Science.gov

Sample records for differentiated skeletal muscle

  1. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins.

    PubMed

    Langlois, Stéphanie; Cowan, Kyle N

    2017-01-01

    Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.

  2. Smad7 promotes and enhances skeletal muscle differentiation.

    PubMed

    Kollias, Helen D; Perry, Robert L S; Miyake, Tetsuaki; Aziz, Arif; McDermott, John C

    2006-08-01

    Transforming growth factor beta1 (TGF-beta1) and myostatin signaling, mediated by the same Smad downstream effectors, potently repress skeletal muscle cell differentiation. Smad7 inhibits these cytokine signaling pathways. The role of Smad7 during skeletal muscle cell differentiation was assessed. In these studies, we document that increased expression of Smad7 abrogates myostatin- but not TGF-beta1-mediated repression of myogenesis. Further, constitutive expression of exogenous Smad7 potently enhanced skeletal muscle differentiation and cellular hypertrophy. Conversely, targeting of endogenous Smad7 by small interfering RNA inhibited C2C12 muscle cell differentiation, indicating an essential role for Smad7 during myogenesis. Congruent with a role for Smad7 in myogenesis, we observed that the muscle regulatory factor (MyoD) binds to and transactivates the Smad7 proximal promoter region. Finally, we document that Smad7 directly interacts with MyoD and enhances MyoD transcriptional activity. Thus, Smad7 cooperates with MyoD, creating a positive loop to induce Smad7 expression and to promote MyoD driven myogenesis. Taken together, these data implicate Smad7 as a fundamental regulator of differentiation in skeletal muscle cells.

  3. The role of taurine on skeletal muscle cell differentiation.

    PubMed

    Miyazaki, Teruo; Honda, Akira; Ikegami, Tadashi; Matsuzaki, Yasushi

    2013-01-01

    Taurine abundantly contained in the skeletal muscle has been considered as one of essential factors for the differentiation and growth of skeletal muscles. The previous studies in the taurine transporter knockout mice showed that deficiency of taurine content in the skeletal muscle caused incomplete muscular developments, morphological abnormalities, and exercise abilities. In fetal and neonatal periods, taurine must be an essential amino acid due to no biosynthesis capacity, and therefore, taurine should be endogenously supplied through placenta and maternal milk. In general cell culture condition, taurine contained in the culture medium is absent or few, and therefore, most of cultured cells are in taurine-deficient condition. In the present study, we confirmed, in cultured mouse differentiable myoblast, taurine treatment significantly enhanced the differentiation to myotube in a dose-dependent manner, while these effects were abrogated by inhibitions of taurine transport and Ca(2+) signaling pathway.The present study suggested that exogenous taurine might play a key role on the mature differentiation/growth of the skeletal muscle during development period through Ca(2+) signaling pathway, and therefore, taurine would contribute the muscle recovery after damages.

  4. Differential global gene expression in red and white skeletal muscle

    NASA Technical Reports Server (NTRS)

    Campbell, W. G.; Gordon, S. E.; Carlson, C. J.; Pattison, J. S.; Hamilton, M. T.; Booth, F. W.

    2001-01-01

    The differences in gene expression among the fiber types of skeletal muscle have long fascinated scientists, but for the most part, previous experiments have only reported differences of one or two genes at a time. The evolving technology of global mRNA expression analysis was employed to determine the potential differential expression of approximately 3,000 mRNAs between the white quad (white muscle) and the red soleus muscle (mixed red muscle) of female ICR mice (30-35 g). Microarray analysis identified 49 mRNA sequences that were differentially expressed between white and mixed red skeletal muscle, including newly identified differential expressions between muscle types. For example, the current findings increase the number of known, differentially expressed mRNAs for transcription factors/coregulators by nine and signaling proteins by three. The expanding knowledge of the diversity of mRNA expression between white and mixed red muscle suggests that there could be quite a complex regulation of phenotype between muscles of different fiber types.

  5. Differential global gene expression in red and white skeletal muscle

    NASA Technical Reports Server (NTRS)

    Campbell, W. G.; Gordon, S. E.; Carlson, C. J.; Pattison, J. S.; Hamilton, M. T.; Booth, F. W.

    2001-01-01

    The differences in gene expression among the fiber types of skeletal muscle have long fascinated scientists, but for the most part, previous experiments have only reported differences of one or two genes at a time. The evolving technology of global mRNA expression analysis was employed to determine the potential differential expression of approximately 3,000 mRNAs between the white quad (white muscle) and the red soleus muscle (mixed red muscle) of female ICR mice (30-35 g). Microarray analysis identified 49 mRNA sequences that were differentially expressed between white and mixed red skeletal muscle, including newly identified differential expressions between muscle types. For example, the current findings increase the number of known, differentially expressed mRNAs for transcription factors/coregulators by nine and signaling proteins by three. The expanding knowledge of the diversity of mRNA expression between white and mixed red muscle suggests that there could be quite a complex regulation of phenotype between muscles of different fiber types.

  6. Angiotensin II induces differential insulin action in rat skeletal muscle.

    PubMed

    Surapongchai, Juthamard; Prasannarong, Mujalin; Bupha-Intr, Tepmanas; Saengsirisuwan, Vitoon

    2017-03-01

    Angiotensin II (ANGII) is reportedly involved in the development of skeletal muscle insulin resistance. The present investigation evaluated the effects of two ANGII doses on the phenotypic characteristics of insulin resistance syndrome and insulin action and signaling in rat skeletal muscle. Male Sprague-Dawley rats were infused with either saline (SHAM) or ANGII at a commonly used pressor dose (100 ng/kg/min; ANGII-100) or a higher pressor dose (500 ng/kg/min; ANGII-500) via osmotic minipumps for 14 days. We demonstrated that ANGII-100-infused rats exhibited the phenotypic features of non-obese insulin resistance syndrome, including hypertension, impaired glucose tolerance and insulin resistance of glucose uptake in the soleus muscle, whereas ANGII-500-treated rats exhibited diabetes-like symptoms, such as post-prandial hyperglycemia, impaired insulin secretion and hypertriglyceridemia. At the cellular level, insulin-stimulated glucose uptake in the soleus muscle of the ANGII-100 group was 33% lower (P < 0.05) than that in the SHAM group and was associated with increased insulin-stimulated IRS-1 Ser(307) and decreased Akt Ser(473) and AS160 Thr(642) phosphorylation and GLUT-4 expression. However, ANGII-500 infusion did not induce skeletal muscle insulin resistance or impair insulin signaling elements as initially anticipated. Moreover, we found that insulin-stimulated glucose uptake in the ANGII-500 group was accompanied by the enhanced expression of ACE2 and MasR proteins, which are the key elements in the non-classical pathway of the renin-angiotensin system. Collectively, this study demonstrates for the first time that chronic infusion with these two pressor doses of ANGII induced differential metabolic responses at both the systemic and skeletal muscle levels. © 2017 Society for Endocrinology.

  7. Turning terminally differentiated skeletal muscle cells into regenerative progenitors.

    PubMed

    Wang, Heng; Lööf, Sara; Borg, Paula; Nader, Gustavo A; Blau, Helen M; Simon, András

    2015-08-05

    The ability to repeatedly regenerate limbs during the entire lifespan of an animal is restricted to certain salamander species among vertebrates. This ability involves dedifferentiation of post-mitotic cells into progenitors that in turn form new structures. A long-term enigma has been how injury leads to dedifferentiation. Here we show that skeletal muscle dedifferentiation during newt limb regeneration depends on a programmed cell death response by myofibres. We find that programmed cell death-induced muscle fragmentation produces a population of 'undead' intermediate cells, which have the capacity to resume proliferation and contribute to muscle regeneration. We demonstrate the derivation of proliferating progeny from differentiated, multinucleated muscle cells by first inducing and subsequently intercepting a programmed cell death response. We conclude that cell survival may be manifested by the production of a dedifferentiated cell with broader potential and that the diversion of a programmed cell death response is an instrument to achieve dedifferentiation.

  8. A Noninvasive In Vitro Monitoring System Reporting Skeletal Muscle Differentiation.

    PubMed

    Öztürk-Kaloglu, Deniz; Hercher, David; Heher, Philipp; Posa-Markaryan, Katja; Sperger, Simon; Zimmermann, Alice; Wolbank, Susanne; Redl, Heinz; Hacobian, Ara

    2017-01-01

    Monitoring of cell differentiation is a crucial aspect of cell-based therapeutic strategies depending on tissue maturation. In this study, we have developed a noninvasive reporter system to trace murine skeletal muscle differentiation. Either a secreted bioluminescent reporter (Metridia luciferase) or a fluorescent reporter (green fluorescent protein [GFP]) was placed under the control of the truncated muscle creatine kinase (MCK) basal promoter enhanced by variable numbers of upstream MCK E-boxes. The engineered pE3MCK vector, coding a triple tandem of E-Boxes and the truncated MCK promoter, showed twentyfold higher levels of luciferase activation compared with a Cytomegalovirus (CMV) promoter. This newly developed reporter system allowed noninvasive monitoring of myogenic differentiation in a straining bioreactor. Additionally, binding sequences of endogenous microRNAs (miRNAs; seed sequences) that are known to be downregulated in myogenesis were ligated as complementary seed sequences into the reporter vector to reduce nonspecific signal background. The insertion of seed sequences improved the signal-to-noise ratio up to 25% compared with pE3MCK. Due to the highly specific, fast, and convenient expression analysis for cells undergoing myogenic differentiation, this reporter system provides a powerful tool for application in skeletal muscle tissue engineering.

  9. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles.

    PubMed

    Aaker, Aaron; Laughlin, M H

    2002-09-01

    The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.

  10. Skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  11. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation

    PubMed Central

    Wallace, Marita A.; Della Gatta, Paul A.; Ahmad Mir, Bilal; Kowalski, Greg M.; Kloehn, Joachim; McConville, Malcom J.; Russell, Aaron P.; Lamon, Séverine

    2016-01-01

    Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration. PMID:26903873

  12. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    PubMed

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  13. Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation.

    PubMed

    He, Ke; Hu, Jing; Yu, Hongyao; Wang, Lina; Tang, Fan; Gu, Junjie; Ge, Laixiang; Wang, Hongye; Li, Sheng; Hu, Ping; Jin, Ying

    2017-01-06

    Skeletal muscle differentiation is a precisely coordinated process, and the molecular mechanism regulating the process remains incompletely understood. Here we report the identification of serine/threonine kinase 40 (Stk40) as a novel positive regulator of skeletal myoblast differentiation in culture and fetal skeletal muscle formation in vivo We show that the expression level of Stk40 increases during skeletal muscle differentiation. Down-regulation and overexpression of Stk40 significantly decreases and increases myogenic differentiation of C2C12 myoblasts, respectively. In vivo, the number of myofibers and expression levels of myogenic markers are reduced in the fetal muscle of Stk40 knockout mice, indicating impaired fetal skeletal muscle formation. Mechanistically, Stk40 controls the protein level of histone deacetylase 5 (HDAC5) to maintain transcriptional activities of myocyte enhancer factor 2 (MEF2), a family of transcription factor important for skeletal myogenesis. Silencing of HDAC5 expression rescues the reduced myogenic gene expression caused by Stk40 deficiency. Together, our study reveals that Stk40 is required for fetal skeletal muscle development and provides molecular insights into the control of the HDAC5-MEF2 axis in skeletal myogenesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle

    PubMed Central

    Ding, Jian; Nie, Mao; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Deng, Zhong-Liang; Wang, Da-Zhi

    2016-01-01

    Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration. PMID:27159388

  15. Pannexin 1 and Pannexin 3 Channels Regulate Skeletal Muscle Myoblast Proliferation and Differentiation*

    PubMed Central

    Langlois, Stéphanie; Xiang, Xiao; Young, Kelsey; Cowan, Bryce J.; Penuela, Silvia; Cowan, Kyle N.

    2014-01-01

    Pannexins constitute a family of three glycoproteins (Panx1, -2, and -3) forming single membrane channels. Recent work demonstrated that Panx1 is expressed in skeletal muscle and involved in the potentiation of contraction. However, Panxs functions in skeletal muscle cell differentiation, and proliferation had yet to be assessed. We show here that Panx1 and Panx3, but not Panx2, are present in human and rodent skeletal muscle, and their various species are differentially expressed in fetal versus adult human skeletal muscle tissue. Panx1 levels were very low in undifferentiated human primary skeletal muscle cells and myoblasts (HSMM) but increased drastically during differentiation and became the main Panx expressed in differentiated cells. Using HSMM, we found that Panx1 expression promotes this process, whereas it was impaired in the presence of probenecid or carbenoxolone. As for Panx3, its lower molecular weight species were prominent in adult skeletal muscle but very low in the fetal tissue and in undifferentiated skeletal muscle cells and myoblasts. Its overexpression (∼43-kDa species) induced HSMM differentiation and also inhibited their proliferation. On the other hand, a ∼70-kDa immunoreactive species of Panx3, likely glycosylated, sialylated, and phosphorylated, was highly expressed in proliferative myoblasts but strikingly down-regulated during their differentiation. Reduction of its endogenous expression using two Panx3 shRNAs significantly inhibited HSMM proliferation without triggering their differentiation. In summary, our results demonstrate that Panx1 and Panx3 are co-expressed in human skeletal muscle myoblasts and play a pivotal role in dictating the proliferation and differentiation status of these cells. PMID:25239622

  16. Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation

    PubMed Central

    Deponti, Daniela; François, Stéphanie; Baesso, Silvia; Sciorati, Clara; Innocenzi, Anna; Broccoli, Vania; Muscatelli, Françoise; Meneveri, Raffaella; Clementi, Emilio; Cossu, Giulio; Brunelli, Silvia

    2007-01-01

    Regeneration of muscle fibers that are lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. An important cell type involved in muscle regeneration is the satellite cell. Necdin is a protein expressed in satellite cell–derived myogenic precursors during perinatal growth. However, its function in myogenesis is not known. We compare transgenic mice that overexpress necdin in skeletal muscle with both wild-type and necdin null mice. After muscle injury the necdin null mice show a considerable defect in muscle healing, whereas mice that overexpress necdin show a substantial increase in myofiber regeneration. We also find that in muscle, necdin increases myogenin expression, accelerates differentiation, and counteracts myoblast apoptosis. Collectively, these data clarify the function and mechanism of necdin in skeletal muscle and show the importance of necdin in muscle regeneration. PMID:17954612

  17. In Vitro Effects of Beta-2 Agonists on Skeletal Muscle Differentiation, Hypertrophy, and Atrophy

    PubMed Central

    2012-01-01

    Background Beta-2 agonists are widely used in the treatment of asthma and chronic obstructive pulmonary disease for their effect on airway smooth muscle relaxation. They also act on skeletal muscle, although their reported ergogenic effect is controversial. Aim To evaluate the in vitro effects of short-acting and long-acting beta-2 agonists on adrenergic receptor (ADR) expression, hypertrophy, and atrophy markers, in a skeletal muscle cell line. Methods The C2C12 cell line was used as a model of skeletal muscle differentiation. ADR messenger RNA expression was evaluated in proliferating myoblasts, committed cells, and differentiated myotubes, in basal conditions and after treatment with 10-6 M clenbuterol, salbutamol, salmeterol, and formoterol. Effect of beta-2 agonists on gene and protein expression of hypertrophy and atrophy markers was assessed in differentiated myotubes. Results Our study shows that beta-2 ADR messenger RNA was expressed and progressively increased during cell differentiation. Beta-2 agonist treatment did not affect its expression. Skeletal muscle hypertrophy markers (fast and slow myosin, myogenin) were not modulated by any of the beta-2 agonists evaluated. However, clenbuterol induced a significant, dose-dependent downregulation of skeletal muscle atrophy genes (atrogin-1, MuRF-1, and cathepsin L). Conclusions The reported ergogenic effect of beta-2 agonists, if any, should be considered as drug-specific and not class-specific and that of clenbuterol is mediated by the inhibition of the atrophic pathway. PMID:23283108

  18. Skeletal muscle pericyte subtypes differ in their differentiation potential.

    PubMed

    Birbrair, Alexander; Zhang, Tan; Wang, Zhong-Min; Messi, Maria Laura; Enikolopov, Grigori N; Mintz, Akiva; Delbono, Osvaldo

    2013-01-01

    Neural progenitor cells have been proposed as a therapy for central nervous system disorders, including neurodegenerative diseases and trauma injuries, however their accessibility is a major limitation. We recently isolated Tuj1+ cells from skeletal muscle culture of Nestin-GFP transgenic mice however whether they form functional neurons in the brain is not yet known. Additionally, their isolation from nontransgenic species and identification of their ancestors is unknown. This gap of knowledge precludes us from studying their role as a valuable alternative to neural progenitors. Here, we identified two pericyte subtypes, type-1 and type-2, using a double transgenic Nestin-GFP/NG2-DsRed mouse and demonstrated that Nestin-GFP+/Tuj1+ cells derive from type-2 Nestin-GFP+/NG2-DsRed+/CD146+ pericytes located in the skeletal muscle interstitium. These cells are bipotential as they generate either Tuj1+ cells when cultured with muscle cells or become "classical" α-SMA+pericytes when cultured alone. In contrast, type-1 Nestin-GFP-/NG2-DsRed+/CD146+ pericytes generate α-SMA+pericytes but not Tuj1+ cells. Interestingly, type-2 pericyte derived Tuj1+ cells retain some pericytic markers (CD146+/PDGFRβ+/NG2+). Given the potential application of Nestin-GFP+/NG2-DsRed+/Tuj1+ cells for cell therapy, we found a surface marker, the nerve growth factor receptor, which is expressed exclusively in these cells and can be used to identify and isolate them from mixed cell populations in nontransgenic species for clinical purposes.

  19. Skeletal Muscle Pericyte Subtypes Differ in their Differentiation Potential

    PubMed Central

    Birbrair, Alexander; Zhang, Tan; Wang, Zhong-Min; Messi, Maria Laura; Enikolopov, Grigori N.; Mintz, Akiva; Delbono, Osvaldo

    2012-01-01

    Neural progenitor cells have been proposed as a therapy for central nervous system disorders, including neurodegenerative diseases and trauma injuries, however their accessibility is a major limitation. We recently isolated Tuj1+ cells from skeletal muscle culture of Nestin-GFP transgenic mice however whether they form functional neurons in the brain is not yet known. Additionally, their isolation from nontransgenic species and identification of their ancestors is unknown. This gap of knowledge precludes us from studying their role as a valuable alternative to neural progenitors. Here, we identified two pericyte subtypes, type-1 and type-2, using a double transgenic Nestin-GFP/NG2-DsRed mouse and demonstrated that Nestin-GFP+/Tuj1+ cells derive from type-2 Nestin-GFP+/NG2-DsRed+/CD146+ pericytes located in the skeletal muscle interstitium. These cells are bipotential as they generate either Tuj1+ cells when cultured with muscle cells or become “classical” α-SMA+ pericytes when cultured alone. In contrast, type-1 Nestin-GFP-/NG2-DsRed+/CD146+ pericytes generate α-SMA+ pericytes but not Tuj1+ cells. Interestingly, type-2 pericyte derived Tuj1+ cells retain some pericytic markers (CD146+/PDGFRβ+/NG2+). Given the potential application of Nestin-GFP+/NG2-DsRed+/Tuj1+ cells for cell therapy, we found a surface marker, the nerve growth factor receptor, which is expressed exclusively in these cells and can be used to identify and isolate them from mixed cell populations in nontransgenic species for clinical purposes. PMID:23128780

  20. Microtubule motors involved in nuclear movement during skeletal muscle differentiation.

    PubMed

    Gache, V; Gomes, E R; Cadot, B

    2017-04-01

    Nuclear positioning is a determining event in several cellular processes, such as fertilization, cell migration, and cell differentiation. The structure and function of muscle cells, which contain hundreds of nuclei, have been shown to rely in part on proper nuclear positioning. Remarkably, in the course of muscle differentiation, nuclear movements along the myotube axis might represent the event required for the even positioning of nuclei in the mature myofiber. Here we analyze nuclear behavior, time in motion, speed, and alignment during myotube differentiation and temporal interference of cytoskeletal microtubule-related motors. Using specific inhibitors, we find that nuclear movement and alignment are microtubule dependent, with 19 microtubule motor proteins implicated in at least one nuclear behavior. We further focus on Kif1c, Kif5b, kif9, kif21b, and Kif1a, which affect nuclear alignment. These results emphasize the different roles of molecular motors in particular mechanisms.

  1. Cytokine Response of Cultured Skeletal Muscle Cells Stimulated with Proinflammatory Factors Depends on Differentiation Stage

    PubMed Central

    Podbregar, Matej; Lainscak, Mitja; Prelovsek, Oja; Mars, Tomaz

    2013-01-01

    Myoblast proliferation and myotube formation are critical early events in skeletal muscle regeneration. The attending inflammation and cytokine signaling are involved in regulation of skeletal muscle cell proliferation and differentiation. Secretion of muscle-derived cytokines upon exposure to inflammatory factors may depend on the differentiation stage of regenerating muscle cells. Cultured human myoblasts and myotubes were exposed to 24-hour treatment with tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS). Secretion of interleukin 6 (IL-6), a major muscle-derived cytokine, and interleukin 1 (IL-1), an important regulator of inflammatory response, was measured 24 hours after termination of TNF-α or LPS treatment. Myoblasts pretreated with TNF-α or LPS displayed robustly increased IL-6 secretion during the 24-hour period after removal of treatments, while IL-1 secretion remained unaltered. IL-6 secretion was also increased in myotubes, but the response was less pronounced compared with myoblasts. In contrast to myoblasts, IL-1 secretion was markedly stimulated in LPS-pretreated myotubes. We demonstrate that preceding exposure to inflammatory factors stimulates a prolonged upregulation of muscle-derived IL-6 and/or IL-1 in cultured skeletal muscle cells. Our findings also indicate that cytokine response to inflammatory factors in regenerating skeletal muscle partially depends on the differentiation stage of myogenic cells. PMID:23509435

  2. Organization of organelles and VAMP-associated vesicular transport systems in differentiating skeletal muscle cells.

    PubMed

    Tajika, Yuki; Takahashi, Maiko; Ueno, Hitoshi; Murakami, Tohru; Yorifuji, Hiroshi

    2015-01-01

    Vesicular transport plays an important role in the regulation of cellular function and differentiation of the cell, and intracellular vesicles play a role in the delivery of membrane components and in sorting membrane proteins to appropriate domains in organelles and the plasma membrane. Research on vesicular transport in differentiating cells has mostly focused on neurons and epithelial cells, and few such studies have been carried out on skeletal muscle cells. Skeletal muscle cells have specialized organelles and plasma membrane domains, including T-tubules, sarcoplasmic reticulum, neuromuscular junctions, and myotendinous junctions. The differentiation of skeletal muscle cells is achieved by multiple steps, i.e., proliferation of myoblasts, formation of myotubes by cell-cell fusion, and maturation of myotubes into myofibers. Systematic vesicular transport is expected to play a role in the maintenance and development of skeletal muscle cells. Here, we review a map of the vesicular transport system during the differentiation of skeletal muscle cells. The characteristics of organelle arrangement in myotubes are described according to morphological studies. Vesicular transport in myotubes is explained by the expression profiles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins.

  3. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment.

    PubMed

    Coletti, Dario; Teodori, Laura; Albertini, Maria C; Rocchi, Marco; Pristerà, Alessandro; Fini, Massimo; Molinaro, Mario; Adamo, Sergio

    2007-10-01

    Static magnetic field (SMF) interacts with mammal skeletal muscle; however, SMF effects on skeletal muscle cells are poorly investigated. The myogenic cell line L6, an in vitro model of muscle development, was used to investigate the effect of a 80 +/- mT SMF generated by a custom-made magnet. SMF promoted myogenic cell differentiation and hypertrophy, i.e., increased accumulation of actin and myosin and formation of large multinucleated myotubes. The elevated number of nuclei per myotube was derived from increased cell fusion efficiency, with no changes in cell proliferation upon SMF exposure. No alterations in myogenin expression, a modulator of myogenesis, occurred upon SMF exposure. SMF induced cells to align in parallel bundles, an orientation conserved throughout differentiation. SMF stimulated formation of actin stress-fiber like structures. SMF rescued muscle differentiation in the presence of TNF, a muscle differentiation inhibitor. We believe this is the first report showing that SMF promotes myogenic differentiation and cell alignment, in the absence of any invasive manipulation. SMF-enhanced parallel orientation of myotubes is relevant to tissue engineering of a highly organized tissue such as skeletal muscle. SMF rescue of muscle differentiation in the presence of TNF may have important therapeutic implications.

  4. Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro.

    PubMed Central

    Bains, W; Ponte, P; Blau, H; Kedes, L

    1984-01-01

    We examined the expression of alpha-skeletal, alpha-cardiac, and beta- and gamma-cytoskeletal actin genes in a mouse skeletal muscle cell line (C2C12) during differentiation in vitro. Using isotype-specific cDNA probes, we showed that the alpha-skeletal actin mRNA pool reached only 15% of the level reached in adult skeletal muscle and required several days to attain this peak, which was then stably maintained. However, these cells accumulated a pool of alpha-cardiac actin six times higher than the alpha-skeletal actin mRNA peak within 24 h of the initiation of differentiation. After cells had been cultured for an additional 3 days, this pool declined to 10% of its peak level. In contrast, over 95% of the actin mRNA in adult skeletal muscle coded for alpha-actin. This suggests that C2C12 cells express a pattern of sarcomeric actin genes typical of either muscle development or regeneration and distinct from that seen in mature, adult tissue. Concurrently in the course of differentiation the beta- and gamma-cytoskeletal actin mRNA pools decreased to less than 10% of their levels in proliferating cells. The decreases in beta- and gamma-cytoskeletal actin mRNAs are apparently not coordinately regulated. Images PMID:6493226

  5. PKCε as a novel promoter of skeletal muscle differentiation and regeneration

    PubMed Central

    Di Marcantonio, D; Galli, D; Carubbi, C; Gobbi, G; Queirolo, V; Martini, S; Merighi, S; Vaccarezza, M; Maffulli, N; Sykes, SM; Vitale, M; Mirandola, P

    2016-01-01

    Introduction Satellite cells are muscle resident stem cells and are responsible for muscle regeneration. In this study we investigate the involvement of PKCε during muscle stem cell differentiation in vitro and in vivo. Here, we describe the identification of a previously unrecognized role for the PKCε – HMGA1 signaling axis in myoblast differentiation and regeneration processes. Methods PKCε expression was modulated in the C2C12 cell line and primary murine satellite cells in vitro, as well as in an in vivo model of muscle regeneration. Immunohistochemistry and immunofluorescence, RT-PCR and shRNA silencing techniques were used to determine the role of PKCε and HMGA1 in myogenic differentiation. Results PKCε expression increases and subsequently re-localizes to the nucleus during skeletal muscle cell differentiation. In the nucleus, PKCε blocks Hmga1 expression to promote Myogenin and Mrf4 accumulation and myoblast formation. Following in vivo muscle injury, PKCε accumulates in regenerating, centrally-nucleated myofibers. Pharmacological inhibition of PKCε impairs the expression of two crucial markers of muscle differentiation, namely MyoD and Myogenin, during injury induced muscle regeneration. Conclusion This work identifies the PKCε – HMGA1 signaling axis as a positive regulator of skeletal muscle differentiation. PMID:26431586

  6. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration

    PubMed Central

    Paris, Nicole D; Soroka, Andrew; Klose, Alanna; Liu, Wenxuan; Chakkalakal, Joe V

    2016-01-01

    Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4, the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration. DOI: http://dx.doi.org/10.7554/eLife.19484.001 PMID:27855784

  7. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    PubMed

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Differential expression of the skeletal muscle proteome in grazed cattle.

    PubMed

    Shibata, M; Matsumoto, K; Oe, M; Ohnishi-Kameyama, M; Ojima, K; Nakajima, I; Muroya, S; Chikuni, K

    2009-08-01

    The objective of this study was to investigate the differences in the muscle proteome of grass-fed and grain-fed cattle. Eight Japanese Black Cattle 10 mo of age were separated randomly into 2 groups: 1) grazing (grass-fed) and 2) concentrate (grain-fed) groups. All cattle were first housed individually in a stall barn and fed a combination of concentrate ad libitum and Italian ryegrass hay until 21 mo of age. After this control period, the 4 grass-fed cattle were placed on outdoor pasture, whereas the other 4 grain-fed cattle continued on the concentrate diet. The cattle were slaughtered at 27 mo of age, and tissues from the semitendinosus muscle were obtained for use in proteome analysis. Differential expression of muscle proteins in the 2 groups was carried out using 2-dimensional gel electrophoresis (2DE) and Western blot analyses, with subsequent mass spectrometry. Approximately 200 individual protein spots were detected and compared in each group using 2DE, of which 20 and 9 spots, respectively, showed differences in the spot intensity for the sarcoplasmic fraction and myofibrillar fraction. In the grazing group, the relative intensity of spots was significantly greater for adenylate kinase 1 and myoglobin in the sarcoplasmic fraction, and for slow-twitch myosin light chain 2 in the myofibrillar fraction (P < 0.05), than the concentrate group. The relative spot intensity of several glycolytic enzymes was significantly greater in the grazing group, such as beta-enolase 3, fructose-1,6-bisphosphate aldolase A, triosephosphate isomerase, and heat shock 27 kDa protein (P < 0.05). Moreover, significantly greater slow twitch of troponin T, troponin I, and myosin heavy chain of semitendinosus muscle was detected in the grazing group than in the concentrate group using Western blot analysis (P < 0.05). Several previous reports have described that the slow-twitch muscle contents affect elements of nutrition, flavor, and food texture of meat. This study revealed muscle

  9. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy

    PubMed Central

    2013-01-01

    Background Skeletal muscle mass is determined by the balance between protein synthesis and degradation. Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of protein translation and has been implicated in the control of muscle mass. Inactivation of mTORC1 by skeletal muscle-specific deletion of its obligatory component raptor results in smaller muscles and a lethal dystrophy. Moreover, raptor-deficient muscles are less oxidative through changes in the expression PGC-1α, a critical determinant of mitochondrial biogenesis. These results suggest that activation of mTORC1 might be beneficial to skeletal muscle by providing resistance to muscle atrophy and increasing oxidative function. Here, we tested this hypothesis by deletion of the mTORC1 inhibitor tuberous sclerosis complex (TSC) in muscle fibers. Method Skeletal muscles of mice with an acute or a permanent deletion of raptor or TSC1 were examined using histological, biochemical and molecular biological methods. Response of the muscles to changes in mechanical load and nerve input was investigated by ablation of synergistic muscles or by denervation . Results Genetic deletion or knockdown of raptor, causing inactivation of mTORC1, was sufficient to prevent muscle growth and enhance muscle atrophy. Conversely, short-term activation of mTORC1 by knockdown of TSC induced muscle fiber hypertrophy and atrophy-resistance upon denervation, in both fast tibialis anterior (TA) and slow soleus muscles. Surprisingly, however, sustained activation of mTORC1 by genetic deletion of Tsc1 caused muscle atrophy in all but soleus muscles. In contrast, oxidative capacity was increased in all muscles examined. Consistently, TSC1-deficient soleus muscle was atrophy-resistant whereas TA underwent normal atrophy upon denervation. Moreover, upon overloading, plantaris muscle did not display enhanced hypertrophy compared to controls. Biochemical analysis indicated that the atrophy response of muscles was based on the

  10. Roles of chondroitin sulfate proteoglycan 4 in fibrogenic/adipogenic differentiation in skeletal muscle tissues.

    PubMed

    Takeuchi, Shiho; Nakano, Shin-Ichi; Nakamura, Katsuyuki; Ozoe, Atsufumi; Chien, Peggie; Yoshihara, Hidehito; Hakuno, Fumihiko; Matsuwaki, Takashi; Saeki, Yasushi; Takahashi, Shin-Ichiro; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-10-01

    Intramuscular adipose tissue and fibrous tissue are observed in some skeletal muscle pathologies such as Duchenne muscular dystrophy and sarcopenia, and affect muscle strength and myogenesis. They originate from common fibrogenic/adipogenic cells in the skeletal muscle. Thus, elucidating the regulatory mechanisms underlying fibrogenic/adipogenic cell differentiation is an important step toward the mediation of these disorders. Previously, we established a highly adipogenic progenitor clone, 2G11, from rat skeletal muscle and showed that basic fibroblast growth factor (bFGF) is pro-adipogenic in these cells. Here, we demonstrated that 2G11 cells give rise to fibroblasts upon transforming growth factor (TGF)-β1 stimulation, indicating that they possess mesenchymal progenitor cells (MPC)-like characteristics. The previously reported MPC marker PDGFRα is expressed in other cell populations. Accordingly, we produced monoclonal antibodies that specifically bind to 2G11 cell surface antigens and identified chondroitin sulfate proteoglycan 4 (CSPG4) as a potential MPC marker. Based on an RNA interference analysis, we found that CSPG4 is involved in both the pro-adipogenic effect of bFGF and in TGF-β-induced alpha smooth muscle actin expression and stress fiber formation. By establishing an additional marker for MPC detection and characterizing its role in fibrogenic/adipogenic differentiation, these results will facilitate the development of effective treatments for skeletal muscle pathologies.

