrazine intermediates against CoCl2-induced neurotoxicity in differentiated PC12 cell].

    PubMed

    Li, Guo-Liang; Wang, Peng-Long; Xu, Xin; Lin, Jin-Xuan; Chu, Fu-Hao; Song, Ji-Xiang; Zhou, Shen; Wang, Mi-Na; Zhang, Yu-Zhong; Lei, Hai-Min

    2014-07-01

    Ligustrazine, one of the major effective components of the Chinese traditional medicinal herb Ligusticum Chuanxiong Hort, has been reported plenty of biological activities, such as protect cardiovascular and cerebrovascular, neuroprotection and anti-tumor, et al. Because of its remarkable effects, studies on structural modification of ligustrazine have attracted much attention. Ligustrazine synthetic derivatives reported in recent decades are mainly derived from four primary intermediates (TMP-COOH, TMP-OH, TMP-NH2, HO-TMP-OH). To explore the neuroprotection activitiy of ligustrazine intermediates, six ligustrazine intermediates (2, 5, 8, 11, 12, 13) were synthesized and their protective effects against CoCl2-induced neurotoxicity in differentiated PC12 cells were studied. The target compounds were prepared via different chemical methods, including oxidation, substitution, esterification and amidation without changing the structure nucleus of ligustrazine. Compared with TMP (EC50 = 56.03 micromol x L(-1)), four compounds (2, 5, 12 and 13) exhibited higher activity (EC50 < 50 micromol x L(-1)) respectively, of which, compound 2 displayed the highest protective effect against the damaged PC12 cells (EC50 = 32.86 micromol x L(-1)), but target compounds 8 and 11 appeared lower activity (EC50 > 70 micromol x L(-1)). By structure-activity relationships analysis, the introduction of carboxyl, amino to the side chain of ligustrazine and appropriately increase the proportion of ligustrazine may contribute to enhance its neuroprotective activity, which provides a reference for the design, synthesis and activity screening of relevant series of ligustrazine derivatives in the future. PMID:25272495

  20. EVALUATION OF PROTEIN MARKERS FOR NEURONAL DIFFERENTIATION IN PC12 CELLS.

    EPA Science Inventory

    Chemical-induced injury of the developing nervous system can be manifested as a change in the differentiation or growth of neurons. The present study evaluated the use of proteins associated with axonal growth and synaptogenesis as markers for neuronal differentiation in vitro. ...

  1. SUB-ACUTE TREATMENT WITH METHYLMERCURY DURING DIFFERENTIATION OF PHEOCHROMOCYTOMA (PC12) CELLS DOES NOT ALTER BINDING OF ION CHANNEL LIGANDS OR CELL MORPHOLOGY.

    EPA Science Inventory

    We demonstrated recently that 6 days of exposure to nanomolar concentrations (3-10 nM) of methylmercury (MeHg) during nerve growth factor (NGF) induced PC12 cell differentiation reduced the amplitude and density of voltage-gated sodium and calcium currents. In the present study,...

  2. Maslinic Acid Protected PC12 Cells Differentiated by Nerve Growth Factor against β-Amyloid-Induced Apoptosis.

    PubMed

    Yang, Yu-wan; Tsai, Chia-wen; Mong, Mei-chin; Yin, Mei-chin

    2015-12-01

    β-Amyloid peptide (Abeta) was used to induce apoptosis in PC12 cells differentiated by nerve growth factor, and the protective activities of maslinic acid (MA) at 2-16 μM were examined. Abeta treatment lowered Bcl-2 expression, raised Bax expression, and decreased cell viability. MA pretreatments decreased Bax expression, raised the Bcl-2/Bax ratio, and increased cell viability. MA pretreatments retained glutathione content and decreased subsequent Abeta-induced release of reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Abeta treatment up-regulated protein expression of p47(phox), gp91(phox), mitogen-activated protein kinase, advanced glycation end product receptor (RAGE), and nuclear factor-κ B (NF-κB). MA pretreatments at 2-16 μM suppressed the expression of proteins including gp91(phox), p47(phox), p-p38, and NF-κB p65, at 4-16 μM down-regulated RAGE and NF-κB p50 expression, and at 8 and 16 μM reduced p-ERK1/2 expression. These novel findings suggest that maslinic acid is a potent compound against Abeta-induced cytotoxicity.

  3. Chemical and biological evaluation of nephrocizin in protecting nerve growth factor-differentiated PC12 cells by 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Lin, Yi-Pei; Chen, Tai-Yuan; Tseng, Hsiang-Wen; Lee, Mei-Hsien; Chen, Shui-Tein

    2012-12-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. This model is crucial in the search for compounds that diminish 6-OHDA-induced nerve growth factor (NGF)-differentiated PC12 cell death. Nephrocizin (luteolin-7-O-β-D-glucopyranoside), a flavone glycoside, was isolated from widely distributed plants. The protective effects of pre-treatment with nephrocizin on the induced neurotoxicity in PC12 cells by 6-OHDA and its oxidative products, H₂O₂-, and p-quinone, were evaluated herein. Nephrocizin promoted cell viability, scavenged ROS-related products, increased cellular glutathione (GSH) levels, and reduced caspase-3 and -8 activities in 6-OHDA-, H₂O₂-, or p-quinone-treated PC12 cells. Furthermore, nephrocizin-conjugated metabolites in PC12 cells were identified with the boronate-affinity method and LC-MS technology, and preferential regioselectivity at the C2' and C5' positions by the nephrocizin-GSH (or NAC) adduct method was observed. These lines of evidence established that nephrocizin could form a dimer to diminish the intracellular ROS. These results demonstrate the first neuroprotective mechanism of nephrocizin against 6-OHDA-, H₂O₂- or p-quinone-induced cytotoxicity in PC12 cells via chemical and biological studies. These dietary antioxidants are potential candidates for use in intervention in neurodegenerative diseases.

  4. Chemical and biological evaluation of nephrocizin in protecting nerve growth factor-differentiated PC12 cells by 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Lin, Yi-Pei; Chen, Tai-Yuan; Tseng, Hsiang-Wen; Lee, Mei-Hsien; Chen, Shui-Tein

    2012-12-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. This model is crucial in the search for compounds that diminish 6-OHDA-induced nerve growth factor (NGF)-differentiated PC12 cell death. Nephrocizin (luteolin-7-O-β-D-glucopyranoside), a flavone glycoside, was isolated from widely distributed plants. The protective effects of pre-treatment with nephrocizin on the induced neurotoxicity in PC12 cells by 6-OHDA and its oxidative products, H₂O₂-, and p-quinone, were evaluated herein. Nephrocizin promoted cell viability, scavenged ROS-related products, increased cellular glutathione (GSH) levels, and reduced caspase-3 and -8 activities in 6-OHDA-, H₂O₂-, or p-quinone-treated PC12 cells. Furthermore, nephrocizin-conjugated metabolites in PC12 cells were identified with the boronate-affinity method and LC-MS technology, and preferential regioselectivity at the C2' and C5' positions by the nephrocizin-GSH (or NAC) adduct method was observed. These lines of evidence established that nephrocizin could form a dimer to diminish the intracellular ROS. These results demonstrate the first neuroprotective mechanism of nephrocizin against 6-OHDA-, H₂O₂- or p-quinone-induced cytotoxicity in PC12 cells via chemical and biological studies. These dietary antioxidants are potential candidates for use in intervention in neurodegenerative diseases. PMID:22954731

  5. Convergent effects of lithium and valproate on the expression of proteins associated with large dense core vesicles in NGF-differentiated PC12 cells.

    PubMed

    Cordeiro, Mara L; Gundersen, Cameron B; Umbach, Joy A

    2004-01-01

    Lithium and valproate are chemically unrelated compounds that are used to treat manic-depressive illness. Previously, we reported that lithium ions upregulate genes encoding proteins primarily associated with large dense core vesicles (LDCV) in nerve growth factor (NGF)-differentiated PC12 cells, but not in undifferentiated PC12 cells. Moreover, lithium did not alter the expression of proteins associated with small-clear, synaptic-like vesicles (SSV) in these cells. Based on these observations, we investigated whether valproate had actions similar to those of lithium in PC12 cells. Thus, undifferentiated or NGF-differentiated PC12 cells were exposed to lithium (1 mM) or valproate (1 mM) for 48 h. Extracts from these cells were submitted to semiquantitative Northern and Western analyses. In NGF-differentiated cells, both agents increased the expression of proteins associated with LDCV, the vesicular monoamine transporter 1 (VMAT1), and cysteine string protein (CSP). These same treatments did not alter the expression of proteins primarily associated with SSV, the vesicular acetylcholine transporter (VAChT), and synaptophysin (SY). Furthermore, neither drug affected the expression of these proteins in undifferentiated cells. Interestingly, secretion of (3)H-dopamine was increased in cells exhibiting the increase of VMAT1 and csp. Taken together, the convergent effects of these chemically diverse compounds suggest that altered dynamics of LDCV may play a vital role in the biochemical pathway, leading to the relief of the symptoms of manic depression.

  6. Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells.

    PubMed

    Meng, Li; Jiang, Aihua; Chen, Rui; Li, Chen-zhong; Wang, Liming; Qu, Ying; Wang, Peng; Zhao, Yuliang; Chen, Chunying

    2013-11-01

    The increasing use of carbon nanotubes (CNTs) in biomedical applications has garnered a great concern on their potential negative effects to human health. CNTs have been reported to potentially disrupt normal neuronal function and they were speculated to accumulate and cause brain damage, although a lot of distinct and exceptional properties and potential wide applications have been associated with this material in neurobiology. Fe impurities strapped inside the CNTs may be partially responsible for neurotoxicity generation. In the present study, we selected rat pheochromocytoma (PC12) cells to investigate and compare the effects of two kinds of multiwall carbon nanotubes (MWCNTs) with different concentrations of Fe impurities which usually come from the massive production of CNTs by chemical vapor deposition. Exposure to Fe-high MWCNTs can reduce cell viability and increase cytoskeletal disruption of undifferentiated PC12 cells, diminish the ability to form mature neurites, and then adversely influence the neuronal dopaminergic phenotype in NGF-treated PC-12 cells. The present results highlight the critical role of iron residue in the adverse response to MWCNTs exposure in neural cells. These findings provide useful information for understanding the toxicity and safe application of carbon nanotubes.

  7. Triterpenoids with Promoting Effects on the Differentiation of PC12 Cells from the Steamed Roots of Panax notoginseng.

    PubMed

    Gu, Cheng-Zhen; Lv, Jun-Jiang; Zhang, Xiao-Xia; Qiao, Yi-Jun; Yan, Hui; Li, Yan; Wang, Dong; Zhu, Hong-Tao; Luo, Huai-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2015-08-28

    The roots of Panax notoginseng, an important Chinese medicinal plant, have been used traditionally in both the raw and processed forms, due to the different chemical constituents and bioactivities found. Thirty-eight dammarane-type triterpenoid saponins were isolated from the steam-processed roots of P. notoginseng, including 18 new substances, namely, notoginsenosides SP1-SP18 (1-18). The structures of 1-18 were determined on the basis of spectroscopic analysis and acidic hydrolysis. The absolute configuration of the hydroxy group at C-24 in 1-4, 19, and 20 was determined in each case by Mo2(AcO)4-induced circular dichroism. The new compounds were found to feature a diversity of highly oxygenated side chains, formed by hydrolysis of the C-20 sugar moiety followed by dehydration, dehydrogenation, epoxidation, hydroxylation, or methoxylation of the main saponins in the raw roots. The new saponins 1, 2, 6-8, 14, and 17 and the known compounds 20-27 showed promoting effects on the differentiation of PC12 cells, at a concentration of 10 μM. PMID:26200131

  8. Propofol Protects Against H2O2-Induced Oxidative Injury in Differentiated PC12 Cells via Inhibition of Ca(2+)-Dependent NADPH Oxidase.

    PubMed

    Chen, Xiao-Hui; Zhou, Xue; Yang, Xiao-Yu; Zhou, Zhi-Bin; Lu, Di-Han; Tang, Ying; Ling, Ze-Min; Zhou, Li-Hua; Feng, Xia

    2016-05-01

    Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91(phox) (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca(2+) channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca(2+)-dependent NADPH oxidase.

  9. Song Bu Li Decoction, a Traditional Uyghur Medicine, Protects Cell Death by Regulation of Oxidative Stress and Differentiation in Cultured PC12 Cells

    PubMed Central

    Maiwulanjiang, Maitinuer; Zhu, Kevin Y.; Chen, Jianping; Miernisha, Abudureyimu; Xu, Sherry L.; Du, Crystal Y. Q.; Lau, Kitty K. M.; Choi, Roy C. Y.; Dong, Tina T. X.; Aisa, Haji A.; Tsim, Karl W. K.

    2013-01-01

    Song Bu Li decoction (SBL) is a traditional Uyghur medicinal herbal preparation, containing Nardostachyos Radix et Rhizoma. Recently, SBL is being used to treat neurological disorders (insomnia and neurasthenia) and heart disorders (arrhythmia and palpitation). Although this herbal extract has been used for many years, there is no scientific basis about its effectiveness. Here, we aimed to evaluate the protective and differentiating activities of SBL in cultured PC12 cells. The pretreatment of SBL protected the cell against tBHP-induced cell death in a dose-dependent manner. In parallel, SBL suppressed intracellular reactive oxygen species (ROS) formation. The transcriptional activity of antioxidant response element (ARE), as well as the key antioxidative stress proteins, was induced in dose-dependent manner by SBL in the cultures. In cultured PC12 cells, the expression of neurofilament, a protein marker for neuronal differentiation, was markedly induced by applied herbal extract. Moreover, the nerve growth factor- (NGF-) induced neurite outgrowth in cultured PC12 cells was significantly potentiated by the cotreatment of SBL. In accord, the expression of neurofilament was increased in the treatment of SBL. These results therefore suggested a possible role of SBL by its effect on neuron differentiation and protection against oxidative stress. PMID:24198845

  10. Regulation of N-methyl-D-aspartate receptor expression and N-methyl-D-aspartate-induced cellular response during chronic hypoxia in differentiated rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2000-01-01

    The purpose of the present study was to examine the effect of chronic hypoxia on N-methyl-D-aspartate-mediated cellular responses in differentiated PC12 cells. PC12 cells were differentiated by treatment with nerve growth factor. Patch-clamp analysis in differentiated PC12 cells showed that extracellularly applied N-methyl-D-aspartate induced an inward current that was abolished by the presence of the N-methyl-D-aspartate receptor antagonist MK-801. Results from Ca(2+) imaging experiments showed that N-methyl-D-aspartate induced an elevation in intracellular free Ca(2+) which was also abolished by MK-801. We also examined the effect of hypoxia on the N-methyl-D-aspartate-induced current in nerve growth factor-treated cells. We found that the N-methyl-D-aspartate-induced inward current and the N-methyl-D-aspartate-induced elevation in intracellular free Ca(2+) were markedly attenuated by chronic hypoxia. We next examined the possibility that the reduced N-methyl-D-aspartate responsiveness was due to down-regulation of N-methyl-D-aspartate receptor levels. Northern blot and immunoblot analyses showed that both messenger RNA and protein levels for N-methyl-D-aspartate receptor subunit 1 were markedly decreased during hypoxia. However, the messenger RNA for N-methyl-D-aspartate receptor subunit 2C was increased, whereas the protein level for subunit 2C did not change. Our results indicate that differentiated PC12 cells express functional N-methyl-D-aspartate receptors and that chronic exposure to hypoxia attenuates the N-methyl-D-aspartate-induced Ca(2+) accumulation in these cells via down-regulation of N-methyl-D-aspartate receptor subunit 1. This mechanism may play an important role in protecting PC12 cells against hypoxic stress. PMID:11113364

  11. Bidirectional promoters link cAMP signaling with irreversible differentiation through promoter-associated non-coding RNA (pancRNA) expression in PC12 cells.

    PubMed

    Yamamoto, Naoki; Agata, Kiyokazu; Nakashima, Kinichi; Imamura, Takuya

    2016-06-20

    Bidirectional promoters are the major source of gene activation-associated noncoding RNA (ncRNA). PC12 cells offer an interesting model for understanding the mechanism underlying bidirectional promoter-mediated cell cycle control. Nerve growth factor (NGF)-stimulated PC12 cells elongate neurites, and are in a reversible cell-cycle-arrested state. In contrast, these cells irreversibly differentiate and cannot re-enter the normal cell cycle after NGF plus cAMP treatment. In this study, using directional RNA-seq, we found that bidirectional promoters for protein-coding genes with promoter-associated ncRNA (pancRNA) were enriched for cAMP response element consensus sequences, and were preferred targets for transcriptional regulation by the transcription factors in the cAMP-dependent pathway. A spindle-formation-associated gene, Nusap1 and pancNusap1 were among the most strictly co-transcribed pancRNA-mRNA pairs. This pancRNA-mRNA pair was specifically repressed in irreversibly differentiated PC12 cells. Knockdown (KD) and overexpression experiments showed that pancNusap1 positively regulated the Nusap1 expression in a sequence-specific manner, which was accompanied by histone acetylation at the Nusap1 promoter. Furthermore, pancNusap1 KD recapitulated the effects of cAMP on cell cycle arrest. Thus, we conclude that pancRNA-mediated histone acetylation contributes to the establishment of the cAMP-induced transcription state of the Nusap1 locus and contributes to the irreversible cell cycle exit for terminal differentiation of PC12 cells. PMID:26945044

  12. Label-Free Detection of Neuronal Differentiation in Cell Populations Using High-Throughput Live-Cell Imaging of PC12 Cells

    PubMed Central

    Nascimento, Juliana M.; Knauer, Steffen; Offermann, Barbara; Murphy, Robert F.

    2013-01-01

    Detection of neuronal cell differentiation is essential to study cell fate decisions under various stimuli and/or environmental conditions. Many tools exist that quantify differentiation by neurite length measurements of single cells. However, quantification of differentiation in whole cell populations remains elusive so far. Because such populations can consist of both proliferating and differentiating cells, the task to assess the overall differentiation status is not trivial and requires a high-throughput, fully automated approach to analyze sufficient data for a statistically significant discrimination to determine cell differentiation. We address the problem of detecting differentiation in a mixed population of proliferating and differentiating cells over time by supervised classification. Using nerve growth factor induced differentiation of PC12 cells, we monitor the changes in cell morphology over days by phase-contrast live-cell imaging. For general applicability, the classification procedure starts out with many features to identify those that maximize discrimination of differentiated and undifferentiated cells and to eliminate features sensitive to systematic measurement artifacts. The resulting image analysis determines the optimal post treatment day for training and achieves a near perfect classification of differentiation, which we confirmed in technically and biologically independent as well as differently designed experiments. Our approach allows to monitor neuronal cell populations repeatedly over days without any interference. It requires only an initial calibration and training step and is thereafter capable to discriminate further experiments. In conclusion, this enables long-term, large-scale studies of cell populations with minimized costs and efforts for detecting effects of external manipulation of neuronal cell differentiation. PMID:23451069

  13. Asarone from Acori Tatarinowii Rhizoma Potentiates the Nerve Growth Factor-Induced Neuronal Differentiation in Cultured PC12 Cells: A Signaling Mediated by Protein Kinase A

    PubMed Central

    Lam, Kelly Y. C.; Chen, Jianping; Lam, Candy T. W.; Wu, Qiyun; Yao, Ping; Dong, Tina T. X.; Lin, Huangquan; Tsim, Karl W. K.

    2016-01-01

    Acori Tatarinowii Rhizoma (ATR), the rhizome of Acorus tatarinowii Schott, is being used clinically to treat neurological disorders. The volatile oil of ATR is being considered as an active ingredient. Here, α-asarone and β-asarone, accounting about 95% of ATR oil, were evaluated for its function in stimulating neurogenesis. In cultured PC12 cells, application of ATR volatile oil, α-asarone or β-asarone, stimulated the expression of neurofilaments, a bio-marker for neurite outgrowth, in a concentration-dependent manner. The co-treatment of ATR volatile oil, α-asarone or β-asarone, with low concentration of nerve growth factor (NGF) potentiated the NGF-induced neuronal differentiation in cultured PC12 cells. In addition, application of protein kinase A inhibitors, H89 and KT5720, in cultures blocked the ATR-induced neurofilament expression, as well as the phosphorylation of cAMP-responsive element binding protein (CREB). In the potentiation of NGF-induced signaling in cultured PC12 cells, α-asarone and β-asarone showed synergistic effects. These results proposed the neurite-promoting asarone, or ATR volatile oil, could be useful in finding potential drugs for treating various neurodegenerative diseases, in which neurotrophin deficiency is normally involved. PMID:27685847

  14. Apocynin attenuates cholesterol oxidation product-induced programmed cell death by suppressing NF-κB-mediated cell death process in differentiated PC12 cells.

    PubMed

    Lee, Da Hee; Nam, Yoon Jeong; Lee, Chung Soo

    2015-10-01

    Cholesterol oxidation products are suggested to be involved in neuronal degeneration. Apocynin has demonstrated to have anti-inflammatory and anti-oxidant effects. We assessed the effect of apocynin on the cholesterol oxidation product-induced programmed cell death in neuronal cells using differentiated PC12 cells in relation to NF-κB-mediated cell death process. 7-Ketocholesterol and 25-hydroxycholesterol decreased the levels of Bid and Bcl-2, increased the levels of Bax and p53, and induced loss of the mitochondrial transmembrane potential, release of cytochrome c and activation of caspases (-8, -9 and -3). 7-Ketocholesterol caused an increase in the levels of cytosolic and nuclear NF-κB p65, cytosolic NF-κB p50 and cytosolic phospho-IκB-α, which was inhibited by the addition of 0.5 μM Bay11-7085 (an inhibitor of NF-κB activation). Apocynin attenuated the cholesterol oxidation product-induced changes in the programmed cell death-related protein levels, NF-κB activation, production of reactive oxygen species, and depletion of GSH. The results show that apocynin appears to attenuate the cholesterol oxidation product-induced programmed cell death in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways that are mediated by NF-κB activation. The preventive effect appears to be associated with the inhibitory effect on the production of reactive oxygen species and depletion of GSH.

  15. Differential role of SNAP-25 phosphorylation by protein kinases A and C in the regulation of SNARE complex formation and exocytosis in PC12 cells.

    PubMed

    Gao, Jing; Hirata, Makiko; Mizokami, Akiko; Zhao, Jin; Takahashi, Ichiro; Takeuchi, Hiroshi; Hirata, Masato

    2016-05-01

    The final step of regulated exocytosis, membrane fusion, is mediated by formation of the SNARE complex by syntaxin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and VAMP (vesicle-associated membrane protein). Phosphorylation of SNARE and accessory proteins contributes to regulation of exocytosis. We previously identified residues of SNAP-25 phosphorylated by protein kinase A (PKA) and PKC. However, the physiological role of SNAP-25 phosphorylation in exocytosis, in particular with regard to SNARE complex formation, has remained elusive. SNARE complex formation by purified recombinant SNAP-25, syntaxin-1, and VAMP-2 in vitro was inhibited or promoted as a result of the phosphorylation at Thr(138) by PKA or at Ser(187) by PKC, respectively. SNARE complex formation in intact PC12 cells was similarly inhibited by forskolin (activator of PKA) and promoted by phorbol 12-myristate 13-acetate (PMA, activator of PKC). Noradrenaline secretion from PC12 cells induced by a high K(+) concentration was enhanced by forskolin or PMA. Stable depletion of SNAP-25 inhibited high-K(+)-induced noradrenaline secretion. Forced expression of WT SNAP-25 restored the secretory response of the SNAP-25-depleted cells to high-K(+), and this response was enhanced by forskolin or PMA. Expression of the nonphosphorylatable T138A or S187A mutants of SNAP-25 similarly rescued the secretory response to high-K(+), but the augmentation of this response by forskolin was more pronounced in the cells expressing SNAP-25 (T138A) than in those expressing SNAP-25 (WT), whereas that by PMA was less pronounced in those expressing SNAP-25 (S187A). Our results thus suggest that SNAP-25 phosphorylation by PKA or PKC contributes differentially to the control of exocytosis in PC12 cells by regulating SNARE complex formation.

  16. A "classical" homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytoma PC-12 cells.

    PubMed

    Um, Moonkyoung; Gross, Alec W; Lodish, Harvey F

    2007-03-01

    The hematopoietic cytokine erythropoietin (Epo) exerts cytoprotective effects on several types of neuronal cells both in vivo and in culture. Detailed molecular mechanisms underlying this phenomenon have not been elucidated and even the identity of the cytoprotective Epo receptors in neuronal cells is controversial. Here we show that Epo prevents staurosporine-induced apoptosis of differentiated human neuroblastoma SH-SY5Y cells, and activates the STAT5, AKT and MAPK signaling pathways. Differentiated SH-SY5Y cells have fewer than 50 high affinity Epo surface binding sites per cell, which could not be detected by standard assays measuring binding of 125I-labeled Epo. However, by measuring endocytosis of 125I-Epo, we could reliably quantify very small numbers of high-affinity Epo surface binding sites. Using SH-SY5Y cells stably expressing an Epo receptor (EpoR) shRNA and thus lacking detectable EpoR expression, we show that high affinity binding of Epo to these neuronal cells is mediated by the hematopoietic EpoR, and that this EpoR is also essential for the antiapoptotic activity of Epo. In contrast, a mutant Epo that has an intact binding site 1 but a non-functional binding site 2 and hence binds only to one cell surface EpoR molecule ("site 2" Epo mutant) displays significantly lower antiapoptotic activity than wild-type Epo. Furthermore, expression of the GM-CSF/IL-3/IL-5 receptor common beta chain, which was proposed to be responsible for the cytoprotective activity of Epo on certain types of neuronal cells, was undetectable in differentiated SH-SY5Y cells. Epo also alleviated staurosporine-induced apoptosis of rat PC-12 pheochromocytoma cells while the R103A "site 2" Epo mutant did not, and we could not detect expression of the common beta chain in PC-12 cells. Together our results indicate that Epo exerts its antiapoptotic effects on differentiated SH-SY5Y and PC-12 cells through the standard stoichiometry of one molecule of Epo binding to two EpoR subunits

  17. Phosphoinositide-specific phospholipase Cbeta1 expression is not linked to nerve growth factor-induced differentiation, cell survival or cell cycle control in PC12 rat pheocromocytoma cells.

    PubMed

    Bortul, R; Aluigi, M; Tazzari, P L; Tabellini, G; Baldini, G; Bareggi, R; Narducci, P; Martelli, A M

    2001-01-01

    Recent reports have highlighted that phosphoinositide-specific phospholipase Cbeta1 expression is linked to neuronal differentiation in different experimental models. We sought to determine whether or not this is also true for nerve growth factor (NGF)-induced neuronal differentiation of rat PC12 cells. However, we did not find differences in the expression of both the forms of phosphoinositide-specific phospholipase Cbeta1 (a and b) during sympathetic differentiation of these cells. Also, PC12 cell clones stably overexpressing phosphoinositide-specific phospholipase Cbeta1 were not more susceptible to the differentiating effect of NGF. Furthermore, since it is well established that phosphoinositide-specific phospholipase Cbeta1 affects cell proliferation, we investigated whether or not PC12 cell clones stably overexpressing phosphoinositide-specific phospholipase Cbeta1 showed differences in survival to serum deprivation and cell cycle, when compared to wild type cells. Nevertheless, we did not find any differences in these parameters between wild type cells and the overexpressing clones. Interestingly, in PC12 cells the overexpressed phosphoinositide-specific phospholipase Cbeta1 did not localize to the nucleus, but by immunofluorescence analysis, was detected in the cytoplasm. Therefore, our findings may represent another important clue to the fact that only when it is located within the nucleus phosphoinositide-specific phospholipase Cbeta1 is able to influence cell proliferation.

  18. Microarray and synchronization of neuronal differentiation with pathway changes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databank in nerve growth factor-treated PC12 cells.

    PubMed

    Lin, Chih-Ming; Feng, Wayne

    2012-08-01

    The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database creates networks from interrelations between molecular biology and underlying chemical elements. This allows for analysis of biologic networks, genomic information, and higher-order functional information at a systems level. We performed microarray experiments and used the KEGG database, systems biology analysis, and annotation of pathway function to study nerve growth factor (NGF)-induced differentiation of PC12 cells. Cells were cultured to 70%-80% confluence, treated with NGF for 1 or 3 hours (h), and RNA was extracted. Stage 1 data analysis involved analysis of variance (ANOVA), and stage 2 involved cluster analysis and heat map generation. We identified 2020 NGF-induced PC12 genes (1038 at 1 h and 1554 at 3 h). Results showed changes in gene expression over time. We compared these genes with 6035 genes from the KEGG database. Cross-matching resulted in 830 genes. Among these, we identified 395 altered genes (155 at 1 h and 301 at 3 h; 2-fold increase from 1 h to 3 h). We identified 191 biologic pathways in the KEGG database; the top 15 showed correlations with neuronal differentiation (mitogen-activated protein kinase [MAPK] pathway: 35 genes at 1 h, 54 genes at 3 h; genes associated with axonal guidance: 12 at 1 h, 26 at 3 h; Wnt pathway: 16 at 1 h, 25 at 3 h; neurotrophin pathway: 4 at 1 h, 14 at 3 h). Thus, we identified changes in neuronal differentiation pathways with the KEGG database, which were synchronized with NGF-induced differentiation.

  19. Crosstalk between HIF-1 and ROCK pathways in neuronal differentiation of mesenchymal stem cells, neurospheres and in PC12 neurite outgrowth.

    PubMed

    Pacary, Emilie; Tixier, Emmanuelle; Coulet, Florence; Roussel, Simon; Petit, Edwige; Bernaudin, Myriam

    2007-07-01

    This study demonstrates that the Rho-kinase (ROCK) inhibitor, Y-27632, potentiates not only the effect of cobalt chloride (CoCl(2)) but also that of deferoxamine, another HIF-1 inducer, on mesenchymal stem cell (MSC) neuronal differentiation. HIF-1 is essential for CoCl(2)+/-Y-27632-induced MSC neuronal differentiation, since agents inhibiting HIF-1 abolish the changes of morphology and cell cycle arrest-related gene or protein expressions (p21, cyclin D1) and the increase of neuronal marker expressions (Tuj1, NSE). Y-27632 potentiates the CoCl(2)-induced decrease of cyclin D1 and nestin expressions, the increase of HIF-1 activation and EPO expression, and decreases pVHL expression. Interestingly, CoCl(2) decreases RhoA expression, an effect potentiated by Y-27632, revealing crosstalk between HIF-1 and RhoA/ROCK pathways. Moreover, we demonstrate a synergistic effect of CoCl(2) and Y-27632 on neurosphere differentiation into neurons and PC12 neurite outgrowth underlining that a co-treatment targeting both HIF-1 and ROCK pathways might be relevant to differentiate stem cells into neurons.

  20. Regulation of Shootin1 Gene Expression Involves NGF-induced Alternative Splicing during Neuronal Differentiation of PC12 Cells

    PubMed Central

    Ergin, Volkan; Erdogan, Mutlu; Menevse, Adnan

    2015-01-01

    Shootin1 is a protein involved in neuronal polarization, and has been shown to be a key molecule for the positive/negative feedback loop for axon induction required during neuronal symmetry breaking. To better understand the molecular basis of shootin1 dynamics, we analysed the regulatory pathways and the expressional status of shootin1 gene during NGF-induced neuronal differentiation. We demonstrated that the isoform-1 and isoform-2 of shootin1 is differentially expressed during neuronal differentiation. By blocking individual downstream pathways of NGF signalling, we found that PI3K/Akt pathway plays a major role in the expression of shootin1 isoform-2. Western blot and RT-PCR results showed that the isoform-1 of shootin1 is constitutively expressed, while the isoform-2 is expressed in a manner that is strictly dependent on NGF-stimulation. Isoform-specific RT-PCR results demonstrated that the differential expression of the isoform-1 and isoform-2 of shootin1 is a consequence of alternative splicing of shootin1 pre-mRNA, in response to NGF-signalling. Collectively these findings provide the first information on the molecular mechanisms regulating the expression of shootin1 gene and represent the first example of NGF-induced alternative splicing process that has a regulatory role in neuritogenesis. PMID:26648138

  1. Mitochondria Related Pathway Is Essential for Polysaccharides Purified from Sparassis crispa Mediated Neuro-Protection against Glutamate-Induced Toxicity in Differentiated PC12 Cells

    PubMed Central

    Hu, Shuang; Wang, Di; Zhang, Junrong; Du, Mengyan; Cheng, Yingkun; Liu, Yan; Zhang, Ning; Wang, Di; Wu, Yi

    2016-01-01

    The present study aims to explore the neuro-protective effects of purified Sparassis crispa polysaccharides against l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cell damages and its underlying mechanisms. The Sparassis crispa water extract was purified by a DEAE-52 cellulose anion exchange column and a Sepharose G-100 column. A fraction with a molecular weight of 75 kDa and a diameter of 88.9 nm, entitled SCWEA, was obtained. SCWEA was identified with a triple helix with (1→3)-linked Rha in the backbone, and (1→2) linkages and (1→6) linkages in the side bone. Our results indicated that the pre-treatment of DPC12 cells with SCWEA prior to l-Glu exposure effectively reversed the reduction on cell viability (by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay) and reduced l-Glu-induced apoptosis (by Hoechst staining). SCWEA decreased the accumulation of intracellular reactive oxygen species, blocked Ca2+ influx and prevented depolarization of the mitochondrial membrane potential in DPC12 cells. Furthermore, SCWEA normalized expression of anti-apoptotic proteins in l-Glu-explored DPC12 cells. These results suggested that SCWEA protects against l-Glu-induced neuronal apoptosis in DPC12 cells and may be a promising candidate for treatment against neurodegenerative disease. PMID:26821016

  2. Autophagy regulates colistin-induced apoptosis in PC-12 cells.

    PubMed

    Zhang, Ling; Zhao, Yonghao; Ding, Wenjian; Jiang, Guozheng; Lu, Ziyin; Li, Li; Wang, Jinli; Li, Jian; Li, Jichang

    2015-04-01

    Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons.

  3. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-01

    Context Oxidative stress plays a key role in neurodegenerative disorders, including Parkinson's disease (PD). Rice fermented with Monascus purpureus Went (Monascaceae) NTU 568 (red mould rice) was found to contain antioxidants, including dimerumic acid (DMA) and deferricoprogen (DFC). Objective The effects of DMA and DFC on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and potential protective mechanisms in differentiated PC-12 pheochromocytoma cells were investigated. Materials and methods DMA (0-60 μM) or DFC (0-10 μM) was co-treated with 6-OHDA (200 μM, 24 h exposure) in differentiated PC-12 cells. Cell viability and intercellular reactive oxygen species (ROS) were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays, respectively. Cell apoptosis was determined by DNA fragmentation analysis and propidium iodide staining by flow cytometry. Western blot analysis was used to measure the levels of cell protein expression. Results DMA and DFC significantly increased cell viability to 72% and 81% in 6-OHDA-induced differentiated PC-12 cell cultures, respectively. Furthermore, DMA and DFC reduced 6-OHDA-induced formation of extracellular and intercellular ROS by 25% and 20%, respectively, and decreased NADPH oxidase-2 expression in differentiated PC-12 cells. DMA and DFC inhibited 6-OHDA-induced apoptosis and decreased activation of caspase-3 via regulation of Bcl-2-associated X protein (Bax) and Bcl-2 protein expression in differentiated PC-12 cells. Conclusion DMA and DFC may protect against 6-OHDA toxicity by inhibiting ROS formation and apoptosis. These results showed that the metabolites from M. purpureus NTU 568 fermentation were potential therapeutic agents for PD induced by oxidative damage and should be encouraged for further research. PMID:26794209

  4. Aspartame-induced apoptosis in PC12 cells.

    PubMed

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity.

  5. Nonbinomial distribution of relative neurite outgrowth in PC-12 cells

    SciTech Connect

    Blackman, C.F.; House, D.E.; Blanchard, J.P.

    1996-12-31

    Previously the authors reported the results of a series of experimental tests using PC-12 cells to examine the biological effects of prescribed combinations of both nerve growth factor and magnetic fields. Because the assay of the PC-12 cells is based on a binary classification of the cells following treatment, the data might be expected to have a binomial distribution. However, the data consistently show a smaller variability than that predicted by the binomial distribution model. In this paper, they examine some possible reasons for this reduction in variability in the results.

  6. Effect of morphine on PC12 cells with molecular radar

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Yu, Xiaoli; Lu, Jiuyi; Zhang, Chunyang; Jin, Lei; Ma, Hui; Zhang, Dacheng; Chen, Die Yan

    2000-10-01

    Molecular Radar (MR) is a new method to detect biological processes in living cells at the level of molecular, it is also the newest means to get intracellular information. In this paper we study the effect of morphine on PC12 cells using MR. The results show that the effect of morphine on PC12 cells is time- and concentration-dependent. Morphine treating for short time induces the increase and fluctuation of intracellular (CA2+), while morphine treating for long time induces chromatin condensation, loss of mitochondria membrane potential apoptosis.

  7. C-terminal trans-activation sub-region of VP16 is uniquely required for forskolin-induced herpes simplex virus type 1 reactivation from quiescently infected-PC12 cells but not for replication in neuronally differentiated-PC12 cells.

    PubMed

    Danaher, Robert J; Cook, Ross K; Wang, Chunmei; Triezenberg, Steven J; Jacob, Robert J; Miller, Craig S

    2013-02-01

    The HSV-1 tegument protein VP16 contains a trans-activation domain (TAD) that is required for induction of immediate early (IE) genes during lytic infection and induced reactivation from latency. Here we report the differential contributions of the two sub-regions of the TAD in neuronal and non-neuronal cells during activation of IE gene expression, virus replication, and reactivation from quiescently infected (QIF)-PC12 cells. Our studies show that VP16- and chemical (hexamethylenebisacetamide)-induced IE gene activation is attenuated in neuronal cells. Irrespective of neuronal or non-neuronal cell backgrounds, IE gene activation demonstrated a greater requirement for the N-terminal sub-region of VP16 TAD (VP16N) than the C-terminal sub-region (VP16C). In surprising contrast to these findings, a recombinant virus (RP4) containing the VP16N deletion was capable of modest forskolin-induced reactivation whereas a recombinant (RP3) containing a deletion of VP16C was incapable of stress-induced reactivation from QIF-PC12 cells. These unique process-dependent functions of the VP16 TAD sub-regions may be important during particular stages of the virus life cycle (lytic, entrance, and maintenance of a quiescent state and reactivation) when viral DNA would be expected to be differentially modified. PMID:23192733

  8. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    SciTech Connect

    Wang, Qiwen; Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Liu, Zongping

    2013-08-16

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity.

  9. Influence of Poly(L-Lactic Acid) Aligned Nanofibers on PC12 Differentiation.

    PubMed

    Yu, Yadong; Lü, Xiaoying; Ding, Fei

    2015-05-01

    The aim of this study was to unveil the mechanism by which aligned nanofibers influence neuronal differentiation. PC12 cells were seeded on three different poly(L-lactic acid) (PLLA) substrates (PLLA films (control), electrospun PLLA random nanofibers (RF) and electrospun PLLA aligned nanofibers (AF)). Subsequently, cellular experiments, cDNA microarrays and molecular biological approaches were employed to investigate the impacts of the different PLLA substrates on PC12 cell differentiation. Scanning electron microscope observation revealed that neurite outgrowth in the AF group was parallel to the direction of nanofiber alignment and that the filopodias at the neurite tips spread along the aligned nanofiber axis. Meanwhile, both neurite length and the expression of GAP43 (a neuronal differentiation marker gene) were higher in the AF group than those in the control and RF groups. These results suggested that the PLLA aligned nanofibers enhanced PC12 cell differentiation. cDNA microarray experiment revealed that 876 and 1937 genes had significantly changed expression in the RF and AF groups, respectively. Based on gene ontology analysis, 493 and 1193 differentially expressed genes involved in neuronal differentiation were found in the RF and AF groups, respectively. Pathway analysis showed that the PLLA aligned nanofibers mainly mediated their effects via integrin-mediated pathways. qRT-PCR and western blotting assays further confirmed that gene and protein expression levels in the integrin-mediated FAK-MEK-ERK pathway (e.g., Tln1, Mapk6, phosphorylated-ERK1/2) were enhanced by the PLLA aligned nanofibers. Both PC12 cell differentiation and the expressions of genes and proteins in the integrin-mediated FAK-MEK-ERK pathway were inhibited when integrins were blocked by the pentapeptide GRGDS. In addition, the Pafah1b-1 gene was found to be involved in PLLA aligned nanofibers' promotion of PC12 cell differentiation. Taken together, the results suggested that PLLA

  10. Extracellular toxicity of 6-hydroxydopamine on PC12 cells.

    PubMed

    Blum, D; Torch, S; Nissou, M F; Benabid, A L; Verna, J M

    2000-04-14

    6-hydroxydopamine (6-OHDA) is usually thought to cross cell membrane through dopamine uptake transporters, to inhibit mitochondrial respiration and to generate intracellular reactive oxygen species. In this study, we show that the anti-oxidants catalase, glutathione and N-acetyl-cysteine are able to reverse the toxic effects of 6-OHDA. These two latter compounds considerably slow down 6-OHDA oxidation in a cell free system suggesting a direct chemical interaction with the neurotoxin. Moreover, desipramine does not protect PC12 cells and 6-OHDA is also strongly toxic towards non-catecholaminergic C6 and NIH3T3 cells. These results thus suggest that 6-OHDA toxicity on PC12 cells mainly involves an extracellular process. PMID:10754220

  11. Cell cycle markers have different expression and localization patterns in neuron-like PC12 cells and primary hippocampal neurons.

    PubMed

    Negis, Yesim; Unal, Aysegul Yildiz; Korulu, Sirin; Karabay, Arzu

    2011-06-01

    Neuron-like PC12 cells are extensively used in place of neurons in published studies. Aim of this paper has been to compare mRNA and protein expressions of cell cycle markers; cyclinA, B, D, E; Cdk1, 2 and 4; and p27 in post-mitotic primary hippocampal neurons, mitotically active PC12 cells and NGF-differentiated post-mitotic PC12 cells. Contrary to PC12 cells, in neurons, the presence of all these markers was detected only at mRNA level; except for cyclinA, cyclinE and Cdk4, which were detectable also at protein levels. In both NGF-treated PC12 cells and neurons, cyclinE was localized only in the nucleus. In NGF-treated PC12 cells cyclinD and Cdk4 were localized in the nucleus while, in neurons cyclinD expression was not detectable; Cdk4 was localized in the cytoplasm. In neurons, cyclinA was nuclear, whereas in NGF-treated PC12 cells, it was localized in the cell body and along the processes. These results suggest that PC12 cells and primary neurons are different in terms of cell cycle protein expressions and localizations. Thus, it may not be very appropriate to use these cells as neuronal model system in order to understand neuronal physiological activities, upstream of where may lie cell cycle activation triggered events.

  12. Capsaicin induces apoptosis in PC12 cells through ER stress.

    PubMed

    Krizanova, Olga; Steliarova, Iveta; Csaderova, Lucia; Pastorek, Michal; Hudecova, Sona

    2014-02-01

    Capsaicin, the pungent agent in chili peppers, has been shown to act as a tumor-suppressor in cancer. In our previous study, capsaicin was shown to induce apoptosis in the rat pheochromocytoma cell line (PC12 cells). Thus, the aim of the present study was to determine the potential mechanism by which capsaicin induces apoptosis. We treated PC12 cells with 50, 100 and 500 µM capsaicin and measured the reticular calcium content and expression of the reticular calcium transport systems. These results were correlated with endoplasmic reticulum (ER) stress markers CHOP, ATF4 and X-box binding protein 1 (XBP1), as well as with apoptosis induction. We observed that capsaicin decreased reticular calcium in a concentration-dependent manner. Simultaneously, expression levels of the sarco/endoplasmic reticulum pump and ryanodin receptor of type 2 were modified. These changes were accompanied by increased ER stress, as documented by increased stress markers. Thus, from these results we propose that in PC12 cells capsaicin induces apoptosis through increased ER stress. PMID:24337105

  13. Manganese oxidation state mediates toxicity in PC12 cells

    SciTech Connect

    Reaney, S.H. . E-mail: stevereaney@hotmail.com; Smith, D.R.

    2005-06-15

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 {mu}M Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 {mu}M produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 {mu}M), while Mn(III) exposures produced increases in LDH activity at lower exposures ({>=}50 {mu}M) than did Mn(II) (200 {mu}M only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 {mu}M Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity.

  14. Functionality of NGF-protected PC12 cells following exposure to 6-hydroxydopamine

    SciTech Connect

    Kavanagh, Edel T.; Loughlin, John P.; Herbert, Kate Reed; Dockery, Peter; Samali, Afshin; Doyle, Karen M.; Gorman, Adrienne M. . E-mail: adrienne.gorman@nuigalway.ie

    2006-12-29

    6-Hydroxydopamine (6-OHDA) is often used in models of Parkinson's disease since it can selectively target and kill dopaminergic cells of the substantia nigra. In this study, pre-treatment of PC12 cells with nerve growth factor (NGF) inhibited apoptosis and necrosis by 6-OHDA, including caspase activity and lactate dehydrogenase release. Notably, cells exposed to 6-OHDA in the presence of NGF were subsequently capable of proliferation (when replated without NGF), or neurite outgrowth (with continued presence of NGF). Following 7 days growth in the presence of NGF, expression of {beta}III tubulin and tyrosine hydroxylase and increased intracellular catecholamines was detectable in PC12 cells, features characteristic of functional dopaminergic neurons. NGF-pre-treated PC12 cells retained expression of {beta}III-tubulin and tyrosine hydroxylase, but not catecholamine content following 6-OHDA exposure. These data indicate that NGF-protected cells maintained some aspects of functionality and were subsequently capable of proliferation or differentiation.

  15. Hydralazine rescues PC12 cells from acrolein-mediated death.

    PubMed

    Liu-Snyder, Peishan; Borgens, Richard Ben; Shi, Riyi

    2006-07-01

    Acrolein, a major lipid peroxidation product, has been associated with both CNS trauma and neurodegenerative diseases. Because of its long half-life, acrolein is a potent endogenous toxin capable of killing healthy cells during the secondary injury process. Traditionally, attempts to intervene in the process of progressive cell death after the primary injury have included scavenging reactive oxygen species (so-called free radicals). The animal data supporting such an approach have generally been positive, but all human clinical trials attempting a similar outcome in human CNS injury have failed. New drugs that might reduce toxicity by scavenging the products of lipid peroxidation present a promising, and little investigated, therapeutic approach. Hydralazine, a well-known treatment for hypertension, has been reported to react with acrolein, forming hydrazone in cell-free systems. In the companion paper, we have established an acrolein-mediated cell injury model using PC12 cells in vitro. Here we test the hypothesis that the formation of hydrazone adducts with acrolein is able to reduce acrolein toxicity and spare a significant percentage of the population of PC12 cells from death. Concentrations of approximately 1 mM of this aldehyde scavenger can rescue over 80% of the population of PC12 cells. This study provides a basis for a new pharmacological treatment to reduce the effects of secondary injury in the damaged and/or diseased nervous system. In particular, we describe the need for new drugs that possess aldehyde scavenging properties but do not interfere with the regulation of blood pressure.

  16. A Novel Ligustrazine Derivative T-VA Prevents Neurotoxicity in Differentiated PC12 Cells and Protects the Brain against Ischemia Injury in MCAO Rats

    PubMed Central

    Li, Guoling; Tian, Yufei; Zhang, Yuzhong; Hong, Ying; Hao, Yingzhi; Chen, Chunxiao; Wang, Penglong; Lei, Haimin

    2015-01-01

    Broad-spectrum drugs appear to be more promising for the treatment of acute ischemic stroke. In our previous work, a new ligustrazine derivative (3,5,6-trimethylpyrazin-2-yl) methyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-yl)methoxy]benzoate (T-VA) showed neuroprotective effect on injured PC12 cells (EC50 = 4.249 µM). In the current study, we show that this beneficial effect was due to the modulation of nuclear transcription factor-κB/p65 (NF-κB/p65) and cyclooxygenase-2 (COX-2) expressions. We also show that T-VA exhibited neuroprotective effect in a rat model of ischemic stroke with concomitant improvement of motor functions. We propose that the protective effect observed in vivo is owing to increased vascular endothelial growth factor (VEGF) expression, decreased oxidative stress, and up-regulation of Ca2+–Mg2+ ATP enzyme activity. Altogether, our results warrant further studies on the utility of T-VA for the potential treatment of ischemic brain injuries, such as stroke. PMID:26370988

  17. Regulation of CREB by moderate hypoxia in PC12 cells.

    PubMed

    Beitner-Johnson, D; Rust, R T; Hsieh, T; Millhorn, D E

    2000-01-01

    The mechanisms by which excitable cells adapt and respond to changes in O2 levels remain largely unknown. We have investigated the effect of hypoxia on the cyclic AMP response element binding protein (CREB) transcription factor. PC12 cells were exposed to moderate levels of hypoxia (5% O2) for various times between 20 min and 6 hr. We found that hypoxia rapidly and persistently induced ser133 phosphorylation of CREB. This effect was more robust than that produced by exposing PC12 cells to either forskolin, KCl, or NGF. This effect was not due to activation of any of the previously known CREB kinases, including PKA, CaMK, PKC, p70s6k, or MAPKAP kinase-2. Thus, hypoxia may induce activation of a novel CREB kinase. To test whether phosphorylation of CREB was associated with an activation of CRE-dependent gene expression, cells were transfected with wild type and mutated regions of the 5'-flanking region of the tyrosine hydroxylase (TH) gene fused to a CAT reporter gene. Mutation of the CRE element in a TH reporter gene reduced, but did not abolish, the effects of hypoxia on TH gene expression. However, hypoxia did not induce transactivation of a GAL4-luciferase reporter by a GAL4-CREB fusion protein. Thus, the mechanism by which hypoxia regulates CREB is distinct, and more complex, than that induced by forskolin, depolarization, or nerve growth factor. PMID:10849656

  18. SCIRR39 promotes neurite extension via RhoA in NGF-induced PC12 cells.

    PubMed

    Zhao, C F; Liu, Y; Ni, Y L; Yang, J W; Hui, H D; Sun, Z B; Liu, S J

    2013-01-01

    SCIRR39 is an identified upregulated gene in rat primary neuron injury and/or regeneration process with roles largely unexplored. Using real-time quantitative PCR, Western blotting and immunofluorescence, SCIRR39 expression was detected in normal PC12 cells and upregulated in differentiated cells. The results of cell proliferation by Cell Counting Kit and cell cycle by flow cytometry indicated that SCIRR39 inhibited cell proliferation and induced the decrease in S phase. Importantly, immunofluorescent and RhoA pull-down assays showed that SCIRR39 strongly affected the neurite extension of NGF-treated PC12 cells through a RhoA-dependent mechanism, but the truncated mutants of SCIRR39 containing a truncation from 141AA to 211AA or from 397AA to 424AA failed to mock the SCIRR39 effect on neurite extension. Moreover, change of SCIRR39 expression in NGF-treated PC12 cells regulated the expression and phosphorylation of Fyn, a regulator of RhoA activity, but not the expression of ROCK II protein. Finally, immunofluorescence and RhoA pull-down assays revealed that obvious inhibition of neurite extension by SCIRR39 shRNA was reversed by RhoA inhibitor C3-transferase. Our results indicated that SCIRR39 increased the neurite extension in NGF-treated PC12 cells via RhoA, suggesting that SCIRR39 contributes to the regeneration of neuron injury by specifically altering the differentiation program.

  19. Effects of Extremely Low Frequency Magnetic Field on Neurite Outgrowth of PC12 and PC12D Cells and Evaluation by Image Analysis

    NASA Astrophysics Data System (ADS)

    Sakanishi, Akio; Takatsuki, Hideyo; Yoshikoshi, Akio; Fujiwara, Yasuyoshi

    2004-05-01

    A pheochromocytoma cell (PC12), and its derivative (PC12D), differentiate to nervelike cells in culture with the nerve growth factor (NGF) and forskolin respectively. We introduced a morphological factor σ=L/2(π A)1/2 for quantitating neurite outgrowth under a microscope in the presence of extremely low-frequency (ELF) magnetic fields for 22 hours, where L and A are the contour length and the area of the cells in clump determined using an image-analysis system. ELF magnetic fields B1 were generated with a single coil or double coils in Helmholtz configuration together with static fields B0 of -53, -20 and 67 μT. σ increased with increasing NGF or forskolin level at B0=-53 μT (geomagnetism), in agreement with the cytometric observation of micrographs. With the addition of an AC field B1 at 60 Hz (100 μT > B1 > 3 μT rms) to B0, neurite outgrowth represented by σ was depressed for PC12 and stimulated for PC12D. We discuss the cyclotron resonance and the ion parametric resonance models.

  20. Lysophosphatidylethanolamine increases intracellular Ca(2+) through LPA(1) in PC-12 neuronal cells.

    PubMed

    Lee, Jung-Min; Park, Soo-Jin; Im, Dong-Soon

    2015-05-29

    G protein-coupled receptors (GPCRs) have been implicated in lysophosphatidylethanolamine (LPE)-induced increases in intracellular Ca(2+) ([Ca(2+)]i), but in different cell types, this response may be dependent or independent of lysophosphatidic acid (LPA) GPCR. The effects of LPEs from Grifola frondosa on the neuronal differentiation and apoptosis of PC-12 neuronal cells have been previously reported. In the present study, the authors sought to identify the mechanism responsible for the effects of LPEs in PC-12 neuronal cells. LPE increase [Ca(2+)]i concentration-dependently in PC-12 neuronal cells, but this LPE-induced [Ca(2+)]i increase was less than that elicited by LPA. Studies using specific inhibitors showed that LPE-induced Ca(2+) response was mediated via pertussis toxin-sensitive Gi/o proteins, edelfosine-sensitive phospholipase C, and 2-APB-sensitive IP3 receptor and by Ca(2+) influx across the cell membrane, and that this did not involve the conversion of LPE to LPA. Furthermore, LPE- and LPA-induced responses were found to show homologous and heterologous desensitization in PC-12 cells. VPC32183 and Ki16425 (antagonists of LPA1 and LPA3) inhibited LPE-induced [Ca(2+)]i increases. Furthermore, AM-095 (a specific inhibitor of LPA1) inhibited LPE-induced Ca(2+) response completely in PC-12 cells. These findings indicate LPE increases [Ca(2+)]i via a LPA1/Gi/o proteins/phospholipase C/IP3/Ca(2+) rise/Ca(2+) influx pathway in PC-12 neuronal cells. PMID:25888792

  1. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.

    PubMed

    Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong

    2015-01-01

    In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

  2. The neurite-initiating effect of microbial extracellular glycolipids in PC12 cells.

    PubMed

    Isoda, H; Shinmoto, H; Matsumura, M; Nakahara, T

    1999-09-01

    The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. PMID:19003137

  3. Nerve growth factor-treated, neurite-bearing PC12 cells continue to synthesize DNA

    SciTech Connect

    Ignatius, M.J.; Chandler, C.R.; Shooter, E.M.

    1985-02-01

    Cultures of rat pheochromocytoma (PC12) cells treated with beta-nerve growth factor (NGF) for up to 15 days continue to synthesize DNA. The present study compares the extent of maintained DNA synthesis in cells with and without processes and asks whether the observed DNA synthesis in differentiated PC12 cells reflects either the continued division of the cells or the formation of polyploid cells, or both. PC12 cells were grown on tissue coverslips for various lengths of time with or without 50 ng/ml of beta-NGF and then assayed for DNA synthesis by (/sup 3/H)thymidine labeling and autoradiography. In 8-day-old control cultures (no NGF), 30% of the cells had labeled nuclei after a 2-hr (/sup 3/H)thymidine pulse. In contrast, in cultures treated for 8 days with NGF, only 7% of the cells were labeled (i.e., still synthesizing DNA). The fractions of process-bearing and non-process-bearing cells with labeled nuclei were identical. Even after 14 days in NGF, 7% of the cells with neurites were still synthesizing DNA during any 2-hr period. With continuous (/sup 3/H)thymidine labeling in the presence of NGF from 8 to 13 days, nearly 70% of the cells with neurites were labeled. The presence of neurites induced by NGF does not preclude continued (albeit reduced) DNA synthesis in these PC12 cells. To determine the fate of this newly synthesized DNA, nuclei extracted from NGF-treated PC12 cells were analyzed for the cellular distribution of DNA by combined propidium iodine staining and flow microfluorimetry. NGF treatment resulted in a 3-fold increase in the number of G2+M/4N cells along with the appearance of 8N cells.

  4. Curcumin Protects β-Lactoglobulin Fibril Formation and Fibril-Induced Neurotoxicity in PC12Cells

    PubMed Central

    Mazaheri, Mansooreh; Moosavi-Movahedi, Ali Akbar; Saboury, Ali Akbar; Khodagholi, Fariba; Shaerzadeh, Fatemeh; Sheibani, Nader

    2015-01-01

    In this study the β-lactoglobulin fibrillation, in the presence or absence of lead ions, aflatoxin M1 and curcumin, was evaluated using ThT fluorescence, Circular dichroism spectroscopy and atomic force microscopy. To investigate the toxicity of the different form of β-Lg fibrils, in the presence or absence of above toxins and curcumin, we monitored changes in the level of reactive oxygen species and morphology of the differentiated neuron-like PC12 cells. The cell viability, cell body area, average neurite length, neurite width, number of primary neurites, percent of bipolar cells and node/primary neurite ratios were used to assess the growth and complexity of PC12 cells exposed to different form of β-Lg fibrils. Incubation of β-Lg with curcumin resulted in a significant decrease in ROS levels even in the presence of lead ions and aflatoxin M1. The β-Lg fibrils formed in the presence of lead ions and aflatoxin M1 attenuated the growth and complexity of PC12 cells compared with other form of β-Lg fibrils. However, the adverse effects of these toxins and protein fibrils were negated in the presence of curcumin. Furthermore, the antioxidant and inhibitory effects of curcumin protected PC12 cells against fibril neurotoxicity and enhanced their survival. Thus, curcumin may provide a protective effect toward β-Lg, and perhaps other protein, fibrils mediated neurotoxicity. PMID:26186474

  5. Nitric oxide synthase mediates PC12 differentiation induced by the surface topography of nanostructured TiO2

    PubMed Central

    2013-01-01

    Background Substrate nanoscale topography influences cell proliferation and differentiation through mechanisms that are at present poorly understood. In particular the molecular mechanism through which cells 'sense’ and adapt to the substrate and activate specific intracellular signals, influencing cells survival and behavior, remains to be clarified. Results To characterize these processes at the molecular level we studied the differentiation of PC12 cells on nanostructured TiO2 films obtained by supersonic cluster beam deposition. Our findings indicate that, in PC12 cells grown without Nerve Growth Factor (NGF), the roughness of nanostructured TiO2 triggers neuritogenesis by activating the expression of nitric oxide synthase (NOS) and the phospho-extracellular signal-regulated kinase 1/2 (pERK1/2) signaling. Differentiation is associated with an increase in protein nitration as observed in PC12 cells grown on flat surfaces in the presence of NGF. We demonstrate that cell differentiation and protein nitration induced by topography are not specific for PC12 cells but can be regarded as generalized effects produced by the substrate on different neuronal-like cell types, as shown by growing the human neuroblastoma SH-SY5Y cell line on nanostructured TiO2. Conclusion Our data provide the evidence that the nitric oxide (NO) signal cascade is involved in the differentiation process induced by nanotopography, adding new information on the mechanism and proteins involved in the neuritogenesis triggered by the surface properties. PMID:24119372

  6. Quercetin-3-O-(2″-galloyl)-α-L-rhamnopyranoside attenuates cholesterol oxidation product-induced apoptosis by suppressing NF-κB-mediated cell death process in differentiated PC12 cells.

    PubMed

    Lee, Da Hee; Nam, Yoon Jeong; Lee, Chung Soo

    2015-08-01

    Cholesterol oxidation products are suggested to be involved in neuronal cell degeneration. We examined the preventive effect of quercetin-3-O-(2″-galloyl)-α-L-rhamnopyranoside (QGR), a quercetin derivative, on the cholesterol oxidation product-induced neuronal cell death using differentiated PC12 cells in relation to nuclear factor (NF)-κB-mediated apoptotic process. 7-Ketocholesterol and 25-hydroxycholesterol induced a decrease in the levels of BH3 interacting-domain death agonist (Bid) and B cell lymphoma 2 (Bcl-2), increase in the levels of Bcl-2-associated X protein (Bax) and p53, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases, and cleavage of poly(ADP-ribose) polymerase 1 (PARP-1). 7-Ketocholesterol induced increase in cytosolic and nuclear NF-κB p65, nuclear phospho-NF-κB p65, cytosolic NF-κB p50, and cytosolic phospho-IκB-α levels. The addition of QGR, N-acetyl cysteine, or Bay 11-7085 attenuated the cholesterol oxidation product-induced changes in the apoptosis-related protein levels, activation of NF-κB, formation of reactive oxygen species, depletion of glutathione (GSH), nuclear damage, and cell death. The results show that QGR may attenuate the cholesterol oxidation product-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways that is mediated by NF-κB activation. The preventive effect appears to be associated with the inhibitory effect on the formation of reactive oxygen species and depletion of GSH.

  7. Effect of human skin explants on the neurite growth of the PC12 cell line.

    PubMed

    Lebonvallet, Nicolas; Pennec, Jean-Pierre; Le Gall, Christelle; Pereira, Ulysse; Boulais, Nicholas; Cheret, Jeremy; Jeanmaire, Christine; Danoux, Louis; Pauly, Gilles; Misery, Laurent

    2013-03-01

    The skin is a densely innervated organ. After a traumatic injury, such as an amputation, burn or skin graft, nerve growth and the recovery of sensitivity take a long time and are often incomplete. The roles played by growth factors and the process of neuronal growth are crucial. We developed an in vitro model of human skin explants co-cultured with a rat pheochromocytoma cell line differentiated in neuron in presence of nerve growth factor (NGF). This model allowed the study of the influence of skin explants on nerve cells and nerve fibre growth, probably through mediators produced by the explant, in a simplified manner. The neurite length of differentiated PC12 cells co-cultured with skin explants increased after 6 days. These observations demonstrated the influence of trophic factors produced by skin explants on PC12 cells.

  8. Platycodin D induced apoptosis and autophagy in PC-12 cells through mitochondrial dysfunction pathway

    NASA Astrophysics Data System (ADS)

    Zeng, Chuan-Chuan; Zhang, Cheng; Yao, Jun-Hua; Lai, Shang-Hai; Han, Bing-Jie; Li, Wei; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-11-01

    In this article, the in vitro cytotoxicity of platycodin D was evaluated in human PC-12, SGC-7901, BEL-7402, HeLa and A549 cancer cell lines. PC-12 cells were sensitive to platycodin D treatment, with an IC50 value of 13.5 ± 1.2 μM. Morphological and comet assays showed that platycodin D effectively induced apoptosis in PC-12 cells. Platycodin D increased the levels of reactive oxygen species (ROS) and induced a decrease in mitochondrial membrane potential. Platycodin D induced cell cycle arrest at the G0/G1 phase in the PC-12 cell line. Platycodin D can induce autophagy. In addition, platycodin D can down-regulate the expression of Bcl-2 and Bcl-x, and up-regulate the levels of Bid protein in the PC-12 cells. The results demonstrated that platycodin D induced PC-12 cell apoptosis through a ROS-mediated mitochondrial dysfunction pathway.

  9. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.

    PubMed

    Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram

    2016-09-01

    Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. PMID:27232305

  10. Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells

    NASA Astrophysics Data System (ADS)

    Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.

    2006-01-01

    Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions.

  11. Nerve growth induces 5-HT sub 3 recognition sites in rat pheochromocytoma (PC12) cells

    SciTech Connect

    Gordon, J.C.; Rowland, H.C. )

    1990-01-01

    In rat pheochromocytoma (PC12) cells, nerve growth factor (7S NGF) induced the expression of recognition sites that bind the specific 5-HT{sub 3} antagonist (S-) ({sup 3}H) zacopride. Culturing PC12 cells for 8-12 days in the presence of 50 ng/ml NGF increased the density (B{sub max}) of (S-) ({sup 3}H) zacopride binding sites in cell membranes (0-100,000 x g fraction) from 0 to 105 fmoles/mg protein. This binding exhibited high affinity for (S-) ({sup 3}H) zacopride (K{sub d}=0.8 nM), was specific (>95%), and was inhibited by 5-HT{sub 3} compounds with a rank of potency (quipazine>ICS 205-930 > GR38032F > BRL 24924{approx}MDL 72222 > phenylbiguanide {le} seroton-in > 2-methyl-serotonin > metoclopramide) which was distinct from neuroblastoma cells. Thus, NGF-differentiated PC12 cells possess a 5-HT{sub 3} receptor and should be useful to investigate its regulation and biochemical mechanism of action.

  12. Serum-free culture conditions for serial subculture of undifferentiated PC12 cells.

    PubMed

    Ohnuma, Kiyoshi; Hayashi, Yohei; Furue, Miho; Kaneko, Kunihiko; Asashima, Makoto

    2006-03-15

    PC12 cells, a widely used model neuronal cell line, are usually cultured in serum-supplemented medium. This report describes a serum-free medium for the culture of PC12 cells. PC12 cells grown in the two media types had similar growth rates and released dopamine in response to high potassium-induced calcium elevation. However, the levels of dopamine and of dopamine release in cells cultured in the serum-free medium were less than 10% of that in cells cultured in serum-supplemented medium. Dopamine levels recovered within 10 days if cells were returned to serum-supplemented medium, but dopamine release could not be recovered. Nerve growth factor (NGF) induced similar responses in PC12 cells cultured in both media, including phosphorylation of extracellular signal-regulated protein kinases and neurite extension. Transferrin was necessary for survival of neurite-bearing PC12 cells subcultured in serum-free medium and insulin promoted the cells proliferation. Ten days culture with NGF produced a similar increase in neurofilament expression and acetylcholinesterase activity in both media. These results suggest that PC12 in the hormonally defined serum-free media are qualitatively the same as those cultured in serum-supplemented media, and therefore this new culture protocol should enable more precise studies of PC12 cells culture in the absence of confounding unknown factors.

  13. GDF11 forms a bone morphogenetic protein 1-activated latent complex that can modulate nerve growth factor-induced differentiation of PC12 cells.

    PubMed

    Ge, Gaoxiang; Hopkins, Delana R; Ho, Wen-Bin; Greenspan, Daniel S

    2005-07-01

    All transforming growth factor beta (TGF-beta) superfamily members are synthesized as precursors with prodomain sequences that are proteolytically removed by subtilisin-like proprotein convertases (SPCs). For most superfamily members, this is believed sufficient for activation. Exceptions are TGF-betas 1 to 3 and growth differentiation factor 8 (GDF8), also known as myostatin, which form noncovalent, latent complexes with their SPC-cleaved prodomains. Sequence similarities between TGF-betas 1 to 3, myostatin, and superfamily member GDF11, also known as bone morphogenetic protein 11 (BMP11), prompted us to examine whether GDF11 might be capable of forming a latent complex with its cleaved prodomain. Here we demonstrate that GDF11 forms a noncovalent latent complex with its SPC-cleaved prodomain and that this latent complex is activated via cleavage at a single specific site by members of the developmentally important BMP1/Tolloid family of metalloproteinases. Evidence is provided for a molecular model whereby formation and activation of this complex may play a general role in modulating neural differentiation. In particular, mutant GDF11 prodomains impervious to cleavage by BMP1/Tolloid proteinases are shown to be potent stimulators of neurodifferentiation, with potential for therapeutic applications.

  14. GDF11 Forms a Bone Morphogenetic Protein 1-Activated Latent Complex That Can Modulate Nerve Growth Factor-Induced Differentiation of PC12 Cells

    PubMed Central

    Ge, Gaoxiang; Hopkins, Delana R.; Ho, Wen-Bin; Greenspan, Daniel S.

    2005-01-01

    All transforming growth factor β (TGF-β) superfamily members are synthesized as precursors with prodomain sequences that are proteolytically removed by subtilisin-like proprotein convertases (SPCs). For most superfamily members, this is believed sufficient for activation. Exceptions are TGF-βs 1 to 3 and growth differentiation factor 8 (GDF8), also known as myostatin, which form noncovalent, latent complexes with their SPC-cleaved prodomains. Sequence similarities between TGF-βs 1 to 3, myostatin, and superfamily member GDF11, also known as bone morphogenetic protein 11 (BMP11), prompted us to examine whether GDF11 might be capable of forming a latent complex with its cleaved prodomain. Here we demonstrate that GDF11 forms a noncovalent latent complex with its SPC-cleaved prodomain and that this latent complex is activated via cleavage at a single specific site by members of the developmentally important BMP1/Tolloid family of metalloproteinases. Evidence is provided for a molecular model whereby formation and activation of this complex may play a general role in modulating neural differentiation. In particular, mutant GDF11 prodomains impervious to cleavage by BMP1/Tolloid proteinases are shown to be potent stimulators of neurodifferentiation, with potential for therapeutic applications. PMID:15988002

  15. Induction of neuritogenesis in PC12 cells by a pulsed electromagnetic field via MEK-ERK1/2 signaling.

    PubMed

    Kudo, Tada-aki; Kanetaka, Hiroyasu; Shimizu, Yoshinaka; Abe, Toshihiko; Mori, Hitoshi; Mori, Kazumi; Suzuki, Eizaburo; Takagi, Toshiyuki; Izumi, Shin-ichi

    2013-01-01

    We examined the regulation of neuritogenesis by a pulsed electromagnetic field (PEMF) in rat PC12 pheochromocytoma cells, which can be induced to differentiate into neuron-like cells with elongated neurites by inducers such as nerve growth factor (NGF). Plated PC12 cells were exposed to a single PEMF (central magnetic flux density, 700 mT; frequency, 0.172 Hz) for up to 12 h per day and were then evaluated for extent of neuritogenesis or acetylcholine esterase (AChE) activity. To analyze the mechanism underlying the effect of the PEMF on the cells, its effects on intracellular signaling were examined using the ERK kinase (MEK) inhibitors PD098059 and U0126 (U0124 was used as a negative control for U0126). The number of neurite-bearing PC12 cells and AChE activity increased after PEMF exposure without the addition of other inducers of neuritogenesis. Additionally, PEMF exposure induced sustained activation of ERK1/2 in PC12 cells, but not in NR8383 rat alveolar macrophages. Furthermore, U0126 strongly inhibited PEMF-dependent ERK1/2 activation and neuritogenesis. The PEMF-dependent neuritogenesis was also suppressed by PD098059, but not U0124. These results suggest that PEMF stimulation independently induced neuritogenesis and that activation of MEK-ERK1/2 signaling was induced by a cell-type-dependent mechanism required for PEMF-dependent neuritogenesis in PC12 cells.

  16. Cysteamine pretreatment of the astroglial substratum (mitochondrial iron sequestration) enhances PC12 cell vulnerability to oxidative injury.

    PubMed

    Frankel, D; Schipper, H M

    1999-12-01

    Much of the excess iron reported in the substantia nigra of subjects with Parkinson's disease (PD) implicates nonneuronal (glial) cellular compartments. Yet, the significance of these glial iron deposits vis-a-vis toxicity to indigent nigrostriatal dopaminergic neurons remains unclear. Cysteamine (CSH) induces the appearance of iron-rich (peroxidase-positive) cytoplasmic inclusions in cultured rat astroglia, which are identical to glial inclusions that progressively accumulate in substantia nigra and other subcortical brain regions with advancing age. We previously demonstrated that the iron-mediated peroxidase activity in these cells oxidizes dopamine and other catechols to potentially neurotoxic semiquinone radicals. In the present study, we cocultured catecholamine-secreting PC12 cells (as low-density dispersed cells or high-density colonies) atop monolayers of either CSH-pretreated (iron-enriched) or control rat astroglial substrata. In some experiments, the PC12 cells were differentiated with nerve growth factor (NGF). The nature of the glial substratum did not appreciably affect the growth characteristics of the PC12 cells. However, undifferentiated PC12 cells grown atop CSH-pretreated astrocytes (a senescent glial phenotype) were far more susceptible to dopamine(1 microM)-H2O2(1 microM)-related killing than PC12 cells cultured on control astroglia. Differentiated PC12 cells behaved similarly although the fraction killed was about half that seen with the undifferentiated PC12 cells. In the latter experiments, PC12 cell death was abrogated by coadministration of the antioxidants, ascorbate (200 microM), melatonin (100 microM), or resveratrol (50 microM) or the iron chelator, deferoxamine (400 microM), attesting to the role of oxidative stress and catalytic iron in the mechanism of PC12 cell death in this system. The aging-associated accumulation of redox-active iron in subcortical astrocytes may facilitate the bioactivation of dopamine to neuronotoxic free

  17. A novel function of the human oncogene Stil: Regulation of PC12 cell toxic susceptibility through the Shh pathway

    PubMed Central

    Li, Lei; Carr, Aprell L.; Sun, Lei; Drewing, Audrey; Lee, Jessica; Rao, Zihe

    2015-01-01

    The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Here, we report new findings of Stil in the regulation of toxic susceptibility in mammalian dopaminergic (DA)-like PC12 cells. RNAi-mediated knockdown of Stil expression did not affect the survival of proliferating PC12 cells but caused a significant amount of cell death in differentiated neurons after toxic drug treatment. In contrast, overexpression of Stil increased toxic susceptibility only in proliferating cells but produced no effect in mature neurons. Exogenetic inactivation or activation of the Sonic hedgehog (Shh) signaling transduction mimicked the effect of Stil knockdown or overexpression in regulation of PC12 cell toxic susceptibility, suggesting that Stil exerts its role through the Shh pathway. Together, the data provide evidence for novel functions of the human oncogene Stil in neural toxic susceptibility. PMID:26549353

  18. Cellular uptake of Nigella sativa oil-PLGA microparticle by PC-12 cell line.

    PubMed

    Doolaanea, Abd Almonem; Mansor, Nur 'Izzati; Mohd Nor, Nurul Hafizah; Mohamed, Farahidah

    2014-01-01

    The aim of this study is to investigate the cell uptake of Nigella sativa oil (NSO)-PLGA microparticle by neuron-like PC-12 cells in comparison to surfactants; hydrophilic (Tween 80 & Triton X100) and hydrophobic (Span 80). Solvent evaporation was used to precisely control the size, zeta potential and morphology of the particle. The results revealed varying efficiencies of the cell uptake by PC-12 cells, which may be partially attributed to the surface hydrophobicity of the microparticles. Interestingly, the uptake efficiency of PC-12 cells was higher with the more hydrophilic microparticle. NSO microparticle showed evidence of being preferably internalised by mitotic cells. Tween 80 microparticle showed the highest cell uptake efficiency with a concentration-dependent pattern suggesting its use as uptake enhancer for non-scavenging cells. In conclusion, PC-12 cells can take up NSO-PLGA microparticle which may have potential in the treatment of neurodegenerative disease. PMID:24697178

  19. Mitochondria are intracellular magnesium stores: investigation by simultaneous fluorescent imagings in PC12 cells.

    PubMed

    Kubota, Takeshi; Shindo, Yutaka; Tokuno, Kentaro; Komatsu, Hirokazu; Ogawa, Hiroto; Kudo, Susumu; Kitamura, Yoshiichiro; Suzuki, Koji; Oka, Kotaro

    2005-05-15

    To determine the nature of intracellular Mg2+ stores and Mg2+ release mechanisms in differentiated PC12 cells, Mg2+ and Ca2+ mobilizations were measured simultaneously in living cells with KMG-104, a fluorescent Mg2+ indicator, and fura-2, respectively. Treatment with the mitochondrial uncoupler, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), increased both the intracellular Mg2+ concentration ([Mg2+]i) and the [Ca2+]i in these cells. Possible candidates as intracellular Mg2+ stores under these conditions include intracellular divalent cation binding sites, endoplasmic reticulum (ER), Mg-ATP and mitochondria. Given that no change in [Mg2+]i was induced by caffeine application, intracellular IP3 or Ca2+ liberated by photolysis, it appears that no Mg2+ release mechanism thus exists that is mediated via the action of Ca2+ on membrane-bound receptors in the ER or via the offloading of Mg2+ from binding sites as a result of the increased [Ca2+]i. FCCP treatment for 2 min did not alter the intracellular ATP content, indicating that Mg2+ was not released from Mg-ATP, at least in the first 2 min following exposure to FCCP. FCCP-induced [Mg2+]i increase was observed at mitochondria localized area, and vice versa. These results suggest that the mitochondria serve as the intracellular Mg2+ store in PC12 cell. Simultaneous measurements of [Ca2+]i and mitochondrial membrane potential, and also of [Ca2+]i and [Mg2+]i, revealed that the initial rise in [Mg2+]i followed that of mitochondrial depolarization for several seconds. These findings show that the source of Mg2+ in the FCCP-induced [Mg2+]i increase in PC12 cells is mitochondria, and that mitochondrial depolarization triggers the Mg2+ release.

  20. Global Expression Analysis Identified a Preferentially Nerve Growth Factor-induced Transcriptional Program Regulated by Sustained Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase (ERK) and AP-1 Protein Activation during PC12 Cell Differentiation*

    PubMed Central

    Mullenbrock, Steven; Shah, Janki; Cooper, Geoffrey M.

    2011-01-01

    Neuronal differentiation of PC12 cells in response to NGF is a prototypical model in which signal duration determines a biological response. Sustained ERK activity induced by NGF, as compared with transient activity induced by EGF, is critical to the differentiation of these cells. To characterize the transcriptional program activated preferentially by NGF, we compared global gene expression profiles between cells treated with NGF and EGF for 2–4 h, when sustained ERK signaling in response to NGF is most distinct from the transient signal elicited by EGF. This analysis identified 69 genes that were preferentially up-regulated in response to NGF. As expected, up-regulation of these genes was mediated by sustained ERK signaling. In addition, they were up-regulated in response to other neuritogenic treatments (pituitary adenylate cyclase-activating polypeptide and 12-O-tetradecanoylphorbol-13-acetate plus dbcAMP) and were enriched for genes related to neuronal differentiation/function. Computational analysis and chromatin immunoprecipitation identified binding of CREB and AP-1 family members (Fos, FosB, Fra1, JunB, JunD) upstream of >30 and 50%, respectively, of the preferentially NGF-induced genes. Expression of several AP-1 family members was induced by both EGF and NGF, but their induction was more robust and sustained in response to NGF. The binding of Fos family members to their target genes was similarly sustained in response to NGF and was reduced upon MEK inhibition, suggesting that AP-1 contributes significantly to the NGF transcriptional program. Interestingly, Fra1 as well as two other NGF-induced AP-1 targets (HB-EGF and miR-21) function in positive feedback loops that may contribute to sustained AP-1 activity. PMID:22065583

  1. Cytoprotective effects of fisetin against hypoxia-induced cell death in PC12 cells.

    PubMed

    Chen, Pei-Yi; Ho, Yi-Ru; Wu, Ming-Jiuan; Huang, Shun-Ping; Chen, Po-Kong; Tai, Mi-Hsueh; Ho, Chi-Tang; Yen, Jui-Hung

    2015-01-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), a flavonol compound of flavonoids, exhibits a broad spectrum of biological activities including anti-oxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The aim of this study is to investigate the cytoprotective effect of fisetin and the underlying molecular mechanism against hypoxia-induced cell death in PC12 cells. The results of this study showed that fisetin significantly restored the cell viability of PC12 cells under both cobalt chloride (CoCl₂)- and low oxygen-induced hypoxic conditions. Treatment with fisetin successfully reduced the CoCl₂-mediated reactive oxygen species (ROS) production, which was accompanied by an increase in the cell viability of PC12 cells. Furthermore, we found that treatment of PC12 cells with fisetin markedly upregulated hypoxia-inducible factor 1α (HIF-1α), its nuclear accumulation and the hypoxia-response element (HRE)-driven transcriptional activation. The fisetin-mediated cytoprotection during CoCl₂ exposure was significantly attenuated through the administration of HIF-1α siRNA. Moreover, we demonstrated that MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK and phosphatidylinositol 3-kinase (PI3 K) inhibitors significantly blocked the increase in cell survival that was induced by fisetin treatment under hypoxic conditions. Consistently, increased phosphorylation of ERK, p38 and Akt proteins was observed in PC12 cells treated with fisetin. However, the fisetin-induced HRE-driven transcription was not affected by inhibition of these kinase signaling pathways. Current results reveal for the first time that fisetin promotes cell survival and protects against hypoxia-induced cell death through ROS scavenging and the activation of HIF1α-, MAPK/ERK-, p38 MAPK- and PI3 K/Akt-dependent signaling pathways in PC12 cells.

  2. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage.

    PubMed

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Wei, Yuan; Ouyang, Zhen; Su, Zhaoliang

    2016-11-20

    Two polysaccharides CPA-1 and CPB-2 were isolated purified from Cordyceps cicadae by hot water extraction, ethanol precipitation and purification using anion exchange and gel filtration chromatography. Preliminary structural characterization of CPA-1 and CPB-2 were performed. The protective effect of CPA-1 and CPB-2 against glutamate-induced oxidative toxicity in PC12 cells was analyzed. The results indicated that pretreatment of PC12 cells with CPA-1 and CPB-2 significantly increased cell survival, Ca(2+) overload and ROS generation. CPA-1 and CPB-2 also markedly up-regulated the antioxidant status of pretreated PC12 cells. Our results suggested that Cordyceps cicadae polysaccharides can protect PC12 cells against glutamate excitotoxicity and might serve as therapeutic agents for neuronal disorders. PMID:27561486

  3. Mannosylerythritol lipid increases levels of galactoceramide in and neurite outgrowth from PC12 pheochromocytoma cells.

    PubMed

    Shibahara, M; Zhao, X; Wakamatsu, Y; Nomura, N; Nakahara, T; Jin, C; Nagaso, H; Murata, T; Yokoyama, K K

    2000-07-01

    We report here that a microbial extracellular glycolipid,mannosylerythritol lipid (MEL), induces the outgrowth ofneurites from and enhances the activity of acetylcholinesterase(AChE) in PC12 pheochromocytoma cells. Furthermore, treatment ofPC12 cells with MEL increased levels of galactosylceramide(Galbeta1-1'Cer; GalCer). Exposure of PC12 cells to exogenous GalCer caused the dose-dependent outgrowth ofneurites. By contrast, treatment of PC12 cells with nerve growthfactor (NGF) did not increase the level of GalCer in the cells. The neurite-related morphological changes induced by GalCerdifferend from those induced by NGF, indicating differencesbetween the signal transduction pathways triggered by NGF and by GalCer. PMID:19002832

  4. CDNA microarray analysis of nerve growth factor-regulated gene expression profile in rat PC12 cells.

    PubMed

    Lee, Kyung-Hee; Ryu, Chun Jeih; Hong, Hyo Jeong; Kim, Jiyoung; Lee, Eunjoo H

    2005-04-01

    Nerve growth factor (NGF)-driven differentiation of PC12 cells into neuronal-like cells provides a representative model system for studying neuronal differentiation processes. Despite of extensive research, gene regulation associated with the differentiation program in PC12 cells still needs to be elucidated. We used cDNA microarray analysis to characterize the response of PC12 cells to NGF at mRNA expression. Forty-six genes were reproducibly influenced by 2-fold or more after NGF treatment for 5 days. Twenty-five of the regulated transcripts were matched to genes which have known functions. Among the microarray results confirmed with real-time reverse transcriptase assay, several genes have not previously known to be modulated by NGF. The results mostly reflected changes in molecules regulating neural plasticity, cytoskeletal organization, and lipid metabolism, which include neuritin, PDZ protein Mrt1, lipoprotein lipase, tropomodulin 1 and rhoB. These observed genetic changes may provide new information about molecular mechanisms underlying NGF-promoted differentiation of PC12 cells. PMID:16076023

  5. Cerebrolysin protects PC12 cells from CoCl2-induced hypoxia employing GSK3β signaling.

    PubMed

    Hartwig, Kerstin; Fackler, Viktoria; Jaksch-Bogensperger, Heidi; Winter, Stefan; Furtner, Tanja; Couillard-Despres, Sebastien; Meier, Dieter; Moessler, Herbert; Aigner, Ludwig

    2014-11-01

    Cerebrolysin (EVER Neuro Pharma GmbH, Austria) is a peptidergic drug indicated for clinical use in stroke, traumatic brain injury and dementia. The therapeutic effect of Cerebrolysin is thought to ensure from its neurotrophic activity, which shares some properties with naturally occurring neurotrophic factors. However, the exact mechanism of action of Cerebrolysin is yet to be fully deciphered. This study aimed to investigate the neuroprotective effect of Cerebrolysin in a widely used in vitro model of hypoxia-induced neuronal cytotoxicity, namely cobalt chloride (CoCl2)-treatment of PC12 cells. CoCl2-cytotoxicity was indicated by a reduced cell-diameter, cell shrinkage, increased pro-apoptotic Caspase-activities and a decreased metabolic activity. Cerebrolysin maintained the cell-diameter of CoCl2-treated naïve PC12 cells, decreased the activation of Caspase 3/7 in CoCl2-stressed naïve PC12 cells and restored the cells' metabolic activity in CoCl2-impaired naïve and differentiated PC12 cells. Cerebrolysin treatment also decreased the levels of superoxide observed after exposure to CoCl2. Investigating the mechanism of action, we could demonstrate that Cerebrolysin application to CoCl2-stressed PC12 cells increased the phosphorylation of GSK3β, resulting in the inhibition of GSK3β. This might become clinically relevant for Alzheimer's disease, since GSK3β activity has been linked to the production of amyloid beta. Taken together, Cerebrolysin was found to have neuroprotective effects in CoCl2-induced cytotoxicity in PC12 cells.

  6. ALTERATION OF CATECHOLAMINES IN PHOECHROMOCYTOMA (PC12) CELLS IN VITRO BY THE METABOLITES OF CHLOROTRIAZINE HERBICIDE

    EPA Science Inventory

    The effects of four major chlorotriazine metabolites on the constitutive synthesis of the catecholamines dopamine (DA) and norepinephrine (NE) were examined using undifferentiated PC12 cells. NE release and intracellular DA and NE concentrations were quantified following treatme...

  7. The Pseudophosphatase MK-STYX Induces Neurite-Like Outgrowths in PC12 Cells

    PubMed Central

    Flowers, Brittany M.; Rusnak, Lauren E.; Wong, Kristen E.; Banks, Dallas A.; Munyikwa, Michelle R.; McFarland, Alexander G.; Hinton, Shantá D.

    2014-01-01

    The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and

  8. Changes in intracellular copper concentration and copper-regulating gene expression after PC12 differentiation into neurons.

    PubMed

    Ogra, Yasumitsu; Tejima, Aya; Hatakeyama, Naohiro; Shiraiwa, Moeko; Wu, Siyuan; Ishikawa, Tsutomu; Yawata, Ayako; Anan, Yasumi; Suzuki, Noriyuki

    2016-01-01

    It is suspected that some neurodegenerative diseases are a result of the disturbance of copper (Cu) homeostasis, although it remains unclear whether the disturbance of Cu homeostasis has aberrant effects on neurons. Herein, we investigated Cu metabolism specifically in neurons in terms of changes in the intracellular Cu concentration and the expression of Cu-regulating genes, such as Cu transporters and metallothioneins (MTs), before and after the differentiation of rat pheochromocytoma cells (PC12 cells) into neurons. After the differentiation, Cu and Zn imaging with fluorescent probes revealed an increase in intracellular Cu concentration. The concentrations of other essential metals, which were determined by an inductively coupled plasma mass spectrometer, were not altered. The mRNA expression of the Cu influx transporter, Ctr1, was decreased after the differentiation, and the differentiated cells acquired tolerance to Cu and cisplatin, another substrate of Ctr1. In addition, the expression of MT-3, a brain-specific isoform, was increased, contrary to the decreased expression of MT-1 and MT-2. Taken together, the differentiation of PC12 cells into neurons induced MT-3 expression, thereby resulting in intracellular Cu accumulation. The decrease in Ctr1 expression was assumed to be a response aimed at abolishing the physiological accumulation of Cu after the differentiation. PMID:27623342

  9. Changes in intracellular copper concentration and copper-regulating gene expression after PC12 differentiation into neurons

    PubMed Central

    Ogra, Yasumitsu; Tejima, Aya; Hatakeyama, Naohiro; Shiraiwa, Moeko; Wu, Siyuan; Ishikawa, Tsutomu; Yawata, Ayako; Anan, Yasumi; Suzuki, Noriyuki

    2016-01-01

    It is suspected that some neurodegenerative diseases are a result of the disturbance of copper (Cu) homeostasis, although it remains unclear whether the disturbance of Cu homeostasis has aberrant effects on neurons. Herein, we investigated Cu metabolism specifically in neurons in terms of changes in the intracellular Cu concentration and the expression of Cu-regulating genes, such as Cu transporters and metallothioneins (MTs), before and after the differentiation of rat pheochromocytoma cells (PC12 cells) into neurons. After the differentiation, Cu and Zn imaging with fluorescent probes revealed an increase in intracellular Cu concentration. The concentrations of other essential metals, which were determined by an inductively coupled plasma mass spectrometer, were not altered. The mRNA expression of the Cu influx transporter, Ctr1, was decreased after the differentiation, and the differentiated cells acquired tolerance to Cu and cisplatin, another substrate of Ctr1. In addition, the expression of MT-3, a brain-specific isoform, was increased, contrary to the decreased expression of MT-1 and MT-2. Taken together, the differentiation of PC12 cells into neurons induced MT-3 expression, thereby resulting in intracellular Cu accumulation. The decrease in Ctr1 expression was assumed to be a response aimed at abolishing the physiological accumulation of Cu after the differentiation. PMID:27623342

  10. Ultraviolet Photolysis of Chlorpyrifos: Developmental Neurotoxicity Modeled in PC12 Cells

    PubMed Central

    Slotkin, Theodore A.; Seidler, Frederic J.; Wu, Changlong; MacKillop, Emiko A.; Linden, Karl G.

    2009-01-01

    Background Ultraviolet photodegradation products from pesticides form both in the field and during water treatment. Objectives We evaluated the photolytic breakdown of the organophosphate pesticide chlorpyrifos (CPF) in terms of both the chemical entities generated by low-pressure ultraviolet C irradiation and their potential as developmental neurotoxicants. Methods We separated by-products using high-performance liquid chromatography and characterized them by gas chromatography/mass spectrometry. We assessed neurotoxicity in neuronotypic PC12 cells, both in the undifferentiated state and during differentiation. Results Photodegradation of CPF in methanol solution generated CPF oxon and trichloropyridinol, products known to retain developmental neurotoxicant actions, as well as a series of related organophosphate and phosphorothionate derivatives. Exposure conditions that led to 50% degradation of CPF thus did not reduce developmental neurotoxicity. The degradation mixture inhibited DNA synthesis in undifferentiated cells to the same extent as native CPF. In differentiating cells, the products likewise retained the full ability to elicit shortfalls in cell number and corresponding effects on cell growth and neurite formation. When the exposure was prolonged to the point where 70% of the CPF was degraded, the adverse effects on PC12 cells were no longer evident; however, these conditions were sufficiently severe to generate toxic products from the methanol vehicle. Conclusions Our results indicate that field conditions or remediation treatments that degrade a significant proportion of the CPF do not necessarily produce inactive products and, indeed, may elicit formation of even more toxic chemicals that are more water soluble and thus have greater field mobility than CPF itself. PMID:19337505

  11. Internalization and cellular pools of never growth factor in pheochromocytoma (PC12) cells

    SciTech Connect

    Neet, K.E.; Kasaian, M.

    1987-05-01

    Nerve Growth Factor (NGF) binds to a cell surface receptor on responsive neuronal cells to initiate cell maintenance and/or differentiation regimes. The purpose of these studies was to define quantitatively the fate of NGF in PC12 cells with respect to various cellular compartments in a single series of biochemical experiments. Different binding methodologies were evaluated in suspension and on plates. 50 pM SVI-NGF was bound to rat PC12 cells in suspension for 30 min at 37, followed by various methods and combinations of methods to remove subsets of bound ligand. Distinction could be made between NGF bound to fast vs. slow cell surface receptors, NGF bound to slow receptors at the cell surface vs. cell interior, and detergent-soluble vs. cytoskeletally-attached NGF. These treatments defined the relative size of five pools, including the fast receptor (65%), two intracellular compartments (12% and 3%) susceptible to nonionic detergent, and a detergent-stable intracellular pool of ligand (16%). At 37 the cold chase stable and the acid stable pools were about the same size because of rapid internalization, but the slow receptor was measurable at 4. Inhibitors were used to define the route of NGF through the cell from the plasma membrane to degradation. Chloroquine caused accumulation of NGF only in pools that were not associated with the cytoskeleton, implicating this compartment in supplying ligand to the lysosome. Results with cytochalasin B and colchicine and suggested both microfilament and microtubule pathways in NGF degradation. A model for the movement of NGF through the cell was developed based on these observations.

  12. Quantitative Assessment of Neurite Outgrowth in PC12 Cells

    EPA Science Inventory

    In vitro test methods can provide a rapid approach for the screening of large numbers of chemicals for their potential to produce toxicity. In order to identify potential developmental neurotoxicants, assessment of critical neurodevelopmental processes such as neuronal differenti...

  13. In PC12 cells, expression of neurosecretion and neurite outgrowth are governed by the transcription repressor REST/NRSF.

    PubMed

    D'Alessandro, Rosalba; Meldolesi, Jacopo

    2010-11-01

    A rapid drop of the transcription repressor REST/NRSF during precursor differentiation into nerve cells is known to release the repression of hundreds of specific genes and thus to orchestrate the acquisition of the specific phenotype. REST, however, is important not only for differentiation, but also for the maintenance of key properties in mature nerve cell. The PC12 line is uniquely favorable for studying REST because, in addition to the wild-type, low REST neurosecretory cells, it includes spontaneously defective clones lacking neurosecretion, where REST is as high as in non-nerve cells. In this article, we summarize our cell biologic studies of two nerve cell-specific processes dependent on REST, neurosecretion and neurite outgrowth. We demonstrate that, in wild-type PC12 transfected with REST constructs, expression of genes encoding proteins of dense-core and synaptic-like vesicles is decreased, though, to different extents, with chromogranins being the most and the SNAREs (except SNAP25) the least affected. Concomitantly, dense core-vesicles decrease markedly in size but can still be discharged by regulated exocytosis. When, in contrast, dominant-negative constructs of REST are transfected in high-REST PC12, and the main effector enzymes of REST, histone deacetylases, are blocked, dense-core vesicles reappear and are discharged upon stimulation. In high-REST PC12, also neurite outgrowth is inhibited by down regulation of the NGF receptor. Concomitantly, however, high REST induces the expression of proteins and of an exocytic organelle, the enlargeosome, which sustain a Rac1-dependent form of neurite outgrowth, unknown until now, operative in PC12, in neuroblastoma SH-SY5Y cells, and also in neurons. PMID:21046448

  14. Selective translocation of protein kinase C-delta in PC12 cells during nerve growth factor-induced neuritogenesis.

    PubMed Central

    O'Driscoll, K R; Teng, K K; Fabbro, D; Greene, L A; Weinstein, I B

    1995-01-01

    The specific intracellular signals initiated by nerve growth factor (NGF) that lead to neurite formation in PC12 rat pheochromocytoma cells are as of yet unclear. Protein kinase C-delta (PKC delta) is translocated from the soluble to the particulate subcellular fraction during NGF-induced-neuritogenesis; however, this does not occur after treatment with the epidermal growth factor, which is mitogenic but does not induce neurite formation. PC12 cells also contain both Ca(2+)-sensitive and Ca(2+)-independent PKC enzymatic activities, and express mRNA and immunoreactive proteins corresponding to the PKC isoforms alpha, beta, delta, epsilon, and zeta. There are transient decreases in the levels of immunoreactive PKCs alpha, beta, and epsilon after 1-3 days of NGF treatment, and after 7 days there is a 2.5-fold increase in the level of PKC alpha, and a 1.8-fold increase in total cellular PKC activity. NGF-induced PC12 cell neuritogenesis is enhanced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) in a TPA dose- and time-dependent manner, and this differentiation coincides with abrogation of the down-regulation of PKC delta and other PKC isoforms, when the cells are treated with TPA. Thus a selective activation of PKC delta may play a role in neuritogenic signals in PC12 cells. Images PMID:7626808

  15. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line

    SciTech Connect

    Miyake, Seiji; Kobayashi, Saori; Tsubota, Kazuo; Ozawa, Yoko

    2014-04-04

    Highlights: • Lutein reduced ROS levels in a PC12D neuronal cell line. • Lutein induced mRNAs of phase II antioxidative enzymes in PC12D neuronal cells. • Lutein increased protein levels of HO-1, SOD2, and NQO-1 in PC12D neuronal cells. • Lutein had no effect on intranuclear Nrf2 levels in PC12D neuronal cells. • Lutein did not activate potential upstream Nrf2 nuclear translocation pathways. - Abstract: The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina.

  16. Neurite outgrowth resistance to rho kinase inhibitors in PC12 Adh cell.

    PubMed

    Yin, Hua; Hou, Xiaolin; Tao, Tingrui; Lv, Xiaoman; Zhang, Luyong; Duan, Weigang

    2015-05-01

    Rho kinase (ROCK) inhibitor is a promising agent for neural injury disorders, which mechanism is associated with neurite outgrowth. However, neurite outgrowth resistance occurred when PC12 Adh cell was treated with ROCK inhibitors for a longer time. PC12 Adh cells were treated with ROCK inhibitor Y27632 or NGF for different durations. Neurite outgrowth resistance occurred when PC12 Adh cell exposed to Y27632 (33 µM) for 3 or more days, but not happen when exposed to nerve growth factor (NGF, 100 ng/mL). The gene expression in the PC12 Adh cells treated with Y27632 (33 µM) or NGF (100 ng/mL) for 2 or 4 days was assayed by gene microarray, and the reliability of the results were confirmed by real-time RT-PCR. Cluster analysis proved that the gene expression profile of PC12 Adh cell treated with Y27632 for 4 days was different from that treated with Y27632 for 2 days and those treated with NGF for 2 and 4 days, respectively. Pathway analysis hinted that the neurite outgrowth resistance could be associated with up-regulation of inflammatory pathways, especially rno04610 (complement and coagulation cascades), and down-regulation of cell cycle pathways, especially rno04110.

  17. Cytotoxic effects of acrylamide in nerve growth factor or fibroblast growth factor 1-induced neurite outgrowth in PC12 cells.

    PubMed

    Chen, Jong-Hang; Lee, Don-Ching; Chiu, Ing-Ming

    2014-03-01

    Acrylamide is a neurological and reproductive toxicant in humans and laboratory animals; however, the neuron developmental toxicity of acrylamide remains unclear. The aims of this study are to investigate the cytotoxicity and neurite outgrowth inhibition of acrylamide in nerve growth factor (NGF)- or fibroblast growth factor 1 (FGF1)-mediated neural development of PC12 cells. MTS assay showed that acrylamide treatment suppresses NGF- or FGF1-induced PC12 cell proliferation in a time- and dose-dependent manner. Quantification of neurite outgrowth demonstrated that 0.5 mM acrylamide treatment resulted in significant decrease in differentiation of NGF- or FGF1-stimulated PC12 cells. This decrease is accompanied with the reduced expression of growth-associated protein-43, a neuronal marker. Moreover, relative levels of pERK, pAKT, pSTAT3 and pCREB were increased within 5-10 min when PC12 cells were treated with NGF or FGF1. Acrylamide (0.5 mM) decreases the NGF-induced activation of AKT-CREB but not ERK-STAT3 within 20 min. Similarly, acrylamide (0.5 mM) decreases the FGF1-induced activation of AKT-CREB within 20 min. In contrast to the NGF treatment, the ERK-STAT3 activation that was induced by FGF1 was slightly reduced by 0.5 mM acrylamide. We further showed that PI3K inhibitor (LY294002), but not MEK inhibitor (U0126), could synergize with acrylamide (0.5 mM) to reduce the cell viability and neurite outgrowth in NGF- or FGF1-stimulated PC12 cells. Moreover, acrylamide (0.5 mM) increased reactive oxygen species (ROS) activities in NGF- or FGF1-stimulated PC12 cells. This increase was reversed by Trolox (an ROS scavenging agent) co-treatment. Together, our findings reveal that NGF- or FGF1-stimulation of the neuronal differentiation of PC12 cells is attenuated by acrylamide through the inhibition of PI3K-AKT-CREB signaling, along with the production of ROS.

  18. Effect of sodium ferulate on delayed rectifier K+ currents in PC12 cells

    PubMed Central

    WANG, WEI; WANG, YUYUN; ZHANG, CHUNLEI; SUN, MENGMENG; ZHU, XIAOYIN

    2014-01-01

    In order to investigate the effect of sodium ferulate (SF) on voltage-activated K+ channels, the delayed rectifier K+ current (Ik) in PC12 rat pheochromocytoma cells was recorded using the automated patch-clamp method. The results indicated that following the application of SF, the Ik in PC12 cells was significantly decreased in a concentration-dependent manner. The analysis of activation kinetic curves and inactivation kinetic curves of Ik showed that SF had an effect on the activation and inactivation kinetics. Following the application of 15.3 μM SF, the activation curve of the Ik of PC12 cells was shifted to positive potentials and the inactivation curve of the Ik of PC12 cells was shifted to negative potentials. This study revealed that the delayed rectifier K+ currents of PC12 cells were inhibited following SF treatment in a concentration-dependent manner. The mechanism may be associated with the delayed activation and enhanced inactivation of Ik-associated channels. PMID:25120634

  19. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  20. Mutants of PC12 cells with altered cyclic AMP responses

    SciTech Connect

    Block, T.; Kon, C.; Breckenridge, B.M.

    1984-10-01

    PCl2 cells, derived from a rat pheochromocytoma, were mutagenized and selected in media containing agents known to elevate intracellular concentrations of cyclic AMP (cAMP). More than 40 clones were isolated by selection with cholera toxin or 2-chloroadenosine or both. The variants that were deficient in accumulating cAMP were obtained by using a protocol in which 1 ..mu..m 8-bromo-cAMP was included in addition to the agonist. Certain of these variants were partially characterized with respect to the site of altered cAMP metabolism. The profiles of adenylate cyclase activity responsiveness of certain variants to guanosine-5'-(BETA,..gamma..-imido) triphosphate and to forskolin resembled those of UNC and cyc phenotypes of S49 lymphoma cells, which are functionally deficient in the GTP-sensitive coupling protein, N/sub s/. Other variants were characterized by increased cyclic nucleotide phosphodiesterase activity at low substrate concentration. Diverse morphological traits were observed among the variants, but it was not possible to assign them to a particular cAMP phenotype. Two revertants of a PCl2 mutant were isolated and observed to have regained a cellular cAMP response to 2-chloroadenosine and to forskolin. It is hoped that these PCl2 mutants will have utility for defining cAMP-mediated functions, including any links to the action of nerve growth factor, in cells derived from the neural crest.

  1. PC12 Cells that Lack Synaptotagmin I Exhibit Loss of a Subpool of Small Dense Core Vesicles

    PubMed Central

    Adams, Robert D.; Harkins, Amy B.

    2014-01-01

    Neurons communicate by releasing neurotransmitters that are stored in intracellular vesicular compartments. PC12 cells are frequently used as a model secretory cell line that is described to have two subpools of vesicles: small clear vesicles and dense core vesicles. We measured transmitter molecules released from vesicles in NGF-differentiated PC12 cells using carbon-fiber amperometry, and relative diameters of individual vesicles using electron microscopy. Both amperometry and electron micrograph data were analyzed by statistical and machine learning methods for Gaussian mixture models. An electron microscopy size correction algorithm was used to predict and correct for observation bias of vesicle size due to tangential slices through some vesicles. Expectation maximization algorithms were used to perform maximum likelihood estimation for the Gaussian parameters of different populations of vesicles, and were shown to be better than histogram and cumulative distribution function methods for analyzing mixed populations. The Bayesian information criterion was used to determine the most likely number of vesicle subpools observed in the amperometric and electron microscopy data. From this analysis, we show that there are three major subpools, not two, of vesicles stored and released from PC12 cells. The three subpools of vesicles include small clear vesicles and two subpools of dense core vesicles, a small and a large dense core vesicle subpool. Using PC12 cells stably transfected with short-hairpin RNA targeted to synaptotagmin I, an exocytotic Ca2+ sensor, we show that the presence and release of the small dense core vesicle subpool is dependent on synaptotagmin I. Furthermore, synaptotagmin I also plays a role in the formation and/or maintenance of the small dense core vesicle subpool in PC12 cells. PMID:25517150

  2. The nerve growth factor-responsive PC12 cell line does not express the Myc dimerization partner Max.

    PubMed Central

    Hopewell, R; Ziff, E B

    1995-01-01

    Heterodimerization of Max with the nuclear oncoprotein Myc and the differentiation-associated proteins Mad and Mxi1 enables these factors to bind E-box sites in DNA and control genes implicated in cell proliferation and differentiation. We show that in the PC12 pheochromocytoma tumor cell line, functional Max protein is not expressed because of the synthesis of a mutant max transcript. This transcript encodes a protein incapable of homo- or heterodimerization. Furthermore, the mutant Max protein, unlike wild-type Max, is incapable of repressing transcription from an E-box element. Synthesis of mutant max transcripts appears to be due to a homozygous chromosomal alteration within the max gene. Reintroduction of max into PC12 cells results in repression of E-box-dependent transcription and a reduction in growth rate, which may explain the loss of Max expression either during the growth of the pheochromocytoma or in subsequent passage of the PC12 cell line in vitro. Finally, the ability of these cells to divide, differentiate, and apoptose in the absence of Max demonstrates for the first time that these processes can occur via Max- and possibly Myc-independent mechanisms. PMID:7791753

  3. Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells.

    PubMed

    Zuo, Wanhong; Zhu, Linyan; Bai, Zhiquan; Zhang, Haifeng; Mao, Jianwen; Chen, Lixin; Wang, Liwei

    2009-10-01

    Chloride channel activity is one of the critical factors responsible for cell apoptotic volume decrease (AVD). However, the roles of chloride channels in apoptosis have not been fully understood. In the current study, we assessed the role of chloride channels in hydrogen peroxide (H(2)O(2))-induced apoptosis of pheochromocytoma cells (PC12). Extracellular application of H(2)O(2) activated a chloride current and induced cell volume decrease in a few minutes. Incubation of cells with H(2)O(2) elevated significantly the membrane permeability to the DNA dye Hoechst 33258 in 1h and induced apoptosis of most PC12 cells tested in 24h. The chloride channel blocker NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) prevented appearance of H(2)O(2)-induced high membrane permeability and cell shrinkage, suppressed H(2)O(2)-activated chloride currents and protected PC12 cells from apoptosis induced by H(2)O(2). The results suggest that chloride channels may contribute to H(2)O(2)-induced apoptosis by ways of elevation of membrane permeability and AVD in PC12 cells.

  4. SOD2 Mediates Amifostine-Induced Protection against Glutamate in PC12 Cells

    PubMed Central

    Jia, Ji; Zhang, Lei; Shi, Xiaolei; Wu, Mingchun; Zhou, Xiang; Liu, Xiaonan; Huo, Tingting

    2016-01-01

    Background. Cytoprotectant amifostine attenuates radiation-induced oxidative injury by increasing intracellular manganese superoxide dismutase (SOD2) in peripheral tissue. However, whether amifostine could protect neuronal cells against oxidative injury has not been reported. The purpose of this study is to explore the protection of amifostine in PC12 cells. Methods. PC12 cells exposed to glutamate were used to mimic neuronal oxidative injury. SOD assay kit was taken to evaluate intracellular Cu/Zn SOD (SOD1) and SOD2 activities; western blot analysis and immunofluorescence staining were performed to investigate SOD2 protein expression; MTT, lactate dehydrogenase (LDH), release and cell morphology were used to evaluate cell injury degree, and apoptotic rate and cleaved caspase-3 expression were taken to assess apoptosis; mitochondrial superoxide production, intracellular reactive oxygen species (ROS), and glutathione (GSH) and catalase (CAT) levels were evaluated by reagent kits. Results. Amifostine increased SOD2 activity and expression, decreased cell injury and apoptosis, reduced mitochondrial superoxide production and intracellular ROS generation, and restored intracellular GSH and CAT levels in PC12 cells exposed to glutamate. SOD2-siRNA, however, significantly reversed the amifostine-induced cytoprotective and antioxidative actions. Conclusion. SOD2 mediates amifostine-induced protection in PC12 cells exposed to glutamate. PMID:26770652

  5. Neurological morphofunctional differentiation induced by REAC technology in PC12. A neuro protective model for Parkinson's disease.

    PubMed

    Maioli, Margherita; Rinaldi, Salvatore; Migheli, Rossana; Pigliaru, Gianfranco; Rocchitta, Gaia; Santaniello, Sara; Basoli, Valentina; Castagna, Alessandro; Fontani, Vania; Ventura, Carlo; Serra, Pier Andrea

    2015-01-01

    Research for the use of physical means, in order to induce cell differentiation for new therapeutic strategies, is one of the most interesting challenges in the field of regenerative medicine, and then in the treatment of neurodegenerative diseases, Parkinson's disease (PD) included. The aim of this work is to verify the effect of the radio electric asymmetric conveyer (REAC) technology on the PC12 rat adrenal pheochromocytoma cell line, as they display metabolic features of PD. PC12 cells were cultured with a REAC regenerative tissue optimization treatment (TO-RGN) for a period ranging between 24 and 192 hours. Gene expression analysis of specific neurogenic genes, as neurogenin-1, beta3-tubulin and Nerve growth factor, together with the immunostaining analysis of the specific neuronal protein beta3-tubulin and tyrosine hydroxylase, shows that the number of cells committed toward the neurogenic phenotype was significantly higher in REAC treated cultures, as compared to control untreated cells. Moreover, MTT and Trypan blue proliferation assays highlighted that cell proliferation was significantly reduced in REAC TO-RGN treated cells. These results open new perspectives in neurodegenerative diseases treatment, particularly in PD. Further studies will be needed to better address the therapeutic potential of the REAC technology. PMID:25976344

  6. Neurological morphofunctional differentiation induced by REAC technology in PC12. A neuro protective model for Parkinson’s disease

    PubMed Central

    Maioli, Margherita; Rinaldi, Salvatore; Migheli, Rossana; Pigliaru, Gianfranco; Rocchitta, Gaia; Santaniello, Sara; Basoli, Valentina; Castagna, Alessandro; Fontani, Vania; Ventura, Carlo; Serra, Pier Andrea

    2015-01-01

    Research for the use of physical means, in order to induce cell differentiation for new therapeutic strategies, is one of the most interesting challenges in the field of regenerative medicine, and then in the treatment of neurodegenerative diseases, Parkinson’s disease (PD) included. The aim of this work is to verify the effect of the radio electric asymmetric conveyer (REAC) technology on the PC12 rat adrenal pheochromocytoma cell line, as they display metabolic features of PD. PC12 cells were cultured with a REAC regenerative tissue optimization treatment (TO-RGN) for a period ranging between 24 and 192 hours. Gene expression analysis of specific neurogenic genes, as neurogenin-1, beta3-tubulin and Nerve growth factor, together with the immunostaining analysis of the specific neuronal protein beta3-tubulin and tyrosine hydroxylase, shows that the number of cells committed toward the neurogenic phenotype was significantly higher in REAC treated cultures, as compared to control untreated cells. Moreover, MTT and Trypan blue proliferation assays highlighted that cell proliferation was significantly reduced in REAC TO-RGN treated cells. These results open new perspectives in neurodegenerative diseases treatment, particularly in PD. Further studies will be needed to better address the therapeutic potential of the REAC technology. PMID:25976344

  7. Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips.

    PubMed

    Islam, Muhymin; Atmaramani, Rahul; Mukherjee, Siddhartha; Ghosh, Santaneel; Iqbal, Samir M

    2016-10-14

    Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched  nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter-towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma. PMID:27587351

  8. Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips.

    PubMed

    Islam, Muhymin; Atmaramani, Rahul; Mukherjee, Siddhartha; Ghosh, Santaneel; Iqbal, Samir M

    2016-10-14

    Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched  nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter-towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma.

  9. Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Atmaramani, Rahul; Mukherjee, Siddhartha; Ghosh, Santaneel; Iqbal, Samir M.

    2016-10-01

    Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter—towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma.

  10. Activation of muscarinic receptors inhibits glutamate-induced GSK-3β overactivation in PC12 cells

    PubMed Central

    Ma, Ke; Yang, Li-min; Chen, Hong-zhuan; Lu, Yang

    2013-01-01

    Aim: To investigate the actions of the muscarinic agonist carbachol on glutamate-induced neurotoxicity in PC12 cells, and the underlying mechanisms. Methods: PC12 cells were treated with different concentrations of glutamate for 24 or 48 h. The cell viability was measured using MTT assay, and the expression and activation of GSK-3β were detected with Western blot. β-Catenin translocation was detected using immunofluorescence. Luciferase reporter assay and real-time PCR were used to analyze the transcriptional activity of β-catenin. Results: Glutamate (1, 3, and 10 mmol/L) induced PC12 cell death in a dose-dependent manner. Moreover, treatment of the cells with glutamate (1 mmol/L) caused significant overactivation of GSK-3β and prevented β-catenin translocation to the nucleus. Pretreatment with carbachol (0.01 μmol/L) blocked glutamate-induced cell death and GSK-3β overactivation, and markedly enhanced β-catenin transcriptional activity. Conclusion: Activation of muscarinic receptors exerts neuroprotection in PC12 cells by attenuating glutamate-induced GSK-3β overactivation, suggesting potential benefits of muscarinic agonists for Alzheimer's disease. PMID:23685950

  11. Beneficial effects of chlorogenic acid on alcohol-induced damage in PC12 cells.

    PubMed

    Fang, Shi-Qi; Wang, Yong-Tang; Wei, Jing-Xiang; Shu, Ya-Hai; Xiao, Lan; Lu, Xiu-Min

    2016-04-01

    As one of the most commonly abused psychotropic substances, ethanol exposure has deleterious effects on the central nervous system (CNS). The most detrimental results of ethanol exposure during development are the loss of neurons in brain regions such as the hippocampus and neocortex, which may be related to the apoptosis and necrosis mediated by oxidative stress. Recent studies indicated that a number of natural drugs from plants play an important role in protection of nerve cells from damage. Among these, it has been reported that chlorogenic acid (CA) has neuroprotective effects against oxidative stress. Thus, it may play some beneficial effects on ethanol-induced neurotoxicity. However, the effects of CA on ethanol-induced nerve damage remain unclear. In order to investigate the protective effects of CA on alcohol-induced apoptosis in rat pheochromocytoma PC12 cells, in the present study, cell viability and the optimal dosage of CA were first quantified by MTT assay. Then, the cell apoptosis and cell cycle were respectively investigated by Hoechst 33258 staining and flow cytometer (FCM). To further clarify the possible mechanism, followed with the test of mitochondria transmembrane potential with Rhodamine 123 (Rho 123) staining, the expression of Bcl-2, Capase-3 and growth associated protein-43 (GAP-43) were analyzed by immunofluorescence assay separately. The results showed that treatment with 500 mM alcohol decreased the cell viability and then significantly induced apoptosis in PC12 cells. However, when pretreated with different concentrations of CA (1, 5, 10, 50 μM), cell viability increased in different degree. Comparatively, CA with the concentration of 10 μM most effectively promoted the proliferation of damaged cells, increased the distribution ratio of the cells at the G2/M and S phases, and enhanced mitochondria transmembrane potential. This appears to be in agreement with up-regulation of the expression of Bcl-2 and GAP-43, and down-regulation of

  12. Cytotoxic, Genotoxic, and Neurotoxic Effects of Mg, Pb, and Fe on Pheochromocytoma (PC-12) Cells

    PubMed Central

    Sanders, Talia; Liu, Yi-Ming; Tchounwou, Paul B.

    2014-01-01

    Metals such as lead (Pb), magnesium (Mg), and iron (Fe) are ubiquitous in the environment as a result of natural occurrence and anthropogenic activities. Although Mg, Fe and others are considered essential elements, high level of exposure has been associated with severe adverse health effects including cardiovascular, hematological, nephrotoxic, hepatotoxic, and neurologic abnormalities in humans. In the present study we hypothesized that Mg, Pb, and Fe are cytotoxic, genotoxic and neurotoxic, and their toxicity is mediated through oxidative stress and alteration in protein expression. To test the hypothesis, we used the pheochromocytoma (PC-12) cell line as a neuro cell model and performed the LDH assay for cell viability, Comet assay for DNA damage, Western blot for oxidative stress, and HPLC-MS to assess the concentration levels of neurological biomarkers such as glutamate, dopamine (DA), and 3-methoxytyramine (3-MT). The results of this study clearly show that Mg, Pb, and Fe, respectively in the form of MgSO4, Pb(NO3)2, FeCl2, and FeCl3 induce cytotoxicity, oxidative stress, and genotoxicity in PC-12 cells. In addition, exposure to these metallic compounds caused significant changes in the concentration levels of glutamate, dopamine, and 3-MT in PC-12 cells. Taken together the findings suggest that MgSO4, Pb(NO3)2, FeCl2, and FeCl3 have the potential to induce substantial toxicity to PC-12 cells. PMID:24942330

  13. Regulation of phospholipase D2 by H(2)O(2) in PC12 cells.

    PubMed

    Oh, S O; Hong, J H; Kim, Y R; Yoo, H S; Lee, S H; Lim, K; Hwang, B D; Exton, J H; Park, S K

    2000-12-01

    Phospholipase D2 (PLD2) is expressed in brain and inhibited by synuclein, which is involved in Parkinson's and Alzheimer's diseases. However, the activation mechanism of PLD2 in neuronal cells has not been defined clearly. Hydrogen peroxide (H(2)O(2)) plays roles in the neurodegenerative diseases and also acts as a second messenger of various molecules such as nerve growth factor. To study regulation mechanisms of PLD2 by H(2)O(2) in neuronal cells, we have made stable PC12 cell lines expressing PLD2 (PLD2-PC12 cells). H(2)O(2) treatment stimulated PLD activity in PLD2-PC12 cells in a dose- and time-dependent manner. This activation was inhibited by the treatment with protein kinase C (PKC) inhibitors or by depletion of PKCalpha, -delta, and -epsilon. Phorbol ester markedly activated PLD2. Co-treatment with phorbol ester and H(2)O(2) did not show an additive effect. Chelation of extracellular calcium substantially blocked the H(2)O(2)-induced activation of PLD2. A calcium ionophore induced PLD2 activation in a PKC-dependent manner. Protein-tyrosine kinase inhibitors inhibited H(2)O(2)-induced PLD activation slightly. These data indicate that H(2)O(2) can activate PLD2 in PC12 cells and that this activation is largely dependent on PKC and Ca(2+) ions and minimally dependent on tyrosine phosphorylation.

  14. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening.

    PubMed

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves

    2016-04-01

    Technologies for wireless telecommunication systems using millimeter waves (MMW) will be widely deployed in the near future. Forthcoming applications in this band, especially around 60GHz, are mainly developed for high data-rate local and body-centric telecommunications. At those frequencies, electromagnetic radiations have a very shallow penetration into biological tissues, making skin keratinocytes, and free nerve endings of the upper dermis the main targets of MMW. Only a few studies assessed the impact of MMW on neuronal cells, and none of them investigated a possible effect on neuronal differentiation. We used a neuron-like cell line (PC12), which undergoes neuronal differentiation when treated with the neuronal growth factor (NGF). PC12 cells were exposed at 60.4GHz for 24h, at an incident power density averaged over the cell monolayer of 10mW/cm(2). Using a large scale cell-by-cell analysis based on high-content screening microscopy approach, we assessed potential effects of MMW on PC12 neurite outgrowth and cytoskeleton protein expression. No differences were found in protein expression of the neuronal marker β3-tubulin nor in internal expression control β-tubulin. On the other hand, our data showed a slight increase, although insignificant, in neurite outgrowth, induced by MMW exposure. However, experimental controls demonstrated that this increase was related to heating. PMID:26921450

  15. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening.

    PubMed

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves

    2016-04-01

    Technologies for wireless telecommunication systems using millimeter waves (MMW) will be widely deployed in the near future. Forthcoming applications in this band, especially around 60GHz, are mainly developed for high data-rate local and body-centric telecommunications. At those frequencies, electromagnetic radiations have a very shallow penetration into biological tissues, making skin keratinocytes, and free nerve endings of the upper dermis the main targets of MMW. Only a few studies assessed the impact of MMW on neuronal cells, and none of them investigated a possible effect on neuronal differentiation. We used a neuron-like cell line (PC12), which undergoes neuronal differentiation when treated with the neuronal growth factor (NGF). PC12 cells were exposed at 60.4GHz for 24h, at an incident power density averaged over the cell monolayer of 10mW/cm(2). Using a large scale cell-by-cell analysis based on high-content screening microscopy approach, we assessed potential effects of MMW on PC12 neurite outgrowth and cytoskeleton protein expression. No differences were found in protein expression of the neuronal marker β3-tubulin nor in internal expression control β-tubulin. On the other hand, our data showed a slight increase, although insignificant, in neurite outgrowth, induced by MMW exposure. However, experimental controls demonstrated that this increase was related to heating.