  11. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells.

    PubMed

    Braga, Melissa; Simmons, Zena; Norris, Keith C; Ferrini, Monica G; Artaza, Jorge N

    2017-04-01

    Skeletal muscle wasting is a serious disorder associated with health conditions such as aging, chronic kidney disease and AIDS. Vitamin D is most widely recognized for its regulation of calcium and phosphate homeostasis in relation to bone development and maintenance. Recently, vitamin D supplementation has been shown to improve muscle performance and reduce the risk of falls in vitamin D deficient older adults. However, little is known of the underlying molecular mechanism(s) or the role it plays in myogenic differentiation. We examined the effect of 1,25-D3 on myogenic cell differentiation in skeletal muscle derived stem cells. Primary cultures of skeletal muscle satellite cells were isolated from the tibialis anterior, soleus and gastrocnemius muscles of 8-week-old C57/BL6 male mice and then treated with 1,25-D3 The efficiency of satellite cells isolation determined by PAX7+ cells was 81%, and they expressed VDR. Incubation of satellite cells with 1,25-D3 induces increased expression of: (i) MYOD, (ii) MYOG, (iii) MYC2, (iv) skeletal muscle fast troponin I and T, (v) MYH1, (vi) IGF1 and 2, (vii) FGF1 and 2, (viii) BMP4, (ix) MMP9 and (x) FST. It also promotes myotube formation and decreases the expression of MSTN. In conclusion, 1,25-D3 promoted a robust myogenic effect on satellite cells responsible for the regeneration of muscle after injury or muscle waste. This study provides a mechanistic justification for vitamin D supplementation in conditions characterized by loss of muscle mass and also in vitamin D deficient older adults with reduced muscle mass and strength, and increased risk of falls.

  12. Isolation, Culturing, and Differentiation of Primary Myoblasts from Skeletal Muscle of Adult Mice.

    PubMed

    Hindi, Lubna; McMillan, Joseph D; Afroze, Dil; Hindi, Sajedah M; Kumar, Ashok

    2017-05-05

    Myogenesis is a multi-step process that leads to the formation of skeletal muscle during embryonic development and repair of injured myofibers. In this process, myoblasts are the main effector cell type which fuse with each other or to injured myofibers leading to the formation of new myofibers or regeneration of skeletal muscle in adults. Many steps of myogenesis can be recapitulated through in vitro differentiation of myoblasts into myotubes. Most laboratories use immortalized myogenic cells lines that also differentiate into myotubes. Although these cell lines have been found quite useful to delineating the regulatory mechanisms of myogenesis, they often show a great degree of variability depending on the origin of the cells and culture conditions. Primary myoblasts have been suggested as the most physiologically relevant model for studying myogenesis in vitro. However, due to their low abundance in adult skeletal muscle, isolation of primary myoblasts is technically challenging. In this article, we describe an improved protocol for the isolation of primary myoblasts from adult skeletal muscle of mice. We also describe methods for their culturing and differentiation into myotubes.

  13. Isolation, Culturing, and Differentiation of Primary Myoblasts from Skeletal Muscle of Adult Mice

    PubMed Central

    Hindi, Lubna; McMillan, Joseph D.; Afroze, Dil; Hindi, Sajedah M.; Kumar, Ashok

    2017-01-01

    Myogenesis is a multi-step process that leads to the formation of skeletal muscle during embryonic development and repair of injured myofibers. In this process, myoblasts are the main effector cell type which fuse with each other or to injured myofibers leading to the formation of new myofibers or regeneration of skeletal muscle in adults. Many steps of myogenesis can be recapitulated through in vitro differentiation of myoblasts into myotubes. Most laboratories use immortalized myogenic cells lines that also differentiate into myotubes. Although these cell lines have been found quite useful to delineating the regulatory mechanisms of myogenesis, they often show a great degree of variability depending on the origin of the cells and culture conditions. Primary myoblasts have been suggested as the most physiologically relevant model for studying myogenesis in vitro. However, due to their low abundance in adult skeletal muscle, isolation of primary myoblasts is technically challenging. In this article, we describe an improved protocol for the isolation of primary myoblasts from adult skeletal muscle of mice. We also describe methods for their culturing and differentiation into myotubes. PMID:28730161

  14. Biocompatible Elastic Conductive Films Significantly Enhanced Myogenic Differentiation of Myoblast for Skeletal Muscle Regeneration.

    PubMed

    Dong, Ruonan; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2017-09-11

    The key factor in skeletal muscle tissue engineering is regeneration of the functional skeletal muscles. Materials that could promote the myoblast proliferation and myogenic differentiation are promising candidates in skeletal muscle tissue engineering. Herein, we developed an elastic conductive poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS) grafted aniline pentamer (AP) copolymer that could promote the formation of myotubes by differentiating the C2C12 myoblast cells. The results of hydration behavior and water contact angle suggested that by adjusting the poly(ethylene glycol) (PEG) and AP content, this film showed a proper surface hydrophilicity for cell attachment. Additionally, these films showed tunable conductivity and mechanical properties that can be altered by changing the AP content. The maximum conductivity of the films was 1.84 × 10(-4) S/cm and the Young's modulus of these films ranged from 14.58 ± 1.35 MPa to 24.62 ± 0.61 MPa. Our findings indicate that the PEGS-AP films promote the proliferation and myogenic differentiation of C2C12 cells, suggesting that they are promising biomaterials for skeletal muscle tissue engineering.

  15. S. macrurus myogenic regulatory factors induce mammalian skeletal muscle differentiation: Evidence for functional conservation of MRFs

    PubMed Central

    Kim, Hyun-Jung; Güth, Robert; Jonsson, Colleen B.; Unguez, Graciela A.

    2009-01-01

    The current-producing cells of the electric organ (EO), i.e., electrocytes, in Sternopygus macrurus derive from skeletal muscle fibers. Mature electrocytes are not contractile but they do retain some muscle proteins, are multinucleated, and receive cholinergic innervation. Electrocytes express the myogenic regulatory factors (MRFs) MyoD, myogenin, Myf5 and MRF4 despite their incomplete muscle phenotype. Although S. macrurus MRFs share functional domains that are highly conserved and their expression is confined to the myogenic lineage, their capability to induce the muscle phenotype has not been determined. To test the functional conservation of S. macrurus MRFs to transcriptionally activate skeletal muscle gene expression and induce the myogenic program, we transiently over-expressed S. macrurus MyoD (SmMyoD) and myogenin (SmMyoG) in mouse C3H/10T1/2 and NIH3T3 embryonic cells. RT-PCR and immunolabeling studies showed that SmMyoD and SmMyoG efficiently can convert these two cell lines into multinucleated myotubes that expressed differentiated muscle markers. The levels of myogenic induction by SmMyoD and SmMyoG were comparable to those obtained with mouse MRF homologs. Furthermore, SmMyoD and SmMyoG proteins were able to induce mouse MyoD and myogenin in C3H/10T1/2 cells. We conclude that S. macrurus MRFs are functionally conserved as they can transcriptionally activate skeletal muscle gene expression and induce the myogenic program in mammalian non-muscle cells. Hence, these data suggest that the partial muscle phenotype of electrocytes is not likely due to differences in the MRF-dependent transcriptional program between skeletal muscle and electric organ. PMID:19598116

  16. Perilipin 3 Differentially Regulates Skeletal Muscle Lipid Oxidation in Active, Sedentary, and Type 2 Diabetic Males.

    PubMed

    Covington, Jeffrey D; Noland, Robert C; Hebert, R Caitlin; Masinter, Blaine S; Smith, Steven R; Rustan, Arild C; Ravussin, Eric; Bajpeyi, Sudip

    2015-10-01

    The role of perilipin 3 (PLIN3) on lipid oxidation is not fully understood. We aimed to 1) determine whether skeletal muscle PLIN3 protein content is associated with lipid oxidation in humans, 2) understand the role of PLIN3 in lipid oxidation by knocking down PLIN3 protein content in primary human myotubes, and 3) compare PLIN3 content and its role in lipid oxidation in human primary skeletal muscle cultures established from sedentary, healthy lean (leans), type 2 diabetic (T2D), and physically active donors. This was a clinical investigation of 29 healthy, normoglycemic males and a cross-sectional study using primary human myotubes from five leans, four T2D, and four active donors. Energy expenditure, whole-body lipid oxidation, PLIN3 protein content in skeletal muscle tissue, and ex vivo muscle palmitate oxidation were measured. Myotubes underwent lipolytic stimulation (palmitate, forskolin, inomycin [PFI] cocktail), treatment with brefeldin A (BFA), and knockdown of PLIN3 using siRNA. Experiments were performed in a Biomedical Research Institute. Protein content, 24-hour respiratory quotient (RQ), and ex vivo/in vitro lipid oxidations. PLIN3 protein content was associated with 24-h RQ (r = -0.44; P = .02) and skeletal muscle-specific ex vivo palmitate oxidation (r = 0.61; P = .02). PLIN3 knockdown showed drastic reductions in lipid oxidation in myotubes from leans. Lipolytic stimulation increased PLIN3 protein in cells from leans over T2Ds with little expression in active participants. Furthermore, treatment with BFA, known to inhibit coatomers that associate with PLIN3, reduced lipid oxidation in cells from lean and T2D, but not in active participants. Differential expression of PLIN3 and BFA sensitivity may explain differential lipid oxidation efficiency in skeletal muscle among these cohorts.

  17. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Feeback, D. L.

    1996-01-01

    The transduction mechanism (or mechanisms) responsible for converting a mechanical load into a skeletal muscle growth response are unclear. In this study we have used a mechanically active tissue culture model of differentiated human skeletal muscle cells to investigate the relationship between mechanical load, sarcolemma wounding, fibroblast growth factor release, and skeletal muscle cell growth. Using the Flexcell Strain Unit we demonstrate that as mechanical load increases, so too does the amount of sarcolemma wounding. A similar relationship was also observed between the level of mechanical load inflicted on the cells and the amount of bFGF (FGF2) released into the surrounding medium. In addition, we demonstrate that the muscle cell growth response induced by chronic mechanical loading in culture can be inhibited by the presence of an antibody capable of neutralizing the biological activity of FGF. This study provides direct evidence that mechanically induced, sarcolemma wound-mediated FGF release is an important autocrine mechanism for transducing the stimulus of mechanical load into a skeletal muscle growth response.

  18. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Feeback, D. L.

    1996-01-01

    The transduction mechanism (or mechanisms) responsible for converting a mechanical load into a skeletal muscle growth response are unclear. In this study we have used a mechanically active tissue culture model of differentiated human skeletal muscle cells to investigate the relationship between mechanical load, sarcolemma wounding, fibroblast growth factor release, and skeletal muscle cell growth. Using the Flexcell Strain Unit we demonstrate that as mechanical load increases, so too does the amount of sarcolemma wounding. A similar relationship was also observed between the level of mechanical load inflicted on the cells and the amount of bFGF (FGF2) released into the surrounding medium. In addition, we demonstrate that the muscle cell growth response induced by chronic mechanical loading in culture can be inhibited by the presence of an antibody capable of neutralizing the biological activity of FGF. This study provides direct evidence that mechanically induced, sarcolemma wound-mediated FGF release is an important autocrine mechanism for transducing the stimulus of mechanical load into a skeletal muscle growth response.

  19. Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics

    PubMed Central

    Porter, Craig; Herndon, David N.; Bhattarai, Nisha; Ogunbileje, John O.; Szczesny, Bartosz; Szabo, Csaba; Toliver-Kinsky, Tracy; Sidossis, Labros S.

    2015-01-01

    Altered skeletal muscle mitochondrial function contributes to the pathophysiological stress response to burns. However, the acute and chronic impact of burn trauma on skeletal muscle bioenergetics remains poorly understood. Here, we determined the temporal relationship between burn trauma and mitochondrial function in murine skeletal muscle local to and distal from burn wounds. Male BALB/c mice (8–10 weeks old) were burned by submersion of the dorsum in water (~95°C) to create a full thickness burn on ~30% of the body. Skeletal muscle was harvested from spinotrapezius underneath burn wounds (local) and the quadriceps (distal) of sham and burn treated mice at 3h, 24h, 4d and 10d post-injury. Mitochondrial respiration was determined in permeabilized myofiber bundles by high-resolution respirometry. Caspase 9 and caspase 3 protein concentration were determined by western blot. In muscle local to burn wounds, respiration coupled to ATP production was significantly diminished at 3h and 24h post-injury (P<0.001), as was mitochondrial coupling control (P<0.001). There was a 5- (P<0.05) and 8-fold (P<0.001) increase in respiration in response to cytochrome at 3h and 24h post burn, indicating damage to the outer mitochondrial membranes. Moreover, we also observed greater active caspase 9 and caspase 3 in muscle local to burn wounds, indicating the induction of apoptosis. Distal muscle mitochondrial function was unaltered by burn trauma until 10d post burn, where both respiratory capacity (P<0.05) and coupling control (P<0.05) was significantly lower than sham. These data highlight a differential response in muscle mitochondrial function to burn trauma, where the timing, degree and mode of dysfunction are dependent on whether the muscle is local or distal to the burn wound. PMID:26615714

  20. A NMR-based metabolomic approach for differentiation of hagfish dental and somatic skeletal muscles.

    PubMed

    Chiu, Kuo-Hsun; Ding, Shangwu; Chen, Yan-Wen; Lee, Che-Hsin; Mok, Hin-Kiu

    2011-09-01

    The hagfish dental muscle is a large and specialized element of the feeding apparatus that helps ingest food. This muscle has enzymatic activities and contractile properties different from the hagfish somatic skeletal muscle. To verify the functional relevance of protein alterations, we examined the metabolomic differentiation of hagfish dental and somatic skeletal muscles using ¹H-nuclear magnetic resonance (NMR)-based metabolomics and multivariate analysis that separated hagfish dental and somatic muscles by principal component analysis and partial least squares for discriminant analysis. Our analysis of assigned metabolites showed that anserine and taurine levels were higher in dental muscle, but creatine, fructose, glucose, glycerate, pyruvate, and succinate levels were higher in somatic muscle. We concluded that the primary energy sources of dental and somatic muscles are related to the citric acid cycle and the anaerobic glycolysis and metabolism of creatine. Thus, ¹H-NMR-based metabolomics can be integrated with the previous proteomic approach to derive biochemical and physiological information about hagfish muscles.

  1. Perilipin 3 Differentially Regulates Skeletal Muscle Lipid Oxidation in Active, Sedentary, and Type 2 Diabetic Males

    PubMed Central

    Covington, Jeffrey D.; Noland, Robert C.; Hebert, R. Caitlin; Masinter, Blaine S.; Smith, Steven R.; Rustan, Arild C.; Ravussin, Eric

    2015-01-01

    Context: The role of perilipin 3 (PLIN3) on lipid oxidation is not fully understood. Objective: We aimed to 1) determine whether skeletal muscle PLIN3 protein content is associated with lipid oxidation in humans, 2) understand the role of PLIN3 in lipid oxidation by knocking down PLIN3 protein content in primary human myotubes, and 3) compare PLIN3 content and its role in lipid oxidation in human primary skeletal muscle cultures established from sedentary, healthy lean (leans), type 2 diabetic (T2D), and physically active donors. Design, Participants, and Intervention: This was a clinical investigation of 29 healthy, normoglycemic males and a cross-sectional study using primary human myotubes from five leans, four T2D, and four active donors. Energy expenditure, whole-body lipid oxidation, PLIN3 protein content in skeletal muscle tissue, and ex vivo muscle palmitate oxidation were measured. Myotubes underwent lipolytic stimulation (palmitate, forskolin, inomycin [PFI] cocktail), treatment with brefeldin A (BFA), and knockdown of PLIN3 using siRNA. Setting: Experiments were performed in a Biomedical Research Institute. Main Outcome Measures: Protein content, 24-hour respiratory quotient (RQ), and ex vivo/in vitro lipid oxidations. Results: PLIN3 protein content was associated with 24-h RQ (r = −0.44; P = .02) and skeletal muscle–specific ex vivo palmitate oxidation (r = 0.61; P = .02). PLIN3 knockdown showed drastic reductions in lipid oxidation in myotubes from leans. Lipolytic stimulation increased PLIN3 protein in cells from leans over T2Ds with little expression in active participants. Furthermore, treatment with BFA, known to inhibit coatomers that associate with PLIN3, reduced lipid oxidation in cells from lean and T2D, but not in active participants. Conclusions: Differential expression of PLIN3 and BFA sensitivity may explain differential lipid oxidation efficiency in skeletal muscle among these cohorts. PMID:26171795

  2. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types.

    PubMed

    Harding, Rachel L; Halevy, Orna; Yahav, Shlomo; Velleman, Sandra G

    2016-04-01

    Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation.

  3. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats

    PubMed Central

    Kaminski, Henry J.; Himuro, Keiichi; Alshaikh, Jumana; Gong, Bendi; Cheng, Georgiana; Kusner, Linda L.

    2016-01-01

    The differential susceptibility of skeletal muscle by myasthenia gravis (MG) is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM), diaphragm (DIA), and extensor digitorum (EDL) of rats with experimental autoimmune MG (EAMG) to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, 359 probes (1.16%) with greater than 2-fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism. PMID:27891095

  4. The Regulation of Skeletal Muscle Active Hyperemia: The Differential Role of Adenosine in Muscles of Varied Fiber Types

    DTIC Science & Technology

    1986-04-21

    0.2 Hz and three mnscles ~;timulated to contract at 0.4 Hz during BADA infuston. These m~tabolites were also mea~•1red in two muscles contractin ~ at...APR 1986 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The Regulation of Skeletal Muscle Active Hyperemia: The Differential...Role of Adenosine in Muscles of Varied Fiber Types 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  5. Effects of (−)-epicatechin on molecular modulators of skeletal muscle growth and differentiation

    PubMed Central

    Gutierrez-Salmean, Gabriela; Ciaraldi, Theodore P.; Nogueira, Leonardo; Barboza, Jonathan; Taub, Pam R.; Hogan, Michael; Henry, Robert R.; Meaney, Eduardo; Villarreal, Francisco; Ceballos, Guillermo; Ramirez-Sanchez, Israel

    2013-01-01

    Sarcopenia is a notable and debilitating age-associated condition. Flavonoids are known for their healthy effects and limited toxicity. The flavanol (−)-epicatechin (Epi) enhances exercise capacity in mice and Epi-rich cocoa improves skeletal muscle structure in heart failure patients. (−)-Epicatechin may thus, hold promise as treatment for sarcopenia. We examined changes in protein levels of molecular modulators of growth and differentiation in young vs. old, human and mouse skeletal muscle. We report the effects of Epi in mice and the results of an initial proof-of-concept trial in humans, where muscle strength and levels of modulators of muscle growth were measured. In mice, myostatin and senescence-associated β-galactosidase levels increase with aging, while those of follistatin and Myf5 decrease. (−)-Epicatechin decreases myostatin and β-galactosidase and increases levels of markers of muscle growth. In humans, myostatin and β-galactosidase increase with aging while follistatin, MyoD and myogenin decrease. Treatment for 7 days with (−)-epicatechin increases hand grip strength and the ratio of plasma follistatin/myostatin. In conclusion, aging has deleterious effects on modulators of muscle growth/differentiation, the consumption of modest amounts of the flavanol (−)-epicatechin can partially reverse these changes. This flavanol warrants its comprehensive evaluation for the treatment of sarcopenia PMID:24314870

  6. Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiation.

    PubMed

    Gutierrez-Salmean, Gabriela; Ciaraldi, Theodore P; Nogueira, Leonardo; Barboza, Jonathan; Taub, Pam R; Hogan, Michael C; Henry, Robert R; Meaney, Eduardo; Villarreal, Francisco; Ceballos, Guillermo; Ramirez-Sanchez, Israel

    2014-01-01

    Sarcopenia is a notable and debilitating age-associated condition. Flavonoids are known for their healthy effects and limited toxicity. The flavanol (-)-epicatechin (Epi) enhances exercise capacity in mice, and Epi-rich cocoa improves skeletal muscle structure in heart failure patients. (-)-Epicatechin may thus hold promise as treatment for sarcopenia. We examined changes in protein levels of molecular modulators of growth and differentiation in young vs. old, human and mouse skeletal muscle. We report the effects of Epi in mice and the results of an initial proof-of-concept trial in humans, where muscle strength and levels of modulators of muscle growth were measured. In mice, myostatin and senescence-associated β-galactosidase levels increase with aging, while those of follistatin and Myf5 decrease. (-)-Epicatechin decreases myostatin and β-galactosidase and increases levels of markers of muscle growth. In humans, myostatin and β-galactosidase increase with aging while follistatin, MyoD and myogenin decrease. Treatment for 7 days with (-)-epicatechin increases hand grip strength and the ratio of plasma follistatin/myostatin. In conclusion, aging has deleterious effects on modulators of muscle growth/differentiation, and the consumption of modest amounts of the flavanol (-)-epicatechin can partially reverse these changes. This flavanol warrants its comprehensive evaluation for the treatment of sarcopenia. © 2014.

  7. Protein-coated poly(L-lactic acid) fibers provide a substrate for differentiation of human skeletal muscle cells.

    PubMed

    Cronin, Elizabeth M; Thurmond, Frederick A; Bassel-Duby, Rhonda; Williams, R Sanders; Wright, Woodring E; Nelson, Kevin D; Garner, Harold R

    2004-06-01

    Tissue engineering represents a potential method for repairing damaged skeletal muscle tissue. Extracellular matrix (ECM) proteins were evaluated for their ability to aid in cell attachment, whereas a poly(L-lactic acid) (PLLA) fiber scaffold was tested as a substrate for the differentiation of human skeletal muscle cells. In comparison to uncoated or gelatin-coated PLLA films, cell attachment increased significantly (p < 0.001) on PLLA films coated with ECM gel, fibronectin, or laminin. Myoblasts differentiated into multinucleated myofibers on ECM gel-coated PLLA fibers, and expressed muscle markers such as myosin and alpha-actinin. Oligonucleotide microarray analysis showed similar gene expression profiles for human skeletal muscle cells on ECM gel-coated PLLA fibers as to that observed for myofibers on tissue culture plates. Therefore, PLLA fibers coated with ECM proteins provide a scaffold for the development of skeletal muscle tissue for tissue engineering and cell transplantation applications.

  8. Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation

    SciTech Connect

    Roura-Ferrer, Meritxell; Sole, Laura; Martinez-Marmol, Ramon; Villalonga, Nuria; Felipe, Antonio

    2008-05-16

    Voltage-dependent K{sup +} channels (Kv) are involved in myocyte proliferation and differentiation by triggering changes in membrane potential and regulating cell volume. Since Kv7 channels may participate in these events, the purpose of this study was to investigate whether skeletal muscle Kv7.1 and Kv7.5 were involved during proliferation and myogenesis. Here we report that, while myotube formation did not regulate Kv7 channels, Kv7.5 was up-regulated during cell cycle progression. Although, Kv7.1 mRNA also increased during the G{sub 1}-phase, pharmacological evidence mainly involves Kv7.5 in myoblast growth. Our results indicate that the cell cycle-dependent expression of Kv7.5 is involved in skeletal muscle cell proliferation.

  9. Skeletal muscle differentiation evokes endogenous XIAP to restrict the apoptotic pathway.

    PubMed

    Smith, Michelle I; Huang, Yolanda Y; Deshmukh, Mohanish

    2009-01-01

    Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes, where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term survival of these postmitotic cells as they play a vital role in the physiology of organisms.

  10. Role of HuR in Skeletal Myogenesis through Coordinate Regulation of Muscle Differentiation Genes

    PubMed Central

    Figueroa, Angélica; Cuadrado, Ana; Fan, Jinshui; Atasoy, Ulus; Muscat, George E.; Muñoz-Canoves, Pura; Gorospe, Myriam; Muñoz, Alberto

    2003-01-01

    In this report, we investigate the role of the RNA-binding protein HuR during skeletal myogenesis. At the onset of myogenesis in differentiating C2C12 myocytes and in vivo in regenerating mouse muscle, HuR cytoplasmic abundance increased dramatically, returning to a predominantly nuclear presence upon completion of myogenesis. mRNAs encoding key regulators of myogenesis-specific transcription (myogenin and MyoD) and cell cycle withdrawal (p21), bearing AU-rich regions, were found to be targets of HuR in a differentiation-dependent manner. Accordingly, mRNA half-lives were highest during differentiation, declining when differentiation was completed. Importantly, HuR-overexpressing C2C12 cells displayed increased target mRNA expression and half-life and underwent precocious differentiation. Our findings underscore a critical function for HuR during skeletal myogenesis linked to HuR's coordinate regulation of muscle differentiation genes. PMID:12832484

  11. Myogenic differentiation induces taurine transporter in association with taurine-mediated cytoprotection in skeletal muscles.

    PubMed

    Uozumi, Yoriko; Ito, Takashi; Hoshino, Yuki; Mohri, Tomomi; Maeda, Makiko; Takahashi, Kyoko; Fujio, Yasushi; Azuma, Junichi

    2006-03-15

    Skeletal muscle homoeostasis is maintained by a variety of cytoprotective mechanisms. Since ablation of the TauT (taurine transporter) gene results in susceptibility to exercise-induced muscle weakness in vivo, it has been suggested that TauT is essential for skeletal muscle function. However, the regulatory mechanisms of TauT expression remain to be elucidated. In the present study, we demonstrated that TauT was up-regulated during myogenesis in C2C12 cells. Treatment with bFGF (basic fibroblast growth factor), which inhibited muscle differentiation, abrogated myogenic induction of TauT. The promoter activities of TauT were up-regulated during muscle differentiation in C2C12 cells. Database analyses identified an MEF2 (myocyte enhancer binding factor 2) consensus sequence at -844 in the rat TauT gene. Truncation of the promoter region containing the MEF2 site significantly reduced the promoter activity, demonstrating the functional importance of the MEF2 site. Electrophoretic mobility-shift assays confirmed that MEF2 bound to the MEF2 consensus sequence and that DNA-protein complex levels were increased during differentiation. Promoter analyses using mutated promoter-reporter plasmids demonstrated that this site was functional. Importantly, transfection with a MyoD expression vector markedly enhanced TauT promoter activity in the (non-myogenic) 10T1/2 cells. Moreover, co-transfection with an MEF2 expression vector augmented MyoD-induced TauT promoter activity, suggesting that MEF2 is required for full activation of TauT expression. Finally, we examined the effects of taurine on myotube atrophy to clarify the biological significance of the up-regulation of TauT, and demonstrated that taurine attenuated muscle atrophy induced by dexamethasone. TauT expression is regulated under the control of the myogenic programme, and we propose that this is the mechanism for taurine-mediated resistance to muscle atrophy.

  12. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury

    PubMed Central

    Lee, Jang-Won; Kim, Nam-Ho; Liu, Yan-Yun; Yang, An; Sedrakyan, Sargis; Kahng, Andrew; Cervantes, Vanessa; Tripuraneni, Nikita; Cheng, Sheue-yann; Perin, Laura

    2016-01-01

    Thyroid hormone plays an essential role in myogenesis, the process required for skeletal muscle development and repair, although the mechanisms have not been established. Skeletal muscle develops from the fusion of precursor myoblasts into myofibers. We have used the C2C12 skeletal muscle myoblast cell line, primary myoblasts, and mouse models of resistance to thyroid hormone (RTH) α and β, to determine the role of thyroid hormone in the regulation of myoblast differentiation. T3, which activates thyroid hormone receptor (TR) α and β, increased myoblast differentiation whereas GC1, a selective TRβ agonist, was minimally effective. Genetic approaches confirmed that TRα plays an important role in normal myoblast proliferation and differentiation and acts through the Wnt/β-catenin signaling pathway. Myoblasts with TRα knockdown, or derived from RTH-TRα PV (a frame-shift mutation) mice, displayed reduced proliferation and myogenic differentiation. Moreover, skeletal muscle from the TRα1PV mutant mouse had impaired in vivo regeneration after injury. RTH-TRβ PV mutant mouse model skeletal muscle and derived primary myoblasts did not have altered proliferation, myogenic differentiation, or response to injury when compared with control. In conclusion, TRα plays an essential role in myoblast homeostasis and provides a potential therapeutic target to enhance skeletal muscle regeneration. PMID:26451739

  13. Post-mitotic role of nucleostemin as a promoter of skeletal muscle cell differentiation

    SciTech Connect

    Hirai, Hiroyuki; Romanova, Liudmila; Kellner, Steven; Verma, Mayank; Rayner, Samuel; Asakura, Atsushi; Kikyo, Nobuaki

    2010-01-01

    Nucleostemin (NS) is a nucleolar protein abundantly expressed in a variety of proliferating cells and undifferentiated cells. Its known functions include cell cycle regulation and the control of pre-rRNA processing. It also has been proposed that NS has an additional role in undifferentiated cells due to its downregulation during stem cell differentiation and its upregulation during tissue regeneration. Here, however, we demonstrate that skeletal muscle cell differentiation has a unique expression profile of NS in that it is continuously expressed during differentiation. NS was expressed at similar levels in non-proliferating muscle stem cells (satellite cells), rapidly proliferating precursor cells (myoblasts) and post-mitotic terminally differentiated cells (myotubes and myofibers). The sustained expression of NS during terminal differentiation is necessary to support increased protein synthesis during this process. Downregulation of NS inhibited differentiation of myoblasts to myotubes, accompanied by striking downregulation of key myogenic transcription factors, such as myogenin and MyoD. In contrast, upregulation of NS inhibited proliferation and promoted muscle differentiation in a p53-dependent manner. Our findings provide evidence that NS has an unexpected role in post-mitotic terminal differentiation. Importantly, these findings also indicate that, contrary to suggestions in the literature, the expression of NS cannot always be used as a reliable indicator for undifferentiated cells or proliferating cells.

  14. Globular Adiponectin as a Complete Mesoangioblast Regulator: Role in Proliferation, Survival, Motility, and Skeletal Muscle Differentiation

    PubMed Central

    Fiaschi, Tania; Tedesco, Francesco Saverio; Giannoni, Elisa; Diaz-Manera, Jordi; Parri, Matteo; Cossu, Giulio

    2010-01-01

    Mesoangioblasts are progenitor endowed with multipotent mesoderm differentiation ability. Despite the promising results obtained with mesoangioblast transplantation in muscle dystrophy, an improvement of their efficient engrafting and survival within damaged muscles, as well as their ex vivo activation/expansion and commitment toward myogenic lineage, is highly needed and should greatly increase their therapeutic potential. We show that globular adiponectin, an adipokine endowed with metabolic and differentiating functions for muscles, regulates vital cues of mesoangioblast cell biology. The adipokine drives mesoangioblasts to entry cell cycle and strongly counteracts the apoptotic process triggered by growth factor withdrawal, thereby serving as an activating and prosurvival stem cell factor. In addition, adiponectin provides a specific protection against anoikis, the apoptotic death due to lack of anchorage to extracellular matrix, suggesting a key protective role for these nonresident stem cells after systemic injection. Finally, adiponectin behaves as a chemoattractive factor toward mature myotubes and stimulates their differentiation toward the skeletal muscle lineage, serving as a positive regulator in mesoangioblast homing to injured or diseased muscles. We conclude that adiponectin exerts several advantageous effects on mesoangioblasts, potentially valuable to improve their efficacy in cell based therapies of diseased muscles. PMID:20089845

  15. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    PubMed Central

    2011-01-01

    Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes

  16. Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells.

    PubMed

    Chaturvedi, Vishal; Naskar, Deboki; Kinnear, Beverley F; Grenik, Elizabeth; Dye, Danielle E; Grounds, Miranda D; Kundu, Subhas C; Coombe, Deirdre R

    2016-11-22

    Human adult skeletal muscle has a limited ability to regenerate after injury and therapeutic options for volumetric muscle loss are few. Technologies to enhance regeneration of tissues generally rely upon bioscaffolds to mimic aspects of the tissue extracellular matrix (ECM). In the present study, silk fibroins from four Lepidoptera (silkworm) species engineered into three-dimensional scaffolds were examined for their ability to support the differentiation of primary human skeletal muscle myoblasts. Human skeletal muscle myoblasts (HSMMs) adhered, spread and deposited extensive ECM on all the scaffolds, but immunofluorescence and quantitative polymerase chain reaction analysis of gene expression revealed that myotube formation occurred differently on the various scaffolds. Bombyx mori fibroin scaffolds supported formation of long, well-aligned myotubes, whereas on Antheraea mylitta fibroin scaffolds the myotubes were thicker and shorter. Myotubes were oriented in two perpendicular layers on Antheraea assamensis scaffolds, and scaffolds of Philosamia/Samia ricini (S. ricini) fibroin poorly supported myotube formation. These differences were not caused by fibroin composition per se, as HSMMs adhered to, proliferated on and formed striated myotubes on all four fibroins presented as two-dimensional fibroin films. The Young's modulus of A. mylitta and B. mori scaffolds mimicked that of normal skeletal muscle, but A. assamensis and S. ricini scaffolds were more flexible. The present study demonstrates that although myoblasts deposit matrix onto fibroin scaffolds and create a permissive environment for cell proliferation, a scaffold elasticity resembling that of normal muscle is required for optimal myotube length, alignment, and maturation. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.