  16. Thiazolidinediones inhibit the growth of PC12 cells both in vitro and in vivo

    SciTech Connect

    Kim, Sang Wan; Choi, Ok Kyung; Chang, Mee Soo; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon

    2008-06-27

    Thiazolidinediones (TZDs) have recently been proposed as a therapy for PPAR{gamma}-expressing tumors. Pheochromocytoma (PHEO) is associated with high morbidity and mortality due to excess catecholamine production, and few effective drug therapies currently exist. We investigated the effects of TZDs on PHEO both in vitro and in vivo. PPAR{gamma} protein was expressed in human adrenal PHEO tissues as well as in rat PHEO cells, PC12. TZDs, including rosiglitazone (RGZ) and pioglitazone (PGZ), inhibited proliferation of PC12 cells in a dose-dependent manner and increased casapse-3 expression of PC12 cells. TZDs also reduced expression of cyclin E and cyclin-dependent kinase2. RGZ inhibited nerve growth factor-induced neurite outgrowth and reduced expression of catecholamine-synthesizing enzymes. Finally, rat PHEO growth generated by subcutaneous injection of PC12 cells was slowed in an RGZ-treated mouse. These data suggest that TZDs may be a promising therapeutic approach for medical treatment for PHEO.

  17. POTENTIAL MECHANISMS RESPONSIBLE FOR CHLOROTRIAZINE-INDUCED ALTERATIONS IN CATECHOLAMINES IN PHEOCHROMOCYTOMA (PC12) CELLS

    EPA Science Inventory

    ABSTRACT

    Potential Mechanisms Responsible for Chlorotriazine-induced Changes in Catecholamine Metabolism in Pheochromocytoma (PC12) Cells*
    PARIKSHIT C. DAS1, WILLIAM K. McELROY2 , AND RALPH L. COOPER2+
    1Curriculum in Toxicology, University of North Carolina, Chape...

  18. Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2001-03-01

    We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia. PMID:11259512

  19. Large-scale preparation of plasma membrane vesicles from PC-12 pheochromocytoma cells and their use in noradrenaline transport studies.

    PubMed

    Harder, R; Bönisch, H

    1984-08-01

    Plasma membranes were isolated from rat pheochromocytoma cells (PC-12) grown in spinner culture. The rapid and simple isolation procedure consisted of a differential and isopycnic centrifugation (in a linear sucrose gradient) with the aid of a high capacity fixed angle rotor equipped with siliconized centrifuge tubes. The isolated membranes were closed and osmotically active vesicles (about 0.3 micron in diameter) with a mean intravesicular water space of 1.84 microliters/mg protein. In the presence of an inward gradient of sodium chloride and an outward gradient of potassium, [3H]noradrenaline (50 nM) was taken up and accumulated 550-fold (at 31 degrees C). The uptake and accumulation of [3H]noradrenaline was temperature-sensitive and inhibited by the tricyclic antidepressant desipramine. Membrane vesicles isolated from PC-12 cells represent a useful model for the investigation of the molecular mechanism of the neuronal noradrenaline transport system. PMID:6466664

  20. Adenosine (ADO) receptors in the PC12 phenochromocytoma cell line: characterization by radioligand binding

    SciTech Connect

    Williams, M.; Abreu, M.; Noronha-Blob, L.

    1986-03-01

    PC12 cells contain an ado-sensitive adenylate cyclase which is exclusively A-2 in nature. Binding of A-1 selective radioligands (Cyclohexylado; CHA and Cyclopentylado; CPA) to PC12 membranes is minimal and irreproducible. In contrast, the non-selective A-1/A-2 agonist NECA (5'-N-ethylcarboxamidoado) binds with high affinity to two sites in adenosine-deaminase pretreated PC12 membranes. Using computerized curve fitting, the first site had a Kd value of 5.2 +/- 1.5 nM (mean +/- s.d.; n = 8) and an apparent Bmax of 205 fmoles/mg prot. Due to large increases in non-specific binding, the second site could not be resolved but had a Kd in the range of 1 ..mu..M. Pharmacological analysis of specific NECA binding (5 nM) gave the rank order activity profile: NECA < MECA = 2-CADO > CHA > R-PIA > CPA S-PIA > AMP = ADP = ATP. Binding was also xanthine sensitive with PACPX > 8-PT > 8-PST. The ratio of activity for the R and S diastereomers of PIA was 10, consistent with the labeling of A-2-type ado receptors in the PC12 cell line.

  1. Dp71, utrophin and beta-dystroglycan expression and distribution in PC12/L6 cell cocultures

    PubMed Central

    Ilarraza-Lomeli, Ramses; Cisneros-Vega, Bulmaro; Romo-Yañez, Jose; Cervantes-Gomez, Maria De Lourdes; Mornet, Dominique; Montañez, Cecilia

    2007-01-01

    Dystrophin Dp71 is the most ubiquitous and highest expressed dystrophin isoform in brain, however, Dp71 function and those specific for its spliced d- and ab- isoforms remains undetermined. To study Dp71, utrophin and β-dystroglycan in cell-to-cell interactions, we first established a co-culture model using PC 12 cells and L6 myotubes. Confocal microscopy assays of these co-cultures, in which PC 12 cells are differentiated in the presence of L6 myotubes, showed that the Dp71d isoform accumulates in PC 12 nuclei, Golgi-complex- and endoplasmic reticulum-like structures, being depleted from neurites and cytoplasm, while Dp71ab concentrates at neurite tips and cytoplasm and colocalizes with β-dystroglycan, utrophin, synaptophysin and acetylcholine receptors. Evidences suggest Dp71ab isoform unlike Dp71d, may take part in neurite-related processes. This is the first work on the role of dystrophins as well as members of the DAP complex in a cell-line based co-culturing system, which may prove useful in determining protein associations in a more controlled environment than ex-vivo systems. PMID:17921863

  2. Nuclear translocation of phosphatidylinositol 3-kinase in rat pheochromocytoma PC 12 cells after treatment with nerve growth factor.

    PubMed

    Neri, L M; Milani, D; Bertolaso, L; Stroscio, M; Bertagnolo, V; Capitani, S

    1994-07-01

    Immunocytochemical analysis of PI 3-kinase localization in PC 12 cells demonstrates that the enzyme translocates to the nucleus after cell treatment with differentiating doses of NGF. The association of PI 3-kinase to the nucleus occurs rapidly (within minutes) and increases with the time of exposure of NGF. We suggest that PI-3 kinase specific localization may determine the production of novel phosphoinositides in cell compartments targeted to effect diverse cell responses. The nuclear translocation is consistent with accumulating data on the existence of a nuclear inositol lipid cycle which could also include 3-phosphorylated inositides, participating to the modulation of the cell response to extracellular stimuli.

  3. IgG anti-GalNAc-GD1a antibody inhibits the voltage-dependent calcium channel currents in PC12 pheochromocytoma cells.

    PubMed

    Nakatani, Yoshihiko; Nagaoka, Takumi; Hotta, Sayako; Utsunomiya, Iku; Yoshino, Hiide; Miyatake, Tadashi; Hoshi, Keiko; Taguchi, Kyoji

    2007-03-01

    We investigated the effects of IgG anti-GalNAc-GD1a antibodies, produced by immunizing rabbits with GalNAc-GD1a, on the voltage-dependent calcium channel (VDCCs) currents in nerve growth factor (NGF)-differentiated PC12 pheochromocytoma cells. VDCCs currents in NGF-differentiated PC12 cells were recorded using the whole-cell patch-clamp technique. Immunized rabbit serum that had a high titer of anti-GalNAc-GD1a antibodies inhibited the VDCCs currents in the NGF-differentiated PC12 cells (36.0+/-9.6% reduction). The inhibitory effect of this serum was reversed to some degree within 3-4 min by washing with bath solution. Similarly, application of purified IgG from rabbit serum immunized with GalNAc-GD1a significantly inhibited the VDCCs currents in PC12 cells (30.6+/-2.5% reduction), and this inhibition was recovered by washing with bath solution. Furthermore, the inhibitory effect was also observed in the GalNAc-GD1a affinity column binding fraction (reduction of 31.1+/-9.85%), while the GalNAc-GD1a affinity column pass-through fraction attenuated the inhibitory effect on VDCCs currents. Normal rabbit serum and normal rabbit IgG did not affect the VDCCs currents in the PC12 cells. In an immunocytochemical study using fluorescence staining, the PC12 cells were stained using GalNAc-GD1a binding fraction. These results indicate that anti-GalNAc-GD1a antibodies inhibit the VDCCs currents in NGF-differentiated PC12 cells.

  4. Satratoxin G–Induced Apoptosis in PC-12 Neuronal Cells is Mediated by PKR and Caspase Independent

    PubMed Central

    Islam, Zahidul; Hegg, Colleen C.; Bae, Hee Kyong; Pestka, James J.

    2008-01-01

    Satratoxin G (SG) is a macrocyclic trichothecene mycotoxin produced by Stachybotrys chartarum, a mold suggested to play an etiologic role in damp building-related illnesses. Acute intranasal exposure of mice to SG specifically induces apoptosis in olfactory sensory neurons of the nose. The PC-12 rat pheochromocytoma cell model was used to elucidate potential mechanisms of SG-induced neuronal cell death. Agarose gel electrophoresis revealed that exposure to SG at 10 ng/ml or higher for 48-h induced DNA fragmentation characteristic of apoptosis in PC-12 cells. SG-induced apoptosis was confirmed by microscopic morphology, hypodiploid fluorescence and annexin V-fluorescein isothiocyanate (FITC) uptake. Messenger RNA expression of the proapoptotic genes p53, double-stranded RNA–activated protein kinase (PKR), BAX, and caspase-activated DNAse was significantly elevated from 6 to 48 h after SG treatment. SG also induced apoptosis and proapoptotic gene expression in neural growth factor-differentiated PC-12 cells. Although SG-induced caspase-3 activation, caspase inhibition did not impair apoptosis. Moreover, SG induced nuclear translocation of apoptosis-inducing factor (AIF), a known contributor to caspase-independent neuronal cell death. SG-induced apoptosis was not affected by inhibitors of oxidative stress or mitogen-activated protein kinases but was suppressed by the PKR inhibitor C16 and by PKR siRNA transfection. PKR inhibition also blocked SG-induced apoptotic gene expression and AIF translocation but not caspase-3 activation. Taken together, SG-induced apoptosis in PC-12 neuronal cells is mediated by PKR via a caspase-independent pathway possibly involving AIF translocation. PMID:18535002

  5. Binding and internalization of nerve growth factor by PC12 cells

    SciTech Connect

    Kasaian, M.T.

    1987-01-01

    The interaction of nerve growth factor (NGF) with its cell surface receptors has been studied using both fluorescent- and radio-labelled NGF. The fluorescence studies were done by flow cytometry, and gave information about the concentration dependence and time course of NGF binding to rat pheochromocytoma cells (PC12) and human melanoma cells (A875). /sup 125/I-NGF was used to study the fate of NGF in PC12 cells following its association with cell surface receptors. Variations of the PC12 binding assay were used to distinguish ligand bound to fast and slowly dissociating receptors at the cell surface, internalized ligand, and cytoskeletally-associated NGF. Ligand uptake into each of these pools was followed in untreated cells, as well as in cells exposed to colchicine and/or cytochalasin B to disrupt the cytoskeleton. NGF degradation was also followed in these cells, and chloroquine was used to inhibit this process. In a separate project, NGF activity was assayed in samples of human amniotic fluid and cerebrospinal fluid (CSF). A range of activities was found in these samples, with the CSF samples containing somewhat more activity than the amniotic fluid samples.

  6. VAMP-2 promotes neurite elongation and SNAP-25A increases neurite sprouting in PC12 cells.

    PubMed

    Shirasu, M; Kimura, K; Kataoka, M; Takahashi, M; Okajima, S; Kawaguchi, S; Hirasawa, Y; Ide, C; Mizoguchi, A

    2000-08-01

    Recent studies suggest that the soluble N-ethylmaleimide-sensitive factor attached protein (SNAP) receptor (SNARE)-mediated membrane fusion system is involved in vesicle fusion in the plasma membrane that allows expansion for neurite elongation. There have been several reports analyzing the effects of neurite outgrowth by inhibition of SNAREs. In this study, we took the opposite approach by overexpressing green fluorescent protein (GFP)-fusion SNAREs, including VAMP-2, SNAP-25A, and syntaxin1A, in PC12 cells to investigate the role of SNAREs in the neurite outgrowth of PC12 cells. Neurite outgrowth analysis demonstrated that: (1) GFP-VAMP-2 increased the length of individual neurites, without changing the number of neurites per cell; (2) GFP-SNAP-25A increased the number of neurites per cell, with no change in the length of the individual neurites. In both cases, the total length of neurites per cell was increased; (3) GFP-syntaxin1A resulted in no significant change, either in neurite length, or in the number of neurites per cell. These findings suggest that when overexpressed in PC12 cells, VAMP-2 can promote neurite elongation, while SNAP-25A can stimulate neurite sprouting. On the other hand, overexpression of syntaxin1A neither promotes nor inhibits neurite outgrowth. Thus VAMP-2 and SNAP-25A play different roles in neurite elongation and sprouting.

  7. Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells

    PubMed Central

    Di Donato, Marzia; Bilancio, Antonio; D'Amato, Loredana; Claudiani, Pamela; Oliviero, Maria Antonietta; Barone, Maria Vittoria; Auricchio, Alberto; Appella, Ettore; Migliaccio, Antimo; Auricchio, Ferdinando; Castoria, Gabriella

    2015-01-01

    Steroids and growth factors control neuronal development through their receptors under physiological and pathological conditions. We show that PC12 cells harbor endogenous androgen receptor (AR), whose inhibition or silencing strongly interferes with neuritogenesis stimulated by the nonaromatizable synthetic androgen R1881 or NGF. This implies a role for AR not only in androgen signaling, but also in NGF signaling. In turn, a pharmacological TrkA inhibitor interferes with NGF- or androgen-induced neuritogenesis. In addition, androgen or NGF triggers AR association with TrkA, TrkA interaction with PI3-K δ, and downstream activation of PI3-K δ and Rac in PC12 cells. Once associated with AR, filamin A (FlnA) contributes to androgen or NGF neuritogenesis, likely through its interaction with signaling effectors, such as Rac. This study thus identifies a previously unrecognized reciprocal cross-talk between AR and TrkA, which is controlled by β1 integrin. The contribution of FlnA/AR complex and PI3-K δ to neuronal differentiation by androgens and NGF is also novel. This is the first description of AR function in PC12 cells. PMID:26063730

  8. Activation of Rac1-dependent redox signaling is critically involved in staurosporine-induced neurite outgrowth in PC12 cells.

    PubMed

    Kim, Du Sik; An, Jeong Mi; Lee, Han Gil; Seo, Su Ryeon; Kim, Seon Sook; Kim, Ju Yeon; Kang, Jeong Wan; Bae, Yun Soo; Seo, Jeong Taeg

    2013-02-01

    Staurosporine, a non-specific protein kinase inhibitor, has been shown to induce neurite outgrowth in PC12 cells, but the mechanism by which staurosporine induces neurite outgrowth is still obscure. In the present study, we investigated whether the activation of Rac1 was responsible for the neurite outgrowth triggered by staurosporine. Staurosporine caused rapid neurite outgrowth independent of the ERK signaling pathways. In contrast, neurite outgrowth in response to staurosporine was accompanied by activation of Rac1, and the Rac1 inhibitor NSC23766 attenuated the staurosporine-induced neurite outgrowth in a concentration-dependent manner. In addition, suppression of Rac1 activity by expression of the dominant negative mutant Rac1N17 also blocked the staurosporine-induced morphological differentiation of PC12 cells. Staurosporine caused an activation of NADPH oxidase and increased the production of reactive oxygen species (ROS), which was prevented by NSC23766 and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor. Staurosporine-induced neurite outgrowth was attenuated by pretreatment with DPI and exogenous addition of sublethal concentration of H2O2 accelerated neurite outgrowth triggered by staurosporine. These results indicate that activation of Rac1, which leads to ROS generation, is required for neurite outgrowth induced by staurosporine in PC12 cells.

  9. Haloperidol induces the nuclear translocation of phosphatidylinositol 3′-kinase to disrupt Akt phosphorylation in PC12 cells

    PubMed Central

    Dai, Yunxiu; Wei, Zelan; Sephton, Chantelle F.; Zhang, Di; Anderson, Deborah H.; Mousseau, Darrell D.

    2007-01-01

    Objective The antipsychotic drug haloperidol (HAL) has been linked to apoptosis and to inhibition of prosurvival Akt signalling in pheochromocytoma (PC12) and neuronal cell cultures. However, the mechanism involved is unclear. Methods We used HAL to induce cytotoxicity in preneuronal PC12 cells. The expression and the subcellular localization of selected components of the PI3K–Akt survival cascade were monitored with standard biochemical approaches, such as subcellular fractionation, western blot analysis, gene transfer and fluorescence microscopy. Results PC12 cell stimulation with the epidermal growth factor (used as a control) results in normal processing of phosphatidylinositol 3'-kinase (PI3K)–Akt signalling (e.g., localization of PI3K to the plasma membrane and phosphorylation of Akt (Ser473). Surprisingly, HAL induces PI3K-generated phosphoinositol [phosphatidylinositol-3,4,5-triphosphate (PIP3), which conflicts with its ability to inhibit Akt. In fact, the production of PIP3s is nuclear, as assessed by the localized concentration of a fluorophore-tagged PIP3-targeting pleckstrin homology protein and a fluorophore-tagged substrate-trapping mutant of the phosphoinositide phosphatase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN). However, phosphoinositide-dependent protein kinase 1 (PDK1, the activating kinase of Akt) does not colocalize to the nucleus with the PI3K complex. This effectively inactivates both cytoplasmic and nuclear pools of Akt. Conclusion The differential compartmentalization of effectors of the PI3K–PDK1–Akt pathway is a unique means by which HAL disrupts Akt functioning in PC12 cells. PMID:17823648

  10. The role of ribosylated-BSA in regulating PC12 cell viability.

    PubMed

    Kuo, Tsun-Yung; Huang, Chuen-Lin; Yang, Jung-Mou; Huang, Wei-Jung; Huang, Nai-Kuei; Chen, Yue-Wen; Lin, Ren-Jye; Yang, Ying-Chen

    2012-08-01

    Glycation, one of the post-translational modifications, is known to influence protein structure and biological function. Advanced glycation end products (AGEs) have been shown to cause pathologies of diabetes. Glycation levels in patients with Alzheimer's disease (AD) are higher than in normal people. However, whether the glycation of susceptible proteins is a triggering event for cell damage or simply a result remains to be elucidated. In this study, we demonstrated that ribose-conjugated BSA (Rib-BSA) directly induces PC12 cell death in a dose- and time-dependent manner. The IC(50) is 4.6 μM. Unlike glucose-incubated BSA, Rib-BSA rapidly forms cytotoxic AGEs. PC12 is vulnerable to Rib-BSA. However, fructose can induce AGE formation, although no effect on cell survival was observed. This effect of Rib-BSA is reversed by pretreatment of pioglitazone and rosiglitazone, which belongs to thiazolidinediones (TZDs) and are peroxisome proliferator-activated receptor (PPAR-γ) ligands. Moreover, Rib-BSA upregulates inducible nitric oxide synthase (iNOS), cycloxygenase 2 (COX-2) expression, and p-38 phosphorylation and leaves extracellular regulated protein1/2 (ERK1/2) phosphorylation unchanged. The Rib-BSA-induced signaling changes are blocked by rosiglitazone and confirmed by PPAR-γ small-interfering RNA transfection. The reduction of cell survival by Rib-BSA is blocked by the iNOS inhibitor and p38 inhibitor. No effect on cell survival was observed using the COX-2 inhibitor. Consequently, these results show that Rib-BSA directly inducing PC12 cell death is a triggering event and TZDs protect PC12 cell from Rib-BSA damage. Signaling molecules, such as PPAR-γ, P38, and iNOS, are involved in Rib-BSA-mediated cytotoxicity.

  11. A signaling loop of REST, TSC2 and β-catenin governs proliferation and function of PC12 neural cells.

    PubMed

    Tomasoni, Romana; Negrini, Sara; Fiordaliso, Stefania; Klajn, Andrijana; Tkatch, Tatiana; Mondino, Anna; Meldolesi, Jacopo; D'Alessandro, Rosalba

    2011-09-15

    The RE-1-specific silencing transcription factor (REST or NRSF) is a transcription repressor that orchestrates differentiation and also operates in differentiated neurons and neurosecretory cells (neural cells). Its role in proliferation has been investigated so far only in rapidly growing tumors, with conflicting results: suppression in non-neural tumors, stimulation in medulloblastomas. Working with two clones of chromaffin-neuronal PC12 cells, which express different levels of REST, and using genetic complementation and knockdown approaches, we show that REST also promotes proliferation in differentiated neural cells. Mechanistically, this occurs by a signaling pathway involving REST, the GTPase-activating protein tuberin (TSC2) and the transcription co-factor β-catenin. In PC12 cells, raised expression of REST correlates with reduced TSC2 levels, nuclear accumulation and co-transcriptional activation of β-catenin, and increased expression of its target oncogenes Myc and Ccnd1, which might account for the proliferation advantage and the distinct morphology. Rest transcription is also increased, unveiling the existence of a self-sustaining, feed-forward REST-TSC2-β-catenin signaling loop that is also operative in another neural cell model, NT2/D1 cells. Transfection of REST, knockdown of TSC2 or forced expression of active β-catenin recapitulated the biochemical, functional and morphological properties of the high-expressing REST clone in wild-type PC12 cells. Upregulation of REST promoted proliferation and phenotypic changes, thus hindering neurosecretion. The new REST-TSC2-β-catenin signaling paradigm might have an important role in various aspects of neural cell physiology and pathology, including the regulation of proliferation and neurosecretion. PMID:21868364

  12. Epigenomics of Neural Cells: REST-Induced Down- and Upregulation of Gene Expression in a Two-Clone PC12 Cell Model

    PubMed Central

    Garcia-Manteiga, Jose M.; Bonfiglio, Silvia; Malosio, Maria Luisa; Lazarevic, Dejan; Stupka, Elia; Cittaro, Davide; Meldolesi, Jacopo

    2015-01-01

    Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation. PMID:26413508

  13. Platelet activating factor induces dopamine release in PC-12 cell line

    SciTech Connect

    Bussolino, F.; Tessari, F.; Turrini, F.; Braquet, P.; Camussi, G.; Prosdocimi, M.; Bosia, A. Institut Henri Beaufour, Le Plessis Robinson )

    1988-10-01

    The ability of platelet activating factor (PAF) to stimulate dopamine release and modify calcium homeostasis in PC-12 cell line was studied. PAF-induced dopamine release is related to its molecular form, with only the R-form steric configuration ((R)PAF), but not its S-form or its 2-lyso derivative, effective at being active. In addition, PAF acts at very low concentrations in a dose-dependent manner (0.1-30 nM). Preincubation with PAF receptor antagonists (CV-3988 and BN52021) as well as the specific desensitization of PC-12 cells to (R)PAF abolish the (R)PAF-induced dopamine release. Several lines of evidence suggest that dopamine release is dependent on a (R)PAF-induced calcium influx and efflux modulation. Dopamine release by PC-12 cells challenged with (R)PAF is associated with a rapid {sup 45}Ca influx and efflux and a rise in cytoplasmic calcium concentrations ((Ca{sup 2+}){sub i}) evaluated by using the calcium indicators fura-2 and quin2. At 30 nM (R)PAF, the absence of extracellular calcium inhibits the dopamine release but not the rise of (Ca{sup 2+}){sub i} from the internal stores, suggesting the importance of calcium influx in (R)PAF-induced dopamine release. PAF, which has been reported to be synthesized by stimulated neuronal cells may thus have a physiological modulatory role on cells with neurosecretory properties.

  14. Resveratrol Protects PC12 Cell against 6-OHDA Damage via CXCR4 Signaling Pathway

    PubMed Central

    Zhang, Jing; Fan, Wenchuang; Wang, Hui; Bao, Lihua; Li, Guibao; Li, Tao; Song, Shouyang; Li, Hongyu; Hao, Jing; Sun, Jinhao

    2015-01-01

    Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM). The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p < 0.01). Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p < 0.01). Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway. PMID:26681969

  15. Exendin-4 protects Aβ(1-42) oligomer-induced PC12 cell apoptosis

    PubMed Central

    Qiu, Chen; Wang, Yan-Ping; Pan, Xiao-Dong; Liu, Xiao-Ying; Chen, Zhou; Liu, Li-Bin

    2016-01-01

    Background: Type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer’s disease. Most recently, GLP-1 analogs have been shown to have a significant neuroprotective role in several neurodegenerative diseases. However, few are known on its potential mechanism. Objective: In this study, we report the effect of exendin-4 (Ex-4), a GLP-1 receptor agonist, on amyloid-β(1-42) peptide oligomer-induced apoptosis in a PC12 neuronal cell model. Methods: MTT, DAPI and Annexin-V/PI assays revealed that the viability of PC12 cells decreased in a dose- and time-dependent manner after exposure to amyloid-β(1-42) oligomers. This apoptotic effect could be attenuated by Ex-4 (100-300 nM) pre-treatment, compared with the PC12 cells treated with amyloid-β(1-42) oligomers alone. Moreover, treatment with amyloid-β(1-42) oligomers (10 μM) resulted in a decrease in active- and pro-caspase-3 expression, as well as in Bcl-2 protein expression; suggesting that amyloid-β(1-42) oligomers impaired neuronal cells via the apoptosis signaling pathway. A further study of this mechanism revealed that amyloid-β oligomers (AβOs) decreased the phosphorylation of Akt and CREB. As expected, pre-treatment with Ex-4 (300 nM) increased the expression of anti-apoptotic protein Bcl-2 and reduced active caspase-3 expression levels. In addition, Ex-4 upregulated the phosphorylation levels of Akt and CREB. Conclusions: These findings indicate that GLP-1 analogue Ex-4 has a neuroprotective effect against AβO-induced PC12 cell apoptosis through reversing the impairment of the neuronal survival signaling pathway. This strongly suggests that Ex-4 is a potential therapeutic option for ameliorating AβO-induced neurotoxicity in the clinical application of Ex-4 for AD treatment, particularly when associated with diabetes. PMID:27648144

  16. Exendin-4 protects Aβ(1-42) oligomer-induced PC12 cell apoptosis

    PubMed Central

    Qiu, Chen; Wang, Yan-Ping; Pan, Xiao-Dong; Liu, Xiao-Ying; Chen, Zhou; Liu, Li-Bin

    2016-01-01

    Background: Type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer’s disease. Most recently, GLP-1 analogs have been shown to have a significant neuroprotective role in several neurodegenerative diseases. However, few are known on its potential mechanism. Objective: In this study, we report the effect of exendin-4 (Ex-4), a GLP-1 receptor agonist, on amyloid-β(1-42) peptide oligomer-induced apoptosis in a PC12 neuronal cell model. Methods: MTT, DAPI and Annexin-V/PI assays revealed that the viability of PC12 cells decreased in a dose- and time-dependent manner after exposure to amyloid-β(1-42) oligomers. This apoptotic effect could be attenuated by Ex-4 (100-300 nM) pre-treatment, compared with the PC12 cells treated with amyloid-β(1-42) oligomers alone. Moreover, treatment with amyloid-β(1-42) oligomers (10 μM) resulted in a decrease in active- and pro-caspase-3 expression, as well as in Bcl-2 protein expression; suggesting that amyloid-β(1-42) oligomers impaired neuronal cells via the apoptosis signaling pathway. A further study of this mechanism revealed that amyloid-β oligomers (AβOs) decreased the phosphorylation of Akt and CREB. As expected, pre-treatment with Ex-4 (300 nM) increased the expression of anti-apoptotic protein Bcl-2 and reduced active caspase-3 expression levels. In addition, Ex-4 upregulated the phosphorylation levels of Akt and CREB. Conclusions: These findings indicate that GLP-1 analogue Ex-4 has a neuroprotective effect against AβO-induced PC12 cell apoptosis through reversing the impairment of the neuronal survival signaling pathway. This strongly suggests that Ex-4 is a potential therapeutic option for ameliorating AβO-induced neurotoxicity in the clinical application of Ex-4 for AD treatment, particularly when associated with diabetes.

  17. Phosphatidylinositol-anchored glycoproteins of PC12 pheochromocytoma cells and brain

    SciTech Connect

    Margolis, R.K.; Goossen, B.; Margolis, R.U.

    1988-05-03

    PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellium were labeled with (/sup 3/H)glucosamine, (/sup 3/H)fucose, (/sup 3/H)leucine, (/sup 3/H)ethanolamine, or sodium (/sup 35/S)sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of (/sup 3/H) glucosamine- or (/sup 3/H)fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel ectrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-l glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-..beta..-galactosidase, 40-45% of the (/sup 3/H)glucosamine of (/sup 3/H)fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of (/sup 3/H)ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence,while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in (/sup 3/H)ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain.

  18. Neuroprotective effects of constituents of Eragrostis ferruginea against Aβ-induced toxicity in PC12 cells.

    PubMed

    Na, Chae Sun; Hong, Seong Su; Choi, Yun-Hyeok; Lee, Yong Ho; Hong, Sun Hee; Lim, Ji-Youn; Kang, Byeong Hoa; Park, So-Young; Lee, Dongho

    2010-07-01

    A new flavonoid, 7-demethylageconyflavone A (1), and five known compounds, tricin (2), ageconyflavone A (3), corylin (4), nectandrin B (5), and 4-ketopinoresinol (6) were isolated from the aerial parts of Eragrostis ferruginea. Their structures were determined using spectroscopic techniques, including 1D- and 2D-NMR. All compounds were tested for the neuroprotective effects against amyloid beta peptide (Abeta) using PC12 cells, a major cause of the pathology of Alzheimer's disease. Tricin (2) was found to have a neuroprotective effect with an ED(50) value of 20.3 microM against Abeta-induced toxicity in PC12 cells. Ageconyflavone A (3), nectandrin B (5) and 4-ketopinoresinol (6) demonstrated moderate neuroprotective effects with ED(50) values of 58.7, 44.1, and 54.8 microM, respectively.

  19. Genomic and physiological analysis of oxygen sensitivity and hypoxia tolerance in PC12 cells.

    PubMed

    Seta, Karen; Kim, Hie-Won; Ferguson, Tsuneo; Kim, Richard; Pathrose, Peterson; Yuan, Yong; Lu, Gang; Spicer, Zachary; Millhorn, David E

    2002-10-01

    The mechanisms by which cells adapt and respond to changes in oxygen tension remain largely unknown. Our laboratory has used the PC12 cell line to study both biophysical and molecular responses to hypoxia. This chapter summarizes our findings. We found that membrane depolarization that occurred when PC12 cells were exposed to reduced O(2) was mediated by a specific potassium channel, the Kv1.2 channel. The membrane depolarization leads to increased Ca(2+) conductance through a voltage-sensitive channel, which in turn mediates the release of the neurotransmitters dopamine, adenosine, glutamate, and GABA. In addition, increased intracellular Ca(2+) and other signaling systems regulate hypoxia-induced gene expression, which contributes to the adaptive response to reduced O(2+). We identified several critical signaling pathways that regulate a complex gene expression profile in PC12 cells during hypoxia. These include the cAMP-protein kinase A, Ca(2+)-calmodulin, p42/44 mitogen-activated protein kinase (MAPK), stress-activated protein kinase (SAPK; p38 kinase), and the phosphatidylinositol 3-kinase-AKT as regulators of gene expression. Several of these pathways regulate hypoxia-specific transcription factors that are members of the hypoxia-inducible factor (HIF) family. Recently, we have successfully used subtractive cDNA libraries and microarray analysis to identify the genomic profile that mediates the cellular response to hypoxia. PMID:12438156

  20. Hypoxia regulates the cAMP- and Ca2+/calmodulin signaling systems in PC12 cells.

    PubMed

    Beitner-Johnson, D; Leibold, J; Millhorn, D E

    1998-01-01

    Hypoxic/ischemic trauma is a primary factor in the pathology of various disease states. Yet, very little is known about the molecular mechanisms involved in cellular responses and adaptations to hypoxia. As a means of identifying intracellular signaling systems that are regulated in response to hypoxia, the effects of acute and chronic hypoxia on the activity of protein kinase A (PKA) and Ca2+/CaM-dependent protein kinase II (CaMK-II) were evaluated in rat pheochromocytoma (PC12) cells. Chronic (> 6 hr), but not acute exposure to hypoxia (5% O2) significantly decreased both PKA enzyme activity and immunoreactivity compared to control levels. This effect was not due to hypoxia-induced alterations in cell number or viability. Similarly, chronic hypoxia significantly decreased CaMK-II enzyme activity and protein levels in PC12 cells. These data demonstrate that down-regulation of the cAMP and Ca2+/CaM-signaling systems is a mechanism by which PC12 cells adapt to long-term hypoxia. PMID:9439610

  1. Protective effect of bixin on cisplatin-induced genotoxicity in PC12 cells.

    PubMed

    Dos Santos, Graciela Cristina; Mendonça, Leonardo Meneghin; Antonucci, Gilmara Ausech; Dos Santos, Antonio Cardozo; Antunes, Lusânia Maria Greggi; Bianchi, Maria de Lourdes Pires

    2012-02-01

    Bixin is the main carotenoid found in annatto seeds (Bixa orellana L.) and is responsible for their reddish-orange color. The antioxidant properties of this compound are associated with its ability to scavenge free radicals, which may reduce damage and protect tissues against toxicity caused by anticancer drugs such as cisplatin. In this study, the genotoxicity and antigenotoxicity of bixin on cisplatin-induced toxicity in PC12 cells was assessed. Cytotoxicity was evaluated using the MTT assay, mutagenicity, genotoxicity, and protective effect of bixin were evaluated using the micronucleus test and comet assay. PC12 cells were treated with bixin (0.05, 0.08, and 0.10μg/mL), cisplatin (0.1μg/mL) or a combination of both bixin and cisplatin. Bixin was neither cytotoxic nor genotoxic compared to the controls. In the combined treatment bixin significantly reduced the percentage of DNA in tail and the frequency of micronuclei induced by cisplatin. This result suggests that bixin can function as a protective agent, reducing cisplatin-induced DNA damage in PC12 cells, and it is possible that this protection could also extend to neuronal cells. Further studies are being conducted to better understand the mechanisms involved in the activity of this protective agent prior to using it therapeutically. PMID:22019694

  2. Amyloid β-abrogated TrkA ubiquitination in PC12 cells analogous to Alzheimer's disease.

    PubMed

    Zheng, Chen; Geetha, Thangiah; Gearing, Marla; Babu, Jeganathan Ramesh

    2015-06-01

    Amyloid beta (Aβ) protein is the primary proteinaceous deposit found in the brains of patients with Alzheimer's disease (AD). Evidence suggests that Aβ plays a central role in the development of AD pathology. Here, we show in PC12 cells, Aβ impairs tropomyosin receptor kinase A (TrkA) ubiquitination, phosphorylation, and its association with p75(NTR), p62, and TRAF6 induced by nerve growth factor. The ubiquitination and tyrosine phosphorylation of TrkA was also found to be impaired in postmortem human AD hippocampus compared to control. Interestingly, the nitrotyrosylation of TrkA was increased in AD hippocampus and this explains why the phosphotyrosylation and ubiquitination of TrkA was impaired. In AD brain, the production of matrix metalloproteinase-7 (MMP-7), which cleaves proNGF, was reduced, thereby leading to the accumulation of pro-NGF and a decrease in the level of active NGF. TrkA signaling events, including Ras/MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt pathways, are deactivated with Aβ and in the human AD hippocampus. Findings show that Aβ blocks the TrkA ubiquitination and downstream signaling similar to AD hippocampus. Cell survival and differentiation are essential for living organisms. We propose that under normal conditions, nerve growth factor (NGF) leads to Tropomyosin receptor kinase A (TrkA) phosphorylation, ubiquitination and its association with p75(NTR), p62 and TRAF6, thereby promoting cell survival and differentiation. In diseased conditions such as Alzheimer's, proNGF leads to nitrotyrosylation of TrkA, thereby impairing its ubiquitination and downstream signaling which results in apoptosis. TRAF6 = tumor necrosis factor receptor-associated factor 6; Ub = ubiquitin. PMID:25708205

  3. Transcriptional down-regulation of epidermal growth factor receptors by nerve growth factor treatment of PC12 cells.

    PubMed

    Shibutani, M; Lazarovici, P; Johnson, A C; Katagiri, Y; Guroff, G

    1998-03-20

    Treatment of PC12 cells with nerve growth factor leads to a decrease in the number of epidermal growth factor receptors on the cell membrane. The mRNA for the epidermal growth factor receptor decreases in a comparable fashion. This decrease appears due to a decrease in the transcription of the epidermal growth factor receptor gene because first, there is no difference in the stability of the epidermal growth factor receptor mRNA, second, newly transcribed epidermal growth factor receptor mRNA is decreased in nerve growth factor-differentiated cells, and third, constructs containing the promoter region of the epidermal growth factor receptor gene are transcribed much less readily in nerve growth factor-differentiated cells than in untreated cells. The decreases in mRNA are not seen in the p140(trk)-deficient variant PC12nnr5 cells nor in cells containing either dominant-negative Ras or dominant-negative Src. Treatment with nerve growth factor also increases the cellular content of GCF2, a putative transcription factor inhibitory for the transcription of the epidermal growth factor receptor gene. The increase in GCF2, like the decrease in the epidermal growth factor receptor mRNA, is not seen in PC12nnr5 cells nor in cells expressing either dominant-negative Ras or dominant-negative Src. The results suggest that nerve growth factor-induced down-regulation of the epidermal growth factor receptor is under transcriptional control, is p140(trk)-, Ras-, and Src-dependent, and may involve transcriptional repression by GCF2.

  4. Effects of selenocystine on lead-exposed Chinese hamster ovary (CHO) and PC-12 cells

    SciTech Connect

    Aykin-Burns, Nukhet; Ercal, Nuran . E-mail: nercal@umr.edu

    2006-07-15

    Lead is a pervasive environmental toxin that affects multiple organ systems, including the nervous, renal, reproductive, and hematological systems. Even though it is probably the most studied toxic metal, some of the symptoms of lead toxicity still cannot be explained by known molecular mechanisms. Therefore, lead-induced oxidative stress has recently started to gain attention. This in vitro study confirms the existence of oxidative stress due to lead exposure. Administration of lead acetate (PbA) to cultures of Chinese hamster ovary cells (CHO) had a concentration-dependent inhibitory effect on colony formation and cell proliferation. This inhibition was eliminated by 5 {mu}M selenocystine (SeCys). In order to evaluate the nature of SeCys's effect, we measured glutathione (GSH), its oxidized form glutathione disulfide (GSSG), malondialdehyde (MDA), catalase, and GSH peroxidase (GPx) activities in lead-exposed CHO cells both in the presence and absence of SeCys. Increases in MDA, catalase, and GPx activities were observed in cultures that received only PbA, but supplementation with SeCys returned these measures to pretreatment levels. The ratio of GSH to GSSG increased in lead-exposed cells incubated in SeCys-enhanced media but declined in cultures treated with PbA only. In order to determine whether SeCys also reverses lead-induced neurotoxicity, a neuronal cell line, PC-12 cells, was used. Lead's inhibition on neurite formation was significantly eliminated by SeCys in PC-12 cells. Our results suggest that SeCys can confer protection against lead-induced toxicity in CHO cells and neurotoxicity in PC-12 cells.

  5. Curcuminoids promote neurite outgrowth in PC12 cells through MAPK/ERK- and PKC-dependent pathways.

    PubMed

    Liao, Kuo-Kai; Wu, Ming-Jiuan; Chen, Pei-Yi; Huang, Szu-Wei; Chiu, Shu-Jun; Ho, Chi-Tang; Yen, Jui-Hung

    2012-01-11

    Curcuminoids, the predominant polyphenolic compounds in the rhizome of Curcuma longa Linn., consist of curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). They exhibit multiple desirable characteristics for a neuroprotective agent including antioxidant, anti-inflammatory, and antiamyloid activities. In this work, we report the first investigation of the neurotrophic action and mechanism of curcuminoids in PC12 cells, which respond to nerve growth factor (NGF) and therefore serve as a model system for primary neuronal cells. The percentages of neurite-bearing cells for those treated with 20 μM curcumin, DMC, and BDMC for 72 h reached 21.6 ± 2.0%, 16.3 ± 2.4%, and 19.9 ± 2.5%, respectively, and were significantly higher than that of the negative control (2.0 ± 0.3%, p < 0.05). In parallel, increased expression of the neuronal differentiation markers, growth-associated protein-43 (GAP-43), and neurofilament-L (NF-L) was found in curcuminoid-treated cells. All three curcuminoids (20 μM) activated extracellular signal-regulated protein kinase 1/2 (ERK1/2) and protein kinase C (PKC) signalings, and inhibition of these kinases with the respective pharmacological inhibitors effectively attenuated curcuminoid-induced neurite outgrowth. Furthermore, our results show that both curcumin and DMC, but not BDMC, induced phosphorylation of cAMP response element-binding protein (CREB) and CRE-reporter gene activity significantly (p < 0.05). These inductions were markedly attenuated by the addition of MEK/ERK or PKC inhibitor; as a consequence, ERK- and PKC-dependent pathways may be involved in curcuminoid-mediated neuritogenesis in PC12 cells. Moreover, activation of CREB coupling with CRE-dependent gene transcription may play a vital role for curcumin- or DMC-induced PC12 differentiation. PMID:22145830

  6. Effect of nerve growth factor on the synthesis of amino acids in PC12 cells

    SciTech Connect

    Zielke, H.R.; Tildon, J.T.; Kauffman, F.C.; Baab, P.J. )

    1989-04-01

    Radioactive short-chain fatty acids preferentially label glutamine relative to glutamate in brain due to compartmentation of glutamine and glutamate. To determine whether this phenomenon occurs in a single cell culture model, we examined the effect of fatty acid chain length on the synthesis as well as pool size of selected amino acids in rat pheochromocytoma PC12 cells, a cell culture model of the large glutamate compartment in neurons. Intracellular 14C-amino acids were quantitated by HPLC, and the incorporation of (U-14C)-glucose, (1-14C)-butyrate, (1-14C)-octanoate, and (1-14C)-palmitate into five amino acids was measured in native and NGF-treated PC12 cells. NGF pretreatment decreased the intracellular concentration of amino acids as did addition of fatty acids but these effects were not additive. Specific activities of amino acids in native cells labelled by 14C-octanoate were 1,300 DPM/nmol, 490 DPM/nmol, 200 DPM/nmol, and 110 DPM/nmol for glutamate, aspartate, glutamine, and serine, respectively. No radioactivity was detected in alanine. Similar specific activities were noted when 14C-butyrate was the precursor; however, there was at least 5-fold less if 14C-palmitate was the precursor. Pretreatment of cells with NGF decreased the specific activity of amino acids by 25-65%. Specific activities of amino acids synthesized from 14C-glucose decreased in the following order: glutamate, 1,640 DPM/nmol; aspartate, 1,210 DPM/nmol; alanine, 580 DPM/nmol; glutamine, 275 DPM/nmol; and serine, 80 DPM/nmol for native cells. NGF pretreatment decreased the specific activities of glutamate and glutamine, but not of the other 3 amino acids. The preferred precursor for glutamate synthesis in native PC12 cells was glucose followed by octanoate, butyrate and palmitate (16:6:3:1).

  7. Evaluation of antioxidant and cytoprotective activities of Artemisia ciniformis extracts on PC12 cells

    PubMed Central

    Mojarrab, Mahdi; Nasseri, Sajjad; Hosseinzadeh, Leila; Farahani, Farah

    2016-01-01

    Objective(s): In the current study antioxidant capacities of five different extracts of Artemisia ciniformis aerial parts were evaluated by cell-free methods. Then seven fractions of the potent extract were selected and their antioxidant capacity was assayed by cell free and cell based methods. Materials and Methods: Antioxidant ability was measured using the: 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test, β-carotene bleaching (BCB) method and ferrous ion chelating (FIC) assay. Total phenolic contents (TPC) of all the samples also were determined. The cytoprotective effect of fractions was evaluated by measuring the viability of cells after exposure to doxorubicin (DOX). The mechanism of action was studied by investigating caspase-3, mitochondrial membrane potential (MMP), the level of super-oxide dismutase (SOD) and intracellular reactive oxygen species (ROS). Results: Hydroethanolic extract exhibited a notably higher antioxidant activity and phenolic content. Among the fractions (A to G) of hydroethanolic extract, the highest antioxidant capacity was observed in the Fraction E. Moreover, 24 hr pretreatment of PC12 cells with fractions B, C and D decreased DOX-induced cytotoxicity. In addition, pre-treatment of cells with fraction B resulted in significant decrease in generation of the reactive oxygen species (ROS) and increase in the activity of SOD. We were able to demonstrate remarkable reduction in the activity of caspase-3 and increase in MMP in PC12 cells following pretreatment with fraction B. Conclusion: Our observations indicated that the fraction B of A. ciniformis hydroetanolic extract possessed protective effect on oxidative stress and apoptosis induced by DOX in PC12 cells. PMID:27279988

  8. Partial Protection of PC12 Cells from Cellular Stress by Low-Dose Sodium Nitroprusside Pre-treatment.

    PubMed

    Varga, Judit; Bátor, Judit; Nádasdi, Gergő; Árvai, Zita; Schipp, Renáta; Szeberényi, József

    2016-10-01

    The PC12 rat pheochromocytoma cell line is an in vitro model system widely used for the investigation of intracellular signaling events contributing to neuronal differentiation and cell death. We found earlier that the nitric oxide donor compound sodium nitroprusside (SNP) induced apoptosis of PC12 cells if it was applied in high concentration (400 µM). Yoshioka et al. (J Pharmacol Sci 101:126-134, 2006) reported that cell death evoked by cytotoxic concentrations of SNP could be prevented by a 100 µM SNP pre-treatment in a murine macrophage cell line. The apoptosis caused by toxic-dose SNP treatment (400 µM) could be partially overcome in PC12 cells as well by the low-dose SNP pre-treatment. The partial inhibition of apoptosis was accompanied by reduced phosphorylation of certain proteins (such as stress-activated protein kinases, the p53, and the eIF2α proteins), decreased caspase activation, and less intense internucleosomal DNA fragmentation. The 100 µM SNP pre-treatment reduced the pro-apoptotic potential of certain other stress stimuli (serum withdrawal, cisplatin and tunicamycin treatments) as well, although the underlying biochemical changes were not entirely uniform. On the contrary, the 100 µM SNP pre-treatment was unable to prevent cell death caused by the protein synthesis inhibitor anisomycin. Further clarification of the above-mentioned processes may be important in understanding the mechanisms by which mild nitrosative stress protects cells against certain forms of cellular stress conditions.

  9. Magnetic micro-device for manipulating PC12 cell migration and organization.

    PubMed

    Alon, N; Havdala, T; Skaat, H; Baranes, K; Marcus, M; Levy, I; Margel, S; Sharoni, A; Shefi, O

    2015-05-01

    Directing neuronal migration and growth has an important impact on potential post traumatic therapies. Magnetic manipulation is an advantageous method for remotely guiding cells. In the present study, we have generated highly localized magnetic fields with controllable magnetic flux densities to manipulate neuron-like cell migration and organization at the microscale level. We designed and fabricated a unique miniaturized magnetic device composed of an array of rectangular ferromagnetic bars made of permalloy (Ni80Fe20), sputter-deposited onto glass substrates. The asymmetric shape of the magnets enables one to design a magnetic landscape with high flux densities at the poles. Iron oxide nanoparticles were introduced into PC12 cells, making the cells magnetically sensitive. First, we manipulated the cells by applying an external magnetic field. The magnetic force was strong enough to direct PC12 cell migration in culture. Based on time lapse observations, we analysed the movement of the cells and estimated the amount of MNPs per cell. We plated the uploaded cells on the micro-patterned magnetic device. The cells migrated towards the high magnetic flux zones and aggregated at the edges of the patterned magnets, corroborating that the cells with magnetic nanoparticles are indeed affected by the micro-magnets and attracted to the bars' magnetic poles. Our study presents an emerging method for the generation of pre-programmed magnetic micro-'hot spots' to locate and direct cellular growth, setting the stage for implanted magnetic devices. PMID:25792133

  10. Bcl-xS and Bax induce different apoptotic pathways in PC12 cells.

    PubMed

    Lindenboim, L; Yuan, J; Stein, R

    2000-03-30

    Apoptosis is regulated by the action of the Bcl-2 family of proteins, which includes anti- and pro-apoptotic members such as Bcl-xS and Bax. These proteins may differ from each other in structure, mechanism of action and interactions with anti-apoptotic signaling. The mechanism whereby Bax induces cell death has been studied in some cellular systems, but the mechanism of Bcl-xS-induced apoptosis is largely unknown. In this study we investigated and compared the apoptotic effects of Bcl-xS and Bax in the pheochromocytoma cell line, PC12 (a useful model system for studying neuronal apoptosis), and the extent to which they are protected by the survival factor, nerve growth factor (NGF). PC12 cells express endogenous Bcl-xS, Bax and Bcl-xL proteins. Subcellular fractionation revealed that Bax is presented mainly in the cytosolic and the heavy membrane fractions, Bcl-xS is present only in the cytosol, and the anti-apoptotic protein Bcl-xL is located mainly in the heavy membrane fraction. In contrast to the cytosolic localization of endogenous Bcl-xS, the exogenously overexpressed Bcl-xS is localized to the mitochondria. Overexpression of Bcl-xS or Bax induces cell death in the transfected cells. The cell death induced by overexpression of Bcl-xS was inhibited by coexpression of Bcl-xS with Bcl-2 or Bcl-xL, or by treatment with the broad-spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoro-methylketone (Z-VAD-FMK) or with NGF. The Bcl-2 mutants deltaC22, which lacks the transmembrane domain, and G145A (mI-3) were able to inhibit the death-inducing effect of Bcl-xS. These results therefore suggest that the apoptotic pathway induced by overexpression of Bcl-xS in PC12 cells can be controlled by Bcl-2 and Bcl-xL, is mediated by caspases, and can be inhibited by the NGF signaling pathway. The Bax-induced cell death was inhibited by co-expression of Bax with Bcl-2 or Bcl-xL, but was not inhibited by Z-VAD-FMK, NGF, or the Bcl-2 ml-3 or deltaC22 mutants. These

  11. Modeling the developmental neurotoxicity of nicotine in vitro: cell acquisition, growth and viability in PC12 cells.

    PubMed

    Abreu-Villaça, Yael; Seidler, Frederic J; Qiao, Dan; Slotkin, Theodore A

    2005-02-01

    Although nicotine is a developmental neurotoxicant, it also can exert neuroprotective effects. In the current study, we used PC12 cells to determine the developmental phases in which these disparate actions are expressed and to compare the concentrations required for each. In undifferentiated cells, 1 or 10 microM nicotine had little or no effect on cell number (assessed by measuring DNA) but exerted positive trophic actions, characterized by transient enhancement of cell growth (increased total protein/DNA ratio) and persistent enhancement of cell viability (decreased proportions of cells stained with trypan blue). When differentiation was initiated with nerve growth factor, nicotine elicited a different spectrum of actions, with decreases in cell number, impaired neuritic outgrowth (reduced ratio of membrane/total protein) and weakened viability. In either undifferentiated or differentiating cells, nicotine increased lipid peroxidation (determined as thiobarbituric acid reactive species), providing evidence for oxidative damage. Our results indicate that nicotine exerts positive trophic effects primarily on undifferentiated cells, whereas with differentiation the effects undergo a transition to neurotoxicity. These findings support the view that the neurodevelopmental actions of nicotine depend not only upon the magnitude and duration of the exposure, but most importantly on the developmental stage (e.g., differentiation state) in which exposure occurs. PMID:15707677

  12. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line.

    PubMed

    Miyake, Seiji; Kobayashi, Saori; Tsubota, Kazuo; Ozawa, Yoko

    2014-04-01

    The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina.

  13. Association of nerve growth factor receptors with the triton X-100 cytoskeleton of PC12 cells

    SciTech Connect

    Vale, R.D.; Ignatius, M.J.; Shooter, E.M.

    1985-10-01

    Triton X-100 solubilizes membranes of PC12 cells and leaves behind a nucleus and an array of cytoskeletal filaments. Nerve growth factor (NGF) receptors are associated with this Triton X-100-insoluble residue. Two classes of NGF receptors are found on PC12 cells which display rapid and slow dissociating kinetics. Although rapidly dissociating binding is predominant (greater than 75%) in intact cells, the majority of binding to the Triton X-100 cytoskeleton is slowly dissociating (greater than 75%). Rapidly dissociating NGF binding on intact cells can be converted to a slowly dissociating form by the plant lectin wheat germ agglutinin (WGA). This lectin also increases the number of receptors which associate with the Triton X-100 cytoskeleton by more than 10-fold. SVI-NGF bound to receptors can be visualized by light microscopy autoradiography in Triton X-100-insoluble residues of cell bodies, as well as growth cones and neurites. The WGA-induced association with the cytoskeleton, however, is not specific for the NGF receptor. Concentrations of WGA which change the Triton X-100 solubility of membrane glycoproteins are similar to those required to alter the kinetic state of the NGF receptor. Both events may be related to the crossbridging of cell surface proteins induced by this multivalent lectin.

  14. Thiram and ziram stimulate non-selective cation channel and induce apoptosis in PC12 cells.

    PubMed

    Sook Han, Myoung; Shin, Kum Joo; Kim, Yun Hee; Kim, Sun Hee; Lee, Taehoon; Kim, Euikyung; Ho Ryu, Sung; Suh, Pann Ghill

    2003-06-01

    The neurotoxicity of dithiocarbamates has been previously reported, however, the detailed mechanism underlying the neurotoxicity is still not fully understood. Among the dithiocarbamates, we investigated thiram and ziram in a neuronal-like pheochromocytoma (PC12) cells. Thiram and ziram strongly induced cell death in both dose- and time-dependent manners with the LC(50) of 0.3 and 2 microM, respectively. The cell death showed typical apoptotic features, such as DNA fragmentation and an increase of subdiploidy nuclei. Interestingly, both thiram and ziram induced rapid and sustained increases of intracellular Ca(2+) in PC12 cells, which were almost completely blocked by flufenamic acid (FFA), an inhibitor of non-selective cation channel. BAPTA-AM, an intracellular Ca(2+) chelator, inhibited the thiram- and ziram-induced apoptotic cell death. These results suggest that thiram and ziram induce apoptotic neuronal cell death by Ca(2+) influx through non-selective cation channels. The present study may provide a clue for understanding the mechanism of neurotoxicity of thiram and ziram.

  15. A new flavonone from seeds of Alpinia katsumadai and its neuroprotective effect on PC12 cells.

    PubMed

    Xin, Ben-Ru; Ren, Shou-Juan; Li, Jie

    2014-07-01

    A new flavonone, named as (2R, 3S)-pinobanksin-3-cinnamate(1), together with six known compounds, pinocem-brin (2), pinobanksin (3), 3-O-acetylpinobanksin (4), galangin (5), kumatakenin(6), and 3-methylkaempferol (7), were isolated from a 95% ethanol extract of seeds of Alpinia katsumadai through a combination of various chromatographic techniques, including silica gel and Sephadex LH-20. The structure of compound 1 was elucidated by spectroscopic data analysis. Compound 1 exhibits a potent neuroprotective effect against the corticosterone-damaged PC12 cells, which may be underlying the effect by scavenging intracellular ROS.

  16. Protection of PC12 cells from chemical ischemia induced oxidative stress by Fagonia arabica.

    PubMed

    Satpute, Ravindra M; Kashyap, Rajpal S; Deopujari, Jayant Y; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F

    2009-11-01

    Fagonia arabica (Zygophyllaceae) is an important Ayurvedic herb, grows throughout arid regions of India, has been widely used as a folk remedy by the indigenous people for its anti-inflammatory, analgesic and antipyretic effects. In the present study, antioxidant potential of F. arabica and the associated mechanism of antioxidant defence in rat pheochromocytoma (PC12) cells subjected to chemical ischemia was studied. Effect of total extract of F. arabica was studied for its antioxidant potential on the chemical ischemia induced PC12 cells. Alterations in the activities of cellular antioxidant enzymes (SOD, CAT, GSH-Px and GSH-R) were measured. Antioxidant potential of herb (ABTS), extent of lipid peroxidation (MDA and 4-HAE), total antioxidant status (TAS) and total glutathione (reduced, oxidized and their ratio) were evaluated. F. arabica scavenges the free radicals (ABTS(.)+), and showed a concentration dependent antioxidant activity, highest being at 1000 microg/ml. Its treatment with ischemic cells ameliorates the GSH and TAS levels and also helps the cells to restore the activities of the cellular antioxidative enzymes and also reduced the degree of lipid peroxidation. F. arabica scavenges the free radicals and attenuates oxidative stress mediated cell injury during ischemia. PMID:19520135

  17. Histone deacetylase inhibitor attenuates neurotoxicity of clioquinol in PC12 cells.

    PubMed

    Fukui, Takao; Asakura, Kunihiko; Hikichi, Chika; Ishikawa, Tomomasa; Murai, Rie; Hirota, Seiko; Murate, Ken-Ichiro; Kizawa, Madoko; Ueda, Akihiro; Ito, Shinji; Mutoh, Tatsuro

    2015-05-01

    Clioquinol is considered to be a causative agent of subacute myelo-optico neuropathy (SMON), although the pathogenesis of SMON is yet to be elucidated. We have previously shown that clioquinol inhibits nerve growth factor (NGF)-induced Trk autophosphorylation in PC12 cells transformed with human Trk cDNA. To explore the further mechanism of neuronal damage by clioquinol, we evaluated the acetylation status of histones in PC12 cells. Clioquinol reduced the level of histone acetylation, and the histone deacetylase (HDAC) inhibitor Trichostatin A upregulated acetylated histones and prevented the neuronal cell damage caused by clioquinol. In addition, treatment with HDAC inhibitor decreased neurite retraction and restored the inhibition of NGF-induced Trk autophosphorylation by clioquinol. Thus, clioquinol induced neuronal cell death via deacetylation of histones, and HDAC inhibitor alleviates the neurotoxicity of clioquinol. Clioquinol is now used as a potential medicine for malignancies and neurodegenerative diseases. Therefore, HDAC inhibitors can be used as a candidate medicine for the prevention of its side effects on neuronal cells.

  18. Hypoxia activates Akt and induces phosphorylation of GSK-3 in PC12 cells.

    PubMed

    Beitner-Johnson, D; Rust, R T; Hsieh, T C; Millhorn, D E

    2001-01-01

    Akt is a serine/threonine kinase that has been shown to play a central role in promoting cell survival and opposing apoptosis. We evaluated the effect of hypoxia on Akt in rat pheochromocytoma (PC12) cells. PC12 cells were exposed to varying levels of hypoxia, including 21%, 15%, 10%, 5%, and 1% O(2). Hypoxia dramatically increased phosphorylation of Akt (Ser(473)). This effect peaked after 6 h exposure to hypoxia, but persisted strongly for up to 24 h. Phosphorylation of Akt was paralleled with a progressive increase in phosphorylation of glycogen synthase kinase-3 (GSK-3), one of its downstream substrates. The effect of hypoxia on phosphorylation of Akt was completely blocked by pretreatment of the cells with wortmannin (100 nM), indicating that this effect is mediated by phosphatidylinositol 3-kinase (P13K). In contrast, whereas hypoxia also strongly induced phosphorylation of the transcription factors CREB and EPAS1, these effects persisted in the presence of wortmannin. Thus, hypoxia regulates both P13K-dependent and P13K-independent signaling pathways. Furthermore, activation of the P13K and Akt signaling pathways may be one mechanism by which cells adapt and survive under conditions of hypoxia. PMID:11257444

  19. ProNGF derived from rat sciatic nerves downregulates neurite elongation and axon specification in PC12 cells

    PubMed Central

    Trigos, Anna Sofía; Longart, Marines; García, Lisbeth; Castillo, Cecilia; Forsyth, Patricia; Medina, Rafael

    2015-01-01

    Several reports have shown that a sciatic nerve conditioned media (CM) causes neuronal-like differentiation in PC12 cells. This differentiation is featured by neurite outgrowth, which are exclusively dendrites, without axon or sodium current induction. In previous studies, our group reported that the CM supplemented with a generic inhibitor for tyrosine kinase receptors (k252a) enhanced the CM-induced morphological differentiation upregulating neurite outgrowth, axonal formation and sodium current elicitation. Sodium currents were also induced by depletion of endogenous precursor of nerve growth factorr (proNGF) from the CM (pNGFd-CM). Given that sodium currents, neurite outgrowth and axon specification are important features of neuronal differentiation, in the current manuscript, first we investigated if proNGF was hindering the full PC12 cell neuronal-like differentiation. Second, we studied the effects of exogenous wild type (pNGFwt) and mutated (pNGFmut) proNGF isoforms over sodium currents and whether or not their addition to the pNGFd-CM would prevent sodium current elicitation. Third, we investigated if proNGF was exerting its negative regulation through the sortilin receptor, and for this, the proNGF action was blocked with neurotensin (NT), a factor known to compete with proNGF for sortilin. Thereby, here we show that pNGFd-CM enhanced cell differentiation, cell proportion with long neurites, total neurite length, induced axonal formation and sodium current elicitation. Interestingly, treatment of PC12 cells with wild type or mutated proNGF isoforms elicited sodium currents. Supplementing pNGFd-CM with pNGFmut reduced 35% the sodium currents. On the other hand, pNGFd-CM+pNGFwt induced larger sodium currents than pNGFd-CM. Finally, treatments with CM supplemented with NT showed that sortilin was mediating proNGF negative regulation, since its blocking induced similar effects than the pNGFd-CM treatment. Altogether, our results suggest that proNGF within the

  20. Protective effect of trifluoperazine on hydrogen peroxide-induced apoptosis in PC12 cells.

    PubMed

    Liu, Shichang; Han, Yangguang; Zhang, Tao; Yang, Zhuo

    2011-02-01

    This study investigated effects of trifluoperazine (TFP) against the cytotoxicity induced by H₂O₂ in PC12 cells and the mechanisms thereof. Different concentrations of H₂O₂ (100-500 μM) induced a significant decrease in cell viability accompanied by increased oxidative stress and cell apoptosis. Pretreatment with TFP inhibited H₂O₂-induced cell viability loss. The flow cytometric assay showed that TFP can inhibit intracellular reactive oxygen species (ROS) generation and reduce the cell apoptosis. The electrophysiological recordings indicated that when treated with H₂O₂, the calcium current was significantly increased. Pretreatment with TFP increased mitochondrial membrane potential (MMP) in cells of oxidative injury. These results suggested that TFP can reduce apoptosis by inhibiting ROS generation and preventing loss of MMP in cells. Meanwhile, the protective effect of TFP on the cell apoptosis may be related to the calcium overload. TFP may inhibit the calcium overload process to achieve the protection against apoptosis.

  1. Epidermal growth factor receptors on PC12 cells: alteration of binding properties by lectins

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1983-01-01

    The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of /sup 125/I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37 degrees C and 4 degrees C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylation of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with /sup 125/I-NGF binding, WGA but not Con A was found to increase, by severalfold, the proportion of /sup 125/I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.

  2. Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells

    PubMed Central

    1994-01-01

    Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH- terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs. PMID:7962100

  3. Cinepazide maleate protects PC12 cells against oxygen-glucose deprivation-induced injury.

    PubMed

    Zhao, Jun; Bai, Ya; Zhang, Chen; Zhang, Xiao; Zhang, Yun-Xia; Chen, Jing; Xiong, Lize; Shi, Ming; Zhao, Gang

    2014-06-01

    Our previous study showed that cinepazide maleate (CM) was as effective and safe as mildronate in the treatment of acute ischemic stroke in a randomized, double-blind, active-controlled phase II multicenter trial, but underlying mechanism(s) is not well understood. As an extending study, here we demonstrated that CM could protect neuronal cells by affecting mitochondrial functions. PC12 cells were exposed to 2.5 h oxygen-glucose deprivation (OGD) followed by a 24 h reoxygenation, and then treated with different concentrations (1, 10, 100 μM) of CM. Among various concentrations, 10 μM CM exhibited most significant protection on PC12 cells against OGD injury. CM was found to suppress OGD-induced oxidative stress, as supported by its capability of reducing intracellular reactive oxygen species and malondialdehyde production and enhancing superoxide dismutase activity. Importantly, our results showed that CM could preserve mitochondrial functions, as revealed by its capability of stabilizing mitochondrial membrane potential, improving OGD-induced suppression of mitochondrial respiratory complex activities and enhancing ATP production. In summary, our present study provides the first evidence that CM can protect neuronal cells against OGD injury by preserving mitochondrial functions. PMID:24374788

  4. Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells.

    PubMed

    Cheong, Chong-Un; Yeh, Ching-Sheng; Hsieh, Yi-Wen; Lee, Ying-Ray; Lin, Mei-Ying; Chen, Chung-Yi; Lee, Chien-Hsing

    2016-01-01

    Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The scavenging of reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the diseases' progression. Costunolide (CS) is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H₂O₂) and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H₂O₂ exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP), and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H₂O₂ through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK). These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged. PMID:27409597

  5. Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells.

    PubMed

    Wang, Jinghua; Zhang, Jifei; Bai, Shasha; Wang, Guangyou; Mu, Lili; Sun, Bo; Wang, Dandan; Kong, Qingfei; Liu, Yumei; Yao, Xiuhua; Xu, Ying; Li, Hulun

    2009-12-01

    Microgravity has a unique effect on biological organisms. Organs exposed to microgravity display cellular senescence, a change that resembles the aging process. To directly investigate the influence of simulated microgravity on neuronal original rat PC12 cells, we used a rotary cell culture system that simulates the microgravity environment on the earth. We found that simulated microgravity induced partial G1 phase arrest, upregulated senescence-associated beta-galactosidase (SA-beta-gal) activity, and activated both p53 and p16 protein pathways linked to cell senescence. The amount of reactive oxygen species (ROS) was also increased. The activity of intracellular antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), was all significantly increased at 12h after the microgravity onset, yet decreased at 96h. Furthermore, concomitant block of ROS by the antioxidant N-acetylcysteine significantly inhibited the microgravity-induced upregulation of SA-beta-gal activity. These results suggest that exposure to simulated microgravity induces cellular senescence in PC12 cells via an increased oxidant stress. PMID:19616052

  6. Evaluation of Silicon Nitride as a Substrate for Culture of PC12 Cells: An Interfacial Model for Functional Studies in Neurons

    PubMed Central

    Medina Benavente, Johan Jaime; Mogami, Hideo; Sakurai, Takashi; Sawada, Kazuaki

    2014-01-01

    Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions. PMID:24587271

  7. NAC1, a POZ/BTB protein present in the adult mammalian brain, triggers apoptosis after adenovirus-mediated overexpression in PC-12 cells.

    PubMed

    Korutla, Laxminarayana; Neustadter, Jason H; Fournier, Keith M; Mackler, Scott A

    2003-05-01

    POZ/BTB proteins influence cellular development and in some examples act as oncoproteins. However, several POZ/BTB transcription factors have been found in terminally differentiated neurons, where their functions remain unknown. One example is NAC1, a constitutively-expressed protein that can regulate behaviors associated with cocaine use. The present study represents an initial attempt to understand the actions of NAC1 within neurons by using adenoviral-mediated gene transfer into differentiated PC-12 cells. Cell survival in PC-12 cells overexpressing NAC1 was greatly reduced compared with cells infected by a control Ad-GFP. The morphological appearance of the dying cells was consistent with programmed cell death. Fragmentation of genomic DNA occurred in PC-12 cells infected with adenoviruses encoding NAC1 but not control viruses. NAC1 over expression was followed by the down regulation of the anti-apoptotic proteins Bcl-2 and Bcl-2-xl. Concurrently, levels of the pro-apoptotic proteins Bax and p53 increased following NAC1 overexpression. These observations suggest that NAC1expression in PC-12 cells induces apoptosis by altering the expression of these upstream mediators of the execution phase of programmed cell death. These findings raise the possibility that aberrantly regulated NAC1 expression in the mammalian brain may contribute to programmed cell death.

  8. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells.

    PubMed

    Appala, Raju N; Chigurupati, Sridevi; Appala, Raju V V S S; Krishnan Selvarajan, Kesavanarayanan; Islam Mohammad, Jahidul

    2016-01-01

    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1-20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells. PMID:27127683

  9. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells

    PubMed Central

    Appala, Raju N.; Appala, Raju V. V. S. S.

    2016-01-01

    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1–20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells. PMID:27127683

  10. Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells

    PubMed Central

    Teraoka, Mari; Nakaso, Kazuhiro; Kusumoto, Chiaki; Katano, Satoshi; Tajima, Naoko; Yamashita, Atsushi; Zushi, Teppei; Ito, Satoru; Matsura, Tatsuya

    2012-01-01

    Parkinson’s disease is a major neurodegenerative disease involving the selective degeneration of dopaminergic neurons and α-synuclein containing Lewy bodies formation in the substantia nigra. Although α-synuclein is a key molecule for both dopaminergic neuron death and the formation of inclusion bodies, the mechanism of α-synuclein induction of Parkinson’s disease-related pathogenesis is not understood. In the present study, we found that the interaction between dopamine and α-synuclein requires the oxidation of dopamine. Furthermore, we examined the protective effect of chlorogenic acid, a major polyphenol contained in coffee, against α-syn and dopamine-related toxicity. Chlorogenic acid inhibits several DA/α-synuclein-related phenomenon, including the oxidation of dopamine, the interaction of oxidized dopamine with α-synuclein, and the oligomerization of α-synuclein under dopamine existing conditions in vitro. Finally, we showed that the cytoprotective effect against α-synuclein-related toxicity in PC12 cells that can be controlled by the Tet-Off system. Although the induction of α-synuclein in catecholaminergic PC12 cells causes a decrease in cell viability, chlorogenic acid rescued this cytotoxicity significantly in a dose dependent manner. These results suggest that the interaction of oxidized DA with α-synuclein may be a novel therapeutic target for Parkinson’s disease, and polyphenols, including chlorogenic acid, are candidates as protective and preventive agents for Parkinson’s disease onset. PMID:22962530

  11. ETAS, an enzyme-treated asparagus extract, attenuates amyloid beta-induced cellular disorder in PC12 cells.

    PubMed

    Ogasawara, Junetsu; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Sakurai, Takuya; Sato, Shogo; Ishibashi, Yoshinaga; Izawa, Tetsuya; Takahashi, Kazuto; Ishida, Hitoshi; Takabatake, Ichiro; Kizaki, Takako; Ohno, Hideki

    2014-04-01

    One of the pathological characterizations of Alzheimer's disease (AD) is the deposition of amyloid beta peptide (Abeta) in cerebral cortical cells. The deposition of Abeta in neuronal cells leads to an increase in the production of free radicals that are typified by reactive oxygen species (ROS), thereby inducing cell death. A growing body of evidence now suggests that several plant-derived food ingredients are capable of scavenging ROS in mammalian cells. The purpose of the present study was to investigate whether enzyme-treated asparagus extract (ETAS), which is rich in antioxidants, is one of these ingredients. The pre-incubation of differentiated PC 12 cells with ETAS significantly recovered Abeta-induced reduction of cell viability, which was accompanied by reduced levels of ROS. These results suggest that ETAS may be one of the functional food ingredients with anti-oxidative capacity to help prevent AD.

  12. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells

    PubMed Central

    Singh, Nagendra S.; Rutkowska, Ewelina; Plazinska, Anita; Khadeer, Mohammed; Moaddel, Ruin; Jozwiak, Krzysztof; Bernier, Michel; Wainer, Irving W.

    2016-01-01

    D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer’s and Parkinsons’ diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac)-dehydronorketamine and (2S,6S)-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine. PMID:27096720

  13. Nerve growth factor stimulates the hydrolysis of glycosylphosphatidylinositol in PC-12 cells: A mechanism of protein kinase C regulation

    SciTech Connect

    Chan, B.L.; Saltiel, A.R. ); Chao, M.V. )

    1989-03-01

    Treatment of PC-12 pheochromocytoma cells with nerve growth factor (NGF) results in the differentiation of these cells into a sympathetic neuron-like phenotype. Although the initial intracellular signals elicited by NGF remain unknown, some of the cellular effects of NGF are similar to those of other growth factors, such as insulin. The authors have investigated the involvement of a newly identified inositol-containing glycolipid in signal transduction for the actions of NGF. NGF stimulates the rapid generation of a species of diacylglycerol that is labeled with ({sup 3}H)myristate but not with ({sup 3}H)arachidonate. NGF stimulates ({sup 3}H)myristate- or ({sup 32}P)phosphate-labeled phosphatidic acid production over the same time course. Although NGF alone has no effect on the turnover of inositol phospholipids, it does stimulate the hydrolysis of glycosylphosphatidylinositol. The NGF-dependent cleavage of this lipid is accompanied by an increase in the accumulation of its polar head group, an inositol phosphate glycan, which is generated within 30-60 sec of NGF treatment. In an unresponsive PC-12 mutant cell line, neither the diacylglycerol nor inositol phosphate glycan response is detected. A possible role for the NGF-stimulated diacylglycerol is suggested by the inhibition of NGF-dependent c-fos induction by staurosporin, a potent inhibitor of protein kinase C. These results suggest that, like insulin, some of the cellular effects of NGF may be mediated by the phospholipase C-catalyzed hydrolysis of glycosylphosphatidylinositol.

  14. Expression profiling upon Nex1/MATH-2-mediated neuritogenesis in PC12 cells and its implication in regeneration.

    PubMed

    Uittenbogaard, Martine; Chiaramello, Anne

    2004-12-01

    The expression of Nex1 peaks during brain development when neurite outgrowth and synaptogenesis are highly active. We previously showed that Nex1 is a critical effector of the nerve growth factor (NGF) pathway and its overexpression results in spontaneous neuritogenesis. Furthermore, the PC12-Nex1 cells exhibit accelerated neurite extension upon NGF exposure, and have the capacity to regenerate neurites in the absence of NGF. In this study, we identify the repertoire of genes targeted by Nex1 to unravel the molecular mechanisms by which Nex1 promotes differentiation and regeneration. Our transcriptional analysis reveals that Nex1 modulates a wide spectrum of genes with diverse functions, many of them being key downstream regulators of the NGF pathway, and critical to neuritogenesis, such as microtubules, microtubule-associated proteins (MAPs) and intermediate filaments. We also provide the first evidence that a basic helix-loop-helix (bHLH) protein stimulates the expression of the cyclin-dependent kinase (CDK) inhibitors belonging to the INK4 family, which plays a role in promoting cell-cycle arrest. Finally, we show a dramatic synergistic effect between Nex1 and cAMP, resulting in an impressive regeneration of an elaborate and dense neurite network. Thus, Nex1 has endowed the PC12-Nex1 cells with a distinct combination of gene products that takes part in the complex regulation of neuritogenesis and regeneration.

  15. The influence of magnetic fields exposure on neurite outgrowth in PC12 rat pheochromocytoma cells

    NASA Astrophysics Data System (ADS)

    Fan, W.; Ding, J.; Duan, W.; Zhu, Y. M.

    2004-11-01

    The aim of present work was to investigate the influence of magnetic fields exposure on neurite outgrowth in PC12 cells. The neurite number per cell, length of neurites and directions of neurite growth with respect to the direction of the magnetic field were analyzed after exposure to 50 Hz electromagnetic field for 96 h. A promotion was observed under a weak field (0.23 mT), as the average number of neurites per cell increased to 2.38±0.06 compared to 1.91±0.07 neurites/cell of the control dishes, while inhibition and directional outgrowth was evident under a relatively stronger field (1.32 mT). Our work shows that biological systems can be very sensitive to the strength of electromagnetic field.

  16. Astragaloside IV Attenuates Glutamate-Induced Neurotoxicity in PC12 Cells through Raf-MEK-ERK Pathway

    PubMed Central

    Chen, Bingyang; Zhao, Jing; He, Weiwei; Yuan, Hu; Yuan, Xing; Gao, Na; Wu, Guozhen; Jin, Huizi; Shan, Lei; Zhang, Weidong

    2015-01-01

    Astragaloside IV (AGS-IV) is a main active ingredient of Astragalus membranaceus Bunge, a medicinal herb prescribed as an immunostimulant, hepatoprotective, antiperspirant, a diuretic or a tonic as documented in Chinese Materia Medica. In the present study, we employed a high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS to investigate the possible mechanism of action involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. Differential proteins were identified, among which 13 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (vimentin and Gap43) were randomly selected, and their expression levels were further confirmed by western blots analysis. The results matched well with those of proteomics. Furthermore, network analysis of protein-protein interactions (PPI) and pathways enrichment with AGS-IV associated proteins were carried out to illustrate its underlying molecular mechanism. Proteins associated with signal transduction, immune system, signaling molecules and interaction, and energy metabolism play important roles in neuroprotective effect of AGS-IV and Raf-MEK-ERK pathway was involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. This study demonstrates that comparative proteomics based on shotgun approach is a valuable tool for molecular mechanism studies, since it allows the simultaneously evaluate the global proteins alterations. PMID:25961569

  17. Astragaloside IV Attenuates Glutamate-Induced Neurotoxicity in PC12 Cells through Raf-MEK-ERK Pathway.

    PubMed

    Yue, Rongcai; Li, Xia; Chen, Bingyang; Zhao, Jing; He, Weiwei; Yuan, Hu; Yuan, Xing; Gao, Na; Wu, Guozhen; Jin, Huizi; Shan, Lei; Zhang, Weidong

    2015-01-01

    Astragaloside IV (AGS-IV) is a main active ingredient of Astragalus membranaceus Bunge, a medicinal herb prescribed as an immunostimulant, hepatoprotective, antiperspirant, a diuretic or a tonic as documented in Chinese Materia Medica. In the present study, we employed a high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS to investigate the possible mechanism of action involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. Differential proteins were identified, among which 13 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (vimentin and Gap43) were randomly selected, and their expression levels were further confirmed by western blots analysis. The results matched well with those of proteomics. Furthermore, network analysis of protein-protein interactions (PPI) and pathways enrichment with AGS-IV associated proteins were carried out to illustrate its underlying molecular mechanism. Proteins associated with signal transduction, immune system, signaling molecules and interaction, and energy metabolism play important roles in neuroprotective effect of AGS-IV and Raf-MEK-ERK pathway was involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. This study demonstrates that comparative proteomics based on shotgun approach is a valuable tool for molecular mechanism studies, since it allows the simultaneously evaluate the global proteins alterations.

  18. Cortex Mori Radicis Extract induces neurite outgrowth in PC12 cells activating ERK signaling pathway via inhibiting Ca2+ influx

    PubMed Central

    Yin, Nina; Hong, Xiaoping; Han, Yongming; Duan, Yanjun; Zhang, Yanhong; Chen, Zebin

    2015-01-01

    Cortex Mori Radicis is a traditional Chinese herbal medicine which has a long history of use for the treatment of headaches, cough, edema and diabetes. However, its function and mode of action within nervous system remain largely unclear. In the present study, we have attempted to determine the effects of Cortex Mori Radicis Extract (CMRE) on neuronal differentiation. Here, we reported that CMRE induces the neurite outgrowth in pheochromocytoma PC12 cells and primary cortical neuron. Following the generation of neurite outgrowth, extracellular Ca2+ influx was inhibited and intracellular Ca2+ decreased. In addition, CMRE induced the extracellular signal-regulated kinase 1/2 (ERK1/2) activation and also stimulated the Rap1-GTP expression, which is closely linked to neuritogenesis. Moreover, the neurite outgrowth induced by CMRE was antagonized to a marked degree by suppressing activation of p-ERK1/2 with the specific ERK1/2 inhibitor (PD98059), suggesting the involvement of Rap1-GTP and ERK1/2 in CMRE-induced neurite outgrowth. Taken together, these results demonstrate that CMRE induces neurite outgrowth of PC12 cells through Rap1-ERK signaling pathway via inhibiting Ca2+ influx, and provide a novel insight into the manner in which CMRE participates in neuritogenesis. PMID:26131075

  19. Astragaloside IV Attenuates Glutamate-Induced Neurotoxicity in PC12 Cells through Raf-MEK-ERK Pathway.

    PubMed

    Yue, Rongcai; Li, Xia; Chen, Bingyang; Zhao, Jing; He, Weiwei; Yuan, Hu; Yuan, Xing; Gao, Na; Wu, Guozhen; Jin, Huizi; Shan, Lei; Zhang, Weidong

    2015-01-01

    Astragaloside IV (AGS-IV) is a main active ingredient of Astragalus membranaceus Bunge, a medicinal herb prescribed as an immunostimulant, hepatoprotective, antiperspirant, a diuretic or a tonic as documented in Chinese Materia Medica. In the present study, we employed a high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS to investigate the possible mechanism of action involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. Differential proteins were identified, among which 13 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (vimentin and Gap43) were randomly selected, and their expression levels were further confirmed by western blots analysis. The results matched well with those of proteomics. Furthermore, network analysis of protein-protein interactions (PPI) and pathways enrichment with AGS-IV associated proteins were carried out to illustrate its underlying molecular mechanism. Proteins associated with signal transduction, immune system, signaling molecules and interaction, and energy metabolism play important roles in neuroprotective effect of AGS-IV and Raf-MEK-ERK pathway was involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. This study demonstrates that comparative proteomics based on shotgun approach is a valuable tool for molecular mechanism studies, since it allows the simultaneously evaluate the global proteins alterations. PMID:25961569

  20. Tl(I) and Tl(III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells

    SciTech Connect

    Hanzel, Cecilia Eliana; Verstraeten, Sandra Viviana

    2009-04-01

    Thallium (Tl) is a highly toxic metal though yet its mechanisms are poorly understood. Previously, we demonstrated that rat pheochromocytoma (PC12) cells exposure to thallous (Tl(I)) or thallic (Tl(III)) cations leads to mitochondrial damage and reduced cell viability. In the present work we comparatively characterized the possible pathways involved in Tl(I)- and Tl(III)- (10-100 {mu}M) mediated decrease in PC12 cells viability. We observed that these cations do not cause cell necrosis but significantly increased the number of cells with apoptotic features. Both cations lead to Bax oligomerization and caused apoptosis inducing factor (AIF), endonuclease G (Endo G), and cytochrome c release from mitochondria, but they did not activate caspase dependent DNAse (CAD). Tl(I)- and Tl(III)-dependent caspases 9 and 3 activation followed similar kinetics, with maximal effects at 18 h of incubation. In addition, Tl(I) promoted phosphatidylserine (PS) exposure. Tl(III) induced 2- and 18-fold increase in Fas content and caspase 8 activity, respectively. Together, experimental results show that Tl(I) and Tl(III) induce PC12 cells apoptosis, although differential pathways are involved. While Tl(I)-mediated cell apoptosis was mainly associated with mitochondrial damage, Tl(III) showed a mixed effect triggering both the intrinsic and extrinsic pathways of apoptosis. These findings contribute to a better understanding of the mechanisms underlying Tl-induced loss of cell viability in PC12 cells.

  1. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry.

    PubMed

    Zhang, Hongye; Zheng, Hua; Zhao, Gan; Tang, Chaoling; Lu, Shiyin; Cheng, Bang; Wu, Fang; Wei, Jinbin; Liang, Yonghong; Ruan, Junxiang; Song, Hui; Su, Zhiheng

    2016-03-01

    Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.

  2. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry.

    PubMed

    Zhang, Hongye; Zheng, Hua; Zhao, Gan; Tang, Chaoling; Lu, Shiyin; Cheng, Bang; Wu, Fang; Wei, Jinbin; Liang, Yonghong; Ruan, Junxiang; Song, Hui; Su, Zhiheng

    2016-03-01

    Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells. PMID:26775910

  3. Calcium channel antagonist properties of the antineoplastic antiestrogen tamoxifen in the PC12 neurosecretory cell line

    SciTech Connect

    Greenberg, D.A.; Carpenter, C.L.; Messing, R.O.

    1987-01-01

    In view of existing evidence that Ca2+ may be important for tumor cell growth and metastasis, we investigated the effects of three antineoplastic drugs on K+-stimulated /sup 45/Ca2+ uptake through voltage-dependent Ca2+ channels of the PC12 neurosecretory cell line. The agents chosen for study (vinblastine, doxorubicin, and tamoxifen) were those previously shown to inhibit Ca2+/calmodulin- or Ca2+/phospholipid-activated protein kinases. Neither vinblastine nor doxorubicin altered /sup 45/Ca2+ uptake at concentrations that inhibit these Ca2+-dependent enzymes. However, tamoxifen reduced uptake (50% inhibitory dose, 8.6 +/- 0.9 (SE) microM) and competed for Ca2+ channel antagonist binding sites labeled by (/sup 3/H)-(+)PN200-110 (ki = 2.2 +/- 0.3 microM). Ca2+ channel antagonist properties may contribute to the effects of antineoplastic agents such as tamoxifen.

  4. Oxygen sensing in neuroendocrine cells and other cell types: pheochromocytoma (PC12) cells as an experimental model.

    PubMed

    Spicer, Zachary; Millhorn, David E

    2003-01-01

    A steady supply of oxygen is an absolute requirement for mammalian cells to maintain normal cellular functions. To answer the challenge that oxygen deprivation represents, mammals have evolved specialized cell types that can sense changes in oxygen tension and alter gene expression to enhance oxygen delivery to hypoxic areas. These oxygensensing cells are rare and difficult to study in vivo. As a result, pheochromocytoma (PC12) cells have become a vital in vitro model system for deciphering the molecular events that confer the hypoxia-resistant and oxygen-sensing phenotypes. Research over the last few years has revealed that the hypoxia response in PC12 cells involves the interactions of several signal transduction pathways (Ca2+/calmodulin-dependent kinases, Akt, SAPKs, and MAPKs) and transcription factors (HIFs, CREB, and c-fos/junB). This review summarizes the current understanding of the role these signal transduction pathways and transcription factors play in determining the hypoxic response. PMID:14739486

  5. Altered APP Carboxyl-Terminal Processing Under Ferrous Iron Treatment in PC12 Cells

    PubMed Central

    Kim, Chi Hyun

    2013-01-01

    Amyloid-β peptide (Aβ), generated by proteolytic cleavage of the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). The key step in the generation of Aβ is cleavage of APP by beta-site APP-cleaving enzyme 1 (BACE1). Levels of BACE1 are increased in vulnerable regions of the AD brain, but the underlying mechanism is unknown. In the present study, we reported the effects of ferrous ions at subtoxic concentrations on the mRNA levels of BACE1 and a-disintegrin-and-metalloproteinase 10 (ADAM10) in PC12 cells and the cell responses to ferrous ions. The cell survival in PC12 cells significantly decreased with 0 to 0.3 mM FeCl2, with 0.6 mM FeCl2 treatment resulting in significant reductions by about 75%. 4,6-diamidino-2-phenylindole (DAPI) staining showed that the nuclei appeared fragmented in 0.2 and 0.3 mM FeCl2. APP-α-carboxyl terminal fragment (APP-α-CTF) associations with ADAM10 and APP-β-CTF with BACE1 were increased. Levels of ADAM10 and BACE1 mRNA increased in response to the concentrations of 0.25 mM, respectively. In addition, p-ERK and p-Bad (S112, S155) expressions were increased, suggesting that APP-CTF formation is related to ADAM10/BACE1 expression. Levels of Bcl-2 protein were increased, but significant changes were not observed in the expression of Bax. These data suggest that ion-induced enhanced expression of AMDA10/BACE1 could be one of the causes for APP-α/β-CTF activation. PMID:23776394

  6. Neuroprotective activity of Viola mandshurica extracts on hydrogen peroxide-induced DNA damage and cell death in PC12 cells.

    PubMed

    Jeon, Gyeong-Im; Yoon, Mi-Young; Park, Hae-Ryoung; Lee, Seung-Cheol; Park, Eunju

    2009-08-01

    This study was conducted to examine the neuroprotective effects of acetone extracts from Viola mandshurica (VME). The effect of VME on hydrogen peroxide (H(2)O(2))-induced DNA damage in PC12 cells was evaluated by the comet assay where VME (100 and 250 microg/mL) was a dose-dependent inhibitor of DNA damage induced by 500 micromol/L of H(2)O(2). The protective effect of VME against H(2)O(2)-induced oxidative damage on PC12 cells was investigated by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] reduction assay and lactate dehydrogenase (LDH) release assays. After 3 h of cell exposure to 500 micromol/L of H(2)O(2), a marked reduction in cell survival was observed. However, the reduction was significantly prevented by 100 and 250 microg/mL of VME. H(2)O(2) also induced severe apoptosis of the PC12 cells, which was indicated by Hoechst 33342 staining. Interestingly, the H(2)O(2)-stressed PC12 cells that were incubated with 100 and 250 microg/mL of VME had greatly suppressed apoptosis. The results suggest that VME could be a new antioxidant candidate against neuronal diseases.

  7. Potential mechanisms responsible for chlorotriazine-induced alterations in catecholamines in pheochromocytoma (PC12) cells.

    PubMed

    Das, Parikshit C; McElroy, William K; Cooper, Ralph L

    2003-10-31

    Chlorotriazines interact with undifferentiated PC12 cells in vitro to modulate catecholamine synthesis and release, but the mechanism(s) responsible for this effect had not been determined. In this study we evaluated the effect of atrazine, simazine and cyanazine on the protein expression of the enzymes responsible for the synthesis of dopamine [tyrosine hydroxylase (TH)] and norepinephrine [dopamine-beta-hydroxylase (DbetaH)]. We also examined the possible intracellular pathway associated with chlorotriazine-induced changes in catecholamine synthesis and release. Incubating PC12 cells in the presence of 100 microM atrazine and simazine decreased intracellular dopamine (DA), norepinephrine (NE) concentration and NE release, and the protein expression of TH (approximately 20%) and DbetaH (approximately 50 and 25%, respectively) after 12-24 h exposure. In contrast, cyanazine (100 microM) stimulated intracellular and released NE concentration, and the protein expression of TH (approximately 20%) and DbetaH (approximately 225%) after 12-36 h exposure. Simultaneous exposure to the essential TH co-factors (iron and tetrahydrobiopterine) was ineffective in altering cellular DA. Agents known to enhance TH and DbetaH transcription, phosphorylation or activity (e.g., 8-bromo cAMP, forskolin or dexamethasone) reversed the inhibitory effects of atrazine and simazine on the NE. Again, in contrast to atrazine and simazine, cyanazine attenuated catecholamine-depleting effect of alpha-Methyl-p-tyrosine (alphaMpT) on NE. Both DA and NE synthesis can be altered by the chlorotriazines and suggest these occur via an alteration of the synthetic enzymes TH and DbetaH.

  8. Protective effects of apigenin against 1-methyl-4-phenylpyridinium ion‑induced neurotoxicity in PC12 cells.

    PubMed

    Liu, Weihai; Kong, Songzhi; Xie, Qingfeng; Su, Jiyan; Li, Wenjie; Guo, Huizhen; Li, Shanshan; Feng, Xuexuan; Su, Ziren; Xu, Yang; Lai, Xiaoping

    2015-03-01

    Parkinson's disease is recognized as the second most common neurodegenerative disorder after Alzheimer's disease, characterized by the loss of dopominergic neurons in the substantia nigra pars compacta and can be experimentally mimicked by the use of the neurotoxin, 1‑methyl‑4‑phenylpyridinium ion (MPP(+)), in in vitro models. In this study, we investigated the potential protective effects of apigenin (AP), galangin and genkwanin, naturally occurring plant flavonoids, on the MPP(+)‑induced cytotoxicity in cultured rat adrenal pheochromocytoma cells (PC12 cells). The PC12 cells were pre-treated with various concentrations of the test compounds for 4 h, followed by the challenge with 1,000 µM MPP(+) for 48 h. We found that only pre-treatment with AP (3, 6 and 12 µM) before injury significantly increased cell viability, decreased the release of lactate dehydrogenase, reduced the level of intracellular reactive oxygen species and elevated mitochondrial membrane potential in the MPP(+)‑treated PC12 cells. In addition, AP markedly suppressed the increased rate of apoptosis and the reduced Bcl‑2/Bax ratio induced by MPP(+) in the PC12 cells. Taken together, the findings of this study demonstrate that AP exerts neuroprotective effects against MPP(+)‑induced neurotoxicity in PC12 cells, at least in part, through the inhibition of oxidative damage and the suppression of apoptosis through the mitochondrial pathway. PMID:25573459

  9. Purification of kavalactones from Alpinia zerumbet and their protective actions against hydrogen peroxide-induced cytotoxicity in PC12 cells.

    PubMed

    Rao, Yerra Koteswara; Shih, Hui-Nung; Lee, Yi-Ching; Cheng, Wen-Tai; Hung, Hui-Chin; Wang, Huang-Chi; Chen, Ching Jung; Tzeng, Yew-Min; Lee, Meng-Jen

    2014-12-01

    This study found that fruit shells of shell ginger (Alpinia zerumbet) are a rich source of the kavalactones dihydro-5,6-dehydrokavain (DDK) and 5,6-dehydrokavain (DK). The fruit shell extraction with hexane resulted in good purity and higher yields of DDK and DK than did chloroform, ethanol, 10% ethanol, methanol or water. Additionally, this study examined the neuroprotective effects of DDK and DK against H2O2-induced cytotoxicity in PC12 cells and the possible molecular mechanisms involved. 16 h after stimulation with 400 μM H2O2, the viability (MTT reduction) of PC12 cells decreased while membrane damage (LDH release) was noticeably increased. However, pretreatment for 6 h with DDK and DK (1 μM, 5 μM, 10 μM and 50 μM) rescued PC12 cells from H2O2-induced cytotoxicity, as evidenced by decreased LDH release and increased cell viability. DDK and DK inhibit the MAPK family member p38, activate AKT, and reduce caspase-3 activity. DDK also reduced the oxidative status in H2O2-treated PC12 cells. Together, our data indicate that the A. zerumbet constituents, DDK and DK, exert a protective effect against oxidative stress-induced PC12 cell death and that the regulation of p-Akt and the p38 MAPK, and of oxidative states may be involved.

  10. Resveratrol protects PC12 cells against OGD/ R-induced apoptosis via the mitochondrial-mediated signaling pathway.

    PubMed

    Liu, Xuan; Zhu, Xiangyang; Chen, Miao; Ge, Qinmin; Shen, Yong; Pan, Shuming

    2016-04-01

    In this study, we investigated the neuroprotective potential of resveratrol against oxygen glucose deprivation/reoxygenation (OGD/R)-induced apoptotic damages in well-differentiated PC12 cells and the underlying mechanisms. Cells were incubated under normal condition or OGD/R in the presence or absence of 10 μM resveratrol. Cell viability was determined with methyl-thiazolyl-tetrazolium (MTT) assay. Apoptotic ratio was determined with Hoechst 33342 staining and Annexin V-FITC/PI double staining. Oxidative stress was evaluated by measuring the intracellular reactive oxygen species (ROS), the mitochondrial superoxide, the malondialdehyde (MDA) content, and the activities of superoxide dismutase (SOD) and catalase (CAT). The intracellular calcium ([Ca2+]i) was estimated by Fluo-3/AM. The mitochondrial membrane potential (MMP) was evaluated by 5,5′,6,6′-tetrachloro-1,1,3,3′-tetraethyl-benzimidazolyl-carbocyanine iodide (JC-1) and rhodamine 123 (Rh123). The opening of mitochondrial permeability transition pore (MPTP) was determined by the Calcein/Co2+-quenching technique. The protein levels of cytochrome c, Bcl-2, Bax, cleaved caspase-9, and cleaved caspase-3 were detected by western blot analysis. The results showed that 10 μM resveratrol attenuated OGD/R-induced cell viability loss and cell apoptosis, which was associated with the decreases in the MDA content and the increases in the SOD and CAT activities. Furthermore, the accumulation of intracellular ROS and mitochondrial superoxide, disturbance of [Ca2+]i homeostasis, reduction of MMP, opening of MPTP, and release of mitochondrial cytochrome c observed in OGD/R-injured cells, which indicated a switch on the mitochondrial-mediated apoptotic pathway, were all reversed by resveratrol. These results suggest that resveratrol administration may play a neuroprotective role via modulating the mitochondrial-mediated signaling pathway in OGD/R-induced PC12 cell injury. PMID:26960953

  11. Protective effects of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells.

    PubMed

    Lu, Xi-Lin; Yao, Xiao-Li; Liu, Zhiyong; Zhang, Heng; Li, Wei; Li, Zhenxing; Wang, Guan-Lei; Pang, Jiyan; Lin, Yongcheng; Xu, Zhongliang; Chen, Ling; Pei, Zhong; Zeng, Jinsheng

    2010-05-21

    Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting 2% of the population over age 65years. Mitochondrial defect and oxidative stress actively participate in the dopaminergic (DA) neuron degeneration in PD. Xyloketal B is a novel marine compound with unique chemical structure isolated from mangrove fungus Xylaria sp. (no. 2508). Recently, we have demonstrated that Xyloketal B can directly scavenge DPPH free radicals and protects mitochondria against oxidative insult. In the present study, we investigate the neuroprotective action of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells. The viability and DA neurodegeneration was assessed in C. elegans selectively expressing green fluorescent protein (GFP) in DA neurons. PC12 cell damage was measured using MTT and nuclear morphology. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential and total GSH were assessed. Xyloketal B dose-dependently protected against MPP+-induced loss of viability and DA neurodegeneration in C. elegans. Similar neuroprotection was replicated in MPP+ PC12 cell model. In addition, xyloketal B attenuated MPP+-induced intracellular ROS accumulation, loss of mitochondrial membrane potential and restored total GSH level in PC12 cells. All together, the present study demonstrates that xyloketal B protects against MPP+-induced neurotoxicity in C. elegans and PC12 cells mainly through its antioxidant property and restoration of total GSH level. PMID:20347725

  12. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25–35)

    PubMed Central

    Liang, Huimin; Zhang, Yaozhou; Shi, Xiaoyan; Wei, Tianxiang; Lou, Jiyu

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer's disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25–35) (Aβ25–35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25–35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25–35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25–35-induced PC12 apoptosis. PMID:25221582

  13. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion.

    PubMed

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-10-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.

  14. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion

    PubMed Central

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-01-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of β1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisenseDp71 clones to analyze in detail the potential involvement of Dp71f isoform with the β1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell β1-integrin adhesion complex is composed of β1-integrin, talin, paxillin, α-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the β1-integrin complex components (β1-integrin, FAK, α-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the β1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and β1-integrin. Our data indicate that Dp71f is a structural component of the β1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance. PMID:16935300

  15. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.

    PubMed

    Gopinathan, Janarthanan; Quigley, Anita F; Bhattacharyya, Amitava; Padhye, Rajiv; Kapsa, Robert M I; Nayak, Rajkishore; Shanks, Robert A; Houshyar, Shadi

    2016-04-01

    In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties.

  16. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.

    PubMed

    Gopinathan, Janarthanan; Quigley, Anita F; Bhattacharyya, Amitava; Padhye, Rajiv; Kapsa, Robert M I; Nayak, Rajkishore; Shanks, Robert A; Houshyar, Shadi

    2016-04-01

    In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties. PMID:26646762

  17. Binding, sequestration, and processing of epidermal growth factor and nerve growth factor by PC12 cells. [Rats

    SciTech Connect

    Chandler, C.E.; Herschman, H.R.

    1983-03-01

    Th rat PC12 pheochromocytoma cell line exhibits biological responses to both nerve growth factor (NGF) and epidermal growth factor (EGF). The existence of receptors and biological responses on a common cell for these two well-characterized polypeptide growth factors makes this an attractive system for comparison of ligand binding and processing. Both NGF and EGF are bound to PC12 cells in a competable form at 4/sup 0/C. At 37/sup 0/C both ligands are ''sequestered,'' but at different rates and to different extents. While sequestration happens rapidly and nearly quantitatively for bound EGF, the dissociation reaction appears to compete favorably with NFG sequestration. Both EGF and NGF are degraded by PC12 cells. Sequestered EGF, however, is degraded to a greater extent than sequestered NGF.

  18. p53 Mediates Colistin-Induced Autophagy and Apoptosis in PC-12 Cells.

    PubMed

    Zhang, Ling; Xie, Daoyuan; Chen, Xueping; Hughes, Maria L R; Jiang, Guozheng; Lu, Ziyin; Xia, Chunli; Li, Li; Wang, Jinli; Xu, Wei; Sun, Yuan; Li, Rui; Wang, Rui; Qian, Feng; Li, Jian; Li, Jichang

    2016-09-01

    The mechanism of colistin-induced neurotoxicity is still unknown. Our recent study (L. Zhang, Y. H. Zhao, W. J. Ding, G. Z. Jiang, Z. Y. Lu, L. Li, J. L. Wang, J. Li, and J. C. Li, Antimicrob Agents Chemother 59:2189-2197, 2015, http://dx.doi.org/10.1128/AAC.04092-14; H. Jiang, J. C. Li, T. Zhou, C. H. Wang, H. Zhang, and H. Wang, Int J Mol Med 33:1298-1304, 2014, http://dx.doi.org/10.3892/ijmm.2014.1684) indicates that colistin induces autophagy and apoptosis in rat adrenal medulla PC-12 cells, and there is interplay between both cellular events. As an important cellular stress sensor, phosphoprotein p53 can trigger cell cycle arrest and apoptosis and regulate autophagy. The aim of the present study was to investigate the involvement of the p53 pathway in colistin-induced neurotoxicity in PC-12 cells. Specifically, cells were treated with colistin (125 μg/ml) in the absence and presence of a p53 inhibitor, pifithrin-α (PFT-α; 20 nM), for 12 h and 24 h, and the typical hallmarks of autophagy and apoptosis were examined by fluorescence/immunofluorescence microscopy and electron microscopy, real-time PCR, and Western blotting. The results indicate that colistin had a stimulatory effect on the expression levels of the target genes and proteins involved in autophagy and apoptosis, including LC3-II/I, p53, DRAM (damage-regulated autophagy modulator), PUMA (p53 upregulated modulator of apoptosis), Bax, p-AMPK (activated form of AMP-activated protein kinase), and caspase-3. In contrast, colistin appeared to have an inhibitory effect on the expression of p-mTOR (activated form of mammalian target of rapamycin), which is another target protein in autophagy. Importantly, analysis of the levels of p53 in the cells treated with colistin revealed an increase in nuclear p53 at 12 h and cytoplasmic p53 at 24 h. Pretreatment of colistin-treated cells with PFT-α inhibited autophagy and promoted colistin-induced apoptosis. This is the first study to demonstrate that colistin

  19. Reversible protein kinase C activation in PC12 cells: effect of NGF treatment.

    PubMed

    Dupont, J L; Janoshazi, A; Bellahcene, M; Mykita, S; de Barry, J

    2000-01-01

    Although protein kinase C (PKC) is a key enzyme in the signal transduction process, there is little information on the mechanism leading to PKC activation in living cells. Using a new fluorescence imaging method, we studied this mechanism and correlated PKC conformational changes with intracellular Ca2+ concentration. PC12 cells were simultaneously loaded with Fura-2-AM and Fim-1, two fluorescent probes, which recognize Ca2+ and PKC, respectively. KCl and carbachol (an agonist to muscarinic receptors) applications induced dose-dependent increases of fluorescence for both probes. Both Ca2+ and PKC responses were observed within seconds following KCl or carbachol application, and were reversible upon stimulus withdrawal. PKC activation kinetics was slightly more rapid than the Ca2+ response after KCl application. After nerve growth factor (NGF) treatment of the cells, the amplitude of the KCl-induced PKC responses was larger indicating an increase in the activated PKC-pool in these cells. This difference between control and NGF-treated cells was not observed following carbachol application, suggesting the involvement of different PKC pools. While the Ca2+ response uniformly occurred in the cytosol, the PKC response displayed a patch pattern with higher intensities in the peripheral zone near the plasma membrane. This heterogeneous distribution of PKC activation sites was similar to the immunocytological localization of Ca2+-dependent and independent PKC isoforms, which suggested that at least several PKC isoforms interacted with intracellular elements. Upon repeated stimulation, the PKC response rapidly desensitized. PMID:10651876

  20. Real-time monitoring of intracellular signal transduction in PC12 cells by non-adiabatic tapered optical fiber biosensor

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L.

    2014-05-01

    Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a nonadiabatic tapered optical fiber (NATOF) biosensor for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via refractive index change in PC12 cells adhered on tapered fiber sensor without any indicator reagent. PC12 cells were stimulated with KCl . Our results suggest that complex intracellular reactions could be real-time monitored and characterized by NATOF biosensor.

  1. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties.

    PubMed

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang

    2016-07-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by degeneration and loss of dopaminergic neurons of the substantia nigra. Increasing evidence has indicated that oxidative stress plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Therapeutic options that target the antioxidant machinery may have potential in the treatment of PD. Cordycepin, a nucleoside isolated from Cordyceps species displayed potent antioxidant, anti-inflammatory and anticancer properties. However, its neuroprotective effect against 6-OHDA neurotoxicity as well as underlying mechanisms is still unclear. In this present study, we investigated the protective effect of cordycepin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity and its underlying mechanism. We observed that cordycepin effectively inhibited 6-OHDA-induced cell death, apoptosis and mitochondrial dysfunction. Cordycepin also inhibited cell apoptosis induced by 6-OHDA as observed in the reduction of cytochrome c release from the mitochondrial as well as the inhibition of caspase-3. In addition cordycepin markedly reduced cellular malondialdehyde (MDA) content and intracellular reactive oxygen species (ROS) level. Cordycepin also significantly increased the antioxidant enzymes; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in 6-OHDA-treated cells. The results obtained unambiguously demonstrated that cordycepin protects PC12 cells against 6-OHDA-induced neurotoxicity through its potent antioxidant activity. PMID:27261571

  2. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function.

    PubMed

    Ostrovidov, Serge; Ahadian, Samad; Ramon-Azcon, Javier; Hosseini, Vahid; Fujie, Toshinori; Parthiban, S Prakash; Shiku, Hitoshi; Matsue, Tomokazu; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2014-11-13

    Engineered muscle tissues demonstrate properties far from native muscle tissue. Therefore, fabrication of muscle tissues with enhanced functionalities is required to enable their use in various applications. To improve the formation of mature muscle tissues with higher functionalities, we co-cultured C2C12 myoblasts and PC12 neural cells. While alignment of the myoblasts was obtained by culturing the cells in micropatterned methacrylated gelatin (GelMA) hydrogels, we studied the effects of the neural cells (PC12) on the formation and maturation of muscle tissues. Myoblasts cultured in the presence of neural cells showed improved differentiation, with enhanced myotube formation. Myotube alignment, length and coverage area were increased. In addition, the mRNA expression of muscle differentiation markers (Myf-5, myogenin, Mefc2, MLP), muscle maturation markers (MHC-IId/x, MHC-IIa, MHC-IIb, MHC-pn, α-actinin, sarcomeric actinin) and the neuromuscular markers (AChE, AChR-ε) were also upregulated. All these observations were amplified after further muscle tissue maturation under electrical stimulation. Our data suggest a synergistic effect on the C2C12 differentiation induced by PC12 cells, which could be useful for creating improved muscle tissue. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Ligularia fischeri extract protects against oxidative-stress-induced neurotoxicity in mice and PC12 cells.

    PubMed

    Choi, Soo Jung; Kim, Jae Kyeom; Suh, Soo Hwan; Kim, Cho Rong; Kim, Hye Kyung; Kim, Chang-Ju; Park, Gwi Gun; Park, Cheung-Seog; Shin, Dong-Hoon

    2014-11-01

    Alzheimer's disease (AD) is pathologically characterized by the presence of amyloid plaques in brain and the overproduction of amyloid beta (Aβ), leading to learning and memory impairment and intense oxidative stress. In this study, the protective effect of Ligularia fischeri extract was investigated using PC12 cells. L. fischeri extract attenuated hydrogen-peroxide-induced DNA fragmentation in cells. In vivo behavioral tests were performed to examine the effects of the extract on amyloid-β peptide1-42-induced impairment of learning and memory in mice. A diet containing the extract increased alternation behaviors in the Y-maze test and step-through latency of passive avoidance task. Moreover, we found that consumption of the extract decreased lipid peroxidation in a biochemical study of brain tissue in mice. High-performance liquid chromatography was used to identify the active compounds in the extract. These results suggest that L. fischeri extract could be protective against Aβ-induced neurotoxicity, possibly due to the antioxidative capacity of its constituent, 3-O-caffeoylquinic acid.

  4. Effects of ethanol on neurotransmitter release and intracellular free calcium in PC12 cells

    SciTech Connect

    Rabe, C.S.; Weight, F.F.

    1988-02-01

    The effect of ethanol on muscarine-stimulated release of l-(/sup 3/H)norepinephrine ((/sup 3/H)NE) was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose-dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any detectable effect of ethanol on (/sup 3/H)NE uptake or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca++ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced an increase in the basal release of (/sup 3/H)NE. Intracellular free Ca++ also was increased by ethanol concentrations greater than 100 mM. The elevation of basal transmitter release and intracellular free Ca++ by concentrations of ethanol greater than 100 mM occurred independently of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca++ and transmitter secretion. These results suggest that the effects of ethanol on neurotransmitter release are associated with the effects of ethanol on intracellular free Ca++.

  5. Ethanol's effects on neurotransmitter release and intracellular free calcium in PC12 cells

    SciTech Connect

    Rabe, C.S.; Weight, F.F.

    1988-01-01

    The effect of ethanol on muscarine-stimulated release of (/sup 3/H)NE was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any effect of ethanol on (/sup 3/H)NE uptake, metabolism or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca2+ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced both a stimulation of the release of (/sup 3/H)NE as well as an increase in intracellular free Ca2+. The increase in basal transmitter release and intracellular free Ca2+ occurred independent of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca2+ or transmitter section. These results demonstrate the relationship of the effects of ethanol on cellular free Ca2+ and neurotransmitter release.

  6. Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12.

    PubMed

    Kumar, V; Tripathi, V K; Jahan, S; Agrawal, M; Pandey, A; Khanna, V K; Pant, A B

    2015-12-01

    Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10 μM) and ethanol (200 mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200 mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems.

  7. Antioxidant Potential of Fagonia arabica against the Chemical Ischemia-Induced in PC12 Cells.

    PubMed

    Satpute, Ravindra; Bhattacharya, Rahul; S Kashyap, Rajpal; J Purohit, Hemant; Y Deopujari, Jayant; M Taori, Girdhar; F Daginawala, Hatim

    2012-01-01

    The imbalance between pro-oxidants and anti-oxidants leads to generation of oxygen/nitrogen free radicals which are implicated in several neurodegenerative diseases. Fagonia arabica is an ethno-pharmacologically important Ayurvedic herb known to have many medicinal properties like anti-inflammatory, analgesic and antipyretic effects. However, its antioxidant potential has not been investigated so far. The present study was designed to investigate the antioxidant potential of F. arabica and its neuroprotective effect on chemical ischemia induced in PC12 cells. Chemical ischemia was induced through exposing the cells to uncoupler of oxidative phosphorylation sodium azide (5.0 mM) and competitive inhibitor of glycolysis 2-deoxy-glucose (2.0 mM) for 2 h followed by 24 h reperfusion with normal culture medium. Total polyphenolic content (TPC) and antioxidant potential of the herb was measured using DPPH and ABTS•+ scavenging and ferric ion reducing antioxidant potential (FRAP) assays; its effect on neuroprotection and energy metabolism was also studied. The ischemic injury was characterized by impaired energy status as indicated by decreased ATP levels in the cells, accompanied by increased lactic acid content. Both the changes favourably responded to F. arabica and offered considerable neuroprotection from ischemia and helped to maintain the cellular viability and mitochondrial integrity of the cells. F. arabica showed considerable amount of TPC and antioxidant activity. This study reveals the antioxidant potential of F. arabica and its protective efficacy against ischemia/reperfusion mediated cell death. F. arabica thus can be considered for further studies for the development of the prophylactic or therapeutic agent for the treatment of ischemic stroke. PMID:24250453

  8. Antioxidant Potential of Fagonia arabica against the Chemical Ischemia-Induced in PC12 Cells

    PubMed Central

    Satpute, Ravindra; Bhattacharya, Rahul; S Kashyap, Rajpal; J Purohit, Hemant; Y Deopujari, Jayant; M Taori, Girdhar; F. Daginawala, Hatim

    2012-01-01

    The imbalance between pro-oxidants and anti-oxidants leads to generation of oxygen/nitrogen free radicals which are implicated in several neurodegenerative diseases. Fagonia arabica is an ethno-pharmacologically important Ayurvedic herb known to have many medicinal properties like anti-inflammatory, analgesic and antipyretic effects. However, its antioxidant potential has not been investigated so far. The present study was designed to investigate the antioxidant potential of F. arabica and its neuroprotective effect on chemical ischemia induced in PC12 cells. Chemical ischemia was induced through exposing the cells to uncoupler of oxidative phosphorylation sodium azide (5.0 mM) and competitive inhibitor of glycolysis 2-deoxy-glucose (2.0 mM) for 2 h followed by 24 h reperfusion with normal culture medium. Total polyphenolic content (TPC) and antioxidant potential of the herb was measured using DPPH and ABTS•+ scavenging and ferric ion reducing antioxidant potential (FRAP) assays; its effect on neuroprotection and energy metabolism was also studied. The ischemic injury was characterized by impaired energy status as indicated by decreased ATP levels in the cells, accompanied by increased lactic acid content. Both the changes favourably responded to F. arabica and offered considerable neuroprotection from ischemia and helped to maintain the cellular viability and mitochondrial integrity of the cells. F. arabica showed considerable amount of TPC and antioxidant activity. This study reveals the antioxidant potential of F. arabica and its protective efficacy against ischemia/reperfusion mediated cell death. F. arabica thus can be considered for further studies for the development of the prophylactic or therapeutic agent for the treatment of ischemic stroke. PMID:24250453

  9. Calycopterin promotes survival and outgrowth of neuron-like PC12 cells by attenuation of oxidative- and ER-stress-induced apoptosis along with inflammatory response.

    PubMed

    Farimani, Mahdi Moridi; Sarvestani, Nazanin Namazi; Ansari, Niloufar; Khodagholi, Fariba

    2011-12-19

    There is mounting evidence implicating the role of oxidative stress induced by reactive oxygen species (ROS) in neurodegenerative disease, including Alzheimer's disease. Herein we investigated the neuroprotective potential of a natural flavonoid, calycopterin, against H(2)O(2)-induced cell death in differentiated PC12 cells. We pretreated PC12 cells with 25, 50, and 100 μM calycopterin followed by the addition of H(2)O(2) as an oxidative stress agent. We measured cell viability by the MTT test and found that 50 μM is the best protective concentration of calycopterin. Moreover, we measured six different parameters of neurite outgrowth. Interestingly, we found that calycopterin not only protects PC12 cells against H(2)O(2)-induced apoptosis but also defends against the destructive effect of oxidative stress on the criteria of neural differentiation. Calycopterin decreased ER stress-associated proteins including calpain and caspase-12, and suppressed ERK, JNK, and p38 MAPK phosphorylation. Moreover, calycopterin inhibited H(2)O(2)-induced nuclear translocation of nuclear factor-κB, a known regulator of a host of genes involved in specific stress and inflammatory responses. This observation was perfectly in agreement with the decrease of COX-2 and TNF-α levels. Calycopterin reduced intracellular ROS levels and increased catalase activity. The protective effect of this compound could represent a promising approach for the treatment of neurodegenerative diseases. PMID:22081883

  10. Effects of tobacco smoke on PC12 cell neurodifferentiation are distinct from those of nicotine or benzo[a]pyrene.

    PubMed

    Slotkin, Theodore A; Card, Jennifer; Stadler, Ashley; Levin, Edward D; Seidler, Frederic J

    2014-01-01

    Although nicotine accounts for a great deal of the neurodevelopmental damage associated with maternal smoking or second-hand exposure, tobacco smoke contains thousands of potentially neurotoxic compounds. We used PC12 cells, a standard in vitro model of neurodifferentiation, to compare tobacco smoke extract (TSE) to nicotine, matching TSE exposure (with its inherent nicotine content) to parallel concentrations of nicotine, or to benzo[a]pyrene, a tobacco combustion product. TSE promoted the transition from cell replication to differentiation, resulting in fewer, but larger cells with greater neurite extension. TSE also biased differentiation into the dopaminergic versus the cholinergic phenotype, evidenced by an increase in tyrosine hydroxylase activity but not choline acetyltransferase. Nicotine likewise promoted differentiation at the expense of cell numbers, but its effect on growth and neurite extension was smaller than that of TSE; furthermore, nicotine did not promote the dopaminergic phenotype. Benzo[a]pyrene had effects opposite to those of TSE, retarding neurodifferentiation, which resulted in higher cell numbers, smaller cells, reduced neurite information, and impaired emergence of both dopaminergic and cholinergic phenotypes. Our studies show that the complex mixture of compounds in tobacco smoke exerts direct effects on neural cell replication and differentiation that resemble those of nicotine in some ways but not others, and most importantly, that are greater in magnitude than can be accounted for from just the nicotine content of TSE. Thus, fetal tobacco smoke exposure, including lower levels associated with second-hand smoke, could be more injurious than would be anticipated from measured levels of nicotine or its metabolites. PMID:24642111

  11. Protective effects of veskamide, enferamide, becatamide, and oretamide on H2O2-induced apoptosis of PC-12 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veskamide, enferamide, becatamide, and oretamide are phenolic amides whose analogues are found in plants. In this study, the four amides were prepared by chemical synthesis and their protective effects on H(2)O(2)-induced apoptosis in PC-12 cells were investigated. The syntheses were relatively si...

  12. MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES

    EPA Science Inventory

    MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES. C. F. Blackman1, D. E. House2*, S. G. Benane3*, A. Ubeda4, M.A. TrilIo4. 1 National Health and Environmental Effects Research Laboratory, EPA,
    Research Triangle Park, North Caro...

  13. MELATONIN-INDUCED SUPPRESSION OF PC12 CELL GROWTH IS MEDIATED BY ITS GI COUPLED TRANSMEMBRANE RECEPTORS. (R826248)

    EPA Science Inventory

    The effects of pertussis toxin, an uncoupler of Gi protein from adenylate cyclase, and luzindole, a competitive inhibitor of melatonin receptor binding, were examined for their ability to inhibit melatonin-induced suppression of PC12 cell growth. Both agents inhibited the mela...

  14. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.

    PubMed

    Kobayashi, S; Zimmermann, H; Millhorn, D E

    2000-02-01

    Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene expression and activities of several key enzymes associated with ADO production and metabolism, as well as the down-regulation of a nucleoside transporter. Decreases in the enzymatic activities of ADO kinase and ADO deaminase accompanied by an increase in those of cytoplasmic and ecto-5'-nucleotidases bring about an increased capacity to produce intra- and extracellular ADO. This increased potential to generate ADO and decreased capacity to metabolize ADO indicate that PC12 cells shift toward an ADO producer phenotype during hypoxia. The reduced function of the rat equilibrative nucleoside transporter rENT1 also plays a role in controlling extracellular ADO levels. The hypoxia-induced alterations in the ADO metabolic enzymes and the rENT1 transporter seem to increase the extracellular concentration of ADO. The biological significance of this regulation is unclear but is likely to be associated with modulating cellular activity during hypoxia. PMID:10646513

  15. Neuroprotective effect of caffeoylquinic acids from Artemisia princeps Pampanini against oxidative stress-induced toxicity in PC-12 cells.

    PubMed

    Lee, Sang Gil; Lee, Hyungjae; Nam, Tae Gyu; Eom, Seok Hyun; Heo, Ho Jin; Lee, Chang Yong; Kim, Dae-Ok

    2011-03-01

    Phenolics in dry Artemisia princeps Pampanini, an herbal plant traditionally consumed as food ingredients in Korea was extracted, fractionated, and quantified as well as evaluated for its neuroprotection for PC-12 cells. Whole extract had 5,852 mg gallic acid equivalents/100 g of total phenolics and 6,274 mg and 9,698 mg vitamin C equivalents/100 g of antioxidant capacities assayed by DPPH and ABTS radicals, respectively. The fraction extracted with n-butanol had the highest levels of total phenolics and antioxidant capacity than the other fractions (n-hexane, chloroform, ethyl acetate, and water). Using a reversed-phase HPLC system, caffeoylquinic acid (CQA) and its derivatives such as 3-CQA, 4-CQA, 5-CQA, 1,5-diCQA, 3,4-diCQA, 3,5-diCQA, and 4,5-diCQA were isolated and quantified. The whole extract and its n-butanol fraction yielded 3,5-diCQA with the highest amount, which consisted of approximately 36.8% and 33.5%, respectively. The whole extract, the n-butanol fraction, and 3,5-diCQA showed neuroprotective effect on PC-12 cells under the insult of amyloid ß peptide in a dose-dependent manner. Treatments of the whole extract and the n-butanol fraction for PC-12 cells under oxidative stress increased approximately 1.6 and 2.4 times higher cell viability, compared with the control without treatments. For PC-12 cells treated with 3,5-diCQA, intracellular oxidative stress decreased by 51.3% and cell viability increased up to 2.8 times compared to the control with oxidative insult of amyloid ß peptide only. These results indicate that phenolics from A. princeps Pampanini alleviated the oxidative stress and enhanced the viability of PC-12 cells, suggesting that it may be applied as a dietary antineurodegenerative agent in functional foods.

  16. 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer's disease.