  17. FACS Fractionation and Differentiation of Skeletal-Muscle Resident Multipotent Tie2+ Progenitors.

    PubMed

    Biswas, Arpita A; Goldhamer, David J

    2016-01-01

    The skeletal muscle niche is complex and heterogeneous. Over the past few decades, various groups have reported the existence of multiple adult stem cell populations within this environment. Techniques commonly used to identify and assess the differentiation capacities of these cellular fractions, oftentimes rare populations, include the use of lineage tracers, immunofluorescence and histochemistry, flow cytometry, gene expression assays, and phenotypic analysis in culture or in vivo. In 2012, our lab identified and characterized a skeletal-muscle resident Tie2+ progenitor that exhibits adipogenic, chondrogenic, and osteogenic differentiation potentials (Wosczyna et al., J Bone Miner Res 27:1004-1017, 2012). This Tie2+ progenitor also expresses the markers PDGFRα and Sca-1 which in turn label a population of muscle-resident fibro/adipogenic progenitors (FAPs) (Joe et al., Nat Cell Biol 12:153-163, 2010; Uezumi et al., Nat Cell Biol 12:143-152, 2010), suggesting similar identities or overlap in the two mesenchymal progenitor populations. Our study demonstrated that these Tie2-expressing mesenchymal progenitors contribute robustly to BMP-induced heterotopic ossification (HO) in mice, and therefore could represent a key cellular target for therapeutic intervention in HO treatment (Wosczyna et al., J Bone Miner Res 27:1004-1017, 2012). In this chapter, we provide a detailed description of our updated fluorescence-activated cell sorting (FACS) strategy and describe cell culture methods for differentiation of Tie2+ progenitors to adipogenic and osteogenic fates. This strategy is easily adaptable for the prospective isolation of other rare subpopulations resident in skeletal muscle.

  18. NEDD4 REGULATES PAX7 LEVELS PROMOTING ACTIVATION OF THE DIFFERENTIATION PROGRAM IN SKELETAL MUSCLE PRECURSORS

    PubMed Central

    Bustos, Francisco; de la Vega, Eduardo; Cabezas, Felipe; Thompson, James; Cornelison, DDW; Olwin, Bradley B.; Yates, John R.; Olguín, Hugo C.

    2015-01-01

    The transcription factor Pax7 regulates skeletal muscle stem cell (satellite cells) specification and maintenance through various mechanisms, including repressing the activity of the muscle regulatory factor MyoD. Hence, Pax7-to-MyoD protein ratios can determine maintenance of the committed-undifferentiated state or activation of the differentiation program. Pax7 expression decreases sharply in differentiating myoblasts but is maintained in cells (re)acquiring quiescence, yet the mechanisms regulating Pax7 levels based on differentiation status are not well understood. Here we show that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4. Our results indicate that Nedd4 is expressed in quiescent and activated satellite cells, that Nedd4 and Pax7 physically interact during early muscle differentiation – correlating with Pax7 ubiquitination and decline – and that Nedd4 loss of function prevented this effect. Furthermore, even transient nuclear accumulation of Nedd4 induced a drop in Pax7 levels and precocious muscle differentiation. Consequently, we propose that Nedd4 functions as a novel Pax7 regulator, which activity is temporally and spatially controlled to modulate the Pax7 protein levels and therefore satellite cell fate. PMID:26304770

  19. Nitric oxide controls fat deposition in dystrophic skeletal muscle by regulating fibro-adipogenic precursor differentiation.

    PubMed

    Cordani, Nicoletta; Pisa, Viviana; Pozzi, Laura; Sciorati, Clara; Clementi, Emilio

    2014-04-01

    Duchenne muscular dystrophy (DMD) is an hereditary disease characterized by loss of muscle fibers and their progressive substitution by fat and fibrous tissue. Mesenchymal fibro-adipogenic progenitors (FAPs) expressing the platelet-derived growth factor receptor alpha (PDGFRα) are an important source of fibrosis and adipogenesis in dystrophic skeletal muscle. Among the therapies suggested for dystrophy are those based on nitric oxide (NO) donating drugs, the administration of which slows disease progression. NO has been shown to act by enhancing the regenerative potential of the diseased muscle. Whether it acts also by inhibiting fibrosis and adipogenesis was not known. Here, we show in vitro that NO regulates FAP fate through inhibition of their differentiation into adipocytes. In mdx mice, an animal model of DMD, treatment with the NO donating drug molsidomine reduced the number of PDGFRα(+) cells as well as the deposition of both skeletal muscle fat and connective tissues. Inhibition of adipogenesis was due to NO-induced increased expression of miR-27b leading to downregulation of peroxisome proliferator-activated receptors gamma (Pparγ1) expression in a pathway independent of cGMP generation. These findings reveal an additional effect of NO in dystrophic muscle that conceivably synergizes with its known effects on regeneration improvement and explain why NO-based therapies appear effective in the treatment of muscular dystrophy. © AlphaMed Press.

  20. MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells

    PubMed Central

    Cardinali, B; Cappella, M; Provenzano, C; Garcia-Manteiga, J M; Lazarevic, D; Cittaro, D; Martelli, F; Falcone, G

    2016-01-01

    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein. PMID:26844700

  1. MicroRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1.

    PubMed

    Dai, Yang; Zhang, Wei Ran; Wang, Yi Min; Liu, Xin Feng; Li, Xin; Ding, Xiang Bin; Guo, Hong

    2016-03-01

    MicroRNAs (miRNAs) play essential roles in muscle cell proliferation and differentiation. The muscle-specific miRNAs miR-1 and miR-206 have been shown to regulate muscle development and promote myogenic differentiation; however, it is likely that a number of other miRNAs play important roles in regulating myogenesis as well. microRNA-128 (miR-128) has been reported to be highly expressed in brain and skeletal muscle, and we found that miR-128 is also up-regulated during bovine skeletal muscle satellite cell differentiation using microarray analysis and qRT-PCR. However, little is known about the functions of miR-128 in bovine skeletal muscle satellite cell development. In this study, we investigated the biological functions of miR-128 in bovine skeletal muscle cell development. Using a dual-luciferase reporter assay, we confirmed that miR-128 regulates the Sp1 gene. Over-expression of miR-128 reduced Sp1 protein levels and inhibited muscle satellite cell proliferation and differentiation. Inhibition of miR-128 increased Sp1 protein levels and promoted muscle satellite cell differentiation but also suppressed proliferation. Changes in miR-128 and Sp1 expression levels also affected the protein levels of MyoD and CDKN1A. Sp1, an activator of MyoD and a suppressor of CDKN1A, plays an important role in bovine muscle cell proliferation and differentiation. The results of our study reveal a mechanism by which miR-128 regulates bovine skeletal muscle satellite cell proliferation and myogenic differentiation via Sp1.

  2. Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation.

    PubMed

    Pietrangelo, Tiziana; Puglielli, Cristina; Mancinelli, Rosa; Beccafico, Sara; Fanò, Giorgio; Fulle, Stefania

    2009-08-01

    Sarcopenia is the age-related loss of muscle mass, strength and function. Human muscle proteins are synthesized at a slower rate in the elderly than in young adults, leading to atrophy and muscle mass loss with a decline in the functional capability. Additionally, aging is accompanied by a decrease in the ability of muscle tissue to regenerate following injury or overuse due to the impairment of intervening satellite cells, in which we previously reported oxidative damage evidences. The aim of the present study was to determine the effects of aging on myoblasts and myotubes obtained from human skeletal muscle, and characterize the transcriptional profile as molecular expression patterns in relation to age-dependent modifications in their regenerative capacity. Our data show that the failure to differentiate does not depend on reduced myogenic cell number, but difficulty to complete the differentiation program. Data reported here suggested the following findings: (i) oxidative damage accumulation in molecular substrates, probably due to impaired antioxidant activity and insufficient repair capability, (ii) limited capability of elderly myoblasts to execute a complete differentiation program; restricted fusion, possibly due to altered cytoskeleton turnover and extracellular matrix degradation and (iii) activation of atrophy mechanism by activation of a specific FOXO-dependent program.

  3. Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation.

    PubMed

    Agley, Chibeza C; Rowlerson, Anthea M; Velloso, Cristiana P; Lazarus, Norman R; Harridge, Stephen D R

    2013-12-15

    We characterised the adherent cell types isolated from human skeletal muscle by enzymatic digestion, and demonstrated that even at 72 hours after isolation these cultures consisted predominantly of myogenic cells (CD56(+), desmin(+)) and fibroblasts (TE-7(+), collagen VI(+), PDGFRα(+), vimentin(+), fibronectin(+)). To evaluate the behaviour of the cell types obtained, we optimised a double immuno-magnetic cell-sorting method for the separation of myogenic cells from fibroblasts. This procedure gave purities of >96% for myogenic (CD56(+), desmin(+)) cells. The CD56(-) fraction obtained from the first sort was highly enriched in TE-7(+) fibroblasts. Using quantitative analysis of immunofluorescent staining for lipid content, lineage markers and transcription factors, we tested if the purified cell populations could differentiate into adipocytes in response to treatment with either fatty acids or adipocyte-inducing medium. Both treatments caused the fibroblasts to differentiate into adipocytes, as shown by loss of intracellular TE-7, upregulation of the adipogenic transcription factors PPARγ and C/EBPα, and adoption of a lipid-laden adipocyte morphology. By contrast, myogenic cells did not undergo adipogenesis and showed differential regulation of PPARγ and C/EBPα in response to these adipogenic treatments. Our results show that human skeletal muscle fibroblasts are at least bipotent progenitors that can remain as extracellular-matrix-producing cells or differentiate into adipocytes.

  4. Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation.

    PubMed

    Gal-Levi, R; Leshem, Y; Aoki, S; Nakamura, T; Halevy, O

    1998-03-12

    The role of hepatocyte growth factor (HGF) and its receptor, c-met, in proliferation and differentiation of satellite cells was studied in primary cultures of chicken skeletal muscle satellite cells and a myogenic C2 cell line. HGF mRNA was expressed mainly in the myotubes of both cultures. The addition of conditioned medium derived from those cultures had a scattering effect on the canine kidney epithelial cell line, MDCK. In contrast, c-met mRNA levels decreased during cell differentiation of C2 and primary satellite cells. Application of exogenous HGF to chicken myoblasts resulted in their enhanced DNA synthesis. Among several growth factors, HGF was the first to induce DNA synthesis in quiescent satellite cells, thereby driving them into the cell cycle. Ectopic expression of chicken HGF in primary satellite cells suppressed the activation of muscle-regulatory gene reporter constructs MCK-CAT, MRF4-CAT, MEF2-CAT and 4Rtk-CAT, as well as the gene expression of MyoD and myogenin, and MHC protein expression. Ectopic MyoD reversed HGF's inhibitory effect on MCK transactivation. These data suggest that HGF inhibits cell differentiation by inhibiting the activity of basic helix-loop-helix (bHLH)/E protein heterodimers, thus inhibiting myogenic determination factor activity and subsequent muscle-specific protein expression. During muscle growth and regeneration, HGF plays a dual role in satellite-cell myogenesis, affecting both the proliferation and differentiation of these cells in a paracrine fashion.

  5. The effects of growth hormone on avian skeletal muscle satellite cell proliferation and differentiation.

    PubMed

    Halevy, O; Hodik, V; Mett, A

    1996-01-01

    Growth hormone receptor (GH-R) mRNA was expressed in avian skeletal muscle tissue and satellite cells in culture, and was capable of binding chicken growth hormone (cGH). In the satellite cells, GH-R gene expression was regulated by cGH in a biphasic manner which correlated with the GH effect on cell proliferation: 2-10 ng/ml of the hormone increased GH-R mRNA and DNA synthesis, whereas higher concentrations attenuated these effects. GH induced insulin-like growth factor I (IGF-I) mRNA, a potential factor for satellite cell proliferation and differentiation. However, GH inhibited the gene expression of myogenin and the expression of muscle-specific proteins in a dose-dependent manner. These results suggest a role of GH for inhibiting satellite cell differentiation in an IGF-I-independent manner. During satellite cell differentiation, both GH-R mRNA expression and cGH binding peaked when cells were still proliferating and beginning to fuse, and then declined as cells fully differentiated. GH-R mRNA expression in muscle tissue and the satellite cell fraction was evaluated during chicken growth. In both fractions, GH-R mRNA peaked at 4 days of age and then declined in correlation with the reduction of muscle regulatory gene expression. Our results are in contrast with previous studies on rat muscle satellite cells, suggesting a difference between mammalian and avian species in the mode of action of GH in these cells. Our notion is that GH, via its own receptor, promotes more satellite cells to proliferate by inhibiting their differentiation, leading to the addition of more nuclei to the growing muscle.

  6. [Pattern of skeletal muscle differentiation in fish: molecular and biological approaches].

    PubMed

    Ozerniuk, N D; Nareĭko, V G; Smirnova, Iu A; Zinov'eva, R D

    2004-01-01

    The initial stages of myogenesis going in myoblasts include the stages of induction, determination, and differentiation. The induction and determination of cells in the myotomes are controlled by morphogenetic signals from neighboring tissues of the notochord and neural tube manifested as expression of genes of Shh and Wnt families, respectively. In fish (at the example of danio), this signal is passed to somite cells neighboring the notochord; later the cells migrate to the embryo surface and differentiate into slow muscle fibers. Synthesis of the main contractile proteins, primarily the components of myosin molecule--heavy chain (MHC) and individual isoforms of light chains (MLC1, MLC2, and MLC3)--are encoded by different genes during different ontogenetic stages. The peptide maps obtained after alpha-chymotrypsin digestion of MHCs from larvae, fast and slow skeletal muscle of loach are different, which points to differences in their primary structure. In addition, considerable differences were revealed in the structure of MLC isoforms at different ontogenetic stages. The definitive fast muscle contained three light chain types, MLC1, MLC2, and MLC3; slow muscle, MLC1 and MLC3; while the larval muscle fibers included a specific larval MLCL in addition to MLC3.

  7. Leucine Differentially Regulates Gene-Specific Translation in Mouse Skeletal Muscle.

    PubMed

    Drummond, Micah J; Reidy, Paul T; Baird, Lisa M; Dalley, Brian K; Howard, Michael T

    2017-09-01

    Background: Amino acids, especially leucine, are particularly effective in promoting protein synthesis. Leucine is known to increase the rate of protein synthesis in skeletal muscle through the mechanistic target of rapamycin complex 1-dependent, as well as -independent, signaling pathways. However, the overall translation program is poorly defined, and it is unknown how the activation of these pathways differentially controls the translation of specific mRNAs.Objective: Ribosome profiling and RNA sequencing were used to precisely define the translational program activated by an acute oral dose of leucine.Methods: Adult male C57BL/6 mice were deprived of food overnight before the delivery of an acute dose of l-leucine (9.4 mg) (n = 6) or vehicle (n = 5) and tissues collected 30 min later. Ribosome footprints and total RNA were isolated and subjected to deep sequencing. Changes in gene-specific mRNA abundance and ribosome occupancy were determined between the leucine-treated and control groups by aligning sequence reads to Reference Sequence database mRNAs and applying statistical features of the Bioconductor package edgeR.Results: Our data revealed mRNA features that confer translational control of skeletal muscle mRNAs in response to an acute dose of leucine. The subset of skeletal muscle mRNAs that are activated consists largely of terminal oligopyrimidine mRNAs (false discovery rate: <0.05), whereas those with reduced translation had 5' untranslated regions with increased length. Only the small nuclear RNAs, which are required for ribosome biogenesis, were significantly altered in RNA abundance. The inferred functional translational program activated by dietary leucine includes increased protein synthesis capacity and energy metabolism, upregulation of sarcomere-binding proteins, modulation of circadian rhythm, and suppression of select immune components.Conclusions: These results clarify the translation program acutely stimulated by leucine in mouse skeletal

  8. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation.

    PubMed

    Beyer, Sophie; Pontis, Julien; Schirwis, Elija; Battisti, Valentine; Rudolf, Anja; Le Grand, Fabien; Ait-Si-Ali, Slimane

    2016-01-01

    The histone 3 lysine 9 methyltransferase Setdb1 is essential for both stem cell pluripotency and terminal differentiation of different cell types. To shed light on the roles of Setdb1 in these mutually exclusive processes, we used mouse skeletal myoblasts as a model of terminal differentiation. Ex vivo studies on isolated single myofibres showed that Setdb1 is required for adult muscle stem cells expansion following activation. In vitro studies in skeletal myoblasts confirmed that Setdb1 suppresses terminal differentiation. Genomic binding analyses showed a release of Setdb1 from selected target genes upon myoblast terminal differentiation, concomitant to a nuclear export of Setdb1 to the cytoplasm. Both genomic release and cytoplasmic Setdb1 relocalisation during differentiation were dependent on canonical Wnt signalling. Transcriptomic assays in myoblasts unravelled a significant overlap between Setdb1 and Wnt3a regulated genetic programmes. Together, our findings revealed Wnt-dependent subcellular relocalisation of Setdb1 as a novel mechanism regulating Setdb1 functions and myogenesis.

  9. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation

    PubMed Central

    Beyer, Sophie; Pontis, Julien; Schirwis, Elija; Battisti, Valentine; Rudolf, Anja; Le Grand, Fabien; Ait-Si-Ali, Slimane

    2016-01-01

    The histone 3 lysine 9 methyltransferase Setdb1 is essential for both stem cell pluripotency and terminal differentiation of different cell types. To shed light on the roles of Setdb1 in these mutually exclusive processes, we used mouse skeletal myoblasts as a model of terminal differentiation. Ex vivo studies on isolated single myofibres showed that Setdb1 is required for adult muscle stem cells expansion following activation. In vitro studies in skeletal myoblasts confirmed that Setdb1 suppresses terminal differentiation. Genomic binding analyses showed a release of Setdb1 from selected target genes upon myoblast terminal differentiation, concomitant to a nuclear export of Setdb1 to the cytoplasm. Both genomic release and cytoplasmic Setdb1 relocalisation during differentiation were dependent on canonical Wnt signalling. Transcriptomic assays in myoblasts unravelled a significant overlap between Setdb1 and Wnt3a regulated genetic programmes. Together, our findings revealed Wnt-dependent subcellular relocalisation of Setdb1 as a novel mechanism regulating Setdb1 functions and myogenesis. PMID:27790377

  10. Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle

    PubMed Central

    Hinits, Yaniv; Osborn, Daniel P. S.; Carvajal, Jaime J.; Rigby, Peter W. J.; Hughes, Simon M.

    2010-01-01

    Mrf4 (Myf6) is a basic helix-loop-helix (bHLH) myogenic regulatory transcription factor (MRF) family which also contains Myod, Myf5 and myogenin. Mrf4 is implicated in commitment of amniote cells to skeletal myogenesis and is also abundantly expressed in many adult muscle fibres. The specific role of Mrf4 is unclear both because mrf4 null mice are viable, suggesting redundancy with other MRFs, and because of genetic interactions at the complex mrf4/myf5 locus. We report the cloning and expression of an mrf4 gene from zebrafish, Danio rerio, which shows conservation of linkage to myf5. Mrf4 mRNA accumulates in a subset of terminally differentiated muscle fibres in parallel with myosin protein in the trunk and fin. Although most, possibly all, trunk muscle expresses mrf4, the level of mRNA is dynamically regulated. No expression is detected in muscle precursor cell populations prior to myosin accumulation. Moreover, mrf4 expression is not detected in head muscles, at least at early stages. As fish mature, mrf4 expression is pronounced in slow muscle fibres. PMID:17638597

  11. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  12. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  13. Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.

    PubMed

    Castellani, Loriana; Salvati, Erica; Alemà, Stefano; Falcone, Germana

    2006-06-02

    The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.

  14. Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy

    PubMed Central

    Thalacker-Mercer, Anna; Stec, Michael; Cui, Xiangqin; Cross, James; Windham, Samuel

    2013-01-01

    Using genomic microarray analysis, we sought to identify and annotate differences in the pretraining skeletal muscle transcriptomes among human subjects clustered as nonresponders (Non), modest responders (Mod), and extreme responders (Xtr) based on differential magnitudes of myofiber hypertrophy in response to progressive resistance training (RT) (Non −16 μm2, Mod 1,111 μm2, or Xtr 2,475 μm2). In prior work, we noted differences among clusters in the prevalence of myogenic stem cells prior to and during RT (35), and in the translational signaling responses to the first bout of resistance exercise (30). Here we identified remarkable differences in the pretraining transcript profiles among clusters (8,026 gene transcripts differentially expressed between Xtr and Non, 2,463 between Xtr and Mod, and 1,294 between Mod and Non). Annotated functions and networks of differentially expressed genes suggest Xtr were “primed” to respond to RT through transcriptional regulation, along with a uniquely expressed network of genes involved in skeletal muscle development, while the failed response in Non may have been driven by excessive proinflammatory signaling. Protein follow-up analysis revealed higher basal levels of acetylated histone H3 (K36) in the two responder clusters (Mod, Xtr) compared with Non, and only the responders experienced alterations in the muscle content of select proteins (e.g., α-tubulin, p27kip) in response to the first resistance exercise stimulus. Overall, the widely disparate transcriptomes identified prior to RT among the three clusters support the notion that at least some of the interindividual heterogeneity in propensity for RT-induced myofiber hypertrophy is likely predetermined. PMID:23632419

  15. Differential Regulation of the Autophagy and Proteasome Pathways in Skeletal Muscles in Sepsis.

    PubMed

    Stana, Flavia; Vujovic, Marija; Mayaki, Dominique; Leduc-Gaudet, Jean-Philippe; Leblanc, Philippe; Huck, Laurent; Hussain, Sabah N A

    2017-09-01

    Skeletal muscle fiber atrophy develops in response to severe sepsis, but it is unclear as to how the proteolytic pathways that are involved in its development are differentially regulated. We investigated the link between sepsis-induced fiber atrophy and activation of the proteasome and autophagy pathways and whether the degree of activation is more severe and sustained in limb muscles than it is in the diaphragm. Randomized controlled experiment. Animal research laboratory. Adult male C57/BL6 mice. Two groups of animals were studied. The sepsis group was subjected to a cecal ligation and perforation technique, whereas the control (sham) group was subjected to abdominal surgery without cecal ligation and perforation. Measurements for both groups were performed 24, 48, and 96 hours after the surgical procedure. Atrophy was quantified in the diaphragm and tibialis anterior by measuring fiber diameter. Autophagy was evaluated using electron microscopic detection of autophagosomes and by measuring LC3B protein lipidation and autophagy-related protein expressions. Proteasomal degradation was quantified by measuring chymotrypsin-like activity of the 26S proteasome and messenger RNA expressions of muscle-specific E3 ligases. Sepsis triggered transient fiber atrophy in the diaphragm that lasted for 24 hours and prolonged atrophy in the tibialis anterior that persisted for 96 hours. The autophagy and proteasome pathways were activated in both muscles at varying intensities over the time course of sepsis. Activation was more pronounced in the tibialis anterior than in the diaphragm. Sepsis inhibited the V-Akt thymoma viral oncogene homolog 1 and complex 1 of the mammalian target of rapamycin pathways and stimulated the AMP-activated protein kinase pathway in both muscles. Sepsis triggers more severe and sustained muscle fiber atrophy in limb muscles when compared with respiratory muscle. This response is associated with enhanced proteasomal and autophagic proteolytic pathway

  16. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    SciTech Connect

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian; Brandan, Enrique

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.

  17. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation

    PubMed Central

    Luo, W; Wu, H; Ye, Y; Li, Z; Hao, S; Kong, L; Zheng, X; Lin, S; Nie, Q; Zhang, X

    2014-01-01

    Previous studies have shown that miR-203 is a skin-specific microRNA (miRNA) with a profound role in skin cell differentiation. However, emerging microarray and deep sequencing data revealed that miR-203 is also expressed in embryonic skeletal muscle and myoblasts. In this study, we found that miR-203 was transiently upregulated in chicken embryos on days 10 to 16 (E10–E16) and was sharply downregulated and even not expressed after E16 in chicken embryonic skeletal muscle. Histological profiles and weight variations of embryo skeletal muscle revealed that miR-203 expression is correlated with muscle development. In vitro experiments showed that miR-203 exhibited downregulated expression during myoblast differentiation into myotubes. miR-203 overexpression inhibited myoblast proliferation and differentiation, whereas its loss-of-function increased myoblast proliferation and differentiation. During myogenesis, miR-203 can target and inhibit the expression of c-JUN and MEF2C, which were important for cell proliferation and muscle development, respectively. The overexpression of c-JUN significantly promoted myoblast proliferation. Conversely, knockdown of c-JUN by siRNA suppressed myoblast proliferation. In addition, the knockdown of MEF2C by siRNA significantly inhibited myoblast differentiation. Altogether, these data not only suggested that the expression of miR-203 is transitory during chicken skeletal muscle development but also showed a novel role of miR-203 in inhibiting skeletal muscle cell proliferation and differentiation by repressing c-JUN and MEF2C, respectively. PMID:25032870

  18. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish

    PubMed Central

    Yao, Zizhen; Farr,, Gist H.; Tapscott, Stephen J.; Maves, Lisa

    2013-01-01

    Summary The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program. PMID:23789105

  19. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish.

    PubMed

    Yao, Zizhen; Farr, Gist H; Tapscott, Stephen J; Maves, Lisa

    2013-06-15

    The basic helix-loop-helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a-/- embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program.

  20. miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5.

    PubMed

    Zhang, Wei Ran; Zhang, Hui Na; Wang, Yi Min; Dai, Yang; Liu, Xin Feng; Li, Xin; Ding, Xiang Bin; Guo, Hong

    2017-03-01

    Development of skeletal muscle is a complicated biological process regulated by various regulation factors and signal pathways. MicroRNAs (miRNAs) are novel gene regulators that control muscle cell development. microRNA-143 (miR-143) is highly expressed in skeletal muscle, and we found that miR-143 level is significantly increased during bovine skeletal muscle satellite cells (MSCs) differentiation process through microarray analysis and qRT-PCR detection. However, the function of miR-143 in bovine muscle development remained unclear. In our work, the functions of miR-143 in bovine MSCs myogenic differentiation were investigated. We discovered that IGFBP5 is directly regulated by miR-143 using a dual-luciferase reporter assay. Overexpression of miR-143 led to decreased level of IGFBP5 protein and restrained cell proliferation and differentiation, while downregulation of miR-143 resulted in increased levels of IGFBP5 protein and restrained cell proliferation but improved differentiation. IGFBP5, an important component of IGF signaling pathway, contributes greatly to bovine muscle cell development. A mechanism that miR-143 can regulate the proliferation and differentiation of bovine MSCs through changing expression of IGFBP5 was elucidated by our study.

  1. TGF-{beta}'s delay skeletal muscle progenitor cell differentiation in an isoform-independent manner

    SciTech Connect

    Schabort, Elske J.; Merwe, Mathilde van der; Loos, Benjamin; Moore, Frances P.; Niesler, Carola U.

    2009-02-01

    Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-{beta} (TGF-{beta}) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-{beta} on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-{beta}1, -{beta}2 and -{beta}3 on wound repair in other tissues. In the current study we compared the effect of TGF-{beta}1, -{beta}2 and -{beta}3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-{beta} increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-{beta}1, -{beta}2 and -{beta}3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-{beta} promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner.

  2. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation

    NASA Technical Reports Server (NTRS)

    Collinsworth, Amy M.; Zhang, Sarah; Kraus, William E.; Truskey, George A.

    2002-01-01

    The effect of differentiation on the transverse mechanical properties of mammalian myocytes was determined by using atomic force microscopy. The apparent elastic modulus increased from 11.5 +/- 1.3 kPa for undifferentiated myoblasts to 45.3 +/- 4.0 kPa after 8 days of differentiation (P < 0.05). The relative contribution of viscosity, as determined from the normalized hysteresis area, ranged from 0.13 +/- 0.02 to 0.21 +/- 0.03 and did not change throughout differentiation. Myosin expression correlated with the apparent elastic modulus, but neither myosin nor beta-tubulin were associated with hysteresis. Microtubules did not affect mechanical properties because treatment with colchicine did not alter the apparent elastic modulus or hysteresis. Treatment with cytochalasin D or 2,3-butanedione 2-monoxime led to a significant reduction in the apparent elastic modulus but no change in hysteresis. In summary, skeletal muscle cells exhibited viscoelastic behavior that changed during differentiation, yielding an increase in the transverse elastic modulus. Major contributors to changes in the transverse elastic modulus during differentiation were actin and myosin.

  3. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation

    NASA Technical Reports Server (NTRS)

    Collinsworth, Amy M.; Zhang, Sarah; Kraus, William E.; Truskey, George A.

    2002-01-01

    The effect of differentiation on the transverse mechanical properties of mammalian myocytes was determined by using atomic force microscopy. The apparent elastic modulus increased from 11.5 +/- 1.3 kPa for undifferentiated myoblasts to 45.3 +/- 4.0 kPa after 8 days of differentiation (P < 0.05). The relative contribution of viscosity, as determined from the normalized hysteresis area, ranged from 0.13 +/- 0.02 to 0.21 +/- 0.03 and did not change throughout differentiation. Myosin expression correlated with the apparent elastic modulus, but neither myosin nor beta-tubulin were associated with hysteresis. Microtubules did not affect mechanical properties because treatment with colchicine did not alter the apparent elastic modulus or hysteresis. Treatment with cytochalasin D or 2,3-butanedione 2-monoxime led to a significant reduction in the apparent elastic modulus but no change in hysteresis. In summary, skeletal muscle cells exhibited viscoelastic behavior that changed during differentiation, yielding an increase in the transverse elastic modulus. Major contributors to changes in the transverse elastic modulus during differentiation were actin and myosin.

  4. Isolation of neural precursor cells from skeletal muscle tissues and their differentiation into neuron-like cells.

    PubMed

    Park, Jung Sik; Kim, Soyeon; Han, Dong Keun; Lee, Ji Youl; Ghil, Sung Ho

    2007-08-31

    Skeletal muscle contains several precursor cells that generate muscle, bone, cartilage and blood cells. Although there are reports that skeletal muscle-derived cells can trans-differentiate into neural-lineage cells, methods for isolating precursor cells, and procedures for successful neural induction have not been fully established. Here, we show that the preplate cell isolation method, which separates cells based on their adhesion characteristics, permits separation of cells possessing neural precursor characteristics from other cells of skeletal muscle tissues. We term these isolated cells skeletal muscle-derived neural precursor cells (SMNPs). The isolated SMNPs constitutively expressed neural stem cell markers. In addition, we describe effective neural induction materials permitting the neuron-like cell differentiation of SMNPs. Treatment with retinoic acid or forskolin facilitated morphological changes in SMNPs; they differentiated into neuron-like cells that possessed specific neuronal markers. These results suggest that the preplate isolation method, and treatment with retinoic acid or forskolin, may provide vital assistance in the use of SMNPs in cell-based therapy of neuronal disease.

  5. Temporal correlation between differentiation factor expression and microRNAs in Holstein bovine skeletal muscle.

    PubMed

    Miretti, S; Volpe, M G; Martignani, E; Accornero, P; Baratta, M

    2017-02-01

    activation of the myogenic gene program. During the subsequent 4 days of culture in DM, several tested genes, including MRF4, MYOG, MEF2C, TMEM8C, DES and MYH1, showed increased expression (P<0.05), and these levels remained high throughout the culture period investigated. Meanwhile, the expression of genes involved in the differentiation process also miRNA-1, miRNA-133a and miRNA-206 were strongly up-regulated on the 1st day in DM (day 7; P<0.05). Analysis revealed highly significant correlations between myomiRNAs expression and MEF2C, MRF4, TMEM8C, DES and MYH1 gene expression (P<0.001). Knowledge about the transcriptional changes correlating with the growth and differentiation of skeletal muscle fibers could be helpful for developing strategies to improve production performance in livestock.

  6. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments.

    PubMed

    Greiwe, L; Vinck, M; Suhr, F

    2016-05-01

    Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Gαi2 Signaling Is Required for Skeletal Muscle Growth, Regeneration, and Satellite Cell Proliferation and Differentiation

    PubMed Central

    Minetti, Giulia C.; Feige, Jerome N.; Bombard, Florian; Heier, Annabelle; Morvan, Fredric; Nürnberg, Bernd; Leiss, Veronika; Birnbaumer, Lutz

    2014-01-01

    We have previously shown that activation of Gαi2, an α subunit of the heterotrimeric G protein complex, induces skeletal muscle hypertrophy and myoblast differentiation. To determine whether Gαi2 is required for skeletal muscle growth or regeneration, Gαi2-null mice were analyzed. Gαi2 knockout mice display decreased lean body mass, reduced muscle size, and impaired skeletal muscle regeneration after cardiotoxin-induced injury. Short hairpin RNA (shRNA)-mediated knockdown of Gαi2 in satellite cells (SCs) leads to defective satellite cell proliferation, fusion, and differentiation ex vivo. The impaired differentiation is consistent with the observation that the myogenic regulatory factors MyoD and Myf5 are downregulated upon knockdown of Gαi2. Interestingly, the expression of microRNA 1 (miR-1), miR-27b, and miR-206, three microRNAs that have been shown to regulate SC proliferation and differentiation, is increased by a constitutively active mutant of Gαi2 [Gαi2(Q205L)] and counterregulated by Gαi2 knockdown. As for the mechanism, this study demonstrates that Gαi2(Q205L) regulates satellite cell differentiation into myotubes in a protein kinase C (PKC)- and histone deacetylase (HDAC)-dependent manner. PMID:24298018

  8. (*) Tissue-Specific Extracellular Matrix Enhances Skeletal Muscle Precursor Cell Expansion and Differentiation for Potential Application in Cell Therapy.