    PubMed

    Khan, Andleeb; Vaibhav, Kumar; Javed, Hayate; Tabassum, Rizwana; Ahmed, Md Ejaz; Khan, Mohd Moshahid; Khan, M Badruzzaman; Shrivastava, Pallavi; Islam, Farah; Siddiqui, M Saeed; Safhi, M M; Islam, Fakhrul

    2014-02-01

    Inflammatory process has a fundamental role in the pathogenesis of Alzheimer's disease and insoluble amyloid beta deposits and neurofibrillary tangles provide the obvious stimuli for inflammation. The present study demonstrate the effect of pretreatment of 1,8-cineole (Cin) on inflammation induced by Aβ(25-35) in differentiated PC12 cells. The cells were treated with Cin at different doses for 24 h and then replaced by media containing Aβ(25-35) for another 24 h. The cell viability was decreased in Aβ(25-35) treated cells which was significantly restored by Cin pretreatment. Cin successfully reduced the mitochondrial membrane potential, ROS and NO levels in Aβ(25-35) treated cells. Cin also lowered the levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 in Aβ(25-35) treated cells. Moreover, Cin also succeeded in lowering the expression of NOS-2, COX-2 and NF-κB. This study suggests the protective effects of Cin on inflammation and provides additional evidence for its potential beneficial use in therapy as an anti-inflammatory agent in neurodegenerative disease.

  17. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    SciTech Connect

    Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  18. Photosensitizer-induced fluorescence of the rat adrenal gland and rat pheochromocytoma cells (PC 12) by meso-tetra(hydroxyphenyl)chlorin (mTHPC)

    NASA Astrophysics Data System (ADS)

    Colombo-Benkmann, Mario; Muhm, Markus; Gahlen, Johannes; Heym, Christine; Senninger, Norbert

    1997-12-01

    Rat adrenal glands exhibit an intense mTHPC-induced fluorescence. The objective of our study was the identification of adrenal cells exhibiting mTHPC-induced fluorescence under normal conditions and under stimulation of adrenal proliferation by reserpine. Furthermore mTHPC-uptake of rat pheochromocytoma (PC 12) cells was investigated. Four male Wistar rats received 0.5 mg mTHPC/kg iv 48 hours before perfusion. Furthermore four rats received reserpine (2 mg/kg im od), bromo-deoxy-uridine (BrdU; 50 mg/kg ip od) each for one week and mTHPC (0.5 mg/kg) 48 hours before perfusion. BrdU was detected immunohistochemically. PC 12-cells were incubated with 0.5 mg mTHPC/l culture medium for 24 or 48 hours. Cells and tissues were examined by fluorescence microscopy. The adrenal cortex exhibited an intense mTHPC-induced fluorescence. The adrenal medulla fluoresced faintly. Reserpine increased fluorescence of intramedullary cells, not coinciding with adrenal proliferation. Cortical fluorescence remained unchanged. PC 12-cells lying singly or in small groups and differentiating cells showed a more intense mTHPC- induced fluorescence than confluent cells. Differences of cortical and medullary uptake of mTHPC are independent of proliferation and may be explained by lipophilia of mTHPC, since adrenocytes have an uptake mechanism for cholesterol. The difference of mTHPC-uptake between PC 12-cells and chromaffin cells implicate the possibility of photodynamic applications for medullary neoplasia.

  19. Maitotoxin: Effects on calcium channels, phosphoinositide breakdown, and arachidonate release in pheochromocytoma PC12 cells

    SciTech Connect

    Choi, O.H.; Padgett, W.L.; Nishizawa, Y.; Gusovsky, F.; Yasumoto, T.; Daly, J.W. )

    1990-02-01

    Maitotoxin (MTX) increases formation of (3H)inositol phosphates from phosphoinositides and release of (3H)arachidonic acid from phospholipids in pheochromocytoma PC12 cells. Formation of (3H)inositol phosphates is detected within 1 min of incubation even with concentrations as low as 0.3 ng/ml (90 pm) MTX, whereas release of (3H)arachidonic acid is not detected until 20 min even with concentrations as high as 1 ng/ml (300 pm) MTX. Stimulation of arachidonic acid release can be detected at 0.03 ng/ml (9 pm) MTX, whereas 0.1 ng/ml (30 pm) MTX is the threshold for detection of phosphoinositide breakdown. Organic and inorganic calcium channel blockers, except Cd2+ and a high concentration of Mn2+, have no effect on MTX-elicited phosphoinositide breakdown, whereas inorganic blockers (e.g., Co2+, Mn2+, Cd2+), but not organic blockers (nifedipine, verapamil, diltiazem), inhibit MTX-stimulated arachidonic acid release. All calcium channel blockers, however, inhibited MTX-elicited influx of 45Ca2+ and the MTX-elicited increase in internal Ca2+ measured with fura-2 was markedly reduced by nifedipine. MTX-elicited phosphoinositide breakdown and arachidonic acid release are abolished or reduced, respectively, in the absence of extracellular calcium plus chelating agent. The calcium ionophore A23187 has little or no effect alone but, in combination with MTX, A23187 inhibits MTX-elicited phosphoinositide breakdown and enhances arachidonic acid release, the latter even in the absence of extracellular calcium. The results suggest that different sites and/or mechanisms are involved in stimulation of calcium influx, breakdown of phosphoinositides, and release of arachidonic acid by MTX.

  20. Inactivation of tyrosine hydroxylase activity by ascorbate in vitro and in rat PC12 cells.

    PubMed

    Wilgus, H; Roskoski, R

    1988-10-01

    Tyrosine hydroxylase activity is reversibly modulated by the actions of a number of protein kinases and phosphoprotein phosphatases. A previous report from this laboratory showed that low-molecular-weight substances present in striatal extracts lead to an irreversible loss of tyrosine hydroxylase activity under cyclic AMP-dependent phosphorylation conditions. We report here that ascorbate is one agent that inactivates striatal tyrosine hydroxylase activity with an EC50 of 5.9 microM under phosphorylating conditions. Much higher concentrations (100 mM) fail to inactivate the enzyme under nonphosphorylating conditions. Isoascorbate (EC50, 11 microM) and dehydroascorbate (EC50, 970 microM) also inactivated tyrosine hydroxylase under phosphorylating but not under nonphosphorylating conditions. In contrast, ascorbate sulfate was inactive under phosphorylating conditions at concentrations up to 100 mM. Since the reduced compounds generate several reactive species in the presence of oxygen, the possible protecting effects of catalase, peroxidase, and superoxide dismutase were examined. None of these three enzymes, however, afforded any protection against inactivation. We also examined the effects of ascorbate and its congeners on the activity of tyrosine hydroxylase purified to near homogeneity from a rat pheochromocytoma. This purified enzyme was also inactivated by the same agents that inactivated the impure corpus striatal enzyme. Under conditions in which ascorbate almost completely abolished enzyme activity, we found no indication for significant proteolysis of the purified enzyme as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We also found that pretreatment of PC12 cells in culture for 4 h with 1 mM ascorbate, dehydroascorbate, or isoascorbate (but not ascorbate sulfate) also decreased tyrosine hydroxylase activity 25-50%.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2901463

  1. Oxidative and Excitatory Mechanisms of Developmental Neurotoxicity: Transcriptional Profiles for Chlorpyrifos, Diazinon, Dieldrin, and Divalent Nickel in PC12 Cells

    PubMed Central

    Slotkin, Theodore A.; Seidler, Frederic J.

    2009-01-01

    Background Oxidative stress and excitotoxicity underlie the developmental neurotoxicity of numerous chemicals. Objectives We compared the effects of organophosphates (chlorpyrifos and diazinon), an organo-chlorine (dieldrin), and a metal [divalent nickel (Ni2+)] to determine how these mechanisms contribute to similar or dissimilar neurotoxic outcomes. Methods We used PC12 cells as a model of developing neurons and evaluated transcriptional profiles for genes for oxidative stress responses and glutamate receptors. Results Chlorpyrifos had a greater effect on oxidative-stress–related genes in differentiating cells compared with the undifferentiated state. Chlorpyrifos and diazinon showed significant concordance in their effects on glutathione-related genes, but they were negatively correlated for effects on catalase and superoxide dismutase isoforms and had no concordance for effects on ionotropic glutamate receptors. Surprisingly, the correlations were stronger between diazinon and dieldrin than between the two organophosphates. The effects of Ni2+ were the least similar for genes related to oxidative stress but had significant concordance with dieldrin for effects on glutamate receptors. Conclusions Our results point to underlying mechanisms by which different organophosphates produce disparate neurotoxic outcomes despite their shared property as cholinesterase inhibitors. Further, apparently unrelated neurotoxicants may produce similar outcomes because of convergence on oxidative stress and excitotoxicity. The combined use of cell cultures and microarrays points to specific end points that can distinguish similarities and disparities in the effects of diverse developmental neurotoxicants. PMID:19440498

  2. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells.

    PubMed

    Bak, Dong-Ho; Kim, Hyung Don; Kim, Young Ock; Park, Chun Geun; Han, Seung-Yun; Kim, Jwa-Jin

    2016-02-01

    Ginseng (Panax ginseng C.A. Mey.) is commonly used in traditional oriental medicine for its wide spectrum of medicinal properties, including anti-inflammatory, antitumorigenic, adaptogenic and anti-aging properties. 20(S)-Protopanaxadiol (PPD), the main intestinal metabolite of ginsenosides, is one of the active ingredients in ginseng. In this study, we aimed to investigate the neuroprotective effects of PPD on PC12 cells; however, the underlying mechanisms remain elusive. We examined cell viability by MTT assay and the morphological changes of PC12 cells following glutamate‑induced cell damage and evaluated the anti‑apoptotic effects of PPD using Hoechst 33258 staining, western blot analysis and Muse™ Cell Analyzer and the antioxidant effects of PPD using FACS analysis and immunofluorescence. Furthermore, PPD exerted protective effects on PC12 cells via the inhibition of mitochondrial damage against glutamate-induced excitotoxicity using immunofluorescence, electron microscopy and FACS analysis. We demonstrate that treatment with PPD suppresses apoptosis, which contributes to the neuroprotective effects of PPD against glutamate‑induced excitotoxicity in PC12 cells. Treatment with PPD inhibited nuclear condensation and decreased the number of Annexin V-positive cells. In addition, PPD increased antioxidant activity and mitochondrial homeostasis in the glutamate-exposed cells. These antioxidant effects were responsible for the neuroprotection and enhanced mitochondrial function following treatment with PPD. Furthermore, PD inhibited the glutamate-induced morphological changes in the mitochondria and scavenged the mitochondrial and cytosolic reactive oxygen species (ROS) induced by glutamate. In addition, mitochondrial function was significantly improved in terms of mitochondrial membrane potential (MMP) and enhanced mitochondrial mass compared with the cells exposed to glutamate and not treated with PPD. Taken together, the findings of our study indicate

  3. Cell Guidance on Nanogratings: A Computational Model of the Interplay between PC12 Growth Cones and Nanostructures

    PubMed Central

    Tonazzini, Ilaria; Cecchini, Marco; Micera, Silvestro

    2013-01-01

    Background Recently, the effects of nanogratings have been investigated on PC12 with respect to cell polarity, neuronal differentiation, migration, maturation of focal adhesions and alignment of neurites. Methodology/Principal Findings A synergistic procedure was used to study the mechanism of alignment of PC12 neurites with respect to the main direction of nanogratings. Finite Element simulations were used to qualitatively assess the distribution of stresses at the interface between non-spread growth cones and filopodia, and to study their dependence on filopodial length and orientation. After modelling all adhesions under non-spread growth cone and filopodial protrusions, the values of local stress maxima resulted from the length of filopodia. Since the stress was assumed to be the main triggering cause leading to the increase and stabilization of filopodia, the position of the local maxima was directly related to the orientation of neurites. An analytic closed form equation was then written to quantitatively assess the average ridge width needed to achieve a given neuritic alignment (R2 = 0.96), and the alignment course, when the ridge depth varied (R2 = 0.97). A computational framework was implemented within an improved free Java environment (CX3D) and in silico simulations were carried out to reproduce and predict biological experiments. No significant differences were found between biological experiments and in silico simulations (alignment, p = 0.3571; tortuosity, p = 0.2236) with a standard level of confidence (95%). Conclusions/Significance A mechanism involved in filopodial sensing of nanogratings is proposed and modelled through a synergistic use of FE models, theoretical equations and in silico simulations. This approach shows the importance of the neuritic terminal geometry, and the key role of the distribution of the adhesion constraints for the cell/substrate coupling process. Finally, the effects of the geometry of nanogratings were

  4. Effect of Tinospora cordifolia on the reduction of ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells.

    PubMed

    Masuma, Runa; Okuno, Tsutomu; Kabir Choudhuri, Mohammad Shahabuddin; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    The safety of Tinospora cordifolia and its potential to protect against ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells were investigated. To evaluate the safety of T. cordifolia, cell viability and agarose gel electrophoresis were carried out using PC12 cells treated with 0 to 100 μg mL(-1) of methanol extract of T. cordifolia. T. cordifolia extracts did not show cytotoxicity ranging 0 to 100 μg mL(-1). In addition, T. cordifolia extracts significantly increased cell viability at 1 ng, 10 ng and 1 μg mL(-1) concentrations in serum-deprived medium compared to control. To confirm the protective role against UV-induced damage, PC12 cells alone or in the presence of 10 ng, 100 ng, or 1 μg mL(-1) of T. cordifolia extract were exposed to 250, 270 and 290 nm of UV radiation, which corresponded to doses of 120, 150 and 300 mJ cm(-2), respectively. Treatment with T. cordifolia extracts significantly increased the cell survival rate irradiated at 290 nm. In addition, T. cordifolia extracts significantly reduced cyclobutane pyrimidine dimer formation induced by UV irradiation at all wavelengths. In conclusion, T. cordifolia is not toxic and safe for cells. Our findings can support its application as phototherapy in the medical sector. PMID:24762179

  5. Artemisinin conferred ERK mediated neuroprotection to PC12 cells and cortical neurons exposed to sodium nitroprusside-induced oxidative insult.

    PubMed

    Zheng, Wenhua; Chong, Cheong-Meng; Wang, Haitao; Zhou, Xuanhe; Zhang, Lang; Wang, Rikang; Meng, Qian; Lazarovici, Philip; Fang, Jiankang

    2016-08-01

    The production of nitric oxide (NO) is one of the primary mediators of ischemic damage, glutamate neurotoxicity and neurodegeneration and therefore inhibition of NO-induced neurotoxicity may be considered a therapeutic target for reducing neuronal cell death (neuroprotection). In this study, artemisinin, a well-known anti-malaria drug was found to suppress sodium nitroprusside (SNP, a nitric oxide donor)-induced cell death in the PC12 cells and brain primary cortical neuronal cultures. Pretreatment of PC12 cells with artemisinin significantly suppressed SNP-induced cell death by decreasing the extent of oxidation, preventing the decline of mitochondrial membrane potential, restoring abnormal changes in nuclear morphology and reducing lactate dehydrogenase release and inhibiting caspase 3/7 activities. Western blotting analysis revealed that artemisinin was able to activate extracellular regulated protein kinases (ERK) pathway. Furthermore, the ERK inhibitor PD98059 blocked the neuroprotective effect of artemisinin whereas the PI3K inhibitor LY294002 had no effect. Cumulatively these findings support the notion that artemisinin confers neuroprotection from SNP-induce neuronal cell death insult, a phenomenon coincidentally related to activation of ERK phosphorylation. This SNP-induced oxidative insult in PC12 cell culture model may be useful to investigate molecular mechanisms of NO-induced neurotoxicity and drug-induced neuroprotection, and to generate novel therapeutic concepts for ischemic disease treatment. PMID:27242266

  6. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells.

    PubMed

    Rudolf, Rüdiger; Kögel, Tanja; Kuznetsov, Sergei A; Salm, Thorsten; Schlicker, Oliver; Hellwig, Andrea; Hammer, John A; Gerdes, Hans-Hermann

    2003-04-01

    Neuroendocrine secretory granules, the storage organelles for neuropeptides and hormones, are formed at the trans-Golgi network, stored inside the cell and exocytosed upon stimulation. Previously, we have reported that newly formed secretory granules of PC12 cells are transported in a microtubule-dependent manner from the trans-Golgi network to the F-actin-rich cell cortex, where they undergo short directed movements and exhibit a homogeneous distribution. Here we provide morphological and biochemical evidence that myosin Va is associated with secretory granules. Expression of a dominant-negative tail domain of myosin Va in PC12 cells led to an extensive clustering of secretory granules close to the cell periphery, a loss of their cortical restriction and a strong reduction in their motility in the actin cortex. Based on this data we propose a model that implies a dual transport system for secretory granules: after microtubule-dependent delivery to the cell periphery, secretory granules exhibit a myosin Va-dependent transport leading to their restriction and even dispersal in the F-actin-rich cortex of PC12 cells. PMID:12615975

  7. Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia.

    PubMed

    Conforti, L; Millhorn, D E

    1997-07-15

    1. Electrophysiological (single-channel patch clamp) and molecular biological experiments (reverse transcriptase-polymerase chain reaction) were performed to attempt to identify the O2-sensitive K+ channel in rat phaeochromocytoma (PC12) cells. 2. Four types of K+ channels were recorded in PC12 cells: a small-conductance K+ channel (14 pS), a calcium-activated K+ channel (KCa; 102 pS) and two K+ channels with similar conductance (20 pS). These last two channels differed in their time-dependent inactivation: one was a slow-inactivating channel, while the other belonged to the family of fast transient K+ channels. 3. The slow-inactivating 20 pS K+ channel was inhibited by hypoxia. Exposure to hypoxia produced a 50% reduction in channel activity (number of active channels in the patch x open probability). Hypoxia had no effect on the 20 pS transient K+ channels, whereas reduced O2 stimulated the KCa channels. 4. The genes encoding the alpha-subunits of slow-inactivating K+ channels for two members of the Shaker subfamily of K+ channels (Kv1.2 and Kv1.3) together with the Kv2.1, Kv3.1 and Kv3.2 channel genes were identified in PC12 cells. 5. The expression of the Shaker Kv1.2, but none of the other K+ channel genes, increased in cells exposed to prolonged hypoxia (18 h). The same cells were more responsive to a subsequent exposure to hypoxia (35% inhibition of K+ current measured in whole-cell voltage clamp) compared with the cells maintained in normoxia (19% inhibition). 6. These results indicate that the O2-sensitive K+ channel in PC12 cells is a 20 pS slow-inactivating K+ channel that is upregulated by hypoxia. This channel appears to belong to the Shaker subfamily of voltage-gated K+ channels. PMID:9263911

  8. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    PubMed Central

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  9. Role of the D2 dopamine receptor in molecular adaptation to chronic hypoxia in PC12 cells

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Zhu Dana Beitner-Johnson, Wylie H.; Millhorn, David E.

    2006-01-01

    We have previously shown that pheochromocytoma (PC12) cells rapidly depolarize and undergo Ca2+ influx through voltage-dependent Ca2+ channels in response to moderate hypoxia and that intracellular free Ca2+ is modulated by activation of dopamine D2 receptors in this cell type. The present study shows that D2 (quinpirole-mediated) inhibition of a voltage-dependent Ca2+ current (ICa) in PC12 cells is dramatically attenuated after chronic exposure to moderate hypoxia (24 h at 10% O2). Pretreatment of cells with pertussis toxin abolished D2-mediated inhibition of ICa. The D2-induced inhibition of ICa did not depend on protein kinase A (PKA), as it persisted both in the presence of a specific PKA inhibitor (PKI) and in PKA-deficient PC12 cells. Prolonged exposure to hypoxia (24 h) significantly reduced the level of Gi/oα immunoreactivity, but did not alter Gβ levels. Furthermore, dialysis of recombinant Goα protein through the patch pipette restored the inhibitory effect of quinpirole in cells chronically exposed to hypoxia. We conclude that the attenuation of the D2-mediated inhibition of ICa by chronic hypoxia is caused by impaired receptor–G protein coupling, due to reduced levels of Goα protein. This attenuated feedback modulation of ICa by dopamine may allow for a more sustained Ca2+ influx and enhanced cellular excitation during prolonged hypoxia. PMID:10591061

  10. Role of the D2 dopamine receptor in molecular adaptation to chronic hypoxia in PC12 cells.

    PubMed

    Kobayashi, S; Conforti, L; Zhu, W H; Beitner-Johnson, D; Millhorn, D E

    1999-11-01

    We have previously shown that pheochromocytoma (PC12) cells rapidly depolarize and undergo Ca2+ influx through voltage-dependent Ca2+ channels in response to moderate hypoxia and that intracellular free Ca2+ is modulated by activation of dopamine D2 receptors in this cell type. The present study shows that D2 (quinpirole-mediated) inhibition of a voltage-dependent Ca2+ current (ICa) in PC12 cells is dramatically attenuated after chronic exposure to moderate hypoxia (24 h at 10% O2). Pretreatment of cells with pertussis toxin abolished D2-mediated inhibition of ICa. The D2-induced inhibition of ICa did not depend on protein kinase A (PKA), as it persisted both in the presence of a specific PKA inhibitor (PKI) and in PKA-deficient PC12 cells. Prolonged exposure to hypoxia (24 h) significantly reduced the level of Gi/o alpha immunoreactivity, but did not alter G beta levels. Furthermore, dialysis of recombinant G(o) alpha protein through the patch pipette restored the inhibitory effect of quinpirole in cells chronically exposed to hypoxia. We conclude that the attenuation of the D2-mediated inhibition of ICa by chronic hypoxia is caused by impaired receptor-G protein coupling, due to reduced levels of G(o) alpha protein. This attenuated feedback modulation of ICa by dopamine may allow for a more sustained Ca2+ influx and enhanced cellular excitation during prolonged hypoxia. PMID:10591061

  11. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism.

    PubMed

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong; Gao, Hongchang

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  12. Regulation of Shaker-type potassium channels by hypoxia. Oxygen-sensitive K+ channels in PC12 cells.

    PubMed

    Conforti, L; Millhorn, D E

    2000-01-01

    Little is known about the molecular composition of the O2-sensitive K+ (Ko2) channels. The possibility that these channels belong to the Shaker subfamily (Kv1) of voltage-dependent K+ (Kv) channels has been raised in pulmonary artery (PA) smooth muscle cells. Numerous findings suggest that the Ko2 channel in PC12 cells is a Kv1 channel, formed by the Kv1.2 alpha subunit. The Ko2 channel in PC12 cells is a slow-inactivating voltage-dependent K+ channel of 20 pS conductance. Other Kv channels, also expressed in PC12 cells, are not inhibited by hypoxia. Selective up-regulation by chronic hypoxia of the Kv1.2 alpha subunit expression correlates with an increase O2-sensitivity of the K+ current. Other Kv1 alpha subunit genes encoding slow-inactivating Kv channels, such as Kv1.3, Kv2.1, Kv3.1 and Kv3.2 are not modulated by chronic hypoxia. The Ko2 current in PC12 cells is blocked by 5 mM externally applied tetraethylammonium chloride (TEA) and by charydbotoxin (CTX). The responses of the Kv1.2 K+ channel to hypoxia have been studied in the Xenopus oocytes and compared to those of Kv2.1, also proposed as Ko2 channel in PA smooth muscle cells. Two-electrode voltage clamp experiments show that hypoxia induces inhibition of K+ current amplitude only in oocytes injected with Kv1.2 cRNA. These data indicate that Kv1.2 K+ channels are inhibited by hypoxia. PMID:10849667

  13. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    PubMed

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  14. Di-Leucine Signals Mediate Targeting of Tyrosinase and Synaptotagmin to Synaptic-like Microvesicles within PC12 Cells

    PubMed Central

    Blagoveshchenskaya, Anastasiya D.; Hewitt, Eric W.; Cutler, Daniel F.

    1999-01-01

    One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents. PMID:10564285

  15. Stimulation of neurite outgrowth in PC12 cells by EGF and KCl depolarization: a Ca(2+)-independent phenomenon

    PubMed Central

    1995-01-01

    MAP kinase activity is necessary for growth factor induction of neurite outgrowth in PC12 cells. Although NGF and EGF both stimulate MAP kinase activity, EGF does not stimulate neurite extension. We report that EGF, in combination with KCl, stimulates neurite outgrowth in PC12 cells. This phenomenon was independent of intracellular Ca2+ increases and not due to enhancement of MAP kinase activity over that seen with EGF alone. However, EGF plus KCl increased intracellular cAMP, and other cAMP elevating agents acted synergistically with EGF to promote neurite outgrowth. Stimulation of neurite outgrowth by cAMP and EGF was blocked by inhibitors of transcription suggesting that synergistic regulation of transcription by the cAMP and MAP kinase pathways may stimulate neurite growth. PMID:7622569

  16. Nitric oxide enhances increase in cytosolic Ca(2+) and promotes nicotine-triggered MAPK pathway in PC12 cells.

    PubMed

    Kajiwara, Aya; Tsuchiya, Yukihiro; Takata, Tsuyoshi; Nyunoya, Mayumi; Nozaki, Naohito; Ihara, Hideshi; Watanabe, Yasuo

    2013-11-01

    The purpose of this study was to investigate the roles of neuronal nitric oxide synthase (nNOS), Ca(2+)/calmodulin (CaM)-dependent protein kinases (CaMKs), and protein kinase C (PKC) in nicotine-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) activation. Treatment with nicotine stimulated ERK1/2 and p38 MAPK phosphorylation in the PC12 cells expressing nNOS (NPC12 cells) as compared with that in control PC12 cells. An inhibitor of L-type voltage-sensitive Ca(2+) channel suppressed the nicotine-induced phosphorylation of p38 MAPK. The inhibition of CaMK-kinase, the upstream activator of CaMKI and CaMKIV, did not inhibit the enhanced their phosphorylation. ERK1/2 phosphorylation was attenuated by inhibitors of p38 MAPK, PKC, and MAPK-kinase 1/2, indicating the involvement of these protein kinases upstream of ERK1/2. Furthermore, we found that nNOS expression enhances the nicotine-induced increase in the intracellular concentration of Ca(2+), using the Ca(2+)-sensitive fluorescent probe Fura2. These data suggest that NO promotes nicotine-triggered Ca(2+) transient in PC12 cells to activate possibly CaMKII, leading to sequential phosphorylation of p38 MAPK and ERK1/2.

  17. Neuroprotective effect of D-psicose on 6-hydroxydopamine-induced apoptosis in rat pheochromocytoma (PC12) cells.

    PubMed

    Takata, Maki K; Yamaguchi, Fuminori; Nakanose, Koichi; Watanabe, Yasuo; Hatano, Naoya; Tsukamoto, Ikuko; Nagata, Mitsuhiro; Izumori, Ken; Tokuda, Masaaki

    2005-11-01

    We evaluated the neuroprotective effects of D-psicose, one of the rare sugars, on 6-hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells, the in vitro model of Parkinson's disease (PD). Apoptotic characteristics of PC12 cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. The results showed that D-psicose at a concentration of 50 mM, exerted significant protective effects against the 6-OHDA (200 muM)-induced PC12 cell apoptosis, while other sugars had little or no protective effects. We have observed a significant increase in the level of intracellular glutathione after 24 h in 6-OHDA (200 muM) treated cells, while a decrease in the level was observed at 3 h and 6 h. Also, a synergistic exposure to D-psicose and 6-OHDA for 24 h showed a significant increase in intracellular glutathione level. Therefore, these results suggest that D-psicose may play a potential role as a neuroprotective agent in the treatment of neurodegenerative diseases by inducing an up-regulation of intracellular glutathione.

  18. Deep hypothermia-enhanced autophagy protects PC12 cells against oxygen glucose deprivation via a mitochondrial pathway.

    PubMed

    Tang, Dang; Wang, Cheng; Gao, Yongjun; Pu, Jun; Long, Jiang; Xu, Wei

    2016-10-01

    Deep hypothermia is known for its organ-preservation properties, which is introduced into surgical operations on the brain and heart, providing both safety in stopping circulation as well as an attractive bloodless operative field. However, the molecular mechanisms have not been clearly identified. This study was undertaken to determine the influence of deep hypothermia on neural apoptosis and the potential mechanism of these effects in PC12 cells following oxygen-glucose deprivation. Deep hypothermia (18°C) was given to PC12 cells while the model of oxygen-glucose deprivation (OGD) induction for 1h. After 24h of reperfusion, the results showed that deep hypothermia decreased the neural apoptosis, and significantly suppressed overexpression of Bax, CytC, Caspase 3, Caspase 9 and cleaved PARP-1, and inhibited the reduction of Bcl-2 expression. While deep hypothermia increased the LC3II/LC3I and Beclin 1, an autophagy marker, which can be inhibited by 3-methyladenine (3-MA), indicating that deep hypothermia-enhanced autophagy ameliorated apoptotic cell death in PC12 cells subjected to OGD. Based on these findings we propose that deep hypothermia protects against neural apoptosis after the induction of OGD by attenuating the mitochondrial apoptosis pathway, moreover, the mechanism of these antiapoptosis effects is related to the enhancement of autophagy, which autophagy might provide a means of neuroprotection against OGD.

  19. Iridoids and sesquiterpenoids of Valeriana stenoptera and their effects on NGF-induced neurite outgrowth in PC12 cells.

    PubMed

    Dong, Fa-Wu; Wu, Zhi-Kun; Yang, Liu; Zi, Chen-Ting; Yang, Dan; Ma, Rui-Jing; Liu, Zhen-Hua; Luo, Huai-Rong; Zhou, Jun; Hu, Jiang-Miao

    2015-10-01

    Twenty-one compounds (nine iridoids and twelve sesquiterpenoids), including ten previously unknown (five iridoids and five sesquiterpenoids) were isolated from whole dried material of Valeriana stenoptera. Structures were established on the basis of extensive spectroscopic analysis and the relative stereochemistry of 13-hydroxypatchoulol A was further confirmed by X-ray crystallographic data. All isolates were evaluated for their effects on nerve growth factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells and seven compounds showed potent promoting effects.

  20. S-Nitrosylating protein disulphide isomerase mediates α-synuclein aggregation caused by methamphetamine exposure in PC12 cells.

    PubMed

    Wu, Xiao-Fang; Wang, Ai-Feng; Chen, Ling; Huang, En-Ping; Xie, Wei-Bing; Liu, Chao; Huang, Wei-Ye; Chen, Chuan-Xiang; Qiu, Ping-Ming; Wang, Hui-Jun

    2014-10-01

    Methamphetamine (METH) belongs to Amphetamine-type stimulants, METH abusers are at high risk of neurodegenerative disorders, including Parkinson's disease (PD). However, there are still no effective treatments to METH-induced neurodegeneration because its mechanism remains unknown. In order to investigate METH's neurotoxic mechanism, we established an in vitro PD pathology model by exposing PC12 cells to METH. We found the expression of nitric oxide synthase (NOS), nitric oxide (NO) and α-synuclein (α-syn) was significantly increased after METH treatment for 24h, in addition, the aggregattion of α-syn and the S-nitrosylation of protein disulphideisomerase(PDI) were also obviously enhanced. When we exposed PC12 cells to the NOS inhibitor N-nitro-L-arginine(L-NNA) with METH together, the L-NNA obviously inhibited these changes induced by METH. While when we exposed PC12 cells to the precursor of NO L-Arginine together with METH, the L-Arginine resulted in the opposite effect compared to L-NNA. And when we knocked down the PDI gene, the L-NNA did not have this effect. Therefore, PDI plays a significant role in neurological disorders related to α-syn aggregation, and it suggests that PDI could be as a potential target to prevent METH-induced neurodegeneration.

  1. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    PubMed

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells.

  2. Expression of dopamine D2 receptor in PC-12 cells and regulation of membrane conductances by dopamine.

    PubMed

    Zhu, W H; Conforti, L; Millhorn, D E

    1997-10-01

    PC-12 cells depolarize during hypoxia and release dopamine. The hypoxia-induced depolarization is due to inhibition of an O2-sensitive K+ current. The role of dopamine released during hypoxia is uncertain, but it could act as an autocrine to modulate membrane conductance during hypoxia. The current study was undertaken to investigate this possibility. Reverse transcription-polymerase chain reaction and sequence analysis revealed that the D2 isoform of the dopamine receptor is expressed in rat PC-12 cells. Exogenously applied dopamine and the D2 agonist quinpirole elicited inhibition of a voltage-dependent K+ current (I(K)) that was prevented by sulpiride, a D2 receptor antagonist. Dopamine and quinpirole applied during hypoxia potentiated the inhibitory effect of hypoxia on I(K). We also found that quinpirole caused reversible inhibition of a voltage-dependent Ca2+ current (I(Ca)) and attenuation of the increase in intracellular free Ca2+ during hypoxia. Our results indicate that dopamine released from PC-12 cells during hypoxia acts via a D2 receptor to "autoregulate" I(K) and I(Ca). PMID:9357757

  3. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor.

    PubMed

    Kobayashi, S; Conforti, L; Pun, R Y; Millhorn, D E

    1998-04-01

    1. The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. 2. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. 3. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. 4. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. 5. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6-22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. 6. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in

  4. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Pun, Raymund Y K; Millhorn, David E

    1998-01-01

    The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6–22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in PC12 cells and

  5. BDNF-TrkB pathway mediates neuroprotection of hydrogen sulfide against formaldehyde-induced toxicity to PC12 cells.

    PubMed

    Jiang, Jia-Mei; Zhou, Cheng-Fang; Gao, Sheng-Lan; Tian, Ying; Wang, Chun-Yan; Wang, Li; Gu, Hong-Feng; Tang, Xiao-Qing

    2015-01-01

    Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity.

  6. BDNF-TrkB Pathway Mediates Neuroprotection of Hydrogen Sulfide against Formaldehyde-Induced Toxicity to PC12 Cells

    PubMed Central

    Gao, Sheng-Lan; Tian, Ying; Wang, Chun-Yan; Wang, Li; Gu, Hong-Feng; Tang, Xiao-Qing

    2015-01-01

    Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity. PMID:25749582

  7. Repeated Glucose Deprivation/Reperfusion Induced PC-12 Cell Death through the Involvement of FOXO Transcription Factor

    PubMed Central

    Han, Na; Kim, You Jeong; Park, Su Min; Kim, Seung Man; Lee, Ji Suk; Jung, Hye Sook; Lee, Eun Ju; Kim, Tae Kyoon; Kim, Tae Nyun; Kwon, Min Jeong; Lee, Soon Hee; Rhee, Byoung Doo

    2016-01-01

    Background Cognitive impairment and brain damage in diabetes is suggested to be associated with hypoglycemia. The mechanisms of hypoglycemia-induced neural death and apoptosis are not clear and reperfusion injury may be involved. Recent studies show that glucose deprivation/reperfusion induced more neuronal cell death than glucose deprivation itself. The forkhead box O (FOXO) transcription factors are implicated in the regulation of cell apoptosis and survival, but their role in neuronal cells remains unclear. We examined the role of FOXO transcription factors and the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt and apoptosis-related signaling pathways in PC-12 cells exposed to repeated glucose deprivation/reperfusion. Methods PC-12 cells were exposed to control (Dulbecco's Modified Eagle Medium [DMEM] containing 25 mM glucose) or glucose deprivation/reperfusion (DMEM with 0 mM glucose for 6 hours and then DMEM with 25 mM glucose for 18 hours) for 5 days. MTT assay and Western blot analysis were performed for cell viability, apoptosis, and the expression of survival signaling pathways. FOXO3/4',6-diamidino-2-phenylindole staining was done to ascertain the involvement of FOXO transcription factors in glucose deprivation/reperfusion conditions. Results Compared to PC-12 cells not exposed to hypoglycemia, cells exposed to glucose deprivation/reperfusion showed a reduction of cell viability, decreased expression of phosphorylated Akt and Bcl-2, and an increase of cleaved caspase-3 expression. Of note, FOXO3 protein was localized in the nuclei of glucose deprivation/reperfusion cells but not in the control cells. Conclusion Repeated glucose deprivation/reperfusion caused the neuronal cell death. Activated FOXO3 via the PI3K/Akt pathway in repeated glucose deprivation/reperfusion was involved in genes related to apoptosis. PMID:27766247

  8. Analysis of Tyr to Phe and fa/fa leptin receptor mutations in the PC12 cell line.

    PubMed

    Eyckerman, S; Waelput, W; Verhee, A; Broekaert, D; Vandekerckhove, J; Tavernier, J

    1999-12-01

    Weight regulation through body-fat content and energy homeostasis, is regulated mainly through the actions of leptin. Herein, we analyse the effect of mutations in the mouse leptin receptor using the PC12 pheochromocytoma cell line as a model system. Both the induction of pancreatitis associated protein 1 and metallothionein-II, two leptin regulated genes in PC12, was evaluated. Tyr to Phe mutations in the cytoplasmic tail of the mouse leptin receptor confirmed the critical role of Tyr1138 (a YxxQ motif) and STAT-3 activation for induction of leptin-induced genes in PC12. In addition, the Tyr985Phe mutation showed enhanced responsiveness to leptin, which was even more pronounced in combination with Tyr1077Phe. The short isoform of the leptin receptor showed complete loss of stimulation of both genes. In contrast, a leptin receptor devoid of all Tyr residues in its cytoplasmic tail was still capable of a limited induction of the PAP 1 gene. A mutant mouse leptin receptor containing the fa/fa mutation showed constitutive signalling and impaired responsiveness to leptin. Treatment with the adenylate cyclase activator forskolin alone, in the absence of leptin was sufficient to obtain full induction of both genes. PMID:10586122

  9. L-DOPA modulates cell viability through the ERK-c-Jun system in PC12 and dopaminergic neuronal cells.

    PubMed

    Park, Keun Hong; Shin, Keon Sung; Zhao, Ting Ting; Park, Hyun Jin; Lee, Kyung Eun; Lee, Myung Koo

    2016-02-01

    L-DOPA causes neurotoxicity by modulating the Epac-ERK system in PC12 cells. This study investigated the effects of a single treatment with L-DOPA and multiple treatments with L-DOPA (MT-LD) on ERK1/2 and JNK1/2-c-Jun systems. In PC12 cells, a toxic L-DOPA concentration (200 μM) induced sustained ERK1/2 and JNK1/2 phosphorylation that was inhibited by the Epac inhibitor brefeldin A, but not by the PKA inhibitor H89. This ERK1/2 and JNK1/2 phosphorylation was also inhibited by ERK1/2 (U0126) and JNK1/2 (SP600125) inhibitors, respectively, but sustained ERK1/2 phosphorylation was not affected by JNK1/2 phosphorylation. A non-toxic L-DOPA concentration (20 μM) induced c-Jun phosphorylation (Ser73) via transient ERK1/2 phosphorylation, whereas the toxic L-DOPA concentration induced c-Jun phosphorylation (Ser63) and c-Jun expression via Epac-sustained ERK1/2-JNK1/2 phosphorylation, which then enhanced cleaved caspase-3 expression. MT-LD (20 μM) initially enhanced c-Jun phosphorylation (Ser73) (for 1-4 days), but later (5-6 days) induced c-Jun phosphorylation (Ser63) and c-Jun expression. In the 6-hydroxydopamine-lesioned rat model of Parkinson's disease, L-DOPA administration (10 mg/kg) protected against neurotoxicity through c-Jun phosphorylation (Ser73) for 1-2 weeks. However, L-DOPA administration (10 or 30 mg/kg) showed neurotoxicity through c-Jun phosphorylation (Ser63) and c-Jun expression via ERK1/2 phosphorylation for 3-4 weeks. Thus, in PC12 cells, non-toxic L-DOPA treatment maintained cell survival through c-Jun phosphorylation (Ser73). By contrast, toxic L-DOPA treatment or MT-LD (20 μM) induced c-Jun phosphorylation (Ser63) and c-Jun expression via Epac-dependent sustained ERK1/2 and JNK1/2 phosphorylation, which subsequently led to cell death. These results were validated by those obtained after long-term L-DOPA administration in a rat model of Parkinson's disease. Our data indicate that L-DOPA causes neurotoxicity via the ERK1/2-c-Jun system in

  10. Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells.

    PubMed

    Czyzyk-Krzeska, M F; Furnari, B A; Lawson, E E; Millhorn, D E

    1994-01-01

    Reduced arterial oxygen tension (i.e. hypoxia) is a powerful physiological stimulus that induces synthesis and release of dopamine from O2-sensitive (type I) cells in the mammalian carotid bodies. We reported recently that hypoxia stimulates gene expression for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis in type I cells of the carotid body. Efforts to identify the mechanisms regulating TH gene expression in O2-sensitive cells during hypoxia have been hampered by the lack of an appropriate model cell culture system. Here we report that TH gene expression in the rat pheochromocytoma cell line (PC12) is regulated during hypoxia in a manner similar to that measured in carotid body type I cells. PC12 cells might therefore be useful as an experimental model for identifying the molecular mechanisms that regulate TH gene expression during hypoxia. Nuclear runoff assays revealed that transcription of the wild type TH gene was enhanced during exposures to hypoxia lasting 12 h. Chloramphenicol acetyltransferase assays with constructs that contained different fragments of TH promoter revealed that the regulatory sequences that mediate the hypoxia-induced increase in transcription are located between bases -272 and +27 of the TH gene. Findings from experiments in which transcription was inhibited either with actinomycin D or 5,6-dichloro-1-D-ribofuranosylbenzimidazole, as well as pulse-chase experiments using 4-thiouridine showed that the half-life of TH mRNA was substantially increased during hypoxia. Thus, in the present paper we show that TH gene expression in PC12 cells during hypoxia is regulated by increases in both the rate of TH gene transcription and TH mRNA stability. PMID:7903970

  11. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells

    SciTech Connect

    Hong, J.-T.; Yen, J.-H.; Wang Lisu; Lo, Y.-H.; Chen, Z.-T.; Wu, M.-J.

    2009-05-15

    Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially neural diseases. Our aim of research is to investigate the protective effects and mechanisms of kaempferol and rhamnocitrin (kaempferol-7-methyl ether) on oxidative damage in rat pheochromocytoma PC12 cells induced by a limited supply of serum and hydrogen peroxide (H{sub 2}O{sub 2}). The current result demonstrated that kaempferol protected PC12 cells from serum deprivation-induced apoptosis. Pretreatment of cells with kaempferol also diminished intracellular generation of reactive oxygen species (ROS) in response to H{sub 2}O{sub 2} and strongly elevated cell viability. RT-Q-PCR and Western blotting revealed that kaempferol and rhamnocitrin significantly induced heme oxygenase (HO)-1 gene expression. Addition of zinc protoporphyrin (Znpp), a HO-1 competitive inhibitor, significantly attenuated their protective effects in H{sub 2}O{sub 2}-treated cells, indicating the vital role of HO-1 in cell resistance to oxidative injury. While investigating the signaling pathways responsible for HO-1 induction, we observed that kaempferol induced sustained extracellular signal-regulated protein kinase 1/2 (ERK1/2) in PC12 cells grown in low serum medium; while rhamnocitrin only stimulated transient ERK cascade. Addition of U0126, a highly selective inhibitor of MEK1/2, which is upstream of ERK1/2, had no effect on kaempferol- or rhamnocitrin-induced HO-1 mRNA expression, indicating no direct cross-talk between these two pathways. Furthermore, both kaempferol and rhamnocitrin were able to persistently attenuate p38 phosphorylation. Taking together, the above findings suggest that kaempferol and rhamnocitrin can augment cellular antioxidant defense capacity, at least in part, through regulation of HO-1 expression and MAPK signal transduction.

  12. Docosahexaenoic acid enhances iron uptake by modulating iron transporters and accelerates apoptotic death in PC12 cells.

    PubMed

    Schonfeld, Eldi; Yasharel, Ilanit; Yavin, Ephraim; Brand, Annette

    2007-10-01

    The effect of docosahexaenoic acid (DHA; 22:6 n-3) on Fe(2+)-mediated and/or H(2)O(2)-mediated oxidative stress (OS) was investigated in a PC12 pheochromocytoma cell line in the presence or absence of 50 ng/ml nerve growth factor (NGF). DHA-supplemented cells showed enhanced Fe(2+)-induced cell damage as evident by increased lipid peroxides formation (10-fold) and reduced neutral red (NR) dye uptake in a NGF-independent fashion. DHA caused a nearly 10-fold increase in free iron uptake in NGF-treated cells and doubled iron uptake in nondifferentiated cells. DHA-enrichment induced an elevation in the transferrin receptor protein in the nondifferentiated cells whereas NGF-treatment led to a substantial increase in the ubiquitous divalent metal ion transporter 1 (DMT-1) as detected by mRNA levels using qRT-PCR. The mechanism of action of DHA to accelerate cell death may be associated with the externalization of amino-phosphoglycerides (PG) species of which, increased ethanolamine plasmalogen levels, may be essential for cell rescue as noted in NGF-treated PC12 cells. PMID:17551831

  13. Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia.

    PubMed Central

    Conforti, L; Millhorn, D E

    1997-01-01

    1. Electrophysiological (single-channel patch clamp) and molecular biological experiments (reverse transcriptase-polymerase chain reaction) were performed to attempt to identify the O2-sensitive K+ channel in rat phaeochromocytoma (PC12) cells. 2. Four types of K+ channels were recorded in PC12 cells: a small-conductance K+ channel (14 pS), a calcium-activated K+ channel (KCa; 102 pS) and two K+ channels with similar conductance (20 pS). These last two channels differed in their time-dependent inactivation: one was a slow-inactivating channel, while the other belonged to the family of fast transient K+ channels. 3. The slow-inactivating 20 pS K+ channel was inhibited by hypoxia. Exposure to hypoxia produced a 50% reduction in channel activity (number of active channels in the patch x open probability). Hypoxia had no effect on the 20 pS transient K+ channels, whereas reduced O2 stimulated the KCa channels. 4. The genes encoding the alpha-subunits of slow-inactivating K+ channels for two members of the Shaker subfamily of K+ channels (Kv1.2 and Kv1.3) together with the Kv2.1, Kv3.1 and Kv3.2 channel genes were identified in PC12 cells. 5. The expression of the Shaker Kv1.2, but none of the other K+ channel genes, increased in cells exposed to prolonged hypoxia (18 h). The same cells were more responsive to a subsequent exposure to hypoxia (35% inhibition of K+ current measured in whole-cell voltage clamp) compared with the cells maintained in normoxia (19% inhibition). 6. These results indicate that the O2-sensitive K+ channel in PC12 cells is a 20 pS slow-inactivating K+ channel that is upregulated by hypoxia. This channel appears to belong to the Shaker subfamily of voltage-gated K+ channels. Images Figure 4 Figure 7 PMID:9263911

  14. Protective effects of flavonoid extract from Apocynum venetum leaves against corticosterone-induced neurotoxicity in PC12 cells.

    PubMed

    Zheng, Meizhu; Liu, Chunming; Pan, Fengguang; Shi, Dongfang; Ma, Fengshan; Zhang, Yuchi; Zhang, Yujing

    2011-04-01

    Depression is a major psychiatric disorder affecting nearly 21% of the world population and imposes a substantial health burden on society. Although significant progress has been made in depression research, the common molecular mechanism of antidepressants is still far from clearly understood. The neuroprotective effect of antidepressants has been proposed as a possible mechanism. Although Apocynum venetum (AV) L. (Apocynaceae) was previously shown to produce an antidepressant-like effect in the tail suspension test, the mechanisms underlying such antidepressant-like effect are yet to be understood. In this work, we studied the neuroprotective effect of AV leaf flavonoid extract in corticosterone-induced neurotoxicity, using PC12 cells as a suitable in vitro model of depression. Cell viability was quantitated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The release amount of lactic dehydrogenase (LDH) and intracellular Ca(2+) concentration were measured using kit, cell period change was tested by flow cytometry, and transcript abundances of brain-derived neurotrophic factor (BDNF) and microtubule-associated protein 4 (MAP4) were determined by real-time RT-PCR. The results showed that AV extract (25, 50, and 100 μg/ml) increased the A490 nm values, but decreased LDH release and Ca(2+) concentration, suppressed the apoptosis of PC12 cells and up-regulated BDNF and MAP4 transcript abundances compared with the corresponding corticosterone-treated group. These results suggest that the AV extract could generate a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, pointing to a possible action pathway by decreasing the Ca(2+) concentration and up-regulating BDNF and MAP4 genes. PMID:21170580

  15. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets

    PubMed Central

    Zeinabad, Hojjat Alizadeh; Zarrabian, Alireza; Saboury, Ali Akbar; Alizadeh, Ali Mohammad; Falahati, Mojtaba

    2016-01-01

    Subtle changes in the structure of nanoparticles influence their surface tension and corresponding interaction with cells and proteins. Here, the interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) with different surface tension with tau protein was evaluated using a variety of techniques including far and near circular dichroism, fluorescence spectroscopy, dynamic light scattering, Zeta potential, and TEM evaluation. Also the cytotoxicity of SWCNT and MWCNT on the PC12 cell line as a model of nervous system cell line was investigated by the MTT, LDH, acridine orange/ethidium bromide staining, flow cytometry, caspase 3 activity, cell and membrane potential assays. It was observed that SWCNT induced more structural changes of tau protein relative to MWCNT/tau protein interaction. It was also revealed that SWCNT and MWCNT impaired the viability and complexity of PC12 cells in different modes of cytotoxicity. Analysis of cellular outcomes indicated that MWCNT in comparison with SWCNT resulted in induction of necrotic modes of cell death, whereas apoptotic modes of cell death were activated in SWCNT-incubated cells. Together these findings suggest that surface tension may be used to determine how nanoparticle structure affects neurotoxicity and protein conformational changes. PMID:27216374

  16. Phlorofucofuroeckol Improves Glutamate-Induced Neurotoxicity through Modulation of Oxidative Stress-Mediated Mitochondrial Dysfunction in PC12 Cells

    PubMed Central

    Shin, Sun-Ae; Bak, Dong-Ho; Lee, Jae Won; Lee, Kyung Bok; Yoo, Yung Choon; Kim, Do-Kyung; Lee, Bong Ho; Kim, Dong Woon; Lee, Jina; Jo, Eun-Kyeong

    2016-01-01

    Stroke is a complex neurodegenerative disorder with a clinically high prevalence and mortality. Despite many efforts to protect against ischemic stroke, its incidence and related permanent disabilities continue to increase. In this study, we found that pretreatment with phlorofucofuroeckol (PFF), isolated from brown algae species, significantly increased cell viability in glutamate-stimulated PC12 cells. Additionally, glutamate-stimulated cells showed irregular morphology, but PFF pretreatment resulted in improved cell morphology, which resembled that in cells cultured under normal conditions. We further showed that PFF pretreatment effectively inhibited glutamate-induced apoptotic cell death in a caspase-dependent manner. Reactive oxygen species (ROS) induced by oxidative stress are closely associated with ischemia-induced neurological diseases. Exposure of PC12 cells to glutamate induced abundant production of intracellular ROS and mitochondrial dysfunction, which was attenuated by PFF in a dose-dependent manner. In vivo studies revealed that PFF-mediated prevention was achieved predominantly through inhibition of apoptosis and mitochondrial ROS generation. Taken together, these results suggest the possibility of PFF as a neuroprotective agent in ischemic stroke. PMID:27669570

  17. Membrane depolarization in PC-12 cells during hypoxia is regulated by an O2-sensitive K+ current.

    PubMed

    Zhu, W H; Conforti, L; Czyzyk-Krzeska, M F; Millhorn, D E

    1996-08-01

    The effects of hypoxia on K+ current (IK), resting membrane potential, and cytosolic free Ca2+ in rat pheochromocytoma (PC-12) cells were studied. Whole cell voltage- and current-clamp experiments were performed to measure IK and membrane potential, respectively. Cytosolic free Ca2+ level was measured using the Ca(2+)-sensitive fluorescent dye fura 2. Depolarizing voltage steps to +50 mV from a holding potential of -90 mV elicited a slowly inactivating, tetraethylammonium chloride-sensitive, and Ca(2+)-insensitive IK that was reversibly inhibited by reduced O2 tension. Graded reduction in PO2 (from 150 to 0 mmHg) induced a graded inhibition of O2-sensitive IK [IK(O2)] up to 46% at 0 mmHg. Moreover, hypoxia induced a 19-mV membrane depolarization and a twofold increase in cytosolic free Ca2+. In Ca(2+)-free condition, inhibition of IK(O2) induced an 8-mV depolarization, suggesting that inhibition of IK(O2) was responsible for initiating depolarization. The effect of reduced PO2 on the current-voltage relationship showed a reduction of outward current and a 14-mV shift in the reversal potential comparable with the amount of depolarization measured in current clamp experiments. Neither Ca(2+)-activated IK nor inwardly rectifying IK are responsible for the hypoxia-induced depolarization. In conclusion, PC-12 cells express an IK(O2), inhibition of which leads to membrane depolarization and increased intracellular Ca2+, making the PC-12 clonal cell line a useful model for studying the molecular and biophysical mechanisms that mediate O2 chemosensitivity. PMID:8770007

  18. Protective effect of Nigella sativa and thymoquinone on serum/glucose deprivation-induced DNA damage in PC12 cells

    PubMed Central

    Babazadeh, Beheshteh; Sadeghnia, Hamid Reza; Safarpour Kapurchal, Elham; Parsaee, Heydar; Nasri, Sima; Tayarani-Najaran, Zahra

    2012-01-01

    Objective: The discovery and development of natural products with potent antioxidant properties has been one of the most interesting and promising approaches in the search for treatment of CNS injuries. The most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability resulting cellular dysfunction. Serum/glucose deprivation (SGD) has served as an excellent in vitro model for the understanding of the molecular mechanisms of neuronal damage during ischemia and for the development of neuroprotective drugs against ischemia-induced brain injury. Nigella sativa (N. sativa) seeds and thymoquinone (TQ), its most abundant constituent, have been shown to possess anti-inflammatory, antioxidant, chemopreventive and anti-neoplastic effects both in vitro and in vivo. Therefore, in this study we investigated genoprotective effects of N. sativa and TQ on DNA damage of PC12 cells under SGD condition. Materials and Methods: PC12 cells were cultured in DMEM medium containing 10% (v/v) fetal bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin. Initially cells were pretreated with different concentrations of N. sativa extract (NSE), (10, 50, 250 µg/ml) and TQ (1, 5, 10 µg/ml) for 6 h and then deprived of serum/glucose (SGD) for 18 h. The alkaline comet assay was used to evaluate the effect of these compounds on DNA damage following ischemic insult. The amount of DNA in the comet tail (% tail DNA) was measured as an indicator of DNA damage. Results: A significant increase in the % tail DNA was seen in nuclei of cells following SGD induced DNA damage (p<0.001). In the control groups, no significant difference was found in the % tail DNA between NSE- or TQ-pretreated and vehicle-pretreated PC12 cells (p>0.05). NSE and TQ pretreatment resulted in a significant decrease in DNA damage following ischemic insult (p<0.001). This suppression of DNA

  19. Evidence for nerve growth factor-potentiating activities of the nonpeptidic compound SR 57746A in PC12 cells.

    PubMed

    Pradines, A; Magazin, M; Schiltz, P; Le Fur, G; Caput, D; Ferrara, P

    1995-05-01

    SR 57746A (1-[2-(naphth-2-yl)ethyl]-4-(3-trifluoromethylphenyl)-1,2,5,6- tetrahydropyridine hydrochloride) exhibits neurotrophic activities in vivo and in vitro. We used the rat pheochromocytoma PC12 cell line to investigate in vitro cellular changes induced by SR 57746A. A significant increase in the percentage of cells bearing neurite-like processes was obtained in cells treated by SR 57746A and nerve growth factor (NGF) compared with NGF treatment alone. SR 57746A added alone, however, had no effect on morphogenesis or on survival of cells in serum-free medium. In contrast, SR 57746A induced a "priming" effect on PC12 cells for neurite outgrowth within 6 h of addition of the protein tyrosine kinase inhibitor genistein. An increase in alpha-actinin content resulted from treatment with SR 57746A. Expression of NGF-mediated acetylcholinesterase and choline acetyltransferase was enhanced within 5 days by SR 57746A. The molecule also induced rapid F-actin redistribution. Within 2 min of incubation, outgrowth of F-actin-containing filopodia was clearly visible at the cell periphery, as previously shown with NGF. It is interesting that this effect of SR 57746A could be mimicked by protein tyrosine kinase inhibitors and abolished by preincubation with sodium orthovanadate, a protein tyrosine phosphatase inhibitor. PMID:7722483

  20. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity

    NASA Astrophysics Data System (ADS)

    Leach, Jennie B.; Brown, Xin Q.; Jacot, Jeffrey G.; Di Milla, Paul A.; Wong, Joyce Y.

    2007-06-01

    Rationally designed matrices for nerve tissue engineering and encapsulated cell therapies critically rely on a comprehensive understanding of neural response to biochemical as well as biophysical cues. Whereas biochemical cues are established mediators of neuronal behavior (e.g., outgrowth), physical cues such as substrate stiffness have only recently been recognized to influence cell behavior. In this work, we examine the response of PC12 neurites to substrate stiffness. We quantified and controlled fibronectin density on the substrates and measured multiple neurite behaviors (e.g., growth, branching, neurites per cell, per cent cells expressing neurites) in a large sample population. We found that PC12 neurons display a threshold response to substrate stiffness. On the softest substrates tested (shear modulus ~10 Pa), neurites were relatively few, short in length and unbranched. On stiffer substrates (shear modulus ~102-104 Pa), neurites were longer and more branched and a greater percentage of cells expressed neurites; significant differences in these measures were not found on substrates with a shear modulus >102 Pa. Based on these data and comparisons with published neurobiology and neuroengineering reports of neurite mechanotransduction, we hypothesize that results from studies of neuronal response to compliant substrates are cell-type dependent and sensitive to ligand density, sample size and the range of stiffness investigated.

  1. Cathepsin X promotes 6-hydroxydopamine-induced apoptosis of PC12 and SH-SY5Y cells.

    PubMed

    Pišlar, Anja Hafner; Zidar, Nace; Kikelj, Danijel; Kos, Janko

    2014-07-01

    The cysteine carboxypeptidase cathepsin X is an important player in degenerative processes under normal ageing and pathological conditions. In the present study, we investigated the potential role of cathepsin X in 6-hydroxydopamine (6-OHDA)-induced toxicity in the pheochromocytoma cell line PC12 and neuroblastoma cell line SH-SY5Y. Cells exposed to 6-OHDA demonstrated alterations in the protein level of cathepsin X and activity of cathepsin X. Downregulation of cathepsin X expression by siRNA attenuated the neuronal death caused by 6-OHDA. Treatment with specific cathepsin X inhibitor AMS36 protected cells against 6-OHDA mediated cytotoxicity, resulting in reduced cell death and apoptosis. Furthermore, AMS36 reversed 6-OHDA-induced loss of tyrosine hydroxylase and attenuated 6-OHDA-induced activation of caspase-3, triggering apoptosis, intracellular generation of reactive oxygen species and mitochondrial dysfunction, including the release of cytochrome c and an imbalanced Bax/Bcl-2 ratio. Moreover, AMS36 interfered with NF-κB activation by blocking degradation of IκBα, preventing NF-κB translocation to the nucleus. Our data provide the first evidence that inhibition of cathepsin X protects both, PC12 and SH-SY5Y cells against 6-OHDA toxicity and indicate that cathepsin X may be responsible for dopamine neuron death, involved in the pathogenic cascade event for the neurodegenerative disorders, such as Parkinson's disease.

  2. Microchip-based Integration of Cell Immobilization, Electrophoresis, Post-column Derivatization, and Fluorescence Detection for Monitoring the Release of Dopamine from PC 12 Cells

    PubMed Central

    Li, Michelle W.; Martin, R. Scott

    2008-01-01

    In this paper, we describe the fabrication and evaluation of a multilayer microchip device that can be used to quantitatively measure the amount of catecholamines released from PC 12 cells immobilized within the same device. This approach allows immobilized cells to be stimulated on-chip and, through rapid actuation of integrated microvalves, the products released from the cells are repeatedly injected into the electrophoresis portion of the microchip, where the analytes are separated based upon mass and charge and detected through post-column derivatization and fluorescence detection. Following optimization of the post-column derivatization detection scheme (using naphthalene-2,3-dicarboxaldehyde and 2-β-mercaptoethanol), off-chip cell stimulation experiments were performed to demonstrate the ability of this device to detect dopamine from a population of PC 12 cells. The final 3-dimensional device that integrates an immobilized PC 12 cell reactor with the bilayer continuous flow sampling/electrophoresis microchip was used to continuously monitor the on-chip stimulated release of dopamine from PC 12 cells. Similar dopamine release was seen when stimulating on-chip versus off-chip yet the on-chip immobilization studies could be carried out with 500 times fewer cells in a much reduced volume. While this paper is focused on PC 12 cells and neurotransmitter analysis, the final device is a general analytical tool that is amenable to immobilization of a variety of cell lines and analysis of various released analytes by electrophoretic means. PMID:18810283

  3. Improved restriction landmark cDNA scanning and its application to global analysis of genes regulated by nerve growth factor in PC12 cells.