    PubMed

    Zhang, Deying; Zhang, Yong; Zhang, Yuanyuan; Yi, Hualin; Wang, Zhan; Wu, Rongpei; He, Dawei; Wei, Guanghui; Wei, Shicheng; Hu, Yun; Deng, Junhong; Criswell, Tracy; Yoo, James; Zhou, Yu; Atala, Anthony

    2017-08-01

    Skeletal muscle precursor cells (MPCs) are considered a key candidate for cell therapy in the treatment of skeletal muscle dysfunction due to injury, disease, or age. However, expansion of a sufficient number of functional skeletal muscle cells in vitro from a small tissue biopsy has been challenging due to changes in phenotypic expression of these cells under traditional culture conditions. Thus, the aim of the study was to develop a better culture system for the expansion and myo-differentiation of MPCs that could further be used for therapy. For this purpose, we developed an ideal method of tissue decellularization and compared the ability of different matrices to support MPC growth and differentiation. Porcine-derived skeletal muscle and liver and kidney extracellular matrix (ECM) were generated by decellularization methods consisting of distilled water, 0.2 mg/mL DNase, or 5% fetal bovine serum. Acellular matrices were further homogenized, dissolved, and combined with a hyaluronic acid-based hydrogel decorated with heparin (ECM-HA-HP). The cell proliferation and myogenic differentiation capacity of human MPCs were assessed when grown on gel alone, ECM, or each ECM-HA-HP substrate. Human MPC proliferation was significantly enhanced when cultured on the ECM-HA-HP substrates compared to the other substrates tested, with the greatest proliferation on the muscle ECM-HA-HP (mECM-HA-HP) substrate. The number of differentiated myotubes was significantly increased on the mECM-HA-HP substrate compared to the other gel-ECM substrates, as well as the numbers of MPCs expressing specific myogenic cell markers (i.e., myosin, desmin, myoD, and myf5). In conclusion, skeletal mECM-HA-HP as a culture substrate provided an optimal culture microenvironment potentially due to its similarity to the in vivo environment. These data suggest a potential use of skeletal muscle-derived ECM gel for the expansion and differentiation of human MPCs for cell-based therapy for skeletal muscle

  9. Osteogenic Differentiation Capacity of In Vitro Cultured Human Skeletal Muscle for Expedited Bone Tissue Engineering

    PubMed Central

    Miao, Chunlei; Zhou, Lulu; Tian, Lufeng; Zhang, Yingjie; Zhang, Wei; Yang, Fanghong; Liu, Tianyi

    2017-01-01

    Expedited bone tissue engineering employs the biological stimuli to harness the intrinsic regenerative potential of skeletal muscle to trigger the reparative process in situ to improve or replace biological functions. When genetically modified with adenovirus mediated BMP2 gene transfer, muscle biopsies from animals have demonstrated success in regenerating bone within rat bony defects. However, it is uncertain whether the human adult skeletal muscle displays an osteogenic potential in vitro when a suitable biological trigger is applied. In present study, human skeletal muscle cultured in a standard osteogenic medium supplemented with dexamethasone demonstrated significant increase in alkaline phosphatase activity approximately 24-fold over control at 2-week time point. More interestingly, measurement of mRNA levels revealed the dramatic results for osteoblast transcripts of alkaline phosphatase, bone sialoproteins, transcription factor CBFA1, collagen type I, and osteocalcin. Calcified mineral deposits were demonstrated on superficial layers of muscle discs after an extended 8-week osteogenic induction. Taken together, these are the first data supporting human skeletal muscle tissue as a promising potential target for expedited bone regeneration, which of the technologies is a valuable method for tissue repair, being not only effective but also inexpensive and clinically expeditious. PMID:28210626

  10. Osteogenic Differentiation Capacity of In Vitro Cultured Human Skeletal Muscle for Expedited Bone Tissue Engineering.

    PubMed

    Miao, Chunlei; Zhou, Lulu; Tian, Lufeng; Zhang, Yingjie; Zhang, Wei; Yang, Fanghong; Liu, Tianyi; Tang, Shengjian; Liu, Fangjun

    2017-01-01

    Expedited bone tissue engineering employs the biological stimuli to harness the intrinsic regenerative potential of skeletal muscle to trigger the reparative process in situ to improve or replace biological functions. When genetically modified with adenovirus mediated BMP2 gene transfer, muscle biopsies from animals have demonstrated success in regenerating bone within rat bony defects. However, it is uncertain whether the human adult skeletal muscle displays an osteogenic potential in vitro when a suitable biological trigger is applied. In present study, human skeletal muscle cultured in a standard osteogenic medium supplemented with dexamethasone demonstrated significant increase in alkaline phosphatase activity approximately 24-fold over control at 2-week time point. More interestingly, measurement of mRNA levels revealed the dramatic results for osteoblast transcripts of alkaline phosphatase, bone sialoproteins, transcription factor CBFA1, collagen type I, and osteocalcin. Calcified mineral deposits were demonstrated on superficial layers of muscle discs after an extended 8-week osteogenic induction. Taken together, these are the first data supporting human skeletal muscle tissue as a promising potential target for expedited bone regeneration, which of the technologies is a valuable method for tissue repair, being not only effective but also inexpensive and clinically expeditious.

  11. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs.

    PubMed

    Ikeda, Kazushi; Ito, Akira; Sato, Masanori; Kanno, Shota; Kawabe, Yoshinori; Kamihira, Masamichi

    2017-05-01

    Although skeletal muscle tissue engineering has been extensively studied, the physical forces produced by tissue-engineered skeletal muscles remain to be improved for potential clinical utility. In this study, we examined the effects of mild heat stimulation and supplementation of a l-ascorbic acid derivative, l-ascorbic acid 2-phosphate (AscP), on myoblast differentiation and physical force generation of tissue-engineered skeletal muscles. Compared with control cultures at 37°C, mouse C2C12 myoblast cells cultured at 39°C enhanced myotube diameter (skeletal muscle hypertrophy), whereas mild heat stimulation did not promote myotube formation (differentiation rate). Conversely, AscP supplementation resulted in an increased differentiation rate but did not induce skeletal muscle hypertrophy. Following combined treatment with mild heat stimulation and AscP supplementation, both skeletal muscle hypertrophy and differentiation rate were enhanced. Moreover, the active tension produced by the tissue-engineered skeletal muscles was improved following combined treatment. These findings indicate that tissue culture using mild heat stimulation and AscP supplementation is a promising approach to enhance the function of tissue-engineered skeletal muscles. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    SciTech Connect

    Cambier, Linda; Pomies, Pascal

    2011-06-17

    Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletal muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.

  13. Rotator cuff tear state modulates self-renewal and differentiation capacity of human skeletal muscle progenitor cells.

    PubMed

    Thomas, Kelsey A; Gibbons, Michael C; Lane, John G; Singh, Anshuman; Ward, Samuel R; Engler, Adam J

    2017-08-01

    Full thickness rotator cuff tendon (RCT) tears have long-term effects on RC muscle atrophy and fatty infiltration, with lasting damage even after surgical tendon repair. Skeletal muscle progenitor cells (SMPs) are critical for muscle repair in response to injury, but the inability of RC muscles to recover from chronic RCT tear indicates possible deficits in repair mechanisms. Here we investigated if muscle injury state was a crucial factor during human SMP expansion and differentiation ex vivo. SMPs were isolated from muscles in patients with no, partial-thickness (PT), or full-thickness (FT) RCT tears. Despite using growth factors, physiological niche stiffness, and muscle-mimetic extracellular matrix (ECM) proteins, we found that SMPs isolated from human RC muscle with RCT tears proliferated slower but fused into myosin heavy chain (MHC)-positive myotubes at higher rates than SMPs from untorn RCTs. Proteomic analysis of RC muscle tissue revealed shifts in muscle composition with pathology, as muscle from massive RCT tears had increased ECM deposition compared with no tear RC muscle. Together these data imply that the remodeled niche in a torn RCT primes SMPs not for expansion but for differentiation, thus limiting longer-term self-renewal necessary for regeneration after surgical repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1816-1823, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. CD13 Regulates Anchorage and Differentiation of the Skeletal Muscle Satellite Stem Cell Population in Ischemic Injury

    PubMed Central

    Rahman, M. Mamunur; Ghosh, Mallika; Subramani, Jaganathan; Fong, Guo-Hua; Carlson, Morgan E.; Shapiro, Linda H.

    2014-01-01

    CD13 is a multifunctional cell surface molecule that regulates inflammatory and angiogenic mechanisms in vitro, but its contribution to these processes in vivo or potential roles in stem cell biology remains unexplored. We investigated the impact of loss of CD13 on a model of ischemic skeletal muscle injury that involves angiogenesis, inflammation and stem cell mobilization. Consistent with its role as an inflammatory adhesion molecule, lack of CD13 altered myeloid trafficking in the injured muscle, resulting in cytokine profiles skewed toward a pro-healing environment. Despite this healing-favorable context, CD13KO animals showed significantly impaired limb perfusion with increased necrosis, fibrosis and lipid accumulation. Capillary density was correspondingly decreased, implicating CD13 in skeletal muscle angiogenesis. The number of CD45−/Sca1−/α7-integrin+/β1-integrin+ satellite cells was markedly diminished in injured CD13KO muscles and adhesion of isolated CD13KO satellite cells was impaired while their differentiation was accelerated. Bone marrow transplantation studies showed contributions from both host and donor cells to wound healing. Importantly, CD13 was co-expressed with Pax7 on isolated muscle-resident satellite cells. Finally, phosphorylated-FAK and ERK levels were reduced in injured CD13KO muscles, consistent with CD13 regulating satellite cell adhesion, potentially contributing to the maintenance and renewal of the satellite stem cell pool and facilitating skeletal muscle regeneration. PMID:24307555

  15. Clonal differentiation of skeletal muscle-derived CD34(-)/45(-) stem cells into cardiomyocytes in vivo.

    PubMed

    Tamaki, Tetsuro; Uchiyama, Yoshiyasu; Okada, Yoshinori; Tono, Kayoko; Masuda, Maki; Nitta, Masahiro; Hoshi, Akio; Akatsuka, Akira

    2010-04-01

    The differentiation and/or therapeutic potential of skeletal muscle-derived stem cells for cardiac infarction have been studied extensively for use in cellular cardiomyoplasty, as injured cardiomyocytes exhibit limited regenerative capacity. We previously reported cardio-myogenic differentiation of skeletal muscle-derived CD34+/45(-) (Sk-34) stem cells after therapeutic transplantation. However, the clonal differentiation potential of these cells remains unknown. Here, we show that skeletal muscle-derived CD34(-)/45(-) (Sk-DN) stem cells, which are situated upstream of Sk-34 cells in the same lineage, exhibit clonal differentiation into cardiomyocytes after single cell-derived single-sphere implantation into myocardium. Sk-DN cells were enzymatically isolated from green fluorescent protein (GFP) transgenic mice and purified by flow cytometry, and were then clonally cultured in collagen-based medium with bFGF and EGF after clonal cell sorting. Single cell-derived single-sphere colonies of Sk-DN cells were directly implanted into the wild-type mouse myocardium. At 4 weeks after implantation, donor cells exhibited typical cardiomyocyte structure with the formation of gap-junctions between donor and recipient cells. Expression of specific mRNAs for cardiomyocytes, such as cardiac actin and GATA-4, Nkx2-5, Isl-1, Mef2, and Hand2, were also seen in clonal cell cultures of Sk-DN cells. Cell fusion-independent differentiation was also confirmed by bulk cell transplantation using Cre- and loxP (enhanced GFP)-mice. We conclude that Sk-DN cells can give rise to cardiac muscle cells clonally, and that skeletal muscle includes a practical cell source for cellular cardiomyoplasty.

  16. Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts.

    PubMed

    Espinoza-Lewis, Ramon A; Yang, Qiumei; Liu, Jianming; Huang, Zhan-Peng; Hu, Xiaoyun; Chen, Daiwen; Wang, Da-Zhi

    2017-04-05

    Control of muscle cell proliferation and differentiation is essential to proper muscle development, function, and regeneration, and numerous transcriptional and post-transcriptional regulators are key to these processes. For example, recent studies have linked microRNAs (miRNAs) to muscle gene expression, development, and disease. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) has been reported to bind the 3'UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function in skeletal muscle and general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. SiRNA-based inhibition of Pcbp1 transcript levels in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth, a slow- to fast- myofibril switch and in the proliferation of myoblasts and muscle satellite cells. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with Argonaute 2 (AGO2) and other miRNA pathway components. Our results therefore link the function of Pcbp1 to the miRNA pathway in skeletal muscle in mice. Future studies could help determine whether human Pbcp1 is involved in disorders such as muscular dystrophy or muscle degeneration.

  17. Effects of Creatine in Skeletal Muscle Cells and in Myoblasts Differentiating Under Normal or Oxidatively Stressing Conditions.

    PubMed

    Sestili, Piero; Barbieri, Elena; Stocchi, Vilberto

    2016-01-01

    Creatine (Cr) - along with the Cr kinase (CK) system - plays a fundamental role in muscle biochemistry and physiology not limited to its ergogenic role. Indeed, Cr has been shown to exert pleiotropic effects, which promote protein accretion, muscle-specific protein synthesis, growth in cultured myogenic cells and favour the myogenic process either in normal or stressing conditions. This review focuses on the effects of Cr supplementation on cellular and mitochondrial biochemistry and function in the course of skeletal muscle differentiation, either in normal or oxidatively stressing conditions, and on the ensuing nutraceutical/therapeutic perspectives.

  18. Nitric oxide availability is increased in contracting skeletal muscle from aged mice, but does not differentially decrease muscle superoxide.

    PubMed

    Pearson, T; McArdle, A; Jackson, M J

    2015-01-01

    Reactive oxygen and nitrogen species have been implicated in the loss of skeletal muscle mass and function that occurs during aging. Nitric oxide (NO) and superoxide are generated by skeletal muscle and where these are generated in proximity their chemical reaction to form peroxynitrite can compete with the superoxide dismutation to hydrogen peroxide. Changes in NO availability may therefore theoretically modify superoxide and peroxynitrite activities in tissues, but published data are contradictory regarding aging effects on muscle NO availability. We hypothesised that an age-related increase in NO generation might increase peroxynitrite generation in muscles from old mice, leading to an increased nitration of muscle proteins and decreased superoxide availability. This was examined using fluorescent probes and an isolated fiber preparation to examine NO content and superoxide in the cytosol and mitochondria of muscle fibers from adult and old mice both at rest and following contractile activity. We also examined the 3-nitrotyrosine (3-NT) and peroxiredoxin 5 (Prx5) content of muscles from mice as markers of peroxynitrite activity. Data indicate that a substantial age-related increase in NO levels occurred in muscle fibers during contractile activity and this was associated with an increase in muscle eNOS. Muscle proteins from old mice also showed an increased 3-NT content. Inhibition of NOS indicated that NO decreased superoxide bioavailability in muscle mitochondria, although this effect was not age related. Thus increased NO in muscles of old mice was associated with an increased 3-NT content that may potentially contribute to age-related degenerative changes in skeletal muscle.

  19. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development.

    PubMed

    Wei, W; He, H-B; Zhang, W-Y; Zhang, H-X; Bai, J-B; Liu, H-Z; Cao, J-H; Chang, K-C; Li, X-Y; Zhao, S-H

    2013-06-13

    MicroRNAs (miRNAs) are a type of endogenous noncoding small RNAs involved in the regulation of multiple biological processes. Recently, miR-29 was found to participate in myogenesis. However, the underlying mechanisms by which miR-29 promotes myogenesis have not been identified. We found here that miR-29 was significantly upregulated with age in postnatal mouse skeletal muscle and during muscle differentiation. Overexpression of miR-29 inhibited mouse C2C12 myoblast proliferation and promoted myotube formation. miR-29 specifically targeted Akt3, a member of the serine/threonine protein kinase family responsive to growth factor cell signaling, to result in its post-transcriptional downregulation. Furthermore, knockdown of Akt3 by siRNA significantly inhibited the proliferation of C2C12 cells, and conversely, overexpression of Akt3 suppressed their differentiation. Collectively and given the inverse endogenous expression pattern of rising miR-29 levels and decreasing Akt3 protein levels with age in mouse skeletal muscle, we propose a novel mechanism in which miR-29 modulates growth and promotes differentiation of skeletal muscle through the post-transcriptional downregulation of Akt3.

  20. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging.

    PubMed

    McDonagh, Brian; Sakellariou, Giorgos K; Smith, Neil T; Brownridge, Philip; Jackson, Malcolm J

    2014-11-07

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054.

  1. Differential regulation of oxytocin receptor in various adipose tissue depots and skeletal muscle types in obese Zucker rats.

    PubMed

    Gajdosechova, L; Krskova, K; Olszanecki, R; Zorad, S

    2015-07-01

    Multifunctional peptide oxytocin currently undergoes intensive research due to its proposed anti-obesity properties. Until now, little is known about regulation of oxytocin receptor in metabolically active tissues in obesity. The aim of the present study was to measure expression of oxytocin receptor upon obese phenotype with respect to the variety among adipose tissue and skeletal muscles with distinct anatomical localisation. Total homogenates were prepared from epididymal, retroperitoneal and inguinal adipose tissues as well as quadriceps and soleus muscle from lean and obese Zucker rats. Oxytocin receptor protein was determined by immunoblot. Interestingly, elevated oxytocin receptor was observed in epididymal adipose tissue of obese rats in contrast to its downregulation in subcutaneous and no change in retroperitoneal fat. In lean animals, oxytocin receptor protein was expressed at similar levels in all adipose depots. This uniformity was not observed in the case of skeletal muscle in which fibre type composition seems to be determinant of oxytocin receptor expression. Quadriceps muscle with the predominance of glycolytic fibres exhibits higher oxytocin receptor expression than almost exclusively oxidative soleus muscle. Oxytocin receptor protein levels were decreased in both skeletal muscles analysed upon obese phenotype. The present work demonstrates that even under identical endocrine circumstances, oxytocin receptor is differentially regulated in adipose tissue of obese rats depending on fat depot localisation. These results also imply which tissues may be preferentially targeted by oxytocin treatment in metabolic disease. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging

    PubMed Central

    2014-01-01

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054. PMID:25181601

  3. In vivo assessment of contractile strength distinguishes differential gene function in skeletal muscle of zebrafish larvae

    PubMed Central

    Martin, Brit L.; Gallagher, Thomas L.; Rastogi, Neha; Davis, Jonathan P.; Beattie, Christine E.; Amacher, Sharon L.

    2015-01-01

    The accessible genetics and extensive skeletal musculature of the zebrafish make it a versatile and increasingly used model for studying muscle contraction. We here describe the development of an in vivo assay for measuring the contractile force of intact zebrafish at the larval stage. In addition, as proof of applicability, we have used this assay to quantify contractile strength of zebrafish larvae in a morphant model of deranged rbfox function. Average maximum tetanic (180 Hz) whole body forces produced by wild-type larvae at 2, 3, 4, and 5 days postfertilization amounted to 3.0, 7.2, 9.1, and 10.8 mN, respectively. To compare at potentially different stages of muscle development, we developed an immunohistological assay for empirically determining the cross-sectional area of larval trunk skeletal muscle to quantify muscle-specific force per cross-sectional area. At 4-5 days postfertilization, specific force amounts to ∼300 mN/mm2, which is similar to fully developed adult mammalian skeletal muscle. We used these assays to measure contractile strength in zebrafish singly or doubly deficient for two rbfox paralogs, rbfox1l and rbfox2, which encode RNA-binding factors shown previously to modulate muscle function and muscle-specific splicing. We found rbfox2 morphants produce maximal tetanic forces similar to wild-type larvae, whereas rbfox1l morphants demonstrate significantly impaired function. rbfox1l/rbfox2 morphants are paralyzed, and their lack of contractile force production in our assay suggests that paralysis is a muscle-autonomous defect. These quantitative functional results allow measurement of muscle-specific phenotypes independent of neural input. PMID:26251513

  4. Effects of HMG-CoA reductase inhibitors on growth and differentiation of cultured rat skeletal muscle cells.

    PubMed

    Veerkamp, J H; Smit, J W; Benders, A A; Oosterhof, A

    1996-04-12

    HMG-CoA reductase inhibitors have been associated with skeletal muscle myopathy, ranging from asymptomatic elevations of serum creatine kinase (CK) activity to rhabdomyolysis. In this study, we assessed the effects of addition of different concentrations of simvastatin and pravastatin on growth and differentiation of cultured primary rat skeletal muscle cells. Protein concentrations, CK activity and percentage CK-MM, which is a parameter for maturation, were determined. Effects were generally stronger if inhibitors were added to both growth and differentiation medium rather than only to differentiation medium. Addition of 25 microM pravastatin caused only a decrease of CK activity. Addition of 1-5 microM simvastatin resulted in a decrease of protein concentration, CK activity and percentage CK-MM, whereas 25 microM simvastatin resulted in cell death. Addition of mevalonic acid or cholesterol could not prevent the effects of 1 microM simvastatin. In addition, 1 microM simvastatin did not influence the cholesterol and phospholipid content of the cells. Superfusion of cultured cells with simvastatin concentrations of 10 microM and higher caused a transient increase of the cytoplasmic calcium concentration followed by an apparent second rise and cell puncture. The results indicate that HMG-CoA reductase inhibitors may affect skeletal muscle cell regeneration in vivo by a direct toxic effect on growth and differentiation.

  5. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.

    PubMed

    Witt, R; Weigand, A; Boos, A M; Cai, A; Dippold, D; Boccaccini, A R; Schubert, D W; Hardt, M; Lange, C; Arkudas, A; Horch, R E; Beier, J P

    2017-02-28

    Volumetric muscle loss caused by trauma or after tumour surgery exceeds the natural regeneration capacity of skeletal muscle. Hence, the future goal of tissue engineering (TE) is the replacement and repair of lost muscle tissue by newly generating skeletal muscle combining different cell sources, such as myoblasts and mesenchymal stem cells (MSCs), within a three-dimensional matrix. Latest research showed that seeding skeletal muscle cells on aligned constructs enhance the formation of myotubes as well as cell alignment and may provide a further step towards the clinical application of engineered skeletal muscle. In this study the myogenic differentiation potential of MSCs upon co-cultivation with myoblasts and under stimulation with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) was evaluated. We further analysed the behaviour of MSC-myoblast co-cultures in different 3D matrices. Primary rat myoblasts and rat MSCs were mono- and co-cultivated for 2, 7 or 14 days. The effect of different concentrations of HGF and IGF-1 alone, as well as in combination, on myogenic differentiation was analysed using microscopy, multicolour flow cytometry and real-time PCR. Furthermore, the influence of different three-dimensional culture models, such as fibrin, fibrin-collagen-I gels and parallel aligned electrospun poly-ε-caprolacton collagen-I nanofibers, on myogenic differentiation was analysed. MSCs could be successfully differentiated into the myogenic lineage both in mono- and in co-cultures independent of HGF and IGF-1 stimulation by expressing desmin, myocyte enhancer factor 2, myosin heavy chain 2 and alpha-sarcomeric actinin. An increased expression of different myogenic key markers could be observed under HGF and IGF-1 stimulation. Even though, stimulation with HGF/IGF-1 does not seem essential for sufficient myogenic differentiation. Three-dimensional cultivation in fibrin-collagen-I gels induced higher levels of myogenic differentiation

  6. Skeletal muscle-derived progenitors capable of differentiating into cardiomyocytes proliferate through myostatin-independent TGF-{beta} family signaling

    SciTech Connect

    Nomura, Tetsuya; Ueyama, Tomomi; Ashihara, Eishi; Tateishi, Kento; Asada, Satoshi; Nakajima, Norio; Isodono, Koji; Takahashi, Tomosaburo; Matsubara, Hiroaki Oh, Hidemasa

    2008-01-25

    The existence of skeletal muscle-derived stem cells (MDSCs) has been suggested in mammals; however, the signaling pathways controlling MDSC proliferation remain largely unknown. Here we report the isolation of myosphere-derived progenitor cells (MDPCs) that can give rise to beating cardiomyocytes from adult skeletal muscle. We identified that follistatin, an antagonist of TGF-{beta} family members, was predominantly expressed in MDPCs, whereas myostatin was mainly expressed in myogenic cells and mature skeletal muscle. Although follistatin enhanced the replicative growth of MDPCs through Smad2/3 inactivation and cell cycle progression, disruption of myostatin did not increase the MDPC proliferation. By contrast, inhibition of activin A (ActA) or growth differentiation factor 11 (GDF11) signaling dramatically increased MDPC proliferation via down-regulation of p21 and increases in the levels of cdk2/4 and cyclin D1. Thus, follistatin may be an effective progenitor-enhancing agent neutralizing ActA and GDF11 signaling to regulate the growth of MDPCs in skeletal muscle.

  7. Down-regulation of an ankyrin repeat-containing protein, V-1, during skeletal muscle differentiation and its re-expression in the regenerative process of muscular dystrophy.

    PubMed

    Furukawa, Yuko; Hashimoto, Naohiro; Yamakuni, Tohru; Ishida, Yukisato; Kato, Chieko; Ogashiwa, Masayo; Kobayashi, Masumi; Kobayashi, Takayoshi; Nonaka, Ikuya; Mizusawa, Hidehiro; Song, Si Young

    2003-01-01

    Using Western blot analysis and immunohistochemical methods, we examined the expression of V-1, a member of the ankyrin repeat-containing protein family, during differentiation and regeneration of skeletal muscle. The expression of V-1 was high in cultured myoblasts and decreased during their differentiation into myotubes, while high expression was maintained when muscle differentiation was inhibited by treatment with basic fibroblast growth factor. Down-regulation of V-1 also occurred during in vivo muscle differentiation from embryonic to postnatal stages, reaching an undetectable level in mature skeletal muscle. In contrast, strong V-1 immunoreactivity was detected again in myoblasts and regenerating muscle fibers with a small diameter, which were observed in Duchenne muscular dystrophy and its animal model, mdx mouse. Thus, it seems that V-1 is a good marker for early stage of muscle regeneration and changes of its expression suggest that V-1 plays a role in prenatal muscle differentiation and postnatal muscle regeneration.

  8. miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4

    PubMed Central

    Lee, Kwang-Pyo; Shin, Yeo Jin; Panda, Amaresh C.; Abdelmohsen, Kotb; Kim, Ji Young; Lee, Seung-Min; Bahn, Young Jae; Choi, Jeong Yi; Kwon, Eun-Soo; Baek, Su-Jin; Kim, Seon-Young; Gorospe, Myriam; Kwon, Ki-Sun

    2015-01-01

    The myogenic capacity of myoblasts decreases in skeletal muscle with age. In addition to environmental factors, intrinsic factors are important for maintaining the regenerative potential of muscle progenitor cells, but their identities are largely unknown. Here, comparative analysis of microRNA (miRNA) expression profiles in young and old myoblasts uncovered miR-431 as a novel miRNA showing markedly reduced abundance in aged myoblasts. Importantly, elevating miR-431 improved the myogenic capacity of old myoblasts, while inhibiting endogenous miR-431 lowered myogenesis. Bioinformatic and biochemical analyses revealed that miR-431 directly interacted with the 3′ untranslated region (UTR) of Smad4 mRNA, which encodes one of the downstream effectors of TGF-β signaling. In keeping with the low levels of miR-431 in old myoblasts, SMAD4 levels increased in this myoblast population. Interestingly, in an in vivo model of muscle regeneration following cardiotoxin injury, ectopic miR-431 injection greatly improved muscle regeneration and reduced SMAD4 levels. Consistent with the finding that the mouse miR-431 seed sequence in the Smad4 3′ UTR is conserved in the human SMAD4 3′ UTR, inhibition of miR-431 also repressed the myogenic capacity of human skeletal myoblasts. Taken together, our results suggest that the age-associated miR-431 plays a key role in maintaining the myogenic ability of skeletal muscle with age. PMID:26215566

  9. Differential Interaction of Cardiac, Skeletal Muscle, and Yeast Tropomyosins with Fluorescent (Pyrene235) Yeast Actin

    PubMed Central

    Chen, Weizu; Wen, Kuo-Kuang; Sens, Ashley E.; Rubenstein, Peter A.

    2006-01-01

    To monitor binding of tropomyosin to yeast actin, we mutated S235 to C and labeled the actin with pyrene maleimide at both C235 and the normally reactive C374. Saturating cardiac tropomyosin (cTM) caused about a 20% increase in pyrene fluorescence of the doubly labeled F-actin but no change in WT actin C374 probe fluorescence. Skeletal muscle tropomyosin caused only a 7% fluorescence increase, suggesting differential binding modes for the two tropomyosins. The increased cTM-induced fluorescence was proportional to the extent of tropomyosin binding. Yeast tropomyosin (TPM1) produced less increase in fluorescence than did cTM, whereas that caused by yeast TPM2 was greater than either TPM1 or cTM. Cardiac troponin largely reversed the cTM-induced fluorescence increase, and subsequent addition of calcium resulted in a small fluorescence recovery. An A230Y mutation, which causes a Ca+2-dependent hypercontractile response of regulated thin filaments, did not change probe235 fluorescence of actin alone or with tropomyosin ± troponin. However, addition of calcium resulted in twice the fluorescence recovery observed with WT actin. Our results demonstrate isoform-specific binding of different tropomyosins to actin and suggest allosteric regulation of the tropomyosin/actin interaction across the actin interdomain cleft. PMID:16326906

  10. Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via ERK1/2 and NFATc1 signaling pathways.

    PubMed

    Chen, Xiaoling; Luo, Yanliu; Huang, Zhiqing; Jia, Gang; Liu, Guangmang; Zhao, Hua

    2017-03-22

    Akirin2, a novel nuclear factor, plays an important role in myogenesis. To investigate the role of Akirin2 in proliferation and differentiation of porcine skeletal muscle satellite cells, Akirin2 overexpression and Akirin2 silence technologies were employed. Our results showed that overexpression of Akirin2 markedly enhanced the proliferation and differentiation of porcine skeletal muscle satellite cells, whereas silencing of Akirin2 got the opposite results. Furthermore, our results showed that Akirin2 affected proliferation and differentiation of porcine skeletal muscle satellite cells through extracellular-signal regulated kinase-1/2 (ERK1/2) and NFATc1 signaling pathways. These results indicate that Akirin2 can effectively promote skeletal muscle satellite cells proliferation and differentiation, acting through ERK1/2- and NFATc1-dependent mechanisms.

  11. Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via ERK1/2 and NFATc1 signaling pathways

    PubMed Central

    Chen, Xiaoling; Luo, Yanliu; Huang, Zhiqing; Jia, Gang; Liu, Guangmang; Zhao, Hua

    2017-01-01

    Akirin2, a novel nuclear factor, plays an important role in myogenesis. To investigate the role of Akirin2 in proliferation and differentiation of porcine skeletal muscle satellite cells, Akirin2 overexpression and Akirin2 silence technologies were employed. Our results showed that overexpression of Akirin2 markedly enhanced the proliferation and differentiation of porcine skeletal muscle satellite cells, whereas silencing of Akirin2 got the opposite results. Furthermore, our results showed that Akirin2 affected proliferation and differentiation of porcine skeletal muscle satellite cells through extracellular-signal regulated kinase-1/2 (ERK1/2) and NFATc1 signaling pathways. These results indicate that Akirin2 can effectively promote skeletal muscle satellite cells proliferation and differentiation, acting through ERK1/2- and NFATc1-dependent mechanisms. PMID:28327665

  12. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats

    PubMed Central

    Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A.; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S.

    2016-01-01

    NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense. PMID:27847553

  13. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats.

    PubMed

    Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S; Carvalho, Denise P

    2016-01-01

    NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense.

  14. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  15. Differential microRNA Expression in Fast- and Slow-Twitch Skeletal Muscle of Piaractus mesopotamicus during Growth

    PubMed Central

    Duran, Bruno Oliveira da Silva; Fernandez, Geysson Javier; Mareco, Edson Assunção; Moraes, Leonardo Nazario; Salomão, Rondinelle Artur Simões; Gutierrez de Paula, Tassiana; Santos, Vander Bruno; Carvalho, Robson Francisco; Dal-Pai-Silvca, Maeli

    2015-01-01

    Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype. PMID:26529415

  16. BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation

    PubMed Central

    Xiao, Lihai; Lee, Kenneth Ka Ho

    2016-01-01

    ABSTRACT The function of the Bre gene in satellite cells was investigated during skeletal muscle regeneration. The tibialis anterior leg muscle was experimentally injured in Bre knockout mutant (BRE-KO) mice. It was established that the accompanying muscle regeneration was impaired as compared with their normal wild-type counterparts (BRE-WT). There were significantly fewer pax7+ satellite cells and smaller newly formed myofibers present in the injury sites of BRE-KO mice. Bre was required for satellite cell fusion and myofiber formation. The cell fusion index and average length of newly-formed BRE-KO myofibers were found to be significantly reduced as compared with BRE-WT myofibers. It is well established that satellite cells are highly invasive which confers on them the homing ability to reach the muscle injury sites. Hence, we tracked the migratory behavior of these cells using time-lapse microscopy. Image analysis revealed no difference in directionality of movement between BRE-KO and BRE-WT satellite cells but there was a significant decrease in the velocity of BRE-KO cell movement. Moreover, chemotactic migration assays indicated that BRE-KO satellite cells were significantly less responsive to chemoattractant SDF-1α than BRE-WT satellite cells. We also established that BRE normally protects CXCR4 from SDF-1α-induced degradation. In sum, BRE facilitates skeletal muscle regeneration by enhancing satellite cell motility, homing and fusion. PMID:26740569

  17. BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation.

    PubMed

    Xiao, Lihai; Lee, Kenneth Ka Ho

    2016-01-06

    The function of the Bre gene in satellite cells was investigated during skeletal muscle regeneration. The tibialis anterior leg muscle was experimentally injured in Bre knockout mutant (BRE-KO) mice. It was established that the accompanying muscle regeneration was impaired as compared with their normal wild-type counterparts (BRE-WT). There were significantly fewer pax7(+) satellite cells and smaller newly formed myofibers present in the injury sites of BRE-KO mice. Bre was required for satellite cell fusion and myofiber formation. The cell fusion index and average length of newly-formed BRE-KO myofibers were found to be significantly reduced as compared with BRE-WT myofibers. It is well established that satellite cells are highly invasive which confers on them the homing ability to reach the muscle injury sites. Hence, we tracked the migratory behavior of these cells using time-lapse microscopy. Image analysis revealed no difference in directionality of movement between BRE-KO and BRE-WT satellite cells but there was a significant decrease in the velocity of BRE-KO cell movement. Moreover, chemotactic migration assays indicated that BRE-KO satellite cells were significantly less responsive to chemoattractant SDF-1α than BRE-WT satellite cells. We also established that BRE normally protects CXCR4 from SDF-1α-induced degradation. In sum, BRE facilitates skeletal muscle regeneration by enhancing satellite cell motility, homing and fusion.

  18. Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism.

    PubMed

    Guridi, Maitea; Kupr, Barbara; Romanino, Klaas; Lin, Shuo; Falcetta, Denis; Tintignac, Lionel; Rüegg, Markus A

    2016-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content. Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis.

  19. Small leucine zipper protein (sLZIP) negatively regulates skeletal muscle differentiation via interaction with α-actinin-4.

    PubMed

    An, Hyoung-Tae; Kim, Jeonghan; Yoo, Seungmin; Ko, Jesang

    2014-02-21

    The small leucine zipper protein (sLZIP) plays a role in transcriptional regulation in various types of cells. However, the role of sLZIP in myogenesis is unknown. We identified α-actinin-4 (ACTN4) as a sLZIP-binding protein. ACTN4 functions as a transcriptional regulator of myocyte enhancer factor (MEF)2, which plays a critical role in expression of muscle-specific genes during skeletal muscle differentiation. We found that ACTN4 translocates to the nucleus, induces myogenic gene expression, and promotes myotube formation during myogenesis. The myogenic process is controlled by an association between myogenic factors and MEF2 transcription factors. ACTN4 increased expression of muscle-specific proteins via interaction with MEF2. However, sLZIP decreased myogenic gene expression and myotube formation during myogenesis via disruption of the association between ACTN4 and MEF2. ACTN4 increased the promoter activities of myogenic genes, whereas sLZIP abrogated the effect of ACTN4 on transcriptional activation of myogenic genes in myoblasts. The C terminus of sLZIP is required for interaction with the C terminus of ACTN4, based on deletion mutant analysis, and sLZIP plays a role in regulation of MEF2 transactivation via interaction with ACTN4. Our results indicate that sLZIP negatively regulates skeletal muscle differentiation via interaction with ACTN4 and that sLZIP can be used as a therapeutic target molecule for treatment of muscle hypertrophy and associated diseases.

  20. Differential activation of sympathetic discharge to skin and skeletal muscle in humans.

    PubMed

    Vissing, S F

    1997-01-01

    The present work provides insight into the relative contribution of different mechanisms in regulating sympathetic discharge to skin and skeletal muscle in humans. Activation of sympathetic nerve activity during common behaviours such as orthostasis and exercise was shown to be highly selective, depending on the specific sympathetic outflow under study. Regarding orthostasis, data from experiments in this thesis revoked the concept that cardiopulmonary afferents only regulate muscle vascular resistance in the forearm, not in the leg. Also the concept that the cutaneous circulation is under baroreceptor control has been challenged. Unloading cardiopulmonary afferents with lower body negative pressure elicited intensity dependent increases in peroneal sympathetic discharge to skeletal muscle, and increases in forearm and calf vascular resistances. Therefore, it was concluded that cardiopulmonary afferents regulate vascular resistance in skeletal muscle of both forearm and calf, suggesting an important role for these afferents in the reflex adjustments to upright posture. In contrast to muscle sympathetic nerve activity, baroreceptor deactivation with lower body negative pressure had no effect on skin sympathetic nerve activity or skin vascular resistance. However, assumption of upright posture increased skin vascular resistance, this increase was abolished when increased vascular transmural pressure was avoided by elevating the arm. Local cutaneous nerve blockade, but not blockade of efferent sympathetic nerve traffic, abolished the vasoconstrictor response to upright posture. Based on these experiments, it was concluded that baroreceptor afferents do not regulate sympathetic vasoconstrictor outflow to the cutaneous circulation. During upright posture at normothermia cutaneous vasoconstriction is mainly driven by a local reflex. To explain activation of sympathetic outflow during exercise two theories have been proposed. One is that a "central motor command" signal

  1. Signaling pathways controlling skeletal muscle mass.

    PubMed

    Egerman, Marc A; Glass, David J

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed "atrophy", is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle.

  2. Signaling pathways controlling skeletal muscle mass

    PubMed Central

    Egerman, Marc A.

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed “atrophy”, is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle. PMID:24237131

  3. Differential skeletal muscle proteome of high- and low-active mice

    PubMed Central

    Dangott, Lawrence J.; Schmitt, Emily E.; Vellers, Heather L.; Lightfoot, J. Timothy

    2014-01-01

    Physical inactivity contributes to cardiovascular disease, type II diabetes, obesity, and some types of cancer. While the literature is clear that there is genetic regulation of physical activity with existing gene knockout data suggesting that skeletal muscle mechanisms contribute to the regulation of activity, actual differences in end-protein expression between high- and low-active mice have not been investigated. This study used two-dimensional differential gel electrophoresis coupled with mass spectrometry to evaluate the proteomic differences between high-active (C57L/J) and low-active (C3H/HeJ) mice in the soleus and extensor digitorum longus (EDL). Furthermore, vivo-morpholinos were used to transiently knockdown candidate proteins to confirm their involvement in physical activity regulation. Proteins with higher expression patterns generally fell into the calcium-regulating and Krebs (TCA) cycle pathways in the high-active mice (e.g., annexin A6, P = 0.0031; calsequestrin 1; P = 0.000025), while the overexpressed proteins in the low-active mice generally fell into cytoskeletal structure- and electron transport chain-related pathways (e.g., ATPase, P = 0.031; NADH dehydrogenase, P = 0.027). Transient knockdown of annexin A6 and calsequestrin 1 protein of high-active mice with vivo-morpholinos resulted in decreased physical activity levels (P = 0.001). These data suggest that high- and low-active mice have unique protein expression patterns and that each pattern contributes to the peripheral capability to be either high- or low-active, suggesting that different specific mechanisms regulate activity leading to the high- or low-activity status of the animal. PMID:24505100

  4. Differential skeletal muscle proteome of high- and low-active mice.

    PubMed

    Ferguson, David P; Dangott, Lawrence J; Schmitt, Emily E; Vellers, Heather L; Lightfoot, J Timothy

    2014-04-15

    Physical inactivity contributes to cardiovascular disease, type II diabetes, obesity, and some types of cancer. While the literature is clear that there is genetic regulation of physical activity with existing gene knockout data suggesting that skeletal muscle mechanisms contribute to the regulation of activity, actual differences in end-protein expression between high- and low-active mice have not been investigated. This study used two-dimensional differential gel electrophoresis coupled with mass spectrometry to evaluate the proteomic differences between high-active (C57L/J) and low-active (C3H/HeJ) mice in the soleus and extensor digitorum longus (EDL). Furthermore, vivo-morpholinos were used to transiently knockdown candidate proteins to confirm their involvement in physical activity regulation. Proteins with higher expression patterns generally fell into the calcium-regulating and Krebs (TCA) cycle pathways in the high-active mice (e.g., annexin A6, P = 0.0031; calsequestrin 1; P = 0.000025), while the overexpressed proteins in the low-active mice generally fell into cytoskeletal structure- and electron transport chain-related pathways (e.g., ATPase, P = 0.031; NADH dehydrogenase, P = 0.027). Transient knockdown of annexin A6 and calsequestrin 1 protein of high-active mice with vivo-morpholinos resulted in decreased physical activity levels (P = 0.001). These data suggest that high- and low-active mice have unique protein expression patterns and that each pattern contributes to the peripheral capability to be either high- or low-active, suggesting that different specific mechanisms regulate activity leading to the high- or low-activity status of the animal.

  5. Differential metabolic effects of casein and soy protein meals on skeletal muscle in healthy volunteers.

    PubMed

    Luiking, Yvette C; Engelen, Mariëlle P K J; Soeters, Peter B; Boirie, Yves; Deutz, Nicolaas E P

    2011-02-01

    Dietary protein intake is known to affect whole body and interorgan protein turnover. We examined if moderate-nitrogen and carbohydrate casein and soy meals have a different effect on skeletal muscle protein and amino acid kinetics in healthy young subjects. Muscle protein and amino acid kinetics were measured in the postabsorptive state and during 4-h enteral intake of isonitrogenous [0.21 g protein/(kg body weight. 4 h)] protein-based test meals, which contained either casein (CAPM; n = 12) or soy protein (SOPM; n = 10) in 2 separate groups. Stable isotope and muscle biopsy techniques were used to study metabolic effects. The net uptake of glutamate, serine, histidine, and lysine across the leg was larger during CAPM than during SOPM intake. Muscle concentrations of glutamate, serine, histidine, glutamine, isoleucine and BCAA changed differently after CAPM and SOPM (P < 0.05). Muscle net protein breakdown decreased significantly (P < 0.05) to zero during feeding of both CAPM and SOPM, but differences in their (net) breakdown rates were not significant. Muscle protein synthesis was not different between CAPM and SOPM. Moderate-nitrogen casein and soy protein meals differently alter leg amino acid uptake without a significant difference in influencing acute muscle protein metabolism. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Differential effects of endurance training and creatine depletion on regional mitochondrial adaptations in rat skeletal muscle.

    PubMed Central

    Roussel, D; Lhenry, F; Ecochard, L; Sempore, B; Rouanet, J L; Favier, R

    2000-01-01

    To examine the combined effects of 2-week endurance training and 3-week feeding with beta-guanidinopropionic acid (GPA) on regional adaptability of skeletal muscle mitochondria, intermyofibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) were isolated from quadriceps muscles of sedentary control, trained control, sedentary GPA-fed and trained GPA-fed rats. Mitochondrial oxidative phosphorylation was assessed polarographically by using pyruvate plus malate, succinate (plus rotenone), and ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) (plus antimycin) as respiratory substrates. Assays of cytochrome c oxidase and F(1)-ATPase activities were also performed. In sedentary control rats, IFM exhibited a higher oxidative capacity than SSM, whereas F(1)-ATPase activities were similar. Training increased the oxidative phosphorylation capacity of mitochondria with both pyruvate plus malate and ascorbate plus TMPD as substrates, with no differences between IFM and SSM. In contrast, the GPA diet mainly improved the overall SSM oxidative phosphorylation capacity, irrespective of the substrate used. Finally, the superimposition of training to feeding with GPA strongly increased both oxidase and enzymic activities in SSM, whereas no cumulative effects were found in IFM mitochondria. It therefore seems that endurance training and feeding with GPA, which are both known to alter the energetic status of the muscle cell, might mediate distinct biochemical adaptations in regional skeletal muscle mitochondria. PMID:10947970

  7. Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle.

    PubMed

    Murphy, Robyn M; Xu, Hongyang; Latchman, Heidy; Larkins, Noni T; Gooley, Paul R; Stapleton, David I

    2012-12-01

    To understand how glycogen affects skeletal muscle physiology, we examined enzymes essential for muscle glycogen synthesis and degradation using single fibers from quiescent and stimulated rat skeletal muscle. Presenting a shift in paradigm, we show these proteins are differentially associated with glycogen granules. Protein diffusibility and/or abundance of glycogenin, glycogen branching enzyme (GBE), debranching enzyme (GDE), phosphorylase (GP), and synthase (GS) were examined in fibers isolated from rat fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscle. GDE and GP proteins were more abundant (~10- to 100-fold) in fibers from EDL compared with SOL muscle. GS and glycogenin proteins were similar between muscles while GBE had an approximately fourfold greater abundance in SOL muscle. Mechanically skinned fibers exposed to physiological buffer for 10 min showed ~70% total pools of GBE and GP were diffusible (nonbound), whereas GDE and GS were considerably less diffusible. Intense in vitro stimulation, sufficient to elicit a ~50% decrease in intracellular glycogen, increased diffusibility of GDE, GP, and GS (~15-60%) and decreased GBE diffusibility (~20%). Amylase treatment, which breaks α-1,4 linkages of glycogen, indicated differential diffusibilities and hence glycogen associations of GDE and GS. Membrane solubilization (1% Triton-X-100) allowed a small additional amount of GDE and GS to diffuse from fibers, suggesting the majority of nonglycogen-associated GDE/GS is associated with myofibrillar/contractile network of muscle rather than membranes. Given differences in enzymes required for glycogen metabolism, the current findings suggest glycogen particles have fiber-type-dependent structures. The greater catabolic potential of glycogen breakdown in fast-twitch fibers may account for different contraction induced rates of glycogen utilization.

  8. The Regulation of Differentiation of Mesenchymal Stem-cells into Skeletal Muscle A Look at Signalling Molecules Involved in Myogenesis.

    PubMed

    Hodgson, Bethany; Mafi, Reza; Mafi, Pouya; Khan, Wasim

    2017-09-06

    Mesenchymal Stem Cells (MSCs) are an attractive option for the development of treatment for musculoskeletal pathologies due to their wide availability, clinical safety and multiple techniques available. Understanding the control of MSC differentiation into skeletal muscle is vital for developing protocols and therapeutic applications that are safe and effective. This paper therefore aims to review the current understanding of factors that regulate the differentiation of MSCs into skeletal muscle. Medline, Embase, Pubmed and Web of Science were searched December 2015 using the terms 'differentia*, skeletal*, skeleton*, myocyt*, myogen* and mesenchym* stem-cell*. This returned a total of 1215 results. 48 papers were included in the review. Forty-eight studies were reviewed. Eight related to external signalling molecules, sixteen related to local environmental factors and twenty-four related to intracellular signalling pathways. Uniaxial strain, medium stiffness of the extracellular matrix and submicron grooved topography were identified as promoting myogenesis. TGF-β was identified as a main inhibitor of myogenesis. Smad and Pax signalling were identified as important intracellular pathways and the relationship of menin, Setdb1, GEFT, PAX3-FOXO1, IGF-II, TAZ and PRDM2 with MyoD and MyoG was explored. Further research into the effect of the inflammatory response on skeletal muscle differentiation is suggested. Clarification of the mechanism of action of TGF-β, the role of submicron grooves and cyclic uniaxial strain, two important factors in the development of tissue scaffolds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Ciliary neurotrophic factor upregulates follistatin and Pak1, causes overexpression of muscle differentiation related genes and downregulation of established atrophy mediators in skeletal muscle.

    PubMed

    Tsompanidis, Alexandros; Vafiadaki, Elizabeth; Blüher, Susann; Kalozoumi, Georgia; Sanoudou, Despina; Mantzoros, Christos S

    2016-06-01

    The Ciliary Neurotrophic Factor (CNTF) is a pluripotent cytokine with anorexigenic actions in the hypothalamus that improves insulin sensitivity, increases energy expenditure and induces weight loss. Since CNTF also has an established myotrophic role, we sought to examine whether skeletal muscle contributes to the CNTF-induced metabolic improvement and identify the molecular mechanisms mediating these effects. We used a mouse model of diet-induced obesity, to which high or low CNTF doses were administered for 7days. Whole transcriptome expression levels were analyzed in dissected soleus muscles using microarrays and data were then confirmed using qRT-PCR. We demonstrate that CNTF administration significantly downregulates leptin, while it upregulates follistatin and Pak1; a molecule associated with insulin sensitization in skeletal muscle. A significant overexpression of muscle differentiation related genes and downregulation of established atrophy mediators was observed. The overall gene expression changes suggest an indirect, beneficial effect of CNTF on metabolism, energy expenditure and insulin sensitivity, exerted by the pronounced stimulation of muscle growth, with similarities to the described effect of follistatin and the activation of the Akt pathway in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels

    PubMed Central

    Iannotti, Fabio A.; Silvestri, Cristoforo; Mazzarella, Enrico; Martella, Andrea; Calvigioni, Daniela; Piscitelli, Fabiana; Ambrosino, Paolo; Petrosino, Stefania; Czifra, Gabriella; Bíró, Tamás; Harkany, Tibor; Taglialatela, Maurizio; Di Marzo, Vincenzo

    2014-01-01

    Little is known of the involvement of endocannabinoids and cannabinoid receptors in skeletal muscle cell differentiation. We report that, due to changes in the expression of genes involved in its metabolism, the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are decreased both during myotube formation in vitro from murine C2C12 myoblasts and during mouse muscle growth in vivo. The endocannabinoid, as well as the CB1 agonist arachidonoyl-2-chloroethylamide, prevent myotube formation in a manner antagonized by CB1 knockdown and by CB1 antagonists, which, per se, instead stimulate differentiation. Importantly, 2-AG also inhibits differentiation of primary human satellite cells. Muscle fascicles from CB1 knockout embryos contain more muscle fibers, and postnatal mice show muscle fibers of an increased diameter relative to wild-type littermates. Inhibition of Kv7.4 channel activity, which plays a permissive role in myogenesis and depends on phosphatidylinositol 4,5-bisphosphate (PIP2), underlies the effects of 2-AG. We find that CB1 stimulation reduces both total and Kv7.4-bound PIP2 levels in C2C12 cells and inhibits Kv7.4 currents in transfected CHO cells. We suggest that 2-AG is an endogenous repressor of myoblast differentiation via CB1-mediated inhibition of Kv7.4 channels. PMID:24927567

  11. Structural differentiation of skeletal muscle fibers in the absence of innervation in humans

    PubMed Central

    Boncompagni, Simona; Kern, Helmut; Rossini, Katia; Hofer, Christian; Mayr, Winfried; Carraro, Ugo; Protasi, Feliciano

    2007-01-01

    The relative importance of muscle activity versus neurotrophic factors in the maintenance of muscle differentiation has been greatly debated. Muscle biopsies from spinal cord injury patients, who were trained with an innovative protocol of functional electrical stimulation (FES) for prolonged periods (2.4–9.3 years), offered the unique opportunity of studying the structural recovery of denervated fibers from severe atrophy under the sole influence of muscle activity. FES stimulation induced surprising recovery of muscle structure, mass, and force even in patients whose muscles had been denervated for prolonged periods before the beginning of FES training (up to 2 years) and had almost completely lost muscle-specific internal organization. Ninety percent (or more) of the fibers analyzed by electron microscopy showed a striking recovery of the ultrastructural organization of myofibrils and Ca2+-handling membrane systems. This functional/structural restoration follows a pattern that mimics some aspects of normal muscle differentiation. Most importantly, the recovery occurs in the complete absence of motor and sensory innervation and of nerve-derived trophic factors, that is, solely under the influence of muscle activity induced by electrical stimulation. PMID:18042706

  12. MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation.

    PubMed

    Mercatelli, Neri; Fittipaldi, Simona; De Paola, Elisa; Dimauro, Ivan; Paronetto, Maria Paola; Jackson, Malcolm J; Caporossi, Daniela

    2017-08-03

    Thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing protein involved in cellular redox homeostasis which is downregulated in skeletal muscle differentiation. Here we show that TrxR1 decrease occurring during myogenesis is functionally involved in the coordination of this cellular process. Indeed, TrxR1 depletion reduces myoblasts growth by inducing an early myogenesis -related gene expression pattern which includes myogenin and Myf5 up-regulation and Cyclin D1 decrease. On the contrary, the overexpression of TrxR1 during differentiation delays myogenic process, by negatively affecting the expression of Myogenin and MyHC. Moreover, we found that miR-23a and miR-23b - whose expression was increased in the early stage of C2C12 differentiation - are involved in the regulation of TrxR1 expression through their direct binding to the 3' UTR of TrxR1 mRNA. Interestingly, the forced inhibition of miR-23a and miR-23b during C2C12 differentiation partially rescues TrxR1 levels and delays the expression of myogenic markers, suggesting the involvement of miR-23 in myogenesis via TrxR1 repression. Taken together, our results depict for the first time a novel molecular axis, which functionally acts in skeletal muscle differentiation through the modulation of TrxR1 by miR-23.

  13. RNA-seq based detection of differentially expressed genes in the skeletal muscle of Duroc pigs with distinct lipid profiles

    PubMed Central

    Cardoso, T. F.; Cánovas, A.; Canela-Xandri, O.; González-Prendes, R.; Amills, M.; Quintanilla, R.

    2017-01-01

    We have used a RNA-seq approach to investigate differential expression in the skeletal muscle of swine (N = 52) with divergent lipid profiles i.e. HIGH (increased intramuscular fat and muscle saturated and monounsaturated fatty acid contents, higher serum lipid concentrations and fatness) and LOW pigs (leaner and with an increased muscle polyunsaturated fatty acid content). The number of mRNAs and non-coding RNAs (ncRNAs) expressed in the porcine gluteus medius muscle were 18,104 and 1,558, respectively. At the nominal level of significance (P-value ≤ 0.05), we detected 1,430 mRNA and 12 non-coding RNA (ncRNA) transcripts as differentially expressed (DE) in the gluteus medius muscle of HIGH vs LOW pigs. This smaller contribution of ncRNAs to differential expression may have biological and technical reasons. We performed a second analysis, that was more stringent (P-value ≤ 0.01 and fold-change ≥ 1.5), and only 96 and 0 mRNA-and ncRNA-encoding genes happened to be DE, respectively. The subset of DE mRNA genes was enriched in pathways related with lipid (lipogenesis and triacylglycerol degradation) and glucose metabolism. Moreover, HIGH pigs showed a more lipogenic profile than their LOW counterparts. PMID:28195222

  14. Imaging of skeletal muscle.

    PubMed

    Goodwin, Douglas W

    2011-05-01

    Various diagnostic imaging techniques such as sonography, computed tomography, scintigraphy, radiography, and magnetic resonance imaging (MRI) have made possible the noninvasive evaluation of skeletal muscle injury and disease. Although these different modalities have roles to play, MRI is especially sensitive in the diagnosis of muscle disorders and injury and has proved to be useful in determining the extent of disease, in directing interventions, and in monitoring the response to therapies. This article describes how magnetic resonance images are formed and how the signal intensities in T1- and T2-weighted images may be used for diagnosis of the above-mentioned conditions and injuries. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Combined small-cell carcinoma of the lung with quadripartite differentiation of epithelial, neuroendocrine, skeletal muscle, and myofibroblastic type.

    PubMed

    Pelosi, Giuseppe; Sonzogni, Angelica; Galetta, Domenico; Perrone, Federica; Braidotti, Paola; Manzotti, Michela; Fabbri, Alessandra; Spaggiari, Lorenzo; Veronesi, Giulia; Viale, Giuseppe

    2011-04-01

    The combined variant of small-cell lung carcinoma (SCLC) refers to the variable admixture of small cell and non-small cell carcinoma, whereas the association with sarcoma or sarcoma-like elements is exceedingly rare. A 76-year-old Caucasian man underwent right upper lobectomy with regional lymphadenectomy because of a symptomatic 7 cm-sized tumor mass. Formalin fixed-paraffin embedded material was used to highlight several differentiation cell lineages by means of immunohistochemistry, electron microscopy, and mutational assay. The tumor was discovered as being IIB stage (pT2b pN1(1/51) pM0) and featured biphasic appearance with close intermingling of SCLC (40%) and collagen-rich spindle cell sarcoma (60%). Epithelial (cytokeratins, TTF-1), neural (neurofilaments, GFAP), endocrine (chromogranin, synaptophysin, CD56), and skeletal muscle (desmin, sarcomeric actin, myogenin) markers were variably co-expressed by SCLC elements, whereas mesenchymal (vimentin), smooth muscle (actin, myosin, H-caldesmon, calponin), fibroblastic (CD10), and, more focally, skeletal muscle (desmin, sarcomeric actin and myogenin) markers were highlighted in the spindle cell sarcoma elements. TP53 codon V274F mutation in exon 8 was shared by either cell component. After undergoing adjuvant chemotherapy, the patient is currently alive and well at the 40-month follow-up. To the best of our knowledge, this is the first report of combined SCLC with quadripartite differentiation of epithelial, neuroendocrine, skeletal muscle, and myofibroblastic type, somewhere at the level of the same individual tumor cells. This tumor had probably derived for clonal evolution of a p53-mutated common ancestor lesion.

  16. Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components.

    PubMed

    Bryan, Kenneth; McGivney, Beatrice A; Farries, Gabriella; McGettigan, Paul A; McGivney, Charlotte L; Gough, Katie F; MacHugh, David E; Katz, Lisa M; Hill, Emmeline W

    2017-08-09

    A single bout of exercise induces changes in gene expression in skeletal muscle. Regular exercise results in an adaptive response involving changes in muscle architecture and biochemistry, and is an effective way to manage and prevent common human diseases such as obesity, cardiovascular disorders and type II diabetes. However, the biomolecular mechanisms underlying such responses still need to be fully elucidated. Here we performed a transcriptome-wide analysis of skeletal muscle tissue in a large cohort of untrained Thoroughbred horses (n = 51) before and after a bout of high-intensity exercise and again after an extended period of training. We hypothesized that regular high-intensity exercise training primes the transcriptome for the demands of high-intensity exercise. An extensive set of genes was observed to be significantly differentially regulated in response to a single bout of high-intensity exercise in the untrained cohort (3241 genes) and following multiple bouts of high-intensity exercise training over a six-month period (3405 genes). Approximately one-third of these genes (1025) and several biological processes related to energy metabolism were common to both the exercise and training responses. We then developed a novel network-based computational analysis pipeline to test the hypothesis that these transcriptional changes also influence the contextual molecular interactome and its dynamics in response to exercise and training. The contextual network analysis identified several important hub genes, including the autophagosomal-related gene GABARAPL1, and dynamic functional modules, including those enriched for mitochondrial respiratory chain complexes I and V, that were differentially regulated and had their putative interactions 're-wired' in the exercise and/or training responses. Here we have generated for the first time, a comprehensive set of genes that are differentially expressed in Thoroughbred skeletal muscle in response to both exercise and

  17. Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans.

    PubMed

    Tsintzas, Kostas; Jewell, Kirsty; Kamran, Mo; Laithwaite, David; Boonsong, Tantip; Littlewood, Julie; Macdonald, Ian; Bennett, Andrew

    2006-08-15

    This study investigated the molecular alterations underlying the physiological adaptations to starvation and refeeding in human skeletal muscle. Forty-eight hours' starvation reduced whole-body insulin sensitivity by 42% and produced marked changes in expression of key carbohydrate (CHO) regulatory genes and proteins: SREBP1c and hexokinase II (HKII) were downregulated 2.5- and 5-fold, respectively, whereas the pyruvate dehydrogenase kinase 4 (PDK4) was upregulated 4-fold. These responses were not dependent on the phosphorylation status of Akt and FOXO1. On the other hand, starvation and the concomitant increase in circulating free fatty acids did not upregulate the expression of transcription factors and genes involved in fat metabolism. Twenty-four hours' refeeding with a CHO-rich diet completely reversed the changes in PDK4, HKII and SREBP1c expression in human skeletal muscle but failed to fully restore whole-body insulin sensitivity. Thus, during starvation in healthy humans, unlike rodents, regulation of fat metabolism does not require an adaptive response at transcriptional level, but adaptive changes in gene expression are required to switch off oxidative glucose disposal. Lack of effect on key proteins in the insulin-signalling pathway may indicate that changes in intracellular substrate availability/flux may be responsible for these adaptive changes in glucose metabolism. This may represent an important aspect of the molecular basis of the development of insulin resistance in metabolic conditions characterized by energy restriction.

  18. A Differential Role for CD248 (Endosialin) in PDGF-Mediated Skeletal Muscle Angiogenesis

    PubMed Central

    Maynard, William D.; May, Philippa; Barone, Francesca; Croft, Adam P.; Egginton, Stuart; Buckley, Christopher D.

    2014-01-01

    CD248 (Endosialin) is a type 1 membrane protein involved in developmental and pathological angiogenesis through its expression on pericytes and regulation of PDGFRβ signalling. Here we explore the function of CD248 in skeletal muscle angiogenesis. Two distinct forms of capillary growth (splitting and sprouting) can be induced separately by increasing microcirculatory shear stress (chronic vasodilator treatment) or by inducing functional overload (extirpation of a synergistic muscle). We show that CD248 is present on pericytes in muscle and that CD248-/- mice have a specific defect in capillary sprouting. In contrast, splitting angiogenesis is independent of CD248 expression. Endothelial cells respond to pro-sprouting angiogenic stimulus by up-regulating gene expression for HIF1α, angiopoietin 2 and its receptor TEK, PDGF-B and its receptor PDGFRβ; this response did not occur following a pro-splitting angiogenic stimulus. In wildtype mice, defective sprouting angiogenesis could be mimicked by blocking PDGFRβ signalling using the tyrosine kinase inhibitor Imatinib mesylate. We conclude that CD248 is required for PDGFRβ-dependant capillary sprouting but not splitting angiogenesis, and identify a new role for CD248 expressed on pericytes in the early stages of physiological angiogenesis during muscle remodelling. PMID:25243742

  19. Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle.

    PubMed

    Tan, Bie; Yin, Yulong; Liu, Zhiqiang; Tang, Wenjie; Xu, Haijun; Kong, Xiangfeng; Li, Xinguo; Yao, Kang; Gu, Wanting; Smith, Stephen B; Wu, Guoyao

    2011-05-01

    Obesity is a major health crisis worldwide and new treatments are needed to fight this epidemic. Using the swine model, we recently reported that dietary L-arginine (Arg) supplementation promotes muscle gain and reduces body-fat accretion. The present study tested the hypothesis that Arg regulates expression of key genes involved in lipid metabolism in skeletal muscle and white adipose tissue. Sixteen 110-day-old barrows were fed for 60 days a corn- and soybean-meal-based diet supplemented with 1.0% Arg or 2.05% L-alanine (isonitrogenous control). Blood samples, longissimus dorsi muscle and overlying subcutaneous adipose tissue were obtained from 170-day-old pigs for biochemical studies. Serum concentrations of leptin, alanine and glutamine were lower, but those for Arg and proline were higher in Arg-supplemented pigs than in control pigs. The percentage of oleic acid was higher but that of stearic acid and linoleic acid was lower in muscle of Arg-supplemented pigs, compared with control pigs. Dietary Arg supplementation increased mRNA levels for fatty acid synthase in muscle, while decreasing those for lipoprotein lipase, glucose transporter-4, and acetyl-coenzyme A carboxylase-α in adipose tissue. Additionally, mRNA levels for hormone sensitive lipase were higher in adipose tissue of Arg-supplemented pigs compared with control pigs. These results indicate that Arg differentially regulates expression of fat-metabolic genes in skeletal muscle and white adipose tissue, therefore favoring lipogenesis in muscle but lipolysis in adipose tissue. Our novel findings provide a biochemical basis for explaining the beneficial effect of Arg in improving the metabolic profile in mammals (including obese humans). Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Differentiation of Human Skeletal Muscle Stem Cells into Odontoblasts Is Dependent on Induction of α1 Integrin Expression*

    PubMed Central

    Ozeki, Nobuaki; Mogi, Makio; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie; Hase, Naoko; Nakata, Kazuhiko; Nakamura, Hiroshi; Kramer, Randall H.