    PubMed

    Mayumi, K; Yaoi, T; Kawai, J; Kojima, S; Watanabe, S; Suzuki, H

    1998-07-30

    Restriction landmark cDNA scanning (RLCS) is a novel method by which more than 1000 genes can be simultaneously and quantitatively displayed as two-dimensional gel spots. Here we present an adaptation that allows an individual spot to correspond to a unique gene species without redundancy in more than two gel patterns. Using this improved RLCS, we examined global changes on the gene expression of PC12 cells before and after treatment with nerve growth factor. Among a total of 3000 spots, 21 (0.70%) and 91 (3.03%) spots newly appeared and became more intense with treatment. On the other hand, 15 (0.50%) and 44 (1.47%) spots disappeared, becoming less intense with treatment. These observations suggest that approx. 6% of the detected PC12 genes are up-(3.73%) or down-(1.97%) regulated when the cells differentiate to neuronal cells. In comparison with the results obtained using the expressed-sequence-tag approach, previously reported by Lee et al. (Proc. Natl. Acad. Sci. USA 92 (1995) 8303-8307), RLCS should be useful for quantitatively examining the global change of differentially expressed genes of various expression levels. PMID:9714711

  4. Iridoids and sesquiterpenoids of Valeriana stenoptera and their effects on NGF-induced neurite outgrowth in PC12 cells.

    PubMed

    Dong, Fa-Wu; Wu, Zhi-Kun; Yang, Liu; Zi, Chen-Ting; Yang, Dan; Ma, Rui-Jing; Liu, Zhen-Hua; Luo, Huai-Rong; Zhou, Jun; Hu, Jiang-Miao

    2015-10-01

    Twenty-one compounds (nine iridoids and twelve sesquiterpenoids), including ten previously unknown (five iridoids and five sesquiterpenoids) were isolated from whole dried material of Valeriana stenoptera. Structures were established on the basis of extensive spectroscopic analysis and the relative stereochemistry of 13-hydroxypatchoulol A was further confirmed by X-ray crystallographic data. All isolates were evaluated for their effects on nerve growth factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells and seven compounds showed potent promoting effects. PMID:26343415

  5. Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells.

    PubMed

    Si, Chuan-Ling; Shen, Ting; Jiang, Yun-Yao; Wu, Lei; Yu, Guo-Jing; Ren, Xiao-Dan; Xu, Guang-Hui; Hu, Wei-Cheng

    2013-09-01

    Oxidative stress has been considered as a major cause of cell damage in various neurodegenerative disorders. One of the reasonable strategies for delaying the disease's progression is to prevent reactive oxygen species (ROS) mediated cellular injury by dietary or pharmaceutical augmentation of free radical scavengers. Isocampneoside II (ICD) is an active phenylethanoid glycoside isolated from the medicinal hardwood genus Paulownia. This study was designed to explore free radical scavenging potential of ICD in different in vitro systems and its protective role in hydrogen peroxide (H₂O₂)-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. The results showed ICD eliminated approximately 80.75% superoxide radical at the concentration of 0.1mg/ml and inhibited metal chelating by 22.07% at 8 mg/ml. Additionally, ICD showed a strong ability on reducing power and provided protection against oxidative protein damage induced by hydroxyl radicals. Pretreatment of PC12 cells with ICD prior to H₂O₂ exposure elevated cell viability, enhanced activity of superoxide dismutase and catalase, and decreased levels of malondialdehyde and intracellular ROS. Furthermore, ICD inhibited cell apoptosis and Bax/Bcl-2 ratio induced by H₂O₂. These findings suggested ICD may be considered as a potential antioxidant agent and should encourage for further research in neurodegenerative diseases. PMID:23770344

  6. Aripiprazole increases NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1 in PC12 cells.

    PubMed

    Kaneko, Yoko S; Takayanagi, Takeshi; Nagasaki, Hiroshi; Kodani, Yu; Nakashima, Akira; Mori, Keiji; Suzuki, Atsushi; Itoh, Mitsuyasu; Kondo, Kazunao; Nagatsu, Toshiharu; Ota, Miyuki; Ota, Akira

    2015-06-01

    We previously showed that aripiprazole increases intracellular NADPH and glucose-6-phosphate dehydrogenase mRNA in PC12 cells. Aripiprazole presumably activates a system that concurrently detoxifies reactive oxygen species and replenishes NADPH. Nrf2, a master transcriptional regulator of redox homeostasis genes, also activates the pentose phosphate pathway, including NADPH production. Therefore, our aim was to determine whether aripiprazole activates Nrf2 in PC12 cells. Aripiprazole increased mRNA expression of Nrf2-dependent genes (NAD(P)H-quinone oxidoreductase-1, Nqo1; heme oxygenase-1, HO1; and glutamate-cysteine ligase catalytic subunit) and protein expression of Nqo1 and HO1 in these cells (p < 0.05). To maintain increased Nrf2 activity, it is necessary to inhibit Nrf2 degradation; this is done by causing Nrf2 to dissociate from Keap1 or β-TrCP. However, in aripiprazole-treated cells, the relative amount of Nrf2 anchored to Keap1 or β-TrCP was unaffected and Nrf2 in the nuclear fraction decreased (p < 0.05). Aripiprazole did not affect phosphorylation of Nrf2 at Ser40 and decreased the relative amount of acetylated Nrf2 (p < 0.05). The increase in Nqo1 and HO1 in aripiprazole-treated cells cannot be explained by the canonical Nrf2-degrading pathways. Further experiments are needed to determine the biochemical mechanisms underlying the aripiprazole-induced increase in these enzymes.

  7. A polysaccharide isolated from Cynomorium songaricum Rupr. protects PC12 cells against H2O2-induced injury.

    PubMed

    Wang, Fengxia; Liu, Qin; Wang, Wei; Li, Xibo; Zhang, Ji

    2016-06-01

    As a great deal of interest is developed to study novel bioactive components with health benefit effects from natural resources, in this paper, a rat pheochromocytoma line 12 (PC12) cell is built to observe the protective effect of a Cynomorium songaricum Rupr. polysaccharide (CSP) against H2O2-induced oxidative stress. Fluorescence microscope, flow cytometry and micro-plate reader are used to assess cell viability and apoptosis. And the levels of reactive oxygen species (ROS), 8-hydroxy-2'-deoxyguanosine (8-OH-dG), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and lactate dehydrogenase (LDH) are evaluated. The results show that, the CSP can significantly protect PC12 cells against H2O2-induced oxidative stress, increase the intracellular antioxidase system load and inhibit H2O2-induced apoptosis by scavenging of ROS, regulating cell cycle, preventing DNA damage and protecting the cell membrane. This research would be benefit for preventing and curing the oxidation-related diseases in polysaccharide study.

  8. Acetylated chitosan oligosaccharides act as antagonists against glutamate-induced PC12 cell death via Bcl-2/Bax signal pathway.

    PubMed

    Hao, Cui; Gao, Lixia; Zhang, Yiran; Wang, Wei; Yu, Guangli; Guan, Huashi; Zhang, Lijuan; Li, Chunxia

    2015-03-12

    Chitosan oligosaccharides (COSs), depolymerized products of chitosan composed of β-(1→4) D-glucosamine units, have broad range of biological activities such as antitumour, antifungal, and antioxidant activities. In this study, peracetylated chitosan oligosaccharides (PACOs) and N-acetylated chitosan oligosaccharides (NACOs) were prepared from the COSs by chemcal modification. The structures of these monomers were identified using NMR and ESI-MS spectra. Their antagonist effects against glutamate-induced PC12 cell death were investigated. The results showed that pretreatment of PC12 cells with the PACOs markedly inhibited glutamate-induced cell death in a concentration-dependent manner. The PACOs were better glutamate antagonists compared to the COSs and the NACOs, suggesting the peracetylation is essential for the neuroprotective effects of chitosan oligosaccharides. In addition, the PACOs pretreatment significantly reduced lactate dehydrogenase release and reactive oxygen species production. It also attenuated the loss of mitochondrial membrane potential. Further studies indicated that the PACOs inhibited glutamate-induced cell death by preventing apoptosis through depressing the elevation of Bax/Bcl-2 ratio and caspase-3 activation. These results suggest that PACOs might be promising antagonists against glutamate-induced neural cell death.

  9. Acetylated Chitosan Oligosaccharides Act as Antagonists against Glutamate-Induced PC12 Cell Death via Bcl-2/Bax Signal Pathway

    PubMed Central

    Hao, Cui; Gao, Lixia; Zhang, Yiran; Wang, Wei; Yu, Guangli; Guan, Huashi; Zhang, Lijuan; Li, Chunxia

    2015-01-01

    Chitosan oligosaccharides (COSs), depolymerized products of chitosan composed of β-(1→4) d-glucosamine units, have broad range of biological activities such as antitumour, antifungal, and antioxidant activities. In this study, peracetylated chitosan oligosaccharides (PACOs) and N-acetylated chitosan oligosaccharides (NACOs) were prepared from the COSs by chemcal modification. The structures of these monomers were identified using NMR and ESI-MS spectra. Their antagonist effects against glutamate-induced PC12 cell death were investigated. The results showed that pretreatment of PC12 cells with the PACOs markedly inhibited glutamate-induced cell death in a concentration-dependent manner. The PACOs were better glutamate antagonists compared to the COSs and the NACOs, suggesting the peracetylation is essential for the neuroprotective effects of chitosan oligosaccharides. In addition, the PACOs pretreatment significantly reduced lactate dehydrogenase release and reactive oxygen species production. It also attenuated the loss of mitochondrial membrane potential. Further studies indicated that the PACOs inhibited glutamate-induced cell death by preventing apoptosis through depressing the elevation of Bax/Bcl-2 ratio and caspase-3 activation. These results suggest that PACOs might be promising antagonists against glutamate-induced neural cell death. PMID:25775423

  10. Alpha-synuclein overexpression induced mitochondrial damage by the generation of endogenous neurotoxins in PC12 cells.

    PubMed

    Zhang, Yanyan; Ma, Hong; Xie, Bingjie; Han, Chao; Wang, Chen; Qing, Hong; Deng, Yulin

    2013-06-28

    Alpha-synuclein is one of the important components of Lewy body which involved in neuropathology of Parkinson's disease (PD). The relationship between α-synuclein and cell death is still unclear. In the study, PC12 cell, stably over expressing α-synuclein model was used, and we investigated the level of intracellular oxidative stress, dopamine and endogenous neurotoxin. The results showed that the level of oxidative stress and intracytoplasmic dopamine (DA) was increased in cells over expressing α-synuclein compared with normal PC12 cells. Simultaneously, additional generation of endogenous neurotoxins 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) and 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolin (NM-salsolinol) was detected and this phenomenon was exacerbated after exposed to H₂O₂ for 24 h, but mitigated when treated with dopamine synthesis inhibitors. The presence of endogenous neurotoxins exacerbated α-synuclein induced mitochondrial damage. These results suggest that the endogenous neurotoxins may become a bridge between α-synuclein and cell death.

  11. Protective Effect of Diospyros kaki against Glucose-Oxygen-Serum Deprivation-Induced PC12 Cells Injury.

    PubMed

    Forouzanfar, Fatemeh; Torabi, Shaghayegh; Askari, Vahid R; Asadpour, Elham; Sadeghnia, Hamid R

    2016-01-01

    Ischemic cerebrovascular disease is one of the most common causes of death in the world. Recent interests have been focused on natural antioxidants and anti-inflammatory agents as potentially useful neuroprotective agents. Diospyros kaki (persimmon) has been shown to exert anti-inflammatory, antioxidant, and antineoplastic effects. However, its effects on ischemic damage have not been evaluated. Here, we used an in vitro model of cerebral ischemia and studied the effects of hydroalcoholic extract of peel (PeHE) and fruit pulp (PuHE) of persimmon on cell viability and markers of oxidative damage mainly intracellular reactive oxygen species (ROS) induced by glucose-oxygen-serum deprivation (GOSD) in PC12 cells. GOSD for 6 h produced significant cell death which was accompanied by increased levels of ROS. Pretreatment with different concentrations of PeHE and PuHE (0-500 μg/mL) for 2 and 24 h markedly restored these changes only at high concentrations. However, no significant differences were seen in the protection against ischemic insult between different extracts and the time of exposure. The experimental results suggest that persimmon protects the PC12 cells from GOSD-induced injury via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of persimmon for managing cerebral ischemic and other neurodegenerative disorders. PMID:26941791

  12. Protective Effect of Diospyros kaki against Glucose-Oxygen-Serum Deprivation-Induced PC12 Cells Injury.

    PubMed

    Forouzanfar, Fatemeh; Torabi, Shaghayegh; Askari, Vahid R; Asadpour, Elham; Sadeghnia, Hamid R

    2016-01-01

    Ischemic cerebrovascular disease is one of the most common causes of death in the world. Recent interests have been focused on natural antioxidants and anti-inflammatory agents as potentially useful neuroprotective agents. Diospyros kaki (persimmon) has been shown to exert anti-inflammatory, antioxidant, and antineoplastic effects. However, its effects on ischemic damage have not been evaluated. Here, we used an in vitro model of cerebral ischemia and studied the effects of hydroalcoholic extract of peel (PeHE) and fruit pulp (PuHE) of persimmon on cell viability and markers of oxidative damage mainly intracellular reactive oxygen species (ROS) induced by glucose-oxygen-serum deprivation (GOSD) in PC12 cells. GOSD for 6 h produced significant cell death which was accompanied by increased levels of ROS. Pretreatment with different concentrations of PeHE and PuHE (0-500 μg/mL) for 2 and 24 h markedly restored these changes only at high concentrations. However, no significant differences were seen in the protection against ischemic insult between different extracts and the time of exposure. The experimental results suggest that persimmon protects the PC12 cells from GOSD-induced injury via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of persimmon for managing cerebral ischemic and other neurodegenerative disorders.

  13. Protective Effect of Diospyros kaki against Glucose-Oxygen-Serum Deprivation-Induced PC12 Cells Injury

    PubMed Central

    Forouzanfar, Fatemeh; Torabi, Shaghayegh; Askari, Vahid R.; Asadpour, Elham; Sadeghnia, Hamid R.

    2016-01-01

    Ischemic cerebrovascular disease is one of the most common causes of death in the world. Recent interests have been focused on natural antioxidants and anti-inflammatory agents as potentially useful neuroprotective agents. Diospyros kaki (persimmon) has been shown to exert anti-inflammatory, antioxidant, and antineoplastic effects. However, its effects on ischemic damage have not been evaluated. Here, we used an in vitro model of cerebral ischemia and studied the effects of hydroalcoholic extract of peel (PeHE) and fruit pulp (PuHE) of persimmon on cell viability and markers of oxidative damage mainly intracellular reactive oxygen species (ROS) induced by glucose-oxygen-serum deprivation (GOSD) in PC12 cells. GOSD for 6 h produced significant cell death which was accompanied by increased levels of ROS. Pretreatment with different concentrations of PeHE and PuHE (0–500 μg/mL) for 2 and 24 h markedly restored these changes only at high concentrations. However, no significant differences were seen in the protection against ischemic insult between different extracts and the time of exposure. The experimental results suggest that persimmon protects the PC12 cells from GOSD-induced injury via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of persimmon for managing cerebral ischemic and other neurodegenerative disorders. PMID:26941791

  14. METHYLMERCURY BUT NOT MERCURIC CHLORIDE INDUCES APOPTOTIC CELL DEATH IN PC12 CELLS.

    EPA Science Inventory

    Normal development of the nervous system requires the process of apoptosis, a form of programmed cell death, to remove superfluous neurons. Abnormal patterns of apoptosis may be a consequence of exposure to environmental neurotoxicants leading to a disruption in the tightly regul...

  15. Heat shock protein 70 protects PC12 cells against ischemia-hypoxia/reoxygenation by maintaining intracellular Ca2+ homeostasis

    PubMed Central

    Liu, Yuan; Wang, Xue-chun; Hu, Dan; Huang, Shu-ran; Li, Qing-shu; Li, Zhi; Qu, Yan

    2016-01-01

    Heat shock protein 70 (HSP70) maintains Ca2+ homeostasis in PC12 cells, which may protect against apoptosis; however, the mechanisms of neuroprotection are unclear. Therefore, in this study, we examined Ca2+ levels in PC12 cells transfected with an exogenous lentiviral HSP70 gene expression construct, and we subsequently subjected the cells to ischemia-hypoxia/reoxygenation injury. HSP70 overexpression increased neuronal viability and ATPase activity, and it decreased cellular reactive oxygen species levels and intracellular Ca2+ concentration after hypoxia/reoxygenation. HSP70 overexpression enhanced the protein and mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), but it decreased the protein and mRNA levels of inositol 1,4,5-trisphosphate receptor (IP3R), thereby leading to decreased intracellular Ca2+ concentration after ischemia-hypoxia/reoxygenation. These results suggest that exogenous HSP70 protects against ischemia-hypoxia/reoxygenation injury, at least in part, by maintaining cellular Ca2+ homeostasis, by upregulating SERCA expression and by downregulating IP3R expression.

  16. Heat shock protein 70 protects PC12 cells against ischemia-hypoxia/reoxygenation by maintaining intracellular Ca(2+) homeostasis.

    PubMed

    Liu, Yuan; Wang, Xue-Chun; Hu, Dan; Huang, Shu-Ran; Li, Qing-Shu; Li, Zhi; Qu, Yan

    2016-07-01

    Heat shock protein 70 (HSP70) maintains Ca(2+) homeostasis in PC12 cells, which may protect against apoptosis; however, the mechanisms of neuroprotection are unclear. Therefore, in this study, we examined Ca(2+) levels in PC12 cells transfected with an exogenous lentiviral HSP70 gene expression construct, and we subsequently subjected the cells to ischemia-hypoxia/reoxygenation injury. HSP70 overexpression increased neuronal viability and ATPase activity, and it decreased cellular reactive oxygen species levels and intracellular Ca(2+) concentration after hypoxia/reoxygenation. HSP70 overexpression enhanced the protein and mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA), but it decreased the protein and mRNA levels of inositol 1,4,5-trisphosphate receptor (IP3R), thereby leading to decreased intracellular Ca(2+) concentration after ischemia-hypoxia/reoxygenation. These results suggest that exogenous HSP70 protects against ischemia-hypoxia/reoxygenation injury, at least in part, by maintaining cellular Ca(2+) homeostasis, by upregulating SERCA expression and by downregulating IP3R expression. PMID:27630698

  17. 6-demethoxynobiletin, a nobiletin-analog citrus flavonoid, enhances extracellular signal-regulated kinase phosphorylation in PC12D cells.

    PubMed

    Kimura, Junko; Nemoto, Kiyomitsu; Yokosuka, Akihito; Mimaki, Yoshihiro; Degawa, Masakuni; Ohizumi, Yasushi

    2013-01-01

    We previously demonstrated that nobiletin, a polymethoxylated flavone isolated from citrus peels, has the potential to improve cognitive dysfunction in patients with Alzheimer's disease (AD). Recent studies suggest that the generation of intraneuronal amyloid-beta (Aβ) oligomers is an early event in the pathogenesis of AD. Aβ oligomers cause deficits in the regulation of the extracellular signal-regulated kinase (ERK) signaling which is critical for consolidation of the memory. Our previous studies revealed that nobiletin activated ERK signaling and subsequent cyclic AMP response element-dependent transcription. In this study, the effects of five nobiletin analogs, 6-demethoxynobiletin, tangeretin, 5-demethylnobiletin, sinensetin, and 6-demethoxytangeretin, isolated from citrus peels were assessed on ERK phosphorylation in PC12D cells, and the structure-activity relationships were examined. PC12D cells were treated with nobiletin or its analogs, and the cell extracts were analyzed by Western blotting using an antibody specific to phosphorylated ERK. 6-Demethoxynobiletin markedly enhanced ERK phosphorylation in a concentration-dependent manner. These results may be useful in developing drugs and functional foods using citrus peels for the treatment of dementia including AD.

  18. Heat shock protein 70 protects PC12 cells against ischemia-hypoxia/reoxygenation by maintaining intracellular Ca2+ homeostasis

    PubMed Central

    Liu, Yuan; Wang, Xue-chun; Hu, Dan; Huang, Shu-ran; Li, Qing-shu; Li, Zhi; Qu, Yan

    2016-01-01

    Heat shock protein 70 (HSP70) maintains Ca2+ homeostasis in PC12 cells, which may protect against apoptosis; however, the mechanisms of neuroprotection are unclear. Therefore, in this study, we examined Ca2+ levels in PC12 cells transfected with an exogenous lentiviral HSP70 gene expression construct, and we subsequently subjected the cells to ischemia-hypoxia/reoxygenation injury. HSP70 overexpression increased neuronal viability and ATPase activity, and it decreased cellular reactive oxygen species levels and intracellular Ca2+ concentration after hypoxia/reoxygenation. HSP70 overexpression enhanced the protein and mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), but it decreased the protein and mRNA levels of inositol 1,4,5-trisphosphate receptor (IP3R), thereby leading to decreased intracellular Ca2+ concentration after ischemia-hypoxia/reoxygenation. These results suggest that exogenous HSP70 protects against ischemia-hypoxia/reoxygenation injury, at least in part, by maintaining cellular Ca2+ homeostasis, by upregulating SERCA expression and by downregulating IP3R expression. PMID:27630698

  19. Lithium induces gene expression through lymphoid enhancer-binding factor/T-cell factor responsive element in rat PC12 cells.

    PubMed

    Bettini, Ezio; Magnani, Enrico; Terstappen, Georg C

    2002-01-01

    Lithium inhibits glycogen synthase kinase-3 (GSK-3), which leads to an increase of cytoplasmic beta-catenin levels. In some cell types, but not in others, activated beta-catenin interacts with members of the lymphoid enhancer-binding factor (LEF)/T-cell factor (TCF) family of transcription factors and induces gene expression. Lithium effect on LEF/TCF-mediated gene expression has never been evaluated in cells with a neuronal phenotype. We have constructed a LEF/TCF-dependent luciferase reporter gene to investigate lithium effects on transcription in PC12 cells. In transiently transfected PC12 cells, lithium induced a time-dependent increase in LEF/TCF-mediated luciferase activity. These results are consistent with the known inhibitory effects of lithium on GSK-3 and represent the first demonstration that a LEF/TCF responsive element also mediates lithium-induced gene expression in PC12 cells.

  20. Effects of selenium and topiramate on cytosolic Ca(2+) influx and oxidative stress in neuronal PC12 cells.

    PubMed

    Demirci, Seden; Kutluhan, Süleyman; Naziroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Yürekli, Vedat Ali; Demirci, Kadir

    2013-01-01

    It has been widely suggested that selenium (Se) deficiency play an important role in the pathophysiology of epilepsy. It has been reported that Se provides protection against the neuronal damage in patients and animals with epilepsy by restoring the antioxidant defense mechanism. The neuroprotective effects of topiramate (TPM) have been reported in several studies but the putative mechanism of action remains elusive. We investigated effects of Se and TPM in neuronal PC12 cell by evaluating Ca(2+) mobilization, lipid peroxidation and antioxidant levels. PC12 cells were divided into eight groups namely control, TPM, Se, H(2)O(2), TPM + H(2)O(2), Se + H(2)O(2), Se + TPM and Se + TPM + H(2)O(2). The toxic doses and times of H(2)O(2), TPM and Se were determined by cell viability assay which is used to evaluate cell viability. Cells were incubated with 0.01 mM TPM for 5 h and 500 nM Se for 10 h. Then, the cells were exposed to 0.1 mM H(2)O(2) for 10 h before analysis. The cells in all groups except control, TPM and Se were exposed to H(2)O(2) for 15 min before analysis. Cytosolic Ca(2+) release and lipid peroxidation levels were higher in H(2)O(2) group than in control, Se and TPM combination groups although their levels were decreased by incubation of Se and TPM combination. However, there is no difference on Ca(2+) release in TPM group. Glutathione peroxidase activity, reduced glutathione and vitamin C levels in the cells were lower in H(2)O(2) group than in control, Se and TPM groups although their values were higher in the cells incubated with Se and TPM groups than in H(2)O(2) groups. In conclusion, these results indicate that Se induced protective effects on oxidative stress in PC12 cells by modulating cytosolic Ca(2+) influx and antioxidant levels. TPM modulated also lipid peroxidation and glutathione and vitamin C concentrations in the cell system.

  1. Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells.

    PubMed

    Toliver-Kinsky, T; Wood, T; Perez-Polo, J R

    2000-12-01

    Anovel nuclear factor kappaB (NF-kappaB) binding site has been identified within the promoter region of the mouse gene encoding choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine and has been implicated in the cognitive deficits associated with aging and Alzheimer's disease. This binding site, which is located within the nerve growth factor (NGF)-responsive enhancer element, was recognized by the NF-kappaB protein p49 but not p65 or p50. p49 from both basal forebrain and PC12 nuclear extracts interacted with this specific sequence in electrophoretic mobility shift assays. Mutation of the NF-kappaB site caused an increase in NGF-induced promoter activation, whereas overexpression of p49 in NGF-differentiated PC12 cells caused a decrease in endogenous ChAT enzyme activity and a decrease in promoter activity that was specifically mediated through this NF-kappaB binding site. Treatment of PC12 cells with NGF resulted in a drastic reduction in nuclear p49 binding to the ChAT NF-kappaB site after 24 h, but nuclear p49 levels were not altered, suggesting that late NGF-mediated events prevent binding of p49 to the ChAT promoter by an unknown mechanism other than nuclear translocation. Decreased ChAT expression and increased NF-kappaB activity in the brain are associated with aging and Alzheimer's disease. These data indicate that p49 is a negative regulator of ChAT expression and suggest a possible mechanism for aging-associated declines in cholinergic function.

  2. Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice - Impact on bioavailability.

    PubMed

    Hagl, Stephanie; Kocher, Alexa; Schiborr, Christina; Kolesova, Natalie; Frank, Jan; Eckert, Gunter P

    2015-10-01

    Curcumin, a polyphenolic compound abundant in the rhizome of Curcuma longa, has been reported to have various beneficial biological and pharmacological activities. Recent research revealed that curcumin might be valuable in the prevention and therapy of numerous disorders including neurodegenerative diseases like Alzheimer's disease. Due to its low absorption and quick elimination from the body, curcumin bioavailability is rather low which poses major problems for the use of curcumin as a therapeutic agent. There are several approaches to ameliorate curcumin bioavailability after oral administration, amongst them simultaneous administration with secondary plant compounds, micronization and micellation. We examined bioavailability in vivo in NMRI mice and the effects of native curcumin and a newly developed curcumin micelles formulation on mitochondrial function in vitro in PC12 cells and ex vivo in isolated mouse brain mitochondria. We found that curcumin micelles improved bioavailability of native curcumin around 10- to 40-fold in plasma and brain of mice. Incubation with native curcumin and curcumin micelles prevented isolated mouse brain mitochondria from swelling, indicating less mitochondrial permeability transition pore (mPTP) opening and prevention of injury. Curcumin micelles proved to be more efficient in preventing mitochondrial swelling in isolated mouse brain mitochondria and protecting PC12 cells from nitrosative stress than native curcumin. Due to their improved effectivity, curcumin micelles might be a suitable formulation for the prevention of mitochondrial dysfunction in brain aging and neurodegeneration.

  3. Protective Effect of Punica granatum L. against Serum/Glucose Deprivation-Induced PC12 Cells Injury

    PubMed Central

    Forouzanfar, Fatemeh; Afkhami Goli, Amir; Asadpour, Elham; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2013-01-01

    The discovery and development of natural products with potent antioxidant, anti-inflammatory, and antiapoptotic properties have been one of the most interesting and promising approaches in the search for the treatment of many neurodegenerative diseases including ischemic stroke. Serum/glucose deprivation (SGD) has served as an excellent in vitro model for the understanding of the molecular mechanisms of neuronal damage during ischemia and for the development of neuroprotective drugs against ischemia-induced brain injury. Recent studies suggested that pomegranate (Punica granatum L.) or its active constituents exert pharmacological actions such as antioxidant, anti-inflammatory, and neuroprotective properties. Therefore, in this study we investigated the possible protective effects of different extracts of pomegranate against SGD-induced PC12 cells injury. Initially, the cells were pretreated with different concentrations of pulp hydroalcoholic extract (PHE), pulp aqueous extract (PAE) and pomegranate juice (PJ) for 2 h and then deprived of serum/glucose (SGD) for 6 and 12 h. SGD caused a significant reduction in cell viability (measured by the MTT assay) after 6 and 12 h, as compared with control cells (P < 0.001). Pretreatment with PHE, PAE, and PJ significantly and concentration-dependently increased cell viability following SGD insult for 6 and 12 h. A significant increase in DNA damage (measured by the comet assay) was seen in nuclei of cells following SGD for 12 h (P < 0.001). In control groups, no significant difference was seen in DNA damage between PHE, PAE, and PJ-pretreated and vehicle-pretreated PC12 cells (P > 0.05). PHE, PAE, and PJ pretreatment resulted in a significant decrease in DNA damage following ischemic insult (P < 0.001). This suppression of DNA damage by PHE, PAE and PJ was found to be concentration dependent. These data indicate that there is a cytoprotective property in PHE, PAE, and PJ under SGD condition in PC12 cells

  4. Nerve growth factor-sensitive S6 kinase in cell-free extracts from PC12 cells

    SciTech Connect

    Matsuda, Y.; Nakanishi, N.; Dickens, G.; Guroff, G.

    1986-05-01

    Soluble extracts from nerve growth factor (NGF)-stimulated PC12 cells prepared by alkaline lysis show a 2-10 fold increase in the ability to phosphorylate the ribosomal protein S6. The alkaline lysis method yields a preparation of much higher specific activity than does sonication. Half-maximal incorporation of (/sup 32/P) from (/sup 32/P)ATP into S6 occurred after 4-7 minutes of nerve growth factor treatment. The partially purified NGF-sensitive S6 kinase has a molecular weight of 45,000 and is not inhibited by the inhibitor of cAMP-dependent protein kinase, NaCl, or trifluoperazine, nor is it activated by the addition of diolein plus phosphatidylserine. Trypsin treatment of either crude extracts or partially purified S6 kinase from control or NGF-treated cells was without effect. These data suggest that the S6 kinase stimulated by NGF is neither cAMP-dependent protein kinase, protein kinase C, nor the result of proteolytic activation of an inactive proenzyme. Treatment of intact cells with dibutyryl cyclic AMP or 5'-N-ethylcarboxamideadenosine also increases the subsequent cell-free phosphorylation of S6. But the effect of NGF in increasing S6 kinase activity cannot be mimicked by treatment of control extract with cAMP-dependent protein kinase in vitro. Thus, it is unlikely to result from the phosphorylation of a less active form of the S6 kinase by a cAMP-dependent protein kinase.

  5. Frequency-dependent interference by magnetic fields of nerve growth factor-induced neurite outgrowth in PC-12 cells

    SciTech Connect

    Blackman, C.F.; Benane, S.G.; House, D.E.

    1995-12-31

    The authors have shown that 50 Hz sinusoidal magnetic fields within the 5--10 microTesla ({micro}T) rms range cause an intensity-dependent reduction in nerve growth factor (NGF) stimulation of neurite outgrowth (NO) in PC12- cells. Here they report on the frequency dependence of this response over the 15--70 Hz range at 5 Hz intervals. Primed PC-12 cells were plated in collagen-coated, 60 mm plastic petri dishes with or without 5 ng/ml NGF and were exposed to sinusoidal magnetic fields for 22 h in a CO{sub 2} incubator at 37 C. One 1,000-turn coil, 20 cm in diameter, generated vertically oriented magnetic fields. The dishes were stacked on the center axis of the coil to provide a range of intensities between 3.5 and 9.0 {micro}T rms. The flux density of the ambient DC magnetic field was 37 {micro}T vertical and 29 {micro}T horizontal. The assay consisted of counting over 100 cells in the central portion (radius {le}0.3 cm) of each dish and scoring cells positive for NO. Sham exposure of cells treated identically with NGF demonstrated no difference in the percentage of cells with NO between exposed and magnetically shielded locations within the incubator. Analysis of variance demonstrated flux density-dependent reductions in NGF-stimulated NO over the 35--70 Hz frequency range, whereas frequencies between 15 Hz and 30 Hz produced no obvious reduction. The results also demonstrated a relative maximal sensitivity of cells at 40 Hz with a possible additional sensitivity region at or above 70 Hz. These findings suggest a biological influence of perpendicular AC/DC magnetic fields different from those identified by the ion parametric resonance model, which uses strictly parallel AC/DC fields.

  6. Protective, antioxidative and antiapoptotic effects of 2-methoxy-6-acetyl-7-methyljuglone from Polygonum cuspidatum in PC12 cells.

    PubMed

    Li, Ying Bo; Lin, Zhu Qing; Zhang, Zai Jun; Wang, Mei Wei; Zhang, Huan; Zhang, Qing Wen; Lee, Simon Ming Yuen; Wang, Yi Tao; Hoi, Pui Man

    2011-03-01

    Much correlative evidence indicates that the oxidative modification of protein by reactive oxygen species (ROS) is involved in normal aging as well as the pathogenesis of neurodegenerative diseases such as Alzheimer's disease. In this study, we explored the antioxidative and neuroprotective effects of a naphthoquinone, 2-methoxy-6-acetyl-7-methyljuglone (MAM), purified from the dried rhizome of POLYGONUM CUSPIDATUM (Chinese name Hu-Zhang). Pretreatments with MAM (24 h) were investigated for their protective effects against apoptosis induced by the oxidizing agent TERT-butyl hydroperoxide ( T-BHP) in PC12 cells. The results indicated that MAM pretreatments could effectively protect PC12 cells against cytotoxicity induced by T-BHP in a dose-dependent manner. Cell viability was determined by both MTT and LDH assays. Increasing concentrations of MAM enhanced cell viability significantly and completely prevented cell death induced by T-BHP at 2.5 µM. The corresponding extracellular lactate dehydrogenase (LDH) levels were also attenuated significantly by various concentrations of MAM. In addition, it was found that the antioxidative effect of MAM was stronger than those of resveratrol and lipoic acid. The antiapoptotic property of MAM was further investigated with Hoechst 33342 nuclear staining and TUNEL assay. Pretreatments of MAM were able to prevent the T-BHP-induced nucleus fragmentation and accumulation of apoptotic bodies (commonly accepted as markers of apoptosis) inside the cells in a dose-dependent manner. T-BHP induced the phosphorylation of ERK 1/2, JNK and p38 MAPK, which were all impeded by pretreatments with MAM, indicating that MAM may act as a potent antioxidant which significantly interferes with the MAPK apoptotic cascades, probably rescuing cells by inhibiting the death pathways. PMID:20922651

  7. Salvianolic acid Y: a new protector of PC12 cells against hydrogen peroxide-induced injury from Salvia officinalis.

    PubMed

    Gong, Jun; Ju, Aichun; Zhou, Dazheng; Li, Dekun; Zhou, Wei; Geng, Wanli; Li, Bing; Li, Li; Liu, Yanjie; He, Ying; Song, Meizhen; Wang, Yunhua; Ye, Zhengliang; Lin, Ruichao

    2015-01-06

    Salvianolic acid Y (TSL 1), a new phenolic acid with the same planar structure as salvianolic acid B, was isolated from Salvia officinalis. The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods, including 1D, 2D-NMR (1H-1H COSY, HMQC and HMBC) and circular dichroism (CD) experiments. The biosynthesis pathway of salvianolic acid B and salvianolic acid Y (TSL 1) was proposed based on structural analysis. The protection of PC12 cells from injury induced by H2O2 was assessed in vitro using a cell viability assay. Salvianolic acid Y (TSL 1) protected cells from injury by 54.2%, which was significantly higher than salvianolic acid B (35.2%).

  8. Mulberry Extracts Alleviate Aβ25–35-Induced Injury and Change the Gene Expression Profile in PC12 Cells

    PubMed Central

    Song, Nan; Yang, Hongpeng; Pang, Wei; Qie, Zhiwei; Lu, Hao; Tan, Long; Li, Haiqiang; Sun, Shoudan; Lian, Fuzhi; Qin, Chuan; Jiang, Yugang

    2014-01-01

    Mulberry, which contained high amounts of anthocyanins, has been used in traditional Chinese medicine. Mulberry fruit extracts (ME) have demonstrated the antioxidant activity and neuroprotection. The study was to investigate the neuroprotective efficacy of ME against β-amyloid 25–35- (Aβ25–35-) induced PC12 cells injury. Cells preincubated with or without ME (200 μg/mL) for 24 h were treated with Aβ25–35 (20 μmol/L) for another 24 h. Cell viability was assessed by MTT, gene expression profiles were examined by cDNA microarrays, and RT-PCR were used to confirm the results of microarray assays. ME pretreatment was found to neutralize the cytotoxicity and prevent Aβ25–35-induced cells injury. Analyses of gene expression profile revealed that genes involving cell adhesion, peptidase activity, cytokine activity, ion binding activity, and angiogenesis regulation were significantly modulated by ME pretreatment. Among those genes, Apaf1, Bace2, and Plcb4 were enriched in the “Alzheimer's disease-reference pathway” and downregulated after ME intervention. RT-PCR results showed that ME preincubation could significantly inhibit Aβ25–35 increased mRNA levels of these three genes. Overall, ME pretreatment could substantially alleviate PC12 cells injury and downregulate expression of AD-related genes, such as Apaf1, Bace2, and Plcb4. This study has a great nutrigenomics interest and brings new and important light in the field of AD intervention. PMID:25580148

  9. Identification of IRAS/Nischarin as an I1-imidazoline receptor in PC12 rat pheochromocytoma cells.

    PubMed

    Sun, Zheng; Chang, Chung-Ho; Ernsberger, Paul

    2007-04-01

    The I1-imidazoline receptor (I1R) is a proposed target for drug action relevant to blood pressure and glucose control. The imidazoline receptor antisera-selected (IRAS) gene, also known as Nischarin, has several characteristics of an I1R. To test the contribution of IRAS to I1R binding capacity and cell-signaling function, an antisense probe targeting the initiating codon of rat IRAS gene was evaluated in PC12 rat pheochromocytoma cells, a well-established model for I1R action. The density of I1R was significantly reduced by antisense compared with control transfection (Bmax = 400 +/- 16 vs. 691 +/- 29 fmol/mg protein), without significantly affecting binding affinity (Kd = 0.30 +/- 0.04 vs. 0.39 +/- 0.05 nmol/L). Thus, IRAS expression is necessary for high-affinity binding to I1R. Western blots with polyclonal anti-IRAS showed reduced IRAS expression in the major 85-kDa band relative to an actin reference, paralleling the reduction in binding site density. To determine whether reduced IRAS expression attenuated I1R cell signaling, PC12 cells transfected with antisense or sense oligo-DNA were treated with moxonidine, an I1R agonist, then cell lysates were analyzed by western blot. Dose-dependent activation of extracellular signal-regulated kinase was attenuated without affecting the potency of the agonist. In contrast, extracellular signal-regulated kinase activation by insulin was unchanged. The IRAS gene is likely to encode an I1R or a functional subunit.

  10. Involvement of PKC{alpha} in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells

    SciTech Connect

    Xue Renhao; Zhao Yanying; Chen Peng

    2009-03-06

    Phorbol-12-myristate-13-acetate, a stable analog of the important signaling membrane lipid diacylglycerol (DAG), is known to potentiate exocytosis and modulate vesicle fusion kinetics in neurons and endocrine cells. The exact mechanisms underlying the actions of PMA, however, is often not clear, largely because of the diversity of the DAG/PMA receptors involved in the exocytotic process, which include, most notably, various isoforms of protein kinase C (PKC). In this study, the roles of PKC{alpha} in PMA-mediated regulation of exocytosis were investigated by over-expressing wild-type PKC{alpha} (wt-PKC{alpha}) or dominant negative PKC{alpha} (dn-PKC{alpha}). Amperometric measurements based on carbon fiber microelectrodes demonstrated that PKC{alpha} has a key role in the PMA-mediated facilitation of exocytosis and vesicle fusion in neuroendocrine PC12 cells.

  11. The Timing of Raf/ERK and AKT Activation in Protecting PC12 Cells against Oxidative Stress.

    PubMed

    Ong, Qunxiang; Guo, Shunling; Duan, Liting; Zhang, Kai; Collier, Eleanor Ann; Cui, Bianxiao

    2016-01-01

    Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress. For this purpose, we employed optogenetic systems that use light to precisely and reversibly activate either the Raf/ERK or the AKT pathway. We find that preconditioning activation of the Raf/ERK or the AKT pathway immediately before oxidant exposure provides significant protection to cells. Notably, a 15-minute transient activation of the Raf/ERK pathway is able to protect PC12 cells against oxidant strike that is applied 12 hours later, while the transient activation of the AKT pathway fails to protect PC12 cells in such a scenario. On the other hand, if the pathways are activated after the oxidative insult, i.e. postconditioning, the AKT pathway conveys greater protective effect than the Raf/ERK pathway. We find that postconditioning AKT activation has an optimal delay period of 2 hours. When the AKT pathway is activated 30min after the oxidative insult, it exhibits very little protective effect. Therefore, the precise timing of the pathway activation is crucial in determining its protective effect against oxidative injury. The optogenetic platform, with its precise temporal control and its ability to activate specific pathways, is ideal for the mechanistic dissection of intracellular pathways in protection against oxidative stress. PMID:27082641

  12. The Timing of Raf/ERK and AKT Activation in Protecting PC12 Cells against Oxidative Stress

    PubMed Central

    Ong, Qunxiang; Guo, Shunling; Duan, Liting; Zhang, Kai; Collier, Eleanor Ann; Cui, Bianxiao

    2016-01-01

    Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress. For this purpose, we employed optogenetic systems that use light to precisely and reversibly activate either the Raf/ERK or the AKT pathway. We find that preconditioning activation of the Raf/ERK or the AKT pathway immediately before oxidant exposure provides significant protection to cells. Notably, a 15-minute transient activation of the Raf/ERK pathway is able to protect PC12 cells against oxidant strike that is applied 12 hours later, while the transient activation of the AKT pathway fails to protect PC12 cells in such a scenario. On the other hand, if the pathways are activated after the oxidative insult, i.e. postconditioning, the AKT pathway conveys greater protective effect than the Raf/ERK pathway. We find that postconditioning AKT activation has an optimal delay period of 2 hours. When the AKT pathway is activated 30min after the oxidative insult, it exhibits very little protective effect. Therefore, the precise timing of the pathway activation is crucial in determining its protective effect against oxidative injury. The optogenetic platform, with its precise temporal control and its ability to activate specific pathways, is ideal for the mechanistic dissection of intracellular pathways in protection against oxidative stress. PMID:27082641

  13. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    SciTech Connect

    Sato, Mai; Kitaguchi, Tetsuya; Ikematsu, Kazuya; Kakeyama, Masaki; Murata, Masayuki; Sato, Ken; Tsuboi, Takashi

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  14. Extracellular α-Synuclein Leads to Microtubule Destabilization via GSK-3β-Dependent Tau Phosphorylation in PC12 Cells

    PubMed Central

    Gąssowska, Magdalena; Czapski, Grzegorz A.; Pająk, Beata; Cieślik, Magdalena; Lenkiewicz, Anna M.; Adamczyk, Agata

    2014-01-01

    α-Synuclein (ASN) plays an important role in pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. Novel and most interesting data showed elevated tauopathy in PD and suggested relationship between ASN and Tau protein. However, the mechanism of ASN-evoked Tau protein modification is not fully elucidated. In this study we investigated the role of extracellular ASN in Tau hyperphosphorylation in rat pheochromocytoma (PC12) cells and the involvement of glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (CDK5) in ASN-dependent Tau modification. Our results indicated that exogenously added ASN increases Tau phosphorylation at Ser396. Accordingly, the GSK-3β inhibitor (SB-216763) prevented ASN-evoked Tau hyperphosphorylation, but the CDK5 inhibitor had no effect. Moreover, western blot analysis showed that ASN affected GSK-3β via increasing of protein level and activation of this enzyme. GSK-3β activity evaluated by its phosphorylation status assay showed that ASN significantly increased the phosphorylation of this enzyme at Tyr216 with parallel decrease in phosphorylation at Ser9, indicative of stimulation of GSK-3β activity. Moreover, the effect of ASN on microtubule (MT) destabilization and cell death with simultaneous the involvement of GSK-3β in these processes were analyzed. ASN treatment increased the amount of free tubulin and concomitantly reduced the amount of polymerized tubulin and SB-216763 suppressed these ASN-induced changes in tubulin, indicating that GSK-3β is involved in ASN-evoked MT destabilization. ASN-induced apoptotic processes lead to decrease in PC12 cells viability and SB-216763 protected those cells against ASN-evoked cytotoxicity. Concluding, extracellular ASN is involved in GSK-3β-dependent Tau hyperphosphorylation, which leads to microtubule destabilization. GSK-3β inhibition may be an effective strategy for protecting against ASN-induced cytotoxicity. PMID:24722055

  15. 1,2,3,4,6-penta-O-galloyl-β-D-glucose protects PC12 Cells from MPP(+)-mediated cell death by inducing heme oxygenase-1 in an ERK- and Akt-dependent manner.

    PubMed

    Chen, Hong; Li, Hongge; Cao, Fei; Zhen, Lan; Bai, Jing; Yuan, Shijin; Mei, Yuanwu

    2012-10-01

    This study examined the ability of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (β-PGG) to induce the expression of heme oxygenase-1 (HO-1) in the PC12 cells and its regulation in the PC12 cells. One week before treatment with the drug, nerve growth factor (NGF) was added to the cultures at a final concentration of 50 ng/mL to induce neuronal differentiation. After drug treatment, HO-1 gene transcription was analyzed by reverse transcription polymerase chain reaction (RT-PCR). Expression of HO-1 and NF-E2-related factor2 (Nrf2) and activation of extracellular signal-regulated kinase (ERK) and Akt were detected by Western blotting. The viability of the PC12 cells treated with different medicines was examined by MTT assay. The oxidative stress in the PC12 cells was evaluated qualitatively and quantitatively by DCFH-DA. The results showed that β-PGG up-regulated HO-1 expression and this increased expression provided neuroprotection against MPP(+)-induced oxidative injury. Moreover, β-PGG induced Nrf2 nuclear translocation, which was found to be upstream of β-PGG-induced HO-1 expression, and the activation of ERK and Akt, a pathway that is involved in β-PGG-induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. In conclusion, β-PGG up-regulates HO-1 expression by stimulating Nrf2 nuclear translocation in an ERK- and Akt-dependent manner, and HO-1 expression by β-PGG may provide the PC12 cells with an acquired antioxidant defense capacity to survive the oxidative stress.

  16. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells.

    PubMed

    Ishima, Tamaki; Fujita, Yuko; Hashimoto, Kenji

    2014-03-15

    The sigma-1 receptor chaperone located in the endoplasmic reticulum (ER) may be implicated in the mechanistic action of some antidepressants. The present study was undertaken to examine whether new antidepressant drugs interact with the sigma-1 receptor chaperone. First, we examined the effects of selective serotonin reuptake inhibitors (SSRIs) (fluvoxamine, paroxetine, sertraline, citalopram and escitalopram), serotonin and noradrenaline reuptake inhibitors (SNRIs) (duloxetine, venlafaxine, milnacipran), and mirtazapine, a noradrenaline and specific serotonergic antidepressant (NaSSA), on [(3)H](+)-pentazocine binding to rat brain membranes. Then, we examined the effects of these drugs on nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. The order of potency for drugs at the sigma-1 receptor chaperone was as follows: fluvoxamine>sertraline>fluoxetine>escitalopram>citalopram>paroxetine>duoxetine. Venlafaxine, milnacipran, and mirtazapine showed very weak affinity for this chaperone. Furthermore, fluvoxamine, fluoxetine, escitalopram, and mirtazapine significantly potentiated NGF-induced neurite outgrowth in cell assays, and the effects of all these drugs, excluding mirtazapine, were antagonized by NE-100, a selective antagonist of the sigma-1 receptor chaperone. Moreover, the effects of fluvoxamine and fluoxetine on neurite outgrowth were also antagonized by sertraline, indicating that sertraline may be an antagonist at the sigma-1 receptor chaperone. The effect of mirtazapine on neurite outgrowth was antagonized by the selective 5-hydroxytryptamine1A receptor antagonist WAY-100635. These findings suggest that activation at the sigma-1 receptor chaperone may be involved in the action of some SSRIs, such as fluvoxamine, fluoxetine and escitalopram. In contrast, mirtazapine independently potentiated neurite outgrowth in PC12 cells, indicating that this beneficial effect may mediate its pharmacological effect. PMID:24508523

  17. Protective effects of ginsenoside Rb3 on oxygen and glucose deprivation-induced ischemic injury in PC12 cells

    PubMed Central

    Zhu, Jun-rong; Tao, Yi-fu; Lou, Shen; Wu, Zi-mei

    2010-01-01

    Aim: To investigate the protective effects of ginsenoside Rb3, a triterpenoid saponin isolated from the leaves of Panax notoginseng, on ischemic and reperfusion injury model of PC12 cells and elucidate the related mechanisms. Methods: PC12 cells exposed to oxygen and glucose deprivation (OGD) and restoration (OGD-Rep) were used as an in vitro model of ischemia and reperfusion. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) leakage were used to evaluate the protective effects of ginsenoside Rb3. Cellular apoptosis and mitochondrial membrane potential (MMP) were analyzed using flow cytometry. Intracellular calcium ion concentration ([Ca2+]i) was detected using fluorophotometer system. Caspase-3, -8, and -9 activities were measured using assay kits with an ELISA reader. Western blotting assay was used to evaluate the release of cytochrome c and expression of caspase-3, Bcl-2 and Bax proteins. Results: It was shown that ginsenoside Rb3 (0.1–10 μmol/L) significantly increased cell viability and inhibited LDH release in a dose-dependent manner on the ischemic model. In addition, ginsenoside Rb3 also significantly inhibited ischemic injury-induced apoptosis, [Ca2+]i elevation, and decrease of MMP. Meanwhile, pretreatment with ginsenoside Rb3 significantly induced an increase of Bcl-2 protein expression and a decrease of cytosolic cytochrome c, cleaved-caspase 3 and Bax protein expression, the caspase-3, -8, and -9 activity were also inhibited. Conclusion: The results indicated that ginsenoside Rb3 could markedly protected OGD-Rep induced ischemic injury and the mechanisms maybe related to its suppression of the intracellular Ca2+ elevation and inhibition of apoptosis and caspase activity. Ginsenoside Rb3 could be a promising candidate in the development of a novel class of anti-ischemic agent. PMID:20140005

  18. Protective effects of fractions from Artemisia biennis hydro-ethanolic extract against doxorubicin-induced oxidative stress and apoptosis in PC12 cells

    PubMed Central

    Mojarrab, Mahdi; Mehrabi, Mehran; Ahmadi, Farahnaz; Hosseinzadeh, Leila

    2016-01-01

    Objective(s): This study was designed to indicate whether different fractions from Artemisia biennis hydroethanolic extract could provide cytoprotection against oxidative stress and apoptosis induced by doxorubicin (DOX) in rat pheochromocytoma cell line (PC12). Material and Methods: Cell viability was determined by MTT assay. Also, activation of caspase-3 and superoxide dismutase were evaluated by spectrophotometry. Detection of reactive oxygen species (ROS) and measurement of mitochondrial membrane potential (MMP) were performed by flowcytometry. Results: Treatment of PC12 cells with DOX reduced viability dose dependently. For evaluation of the effect of fractions (A-G) on DOX-induced cytotoxicity, PC12 cells were pretreated for 24 hr with the A. biennis fractions and then cells were treated with DOX. The fractions C and D increased PC12 cells viability significantly compared to DOX treated cells. Moreover, pretreatment with fractions C and D for 24 hr attenuated DOX-mediated apoptosis and the anti-apoptotic action of A. biennis fractions was partially dependent on inhibition of caspase 3 activity and also increasing the mitochondrial membrane potential (MMP). Selected A. biennis fractions also suppressed the generation of ROS and increased superoxide dismutase (SOD) activity. Conclusion: Taken together our observation indicated that subtoxic concentration of aforementioned fractions of A. biennis hydroetanolic extract has protective effect against apoptosis induced by DOX in PC12 cell. The results highlighted that fractions C and D may exert cytoprotective effects through their antioxidant actions. PMID:27403257

  19. Di- and Triterpenoids from the Leaves of Casearia balansae and Neurite Outgrowth Promoting Effects of PC12 Cells.

    PubMed

    Xu, Jing; Kang, Jing; Sun, Xiaocong; Cao, Xiangrong; Rena, Kasimu; Lee, Dongho; Ren, Quanhui; Li, Shen; Ohizumi, Yasushi; Guo, Yuanqiang

    2016-01-22

    A bioassay-guided phytochemical investigation of the leaves of Casearia balansae led to the isolation of six new cucurbitane-type triterpenoid derivatives (balanterpenes A-F, 1-6) and four new clerdoane-type diterpenoids (balanterpenes G-J, 7-10). The structures of 1-10 were established on the basis of extensive analysis of NMR spectroscopic data, X-ray crystallography, and experimental and calculated electronic circular dichroism spectra. Compound 1 features a ring-expanded triterpenoid skeleton with the C-19 methyl involved in the ring formation, compound 6 possesses a rare hexanortriterpenoid scaffold, and compounds 7-10 may be four new diterpenoid artifacts presumably formed during the extraction and purification processes. Compounds 3 and 7-10 showed promoting effects on neurite outgrowth of PC12 cells with EC50 values in the range 2.9-10.0 μM. PMID:26699618

  20. Translationally Controlled Tumor Protein Stimulates Dopamine Release from PC12 Cells via Ca2+-Independent Phospholipase A2 Pathways

    PubMed Central

    Seo, Jihui; Maeng, Jeehye; Kim, Hwa-Jung

    2016-01-01

    The translationally controlled tumor protein (TCTP), initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF). TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12) cells. Treatment with recombinant TCTP (rTCTP) enhanced both basal and depolarization (50 mM KCl)-evoked [3H]dopamine release in concentration- and time-dependent manners. Interestingly, even though rTCTP induced the increase in intracellular calcium levels ([Ca2+]i), the rTCTP-driven effect on dopamine release was mediated by a Ca2+-independent pathway, as evidenced by the fact that Ca2+-modulating agents such as Ca2+ chelators and a voltage-gated L-type Ca2+-channel blocker did not produce any changes in rTCTP-evoked dopamine release. In a study to investigate the involvement of phospholipase A2 (PLA2) in rTCTP-induced dopamine release, the inhibitor for Ca2+-independent PLA2 (iPLA2) produced a significant inhibitory effect on rTCTP-induced dopamine release, whereas this release was not significantly inhibited by Ca2+-dependent cytosolic PLA2 (cPLA2) and secretory PLA2 (sPLA2) inhibitors. We found that rTCTP-induced dopamine release from neuronal PC12 cells was modulated by a Ca2+-independent mechanism that involved PLA2 in the process, suggesting the regulatory role of TCTP in the neuronal functions. PMID:27783042

  1. Hydrogen Sulfide Inhibits Formaldehyde-Induced Endoplasmic Reticulum Stress in PC12 Cells by Upregulation of SIRT-1

    PubMed Central

    Zhang, Ping; Chen, Li-Xun; Wang, Li; Xie, Ming; Wang, Chun-Yan; Tang, Xiao-Qing

    2014-01-01

    Background Formaldehyde (FA), a well-known environmental pollutant, has been classified as a neurotoxic molecule. Our recent data demonstrate that hydrogen sulfide (H2S), the third gaseous transmitter, has a protective effect on the neurotoxicity of FA. However, the exact mechanisms underlying this protection remain largely unknown. Endoplasmic reticulum (ER) stress has been implicated in the neurotoxicity of FA. Silent mating type information regulator 2 homolog 1 (SIRT-1), a histone deacetylases, has various biological activities, including the extension of lifespan, the modulation of ER stress, and the neuroprotective action. Objective We hypothesize that the protection of H2S against FA-induced neurotoxicity involves in inhibiting ER stress by upregulation of SIRT-1. The present study attempted to investigate the protective effect of H2S on FA-induced ER stress in PC12 cells and the contribution of SIRT-1 to the protection of H2S against FA-induced injuries, including ER stress, cytotoxicity and apoptosis. Principal Findings We found that exogenous application of sodium hydrosulfide (NaHS; an H2S donor) significantly attenuated FA-induced ER stress responses, including the upregulated levels of glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 expression. We showed that NaHS upregulates the expression of SIRT-1 in PC12 cells. Moreover, the protective effects of H2S on FA-elicited ER stress, cytotoxicity and apoptosis were reversed by Sirtinol, a specific inhibitor of SIRT-1. Conclusion/Significance These data indicate that H2S exerts its protection against the neurotoxicity of FA through overcoming ER stress via upregulation of SIRT-1. Our findings provide novel insights into the protective mechanisms of H2S against FA-induced neurotoxicity. PMID:24587076

  2. EFFECT OF METHYL MERCURY CHLORIDE EXPOSURE ON PC12 CELL INTEGRIN EXPRESSION AND FUNCTION.

    EPA Science Inventory

    Integrins are heterodimeric transmembrane cell adhesion proteins composed of a and b protein subunits. They are important during brain development in a number of critical functions, including cell migration (Georges-Labouesse, et al., 1998), axonal elongation (Murase and Hayashi...

  3. Paeoniflorin inhibition of 6-hydroxydopamine-induced apoptosis in PC12 cells via suppressing reactive oxygen species-mediated PKCδ/NF-κB pathway.

    PubMed

    Dong, H; Li, R; Yu, C; Xu, T; Zhang, X; Dong, M

    2015-01-29

    Parkinson's disease (PD) is second only to Alzheimer's disease as the most common devastating human neurodegenerative disorder. Despite intense investigation, no curative therapy is available for PD. Paeoniflorin, a monoterpene glucoside isolated from the Paeonia lactiflora Pall., possesses wide pharmacological effects in the nervous system. This study aims at evaluating the effect of paeoniflorin on 6-hydroxydopamine (6-OHDA)-induced apoptosis and to characterize involved signal transduction pathways in PC12 cells. Our results showed that paeoniflorin suppresses mitochondria-mediated apoptosis of PC12 cells induced by 6-OHDA, and anti-apoptotic effects of paeoniflorin on PC12 cells might mainly result from its antioxidant capability by increasing glutathione (GSH). Moreover, we also found that paeoniflorin can dramatically attenuate the 6-OHDA-induced nuclear factor κB (NF-κB) translocation without affecting phosphorylation of Akt, JNK, p38, and ERK1/2. 6-OHDA-induced protein kinase Cδ (PKCδ) upregulation was blocked by paeoniflorin treatment in PC12 cells. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenyleneiodonium or NF-κB inhibitor BAY 11-7082 could partially attenuate 6-OHDA-induced cell death. Together, our results indicate that the inhibition of PC12 cell apoptosis by paeoniflorin might be mediated, at least in part, by inhibiting reactive oxygen species (ROS)/PKCδ/NF-κB signaling pathway. This evidence supports the pharmacological potential of paeoniflorin in the management of neurodegenerative disorders associated with oxidative stress, including PD. PMID:25446358

  4. The Neuroprotective Effects of Decursin Isolated from Angelica gigas Nakai Against Amyloid β-Protein-Induced Apoptosis in PC 12 Cells via a Mitochondria-Related Caspase Pathway.

    PubMed

    Li, Li; Du, Jikun; Zou, Liyi; Xia, Haishan; Wu, Tie; Kim, Yongho; Lee, Yongwoo

    2015-08-01

    Decursin, purified from Angelica gigas Nakai, has been proven to exert neuroprotective property. Previous study revealed decursin protected the PC12 cells from Aβ25-35-induced oxidative cytotoxicity. The present study aimed to investigate whether decursin could protect PC12 cells from apoptosis caused by Aβ. Our results indicated that pretreatment of PC12 cells with decursin significantly inhibited Aβ25-35-induced cytotoxicity and apoptosis. The mechanism of action is likely to reverse Aβ25-35-induced mitochondrial dysfunction, including the reduction of mitochondrial membrane potential, the inhibition of reactive oxygen species production, and the decrease of mitochondrial release of cytochrome c in PC12 cells. In addition, decursin significantly suppressed the activity of caspase-3 and moderated the ratio of Bcl-2/Bax induced by Aβ25-35. These findings indicate that decursin exerts a neuroprotective effect against Aβ25-35-induced neurotoxicity in PC12 cells, at least in part, via suppressing the mitochondrial pathway of cellular apoptosis.

  5. p75NTR enhances PC12 cell tumor growth by a non-receptor mechanism involving downregulation of cyclin D2

    SciTech Connect

    Fritz, Melinda D.; Mirnics, Zeljka K.; Nylander, Karen D.; Schor, Nina F. . E-mail: nfschor@pitt.edu

    2006-10-15

    p75NTR is a member of the tumor necrosis superfamily of proteins which is variably associated with induction of apoptosis and proliferation. Cyclin D2 is one of the mediators of cellular progression through G1 phase of the cell cycle. The present study demonstrates the inverse relationship between expression of cyclin D2 and expression of p75NTR in PC12 cells. Induction of p75NTR expression in p75NTR-negative PC12 cells results in downregulation of cyclin D2; suppression of p75NTR expression with siRNA in native PC12 cells results in upregulation of cyclin D2. The effects of p75NTR on cyclin D2 expression are mimicked in p75NTR-negative cells by transfection with the intracellular domain of p75NTR. Cyclin-D2-positive PC12 cell cultures grow more slowly than cyclin-D2-negative cultures, and induction of expression of cyclin D2 slows the culture growth rate of cyclin-D2-negative cells. Finally, subcutaneous murine xenografts of cyclin-D2-negative, p75NTR-positive PC12 cells more frequently and more rapidly produce tumors than the analogous xenografts of cyclin-D2-positive, p75NTR-negative cells. These results suggest that p75NTR suppresses cyclin D2 expression in PC12 cells by a mechanism distinct from its function as a nerve growth factor receptor and that cyclin D2 expression decreases cell culture and xenografted tumor growth.

  6. Effect of Zirconium Dioxide Nanoparticles on Glutathione Peroxidase Enzyme in PC12 and N2a Cell Lines

    PubMed Central

    Asadpour, Elham; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Boroushaki, Mohammad Taher

    2014-01-01

    Today, special attention is paid to the use of zirconium dioxide nanoparticle (nano-ZrO2), a neutral bioceramic metal, particularly for drug and gene delivery in medicine. However, there are some reports implying that use of nano-ZrO2 is associated with cytotoxic effects like inhibiting the cell proliferation, DNA damage and apoptosis. In the present study, we examined whether nano-ZrO2 alters cell viability and glutathione peroxidase (GPx) activity in two neuronal cell lines. The PC12 and N2a cells were cultured in the absence or presence of varying concentrations (31.25-2000 µg/mL) of nano-ZrO2 for 12, 24 or 48 h. The cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and GPx activity was determined by quantifying the rate of oxidation of the reduced glutathione to the oxidized glutathione. Nano-ZrO2 caused a significant reduction in cell viability and GPx activity after 12, 24 and 48 h, as compared with control group. These effects were concentration dependent and started from 250 µg/mL. The present study demonstrated that nano-ZrO2, at concentrations of > 250 µg/mL, has antiproliferative effects via reducing the cell defense mechanism against oxidative stress. PMID:25587301

  7. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen species-mediated DNA damage and apoptosis in PC12 cells.

    PubMed

    Wang, Yi; Fu, Xiao-Ting; Li, Da-Wei; Wang, Kun; Wang, Xin-Zhi; Li, Yuan; Sun, Bao-Liang; Yang, Xiao-Yi; Zheng, Zun-Cheng; Cho, Nam Chun

    2016-05-01

    Amyloid beta (Aβ)-induced oxidative stress is a major pathologic hallmark of Alzheimer's disease. Cyanidin, a natural flavonoid compound, is neuroprotective against oxidative damage-mediated degeneration. However, its molecular mechanism remains unclear. Here, we investigated the effects of cyanidin pretreatment against Aβ-induced neurotoxicity in PC12 cells, and explored the underlying mechanisms. Cyanidin pretreatment significantly attenuated Aβ-induced cell mortality and morphological changes in PC12 cells. Mechanistically, cyanidin effectively blocked apoptosis induced by Aβ, by restoring the mitochondrial membrane potential via upregulation of Bcl-2 protein expression. Moreover, cyanidin markedly protected PC12 cells from Aβ-induced DNA damage by blocking reactive oxide species and superoxide accumulation. These results provide evidence that cyanidin suppresses Aβ-induced cytotoxicity, by preventing oxidative damage mediated by reactive oxide species, which in turn inhibits mitochondrial apoptosis. Our study demonstrates the therapeutic potential of cyanidin in the prevention of oxidative stress-mediated Aβ neurotoxicity. PMID:27335564

  8. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen species-mediated DNA damage and apoptosis in PC12 cells

    PubMed Central

    Wang, Yi; Fu, Xiao-ting; Li, Da-wei; Wang, Kun; Wang, Xin-zhi; Li, Yuan; Sun, Bao-liang; Yang, Xiao-yi; Zheng, Zun-cheng; Cho, Nam Chun

    2016-01-01

    Amyloid beta (Aβ)-induced oxidative stress is a major pathologic hallmark of Alzheimer's disease. Cyanidin, a natural flavonoid compound, is neuroprotective against oxidative damage-mediated degeneration. However, its molecular mechanism remains unclear. Here, we investigated the effects of cyanidin pretreatment against Aβ-induced neurotoxicity in PC12 cells, and explored the underlying mechanisms. Cyanidin pretreatment significantly attenuated Aβ-induced cell mortality and morphological changes in PC12 cells. Mechanistically, cyanidin effectively blocked apoptosis induced by Aβ, by restoring the mitochondrial membrane potential via upregulation of Bcl-2 protein expression. Moreover, cyanidin markedly protected PC12 cells from Aβ-induced DNA damage by blocking reactive oxide species and superoxide accumulation. These results provide evidence that cyanidin suppresses Aβ-induced cytotoxicity, by preventing oxidative damage mediated by reactive oxide species, which in turn inhibits mitochondrial apoptosis. Our study demonstrates the therapeutic potential of cyanidin in the prevention of oxidative stress-mediated Aβ neurotoxicity. PMID:27335564

  9. Effects of a novel pesticide-particle conjugate on viability and reactive oxygen species generation in neuronal (PC12) cells.

    PubMed

    Sooresh, Aishwarya; Sayes, Christie M; Pine, Michelle

    2015-04-01

    Development of new methods and compounds to eradicate insect vectors are desperately needed. To that end, our team has previously described the synthesis and characterization of a conjugate comprised of a silver nanoparticle core encapsulated by the pyrethroid pesticide, deltamethrin (pesticide encapsulated silver nanoparticle termed "PENS"). For this current work, the PENS conjugate was tested in neuronal cultured cells to compare the cytotoxic responses to the unconjugated pesticide deltamethrin - a known neurotoxic agent and pristine silver nanoparticles. The PC12 (pheochromocytoma of the rat adrenal medulla) cell line was chosen as a model neuronal culture system. Cells were exposed to known concentrations of PENS, deltamethrin or silver nanoparticle suspensions to assess the degree of toxicity in vitro. After 24 hours of incubation, cell viability and intracellular reactive oxygen species (ROS) were measured. Bright field images of high dose exposures to dosing solutions were also acquired to evaluate cell morphology. Exposure to PENS resulted in a 17% decline in viability at the highest concentration of 45 µM while exposure to deltamethrin caused a 47% decrease. These results suggest that cellular viability was less adversely affected by PENS than by the deltamethrin. Also, ROS production following PENS exposure indicated that the newly developed conjugate was responding in a similar manner as that of cells treated with deltamethrin only.

  10. Chagas’ disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells

    PubMed Central

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V.; PereiraPerrin, Mercio

    2008-01-01

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas’ disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas’ disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas’ disease patients. PMID:18502403

  11. Chagas' disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells.

    PubMed

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V; PereiraPerrin, Mercio

    2008-06-27

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas' disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, and activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas' disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas' disease patients. PMID:18502403

  12. Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson's disease.

    PubMed Central

    Walkinshaw, G; Waters, C M

    1995-01-01

    The hypothesis that L-DOPA therapy in Parkinson's disease may augment neuronal damage and thus accelerate the progression of the disease remains controversial. In this study, we demonstrate that L-DOPA induces death of catecholaminergic cells in vitro via an active program of apoptosis. Treatment of PC12 cells with clinically applicable concentrations of L-DOPA (25-100 microM) induced cell death via a mechanism which exhibited morphological and biochemical characteristics of apoptosis, including chromatin condensation, membrane blebbing, and internucleosomal DNA fragmentation. L-DOPA-induced apoptosis was cell and drug-type specific. Toxicity is an intrinsic property of the drug molecule since it was not suppressed by inhibiting conversion of L-DOPA to dopamine. However, L-DOPA toxicity was inhibited by antioxidants, suggesting that activation of apoptosis is mediated by oxygen radicals. Our finding that L-DOPA-induced cell death in vitro occurs via apoptosis explains the lack of evidence supporting its toxicity in vivo, since apoptotic neurons are rapidly phagocytosed in vivo without causing damage to surrounding tissue. Furthermore, since apoptosis is an active cellular program which can be modulated, we suggest clinical approaches for decreasing L-DOPA toxicity, thus preventing acceleration of neuronal damage in Parkinson's disease. Images PMID:7769091

  13. Viability of hydroxyethyl methacrylate-methyl methacrylate-microencapsulated PC12 cells after omental pouch implantation within agarose gels.

    PubMed

    Fleming, A J; Sefton, M V

    2003-10-01

    Hydroxyethyl methacrylate-methyl methacrylate (HEMA-MMA, 75 mol% HEMA). Microcapsules containing viable PC12 cells (as an allogeneic transplant model) were implanted into omental pouches in Wistar rats. Two different capsule preparations were tested, based on differences in polymer solutions during extrusion: 10% HEMA-MMA in TEG, and 9% HEMA-MMA in TEG with 30% poly(vinyl pyrrolidone) (PVP). The omental pouch proved to be an ideal transplant site in terms of implantation, recovery, and blood vessel proximity (nutrient supply). To minimize the fibrous overgrowth and damaged capsules previously seen on implantation of individual capsules, agarose gels were used to embed the capsules before implantation. Cells proliferated within the microcapsule-agarose device during the first 7 days of implantation, but overall cell viability declined over the 3-week period, when compared with similar capsules maintained in vitro. Nonetheless, approximately 50% of the initial encapsulated cells were still viable after 3 weeks in vivo. This approach to HEMA-MMA microcapsule implantation improved cell viability and capsule integrity after 3 weeks in vivo, compared with capsules implanted without agarose.

  14. Chronic hypoxia reduces adenosine A2A receptor-mediated inhibition of calcium current in rat PC12 cells via downregulation of protein kinase A

    PubMed Central

    Kobayashi, Shuichi; Beitner-Johnson, Dana; Conforti, Laura; Millhorn, David E

    1998-01-01

    Adenosine has been shown to decrease Ca2+ current (ICa) and attenuate the hypoxia-induced enhancement of intracellular free Ca2+ ([Ca2+]i) in oxygen-sensitive rat phaeochromocytoma (PC12) cells. These effects are mediated via the adenosine A2A receptor and protein kinase A (PKA). The current study was undertaken to determine the effects of adenosine on Ca2+ current and hypoxia-induced change in [Ca2+]i during chronic hypoxia.Whole cell patch-clamp studies revealed that the effect of adenosine on ICa was significantly reduced when PC12 cells were exposed to hypoxia (10 % O2) for 24 and 48 h.Ca2+ imaging studies using fura-2 revealed that the anoxia-induced increase in [Ca2+]i was significantly enhanced when PC12 cells were exposed to 10 % O2 for up to 48 h. In contrast, the inhibitory effects of adenosine on anoxia-induced elevation of [Ca2+]i was significantly blunted in PC12 cells exposed to hypoxia for 48 h.Northern blot analysis revealed that mRNA for the A2A receptor, which is the only adenosine receptor subtype expressed in PC12 cells, was significantly upregulated by hypoxia. Radioligand binding analysis with [3H]CGS21680, a selective A2A receptor ligand, showed that the number of adenosine A2A receptor binding sites was similarly increased during exposure to 10 % O2 for 48 h.PKA enzyme activity was significantly inhibited when PC12 cells were exposed to 10 % O2 for 24 and 48 h. However, we found that hypoxia failed to induce change in adenosine- and forskolin-stimulated adenylate cyclase enzyme activity. Chronic hypoxia also did not alter the immunoreactivity level of the G protein Gsα, an effector of the A2 signalling pathway.Whole cell patch-clamp analysis showed that the effect of 8-bromo-cAMP, an activator of PKA, on ICa was significantly attenuated during 48 h exposure to 10 % O2.We conclude therefore that the reduced effect of adenosine on ICa and [Ca2+]i in PC12 cells exposed to chronic hypoxia is due to hypoxia-induced downregulation of PKA. This

  15. Chronic hypoxia reduces adenosine A2A receptor-mediated inhibition of calcium current in rat PC12 cells via downregulation of protein kinase A.

    PubMed

    Kobayashi, S; Beitner-Johnson, D; Conforti, L; Millhorn, D E

    1998-10-15

    1. Adenosine has been shown to decrease Ca2+ current (ICa) and attenuate the hypoxia-induced enhancement of intracellular free Ca2+ ([Ca2+]i) in oxygen-sensitive rat phaeochromocytoma (PC12) cells. These effects are mediated via the adenosine A2A receptor and protein kinase A (PKA). The current study was undertaken to determine the effects of adenosine on Ca2+ current and hypoxia-induced change in [Ca2+]i during chronic hypoxia. 2. Whole cell patch-clamp studies revealed that the effect of adenosine on ICa was significantly reduced when PC12 cells were exposed to hypoxia (10 % O2) for 24 and 48 h. 3. Ca2+ imaging studies using fura-2 revealed that the anoxia-induced increase in [Ca2+]i was significantly enhanced when PC12 cells were exposed to 10 % O2 for up to 48 h. In contrast, the inhibitory effects of adenosine on anoxia-induced elevation of [Ca2+]i was significantly blunted in PC12 cells exposed to hypoxia for 48 h. 4. Northern blot analysis revealed that mRNA for the A2A receptor, which is the only adenosine receptor subtype expressed in PC12 cells, was significantly upregulated by hypoxia. Radioligand binding analysis with [3H]CGS21680, a selective A2A receptor ligand, showed that the number of adenosine A2A receptor binding sites was similarly increased during exposure to 10% O2 for 48 h. 5. PKA enzyme activity was significantly inhibited when PC12 cells were exposed to 10% O2 for 24 and 48 h. However, we found that hypoxia failed to induce change in adenosine- and forskolin-stimulated adenylate cyclase enzyme activity. Chronic hypoxia also did not alter the immunoreactivity level of the G protein Gsalpha, an effector of the A2 signalling pathway. 6. Whole cell patch-clamp analysis showed that the effect of 8-bromo-cAMP, an activator of PKA, on ICa was significantly attenuated during 48 h exposure to 10% O2.7. We conclude therefore that the reduced effect of adenosine on ICa and [Ca2+]i in PC12 cells exposed to chronic hypoxia is due to hypoxia

  16. Minimal requirements for exocytosis. A study using PC 12 cells permeabilized with staphylococcal alpha-toxin

    SciTech Connect

    Ahnert-Hilger, G.; Bhakdi, S.; Gratzl, M.

    1985-10-15

    The membrane-permeabilizing effects of streptolysin O, staphylococcal alpha-toxin, and digitonin on cultured rat pheochromocytoma cells were studied. All three agents perturbed the plasma membrane, causing release of intracellular YWRb and uptake of trypan blue. In addition, streptolysin O and digitonin also damaged the membranes of secretory vesicles, including a parallel release of dopamine. In contrast, the effects of alpha-toxin appeared to be strictly confined to the plasma membrane, and no dopamine release was observed with this agent. The exocytotic machinery, however, remained intact and could be triggered by subsequent introduction of micromolar concentrations of Ca2+ into the medium. Dopamine release was entirely Ca2+ specific and occurred independent of the presence or absence of other cations or anions including K+ glutamate, K+ acetate, or Na+ chloride. Ca2+-induced exocytosis did not require the presence of Mg2+-ATP in the medium. The process was insensitive to pH alterations in the range pH 6.6-7.2, and appeared optimal at an osmolarity of 300 mosm/kg. Toxin permeabilization seems to be an excellent method for studying the minimal requirements for exocytosis.

  17. Bystander effects of PC12 cells treated with Pb²⁺ depend on ROS-mitochondria-dependent apoptotic signaling via gap-junctional intercellular communication.

    PubMed

    Guo, Shu; Zhou, Jin; Chen, Xuemei; Yu, Yunjiang; Ren, Mingzhong; Hu, Guocheng; Liu, Yun; Zou, Fei

    2014-08-17

    The demonstration of bystander effect, which means injured cells propagate damage to neighboring cells, in whole organisms has clear implication of the potential relevance of the non-targeted response to human health. Here we show that 10 μM lead acetate, the optimum concentration for inducing apoptosis confirmed by the expression levels of Bax and Bcl-2, can also induce rat pheochromocytoma (PC12) cells to exert bystander effects to neighboring cells. In a novel co-culture system, GFP-PC12 (Pb(2+)) cells, which were stable transfected with EF1A-eGFP and pre-exposed with lead acetate, were co-cultured with unexposed PC12 cells at a 1:5 ratio. Parachute assays demonstrated the functional gap-junctional intercellular communication (GJIC) formed between Pb(2+)-exposed and unexposed cells. The Pb(2+)-exposed cells induced very similar effects on neighboring unexposed cells to apoptosis coincide with intracellular ROS generation and the collapse of mitochondrial membrane potential (Δψm). Furthermore, carbenoxolone (CBX), a blocker of GJIC, inhibited the bystander effects. The results indicate that the Pb(2+)-induced insults propagate through GJIC between PC12 cells, while inducing the bystander cells to apoptosis via ROS-mitochondria-dependent apoptotic signaling. PMID:24960054

  18. Systemic Screening of Strains of the Lion's Mane Medicinal Mushroom Hericium erinaceus (Higher Basidiomycetes) and Its Protective Effects on Aβ-Triggered Neurotoxicity in PC12 Cells.

    PubMed

    Liu, Zongying; Wang, Qinglong; Cui, Jian; Wang, Lili; Xiong, Lili; Wang, Wei; Li, Diqiang; Liu, Na; Wu, Yiran; Mao, Canquan

    2015-01-01

    Hericium erinaceus possesses multiple medicinal values. To date, however, there have been few studies of the systemic screening of H. erinaceus strains, and the neuroprotective effects of H. erinaceus prepared from homogenized, fresh fruiting bodies are not fully understood. In this study, 4 random primers were selected and used in random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) to screen and evaluate the genetic diversity of 19 commercial strains of H. erinaceus from different localities in China. A total of 66 bands were obtained, and the percentage of polymorphic loci reached 80.30%. Five dendrograms were constructed based on RAPD by Jaccard cluster and within-group linkage analysis. Primer S20 as well as all 4 primers had great potential as specific primers for RAPD-PCR molecular identification and differentiation of H. erinaceus strains. Based on the results of submerged culture and fruiting body cultivation, strains HT-N, HT-J1, HT-C, and HT-M were identified as superior among the 19 H. erinaceus strains. Further study showed that the oral preparation of homogenized, fresh fruiting bodies of H. erinaceus could attenuate the Aβ25-35-triggered damage in PC12 cells by significantly increasing cell viability and by decreasing the release of lactate dehydrogenase. In conclusion, RAPD-PCR combined with liquid and solid cultures can be used well in the screening and identification of H. erinaceus strains, and products prepared from homogenized, fresh fruiting bodies of H. erinaceus had neuroprotective effects on PC12 cells.

  19. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    PubMed Central

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells. PMID:27602272

  20. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells.

    PubMed

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin; Dong, Mingsheng

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man-Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells. PMID:27602272

  1. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    PubMed Central

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  2. Hypoxia-induced cell death and changes in hypoxia-inducible factor-1 activity in PC12 cells upon exposure to nerve growth factor.

    PubMed

    Charlier, Nico; Leclere, Norbert; Felderhoff, Ursula; Heldt, Julia; Kietzmann, Thomas; Obladen, Michael; Gross, Johann

    2002-07-15

    The transcription factor hypoxia-inducible factor-1 (HIF-1) strongly contributes to the expression of adaptive genes under hypoxic conditions. In addition, HIF-1 has been implicated in the regulation of delayed neuronal cell death. Suspension-grown and adherent PC12 cells treated with NGF were used as an experimental model for studying the relationship between hypoxia-induced cell death and activation of HIF-1. Cell damage was assessed by flow cytometry of double-stained (Annexin V and propidiumiodide) cells, and by analysis of the overall death parameters LDH and mitochondrial dehydrogenase. In parallel, cells were transfected with a control and a three-hypoxia-responsive-elements (HRE)-containing vector and HIF-1-driven luciferase activity was determined. Exposure of NGF-treated PC12 cells to hypoxia resulted in a higher cell death rate when compared to untreated controls. PC12 cells exposed for 2 days to NGF exhibited a decrease of HIF-1 activity up to a factor of ten. This decrease may contribute to the enhanced hypoxia-induced cell death via reduced expression of HIF-1alpha-regulated genes responsible for adaptation to hypoxia, like those for glucose transport proteins and enzymes of the glycolytic chain. The decrease in HIF-1 activity and the increase in hypoxia sensitivity may suggest that NGF act as an hierarchically organized signaling molecule.

  3. MiR-146a regulates SOD2 expression in H2O2 stimulated PC12 cells.

    PubMed

    Ji, Guohua; Lv, Ke; Chen, Hailong; Wang, Tingmei; Wang, Yanli; Zhao, Dingsheng; Qu, Lina; Li, Yinghui

    2013-01-01

    SOD2 (superoxide dismutase 2) is one of the endogenous antioxidant enzymes that protect against reactive oxygen species. While explorations of SOD2 expression regulation are mainly focused on transcriptional and post-translational activation, there are few reports about the post-transcriptional regulation of SOD2. MicroRNAs (miRNAs) are 21nt-25nt (nucleotide) small noncoding RNAs that have emerged as indispensable regulators of gene expression. Here we show that miR-146a, a widely expressed miRNA, is up-regulated by H2O2-induced stress. By sequence analysis we found a binding site for miR-146a in the sod2 mRNA 3'UTR, and a luciferase reporter assay confirmed that miR-146a can interact with this sod2 regulatory region. Our results further show that miR-146a could down-regulate the SOD2 protein expression, and antisense-miR-146a could reverse the decrease of both the SOD2 level and cell viability in H2O2 treated PC12 cells. In conclusion, here we have identified a novel function of miR-146a in the post-transcriptional regulation of SOD2 expression.

  4. Common increase of GATA-3 level in PC-12 cells by three teratogens causing autism spectrum disorders.

    PubMed

    Rout, Ujjwal K; Clausen, Pete

    2009-06-01

    Autism spectrum disorder (ASD) is a disease of neuro-developmental origin of uncertain etiology. The current understanding is that both genetic and environmental factors contribute to the development of ASD. Exposure to valproate, thalidomide and alcohol during gestation are amongst the environmental triggers that are associated with the development of ASD. These teratogens may disturb the ontogeny of the brain by altering the expression pattern of genes that regulate the normal development of the brain. In this study, a neuron-like PC-12 cell model was used to examine the effects of these compounds on the binding potential of 50 different transcription factors to understand the molecular mechanism/s that may be involved in the teratogenesis caused by these agents. Cells in culture were treated with low or high concentrations of teratogens within a range that are reported in the blood of individuals. A pronounced increase in GATA transcription factor binding was observed for all three teratogens. Furthermore, Western blot analysis showed that GATA-3 level in the nuclear fractions was enhanced by each of the three teratogens. Results suggest that altered gene expression pattern due to heightened GATA-3 activities in the fetral brains following exposure to these teratogens may contribute to the development of ASD.

  5. Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia-reoxygenation injury in pheochromocytoma (PC12) cells

    SciTech Connect

    Tan, Can; Zhang, Li-Yang; Chen, Hong; Xiao, Ling; Liu, Xian-Peng; Zhang, Jian-Xiang

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Overexpression of human CUL4A (hCUL4A) in PC12 cells. Black-Right-Pointing-Pointer The effects of hCUL4A on hypoxia-reoxygenation injury were investigated. Black-Right-Pointing-Pointer hCUL4A suppresses apoptosis and DNA damage and thus promotes cell survival. Black-Right-Pointing-Pointer hCUL4A regulates apoptosis-related proteins and cell cycle regulators. -- Abstract: The ubiquitin E3 ligase CUL4A plays important roles in diverse cellular processes including carcinogenesis and proliferation. It has been reported that the expression of CUL4A can be induced by hypoxic-ischemic injury. However, the effect of elevated expression of CUL4A on hypoxia-reoxygenation injury is currently unclear. In this study, human CUL4A (hCUL4A) was expressed in rat pheochromocytoma (PC12) cells using adenoviral vector-mediated gene transfer, and the effects of hCUL4A expression on hypoxia-reoxygenation injury were investigated. In PC12 cells subjected to hypoxia and reoxygenation, we found that hCUL4A suppresses apoptosis and DNA damage by regulating apoptosis-related proteins and cell cycle regulators (Bcl-2, caspase-3, p53 and p27); consequently, hCUL4A promotes cell survival. Taken together, our results reveal the beneficial effects of hCUL4A in PC12 cells upon hypoxia-reoxygenation injury.

  6. Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol.

    PubMed

    Peng, Shoujiao; Yao, Juan; Liu, Yaping; Duan, Dongzhu; Zhang, Xiaolong; Fang, Jianguo

    2015-08-01

    Natural compounds containing phenoxyl groups and/or Michael acceptor units appear to possess antioxidant and cytoprotective properties. The ginger principal constituent 6-shogaol (6-S) represents one of such compounds. In this study, we reported that 6-S efficiently scavenges various free radicals in vitro, and displays remarkable cytoprotection against oxidative stress-induced cell damage in the neuron-like rat pheochromocytoma cell line, PC12 cells. Pretreatment of PC12 cells with 6-S significantly upregulates a series of phase II antioxidant molecules, such as glutathione, heme oxygenase 1, NAD(P)H: quinone oxidoreductase 1, thioredoxin reductase 1, and thioredoxin 1. A mechanistic study revealed that 6-S enhanced the translocation of Nrf2 from the cytosol to the nucleus and knockdown of Nrf2 abolished such protection, indicating that this cytoprotection is mediated by the activation of the transcription factor Nrf2. Another ginger constituent 6-gingerol (6-G), having a similar structure of 6-S but lacking the alpha,beta-unsaturated ketone structure (Michael acceptor moiety), failed to shelter PC12 cells from oxidative stress. Our results demonstrate that 6-S is a novel small molecule activator of Nrf2 in PC12 cells, and suggest that 6-S might be a potential candidate for the prevention of oxidative stress-mediated neurodegenerative disorders.

  7. Lignosus rhinocerotis (Cooke) Ryvarden mimics the neuritogenic activity of nerve growth factor via MEK/ERK1/2 signaling pathway in PC-12 cells

    PubMed Central

    Seow, Syntyche Ling-Sing; Eik, Lee-Fang; Naidu, Murali; David, Pamela; Wong, Kah-Hui; Sabaratnam, Vikineswary

    2015-01-01

    The traditional application of the sclerotium of Lignosus rhinocerotis (tiger’s milk mushroom) by the indigenous folks as tonic and remedy to treat a variety of ailments has been documented in Malaysia. Indigenous communities claimed to have consumed the decoction to boost their alertness during hunting. Mental alertness is believed to be related to neuronal health and neuroactivity. In the present study, the cell viability and neuritogenic effects of L. rhinocerotis sclerotium hot aqueous and ethanolic extracts, and crude polysaccharides on rat pheochromocytoma (PC-12) cells were studied. Interestingly, the hot aqueous extract exhibited neuritogenic activity comparable to NGF in PC-12 cells. However, the extracts and crude polysaccharides stimulated neuritogenesis without stimulating the production of NGF in PC-12 cells. The involvements of the TrkA receptor and MEK/ERK1/2 pathway in hot aqueous extract-stimulated neuritogenesis were examined by Trk (K252a) and MEK/ERK1/2 (U0126 and PD98059) inhibitors. There was no significant difference in protein expression in NGF- and hot aqueous extract-treated cells for both total and phosphorylated p44/42 MAPK. The neuritogenic activity in PC-12 cells stimulated by hot aqueous and ethanolic extracts, and crude polysaccharides of L. rhinocerotis sclerotium mimicking NGF activity via the MEK/ERK1/2 signaling pathway is reported for the first time. PMID:26542212

  8. The PERK-eIF2α signaling pathway is involved in TCDD-induced ER stress in PC12 cells.

    PubMed

    Duan, Zhiqing; Zhao, Jianya; Fan, Xikang; Tang, Cuiying; Liang, Lingwei; Nie, Xiaoke; Liu, Jiao; Wu, Qiyun; Xu, Guangfei

    2014-09-01

    Studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces apoptotic cell death in neuronal cells. However, whether this is the result of endoplasmic reticulum (ER) stress-mediated apoptosis remains unknown. In this study, we determined whether ER stress plays a role in the TCDD-induced apoptosis of pheochromocytoma (PC12) cells and primary neurons. PC12 cells were exposed to different TCDD concentrations (1, 10, 100, 200, or 500nM) for varying lengths of time (1, 3, 6, 12, or 24h). TCDD concentrations much higher than 10nM (100, 200, or 500nM) markedly increased glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) levels, which are hallmarks of ER stress. We also evaluated the effects of TCDD on ER morphology in PC12 cells and primary neurons that were treated with different TCDD concentrations (1, 10, 50, or 200nM) for 24h. Ultrastructural ER alterations were observed with transmission electron microscopy in PC12 cells and primary neurons treated with high concentrations of TCDD. Furthermore, TCDD-induced ER stress significantly promoted the activation of the PKR-like ER kinase (PERK), a sensor for the unfolded protein response (UPR), and its downstream target eukaryotic translation initiation factor 2 α (eIF2α); in contrast, TCDD did not appear to affect inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), two other UPR sensors. Importantly, TCDD significantly inhibited eIF2α phosphorylation and triggered apoptosis in PC12 cells after 6-24h of treatment. Salubrinal, which activates the PERK-eIF2α pathway, significantly enhanced eIF2α phosphorylation in PC12 cells and attenuated the TCDD-induced cell death. In contrast, knocking down eIF2α using small interfering RNA markedly enhanced TCDD-induced cell death. Together, these results indicate that the PERK-eIF2α pathway plays an important role in TCDD-induced ER stress and apoptosis in PC12 cells. PMID:24932542

  9. GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen peroxide toxicity.

    PubMed

    Zakharova, Irina O; Sokolova, Tatyana V; Vlasova, Yulia A; Furaev, Victor V; Rychkova, Maria P; Avrova, Natalia F

    2014-11-01

    Ganglioside GM1 at micro- and nanomolar concentrations was shown to increase the viability of pheochromocytoma PC12 cells exposed to hydrogen peroxide and diminish the accumulation of reactive oxygen species and oxidative inactivation of Na(+),K(+)-ATPase, the effects of micromolar GM1 being more pronounced than those of nanomolar GM1. These effects of GM1 were abolished by Trk receptor tyrosine kinase inhibitor and diminished by MEK1/2, phosphoinositide 3-kinase and protein kinase C inhibitors. Hydrogen peroxide activates Trk tyrosine kinase; Akt and ERK1/2 are activated downstream of this protein kinase. GM1 was found to activate Trk receptor tyrosine kinase in PC12 cells. GM1 (100 nM and 10 µM) increased the basal activity of Akt, but did not change Akt activity in cells exposed to hydrogen peroxide. Basal ERK1/2 activity in PC12 cells was increased by GM1 at a concentration of 10 µM, but not at nanomolar concentrations. Activation of ERK1/2 by hydrogen peroxide was enhanced by GM1 at a concentration of 10 µM and to a lesser extent at a concentration of 100 nM. Thus, the protective and metabolic effects of GM1 ganglioside on PC12 cells exposed to hydrogen peroxide appear to depend on the activation of Trk receptor tyrosine kinase and downstream activation of Akt and ERK1/2.

  10. Knockdown of NogoA prevents MPP+‑induced neurotoxicity in PC12 cells via the mTOR/STAT3 signaling pathway.

    PubMed

    Zhong, Jianbin; Li, Xie; Wan, Limei; Chen, Zhibang; Zhong, Simin; Xiao, Songhua; Yan, Zhengwen

    2016-02-01

    NogoA is a myelin‑associated protein, which is important in the inhibition of axonal fiber growth and in regeneration following injury of the mammalian central nervous system. A previous study suggested that NogoA may be key in the process of Parkinson's disease (PD), which is the second most common chronic neurodegenerative disorder worldwide. The regulatory mechanism underlying the effect of NogoA on the process of PD remains to be fully elucidated. The present study aimed to investigate the effect and underlying mechanism of NogoA on cellular viability, apoptosis and autophagy induced by 1-methyl-4-phenylpyridinium (MPP+) in PC12 cells, a commonly used in vitro PD model. PC12 cells were treated with 1 mM MPP+ for 24 h and the cells were harvested for western blotting. The results demonstrated that the protien expression levels of NogoA were increased in the PC12 cells treated with MPP+. Subsequently, NogoA small interfering RNA was synthesized and transfected into PC12 cells to silence the expression of NogoA. NogoA knockdown significantly reduced the MPP+‑induced decrease in cell viability and apoptosis, detected using a cell counting kit‑8 and flow cytometric analysis, respectively. Interference in the expression of NogoA increased the MPP+‑induced decrease in mitochondrial membrane potential, determined quantitatively by flow cytometry using JC-1 dye, and the protein levels of Beclin‑1. In addition, MPP+ treatment activated the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Knockdown of NogoA significantly inhibited the expression levels of mTOR and STAT3. Furthermore, overexpression of NogoA had similar neurotoxic effects on the PC12 cells as MPP+ treatment. Treatment with rapamycin, an inhibitor of the mTOR/STAT3 signaling pathway had a similar effect to that of NogoA knockdown in the MPP+‑treated PC12 cells. Taken together, the results from the present study demonstrated that

  11. Neurite Outgrowth in PC12 Cells Stimulated by Components from Dendranthema × grandiflorum cv. “Mottenohoka” Is Enhanced by Suppressing Phosphorylation of p38MAPK

    PubMed Central

    Kimura, Hirokazu; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Koketsu, Mamoru; Ninomiya, Masayuki; Furukawa, Shoei

    2013-01-01

    Components from Dendranthema × grandiflorum cv. “Mottenohoka” that promote neurite outgrowth of PC12 cells were identified and the mechanism of neurite outgrowth stimulated by isolated components was studied. Components that promoted the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) of PC12 cells were isolated. From various structural analyses, the active components were identified as acacetin and luteolin. The effects of acacetin or luteolin on PC12 cells were evaluated by electro-blotting and immunostaining. Slight neurite outgrowth in PC12 cells was observed within 2 days of culture after stimulation by luteolin or acacetin. However, NGF-stimulation induced remarkable neurite outgrowth in comparison. Neurite outgrowth by luteolin or acacetin was significantly enhanced by pretreatment with SB203580 (a p38MAPK inhibitor). The results of this study into the phosphorylation of ERK 1/2 and p38MAPK by flavonoids suggest that the inhibition of p38MAPK phosphorylation may effectively enhance neurite outgrowth. PMID:23554829

  12. Modification of HSP proteins and Ca2+ are responsible for the NO-derived peroxynitrite mediated neurological damage in PC12 cell

    PubMed Central

    Wen, Jun; Li, Hua; Zhang, Yudan; Li, Xia; Liu, Fang

    2015-01-01

    Peroxynitrite as one crucial metabolite of NO-derived agents has been well multi-investigated to inspect its potential role and sought to define its concrete mechanism underlying the memory loss and impaired cognition involved in pathological processes. In this investigation, the cell viability was assessed by the MTT assay. The neurotoxicity of peroxynitrite was analyzed by using immunohistochemical measurements in cultured PC12 cells to explore the underlying mechanisms. The generation of ROS was evaluated by a fluorometry assay by a fluorometry assay. Apoptosis was assayed by annexin V-FITC and PI staining with flow cytometry. [Ca2+]i was examined by using the microspectrofluorometer. Hsp70 was detected by western blot assay. The results revealed that PC12 cells were inhibited by peroxynitrite both in a dose-dependent and time-dependent manner. The level of ROS in PC12 cells exposed to SIN-1 was increased in a dose-dependent manner. The result indicated that the SIN-1 induced apoptosis of PC12 cells in a dose-dependent manner. Quercetin inhibited the viability of PC12 cells in a concentration-dependent manner. [Ca2+]i was increased gradually when cells treated with quercetin alone and also increased with treatment of dantrolene-containing. Hsp70 was significantly decreased in SIN-1-treated group compared with that of control group (P<0.01). In conclusion, Ca2+ homeostasis and chaperone Hsp70 were critically involved in peroxynitrite induced nitrosative stress as protective. Peroxynitrite acts as the pathological agent in learning and memory defects in CNS disorders associated with challenge. PMID:26191139

  13. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection.

    PubMed

    Jia, Zhenquan; Zhu, Hong; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2008-11-01

    Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection. PMID:18368484

  14. MiR-21 is an Ngf-modulated microRNA that supports Ngf signaling and regulates neuronal degeneration in PC12 cells.

    PubMed

    Montalban, Enrica; Mattugini, Nicola; Ciarapica, Roberta; Provenzano, Claudia; Savino, Mauro; Scagnoli, Fiorella; Prosperini, Gianluca; Carissimi, Claudia; Fulci, Valerio; Matrone, Carmela; Calissano, Pietro; Nasi, Sergio

    2014-06-01

    The neurotrophins Ngf, Bdnf, NT-3, NT4-5 have key roles in development, survival, and plasticity of neuronal cells. Their action involves broad gene expression changes at the level of transcription and translation. MicroRNAs (miRs)-small RNA molecules that control gene expression post-transcriptionally-are increasingly implicated in regulating development and plasticity of neural cells. Using PC12 cells as a model system, we show that Ngf modulates changes in expression of a variety of microRNAs, including miRs known to be modulated by neurotrophins-such as the miR-212/132 cluster-and several others, such as miR-21, miR-29c, miR-30c, miR-93, miR-103, miR-207, miR-691, and miR-709. Pathway analysis indicates that Ngf-modulated miRs may regulate many protein components of signaling pathways involved in neuronal development and disease. In particular, we show that miR-21 enhances neurotrophin signaling and controls neuronal differentiation induced by Ngf. Notably, in a situation mimicking neurodegeneration-differentiated neurons deprived of Ngf-this microRNA is able to preserve the neurite network and to support viability of the neurons. These findings uncover a broad role of microRNAs in regulating neurotrophin signaling and suggest that aberrant expression of one or more Ngf-modulated miRs may be involved in neurodegenerative diseases.

  15. Dual actions of lindane ({gamma}-hexachlorocyclohexane) on calcium homeostasis and exocytosis in rat PC12 cells

    SciTech Connect

    Heusinkveld, Harm J.; Thomas, Gareth O.; Lamot, Ischa; Berg, Martin van den; Kroese, Alfons B.A.; Westerink, Remco H.S.

    2010-10-01

    The persistent organochlorine pesticide lindane is still abundantly found in the environment and in human and animal tissue samples. Lindane induces a wide range of adverse health effects, which are at least partially mediated via the known inhibition of GABA{sub A} and glycine receptors. Additionally, lindane has been reported to increase the basal intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}). As Ca{sup 2+} triggers many cellular processes, including cell death and vesicular neurotransmitter release (exocytosis), we investigated whether lindane affects exocytosis, Ca{sup 2+} homeostasis, production of reactive oxygen species (ROS) and cytotoxicity in neuroendocrine PC12 cells. Amperometric recordings and [Ca{sup 2+}]{sub i} imaging experiments with fura-2 demonstrated that lindane ({>=} 10 {mu}M) rapidly increases basal exocytosis and basal [Ca{sup 2+}]{sub i}. Additional imaging and electrophysiological recordings revealed that this increase was largely due to a lindane-induced membrane depolarization and subsequent opening of N- and P/Q-type voltage-gated Ca{sup 2+} channels (VGCC). On the other hand, lindane ({>=} 3 {mu}M) induced a concentration-dependent but non-specific inhibition of VGCCs, thereby limiting the lindane-induced increase in basal [Ca{sup 2+}]{sub i} and exocytosis. Importantly, the non-specific inhibition of VGCCs also reduced stimulation-evoked exocytosis and Ca{sup 2+} influx. Though lindane exposure concentration-dependently increased ROS production, cell viability was not affected indicating that the used concentrations were not acute cytotoxic. These combined findings indicate that lindane has two, partly counteracting effects. Lindane causes membrane depolarization, thereby increasing basal [Ca{sup 2+}]{sub i} and exocytosis. In parallel, lindane inhibits VGCCs, thereby limiting the basal effects and reducing stimulation-evoked [Ca{sup 2+}]{sub i} and exocytosis. This study further underlines the need to consider

  16. Characterizing the cytoprotective activity of Sarracenia purpurea L., a medicinal plant that inhibits glucotoxicity in PC12 cells

    PubMed Central

    2012-01-01

    Background The purple pitcher plant, Sarracenia purpurea L., is a widely distributed species in North America with a history of use as both a marketed pain therapy and a traditional medicine in many aboriginal communities. Among the Cree of Eeyou Istchee in northern Québec, the plant is employed to treat symptoms of diabetes and the leaf extract demonstrates multiple anti-diabetic activities including cytoprotection in an in vitro model of diabetic neuropathy. The current study aimed to further investigate this activity by identifying the plant parts and secondary metabolites that contribute to these cytoprotective effects. Methods Ethanolic extracts of S. purpurea leaves and roots were separately administered to PC12 cells exposed to glucose toxicity with subsequent assessment by two cell viability assays. Assay-guided fractionation of the active extract and fractions was then conducted to identify active principles. Using high pressure liquid chromatography together with mass spectrometry, the presence of identified actives in both leaf and root extracts were determined. Results The leaf extract, but not that of the root, prevented glucose-mediated cell loss in a concentration-dependent manner. Several fractions elicited protective effects, indicative of multiple active metabolites, and, following subfractionation of the polar fraction, hyperoside (quercetin-3-O-galactoside) and morroniside were isolated as active constituents. Phytochemical analysis confirmed the presence of hyperoside in the leaf but not root extract and, although morroniside was detected in both organs, its concentration was seven times higher in the leaf. Conclusion Our results not only support further study into the therapeutic potential and safety of S. purpurea as an alternative and complementary treatment for diabetic complications associated with glucose toxicity but also identify active principles that can be used for purposes of standardization and quality control. PMID:23216659

  17. Butyl benzyl phthalate blocks Ca{sup 2+} signaling coupled with purinoceptor in rat PC12 cells

    SciTech Connect

    Liu, P.-S. . E-mail: psliu@mail.scu.edu.tw; Chen, Y.-Y.

    2006-01-15

    Butyl benzyl phthalate (BBP) is a plasticizer and causes public concern because of its genomic estrogenic effects via estrogen receptors. We previously found that BBP has non-genomic effects, exerting inhibitory effects on the functional activities of nicotinic acetylcholine receptors (nAChR) in bovine adrenal chromaffin cells. nAChR belongs to the superfamily of neurotransmitter-gated channels, so does P2X purinoceptor that is widely distributed in the nervous system and play a role in pain reactions. In this study, we investigated the effects of BBP on the change of [Ca{sup 2+}]{sub c} (cytosolic calcium ion concentration) under the stimulation of purinoceptors in PC12 cells and found that BBP inhibited ATP-induced [Ca{sup 2+}]{sub c} rise (IC{sub 5} = 8.3 {mu}M). The inhibitory rate of BBP remained under the increase of ATP concentration; therefore, the possibility of competitive inhibition was excluded. The inhibition of BBP on P2Y was excluded because its inhibition on ATP-induced [Ca{sup 2+}]{sub c} rise was not found in the absence of extracellular Ca{sup 2+}. BBP might have some actions on voltage-operated Ca{sup 2+} channels (VOCCs) since BBP inhibited the Ca{sup 2+} signaling responding to high K{sup +} stimulation (IC{sub 5} = 1.2 {mu}M). We suggest that BBP inhibits the ATP-induced [Ca{sup 2+}]{sub c} rise via its non-competitive inhibition on P2X purinoceptors and VOCCs in the plasma membrane.

  18. Neuritogenic Monoglyceride Derived from the Constituent of a Marine Fish for Activating the PI3K/ERK/CREB Signalling Pathways in PC12 Cells

    PubMed Central

    Yang, Wei; Luo, Yan; Tang, Ruiqi; Zhang, Hui; Ye, Ying; Xiang, Lan; Qi, Jianhua

    2013-01-01

    A neuritogenic monoglyceride, 1-O-(myristoyl) glycerol (MG), was isolated from the head of Ilisha elongate using a PC12 cell bioassay system, and its chemical structure was elucidated using spectroscopic methods. MG significantly induced 42% of the neurite outgrowth of PC12 cells at a concentration of 10 μM. To study the structure-activity relationships of MG, a series of monoglycerides was designed and synthesised. Bioassay results indicated that the alkyl chain length plays a key role in the neuritogenic activity of the monoglycerides. The groups that link the propane-1,2-diol and alkyl chain were also investigated. An ester linkage, rather than an amido one, was found to be optimal for neuritogenic activity. Therefore, 1-O-(stearoyl) glycerol (SG), which induces 57% of the neurite outgrowth of PC12 cells at 10 μM, was determined to be a lead compound for neuritogenic activity. We then investigated the mechanism of action of neurite outgrowth induced by SG on PC12 cells using protein specific inhibitors and Western blot analysis. The mitogen-activated kinase/ERK kinase (MEK) inhibitor U0126 and the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002 significantly decreased neurite outgrowth. At the same time, SG increased phosphorylation of CREB in protein level. Thus, SG-induced neuritogenic activity depends on the activation of the extracellular-regulated protein kinase (ERK), cAMP responsive element-binding protein (CREB) and PI3K signalling pathways in PC12 cells. PMID:24351811

  19. ELKS, a protein structurally related to the active zone protein CAST, is involved in Ca2+-dependent exocytosis from PC12 cells.

    PubMed

    Inoue, Eiji; Deguchi-Tawarada, Maki; Takao-Rikitsu, Etsuko; Inoue, Marie; Kitajima, Isao; Ohtsuka, Toshihisa; Takai, Yoshimi

    2006-06-01

    The active zone protein CAST binds directly to the other active zone proteins RIM, Bassoon and Piccolo, and it has been suggested that these protein-protein interactions play an important role in neurotransmitter release. To further elucidate the molecular mechanism, we attempted to examine the function of CAST using PC12 cells as a model system. Although PC12 cells do not express CAST, they do express ELKS, a protein structurally related to CAST. Endogenous and exogenously expressed ELKS, RIM2 and Bassoon were colocalized in punctate signals in PC12 cells. Over-expression of full-length ELKS resulted in a significant increase in stimulated exocytosis of human growth hormone (hGH) from PC12 cells, similar to the effect of full-length RIM2. This increase was not observed following over-expression of deletion constructs of ELKS that lacked either the last three amino acids (IWA) required for binding to RIM2 or a central region necessary for binding to Bassoon. Moreover, over-expression of the NH(2)-terminal RIM2-binding domain of Munc13-1, which is known to inhibit the binding between RIM and Munc13-1, inhibited the stimulated increase in hGH secretion by full-length RIM2. Furthermore, this construct also inhibited the stimulated increase in hGH secretion induced by full-length ELKS. These results suggest that ELKS is involved in Ca(2+)-dependent exocytosis from PC12 cells at least partly via the RIM2-Munc13-1 pathway.

  20. Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells

    SciTech Connect

    Dishaw, Laura V.; Powers, Christina M.; Ryde, Ian T.; Roberts, Simon C.; Seidler, Frederic J.; Slotkin, Theodore A.; Stapleton, Heather M.

    2011-11-15

    Organophosphate flame retardants (OPFRs) are used as replacements for the commercial PentaBDE mixture that was phased out in 2004. OPFRs are ubiquitous in the environment and detected at high concentrations in residential dust, suggesting widespread human exposure. OPFRs are structurally similar to neurotoxic organophosphate pesticides, raising concerns about exposure and toxicity to humans. This study evaluated the neurotoxicity of tris (1,3-dichloro-2-propyl) phosphate (TDCPP) compared to the organophosphate pesticide, chlorpyrifos (CPF), a known developmental neurotoxicant. We also tested the neurotoxicity of three structurally similar OPFRs, tris (2-chloroethyl) phosphate (TCEP), tris (1-chloropropyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP), and 2,2 Prime ,4,4 Prime -tetrabromodiphenyl ether (BDE-47), a major component of PentaBDE. Using undifferentiated and differentiating PC12 cells, changes in DNA synthesis, oxidative stress, differentiation into dopaminergic or cholinergic neurophenotypes, cell number, cell growth and neurite growth were assessed. TDCPP displayed concentration-dependent neurotoxicity, often with effects equivalent to or greater than equimolar concentrations of CPF. TDCPP inhibited DNA synthesis, and all OPFRs decreased cell number and altered neurodifferentiation. Although TDCPP elevated oxidative stress, there was no adverse effect on cell viability or growth. TDCPP and TDBPP promoted differentiation into both neuronal phenotypes, while TCEP and TCPP promoted only the cholinergic phenotype. BDE-47 had no effect on cell number, cell growth or neurite growth. Our results demonstrate that different OPFRs show divergent effects on neurodifferentiation, suggesting the participation of multiple mechanisms of toxicity. Additionally, these data suggest that OPFRs may affect neurodevelopment with similar or greater potency compared to known and suspected neurotoxicants.

  1. Ca2+-dependent and -independent release of neurotransmitters from PC12 cells: a role for protein kinase C activation?

    PubMed Central

    1984-01-01

    The intracellular mechanisms regulating the process of evoked neurotransmitter release were studied in the cloned neurosecretory cell line PC12. Various agents were employed that were known, from previous studies in other systems, to stimulate release in a manner either strictly dependent or independent of the concentration of extracellular Ca2+, [Ca2+]o. Three parameters were investigated in cells suspended in either Ca2+-containing or Ca2+-free Krebs-Ringer media: release of previously accumulated [3H]dopamine; average free cytoplasmic Ca2+ concentration, [Ca2+]i (measured by the quin2 technique); and cell ultrastructure, with special reference to the number and structure of secretion granules. The release induced by the ionophores transporting monovalent cations, X537A and monensin, occurred concomitantly with profound alterations of secretory granule structure (swelling and dissolution of the dense core). These results suggest that the effect of these drugs is due primarily to leakage of dopamine from granules to the cytoplasm and extracellular space. In contrast, the changes induced by other stimulatory drugs used concerned not the structure but the number of secretory granules, indicating that with these drugs stimulation of exocytosis is the phenomenon underlying the increased transmitter release. The release response induced by the Ca2+-ionophore ionomycin was dependent on [Ca2+]o, occurred rapidly, was concomitant with a marked rise of [Ca2+]i, and ceased after 1-2 min even though [Ca2+]i remained elevated for many minutes. 12-O-tetradecanoylphorbol, 13-acetate and diacylglycerol (both of which are known as activators of protein kinase C) induced slow responses almost completely independent of [Ca2+]o and not accompanied by changes of [Ca2+]i. Combination of an activator of protein kinase C with a low concentration of ionomycin failed to modify the [Ca2+]i rise induced by the ionophore, but elicited a marked potentiation of the release response, which was

  2. Yokukansan, a kampo medicine, protects PC12 cells from glutamate-induced death by augmenting gene expression of cystine/glutamate antiporter system Xc-.

    PubMed

    Kanno, Hitomi; Kawakami, Zenji; Mizoguchi, Kazushige; Ikarashi, Yasushi; Kase, Yoshio

    2014-01-01

    Effects of the kampo medicine yokukansan on gene expression of the cystine/glutamate antiporter system Xc-, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells). Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc- subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook.

  3. Expresssion of bax/bcl-xl by low-power laser irradiation in the Amyloid Beta 25-35 induced apoptosis of PC12 cell

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Xing, Da

    2006-09-01

    Apoptosis has been reported as a contributing pathophysiological mechanism of Alzheimer's disease (AD). Recently, the anti-apoptosis function of low-power laser irradiation (LPLI) was proposed, suggesting LPLI may become a new means for AD therapy. In this study, we aimed to demonstrate the anti-apoptosis function of LPLI at molecular level. Aβ 25-35 was used to induce apoptosis of PC12 cell, and then the cells were dealt with LPLI. After irradiation, the molecular level of apoptosis was detected by quantifying the bax I bcl-xl mRNA ratio using a highly sensitive and quantitative polymerase chain reaction (QT-PCR) technique. The primary results show that the bax Ibcl-xl mRNA ratio of the PC12 cell treated with Aβ 25-35 was decreased by LPLI, demonstrating the anti-apoptosis function of LPLI at molecular level.

  4. Antioxidant properties and PC12 cell protective effects of a novel curcumin analogue (2E,6E)-2,6-bis(3,5- dimethoxybenzylidene)cyclohexanone (MCH).

    PubMed

    Ao, Gui-Zhen; Chu, Xiao-Jing; Ji, Yuan-Yuan; Wang, Jian-Wen

    2014-03-05

    The antioxidative properties of a novel curcumin analogue (2E,6E)-2,6-bis(3,5-dimethoxybenzylidene)cyclohexanone (MCH) were assessed by several in vitro models, including superoxide anion, hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and PC12 cell protection from H2O2 damage. MCH displayed superior O2•- quenching abilities compared to curcumin and vitamin C. In vitro stability of MCH was also improved compared with curcumin. Exposure of PC12 cells to 150 µM H2O2 caused a decrease of antioxidant enzyme activities, glutathione (GSH) loss, an increase in malondialdehyde (MDA) level, and leakage of lactate dehydrogenase (LDH), cell apoptosis and reduction in cell viability. Pretreatment of the cells with MCH at 0.63-5.00 µM before H2O2 exposure significantly attenuated those changes in a dose-dependent manner. MCH enhanced cellular expression of transcription factor NF-E2-related factor 2 (Nrf2) at the transcriptional level. Moreover, MCH could mitigate intracellular accumulation of reactive oxygen species (ROS), the loss of mitochondrial membrane potential (MMP), and the increase of cleaved caspase-3 activity induced by H2O2. These results show that MCH protects PC12 cells from H2O2 injury by modulating endogenous antioxidant enzymes, scavenging ROS, activating the Nrf2 cytoprotective pathway and prevention of apoptosis.

  5. Cooperative action of JNK and AKT/mTOR in 1-methyl-4-phenylpyridinium-induced autophagy of neuronal PC12 cells.

    PubMed

    Rodríguez-Blanco, Jezabel; Martín, Vanesa; García-Santos, Guillermo; Herrera, Federico; Casado-Zapico, Sara; Antolín, Isaac; Rodriguez, Carmen

    2012-09-01

    Parkinson's disease has been widely related to both apoptosis and oxidative stress. Many publications relate the loss of mitochondrial potential to an apoptosis-mediated cell death in different in vivo and in vitro models of this pathology. The present study used the dopaminegic specific neurotoxin 1-methyl-4-phenylpyridinium (MPP(+) ) on neuron-like PC12 cells, which is a well-accepted model of Parkinson's disease. Results showed an early increase in oxidants, which drives the modulation of c-Jun N-terminal kinase (JNK) and AKT/mammalian target of rapamycin (mTOR) pathways, mimicking peroxide treatment. However, the cell death found in neuronal PC12 cells treated with MPP(+) was not a caspase-associated apoptosis. Electron microscopic images illustrated autophagic cell death, which was confirmed by a Beclin-1 and ATG expression increase, accumulation of acidic vesicles, and rescue by an autophagy inhibitor. In conclusion, the boost in oxidants from MPP(+) treatment in neuronal PC12 is modulating both survival (AKT/mTOR) and death (JNK) pathways, which are the perpetrators of an autophagic cell death.

  6. Methamphetamine, amphetamine, MDMA ('ecstasy'), MDA and mCPP modulate electrical and cholinergic input in PC12 cells.

    PubMed

    Hondebrink, Laura; Meulenbelt, Jan; Rietjens, Saskia J; Meijer, Marieke; Westerink, Remco H S

    2012-03-01

    Reversal of the dopamine (DA) membrane transporter is the main mechanism through which many drugs of abuse increase DA levels. However, drug-induced modulation of exocytotic DA release by electrical (depolarization) and neurochemical inputs (e.g., acetylcholine (ACh)) may also contribute. We therefore investigated effects of methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and meta-chlorophenylpiperazine (mCPP) (1-1000 μM) on these inputs by measuring drug-induced changes in basal, depolarization- and ACh-evoked intracellular calcium concentrations ([Ca(2+)](i)) using a dopaminergic model (PC12 cells) and Fura 2 calcium imaging. The strongest drug-induced effects were observed on cholinergic input. At 0.1mM all drugs inhibited the ACh-evoked [Ca(2+)](i) increases by 40-75%, whereas ACh-evoked [Ca(2+)](i) increases were nearly abolished following higher drug exposure (1mM, 80-97% inhibition). Additionally, high MDMA and mCPP concentrations increased basal [Ca(2+)](i), but only following prior stimulation with ACh. Interestingly, low concentrations of methamphetamine or amphetamine (10 μM) potentiated ACh-evoked [Ca(2+)](i) increases. Depolarization-evoked [Ca(2+)](i) increases were also inhibited following exposure to high drug concentrations, although drugs were less potent on this endpoint. Our data demonstrate that at high drug concentrations all tested drugs reduce stimulation-evoked increases in [Ca(2+)](i), thereby probably reducing dopaminergic output through inhibition of electrical and cholinergic input. Furthermore, the increases in basal [Ca(2+)](i) at high concentrations of MDMA and mCPP likely increases dopaminergic output. Similarly, the increases in ACh-evoked [Ca(2+)](i) upon cholinergic stimulation following exposure to low concentrations of amphetamines can contribute to drug-induced increases in DA levels observed in vivo. Finally, this study shows that mCPP, which is regularly found in

  7. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells: involvements of ROS, JNK and P38 MAPKs, and apoptotic mitochondria pathway.

    PubMed

    Aminzadeh, A; Dehpour, A R; Safa, M; Mirzamohammadi, S; Sharifi, A M

    2014-11-01

    Hyperglycemia that occurs under the diabetic condition is a major cause of diabetic complications such as diabetic neuropathy, one of the most common diabetes-related complications. It is well known that hyperglycemia could result in generation of reactive oxygen species (ROS). Over production of ROS recommended as an important mediator for apoptotic signaling pathway as well as a key early event in the development of diabetic neuropathy. Recently, many studies have indicated that lithium has robust neuroprotective effect in relation to several neurodegenerative diseases. The present study aimed to examine effects of lithium on high glucose (HG)-induced neurotoxicity and to determine some of the underlying molecular mechanisms involved in this response in PC12 cells as a neuronal culture model for diabetic neuropathy. PC12 cells were pretreated with different concentrations of lithium for 7 days, exposed to HG for 24 h. Cell viability was measured by MTT assay. ROS and lipid peroxidation levels as well as superoxide dismutase activity were measured. In order to examine the underlying molecular mechanisms, the expressions of Bax, Bcl-2, Caspase-3, total and phosphorylated JNK and P38 MAPK were also analyzed by Western blotting. The present results indicated that pretreatment with 1 mM lithium has protected PC12 cells against HG-induced apoptotic cell death. It could reduce ROS generation, Bax/Bcl-2 ratio, Caspase-3 activation, and JNK and P38 MAPK phosphorylation. It may be concluded that in HG condition, lithium pretreatment could prevent mitochondrial apoptosis as well as JNK and P38 MAPK pathway in PC12 cells.

  8. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells.

    PubMed

    Zhang, Yang; Ding, Jun; Duan, Wei

    2006-01-01

    The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 approximately 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.

  9. Potentiation of lead-induced cell death in PC12 cells by glutamate: Protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant

    SciTech Connect

    Penugonda, Suman; Mare, Suneetha; Lutz, P.; Banks, William A.; Ercal, Nuran . E-mail: nercal@umr.edu

    2006-10-15

    Oxidative stress has been implicated as an important factor in many neurological diseases. Oxidative toxicity in a number of these conditions is induced by excessive glutamate release and subsequent glutamatergic neuronal stimulation. This, in turn, causes increased generation of reactive oxygen species (ROS), oxidative stress, excitotoxicity, and neuronal damage. Recent studies indicate that the glutamatergic neurotransmitter system is involved in lead-induced neurotoxicity. Therefore, this study aimed to (1) investigate the potential effects of glutamate on lead-induced PC12 cell death and (2) elucidate whether the novel thiol antioxidant N-acetylcysteine amide (NACA) had any protective abilities against such cytotoxicity. Our results suggest that glutamate (1 mM) potentiates lead-induced cytotoxicity by increased generation of ROS, decreased proliferation (MTS), decreased glutathione (GSH) levels, and depletion of cellular adenosine-triphosphate (ATP). Consistent with its ability to decrease ATP levels and induce cell death, lead also increased caspase-3 activity, an effect potentiated by glutamate. Exposure to glutamate and lead elevated the cellular malondialdehyde (MDA) levels and phospholipase-A{sub 2} (PLA{sub 2}) activity and diminished the glutamine synthetase (GS) activity. NACA protected PC12 cells from the cytotoxic effects of glutamate plus lead, as evaluated by MTS assay. NACA reduced the decrease in the cellular ATP levels and restored the intracellular GSH levels. The increased levels of ROS and MDA in glutamate-lead treated cells were significantly decreased by NACA. In conclusion, our data showed that glutamate potentiated the effects of lead-induced PC12 cell death by a mechanism involving mitochondrial dysfunction (ATP depletion) and oxidative stress. NACA had a protective role against the combined toxic effects of glutamate and lead by inhibiting lipid peroxidation and scavenging ROS, thus preserving intracellular GSH.