    2014-01-01

    Skeletal muscle stem cells represent an abundant source of autologous cells with potential for regenerative medicine that can be directed to differentiate into multiple lineages including osteoblasts and adipocytes. In the current study, we found that α7 integrin-positive human skeletal muscle stem cells (α7+hSMSCs) could differentiate into the odontoblast lineage under specific inductive conditions in response to bone morphogenetic protein-4 (BMP-4). Cell aggregates of FACS-harvested α7+hSMSCs were treated in suspension with retinoic acid followed by culture on a gelatin scaffold in the presence of BMP-4. Following this protocol, α7+hSMSCs were induced to down-regulate myogenic genes (MYOD and α7 integrin) and up-regulate odontogenic markers including dentin sialophosphoprotein, matrix metalloproteinase-20 (enamelysin), dentin sialoprotein, and alkaline phosphatase but not osteoblastic genes (osteopontin and osteocalcin). Following retinoic acid and gelatin scaffold/BMP-4 treatment, there was a coordinated switch in the integrin expression profile that paralleled odontoblastic differentiation where α1β1 integrin was strongly up-regulated with the attenuation of muscle-specific α7β1 integrin expression. Interestingly, using siRNA knockdown strategies revealed that the differentiation-related expression of the α1 integrin receptor positively regulates the expression of the odontoblastic markers dentin sialophosphoprotein and matrix metalloproteinase-20. These results strongly suggest that the differentiation of α7+hSMSCs along the odontogenic lineage is dependent on the concurrent expression of α1 integrin. PMID:24692545

  1. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.

    PubMed

    Cisterna, Barbara; Giagnacovo, Marzia; Costanzo, Manuela; Fattoretti, Patrizia; Zancanaro, Carlo; Pellicciari, Carlo; Malatesta, Manuela

    2016-05-01

    During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age.

  2. The Skeletal Muscle Satellite Cell

    PubMed Central

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  3. Effect of TCEA3 on the differentiation of bovine skeletal muscle satellite cells.

    PubMed

    Zhu, Yue; Tong, Hui-Li; Li, Shu-Feng; Yan, Yun-Qin

    2017-03-18

    Bovine muscle-derived satellite cells (MDSCs) are important for animal growth. In this study, the effect of transcription elongation factor A3 (TCEA3) on bovine MDSC differentiation was investigated. Western blotting, immunofluorescence assays, and cytoplasmic and nuclear protein isolation and purification techniques were used to determine the expression pattern and protein localization of TCEA3 in bovine MDSCs during in vitro differentiation. TCEA3 expression was upregulated using the CRISPR/Cas9 technique to study its effects on MDSC differentiation in vitro. TCEA3 expression gradually increased during the in vitro differentiation of bovine MDSCs and peaked on the 5th day of differentiation. TCEA3 was mainly localized in the cytoplasm of bovine MDSCs, and its expression was not detected in the nucleus. The level of TCEA3 was relatively higher in myotubes at a higher degree of differentiation than during early differentiation. After transfection with a TCEA3-activating plasmid vector (TCEA3 overexpression) for 24 h, the myotube fusion rate, number of myotubes, and expression levels of the muscle differentiation-related loci myogenin (MYOG) and myosin heavy chain 3 (MYH3) increased significantly during the in vitro differentiation of bovine MDSCs. After transfection with a TCEA3-inhibiting plasmid vector for 24 h, the myotube fusion rate, number of myotubes, and expression levels of MYOG and MYH3 decreased significantly. Our results indicated, for the first time, that TCEA3 promotes the differentiation of bovine MDSCs and have implications for meat production and animal rearing.

  4. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation

    PubMed Central

    Chen, Shen Liang; Dowhan, Dennis H.; Hosking, Brett M.; Muscat, George E.O.

    2000-01-01

    Nuclear receptor-mediated activation of transcription involves coactivation by cofactors collectively denoted the steroid receptor coactivators (SRCs). The process also involves the subsequent recruitment of p300/CBP and PCAF to a complex that synergistically regulates transcription and remodels the chromatin. PCAF and p300 have also been demonstrated to function as critical coactivators for the muscle-specific basic helix–loop–helix (bHLH) protein MyoD during myogenic commitment. Skeletal muscle differentiation and the activation of muscle-specific gene expression is dependent on the concerted action of another bHLH factor, myogenin, and the MADS protein, MEF-2, which function in a cooperative manner. We examined the functional role of one SRC, GRIP-1, in muscle differentiation, an ideal paradigm for the analysis of the determinative events that govern the cell's decision to divide or differentiate. We observed that the mRNA encoding GRIP-1 is expressed in proliferating myoblasts and post-mitotic differentiated myotubes, and that protein levels increase during differentiation. Exogenous/ectopic expression studies with GRIP-1 sense and antisense vectors in myogenic C2C12 cells demonstrated that this SRC is necessary for (1) induction/activation of myogenin, MEF-2, and the crucial cell cycle regulator, p21, and (2) contractile protein expression and myotube formation. Furthermore, we demonstrate that the SRC GRIP-1 coactivates MEF-2C-mediated transcription. GRIP-1 also coactivates the synergistic transactivation of E box-dependent transcription by myogenin and MEF-2C. GST-pulldowns, mammalian two-hybrid analysis, and immunoprecipitation demonstrate that the mechanism involves direct interactions between MEF-2C and GRIP-1 and is associated with the ability of the SRC to interact with the MADS domain of MEF-2C. The HLH region of myogenin mediates the direct interaction of myogenin and GRIP-1. Interestingly, interaction with myogenic factors is mediated by two

  5. The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation.

    PubMed

    Kudou, Kensuke; Komatsu, Tetsuro; Nogami, Jumpei; Maehara, Kazumitsu; Harada, Akihito; Saeki, Hiroshi; Oki, Eiji; Maehara, Yoshihiko; Ohkawa, Yasuyuki

    2017-09-01

    Myogenic progenitor/stem cells retain their skeletal muscle differentiation potential by maintaining myogenic transcription factors such as MyoD. However, the mechanism of how MyoD expression is maintained in proliferative progenitor cells has not been elucidated. Here, we found that MyoD expression was reduced at the mRNA level by cell cycle arrest in S and G2 phases, which in turn led to the absence of skeletal muscle differentiation. The reduction of MyoD mRNA was correlated with the reduced expression of factors regulating RNA metabolism, including methyltransferase like 3 (Mettl3), which induces N(6)-methyladenosine (m(6)A) modifications of RNA. Knockdown of Mettl3 revealed that MyoD RNA was specifically downregulated and that this was caused by a decrease in processed, but not unprocessed, mRNA. Potential m(6)A modification sites were profiled by m(6)A sequencing and identified within the 5' untranslated region (UTR) of MyoD mRNA. Deletion of the 5' UTR revealed that it has a role in MyoD mRNA processing. These data showed that Mettl3 is required for MyoD mRNA expression in proliferative myoblasts. © 2017 The Authors.

  6. Peri-implantation and late gestation maternal undernutrition differentially affect fetal sheep skeletal muscle development

    PubMed Central

    Costello, Paula M; Rowlerson, Anthea; Astaman, Nur Aida; Anthony, Fred Erick W; Sayer, Avan Aihie; Cooper, Cyrus; Hanson, Mark A; Green, Lucy R

    2008-01-01

    Poor prenatal nutrition is associated with a greater risk of adult glucose intolerance and insulin insensitivity in the offspring. Skeletal muscle is the primary tissue for glucose utilization, and insulin resistance in muscle is the earliest identifiable abnormality in the pre-diabetic patient. We investigated the effect of early and late gestation undernutrition on structure and markers of growth and glucose metabolism regulation in the fetal triceps brachii (TB, slow- and fast-twitch myofibres) and soleus (slow-twitch myofibres) muscles. Pregnant sheep were fed 100% nutrient requirements (C, n = 8) or a restricted diet peri-implantation (PI, n = 9; 40%, 1–31 days gestation (dGA) (term ∼147)) or in late gestation (L, n = 6; 50%, 104–127 dGA). At 127 ± 1 dGA we measured myofibre and capillary density in the fetal TB and soleus muscles, and mRNA levels in the TB of insulin receptor (InsR), glucose transporter-4 (GLUT-4) and type 1 insulin-like growth factor receptor (IGF-1R). Total myofibre and capillary densities were lower in the TB, but not the soleus, of PI and L fetuses. The predominant effect in the L group was on slow-twitch myofibres. In TB, InsR, GLUT-4 and IGF-1R mRNA levels were greater in L group fetuses. Our finding of reduced myofibre density is consistent with a redistribution of resources at the expense of specific peripheral tissues by early and late gestation undernutrition which may be mediated by a decrease in capillary density. The increase in key regulatory components of glucose uptake following late gestation undernutrition may constitute a short-term compensation to maintain glucose homeostasis in the face of fewer type I (insulin-sensitive) myofibres. However, together these adaptations may influence the risk of later metabolic disease and thus our findings have implications for future strategies aimed at improving maternal diet. PMID:18339691

  7. Pleiotropic effects of sphingolipids in skeletal muscle.

    PubMed

    Bruni, P; Donati, C

    2008-11-01

    Studies of the last two decades have demonstrated that sphingolipids are important signalling molecules exerting key roles in the control of fundamental biological processes including proliferation, differentiation, motility and survival. Here we review the role of bioactive sphingolipids such as ceramide, sphingosine, sphingosine 1-phosphate, ganglioside GM3, in the regulation of skeletal muscle biology. The emerging picture is in favour of a complex role of these molecules, which appear implicated in the activation of muscle resident stem cells, their proliferation and differentiation, finalized at skeletal muscle regeneration. Moreover, they are involved in the regulation of contractile properties, tissue responsiveness to insulin and muscle fiber trophism. Hopefully, this article will provide a framework for future investigation into the field, aimed at establishing whether altered sphingolipid metabolism is implicated in the onset of skeletal muscle diseases and identifying new pharmacological targets for the therapy of multiple illnesses, including muscular dystrophies and diabetes.

  8. Early-age heat exposure affects skeletal muscle satellite cell proliferation and differentiation in chicks.

    PubMed

    Halevy, O; Krispin, A; Leshem, Y; McMurtry, J P; Yahav, S

    2001-07-01

    Exposure of young chicks to thermal conditioning (TC; i.e., 37 degrees C for 24 h) resulted in significantly improved body and muscle growth at a later age. We hypothesized that TC causes an increase in satellite cell proliferation, necessary for further muscle hypertrophy. An immediate increase was observed in satellite cell DNA synthesis in culture and in vivo in response to TC of 3-day-old chicks to levels that were significantly higher than those of control chicks. This was accompanied by a marked induction of insulin-like growth factor-I (IFG-I), but not hepatocyte growth factor in the breast muscle. No significant difference between treatments in plasma IGF-I levels was observed. A marked elevation in muscle regulatory factors on day 5, followed by a decline in cell proliferation on day 6 together with continuous high levels of IGF-I in the TC chick muscle may indicate accelerated cell differentiation. These data suggest a central role for IGF-I in the immediate stimulation of satellite cell myogenic processes in response to heat exposure.

  9. Mechanotransduction in skeletal muscle

    PubMed Central

    Burkholder, Thomas J.

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3’ kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction. PMID:17127292

  10. Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats

    PubMed Central

    Padilla, Jaume; Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Akter, Sadia; Davis, J. Wade

    2015-01-01

    Using next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology we assessed the effects of exercise training on transcriptional profiles in skeletal muscle arterioles isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty (OLETF) rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). We hypothesized that the greatest effects of exercise would be in the gastrocnemius arterioles. Results show that EX caused the largest number of changes in gene expression in the soleus and white gastrocnemius 2a arterioles with little to no changes in the feed arteries. In contrast, SPRINT caused substantial changes in gene expression in the feed arteries. IPA canonical pathway analysis revealed 18 pathways with significant changes in gene expression when analyzed across vessels and revealed that EX induces increased expression of the following genes in all arterioles examined: Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein binding protein, alpha (Gnat1), and Bcl2l1 and decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). EX increased expression of endothelin converting enzyme (Ece1), Hsp90b, Fkbp5, and Cdcl4b in four of five arterioles. SPRINT had effects on expression of Crem, Dhh, Bcl2l1, and Ubd that were similar to EX. SPRINT also increased expression of Nfkbia, Hspa5, Tubb 2a and Tubb 2b, and Fkbp5 in all five arterioles and increased expression of Gnat1 in all but the soleus second-order arterioles. Many contractile and/or structural protein genes were increased by SPRINT in the gastrocnemius feed artery, but the same genes exhibited decreased expression in red gastrocnemius arterioles. We conclude that training-induced changes in arteriolar gene expression patterns differ by muscle fiber type composition and along the arteriolar tree. PMID:26183477

  11. Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled carbon nanotube films for skeletal muscle engineering.

    PubMed

    Zhao, Chunyan; Andersen, Henrik; Ozyilmaz, Barbaros; Ramaprabhu, Sundara; Pastorin, Giorgia; Ho, Han Kiat

    2015-11-21

    This study explored the influence of polyethylene glycol-linked multi-walled carbon nanotube (PEG-CNT) films on skeletal myogenic differentiation of human mesenchymal stem cells (hMSCs). PEG-CNT films were prepared with nanoscale surface roughness, orderly arrangement of PEG-CNTs, high hydrophilicity and high mechanical strength. Notably, PEG-CNT films alone could direct the skeletal myogenic differentiation of hMSCs in the absence of myogenic induction factors. The quantitative real-time polymerase chain reaction (RT-PCR) showed that the non-induced hMSCs plated on the PEG-CNT films, compared to the negative control, presented significant up-regulation of general myogenic markers including early commitment markers of myoblast differentiation protein-1 (MyoD) and desmin, as well as a late phase marker of myosin heavy chain-2 (MHC). Corresponding protein analysis by immunoblot assays corroborated these results. Skeletal muscle-specific markers, fast skeletal troponin-C (TnC) and ryanodine receptor-1 (Ryr) were also significantly increased in the non-induced hMSCs on PEG-CNT films by RT-PCR. For these cells, the commitment to specific skeletal myoblasts was further proved by the absence of enhanced adipogenic, chondrogenic and osteogenic markers. This study elucidated that PEG-CNT films supported a dedicated differentiation of hMSCs into a skeletal myogenic lineage and can work as a promising material towards skeletal muscle injury repair.

  12. Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating embryonic stem cells.

    PubMed

    Magli, Alessandro; Schnettler, Erin; Swanson, Scott A; Borges, Luciene; Hoffman, Kirsta; Stewart, Ron; Thomson, James A; Keirstead, Susan A; Perlingeiro, Rita C R

    2014-08-01

    Embryonic stem cells (ESCs) represent an ideal model to study how lineage decisions are established during embryonic development. Using a doxycycline-inducible mouse ESC line, we have previously shown that expression of the transcriptional activator Pax3 in early mesodermal cells leads to the robust generation of paraxial mesoderm progenitors that ultimately differentiate into skeletal muscle precursors. Here, we show that the ability of this transcription factor to induce the skeletal myogenic cell fate occurs at the expenses of the cardiac lineage. Our results show that the PDGFRα+FLK1--subfraction represents the main population affected by Pax3, through downregulation of several transcripts encoding for proteins involved in cardiac development. We demonstrate that although Nkx2-5, Tbx5, and Gata4 negatively affect Pax3 skeletal myogenic activity, the cardiac potential of embryoid body-derived cultures is restored solely by forced expression of Tbx5. Taking advantage of this model, we used an unbiased genome-wide approach to identify genes whose expression is rescued by Tbx5, and which could represent important regulators of cardiac development. These findings elucidate mechanisms regulating the commitment of mesodermal cells in the early embryo and identify the Tbx5 cardiac transcriptome. © 2014 AlphaMed Press.

  13. Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating ES cells

    PubMed Central

    Magli, Alessandro; Schnettler, Erin; Swanson, Scott A; Borges, Luciene; Hoffman, Kirsta; Stewart, Ron; Thomson, James A; Keirstead, Susan A.; Perlingeiro, Rita C. R.

    2014-01-01

    Embryonic stem (ES) cells represent an ideal model to study how lineage decisions are established during embryonic development. Using a doxycycline-inducible mouse ES cell line, we have previously shown that expression of the transcriptional activator Pax3 in early mesodermal cells leads to the robust generation of paraxial mesoderm progenitors that ultimately differentiate into skeletal muscle precursors. Here we show that the ability of this transcription factor to induce the skeletal myogenic cell fate occurs at the expenses of the cardiac lineage. Our results show that the PDGFRα+FLK1− sub-fraction represents the main population affected by Pax3, through down-regulation of several transcripts encoding for proteins involved in cardiac development. We demonstrate that although Nkx2-5, Tbx5 and Gata4 negatively affect Pax3 skeletal myogenic activity, the cardiac potential of embryoid body (EB)-derived cultures is restored solely by forced expression of Tbx5. Taking advantage of this model, we employed an unbiased genome wide approach to identify genes whose expression is rescued by Tbx5, and which could represent important regulators of cardiac development. These findings elucidate mechanisms regulating the commitment of mesodermal cells in the early embryo and identify the Tbx5 cardiac transcriptome. PMID:24677751

  14. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications.

    PubMed

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu; Khademhosseini, Ali

    2014-10-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.

  15. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    PubMed Central

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971

  16. Subtilisin-like proprotein convertase PACE4 is required for skeletal muscle differentiation.

    PubMed

    Yuasa, Keizo; Masuda, Tetsuya; Yoshikawa, Chihiro; Nagahama, Masami; Matsuda, Yoshiko; Tsuji, Akihiko

    2009-09-01

    Most growth factors stimulate myoblast proliferation and prevent differentiation, whereas insulin-like growth factors (IGFs) promote myoblast differentiation through the phosphatidylinositol 3-kinase (PI3K) pathway. Subtilisin-like proprotein convertases (SPCs) are involved in cell growth and differentiation via activation of pro-growth factors. However, the role of SPCs in myogenesis remains poorly understood. Here we show that PACE4, a member of the SPC family, plays a critical role in myogenic differentiation of C2C12 cells. PACE4 mRNA levels increased markedly during myogenesis, whereas the expression of other member of SPC family, furin and PC6, remained unchanged. The expression pattern of pro-IGF-II, which is processed extracellularly by SPCs, was similar to that of PACE4. The expression of shRNA targeting PACE4, but not furin, suppressed the expression of the muscle-specific myosin light chain (MLC). Interestingly, reduced expression of MLC was restored following treatment with recombinant mature IGF-II. Finally, we demonstrated that the PI3K inhibitor LY294002 blocked the induction of PACE4 mRNA, a result not observed when another myogenic differentiation inhibitor, SB203580 (p38 MAP kinase inhibitor), was employed, indicating the presence of a positive feedback loop regulating PACE4 expression. These results suggest that PACE4 plays an important role in myogenic differentiation through its association with the IGF-II pathway.

  17. Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells.

    PubMed

    Sjögren, Rasmus J O; Egan, Brendan; Katayama, Mutsumi; Zierath, Juleen R; Krook, Anna

    2015-03-01

    microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states.

  18. Differential effects of mutant SOD1 on protein structure of skeletal muscle and spinal cord of familial amyotrophic lateral sclerosis: role of chaperone network.

    PubMed

    Wei, Rochelle; Bhattacharya, Arunabh; Hamilton, Ryan T; Jernigan, Amanda L; Chaudhuri, Asish R

    2013-08-16

    Protein misfolding is considered to be a potential contributing factor for motor neuron and muscle loss in diseases like Amyotrophic lateral sclerosis (ALS). Several independent studies have demonstrated using over-expressed mutated Cu/Zn-superoxide dismutase (mSOD1) transgenic mouse models which mimic familial ALS (f-ALS), that both muscle and motor neurons undergo degeneration during disease progression. However, it is unknown whether protein conformation of skeletal muscle and spinal cord is equally or differentially affected by mSOD1-induced toxicity. It is also unclear whether heat shock proteins (Hsp's) differentially modulate skeletal muscle and spinal cord protein structure during ALS disease progression. We report three intriguing observations utilizing the f-ALS mouse model and cell-free in vitro system; (i) muscle proteins are equally sensitive to misfolding as spinal cord proteins despite the presence of low level of soluble and absence of insoluble G93A protein aggregate, unlike in spinal cord, (ii) Hsp's levels are lower in muscle compared to spinal cord at any stage of the disease, and (iii) G93ASOD1 enzyme-induced toxicity selectively affects muscle protein conformation over spinal cord proteins. Together, these findings strongly suggest that differential chaperone levels between skeletal muscle and spinal cord may be a critical determinant for G93A-induced protein misfolding in ALS.

  19. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation

    PubMed Central

    Singh, Kulwant; Cassano, Marco; Planet, Evarist; Sebastian, Soji; Jang, Suk Min; Sohi, Gurjeev; Faralli, Hervé; Choi, Jinmi; Youn, Hong-Duk

    2015-01-01

    The transcriptional activator MyoD serves as a master controller of myogenesis. Often in partnership with Mef2 (myocyte enhancer factor 2), MyoD binds to the promoters of hundreds of muscle genes in proliferating myoblasts yet activates these targets only upon receiving cues that launch differentiation. What regulates this off/on switch of MyoD function has been incompletely understood, although it is known to reflect the action of chromatin modifiers. Here, we identify KAP1 (KRAB [Krüppel-like associated box]-associated protein 1)/TRIM28 (tripartite motif protein 28) as a key regulator of MyoD function. In myoblasts, KAP1 is present with MyoD and Mef2 at many muscle genes, where it acts as a scaffold to recruit not only coactivators such as p300 and LSD1 but also corepressors such as G9a and HDAC1 (histone deacetylase 1), with promoter silencing as the net outcome. Upon differentiation, MSK1-mediated phosphorylation of KAP1 releases the corepressors from the scaffold, unleashing transcriptional activation by MyoD/Mef2 and their positive cofactors. Thus, our results reveal KAP1 as a previously unappreciated interpreter of cell signaling, which modulates the ability of MyoD to drive myogenesis. PMID:25737281

  20. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation.

    PubMed

    Singh, Kulwant; Cassano, Marco; Planet, Evarist; Sebastian, Soji; Jang, Suk Min; Sohi, Gurjeev; Faralli, Hervé; Choi, Jinmi; Youn, Hong-Duk; Dilworth, F Jeffrey; Trono, Didier

    2015-03-01

    The transcriptional activator MyoD serves as a master controller of myogenesis. Often in partnership with Mef2 (myocyte enhancer factor 2), MyoD binds to the promoters of hundreds of muscle genes in proliferating myoblasts yet activates these targets only upon receiving cues that launch differentiation. What regulates this off/on switch of MyoD function has been incompletely understood, although it is known to reflect the action of chromatin modifiers. Here, we identify KAP1 (KRAB [Krüppel-like associated box]-associated protein 1)/TRIM28 (tripartite motif protein 28) as a key regulator of MyoD function. In myoblasts, KAP1 is present with MyoD and Mef2 at many muscle genes, where it acts as a scaffold to recruit not only coactivators such as p300 and LSD1 but also corepressors such as G9a and HDAC1 (histone deacetylase 1), with promoter silencing as the net outcome. Upon differentiation, MSK1-mediated phosphorylation of KAP1 releases the corepressors from the scaffold, unleashing transcriptional activation by MyoD/Mef2 and their positive cofactors. Thus, our results reveal KAP1 as a previously unappreciated interpreter of cell signaling, which modulates the ability of MyoD to drive myogenesis.

  1. Identification of genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig.

    PubMed

    Komatsu, Yuuta; Sukegawa, Shin; Yamashita, Mai; Katsuda, Naoki; Tong, Bin; Ohta, Takeshi; Kose, Hiroyuki; Yamada, Takahisa

    2016-06-01

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from musculus longissimus muscle tissues of selected pigs with extreme expected breeding values at the age of 100 kg. Three upregulated genes (EEF1A2, TSG101 and TTN) and six downregulated genes (ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7) in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis confirmed difference in expression profiles of the identified genes in musculus longissimus muscle tissues between the two Landrace weanling pig groups with divergent genetic propensity for growth rate. Further, differential expression of the identified genes except for the TTN was validated by Western blot analysis. Additionally, the eight genes other than the ATP5C1 colocalized with the same chromosomal positions as QTLs that have been previously identified for growth rate traits. Finally, the changes of expression predicted from gene function suggested association of upregulation of expression of the EEF1A2, TSG101 and TTN genes and downregulation of the ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7 gene expression with increased growth rate. The identified genes will provide an important insight in understanding the molecular mechanism underlying growth rate in Landrace pig breed.

  2. Expression and subcellular localization of myogenic regulatory factors during the differentiation of skeletal muscle C2C12 myoblasts.

    PubMed

    Ferri, Paola; Barbieri, Elena; Burattini, Sabrina; Guescini, Michele; D'Emilio, Alessandra; Biagiotti, Laura; Del Grande, Paolo; De Luca, Antonio; Stocchi, Vilberto; Falcieri, Elisabetta

    2009-12-15

    It is known that the MyoD family members (MyoD, Myf5, myogenin, and MRF4) play a pivotal role in the complex mechanism of skeletal muscle cell differentiation. However, fragmentary information on transcription factor-specific regulation is available and data on their post-transcriptional and post-translational behavior are still missing. In this work, we combined mRNA and protein expression analysis with their subcellular localization. Each myogenic regulator factor (MRF) revealed a specific mRNA trend and a protein quantitative analysis not overlapping, suggesting the presence of post-transcriptional mechanisms. In addition, each MRF showed a specific behavior in situ, characterized by a differentiation stage-dependent localization suggestive of a post-translational regulation also. Consistently with their transcriptional activity, immunogold electron microscopy data revealed MRFs distribution in interchromatin domains. Our results showed a MyoD and Myf5 contrasting expression profile in proliferating myoblasts, as well as myogenin and MRF4 opposite distribution in the terminally differentiated myotubes. Interestingly, MRFs expression and subcellular localization analysis during C2C12 cell differentiation stages showed two main MRFs regulation mechanisms: (i) the protein half-life regulation to modulate the differentiation stage-dependent transcriptional activity and (ii) the cytoplasmic retention, as a translocation process, to inhibit the transcriptional activity. Therefore, our results exhibit that MRFs nucleo-cytoplasmic trafficking is involved in muscle differentiation and suggest that, besides the MRFs expression level, also MRFs subcellular localization, related to their functional activity, plays a key role as a regulatory step in transcriptional control mechanisms.

  3. COORDINATED DEVELOPMENT OF THE SARCOPLASMIC RETICULUM AND T SYSTEM DURING POSTNATAL DIFFERENTIATION OF RAT SKELETAL MUSCLE

    PubMed Central

    Schiaffino, S.; Margreth, A.

    1969-01-01

    An electron microscope study has been carried out on rat psoas muscle, during the early postnatal stages of development. Among the several subcellular components, the sarcotubular system undergoes the most striking modifications during this period. In muscle fibers of the newborn rat, junctional contacts between the T system and the SR are sparse and are, mostly, longitudinally or obliquely oriented. The T tubules do not penetrate deeply into the muscle cell, as indicated by the predominantly peripheral location of the triads and the persistence, at these stages of development, of a highly branched subsarcolemmal system of tubules. Diadic associations of junctional SR elements with the plasma membrane are also occasionally observed. The early SR elaborations incompletely delineate the myofibrils, at both the A- and I-band level. Longitudinal sections show irregularly oriented SR tubules, running continuously over successive sarcomeres. Flattened junctional cisterns filled with granular material are sparse and laterally interconnected, at circumscribed sites, with the SR tubules. Between 1 and 2 wk postpartum, transversal triadic contacts are extensively established, at the A-I band level, and the SR network differentiates into two portions in register with the A and I band, respectively. At 10–15 days after birth, the SR provides a transversely continuous double sheet around the myofibrils at the I-band level, whereas it forms a single discontinuous layer at the A-band level. The relationship that these morphological modifications of the sarcotubular system may bear to previously described biochemical and physiological changes of rat muscle fibers after birth is discussed. PMID:5814005

  4. The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA, lncMD, promotes muscle differentiation by sponging miR-125b.

    PubMed

    Sun, Xiaomei; Li, Mingxun; Sun, Yujia; Cai, Hanfang; Lan, Xianyong; Huang, Yongzhen; Bai, Yueyu; Qi, Xinglei; Chen, Hong

    2016-11-01

    Pervasive transcription of the mammalian genome generates numerous long noncoding RNAs (lncRNAs), which are of crucial importance in diverse biological processes. Recent advances in high throughput sequencing technology have helped to accelerate the pace of lncRNA discovery. However, no study on the overall expression patterns of lncRNAs during muscle development has been conducted. We reported here the first analysis of lncRNA landscape in bovine embryonic, neonatal and adult skeletal muscle using Ribo-Zero RNA-Seq, a technology which can capture both poly(A)(+) and poly(A)(-) transcripts. We finally defined 7692 high-confidence lncRNAs and uncovered 401 lncRNAs differentially expressed among three developmental stages, including lncMD, a novel muscle-specific lncRNA which is gradually up-regulated during myoblast differentiation. lncMD overexpression upregulated, whereas lncMD silencing decreased the expression of two well-established myogenic markers, myosin heavy chain (MHC) and myogenin (MyoG). In-depth analyses showed that lncMD acts as a molecular sponge for miR-125b and that insulin-like growth factor 2 (IGF2) is a direct target of miR-125b in cattle. Moreover, lncMD level was positively correlated with IGF2 mRNA level in bovine muscle tissues, a vital corollary to ceRNA function. Altogether, our research showed that lncMD acts as a ceRNA to sequester miR-125b, leading to heightened IGF2 expression and thus promotes muscle differentiation. Our findings also complement the reference genome annotation of cattle, which will likely be useful for further functional lncRNA cloning and more comprehensive studies on lncRNA regulation in muscle development. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Transcription Factor EGR1 Promotes Differentiation of Bovine Skeletal Muscle Satellite Cells by Regulating MyoG Gene Expression.

    PubMed

    Zhang, Weiwei; Tong, Huili; Zhang, Ziheng; Shao, Shuli; Liu, Dan; Li, Shufeng; Yan, Yunqin

    2017-03-03

    The transcription factor, early growth response 1 (EGR1), has important roles in various cell types in response to different stimuli. EGR1 is thought to be involved in differentiation of bovine skeletal muscle-derived satellite cells (MDSCs); however, the precise effects of EGR1 on differentiation of MDSCs and its mechanism of action remain unknown. In the present study, a time course of EGR1 expression and the effects of EGR1 on MDSC differentiation were determined. The results demonstrated that the expression of EGR1 mRNA and protein increased significantly in differentiating MDSCs relative to that in proliferating cells. Over-expression of the EGR1 gene in MDSCs promoted their differentiation and inhibited proliferation. Conversely, knock-down of EGR1 inhibited differentiation of MDSCs and promoted their proliferation, indicating that EGR1 promotes MDSC differentiation. Moreover, over-expression of EGR1 in MDSCs increased the expression of MyoG mRNA and protein, whereas its knock-down had the opposite effect. Furthermore, ChIP-PCR analyses demonstrated that EGR1 could bind directly to its putative binding site within the promoter region of MyoG, and determination of ERG1 subcellular localization in MDSCs demonstrated that it could relocate to the nucleus, indicating MyoG is likely an EGR1 target gene whose expression is positively regulated by this transcription factor. In conclusion, EGR1 can promote MDSC differentiation through positive regulation of MyoG gene expression. This article is protected by copyright. All rights reserved.

  6. p66(ShcA) and oxidative stress modulate myogenic differentiation and skeletal muscle regeneration after hind limb ischemia.

    PubMed

    Zaccagnini, Germana; Martelli, Fabio; Magenta, Alessandra; Cencioni, Chiara; Fasanaro, Pasquale; Nicoletti, Carmine; Biglioli, Paolo; Pelicci, Pier Giuseppe; Capogrossi, Maurizio C

    2007-10-26

    Oxidative stress plays a pivotal role in ischemic injury, and p66(ShcA)ko mice exhibit both lower oxidative stress and decreased tissue damage following hind limb ischemia. Thus, it was investigated whether tissue regeneration following acute hind limb ischemia was altered in p66(ShcA)ko mice. Upon femoral artery dissection, muscle regeneration started earlier and was completed faster than in wild-type (WT) control. Moreover, faster regeneration was associated with decreased oxidative stress. Unlike ischemia, cardiotoxin injury induced similar skeletal muscle damage in both genotypes. However, p66(ShcA)ko mice regenerated faster, in agreement with the regenerative advantage upon ischemia. Since no difference between p66(ShcA)wt and knock-out (ko) mice was found in blood perfusion recovery after ischemia, satellite cells (SCs), a resident population of myogenic progenitors, were examined. Similar SCs numbers were present in WT and ko mice. However, in vitro cultured p66(ShcA)ko SCs displayed lower oxidative stress levels and higher proliferation rate and differentiated faster than WT. Furthermore, when exposed to sublethal H(2)O(2) doses, p66(ShcA)ko SCs were resistant to H(2)O(2)-induced inhibition of differentiation. Finally, myogenic conversion induced by MyoD overexpression was more efficient in p66(ShcA)ko fibroblasts compared with WT. The present work demonstrates that oxidative stress and p66(ShcA) play a crucial role in the regenerative pathways activated by acute ischemia.