  10. NAD+-Carrying Mesoporous Silica Nanoparticles Can Prevent Oxidative Stress-Induced Energy Failures of Both Rodent Astrocytes and PC12 Cells

    PubMed Central

    Chen, Heyu; Wang, Yao; Zhang, Jixi; Ma, Yingxin; Wang, Caixia; Zhou, Ying; Gu, Hongchen; Ying, Weihai

    2013-01-01

    Aim To test the hypothesis that NAD+-carrying mesoporous silica nanoparticles (M-MSNs@NAD+) can effectively deliver NAD+ into cells to produce cytoprotective effects. Methods & Materials NAD+ was incorporated into M-MSNs. Primary rat astrocyte cultures and PC12 cells were treated with H2O2, followed by post-treatment with M-MSNs@NAD+. After various durations of the post-treatment, intracellular NAD+ levels, intracellular ATP levels and lactate dehydrogenase (LDH) release were determined. Results & Discussion M-MSNs can be effectively loaded with NAD+. The M-MSNs@NAD+ can significantly attenuate H2O2-induced NAD+ and ATP decreases in both astrocyte cultures and PC12 cells. M-MSNs@NAD+ can also partially prevent the H2O2-induced LDH release from both astrocyte cultures and PC12 cells. In contrast, the NAD+ that is spontaneously released from the M-MSNs@NAD+ is insufficient to prevent the H2O2-induced damage. Conclusions Our study has suggested the first approach that can effectively deliver NAD+ into cells, which provides an important basis both for elucidating the roles of intracellular NAD+ in biological functions and for therapeutic applications of NAD+. Our study has also provided the first direct evidence demonstrating a key role of NAD+ depletion in oxidative stress-induced ATP decreases. PMID:24040179

  11. Icariin Attenuates OGD/R-Induced Autophagy via Bcl-2-Dependent Cross Talk between Apoptosis and Autophagy in PC12 Cells

    PubMed Central

    2016-01-01

    Icariin (ICA), an active component of Epimedium brevicornum Maxim, exerts a variety of neuroprotective effects such as antiapoptosis. However, the mechanisms underlying antiapoptosis of ICA in neurons exposed to oxygen-glucose deprivation and reperfusion (OGD/R) are unclear. The B-cell lymphoma-2 (Bcl-2) protein family plays an important role in the regulation of apoptosis and autophagy through Bcl-2-dependent cross talk. Bcl-2 suppresses apoptosis by binding to Bax and inhibits autophagy by binding to Beclin-1 which is an autophagy related protein. In the present study, MTT result showed that ICA increased cell viability significantly in OGD/R treated PC12 cells (P < 0.01). Results of western blotting analysis showed that ICA increased Bcl-2 expression significantly and decreased expressions of Bax, cleaved Caspase-3, Beclin-1, and LC3-II significantly in OGD/R treated PC12 cells (P < 0.01). These results suggest that ICA protects PC12 cells from OGD/R induced autophagy via Bcl-2-dependent cross talk between apoptosis and autophagy.

  12. Icariin Attenuates OGD/R-Induced Autophagy via Bcl-2-Dependent Cross Talk between Apoptosis and Autophagy in PC12 Cells.

    PubMed

    Mo, Zhen-Tao; Li, Wen-Na; Zhai, Yu-Rong; Gong, Qi-Hai

    2016-01-01

    Icariin (ICA), an active component of Epimedium brevicornum Maxim, exerts a variety of neuroprotective effects such as antiapoptosis. However, the mechanisms underlying antiapoptosis of ICA in neurons exposed to oxygen-glucose deprivation and reperfusion (OGD/R) are unclear. The B-cell lymphoma-2 (Bcl-2) protein family plays an important role in the regulation of apoptosis and autophagy through Bcl-2-dependent cross talk. Bcl-2 suppresses apoptosis by binding to Bax and inhibits autophagy by binding to Beclin-1 which is an autophagy related protein. In the present study, MTT result showed that ICA increased cell viability significantly in OGD/R treated PC12 cells (P < 0.01). Results of western blotting analysis showed that ICA increased Bcl-2 expression significantly and decreased expressions of Bax, cleaved Caspase-3, Beclin-1, and LC3-II significantly in OGD/R treated PC12 cells (P < 0.01). These results suggest that ICA protects PC12 cells from OGD/R induced autophagy via Bcl-2-dependent cross talk between apoptosis and autophagy. PMID:27610184

  13. Icariin Attenuates OGD/R-Induced Autophagy via Bcl-2-Dependent Cross Talk between Apoptosis and Autophagy in PC12 Cells

    PubMed Central

    2016-01-01

    Icariin (ICA), an active component of Epimedium brevicornum Maxim, exerts a variety of neuroprotective effects such as antiapoptosis. However, the mechanisms underlying antiapoptosis of ICA in neurons exposed to oxygen-glucose deprivation and reperfusion (OGD/R) are unclear. The B-cell lymphoma-2 (Bcl-2) protein family plays an important role in the regulation of apoptosis and autophagy through Bcl-2-dependent cross talk. Bcl-2 suppresses apoptosis by binding to Bax and inhibits autophagy by binding to Beclin-1 which is an autophagy related protein. In the present study, MTT result showed that ICA increased cell viability significantly in OGD/R treated PC12 cells (P < 0.01). Results of western blotting analysis showed that ICA increased Bcl-2 expression significantly and decreased expressions of Bax, cleaved Caspase-3, Beclin-1, and LC3-II significantly in OGD/R treated PC12 cells (P < 0.01). These results suggest that ICA protects PC12 cells from OGD/R induced autophagy via Bcl-2-dependent cross talk between apoptosis and autophagy. PMID:27610184

  14. Protective Effects of Coenzyme Q10 Against Hydrogen Peroxide-Induced Oxidative Stress in PC12 Cell: The Role of Nrf2 and Antioxidant Enzymes.

    PubMed

    Li, Li; Du, Jikun; Lian, Yaru; Zhang, Yun; Li, Xingren; Liu, Ying; Zou, Liyi; Wu, Tie

    2016-01-01

    Oxidative stress is a major component of harmful cascades activated in neurodegenerative disorders. Coenzyme Q10 (CoQ10), an essential component in the mitochondrial respiratory chain, has recently gained attention for its potential role in the treatment of neurodegenerative disease. Here, we investigated the possible protective effects of CoQ10 on H2O2-induced neurotoxicity in PC12 cells and the underlying mechanism. CoQ10 showed high free radical-scavenging activity as measured by a DPPH and TEAC. Pre-treatment of cells with CoQ10 diminished intracellular generation of ROS in response to H2O2. H2O2 decreased viability of PC12 cells which was reversed by pretreatment with CoQ10 according to MTT assay. H2O2-induced lipid peroxidation was attenuated by CoQ10 as shown by inhibition of MDA formation. Furthermore, pre-incubation of the cells with CoQ10 also restored the activity of cellular antioxidant enzymes which had been altered by H2O2. Moreover, CoQ10 induced Nrf2 nuclear translocation, the upstream of antioxidant enzymes. These findings suggest CoQ10 augments cellular antioxidant defense capacity through both intrinsic free radical-scavenging activity and activation of Nrf2 and subsequently antioxidant enzymes induction, thereby protecting the PC12 cells from H2O2-induced oxidative cytotoxicity.

  15. Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis.

    PubMed

    Liu, Yamin; Shen, Shengnan; Li, Zongyang; Jiang, Yumao; Si, Jianyong; Chang, Qi; Liu, Xinmin; Pan, Ruile

    2014-12-01

    It has been reported that high corticosterone level could damage the normal hippocampal neurons both in vitro and in vivo. Furthermore, high concentration of corticosterone induced impair in PC12 cells has been widely used as in vitro model to screen neuroprotective agents. Cajaninstilbene acid (CSA), a natural stilbene isolated from Cajanus cajan leaves, has various activities. In present study, we investigated the effect of CSA on corticosterone-induced cell apoptosis and explored its possible signaling pathways in PC12 cells. We demonstrated that pretreatment with CSA at the concentrations of 1-8 μmol/L remarkably reduced the cytotoxicity induced by 200 μmol/L of corticosterone in PC12 cells by MTT, and further confirmed the neuroprotection by Hoechst 33342 and PI double staining and lactate dehydrogenase release (LDH) assay at the concentration of 8 μmol/L. Moreover, the cytoprotection of CSA was proved to be associated with the homeostasis of intracellular Ca(2+), relieving corticosterone-induced oxidative stress by decreasing the contents of ROS and malondialdehyde (MDA), increasing the activities of superoxide dismutase (SOD) and catalase (CAT), and the stabilization of ER stress via down-regulating the expression of ER chaperone protein glucose-regulated protein 78 (GRP78), ER stress associated transcription factor C/EBP homologous protein (CHOP/GADD153), and the X box-binding protein-1 (XBP-1), as well as the expression of ER stress-specific protein caspase-12 and its downstream protein caspase-9. Considering all the findings, it is suggested that the neuroprotective activity of CSA against the impairment induced by corticosterone in PC12 cells was through the inhibition of oxidative stress and ER stress-mediated pathway. PMID:25193317

  16. Nurr1 and PPARγ protect PC12 cells against MPP(+) toxicity: involvement of selective genes, anti-inflammatory, ROS generation, and antimitochondrial impairment.

    PubMed

    Jodeiri Farshbaf, Mohammad; Forouzanfar, Mahboobeh; Ghaedi, Kamran; Kiani-Esfahani, Abbas; Peymani, Maryam; Shoaraye Nejati, Alireza; Izadi, Tayebeh; Karbalaie, Khadijeh; Noorbakhshnia, Maryam; Rahgozar, Soheila; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2016-09-01

    Parkinson's disease (PD) can degenerate dopaminergic (DA) neurons in midbrain, substantia-nigra pars compacta. Alleviation of its symptoms and protection of normal neurons against degeneration are the main aspects of researches to establish novel therapeutic strategies. PPARγ as a member of PPARs have shown neuroprotection in a number of neurodegenerative disorders such as Alzheimer's disease and PD. Nuclear receptor related 1 protein (Nurr1) is, respectively, member of NR4A family and has received great attentions as potential target for development, maintenance, and survival of DA neurons. Based on neuroprotective effects of PPARγ and dual role of Nurr1 in anti-inflammatory pathways and development of DA neurons, we hypothesize that PPARγ and Nurr1 agonists alone and in combined form can be targets for neuroprotective therapeutic development for PD in vitro model. 1-Methyl-4-phenylpyridinium (MPP(+)) induced neurotoxicity in PC12 cells as an in vitro model for PD studies. Treatment/cotreatment with PPARγ and Nurr1 agonists 24 h prior to MPP(+) induction enhanced the viability of PC12 cell. The viability of PC12 cells was determined by MTS test. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were detected by flow cytometry. In addition, the relative expression of four genes including TH (the marker of DA neurons), Ephrin A1, Nurr1, and Ferritin light chain were assessed by RT-qPCR. In the MPP(+)-pretreated PC12 cells, PPARγ and Nurr1 agonists and their combined form resulted in a decrease in the cell death rate. Moreover, production of intracellular ROS and MMP modulated by MPP(+) was decreased by PPARγ and Nurr1 agonists' treatment alone and in the combined form. PMID:27435855

  17. Microwave-Induced Structural and Functional Injury of Hippocampal and PC12 Cells Is Accompanied by Abnormal Changes in the NMDAR-PSD95-CaMKII Pathway.

    PubMed

    Wang, Li-Feng; Wei, Li; Qiao, Si-Mo; Gao, Xiao-Na; Gao, Ya-Bing; Wang, Shui-Ming; Zhao, Li; Dong, Ji; Xu, Xin-Ping; Zhou, Hong-Mei; Hu, Xiang-Jun; Peng, Rui-Yun

    2015-01-01

    Recent studies have highlighted the important role of the postsynaptic NMDAR-PSD95-CaMKII pathway for synaptic transmission and related neuronal injury. Here, we tested changes in the components of this pathway upon microwave-induced neuronal structure and function impairments. Ultrastructural and functional changes were induced in hippocampal neurons of rats and in PC12 cells exposed to microwave radiation. We detected abnormal protein and mRNA expression, as well as posttranslational modifications in the NMDAR-PSD95-CaMKII pathway and its associated components, such as synapsin I, following microwave radiation exposure of rats and PC12 cells. Thus, microwave radiation may induce neuronal injury via changes in the molecular organization of postsynaptic density and modulation of the biochemical cascade that potentiates synaptic transmission.

  18. Synthesis of cyclic N 1-pentylinosine phosphate, a new structurally reduced cADPR analogue with calcium-mobilizing activity on PC12 cells

    PubMed Central

    Borbone, Nicola; Pinto, Brunella; Secondo, Agnese; Costantino, Valeria; Tedeschi, Valentina; Piccialli, Vincenzo; Piccialli, Gennaro

    2015-01-01

    Summary Cyclic N 1-pentylinosine monophosphate (cpIMP), a novel simplified inosine derivative of cyclic ADP-ribose (cADPR) in which the N 1-pentyl chain and the monophosphate group replace the northern ribose and the pyrophosphate moieties, respectively, was synthesized. The role played by the position of the phosphate group in the key cyclization step, which consists in the formation of a phosphodiester bond, was thoroughly investigated. We have also examined the influence of the phosphate bridge on the ability of cpIMP to mobilize Ca2+ in PC12 neuronal cells in comparison with the pyrophosphate bridge present in the cyclic N 1-pentylinosine diphosphate analogue (cpIDP) previously synthesized in our laboratories. The preliminary biological tests indicated that cpIMP and cpIDP induce a rapid increase of intracellular Ca2+ concentration in PC12 neuronal cells. PMID:26877790

  19. Nerve Growth Factor Regulation of Cyclin D1 in PC12 Cells through a p21RAS Extracellular Signal-regulated Kinase Pathway Requires Cooperative Interactions between Sp1 and Nuclear Factor-κB

    PubMed Central

    Marampon, Francesco; Casimiro, Mathew C.; Fu, Maofu; Powell, Michael J.; Popov, Vladimir M.; Lindsay, Jaime; Zani, Bianca M.; Ciccarelli, Carmela; Watanabe, Genichi; Lee, Richard J.

    2008-01-01

    The PC12 pheochromocytoma cell line responds to nerve growth factor (NGF) by exiting from the cell cycle and differentiating to induce extending neurites. Cyclin D1 is an important regulator of G1/S phase cell cycle progression, and it is known to play a role in myocyte differentiation in cultured cells. Herein, NGF induced cyclin D1 promoter, mRNA, and protein expression via the p21RAS pathway. Antisense- or small interfering RNA to cyclin D1 abolished NGF-mediated neurite outgrowth, demonstrating the essential role of cyclin D1 in NGF-mediated differentiation. Expression vectors encoding mutants of the Ras/mitogen-activated protein kinase pathway, and chemical inhibitors, demonstrated NGF induction of cyclin D1 involved cooperative interactions of extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase pathways downstream of p21RAS. NGF induced the cyclin D1 promoter via Sp1, nuclear factor-κB, and cAMP-response element/activated transcription factor sites. NGF induction via Sp1 involved the formation of a Sp1/p50/p107 complex. Cyclin D1 induction by NGF governs differentiation and neurite outgrowth in PC12 cells. PMID:18367547

  20. Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells. A potential role in cell protection.

    PubMed

    Kobayashi, S; Millhorn, D E

    1999-07-16

    The purpose of this study was to examine the regulation of adenosine A2A receptor (A2AR) gene expression during hypoxia in pheochromocytoma (PC12) cells. Northern blot analysis revealed that the A2AR mRNA level was substantially increased after a 3-h exposure to hypoxia (5% O2), which reached a peak at 12 h. Immunoblot analysis showed that the A2AR protein level was also increased during hypoxia. Inhibition of de novo protein synthesis blocked A2AR induction by hypoxia. In addition, removal of extracellular free Ca2+, chelation of intracellular free Ca2+, and pretreatment with protein kinase C inhibitors prevented A2AR induction by hypoxia. Moreover, depletion of protein kinase C activity by prolonged treatment with phorbol 12-myristate 13-acetate significantly inhibited the hypoxic induction of A2AR. A2AR antagonists led to a significant enhancement of A2AR mRNA levels during hypoxia, whereas A2AR agonists caused down-regulation of A2AR expression during hypoxia. This suggests that A2AR regulates its own expression during hypoxia by feedback mechanisms. We further found that activation of A2AR enhances cell viability during hypoxia and also inhibits vascular endothelial growth factor expression in PC12 cells. Thus, increased expression of A2AR during hypoxia might protect cells against hypoxia and may act to inhibit hypoxia-induced angiogenic activity mediated by vascular endothelial growth factor. PMID:10400659

  1. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    SciTech Connect

    Nishina, Atsuyoshi; Kimura, Hirokazu; Kozawa, Kunihisa; Sommen, Geoffroy; Nakamura, Takao; Heimgartner, Heinz; Koketsu, Mamoru; Furukawa, Shoei

    2011-12-15

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 {mu}M, the O{sub 2}{sup -} scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC{sub 50}) at 92.4 {mu}M and acted as an effective and potentially useful O{sub 2}{sup -} scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 {mu}M or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 {mu}M. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 {mu}M induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: Black-Right-Pointing-Pointer We newly synthesized 1,3-selenazolidin-4-ones to

  2. Protective effect of nicotine through nicotinic acetylcholine receptor alpha 7 on hypoxia-induced membrane disintegration and DNA fragmentation of cultured PC12 cells.

    PubMed

    Tohgi, H; Utsugisawa, K; Nagane, Y

    2000-05-12

    To investigate the effect of nicotine on hypoxic neuronal damage, cultured PC12 cells were exposed to hypoxia for 9 h and then reoxygenated for 72 h. The cells were stained by propidium iodide (PI), a marker of cell membrane disintegration and the TUNEL method, which indicates DNA fragmentation. In control cultures, the ratio of PI-positive cells to total cells progressively increased during and after exposure to hypoxia, constituting 39% of total cells at 72 h posthypoxia. This increase in PI-positive cells was completely inhibited by nicotine until 12 h posthypoxia, and was partially and dose-dependently inhibited thereafter. The ratio of TUNEL-positive cells to total cells started to increase at 24 h posthypoxia and reached 36% at 72 h in control cultures. This ratio was also dose-dependently inhibited by nicotine. These inhibitory effects of nicotine on the increase in PI-positive and TUNEL-positive cells were abolished by the addition to the medium of alpha-bungarotoxin, an antagonistic ligand for nicotinic acetylcholine receptor (AChR) alpha7. These findings suggest that nicotine inhibits, through AChR alpha7, hypoxia-induced cell membrane disintegration and DNA fragmentation of cultured PC12 cells exposed to hypoxia.

  3. Inhibition of Voltage-Gated Calcium Channels After Subchronic and Repeated Exposure of PC12 Cells to Different Classes of Insecticides.

    PubMed

    Meijer, Marieke; Brandsema, Joske A R; Nieuwenhuis, Desirée; Wijnolts, Fiona M J; Dingemans, Milou M L; Westerink, Remco H S

    2015-10-01

    We previously demonstrated that acute inhibition of voltage-gated calcium channels (VGCCs) is a common mode of action for (sub)micromolar concentrations of chemicals, including insecticides. However, because human exposure to chemicals is usually chronic and repeated, we investigated if selected insecticides from different chemical classes (organochlorines, organophosphates, pyrethroids, carbamates, and neonicotinoids) also disturb calcium homeostasis after subchronic (24 h) exposure and after a subsequent (repeated) acute exposure. Effects on calcium homeostasis were investigated with single-cell fluorescence (Fura-2) imaging of PC12 cells. Cells were depolarized with high-K(+) saline to study effects of subchronic or repeated exposure on VGCC-mediated Ca(2+) influx. The results demonstrate that except for carbaryl and imidacloprid, all selected insecticides inhibited depolarization (K(+))-evoked Ca(2+) influx after subchronic exposure (IC50's: approximately 1-10 µM) in PC12 cells. These inhibitory effects were not or only slowly reversible. Moreover, repeated exposure augmented the inhibition of the K(+)-evoked increase in intracellular calcium concentration induced by subchronic exposure to cypermethrin, chlorpyrifos, chlorpyrifos-oxon, and endosulfan (IC50's: approximately 0.1-4 µM). In rat primary cortical cultures, acute and repeated chlorpyrifos exposure also augmented inhibition of VGCCs compared with subchronic exposure. In conclusion, compared with subchronic exposure, repeated exposure increases the potency of insecticides to inhibit VGCCs. However, the potency of insecticides to inhibit VGCCs upon repeated exposure was comparable with the inhibition previously observed following acute exposure, with the exception of chlorpyrifos. The data suggest that an acute exposure paradigm is sufficient for screening chemicals for effects on VGCCs and that PC12 cells are a sensitive model for detection of effects on VGCCs.

  4. A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells.

    PubMed

    Travaglia, Alessio; Pietropaolo, Adriana; Di Martino, Rossana; Nicoletti, Vincenzo G; La Mendola, Diego; Calissano, Pietro; Rizzarelli, Enrico

    2015-08-19

    Ever since the discovery of its neurite growth promoting activity in sympathetic and sensory ganglia, nerve growth factor (NGF) became the prototype of the large family of neurotrophins. The use of primary cultures and clonal cell lines has revealed several distinct actions of NGF and other neurotrophins. Among several models of NGF activity, the clonal cell line PC12 is the most widely employed. Thus, in the presence of NGF, through the activation of the transmembrane protein TrkA, these cells undergo a progressive mitotic arrest and start to grow electrically excitable neuritis. A vast number of studies opened intriguing aspects of NGF mechanisms of action, its biological properties, and potential use as therapeutic agents. In this context, identifying and utilizing small portions of NGF is of great interest and involves several human diseases including Alzheimer's disease. Here we report the specific action of the peptide encompassing the 1-14 sequence of the human NGF (NGF(1-14)), identified on the basis of scattered indications present in literature. The biological activity of NGF(1-14) was tested on PC12 cells, and its binding with TrkA was predicted by means of a computational approach. NGF(1-14) does not elicit the neurite outgrowth promoting activity, typical of the whole protein, and it only has a moderate action on PC12 proliferation. However, this peptide exerts, in a dose and time dependent fashion, an effective and specific NGF-like action on some highly conserved and biologically crucial intermediates of its intracellular targets such as Akt and CREB. These findings indicate that not all TrkA pathways must be at all times operative, and open the possibility of testing each of them in relation with specific NGF needs, biological actions, and potential therapeutic use.

  5. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    SciTech Connect

    Baxter, Kristin Kathleen; Uittenbogaard, Martine; Chiaramello, Anne

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  6. Protection of Tong-Sai-Mai Decoction against Apoptosis Induced by H2O2 in PC12 Cells: Mechanisms via Bcl-2-Mitochondria-ROS-INOS Pathway

    PubMed Central

    Lee, Maxwell Kim Kit; Lu, Yin; Di, Liu-qing; Xu, Hui-qin

    2014-01-01

    Tong-Sai-Mai decoction (TSM) is a Chinese materia medica polyherbal formulation that has been applied in treating brain ischemia for hundreds of years. Because it could repress the oxidative stress in in vivo studies, now we focus on the in vitro studies to investigate the mechanism by targeting the oxidative stress dependent signaling. The relation between the neurogenesis and the reactive oxygen species (ROS) production remains largely unexamined. PC12 cells are excitable cell types widely used as in vitro model for neuronal cells. Most marker genes that are related to neurotoxicity, apoptosis, and cell cycles are expressed at high levels in these cells. The aim of the present study is to explore the cytoprotection of TSM against hydrogen peroxide- (H2O2-) induced apoptosis and the molecular mechanisms underlying PC12 cells. Our findings revealed that TSM cotreatment with H2O2 restores the expression of bcl-2, inducible nitric oxide synthase (INOS), and mitochondria membrane potential. Meanwhile, it reduces intracellular [Ca2+] concentration, lactate dehydrogenase (LDH) release, and the expression of caspase-3 and bax. The results of the present study suggested that the cytoprotective effects of the TSM might be mediated, at least in part, by the bcl-2-mitochondria-ROS-INOS pathway. Due to its nontoxic characteristics, TSM could be further developed to treat the neurodegenerative diseases which are closely associated with the oxidative stress. PMID:25404948

  7. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    SciTech Connect

    Marín-Prida, Javier; Riva, Federica; Pentón-Arias, Eduardo

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  8. Ac-cel, a novel antioxidant, protects against hydrogen peroxide-induced injury in PC12 cells via attenuation of mitochondrial dysfunction.

    PubMed

    Guo, Xianjun; Chen, Yuting; Liu, Qunfang; Wu, Jian; Wang, Luoyi; Tang, Xican; Zhao, Weimin; Zhang, Haiyan

    2013-07-01

    Oxidative stress has been implicated in pathophysiology of many neurodegenerative diseases (ND) and increased oxidative stress is closely associated with mitochondrial dysfunction. As a result, looking for potent antioxidants, especially those targeting mitochondria, has become an attractive strategy in ND therapy. In this study, we explored protective effects and potential mechanism of Ac-cel, a novel compound, against hydrogen peroxide (H(2)O(2))-induced injury in PC12 cells. Pretreatment of PC12 cells with Ac-cel prior to 24 h of H(2)O(2) exposure markedly attenuated cytotoxicity induced by H(2)O(2) as evidenced by morphological changes and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Ac-cel also exhibited potent antiapoptotic effect demonstrated by results of annexin V and PI staining. The above beneficial effects of Ac-cel were accompanied by improved mitochondrial function, reduced caspase-3 cleavage as well as upregulated ratio of Bcl-2/Bax protein expression. Moreover, Ac-cel pretreatment markedly reversed intracellular reactive oxygen species (ROS) accumulation following 30 min of H(2)O(2) exposure in PC12 cells. Further, subcellular investigation indicated that Ac-cel significantly reduced production of mitochondrial ROS in isolated rat cortical mitochondria. Taken together, the present study, for the first time, reports that Ac-cel pretreatment inhibits H(2)O(2)-stimulated early accumulation of intracellular ROS possibly via reducing mitochondrial ROS production directly and leads to subsequent preservation of mitochondrial function. These results indicate that Ac-cel is a potential drug candidate for treatment of oxidative stress-associated ND.

  9. Structure-function analyses of the small GTPase Rab35 and its effector protein centaurin-β2/ACAP2 during neurite outgrowth of PC12 cells.

    PubMed

    Etoh, Kan; Fukuda, Mitsunori

    2015-04-01

    The small GTPase Rab35 is a molecular switch for membrane trafficking that regulates a variety of cellular events. We previously showed that Rab35 promotes neurite outgrowth of nerve growth factor-stimulated PC12 cells through interaction with centaurin-β2 (also called ACAP2). Centaurin-β2 is the only Rab35-binding protein reported thus far that exclusively recognizes Rab35 and does not recognize any of the other 59 Rabs identified in mammals, but the molecular basis for the exclusive specificity of centaurin-β2 for Rab35 has remained completely unknown. In this study, we performed deletion and mutation analyses and succeeded in identifying the residues of Rab35 and centaurin-β2 that are crucial for formation of a Rab35·centaurin-β2 complex. We found that two threonine residues (Thr-76 and Thr-81) in the switch II region of Rab35 are responsible for binding centaurin-β2 and that the same residues are dispensable for Rab35 recognition by other Rab35-binding proteins. We also determined the minimal Rab35-binding site of centaurin-β2 and identified two asparagine residues (Asn-610 and Asn-691) in the Rab35-binding site as key residues for its specific Rab35 recognition. We further showed by knockdown-rescue approaches that neither a centaurin-β2 binding-deficient Rab35(T76S/T81A) mutant nor a Rab35 binding-deficient centaurin-β2(N610A/N691A) mutant supported neurite outgrowth of PC12 cells, thereby demonstrating the functional significance of the Rab35/centaurin-β2 interaction during neurite outgrowth of PC12 cells.

  10. The molecular mechanism of endoplasmic reticulum stress-induced apoptosis in PC-12 neuronal cells: the protective effect of insulin-like growth factor I.

    PubMed

    Zou, Cheng-Gang; Cao, Xiu-Zhen; Zhao, Yue-Shui; Gao, Shun-Yu; Li, Shu-De; Liu, Xian-Yong; Zhang, Yan; Zhang, Ke-Qin

    2009-01-01

    Endoplasmic reticulum (ER) stress has been implicated in several neurodegenerative diseases. Although CCAAT/enhancer-binding protein homologous protein (CHOP) has been shown to play a critical role in ER stress, the precise apoptosis cascade downstream of CHOP is unknown. In this report, we investigated the mechanism of ER stress-mediated apoptosis as well as the action of IGF-I in PC-12 neuronal cells. Our results demonstrated that tribbles-related protein 3 (TRB3), which is a target gene of CHOP, was responsible for tunicamycin (an ER stress inducer)-induced apoptosis. TRB3 could promote dephosphorylation of Akt in PC-12 cells. IGF-I inhibited ER stress-induced apoptosis by restoring the phosphorylation level of Akt. Both wortmannin (a phosphatidylinositide 3-kinase inhibitor) and SB 212090 (a p38 MAPK inhibitor) suppressed the protective effect of IGF-I on ER stress-induced apoptosis. Interestingly, IGF-I attenuated ER stress-mediated expression of TRB3 but not CHOP. This action of IGF-I was abolished by SB 212090 but not by wortmannin. Immunoprecipitation analysis revealed that IGF-I promoted the phosphorylation of CHOP by activating p38 MAPK, probably leading to a decrease in the transcriptional activity of CHOP. The dephosphorylation of Akt resulted in increased expression of a proapoptotic protein, p53 up-regulated modulator of apoptosis (PUMA), in a forkhead box O3a-dependent manner. Knockdown of PUMA by short hairpin RNA attenuated ER stress-mediated apoptosis. Thus, our current study indicates that both TRB3 and PUMA are critical molecules in ER stress-induced apoptosis. IGF-I effectively protects PC-12 neuronal cells against ER stress-induced apoptosis through the phosphatidylinositide 3-kinase/Akt and p38 MAPK pathways.

  11. Neuroprotective Effects of Biochanin A against β-Amyloid-Induced Neurotoxicity in PC12 Cells via a Mitochondrial-Dependent Apoptosis Pathway.

    PubMed

    Tan, Ji Wei; Kim, Min Kyu

    2016-01-01

    Alzheimer's disease is considered one of the major neurodegenerative diseases and is characterized by the production of β-amyloid (Aβ) proteins and progressive loss of neurons. Biochanin A, a phytoestrogen compound found mainly in Trifolium pratense, was used in the present study as a potential alternative to estrogen replacement therapy via the investigation of its neuroprotective effects against Aβ25-35-induced toxicity, as well as of its potential mechanisms of action in PC12 cells. Exposure of these cells to the Aβ25-35 protein significantly increased cell viability loss and apoptosis. However, the effects induced by Aβ25-35 were markedly reversed in the present of biochanin A. Pretreatment with biochanin A attenuated the cytotoxic effect of the Aβ25-35 protein by decreasing viability loss, LDH release, and caspase activity in cells. Moreover, we found that expression of cytochrome c and Puma were reduced, alongside with the restoration of Bcl-2/Bax and Bcl-xL/Bax ratio in the presence of biochanin A, which led to a decrease in the apoptotic rate. These data demonstrate that mitochondria are involved in the protective effect of biochanin A against Aβ25-35 and that this drug attenuated Aβ25-35-induced PC12 cell injury and apoptosis by preventing mitochondrial dysfunction. Thus, biochanin A might raise a possibility as a potential therapeutic agent for Alzheimer's disease and other related neurodegenerative diseases. PMID:27120593

  12. Hydrogen sulfide prevents OGD/R-induced apoptosis by suppressing the phosphorylation of p38 and secretion of IL-6 in PC12 cells.

    PubMed

    Li, Chong; Liu, Yue; Tang, Peng; Liu, Peng; Hou, Chen; Zhang, Xin; Chen, Li; Zhang, Lina; Gu, Chaochao

    2016-03-01

    Hydrogen sulfide (H2S), a well-known endogenous mediator, has been shown to exert protective effects against neuronal damage caused by brain ischemia, but the mechanism of its action remains unclear. We have reported the neuroprotective properties of H2S against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury by inhibiting the phosphorylation of p38. The present study evaluates the effect of H2S on OGD/R-induced cell injury or apoptosis and the mechanisms for its action in PC12 cells. Pretreatment of PC12 cells with exogenous sodium hydrosulfide (NaHS) (a H2S donor, 100 or 300 µM) for 12 h before exposure to OGD/R markedly attenuated p38 phosphorylation. Activation of p38 MAPK by transfection of activated p38α, but not p38β, reversed the protective effect of NaHS, as measured by enzyme-linked immunosorbent assay analysis. Importantly, SB203580 (a p38 MAPK inhibitor) also reversed the protective effects of p38α-activated p38 MAPK. Interleukin-6 secretion after OGD/R decreased significantly with NaHS compared with without NaHS. Taken together, we show that the p38 pathway contributes toward OGD/R-induced cell death and p38α plays a key role in OGD/R-induced interleukin-6 secretion.

  13. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells.

    PubMed

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang; Wang, Dujun; Yu, Xiaofeng

    2016-06-01

    Glutamate has been proven to induce oxidative stress through the formation of reactive oxygen species (ROS) and increased calcium overload which results in neuronal injury, development of neurodegenerative diseases and death. Adenosine is one of the bioactive nucleosides found in Cordyceps cicadae and it has displayed several pharmacological activities including neuroprotection. In this study, the protective effects of adenosine from C. cicadae against glutamate-induce oxidative stress in PC12 cells were evaluated. The exposure of PC12 cells to glutamate (5mM) induced the formation of ROS, increased Ca(2+) influx, endoplasmic reticulum (ER) stress and up regulated the expression of pro-apoptotic factor Bax. However, pretreatment with adenosine markedly increased cell viability, decreased the elevated levels of ROS and Ca(2+) induced by glutamate. Furthermore adenosine increased the activities of GSH-Px and SOD, as well as retained mitochondria membrane potential (MMP), increased Bcl-2/Bax ratio, and reduced the expression of ERK, p38, and JNK. Overall, our results suggest that adenosine may be a promising potential therapeutic agent for the prevention and treatment of neurodegenerative disorders. PMID:27114365

  14. Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor.

    PubMed

    Matsuoka, Hidetada; Inoue, Masumi

    2015-08-15

    TWIK-related acid-sensitive K(+) (TASK) channels produce background K(+) currents. We elucidated that TASK1 channels in rat adrenal medullary cells and PC12 cells are internalized in a clathrin-dependent manner in response to nerve growth factor (NGF). Here, the molecular mechanism for this internalization in PC12 cells was explored. The combination of enzyme inhibitors with tropomyosin receptor kinase A mutants revealed that the internalization was mediated by both phospholipase C and phosphatidylinositol 3-kinase pathways that converge on protein kinase C with the consequent activation of Src, a nonreceptor tyrosine kinase. The NGF-induced endocytosis of TASK1 channels did not occur in the presence of the Src inhibitor or with the expression of a kinase-dead Src mutant. Additionally, NGF induced a transient colocalization of Src with the TASK1 channel, but not the TASK1 mutant, in which tyrosine at 370 was replaced with phenylalanine. This TASK1 mutant showed no increase in tyrosine phosphorylation and markedly diminished internalization in response to NGF. We concluded that NGF induces endocytosis of TASK1 channels via tyrosine phosphorylation in its carboxyl terminus.

  15. First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells.

    PubMed

    Tan, Cong-ping; Hou, Yun-hua

    2014-04-01

    Obesity, characterized as a state of low-level inflammation, is a powerful determinant influencing the development of insulin resistance and progression to type 2 diabetes. The purpose of the present study was to investigate the anti-inflammatory activity of fucoxanthin in experimental high-fat-diet-induced obesity in mice and antioxidant activity in PC12 cells under oxidative stress situation. The anti-inflammatory potential of fucoxanthin in the regulation of maleic dialdehyde (MDA), polymorphonuclear cells (PMNs), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and cyclooxygenase-2 (COX-2) was determined by ELISA. Fucoxanthin significantly inhibited obesity-induced upregulation of the production of IL-1β, TNF-α, iNOS, and COX-2. Moreover, fucoxanthin suppressed MDA and infiltration of PMNs. The protective effects were associated with lack of hypertrophy and crown-like structures in mammary gland. At the same time, fucoxanthin showed an advantage of antioxidant activity in PC12 cells under oxidative stress situation. These results suggest that supplementation of fucoxanthin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications.

  16. Endogenous catecholamine enhances the dysfunction of unfolded protein response and alpha-synuclein oligomerization in PC12 cells overexpressing human alpha-synuclein.

    PubMed

    Ito, Satoru; Nakaso, Kazuhiro; Imamura, Keiko; Takeshima, Takao; Nakashima, Kenji

    2010-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. alpha-Synuclein is a major component of Lewy bodies. Recently, many studies have focused on the interaction between alpha-synuclein and catecholamine in the pathogenesis of PD. However, no detailed relationship between cathecholamine and alpha-synuclein cytotoxicity has been elucidated. Therefore, this study established PC12 cell lines which overexpress human alpha-synuclein in a tetracycline-inducible manner. The overexpression of human alpha-synuclein increased the number of apoptotic cells in a long-term culture. Moreover, human alpha-synuclein expressing PC12 cells demonstrated an increased vulnerability to several stressors in a short culture period. Thapsigargin increased the SDS soluble oligomers of alpha-synuclein associated with catecholamine-quinone. The unfolded protein response (UPR) study showed that thapsigargin increased eIF2alpha phosphorylation and nuclear GADD153/CHOP induction under alpha-synuclein overexpressed conditions. The activities of the ATF6alpha and IRE1alpha pathways decreased. These findings suggest that an overexpression of alpha-synuclein partly inactivates the UPR. alpha-Methyltyrosine inhibited the dysfunction of the UPR caused by an overexpression of human alpha-synuclein. Therefore, these findings suggest that the coexistence of human alpha-synuclein with catecholamine enhances the endoplasmic reticulum stress-related toxicity in PD pathogenesis.

  17. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats.

    PubMed

    Marín-Prida, Javier; Pavón-Fuentes, Nancy; Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R; Delgado-Roche, Liván; Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto; Pardo-Andreu, Gilberto L; Polentarutti, Nadia; Riva, Federica; Pentón-Arias, Eduardo; Pentón-Rol, Giselle

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. PMID:23732081

  18. Conformational states of syntaxin-1 govern the necessity of N-peptide binding in exocytosis of PC12 cells and Caenorhabditis elegans.

    PubMed

    Park, Seungmee; Bin, Na-Ryum; Michael Rajah, Maaran; Kim, Byungjin; Chou, Ting-Chieh; Kang, Soo-Young Ann; Sugita, Kyoko; Parsaud, Leon; Smith, Matthew; Monnier, Philippe P; Ikura, Mitsuhiko; Zhen, Mei; Sugita, Shuzo

    2016-02-15

    Syntaxin-1 is the central SNARE protein for neuronal exocytosis. It interacts with Munc18-1 through its cytoplasmic domains, including the N-terminal peptide (N-peptide). Here we examine the role of the N-peptide binding in two conformational states ("closed" vs. "open") of syntaxin-1 using PC12 cells and Caenorhabditis elegans. We show that expression of "closed" syntaxin-1A carrying N-terminal single point mutations (D3R, L8A) that perturb interaction with the hydrophobic pocket of Munc18-1 rescues impaired secretion in syntaxin-1-depleted PC12 cells and the lethality and lethargy of unc-64 (C. elegans orthologue of syntaxin-1)-null mutants. Conversely, expression of the "open" syntaxin-1A harboring the same mutations fails to rescue the impairments. Biochemically, the L8A mutation alone slightly weakens the binding between "closed" syntaxin-1A and Munc18-1, whereas the same mutation in the "open" syntaxin-1A disrupts it. Our results reveal a striking interplay between the syntaxin-1 N-peptide and the conformational state of the protein. We propose that the N-peptide plays a critical role in intracellular trafficking of syntaxin-1, which is dependent on the conformational state of this protein. Surprisingly, however, the N-peptide binding mode seems dispensable for SNARE-mediated exocytosis per se, as long as the protein is trafficked to the plasma membrane.

  19. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    PubMed Central

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-01-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)−1 and (−)−1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)−1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (−)−1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)−1 and (−)−1. PMID:26585042

  20. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    NASA Astrophysics Data System (ADS)

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-11-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)-1 and (-)-1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)-1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (-)-1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)-1 and (-)-1.

  1. Iron promotes the survival and neurite extension of serum-starved PC12 cells in the presence of NGF by enhancing cell attachment.

    PubMed

    Hong, Jin-hee; Noh, Kyung-min; Yoo, Young-eun; Choi, So-young; Park, Sun-young; Kim, Yoon-hee; Chung, Jun-mo

    2003-02-28

    Delayed death of serum-starved PC12 cells on a poly-L-lysine (PLL) matrix was observed, even in the presence of NGF. NGF blocked the apoptotic death of attached but not detached cells, which suggests that delayed death may be related to cell detachment from the PLL matrix. Iron selectively blocked this anoikis-like death by increasing cell attachment. Interestingly, the addition of > 10 microM FeCl2 to the culture medium generated gelatinous iron precipitates, and the removal of the precipitates abolished the iron effect. Attachment experiments using poly-HEMA supported the role of iron precipitates on cell-to-matrix adhesion. The expression of integrin beta1, neither N-cadherin nor alpha/beta-catenin, was also significantly increased by iron. In addition to its effect on cell viability, iron promoted the outgrowth of neurites. Our results collectively indicate that iron functions as a necessary co-element for NGF by enhancing cell attachment, survival, and neurite extension. PMID:12661755

  2. Tyrosine hydroxylase is activated and phosphorylated at different sites in rat pheochromocytoma PC 12 cells treated with phorbol ester and forskolin

    SciTech Connect

    Tachikawa, E.; Tank, A.W.; Weiner, D.H.; Mosimann, W.F.; Yanagihara, N.; Weiner, N.

    1986-03-01

    The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin are independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.

  3. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    SciTech Connect

    Kikuchi, Kiyoshi; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi; Tancharoen, Salunya; Morimoto, Yoko; Matsuda, Fumiyo; Oyama, Yoko; Takenouchi, Kazunori; Miura, Naoki; Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro; and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  4. Moderate activation of autophagy regulates the intracellular calcium ion concentration and mitochondrial membrane potential in beta-amyloid-treated PC12 cells.

    PubMed

    Xue, Zhongfeng; Guo, Yalei; Fang, Yongqi

    2016-04-01

    Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disease. Aggregated beta-amyloid (Aβ) disturbs Ca(2+) homeostasis and causes mitochondrial dysfunction and finally underlies AD. Recent evidence suggests that autophagy initiation by Beclin-1 protein might be involved in the pathogenesis of AD. However, the effects of Beclin-1 dependent autophagy on intracellular calcium ion concentration ([Ca(2+)]i) and mitochondrial membrane potential (MMP) is unclear. The effects of Beclin-1 dependent autophagy that were activated by a gradient concentration of autophagy activator rapamycin or inhibited by autophagy inhibitor 3-methyladenine (3-MA) on cell viability and cell morphology were examined. Pretreatment with rapamycin significantly up-regulated the expression of Beclin-1 in response to Aβ1-42 application, but after pretreatment with 3-MA it was significantly down-regulated. Moderate activation of Beclin-1 dependent autophagy had an up regulation effect on cell viability and could maintain the original morphology of cells. Furthermore, rapamycin or 3-MA on [Ca(2+)]i and MMP in Aβ1-42 treatment of PC12 cells were evaluated. We also report that PC12 cells treated with Aβ1-42 showed an increase in [Ca(2+)]i but a decrease in MMP when compared to the normal control. However the application of rapamycin prior to this prevented the increase in [Ca(2+)]i and the decrease in MMP in response to Aβ1-42. When 3-MA was applied this exacerbated the effect of Aβ1-42 on the [Ca(2+)]i and the MMP. This shows that moderate activation of Beclin-1 dependent autophagy by rapamycin can modulate Ca(2+) homeostasis and maintain MMP in response to Aβ1-42 induced cytotoxicity and so may have a preventive function in AD. PMID:26923671

  5. Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction

    PubMed Central

    Wei, Lei; Mo, Mingshu; Feng, Junmin; Sun, Congcong; Xiao, Yousheng; Luo, Qin; Li, Shaomin; Yang, Xinling; Xu, Pingyi

    2016-01-01

    Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic (DA) neurons in the substantial nigra pars compacta. Increasing evidence showed that Wnt/β-catenin pathway and the orphan nuclear receptor Nurr1 play crucial roles in the survival and functional maintenance of DA neurons in the midbrain and GSK-3β antagonists LiCl and SB216763 were used to activate Wnt/β-catenin pathway experimentally. However, the detail mechanism underlying the neuroprotection against apoptosis on DA neuron is still unclear and the interaction between Wnt/β-catenin and Nurr1 remains undisclosed. In this study, using cell biological assay we investigated the function of Wnt/β-catenin and its crosstalk with Nurr1 on the course of PC12 cell degeneration in vitro. Our data showed that PC12 cell viability was inhibited by rotenone, but attenuated by GSK-3β antagonists LiCl or SB216763. The activity of Wnt/β-catenin pathway was deregulated on exposure of rotenone in a concentration-dependent manner. After the interference of β-catenin with siRNA, LiCl or SB216763 failed to protect PC12 cells from apoptosis by the rotenone toxicity. Our data confirmed that Wnt/β-catenin signaling activated by LiCl or SB216763 enhanced Nurr1 expression to 2.75 ± 0.55 and 4.06 ± 0.41 folds respectively compared with control detected by real-time PCR and the interaction of β-catenin with Nurr1 was identified by co-immunoprecipitate analysis. In conclusion, the data suggested that Wnt/β-catenin and Nurr1 are crucial factors in the survival of DA neurons, and the activation of Wnt/β-catenin pathway exerts protective effects on DA neurons partly by mean of a co-active pattern with Nurr1. This finding may shed a light on the potential treatment of Parkinson disease. PMID:27045591

  6. Protective effects of NMDA receptor antagonist, memantine, against senescence of PC12 cells: A possible role of nNOS and combined effects with donepezil.

    PubMed

    Ota, Hidetaka; Ogawa, Sumito; Ouchi, Yasuyoshi; Akishita, Masahiro

    2015-12-01

    Alzheimer disease (AD) is a neurodegenerative disorder characterized by cognitive dysfunction. The pathology of AD is mainly related to amyloid ß (Aß)-peptides, but glutamate-mediated toxicity is also one of the main processes of memory impairment in AD. Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is particularly involved in synaptic plasticity, memory, and learning. Memantine is a low-affinity voltage-dependent noncompetitive antagonist at glutamatergic NMDA receptors. Here,we investigated whether memantine protects against glutamate-induced senescence. In PC12 cells, treatment with glutamate induced senescent phenotypes as judged by the cell appearance and senescence-associated ß-galactosidase (SA-ßgal) in parallel with decreased SIRT1 and increased p53 expression. However, treatment with memantine decreased glutamate-induced senescent PC12 cells and reversed the changes in SIRT1 and p53 expression. Glutamate is known to stimulate the production of NO and O2(-) and has the capacity to generate ONOO(-) in the CNS. Therefore, we investigated whether glutamate activates nNOS and memantine reverses it. Treatment with glutamate increased nNOS expression, activity, and production of NO,whereas memantine blocked them. Next, the in vivo effects of memantine on cognitive function in senescence-accelerated mouse prone 8 (SAMP8), as a model of AD, were investigated. In the Morris water maze test, SAMP8 showed a marked decline in performance, but memantine administration improved it. Moreover, neuronal senescence and the level of oxidative stress in the hippocampus were decreased by memantine. Finally, the effects of combination treatment with memantine and donepezil, a cholinesterase inhibitor, were investigated. We observed additive effects of memantine and donepezil on the senescent phenotype of PC12 cells and the hippocampus of SAMP8. These results indicate that inhibition of the NMDA receptor by memantine leads to a

  7. Protective effects of NMDA receptor antagonist, memantine, against senescence of PC12 cells: A possible role of nNOS and combined effects with donepezil.

    PubMed

    Ota, Hidetaka; Ogawa, Sumito; Ouchi, Yasuyoshi; Akishita, Masahiro

    2015-12-01

    Alzheimer disease (AD) is a neurodegenerative disorder characterized by cognitive dysfunction. The pathology of AD is mainly related to amyloid ß (Aß)-peptides, but glutamate-mediated toxicity is also one of the main processes of memory impairment in AD. Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is particularly involved in synaptic plasticity, memory, and learning. Memantine is a low-affinity voltage-dependent noncompetitive antagonist at glutamatergic NMDA receptors. Here,we investigated whether memantine protects against glutamate-induced senescence. In PC12 cells, treatment with glutamate induced senescent phenotypes as judged by the cell appearance and senescence-associated ß-galactosidase (SA-ßgal) in parallel with decreased SIRT1 and increased p53 expression. However, treatment with memantine decreased glutamate-induced senescent PC12 cells and reversed the changes in SIRT1 and p53 expression. Glutamate is known to stimulate the production of NO and O2(-) and has the capacity to generate ONOO(-) in the CNS. Therefore, we investigated whether glutamate activates nNOS and memantine reverses it. Treatment with glutamate increased nNOS expression, activity, and production of NO,whereas memantine blocked them. Next, the in vivo effects of memantine on cognitive function in senescence-accelerated mouse prone 8 (SAMP8), as a model of AD, were investigated. In the Morris water maze test, SAMP8 showed a marked decline in performance, but memantine administration improved it. Moreover, neuronal senescence and the level of oxidative stress in the hippocampus were decreased by memantine. Finally, the effects of combination treatment with memantine and donepezil, a cholinesterase inhibitor, were investigated. We observed additive effects of memantine and donepezil on the senescent phenotype of PC12 cells and the hippocampus of SAMP8. These results indicate that inhibition of the NMDA receptor by memantine leads to a

  8. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders

    PubMed Central

    Nankova, Bistra B.; Agarwal, Raj; MacFabe, Derrick F.; La Gamma, Edmund F.

    2014-01-01

    Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal) or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s) was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals such as

  9. Heparin modulation of the neurotropic effects of acidic and basic fibroblast growth factors and nerve growth factor on PC12 cells

    SciTech Connect

    Neufeld, G.; Gospodarowicz, D.; Dodge, L.; Fujii, D.K.

    1987-04-01

    Nerve growth factor (NGF) and acidic or basic fibroblast growth factor (aFGF and bFGF, respectively) induce neurite outgrowth from the rat pheochromocytoma cell line, PC12. The neurites induced by these three factors are stable for up to a month in cell culture in the continued presence of any of the above growth factors. bFGF (ED50 = 30 pg/ml) is 800 fold more potent in stimulating neurite outgrowth than aFGF (ED50 = 25 ng/ml) and 260 fold more potent than NGF (ED50 = 8 ng/ml). While the neurotropic activities of aFGF and NGF are potentiated by heparin, that of bFGF is both partially inhibited or stimulated, depending upon the concentration of bFGF. Radioreceptor binding experiments show that aFGF and bFGF bind to a common binding site on the PC12 cell surface. Affinity labeling studies demonstrate a single receptor with an apparent molecular weight of 145,000 daltons, which corresponds to the high molecular weight receptor identified in BHK-21 cells. NGF does not appear to compete with aFGF or bFGF for binding to the receptor. Heparin blocked the binding of bFGF to the receptor but had only a small inhibitory effect on the binding of aFGF to the receptor. Thus, it appears that heparin inhibition of the neurotropic effects of bFGF occurs, at least in part, by impairing the interaction of bFGF with the receptor, while having little effect on that of aFGF. The stimulatory effects of heparin on the neurotropic activity of aFGF, bFGF, and NGF may occur through a site not associated with the respective cellular receptor for the growth factors.

  10. BZYX, a novel acetylcholinesterase inhibitor, significantly improved chemicals-induced learning and memory impairments on rodents and protected PC12 cells from apoptosis induced by hydrogen peroxide.

    PubMed

    Zhang, Jing; Zhu, Difeng; Sheng, Rong; Wu, Honghai; Hu, Yongzhou; Wang, Feng; Cai, Tianyu; Yang, Bo; He, Qiaojun

    2009-06-24

    BZYX was designed as a dual-binding-site acetylcholinesterase (AChE) inhibitor and selected from series of indanone derivatives. The present study was designed to examine the cognition-enhanced, anti-cholinesterase, and neuroprotective effects of BZYX. In the passive avoidance performance and radial arm maze, BZYX showed a comparable effect to donepezil and rivastigmine on memory deficits in different stages induced by scopolamine, NaNO(2) and ethanol, respectively. Ellman's assay indicated BZYX exhibited high inhibition on AChE activity. IC(50) values for BZYX: 0.058+/-0.022 microM; donepezil: 0.019+/-0.004 microM; rivastigmine: 3.81+/-2.81 microM; glantamine: 3.01+/-1.85 microM and huperzine A: 0.053+/-0.016 microM. BZYX also presented great neuroprotecive function from apoptosis induced by hydrogen peroxide(H(2)O(2)) in PC12 cells. MTT assay and Annexin V-FITC Apoptosis Detection showed the viability of PC12 cells remarkably decreased with 400 microM H(2)O(2), while it significantly increased when the cells were pretreated with 0.1-1.0 microM BZYX. BZYX pretreatment remarkably reversed the loss of mitochondria membrane potential (DeltaPsim), scavenged reactive oxygen species formation induced by H(2)O(2) and resulted in up-regulation of procaspase3 and xIAP protein level and down-regulation of phosphorylated JNK protein, p53 protein level and cleavage of caspase 3. It is speculated that the mitochondrial pathway, mediated by Bcl-2 family and Mitogen-Activated Protein Kinases (MAPKs), might involved in the neuroprotection of BZYX. These results first demonstrated that BZYX had neuroprotective effects as well as cognition enhancement and acetylcholinesterase inhibition. It is hopeful that BZYX becomes a potential candidate for use in the intervention for neurodegenerative diseases. PMID:19345205

  11. Upregulation of N-methyl-D-aspartate receptor subunits and c-Fos expressing genes in PC12D cells by nobiletin.

    PubMed

    Kimura, Junko; Nemoto, Kiyomitsu; Degawa, Masakuni; Yokosuka, Akihito; Mimaki, Yoshihiro; Shimizu, Kosuke; Oku, Naoto; Ohizumi, Yasushi

    2014-01-01

    The N-methyl-D-aspartate (NMDA) receptor plays a key role in learning and memory. Our recent studies have shown that nobiletin from citrus peels activates the cAMP response element-binding protein (CREB) signaling pathway and ameliorates NMDA receptor antagonist-induced learning impairment by activating extracellular signal-regulated kinase. For the first time, we have shown that nobiletin significantly upregulated mRNA expression of the NMDA receptor subunits NR1, NR2A, and NR2B in PC12D cells. Furthermore, c-Fos mRNA expression also increased due to the action of nobiletin. Our results indicate that nobiletin modulates the expression of essential genes for learning and memory by activating the CREB signaling pathway, and suggest that this action mechanism of nobiletin plays a crucial role in improving NMDA receptor antagonist-induced learning impairment in model animals with dementia.

  12. Honeybee royal jelly and nobiletin stimulate CRE-mediated transcription in ERK-independent and -dependent fashions, respectively, in PC12D cells.

    PubMed

    Fujiwara, Hironori; Kogure, Ako; Sakamoto, Masahiro; Yamakuni, Tohru; Mimaki, Yoshihiro; Murata, Kiyoshi; Hitomi, Nobuyuki; Yamaguchi, Kikuji; Ohizumi, Yasushi

    2011-01-01

    To prove the pharmacological actions of honeybee royal jelly (RJ) on the nervous system, we examined the effects of RJ on CRE-mediated transcription. RJ increased CRE-mediated transcription in PC12D cells. Moreover, CRE-mediated transcriptional activity by RJ was enhanced by nobiletin. U0126, a MEK inhibitor, inhibited CRE-mediated transcription by combining RJ plus nobiletin without affecting transcription by RJ alone. These results suggest that RJ stimulates CRE-mediated transcription via an ERK-independent cascade, whereas the increasing CRE-mediated transcriptional effect by nobiletin is dependent on ERK phosphorylation. Combining RJ plus nobiletin may activate effectively neuronal functions via enhancement of CRE-mediated transcription.

  13. Conformational states of syntaxin-1 govern the necessity of N-peptide binding in exocytosis of PC12 cells and Caenorhabditis elegans

    PubMed Central

    Park, Seungmee; Bin, Na-Ryum; Michael Rajah, Maaran; Kim, Byungjin; Chou, Ting-Chieh; Kang, Soo-young Ann; Sugita, Kyoko; Parsaud, Leon; Smith, Matthew; Monnier, Philippe P.; Ikura, Mitsuhiko; Zhen, Mei; Sugita, Shuzo

    2016-01-01

    Syntaxin-1 is the central SNARE protein for neuronal exocytosis. It interacts with Munc18-1 through its cytoplasmic domains, including the N-terminal peptide (N-peptide). Here we examine the role of the N-peptide binding in two conformational states (“closed” vs. “open”) of syntaxin-1 using PC12 cells and Caenorhabditis elegans. We show that expression of “closed” syntaxin-1A carrying N-terminal single point mutations (D3R, L8A) that perturb interaction with the hydrophobic pocket of Munc18-1 rescues impaired secretion in syntaxin-1–depleted PC12 cells and the lethality and lethargy of unc-64 (C. elegans orthologue of syntaxin-1)-null mutants. Conversely, expression of the “open” syntaxin-1A harboring the same mutations fails to rescue the impairments. Biochemically, the L8A mutation alone slightly weakens the binding between “closed” syntaxin-1A and Munc18-1, whereas the same mutation in the “open” syntaxin-1A disrupts it. Our results reveal a striking interplay between the syntaxin-1 N-peptide and the conformational state of the protein. We propose that the N-peptide plays a critical role in intracellular trafficking of syntaxin-1, which is dependent on the conformational state of this protein. Surprisingly, however, the N-peptide binding mode seems dispensable for SNARE-mediated exocytosis per se, as long as the protein is trafficked to the plasma membrane. PMID:26700321

  14. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells

    PubMed Central

    Wu, Pei-Shan; Yen, Jui-Hung; Kou, Mei-Chun; Wu, Ming-Jiuan

    2015-01-01

    Luteolin and apigenin are dietary flavones and exhibit a broad spectrum of biological activities including antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE) has been implicated as a causative agent in the development of neurodegenerative disorders. This study investigates the cytoprotective effects of luteolin and apigenin against 4-HNE-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Both flavones restored cell viability and repressed caspase-3 and PARP-1 activation in 4-HNE-treated cells. Luteolin also mitigated 4-HNE-mediated LC3 conversion and reactive oxygen species (ROS) production. Luteolin and apigenin up-regulated 4-HNE-mediated unfolded protein response (UPR), leading to an increase in endoplasmic reticulum chaperone GRP78 and decrease in the expression of UPR-targeted pro-apoptotic genes. They also induced the expression of Nrf2-targeted HO-1 and xCT in the absence of 4-HNE, but counteracted their expression in the presence of 4-HNE. Moreover, we found that JNK and p38 MAPK inhibitors significantly antagonized the increase in cell viability induced by luteolin and apigenin. Consistently, enhanced phosphorylation of JNK and p38 MAPK was observed in luteolin- and apigenin-treated cells. In conclusion, this result shows that luteolin and apigenin activate MAPK and Nrf2 signaling, which elicit adaptive cellular stress response pathways, restore 4-HNE-induced ER homeostasis and inhibit cytotoxicity. Luteolin exerts a stronger cytoprotective effect than apigenin possibly due to its higher MAPK, Nrf2 and UPR activation, and ROS scavenging activity. PMID:26087007

  15. 20C, a bibenzyl compound isolated from Gastrodia elata, protects PC12 cells against rotenone-induced apoptosis via activation of the Nrf2/ARE/HO-1 signaling pathway

    PubMed Central

    Huang, Ju-yang; Yuan, Yu-he; Yan, Jia-qing; Wang, Ya-nan; Chu, Shi-feng; Zhu, Cheng-gen; Guo, Qing-lan; Shi, Jian-gong; Chen, Nai-hong

    2016-01-01

    Aim: Our preliminary study shows that a bibenzyl compound isolated from Gastrodia elata, 2-[4-hydroxy-3-(4-hydroxybenzyl)benzyl]-4-(4-hydroxybenzyl)phenol (designated 20C), protects PC12 cells against H2O2-induced injury. In this study we investigated whether 20C exerted neuroprotective action in a cell model of Parkinson's disease. Methods: A cell model of Parkinson's disease was established in PC12 cells by exposure to rotenone (4 μmol/L) for 48 h. Cell viability and apoptosis were assessed, and intracellular ROS level and the mitochondrial membrane potential (MMP) were detected. The expression of apoptosis-related proteins Bax, Bcl-2, cytochrome c, cleaved caspase-3, and oxidative stress-related proteins Nrf2, HO-1 and NQ