  7. miR-101a targeting EZH2 promotes the differentiation of goat skeletal muscle satellite cells.

    PubMed

    Li, Jun-Tao; Zhao, Wei; Li, Dan-Dan; Feng, Jing; Ba, Gui; Song, Tian-Zeng; Zhang, Hong-Ping

    2017-09-20

    miR-101a promotes the differentiation of goat skeletal muscle satellite cells (SMSCs), as we previously reported, but the underpinning mechanism remains to be illuminated. In this study, we predicted the target gene of miR-101a by employing online softwares PicTar, TargetScan and miRanda, and found that enhancer of zeste homologue 2 (EZH2) was targeted by miR-101a. Further we identified that EZH2 contained miR-101a binding sites at its 3'UTR by using the dual-luciferase reporter assay system. In addition, we showed that during SMSC differentiation, the downregulated levels of EZH2 mRNA and protein were accompanied by increasing miR-101a expression via qRT-PCR and Western blot. Additionally, the expression of EZH2 significantly increased (P<0.01) when miR-101a was suppressed, whereas overexpressing miR-101a almost had no effect on EZH2 expression (P>0.05). These data demonstrated that miR-101a promotes SMSC differentiation directly through EZH2, which provides a theoretical reference for further elucidating the mechanism of miR-101a in SMSC differentiation.

  8. PPARγ as a molecular target of EPA anti-inflammatory activity during TNF-α-impaired skeletal muscle cell differentiation.

    PubMed

    Magee, Peter; Pearson, Stephen; Whittingham-Dowd, Jayde; Allen, Jeremy

    2012-11-01

    Activated skeletal muscle satellite cells facilitate muscle repair or growth through proliferation, differentiation and fusion into new or existing myotubes. Elevated levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) impair this process and are documented to have significant roles in muscle pathology. Recent evidence shows that the ω-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) can block TNF-mediated suppression of progenitor cell differentiation, but the nature of this activity and its significance for local regulation of inflammation are not known. In the current study, we examined differentiation of the C2C12 myoblast line during treatment with TNF-α and EPA and measured the expression, activation and inhibition of peroxisome proliferator-activated receptor-γ (PPARγ), as several studies have shown its involvement in mediating EPA activity and the inhibition of nuclear factor (NF)-κB inflammatory gene activation. We found that TNF-α treatment increased NF-κB activity and reduced expression and activation of PPARγ, resulting in impaired myotube formation. EPA treatment attenuated these effects of TNF-α and was associated with up-regulation of PPARγ. Furthermore, EPA inhibited TNF-α-mediated transcription and secretion of interleukin (IL)-6, a key target gene of TNF-mediated NF-κB transcriptional activity. Pretreatment with a PPARγ selective antagonist inhibited some of the actions of EPA but was only partially effective in reversing inhibition of IL-6 production. These results show that EPA activity was associated with altered expression and activation of PPARγ, but exerted through both PPARγ-dependent and PPARγ-independent pathways leading to suppression of the proinflammatory cellular microenvironment.

  9. Generalized Model of a Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Shil'ko, S. V.; Chernous, D. A.; Bondarenko, K. K.

    2016-01-01

    A new phenomenological model of a skeletal muscle consisting of a contractile and two nonlinear viscoelastic elements is proposed. The corresponding system of differential equations of the model is obtained, which allows one to derive time-dependent relations between the axial stress and the longitudinal strain in passive and activated states of the muscle. Methods for determining the viscoelastic and functional characteristics of the muscle as input parameters of the equations mentioned above are developed. These methods are based on the joint application of known experimental relations for a single muscle fiber and the results of muscle indentation in vivo on a "Miometer UT 98-01" device.

  10. Training differentially regulates elastin level and proteolysis in skeletal and heart muscles and aorta in healthy rats

    PubMed Central

    Gilbert, Anna; Wyczalkowska-Tomasik, Aleksandra; Zendzian-Piotrowska, Malgorzata; Czarkowska-Paczek, Bozena

    2016-01-01

    ABSTRACT Exercise induces changes in muscle fibers and the extracellular matrix that may depend on elastin content and the activity of proteolytic enzymes. We investigated the influence of endurance training on the gene expression and protein content and/or activity of elastin, elastase, cathepsin K, and plasmin in skeletal and heart muscles and in the aorta. Healthy rats were randomly divided into untrained (n=10) and trained (n=10; 6 weeks of endurance training with increasing load) groups. Gene expression was evaluated via qRT-PCR. Elastin content was measured via enzyme-linked immunosorbent assay and enzyme activity was measured fluorometrically. Elastin content was significantly higher in skeletal (P=0.0014) and heart muscle (P=0.000022) from trained rats versus untrained rats, but not in the aorta. Although mRNA levels in skeletal muscle did not differ between groups, the activities of elastase (P=0.0434), cathepsin K (P=0.0343) and plasmin (P=0.000046) were higher in trained rats. The levels of cathepsin K (P=0.0288) and plasminogen (P=0.0005) mRNA were higher in heart muscle from trained rats, but enzyme activity was not. Enzyme activity in the aorta did not differ between groups. Increased elastin content in muscles may result in better adaption to exercise, as may remodeling of the extracellular matrix in skeletal muscle. PMID:27069251

  11. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells

    PubMed Central

    Meyer, Swanhild U.; Krebs, Stefan; Thirion, Christian; Blum, Helmut; Krause, Sabine; Pfaffl, Michael W.

    2015-01-01

    Introduction TNF-α levels are increased during muscle wasting and chronic muscle degeneration and regeneration processes, which are characteristic for primary muscle disorders. Pathologically increased TNF-α levels have a negative effect on muscle cell differentiation efficiency, while IGF1 can have a positive effect; therefore, we intended to elucidate the impact of TNF-α and IGF1 on gene expression during the early stages of skeletal muscle cell differentiation. Methodology/Principal Findings This study presents gene expression data of the murine skeletal muscle cells PMI28 during myogenic differentiation or differentiation with TNF-α or IGF1 exposure at 0 h, 4 h, 12 h, 24 h, and 72 h after induction. Our study detected significant coregulation of gene sets involved in myoblast differentiation or in the response to TNF-α. Gene expression data revealed a time- and treatment-dependent regulation of signaling pathways, which are prominent in myogenic differentiation. We identified enrichment of pathways, which have not been specifically linked to myoblast differentiation such as doublecortin-like kinase pathway associations as well as enrichment of specific semaphorin isoforms. Moreover to the best of our knowledge, this is the first description of a specific inverse regulation of the following genes in myoblast differentiation and response to TNF-α: Aknad1, Cmbl, Sepp1, Ndst4, Tecrl, Unc13c, Spats2l, Lix1, Csdc2, Cpa1, Parm1, Serpinb2, Aspn, Fibin, Slc40a1, Nrk, and Mybpc1. We identified a gene subset (Nfkbia, Nfkb2, Mmp9, Mef2c, Gpx, and Pgam2), which is robustly regulated by TNF-α across independent myogenic differentiation studies. Conclusions This is the largest dataset revealing the impact of TNF-α or IGF1 treatment on gene expression kinetics of early in vitro skeletal myoblast differentiation. We identified novel mRNAs, which have not yet been associated with skeletal muscle differentiation or response to TNF-α. Results of this study may facilitate

  12. Lipin1 Regulates Skeletal Muscle Differentiation through Extracellular Signal-regulated Kinase (ERK) Activation and Cyclin D Complex-regulated Cell Cycle Withdrawal*

    PubMed Central

    Jiang, Weihua; Zhu, Jing; Zhuang, Xun; Zhang, Xiping; Luo, Tao; Esser, Karyn A.; Ren, Hongmei

    2015-01-01

    Lipin1, an intracellular protein, plays critical roles in controlling lipid synthesis and energy metabolism through its enzymatic activity and nuclear transcriptional functions. Several mouse models of skeletal muscle wasting are associated with lipin1 mutation or altered expression. Recent human studies have suggested that children with homozygous null mutations in the LPIN1 gene suffer from rhabdomyolysis. However, the underlying pathophysiologic mechanism is still poorly understood. In the present study we examined whether lipin1 contributes to regulating muscle regeneration. We characterized the time course of skeletal muscle regeneration in lipin1-deficient fld mice after injury. We found that fld mice exhibited smaller regenerated muscle fiber cross-sectional areas compared with wild-type mice in response to injury. Our results from a series of in vitro experiments suggest that lipin1 is up-regulated and translocated to the nucleus during myoblast differentiation and plays a key role in myogenesis by regulating the cytosolic activation of ERK1/2 to form a complex and a downstream effector cyclin D3-mediated cell cycle withdrawal. Overall, our study reveals a previously unknown role of lipin1 in skeletal muscle regeneration and expands our understanding of the cellular and molecular mechanisms underlying skeletal muscle regeneration. PMID:26296887

  13. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  14. Paraplegia increases skeletal muscle autophagy.

    PubMed

    Fry, Christopher S; Drummond, Micah J; Lujan, Heidi L; DiCarlo, Stephen E; Rasmussen, Blake B

    2012-11-01

    Paraplegia results in significant skeletal muscle atrophy through increases in skeletal muscle protein breakdown. Recent work has identified a novel SIRT1-p53 pathway that is capable of regulating autophagy and protein breakdown. Soleus muscle was collected from 6 male Sprague-Dawley rats 10 weeks after complete T4-5 spinal cord transection (paraplegia group) and 6 male sham-operated rats (control group). We utilized immunoblotting methods to measure intracellular proteins and quantitative real-time polymerase chain reaction to measure the expression of skeletal muscle microRNAs. SIRT1 protein expression was 37% lower, and p53 acetylation (LYS379) was increased in the paraplegic rats (P < 0.05). Atg7 and Beclin-1, markers of autophagy induction, were elevated in the paraplegia group compared with controls (P < 0.05). Severe muscle atrophy resulting from chronic paraplegia appears to increase skeletal muscle autophagy independent of SIRT1 signaling. We conclude that chronic paraplegia may cause an increase in autophagic cell death and negatively impact skeletal muscle protein balance. Copyright © 2012 Wiley Periodicals, Inc.

  15. Paraplegia increases skeletal muscle autophagy

    PubMed Central

    Fry, Christopher S.; Drummond, Micah J.; Lujan, Heidi L.; DiCarlo, Stephen E.; Rasmussen, Blake B.

    2012-01-01

    INTRODUCTION Paraplegia results in significant skeletal muscle atrophy through increases in skeletal muscle protein breakdown. Recent work has identified a novel SIRT1-p53 pathway that is capable of regulating autophagy and protein breakdown. METHODS Soleus muscle was collected from 6 male Sprague-Dawley rats 10 weeks following complete T(4)-T(5) spinal-cord transection (paraplegia) and 6 male sham-operated rats (control). We utilized immunoblotting methods to measure intracellular proteins and qRT-PCR to measure the expression of skeletal muscle microRNAs. RESULTS SIRT1 protein expression was 37% lower, and p53 acetylation (LYS379) was increased in the paraplegia rats (P<0.05). Atg7 and Beclin-1, markers of autophagy induction, were elevated in paraplegia compared to controls (P<0.05). DISCUSSION Severe muscle atrophy resulting from chronic paraplegia appears to increase skeletal muscle autophagy independent of SIRT1 signaling. We conclude that chronic paraplegia may cause an increase in autophagic cell-death and negatively impact skeletal muscle protein balance. PMID:23055316

  16. Vestigial-like 2 acts downstream of MyoD activation and is associated with skeletal muscle differentiation in chick myogenesis.

    PubMed

    Bonnet, Aline; Dai, Fangping; Brand-Saberi, Beate; Duprez, Delphine

    2010-01-01

    The co-factor Vestigial-like 2 (Vgl-2), in association with the Scalloped/Tef/Tead transcription factors, has been identified as a component of the myogenic program in the C2C12 cell line. In order to understand Vgl-2 function in embryonic muscle formation, we analysed Vgl-2 expression and regulation during chick embryonic development. Vgl-2 expression was associated with all known sites of skeletal muscle formation, including those in the head, trunk and limb. Vgl-2 was expressed after the myogenic factor MyoD, regardless of the site of myogenesis. Analysis of Vgl-2 regulation by Notch signalling showed that Vgl-2 expression was down-regulated by Delta1-activated Notch, similarly to the muscle differentiation genes MyoD, Myogenin,Desmin, and Mef2c, while the expression of the muscle progenitor markers such as Myf5, Six1 and FgfR4 was not modified. Moreover, we established that the Myogenic Regulatory Factors (MRFs) associated with skeletal muscle differentiation (MyoD, Myogenin and Mrf4) were sufficient to activate Vgl-2 expression, while Myf5 was not able to do so. The Vgl-2 endogenous expression, the similar regulation of Vgl-2 and that of MyoD and Myogenin by Notch signalling, and the positive regulation of Vgl-2 by these MRFs suggest that Vgl-2 acts downstream of MyoD activation and is associated with the differentiation step in embryonic skeletal myogenesis.

  17. Regulation of Nucleocytoplasmic Transport in Skeletal Muscle

    PubMed Central

    Hall, Monica N.; Corbett, Anita H.; Pavlath, Grace K.

    2015-01-01

    Proper skeletal muscle function is dependent on spatial and temporal control of gene expression in multinucleated myofibers. In addition, satellite cells, which are tissue-specific stem cells that contribute critically to repair and maintenance of skeletal muscle, are also required for normal muscle physiology. Gene expression in both myofibers and satellite cells is dependent upon nuclear proteins that require facilitated nuclear transport. A unique challenge for myofibers is controlling the transcriptional activity of hundreds of nuclei in a common cytoplasm yet achieving nuclear selectivity in transcription at specific locations such as neuromuscular synapses and myotendinous junctions. Nucleocytoplasmic transport of macromolecular cargoes is regulated by a complex interplay among various components of the nuclear transport machinery, namely nuclear pore complexes, nuclear envelope proteins, and various soluble transport receptors. The focus of this review is to highlight what is known about the nuclear transport machinery and its regulation in skeletal muscle and to consider the unique challenges that multinucleated muscle cells as well as satellite cells encounter in regulating nucleocytoplasmic transport during cell differentiation and tissue adaptation. Understanding how regulated nucleocytoplasmic transport controls gene expression in skeletal muscle may lead to further insights into the mechanisms contributing to muscle growth and maintenance throughout the lifespan of an individual. PMID:21621074

  18. Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled carbon nanotube films for skeletal muscle engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyan; Andersen, Henrik; Ozyilmaz, Barbaros; Ramaprabhu, Sundara; Pastorin, Giorgia; Ho, Han Kiat

    2015-10-01

    This study explored the influence of polyethylene glycol-linked multi-walled carbon nanotube (PEG-CNT) films on skeletal myogenic differentiation of human mesenchymal stem cells (hMSCs). PEG-CNT films were prepared with nanoscale surface roughness, orderly arrangement of PEG-CNTs, high hydrophilicity and high mechanical strength. Notably, PEG-CNT films alone could direct the skeletal myogenic differentiation of hMSCs in the absence of myogenic induction factors. The quantitative real-time polymerase chain reaction (RT-PCR) showed that the non-induced hMSCs plated on the PEG-CNT films, compared to the negative control, presented significant up-regulation of general myogenic markers including early commitment markers of myoblast differentiation protein-1 (MyoD) and desmin, as well as a late phase marker of myosin heavy chain-2 (MHC). Corresponding protein analysis by immunoblot assays corroborated these results. Skeletal muscle-specific markers, fast skeletal troponin-C (TnC) and ryanodine receptor-1 (Ryr) were also significantly increased in the non-induced hMSCs on PEG-CNT films by RT-PCR. For these cells, the commitment to specific skeletal myoblasts was further proved by the absence of enhanced adipogenic, chondrogenic and osteogenic markers. This study elucidated that PEG-CNT films supported a dedicated differentiation of hMSCs into a skeletal myogenic lineage and can work as a promising material towards skeletal muscle injury repair.This study explored the influence of polyethylene glycol-linked multi-walled carbon nanotube (PEG-CNT) films on skeletal myogenic differentiation of human mesenchymal stem cells (hMSCs). PEG-CNT films were prepared with nanoscale surface roughness, orderly arrangement of PEG-CNTs, high hydrophilicity and high mechanical strength. Notably, PEG-CNT films alone could direct the skeletal myogenic differentiation of hMSCs in the absence of myogenic induction factors. The quantitative real-time polymerase chain reaction (RT-PCR) showed

  19. Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles.

    PubMed

    Cammarato, Anthony; Dambacher, Corey M; Knowles, Aileen F; Kronert, William A; Bodmer, Rolf; Ocorr, Karen; Bernstein, Sanford I

    2008-02-01

    Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc(5) affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc(5) (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc(5) myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc(5) mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders.

  20. Differential α-adrenergic modulation of rapid onset vasodilatation along resistance networks of skeletal muscle in old versus young mice.

    PubMed

    Sinkler, Shenghua Y; Fernando, Charmain A; Segal, Steven S

    2016-12-01

    Rapid onset vasodilatation (ROV) initiates functional hyperaemia upon skeletal muscle contraction and is attenuated during ageing via α-adrenoreceptor (αAR) stimulation, but it is unknown where this effect predominates in resistance networks. In gluteus maximus muscles of young (4 months) and old (24 months) male C57BL/6 mice, tetanic contraction while observing feed arteries and arterioles initiated ROV, which increased with contraction duration, peaked later in upstream versus downstream vessel branches and was attenuated throughout networks with advanced age. With no effect on muscle force production, inhibiting αARs improved ROV in old mice while activating αARs attenuated ROV in young mice. Modulating ROV through αARs was greater in upstream feed arteries and arterioles compared to downstream arterioles, with α2 ARs more effective than α1 ARs. ROV is coordinated along resistance networks and modulated differentially between young and old mice via αARs; with advanced age, attenuated dilatation of upstream branches will restrict muscle blood flow. Rapid onset vasodilatation (ROV) in skeletal muscle is attenuated during advanced age via α-adrenoreceptor (αAR) activation, but it is unknown where such effects predominate in the resistance vasculature. Studying the gluteus maximus muscle (GM) of anaesthetized young (4 months) and old (24 months) male C57BL/6 mice, we tested the hypothesis that attenuation of ROV during advanced age is most effective in proximal branches of microvascular resistance networks. Diameters of a feed artery (FA) and first- (1A), second- (2A) and third- (3A) order arterioles were studied in response to single tetanic contractions (100 Hz, 100-1000 ms). ROV began within 1 s and peaked sooner in 2A and 3A (∼3 s) than in 1A or FA (∼4 s). Relative amplitudes of dilatation increased with contraction duration and with vessel branch order (FA<1A<2A<3A). In old mice, attenuation of ROV was greater in FA and 1A compared to 2A

  1. Influence of platelet-rich plasma on proliferation and osteogenic differentiation of skeletal muscle satellite cells: an in vitro study.

    PubMed

    Huang, Shengyun; Wang, Zuolin

    2010-10-01

    Platelet-rich plasma (PRP) is a new application of tissue engineering and a developing area for researchers and clinicians. The aim of this study was to assess the effect of PRP on the proliferation and osteogenic differentiation of skeletal muscle satellite cell (MSC) population and the ability of PRP to induce the production of some osteogeneic-related factors in vitro. The PRP was obtained from Sprague-Dawley rats using 2 centrifugation techniques. Primary cultures of rat MSCs were exposed to various concentrations of PRP (0.16 × 10(8), 0.625 × 10(8), and 2.5 × 10(8) thrombocytes/carrier) on MSC proliferation using an MTT proliferation assay. Alkaline phosphatase (ALP) activity, Alizarin red S (AR) staining, calcium analyses and real-time reverse-transcription polymerase chain reaction (RT-PCR) of osteogenic-related genes were performed to study the effect of PRP on osteogenic differentiation of cultured MSCs population. The platelet concentration and growth factors (GFs) in our PRP preparations were significantly higher than in the whole blood. PRP showed a dose-dependent stimulation of cell proliferation. The maximum effect was achieved with a concentration of 0.625 × 10(8) thrombocytes/carrier. ALP activity, AR staining, and calcium analyses showed enhanced cell osteogenic differentiation in the PRP group. The real-time RT-PCR results showed that PRP up-regulated osteocalcin at day 14 and type I collagen and osteopontin at day 7 compared with the control group. The results of this study suggest that PRP containing osteoinductive GFs stimulates cell proliferation and osteogenic differentiation of rat-derived MSCs in vitro. Copyright © 2010 Mosby, Inc. All rights reserved.

  2. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  3. Skeletal muscle hypertrophy after aerobic exercise training.

    PubMed

    Konopka, Adam R; Harber, Matthew P

    2014-04-01

    Current dogma suggests that aerobic exercise training has minimal effects on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise countermeasures for populations prone to muscle loss.

  4. Role of Phosphatidylinositol 3,4,5-Trisphosphate (PIP3) 5-Phosphatase Skeletal Muscle- and Kidney-enriched Inositol Polyphosphate Phosphatase (SKIP) in Myoblast Differentiation*

    PubMed Central

    Ijuin, Takeshi; Takenawa, Tadaomi

    2012-01-01

    Insulin-like growth factors (IGFs) are essential for the development, regeneration, and hypertrophy of skeletal muscles. IGF-II promotes myoblast differentiation through phosphatidylinositol 3-kinase (PI 3-kinase), Akt, and mTOR signaling. Here, we report that skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) negatively regulates myogenesis through inhibition of IGF-II production and attenuation of the IGF-II-Akt-mTOR signaling pathway. We also demonstrate that SKIP expression, which was markedly elevated during differentiation, was controlled by MyoD in C2C12 cells. Expression of SKIP inhibited IGF-II at the transcription level. These results indicate that SKIP regulates MyoD-mediated muscle differentiation. Silencing of SKIP increased IGF-II transcription and myoblast differentiation. Furthermore, knockdown of SKIP resulted in thick myotubes with a larger number of nuclei than that in control C2C12 cells. Taken together, these data indicate that SKIP controls the IGF-II-PI 3-kinase-Akt-mTOR auto-regulation loop during myogenesis. Our findings identify SKIP as a key regulator of muscle cell differentiation. PMID:22815484

  5. Laminin-211 in skeletal muscle function

    PubMed Central

    Holmberg, Johan; Durbeej, Madeleine

    2013-01-01

    A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle’s main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function. PMID:23154401

  6. YAP-Mediated Mechanotransduction in Skeletal Muscle

    PubMed Central

    Fischer, Martina; Rikeit, Paul; Knaus, Petra; Coirault, Catherine

    2016-01-01

    Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP), a transcriptional coactivator downstream of the Hippo pathway and its paralog, the transcriptional co-activator with PDZ-binding motif (TAZ), were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction. PMID:26909043

  7. Role of skeletal muscle in lung development.

    PubMed

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  8. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  9. Skeletal muscle inflammation and atrophy in heart failure.

    PubMed

    Lavine, Kory J; Sierra, Oscar L

    2017-03-01

    Heart failure represents a systemic disease with profound effects on multiple peripheral tissues including skeletal muscle. Within the context of heart failure, perturbations in skeletal muscle physiology, structure, and function strongly contribute to exercise intolerance and the morbidity of this devastating disease. There is growing evidence that chronic heart failure imparts specific pathological changes within skeletal muscle beds resulting in muscle dysfunction and tissue atrophy. Mechanistically, systemic and local inflammatory responses drive critical aspects of this pathology. In this review, we will discuss pathological mechanisms that drive skeletal muscle inflammation and highlight emerging roles for distinct innate immune subsets that reside within damage muscle tissue focusing on the recently described embryonic and monocyte-derived macrophage lineages. Within this context, we will discuss how immune mechanisms can be differentially targeted to stimulate skeletal muscle inflammation, catabolism, fiber atrophy, and regeneration.

  10. The long and short of non-coding RNAs during post-natal growth and differentiation of skeletal muscles: Focus on lncRNA and miRNAs.

    PubMed

    Butchart, Lauren C; Fox, Archa; Shavlakadze, Tea; Grounds, Miranda D

    2016-12-01

    Post-natal growth of skeletal muscle is a dynamic process involving proliferation and fusion of myoblasts with elongating myofibres (hyperplasia of myonuclei) until 3 weeks post-natally in mice, with ongoing differentiation and further increases in myofibre size mostly by hypertrophy until about 12 weeks of age. The expression of mRNAs that control these events are well described, but little is known about the in vivo roles of non-coding RNAs (ncRNAs), including both microRNAs (miRNAs) and the lesser-studied long non-coding RNAs (lncRNAs). We analysed expression patterns for a broad range of lncRNAs (including Neat1, Malat1, Sra, Meg3, LncMyoD and linc-MD1), miRNAs and mRNAs in muscles of normal male C57Bl/6J mice at 2 days and 2, 4, 6 and 12 weeks after birth. These post-natal patterns were compared with expression of these RNAs during classic C2C12 myogenesis and differentiation in tissue culture. This overview of RNAs during post-natal skeletal muscle growth provides a novel focus on ncRNAs during this often overlooked growth period, with many potential applications to normal muscle growth in humans and livestock, and to childhood muscle disorders. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. Skeletal muscle alterations in chronic heart failure: differential effects on quadriceps and diaphragm

    PubMed Central

    Mangner, Norman; Weikert, Bettina; Bowen, T Scott; Sandri, Marcus; Höllriegel, Robert; Erbs, Sandra; Hambrecht, Rainer; Schuler, Gerhard; Linke, Axel; Gielen, Stephan; Adams, Volker

    2015-01-01

    Background Chronic heart failure (CHF) results in limb and respiratory muscle weakness, which contributes to exercise intolerance and increased morbidity and mortality, yet the molecular mechanisms remain poorly understood. Therefore, we aimed to compare parameters of antioxidative capacity, energy metabolism, and catabolic/anabolic balance in diaphragm and quadriceps muscle in an animal model of CHF. Methods Ligation of the left anterior descending coronary artery (n = 13) or sham operation (n = 11) was performed on Wistar Kyoto rats. After 12 weeks, echocardiography and invasive determination of maximal rates of left ventricular (LV) pressure change were performed. Antioxidative and metabolic enzyme activities and expression of catabolic/anabolic markers were assessed in quadriceps and diaphragm muscle. Results Ligated rats developed CHF (i.e. severe LV dilatation, reduced LV ejection fraction, and impaired maximal rates of LV pressure change; P < 0.001). There was a divergent response for antioxidant enzymes between the diaphragm and quadriceps in CHF rats, with glutathione peroxidase and manganese superoxide dismutase activity increased in the diaphragm but reduced in the quadriceps relative to shams (P < 0.01). Metabolic enzymes were unaltered in the diaphragm, but cytochrome c oxidase activity (P < 0.01) decreased and lactate dehydrogenase activity (P < 0.05) increased in the quadriceps of CHF animals. Protein expression of the E3 ligase muscle ring finger 1 and proteasome activity were increased (P < 0.05) in both the diaphragm and quadriceps in CHF rats compared with shams. Conclusion Chronic heart failure induced divergent antioxidative and metabolic but similar catabolic responses between the diaphragm and quadriceps. Despite the quadriceps demonstrating significant impairments in CHF, apparent beneficial adaptations of an increased antioxidative capacity were induced in the diaphragm. Nevertheless, muscle ring finger 1 and

  12. Skeletal muscle alterations in chronic heart failure: differential effects on quadriceps and diaphragm.

    PubMed

    Mangner, Norman; Weikert, Bettina; Bowen, T Scott; Sandri, Marcus; Höllriegel, Robert; Erbs, Sandra; Hambrecht, Rainer; Schuler, Gerhard; Linke, Axel; Gielen, Stephan; Adams, Volker

    2015-12-01

    Chronic heart failure (CHF) results in limb and respiratory muscle weakness, which contributes to exercise intolerance and increased morbidity and mortality, yet the molecular mechanisms remain poorly understood. Therefore, we aimed to compare parameters of antioxidative capacity, energy metabolism, and catabolic/anabolic balance in diaphragm and quadriceps muscle in an animal model of CHF. Ligation of the left anterior descending coronary artery (n = 13) or sham operation (n = 11) was performed on Wistar Kyoto rats. After 12 weeks, echocardiography and invasive determination of maximal rates of left ventricular (LV) pressure change were performed. Antioxidative and metabolic enzyme activities and expression of catabolic/anabolic markers were assessed in quadriceps and diaphragm muscle. Ligated rats developed CHF (i.e. severe LV dilatation, reduced LV ejection fraction, and impaired maximal rates of LV pressure change; P < 0.001). There was a divergent response for antioxidant enzymes between the diaphragm and quadriceps in CHF rats, with glutathione peroxidase and manganese superoxide dismutase activity increased in the diaphragm but reduced in the quadriceps relative to shams (P < 0.01). Metabolic enzymes were unaltered in the diaphragm, but cytochrome c oxidase activity (P < 0.01) decreased and lactate dehydrogenase activity (P < 0.05) increased in the quadriceps of CHF animals. Protein expression of the E3 ligase muscle ring finger 1 and proteasome activity were increased (P < 0.05) in both the diaphragm and quadriceps in CHF rats compared with shams. Chronic heart failure induced divergent antioxidative and metabolic but similar catabolic responses between the diaphragm and quadriceps. Despite the quadriceps demonstrating significant impairments in CHF, apparent beneficial adaptations of an increased antioxidative capacity were induced in the diaphragm. Nevertheless, muscle ring finger 1 and proteasome activity (markers of protein

  13. MicroRNA-1 and microRNA-206 improve differentiation potential of human satellite cells: a novel approach for tissue engineering of skeletal muscle.

    PubMed

    Koning, Merel; Werker, Paul M N; van der Schaft, Daisy W J; Bank, Ruud A; Harmsen, Martin C

    2012-05-01

    Innovative strategies based on regenerative medicine, in particular tissue engineering of skeletal muscle, are promising for treatment of patients with skeletal muscle damage. However, the efficiency of satellite cell differentiation in vitro is suboptimal. MicroRNAs are involved in the regulation of cell proliferation and differentiation. We hypothesized that transient overexpression of microRNA-1 or microRNA-206 enhances the differentiation potential of human satellite cells by downregulation quiescent satellite cell regulators, thereby increasing myogenic regulator factors. To investigate this, we isolated and cultured human satellite cells from muscle biopsies. First, through immunofluorescent analysis and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), we showed that in satellite cell cultures, low Pax7 expression is related to high MyoD expression on differentiation, and, subsequently, more extensive sarcomere formation, that is, muscle differentiation, was detected. Second, using qRT-PCR, we showed that microRNA-1 and microRNA-206 are robustly induced in differentiating satellite cells. Finally, a gain-of-function approach was used to investigate microRNA-1 and microRNA-206 potential in human satellite cells to improve differentiation potential. As a proof of concept, this was also investigated in a three-dimensional bioartificial muscle construct. After transfection with microRNA-1, the number of Pax7 expressing cells decreased compared with the microRNA-scrambled control. In differentiated satellite cell cultures transfected with either microRNA-1 or microRNA-206, the number of MyoD expressing cells increased, and α-sarcomeric actin and myosin expression increased compared with microRNA-scrambled control cultures. In addition, in a three-dimensional bioartificial muscle construct, an increase in MyoD expression occurred. Therefore, we conclude that microRNA-1 and microRNA-206 can improve human satellite cell differentiation. It

  14. Isolation of Intact Mitochondria from Skeletal Muscle by Differential Centrifugation for High-resolution Respirometry Measurements.

    PubMed

    Djafarzadeh, Siamak; Jakob, Stephan Mathias

    2017-03-08

    Mitochondria are involved in cellular energy metabolism and use oxygen to produce energy in the form of adenosine triphosphate (ATP). Differential centrifugation at low- and high-speed is commonly used to isolate mitochondria from tissues and cultured cells. Crude mitochondrial fractions obtained by differential centrifugation are used for respirometry measurements. The differential centrifugation technique is based on the separation of organelles according to their size and sedimentation velocity. The isolation of mitochondria is performed immediately after tissue harvesting. The tissue is immersed in an ice-cold homogenization medium, minced using scissors and homogenized in a glass homogenizer with a loose-fitting pestle. The differential centrifugation technique is efficient, fast and inexpensive and the mitochondria obtained by differential centrifugation are pure enough for respirometry assays. Some of the limitations and disadvantages of isolated mitochondria, based on differential centrifugation, are that the mitochondria can be damaged during the homogenization and isolation procedure and that large amounts of the tissue biopsy or cultured cells are required for the mitochondrial isolation.

  15. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells

    PubMed Central

    Tedesco, Francesco Saverio; Dellavalle, Arianna; Diaz-Manera, Jordi; Messina, Graziella; Cossu, Giulio

    2010-01-01

    Skeletal muscle damaged by injury or by degenerative diseases such as muscular dystrophy is able to regenerate new muscle fibers. Regeneration mainly depends upon satellite cells, myogenic progenitors localized between the basal lamina and the muscle fiber membrane. However, other cell types outside the basal lamina, such as pericytes, also have myogenic potency. Here, we discuss the main properties of satellite cells and other myogenic progenitors as well as recent efforts to obtain myogenic cells from pluripotent stem cells for patient-tailored cell therapy. Clinical trials utilizing these cells to treat muscular dystrophies, heart failure, and stress urinary incontinence are also briefly outlined. PMID:20051632

  16. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration

    PubMed Central

    PARK, SAEYOUNG; CHOI, YOONYOUNG; JUNG, NAMHEE; YU, YEONSIL; RYU, KYUNG-HA; KIM, HAN SU; JO, INHO; CHOI, BYUNG-OK; JUNG, SUNG-CHUL

    2016-01-01

    Stem cells are regarded as an important source of cells which may be used to promote the regeneration of skeletal muscle (SKM) which has been damaged due to defects in the organization of muscle tissue caused by congenital diseases, trauma or tumor removal. In particular, mesenchymal stem cells (MSCs), which require less invasive harvesting techniques, represent a valuable source of cells for stem cell therapy. In the present study, we demonstrated that human tonsil-derived MSCs (T-MSCs) may differentiate into myogenic cells in vitro and that the transplantation of myoblasts and myocytes generated from human T-MSCs mediates the recovery of muscle function in vivo. In order to induce myogenic differentiation, the T-MSC-derived spheres were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F-12) supplemented with 1 ng/ml transforming growth factor-β, non-essential amino acids and insulin-transferrin-selenium for 4 days followed by culture in myogenic induction medium [low-glucose DMEM containing 2% fetal bovine serum (FBS) and 10 ng/ml insulin-like growth factor 1 (IGF1)] for 14 days. The T-MSCs sequentially differentiated into myoblasts and skeletal myocytes, as evidenced by the increased expression of skeletal myogenesis-related markers [including α-actinin, troponin I type 1 (TNNI1) and myogenin] and the formation of myotubes in vitro. The in situ transplantation of T-MSCs into mice with a partial myectomy of the right gastrocnemius muscle enhanced muscle function, as demonstrated by gait assessment (footprint analysis), and restored the shape of SKM without forming teratomas. Thus, T-MSCs may differentiate into myogenic cells and effectively regenerate SKM following injury. These results demonstrate the therapeutic potential of T-MSCs to promote SKM regeneration following injury. PMID:27035161

  17. Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish Brienomyrus brachyistius

    PubMed Central

    Gallant, Jason R.; Hopkins, Carl D.; Deitcher, David L.

    2012-01-01

    SUMMARY Electric organs (EOs) have evolved independently in vertebrates six times from skeletal muscle (SM). The transcriptional changes accompanying this developmental transformation are not presently well understood. Mormyrids and gymnotiforms are two highly convergent groups of weakly electric fish that have independently evolved EOs: while much is known about development and gene expression in gymnotiforms, very little is known about development and gene expression in mormyrids. This lack of data limits prospects for comparative work. We report here on the characterization of 28 differentially expressed genes between SM and EO tissues in the mormyrid Brienomyrus brachyistius, which were identified using suppressive subtractive hybridization (SSH). Forward and reverse SSH was performed on tissue samples of EO and SM resulting in one cDNA library enriched with mRNAs expressed in EO, and a second library representing mRNAs unique to SM. Nineteen expressed sequence tags (ESTs) were identified in EO and nine were identified in SM using BLAST searching of Danio rerio sequences available in NCBI databases. We confirmed differential expression of all 28 ESTs using RT-PCR. In EO, these ESTs represent four classes of proteins: (1) ion pumps, including the α- and β-subunits of Na+/K+-ATPase, and a plasma membrane Ca2+-ATPase; (2) Ca2+-binding protein S100, several parvalbumin paralogs, calcyclin-binding protein and neurogranin; (3) sarcomeric proteins troponin I, myosin heavy chain and actin-related protein complex subunit 3 (Arcp3); and (4) the transcription factors enhancer of rudimentary homolog (ERH) and myocyte enhancer factor 2A (MEF2A). Immunohistochemistry and western blotting were used to demonstrate the translation of seven proteins (myosin heavy chain, Na+/K+-ATPase, plasma membrane Ca2+-ATPase, MEF2, troponin and parvalbumin) and their cellular localization in EO and SM. Our findings suggest that mormyrids express several paralogs of muscle-specific genes

  18. Differential effects of docoosahexaenoic and arachidonic acid on fatty acid composition and myosin heavy chain-related genes of slow- and fast-twitch skeletal muscle tissues.

    PubMed

    Hashimoto, Michio; Inoue, Takayuki; Katakura, Masanori; Hossain, Shahdat; Mamun, Abdullah Al; Matsuzaki, Kentaro; Arai, Hiroyuki; Shido, Osamu

    2016-04-01

    Myosin heavy chain (MHC) mediates the metabolic and contractile responses of skeletal muscles. MHC displays different isoforms, each of which has different characteristics. To better understand the effect of polyunsaturated fatty acids in skeletal muscles, rats were fed with control-, docosahexaenoic acid (DHA)-, and arachidonic acid (ARA)-oil, and the effects on plasma and muscular fatty acid profile, oxidative stress, mRNA levels of myosin heavy chain isoforms MHC1 of slow-twitch muscle (SO) and MHC2A, MHC2X, and MHCB isoforms of extensor digitorum longus (EDL) of fast-twitch muscle were evaluated. Concomitantly, mRNA levels of anti-oxidative enzymes, such as, catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD were determined. The expressions of MHC1, MHC2A, MHC2X, and MHC2B were lower in the SO of the DHA-fed rats. In the EDL muscles of DHA-fed rats, the expressions of MHC1 and MHC2A increased; however, the expressions of MHC2X increased and that of the MHC2 were not altered. Oxidative stress, as indicated by the levels of LPO, was significantly higher in the plasma of the ARA-fed rats, when compared with that of the DHA-fed rats. The LPO levels were higher both in the SO and EDL muscles of ARA-fed rats. Compared with ARA oil intake, DHA oil showed higher mRNA levels of GPx and SOD. Catalase expression was higher only in the EDL but not in the SO-type muscles. Our studies finally indicate that DHA and ARA differentially affect the regulation of contractile and metabolic properties of slow- and fast-twitch skeletal muscles.

  19. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration.

    PubMed

    Miroshnychenko, Olga; Chang, Wen-Teh; Dragoo, Jason L

    2017-03-01

    Platelet-rich plasma (PRP) has been used to augment tissue repair and regeneration after musculoskeletal injury. However, there is increasing clinical evidence that PRP does not show a consistent clinical effect. Purpose/Hypothesis: This study aimed to compare the effects of the following non-neutrophil-containing (leukocyte-poor) plasma fractions on human skeletal muscle myoblast (HSMM) differentiation: (1) PRP, (2) modified PRP (Mod-PRP), in which transforming growth factor β1 (TGF-β1) and myostatin (MSTN) were depleted, and (3) platelet-poor plasma (PPP). The hypothesis was that leukocyte-poor PRP would lead to myoblast proliferation (not differentiation), whereas certain modifications of PRP preparations would increase myoblast differentiation, which is necessary for skeletal muscle regeneration. Controlled laboratory study. Blood from 7 human donors was individually processed to simultaneously create leukocyte-poor fractions: PRP, Mod-PRP, PPP, and secondarily spun PRP and Mod-PRP (PRPss and Mod-PRPss, respectively). Mod-PRP was produced by removing TGF-β1 and MSTN from PRP using antibodies attached to sterile beads, while a second-stage centrifugal spin of PRP was performed to remove platelets. The biologics were individually added to cell culture groups. Analysis for induction into myoblast differentiation pathways included Western blot analysis, reverse-transcription polymerase chain reaction, and immunohistochemistry, as well as confocal microscopy to assess polynucleated myotubule formation. HSMMs cultured with PRP showed an increase in proliferation but no evidence of differentiation. Western blot analysis confirmed that MSTN and TGF-β1 could be decreased in Mod-PRP using antibody-coated beads, but this modification mildly improved myoblast differentiation. However, cell culture with PPP, PRPss, and Mod-PRPss led to a decreased proliferation rate but a significant induction of myoblast differentiation verified by increased multinucleated myotubule

  20. Tissue engineering skeletal muscle for orthopaedic applications

    NASA Technical Reports Server (NTRS)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  1. Differential osmotic behavior of water components in living skeletal muscle resolved by 1H-NMR.

    PubMed

    Kimura, Masako; Takemori, Shigeru; Yamaguchi, Maki; Umazume, Yoshiki

    2005-08-01

    Using frog sartorius muscle, we observed transverse relaxation processes of (1)H-NMR signals from myowater. The process could be well described by four characteristic exponentials: the extremely slow exponential of relaxation time constant T(2) > 0.4 s, the slow one of T(2) approximately 0.15 s, the intermediate one of 0.03 s < T(2) < 0.06 s, and the rapid one of T(2) < 0.03 s. Addition of isotonic extracellular solution affected only the extremely slow exponential, linearly increasing its amplitude and gradually increasing its T(2) toward that of the bulk solution (1.7 s). Therefore, this exponential should represent extracellular surplus solution independently of the other exponentials. At two thirds to three times the isotonicity, the amplitude of the intermediate exponential showed normal osmotic behavior in parallel with the volume change of the myofilament lattice measured with x-ray diffraction. In the same tonicity range, the amplitude of the rapid exponential showed converse osmotic behavior. Lower tonicities increased the amplitude of only the slow exponential. Studied tonicities did not affect the T(2) values. The distinct osmotic behavior indicated that each characteristic exponential could be viewed as a distinct water group. In addition, the converse osmotic behavior suggested that the rapid exponential would not be a static water layer on the macromolecule surface.

  2. Differential Osmotic Behavior of Water Components in Living Skeletal Muscle Resolved by 1H-NMR

    PubMed Central

    Kimura, Masako; Takemori, Shigeru; Yamaguchi, Maki; Umazume, Yoshiki

    2005-01-01

    Using frog sartorius muscle, we observed transverse relaxation processes of 1H-NMR signals from myowater. The process could be well described by four characteristic exponentials: the extremely slow exponential of relaxation time constant T2 > 0.4 s, the slow one of T2 ∼ 0.15 s, the intermediate one of 0.03 s < T2 < 0.06 s, and the rapid one of T2 < 0.03 s. Addition of isotonic extracellular solution affected only the extremely slow exponential, linearly increasing its amplitude and gradually increasing its T2 toward that of the bulk solution (1.7 s). Therefore, this exponential should represent extracellular surplus solution independently of the other exponentials. At two thirds to three times the isotonicity, the amplitude of the intermediate exponential showed normal osmotic behavior in parallel with the volume change of the myofilament lattice measured with x-ray diffraction. In the same tonicity range, the amplitude of the rapid exponential showed converse osmotic behavior. Lower tonicities increased the amplitude of only the slow exponential. Studied tonicities did not affect the T2 values. The distinct osmotic behavior indicated that each characteristic exponential could be viewed as a distinct water group. In addition, the converse osmotic behavior suggested that the rapid exponential would not be a static water layer on the macromolecule surface. PMID:15894647

  3. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle.

    PubMed

    Winter, Lilli; Kuznetsov, Andrey V; Grimm, Michael; Zeöld, Anikó; Fischer, Irmgard; Wiche, Gerhard

    2015-08-15

    Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion-fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways.

  4. Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity

    PubMed Central

    Maples, Jill M.; Brault, Jeffrey J.; Witczak, Carol A.; Park, Sanghee; Hubal, Monica J.; Weber, Todd M.; Houmard, Joseph A.

    2015-01-01

    The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation. In primary human skeletal muscle cultures the expression of CPT1B was blunted in severely obese women compared with their lean counterparts in response to lipid, which was accompanied by changes in CpG methylation, H3/H4 histone acetylation, and peroxisome proliferator-activated receptor-δ and hepatocyte nuclear factor 4α transcription factor occupancy at the CPT1B promoter. Methylation of specific CpG sites in the CPT1B promoter that correlated with CPT1B transcript level blocked the binding of the transcription factor upstream stimulatory factor, suggesting a potential causal mechanism. These findings indicate that epigenetic modifications may play important roles in the regulation of CPT1B in response to a physiologically relevant lipid mixture in human skeletal muscle, a major site of fatty acid catabolism, and that differential DNA methylation may underlie the depressed expression of CPT1B in response to lipid, contributing to the metabolic inflexibility associated with severe obesity. PMID:26058865

  5. Lipid exposure elicits differential responses in gene expression and DNA methylation in primary human skeletal muscle cells from severely obese women

    PubMed Central

    Maples, Jill M.; Shewchuk, Brian M.; Zou, Kai; Rowland, Naomi; Hubal, Monica J.; Weber, Todd M.

    2015-01-01

    The skeletal muscle of obese individuals exhibits an impaired ability to increase the expression of genes linked with fatty acid oxidation (FAO) upon lipid exposure. The present study determined if this response could be attributed to differential DNA methylation signatures. RNA and DNA were isolated from primary human skeletal muscle cells (HSkMC) from lean and severely obese women following lipid incubation. mRNA expression and DNA methylation were quantified for genes that globally regulate FAO [PPARγ coactivator (PGC-1α), peroxisome proliferator-activated receptors (PPARs), nuclear respiratory factors (NRFs)]. With lipid oversupply, increases in NRF-1, NRF-2, PPARα, and PPARδ expression were dampened in skeletal muscle from severely obese compared with lean women. The expression of genes downstream of the PPARs and NRFs also exhibited a pattern of not increasing as robustly upon lipid exposure with obesity. Increases in CpG methylation near the transcription start site with lipid oversupply were positively related to PPARδ expression; increases in methylation with lipid were depressed in HSkMC from severely obese women. With severe obesity, there is an impaired ability to upregulate global transcriptional regulators of FAO in response to lipid exposure. Transient changes in DNA methylation patterns and differences in the methylation signature with severe obesity may play a role in the transcriptional regulation of PPARδ in response to lipid. The persistence of differential responses to lipid in HSkMC derived from lean and obese subjects supports the possibility of stable epigenetic programming of skeletal muscle cells by the respective environments. PMID:25670728

  6. Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity.

    PubMed

    Maples, Jill M; Brault, Jeffrey J; Witczak, Carol A; Park, Sanghee; Hubal, Monica J; Weber, Todd M; Houmard, Joseph A; Shewchuk, Brian M

    2015-08-15

    The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation. In primary human skeletal muscle cultures the expression of CPT1B was blunted in severely obese women compared with their lean counterparts in response to lipid, which was accompanied by changes in CpG methylation, H3/H4 histone acetylation, and peroxisome proliferator-activated receptor-δ and hepatocyte nuclear factor 4α transcription factor occupancy at the CPT1B promoter. Methylation of specific CpG sites in the CPT1B promoter that correlated with CPT1B transcript level blocked the binding of the transcription factor upstream stimulatory factor, suggesting a potential causal mechanism. These findings indicate that epigenetic modifications may play important roles in the regulation of CPT1B in response to a physiologically relevant lipid mixture in human skeletal muscle, a major site of fatty acid catabolism, and that differential DNA methylation may underlie the depressed expression of CPT1B in response to lipid, contributing to the metabolic inflexibility associated with severe obesity.

  7. Lipid exposure elicits differential responses in gene expression and DNA methylation in primary human skeletal muscle cells from severely obese women.

    PubMed

    Maples, Jill M; Brault, Jeffrey J; Shewchuk, Brian M; Witczak, Carol A; Zou, Kai; Rowland, Naomi; Hubal, Monica J; Weber, Todd M; Houmard, Joseph A

    2015-05-01

    The skeletal muscle of obese individuals exhibits an impaired ability to increase the expression of genes linked with fatty acid oxidation (FAO) upon lipid exposure. The present study determined if this response could be attributed to differential DNA methylation signatures. RNA and DNA were isolated from primary human skeletal muscle cells (HSkMC) from lean and severely obese women following lipid incubation. mRNA expression and DNA methylation were quantified for genes that globally regulate FAO [PPARγ coactivator (PGC-1α), peroxisome proliferator-activated receptors (PPARs), nuclear respiratory factors (NRFs)]. With lipid oversupply, increases in NRF-1, NRF-2, PPARα, and PPARδ expression were dampened in skeletal muscle from severely obese compared with lean women. The expression of genes downstream of the PPARs and NRFs also exhibited a pattern of not increasing as robustly upon lipid exposure with obesity. Increases in CpG methylation near the transcription start site with lipid oversupply were positively related to PPARδ expression; increases in methylation with lipid were depressed in HSkMC from severely obese women. With severe obesity, there is an impaired ability to upregulate global transcriptional regulators of FAO in response to lipid exposure. Transient changes in DNA methylation patterns and differences in the methylation signature with severe obesity may play a role in the transcriptional regulation of PPARδ in response to lipid. The persistence of differential responses to lipid in HSkMC derived from lean and obese subjects supports the possibility of stable epigenetic programming of skeletal muscle cells by the respective environments.

  8. Treatment of Skeletal Muscle Injury: A Review

    PubMed Central

    Baoge, L.; Van Den Steen, E.; Rimbaut, S.; Philips, N.; Witvrouw, E.; Almqvist, K. F.; Vanderstraeten, G.; Vanden Bossche, L. C.

    2012-01-01

    Skeletal muscle injuries are the most common sports-related injuries and present a challenge in primary care and sports medicine. Most types of muscle injuries would follow three stages: the acute inflammatory and degenerative phase, the repair phase and the remodeling phase. Present conservative treatment includes RICE (rest, ice, compression, elevation), nonsteroidal anti-inflammatory drugs (NSAIDs) and physical therapy. However, if use improper, NSAIDs may suppress an essential inflammatory phase in the healing of injured skeletal muscle. Furthermore, it remains controversial whether or not they have adverse effects on the healing process or on the tensile strength. However, several growth factors might promote the regeneration of injured skeletal muscle, many novel treatments have involved on enhancing complete functional recovery. Exogenous growth factors have been shown to regulate satellite cell proliferation, differentiation and fusion in myotubes in vivo and in vitro, TGF-β1 antagonists behave as inhibitors of TGF-β1. They prevent collagen deposition and block formation of muscle fibrosis, so that a complete functional recovery can be achieved. PMID:24977084

  9. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  10. Identification of the STAC3 gene as a skeletal muscle-specifically expressed gene and a novel regulator of satellite cell differentiation in cattle.

    PubMed

    Zhang, Y; Cong, X; Wang, A; Jiang, H

    2014-08-01

    Recent studies in mice and zebrafish suggest that the unannotated Src homology 3 and cysteine rich domain 3 (STAC3) gene plays an important role in skeletal muscle development and contraction. The objective of this study was to determine the tissue specificity of the bovine STAC3 gene and its potential role in the proliferation and differentiation of bovine satellite cells. The STAC3 mRNA was detected only in skeletal muscle among 18 bovine tissues examined by reverse transcription PCR. Western blotting revealed the expression of STAC3 protein in bovine skeletal muscle and the absence of it in 6 bovine tissues analyzed. Transfection of the bovine satellite cells with a pool of 2 STAC3 small interfering RNA (siRNA) caused a 90% reduction in STAC3 mRNA. Cell proliferation assays revealed that STAC3 knockdown had no effect on the proliferation rate of bovine satellite cells. Approximately 60% of bovine satellite cells transfected with STAC3 siRNA formed myotubes by 72 h of differentiation, whereas that percentage was 40% for those transfected with negative control siRNA (P < 0.05). At 24, 48, and 72 h of differentiation, bovine satellite cells transfected with STAC3 siRNA had greater mRNA expression of myogenin, myosin heavy chain 3, and myosin heavy chain 7, markers of myotubes, than those transfected with negative control siRNA (P < 0.05). These results suggest that the STAC3 gene is a negative regulator of the differentiation and fusion of bovine satellite cells into myotubes. However, STAC3 expression was increased during the differentiation of bovine satellite cells into myotubes. This suggests that STAC3 might have different functions in bovine myotubes than in bovine satellite cells.

  11. Mechanisms modulating skeletal muscle phenotype.

    PubMed

    Blaauw, Bert; Schiaffino, Stefano; Reggiani, Carlo

    2013-10-01

    Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response. © 2013 American Physiological Society. Compr Physiol 3:1645-1687, 2013.

  12. Identification of Small Molecules Which Induce Skeletal Muscle Differentiation in Embryonic Stem Cells via Activation of the Wnt and Inhibition of Smad2/3 and Sonic Hedgehog Pathways.

    PubMed

    Lee, Hyunwoo; Haller, Corinne; Manneville, Carole; Doll, Thierry; Fruh, Isabelle; Keller, Caroline Gubser; Richards, Shola M; Ibig-Rehm, Yvonne; Patoor, Maude; Goette, Marjo; Bouchez, Laure C; Mueller, Matthias

    2016-02-01

    The multilineage differentiation capacity of mouse and human embryonic stem (ES) cells offers a testing platform for small molecules that mediate mammalian lineage determination and cellular specialization. Here we report the identification of two small molecules which drives mouse 129 ES cell differentiation to skeletal muscle with high efficiency without any genetic modification. Mouse embryoid bodies (EBs) were used to screen a library of 1,000 small molecules to identify compounds capable of inducing high levels of Pax3 mRNA. Stimulation of EBs with SMIs (skeletal muscle inducer, SMI1 and SMI2) from the screen resulted in a high percentage of intensively twitching skeletal muscle fibers 3 weeks after induction. Gene expression profiling studies that were carried out for mode of actions analysis showed that SMIs activated genes regulated by the Wnt pathway and inhibited expression of Smad2/3 and Sonic Hedgehog (Shh) target genes. A combination of three small molecules known to modulate these three pathways acted similarly to the SMIs found here, driving ES cells from 129 as well as Balb/c and C57Bl/6 to skeletal muscle. Taken together, these data demonstrate that the SMI drives ES cells to skeletal muscle via concerted activation of the Wnt pathway, and inhibition of Smad2/3 signaling and Shh pathways. This provides important developmental biological information about skeletal muscle differentiation from embryonic stem cells and may lead to the development of new therapeutics for muscle disease. © 2015 AlphaMed Press.

  13. Expression and functional roles of angiopoietin-2 in skeletal muscles.

    PubMed

    Mofarrahi, Mahroo; Hussain, Sabah N A

    2011-01-01

    Angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2) are angiogenesis factors that modulate endothelial cell differentiation, survival and stability. Recent studies have suggested that skeletal muscle precursor cells constitutively express ANGPT1 and adhere to recombinant ANGPT1 and ANGPT2 proteins. It remains unclear whether or not they also express ANGPT2, or if ANGPT2 regulates the myogenesis program of muscle precursors. In this study, ANGPT2 regulatory factors and the effects of ANGPT2 on proliferation, migration, differentiation and survival were identified in cultured primary skeletal myoblasts. The cellular networks involved in the actions of ANGPT2 on skeletal muscle cells were also analyzed. Primary skeletal myoblasts were isolated from human and mouse muscles. Skeletal myoblast survival, proliferation, migration and differentiation were measured in-vitro in response to recombinant ANGPT2 protein and to enhanced ANGPT2 expression delivered with adenoviruses. Real-time PCR and ELISA measurements revealed the presence of constitutive ANGPT2 expression in these cells. This expression increased significantly during myoblast differentiation into myotubes. In human myoblasts, ANGPT2 expression was induced by H(2)O(2), but not by TNFα, IL1β or IL6. ANGPT2 significantly enhanced myoblast differentiation and survival, but had no influence on proliferation or migration. ANGPT2-induced survival was mediated through activation of the ERK1/2 and PI-3 kinase/AKT pathways. Microarray analysis revealed that ANGPT2 upregulates genes involved in the regulation of cell survival, protein synthesis, glucose uptake and free fatty oxidation. Skeletal muscle precursors constitutively express ANGPT2 and this expression is upregulated during differentiation into myotubes. Reactive oxygen species exert a strong stimulatory influence on muscle ANGPT2 expression while pro-inflammatory cytokines do not. ANGPT2 promotes skeletal myoblast survival and differentiation. These results

  14. Skeletal muscle satellite cells

    NASA Technical Reports Server (NTRS)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form

  15. A high-fat diet elicits differential responses in genes coordinating oxidative metabolism in skeletal muscle of lean and obese individuals.

    PubMed

    Boyle, K E; Canham, J P; Consitt, L A; Zheng, D; Koves, T R; Gavin, T P; Holbert, D; Neufer, P D; Ilkayeva, O; Muoio, D M; Houmard, J A

    2011-03-01

    In lean individuals, increasing dietary lipid can elicit an increase in whole body lipid oxidation; however, with obesity the capacity to respond to changes in substrate availability appears to be compromised. To determine whether the responses of genes regulating lipid oxidation in skeletal muscle differed between lean and insulin resistant obese humans upon exposure to a high-fat diet (HFD). A 5-d prospective study conducted in the research unit of an academic center. Healthy, lean (n = 12; body mass index = 22.1 ± 0.6 kg/m(2)), and obese (n=10; body mass index = 39.6 ± 1.7 kg/m(2)) males and females, between ages 18 and 30. Participants were studied before and after a 5-d HFD (65% fat). Skeletal muscle biopsies (vastus lateralis) were obtained in the fasted and fed states before and after the HFD and mRNA content for genes involved with lipid oxidation determined. Skeletal muscle acylcarnitine content was determined in the fed states before and after the HFD. Peroxisome proliferator activated receptor (PPAR) α mRNA content increased in lean, but not obese, subjects after a single high-fat meal. From Pre- to Post-HFD, mRNA content exhibited a body size × HFD interaction, where the lean individuals increased while the obese individuals decreased mRNA content for pyruvate dehydrogenase kinase 4, uncoupling protein 3, PPARα, and PPARγ coactivator-1α (P ≤ 0.05). In the obese subjects medium-chain acylcarnitine species tended to accumulate, whereas no change or a reduction was evident in the lean individuals. These findings indicate a differential response to a lipid stimulus in the skeletal muscle of lean and insulin resistant obese humans.

  16. Aging of skeletal muscle fibers.

    PubMed

    Miljkovic, Natasa; Lim, Jae-Young; Miljkovic, Iva; Frontera, Walter R

    2015-04-01

    Aging has become an important topic for scientific research because life expectancy and the number of men and women in older age groups have increased dramatically in the last century. This is true in most countries of the world including the Republic of Korea and the United States. From a rehabilitation perspective, the most important associated issue is a progressive decline in functional capacity and independence. Sarcopenia is partly responsible for this decline. Many changes underlying the loss of muscle mass and force-generating capacity of skeletal muscle can be understood at the cellular and molecular levels. Muscle size and architecture are both altered with advanced adult age. Further, changes in myofibers include impairments in several physiological domains including muscle fiber activation, excitation-contraction coupling, actin-myosin cross-bridge interaction, energy production, and repair and regeneration. A thorough understanding of these alterations can lead to the design of improved preventative and rehabilitative interventions, such as personalized exercise training programs.

  17. Taurine and skeletal muscle disorders.

    PubMed

    Conte Camerino, Diana; Tricarico, Domenico; Pierno, Sabata; Desaphy, Jean-François; Liantonio, Antonella; Pusch, Michael; Burdi, Rosa; Camerino, Claudia; Fraysse, Bodvael; De Luca, Annamaria

    2004-01-01

    Taurine is abundantly present in skeletal muscle. We give evidence that this amino acid exerts both short-term and long-term actions in the control of ion channel function and calcium homeostasis in striated fibers. Short-term actions can be estimated as the ability of this amino acid to acutely modulate both ion channel gating and the function of the structures involved in calcium handling. Long-term effects can be disclosed in situations of tissue taurine depletion and are likely related to the ability of the intracellular taurine to control transducing pathways as well as homeostatic and osmotic equilibrium in the tissue. The two activities are strictly linked because the intracellular level of taurine modulates the sensitivity of skeletal muscle to the exogenous application of taurine. Myopathies in which ion channels are directly or indirectly involved, as well as inherited or acquired pathologies characterized by metabolic alterations and change in calcium homeostasis, are often correlated with change in muscle taurine concentration and consequently with an enhanced therapeutic activity of this amino acid. We discuss both in vivo and in vitro evidence that taurine, through its ability to control sarcolemmal excitability and muscle contractility, can prove beneficial effects in many muscle dysfunctions.

  18. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.

    PubMed

    Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo

    2016-10-01

    Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries.

  19. Effects of aestivation on skeletal muscle performance.

    PubMed

    James, Rob S

    2010-01-01

    Fitness, ecology, and behaviour of vertebrates are dependent upon locomotor performance. Locomotor performance can be constrained by underlying intrinsic skeletal muscle properties. Skeletal muscle is a highly plastic tissue undergoing phenotypic change in response to alteration in environment. Clinical and experimental models of muscle disuse cause decreases in skeletal muscle size and mechanical performance. However, in natural models of skeletal muscle disuse, both atrophy and changes in mechanical properties are more limited. Aestivation in frogs can cause decreases in muscle cross-sectional area and changes in some enzyme activities, with effects varying among muscles. However, long-term aestivation causes limited changes in muscle mechanics during simulated sprint or endurance type activities. Therefore, at least in frogs, there is maintenance of skeletal muscle performance during prolonged periods of aestivation, allowing avoidance of harsh environmental conditions without compromising the locomotor capacity to perform fitness-related activities when favourable environmental conditions return.

  20. Role of skeletal muscle proteoglycans during myogenesis.

    PubMed

    Brandan, Enrique; Gutierrez, Jaime

    2013-08-08

    Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies.

  1. Castration differentially alters basal and leucine-stimulated tissue protein synthesis in skeletal muscle and adipose tissue.

    PubMed

    Jiao, Qianning; Pruznak, Anne M; Huber, Danuta; Vary, Thomas C; Lang, Charles H

    2009-11-01

    Reduced testosterone as a result of catabolic illness or aging is associated with loss of muscle and increased adiposity. We hypothesized that these changes in body composition occur because of altered rates of protein synthesis under basal and nutrient-stimulated conditions that are tissue specific. The present study investigated such mechanisms in castrated male rats (75% reduction in testosterone) with demonstrated glucose intolerance. Over 9 wk, castration impaired body weight gain, which resulted from a reduced lean body mass and preferential sparing of adipose tissue. Castration decreased gastrocnemius weight, but this atrophy was not associated with reduced basal muscle protein synthesis or differences in plasma IGF-I, insulin, or individual amino acids. However, oral leucine failed to normally stimulate muscle protein synthesis in castrated rats. In addition, castration-induced atrophy was associated with increased 3-methylhistidine excretion and in vitro-determined ubiquitin proteasome activity in skeletal muscle, changes that were associated with decreased atrogin-1 or MuRF1 mRNA expression. Castration decreased heart and kidney weight without reducing protein synthesis and did not alter either cardiac output or glomerular filtration. In contradistinction, the weight of the retroperitoneal fat depot was increased in castrated rats. This increase was associated with an elevated rate of basal protein synthesis, which was unresponsive to leucine stimulation. Castration also decreased whole body fat oxidation. Castration increased TNFα, IL-1α, IL-6, and NOS2 mRNA in fat but not muscle. In summary, the castration-induced muscle wasting results from an increased muscle protein breakdown and the inability of leucine to stimulate protein synthesis, whereas the expansion of the retroperitoneal fat depot appears mediated in part by an increased basal rate of protein synthesis-associated increased inflammatory cytokine expression.

  2. Castration differentially alters basal and leucine-stimulated tissue protein synthesis in skeletal muscle and adipose tissue

    PubMed Central

    Jiao, Qianning; Pruznak, Anne M.; Huber, Danuta; Vary, Thomas C.

    2009-01-01

    Reduced testosterone as a result of catabolic illness or aging is associated with loss of muscle and increased adiposity. We hypothesized that these changes in body composition occur because of altered rates of protein synthesis under basal and nutrient-stimulated conditions that are tissue specific. The present study investigated such mechanisms in castrated male rats (75% reduction in testosterone) with demonstrated glucose intolerance. Over 9 wk, castration impaired body weight gain, which resulted from a reduced lean body mass and preferential sparing of adipose tissue. Castration decreased gastrocnemius weight, but this atrophy was not associated with reduced basal muscle protein synthesis or differences in plasma IGF-I, insulin, or individual amino acids. However, oral leucine failed to normally stimulate muscle protein synthesis in castrated rats. In addition, castration-induced atrophy was associated with increased 3-methylhistidine excretion and in vitro-determined ubiquitin proteasome activity in skeletal muscle, changes that were associated with decreased atrogin-1 or MuRF1 mRNA expression. Castration decreased heart and kidney weight without reducing protein synthesis and did not alter either cardiac output or glomerular filtration. In contradistinction, the weight of the retroperitoneal fat depot was increased in castrated rats. This increase was associated with an elevated rate of basal protein synthesis, which was unresponsive to leucine stimulation. Castration also decreased whole body fat oxidation. Castration increased TNFα, IL-1α, IL-6, and NOS2 mRNA in fat but not muscle. In summary, the castration-induced muscle wasting results from an increased muscle protein breakdown and the inability of leucine to stimulate protein synthesis, whereas the expansion of the retroperitoneal fat depot appears mediated in part by an increased basal rate of protein synthesis-associated increased inflammatory cytokine expression. PMID:19755668

  3. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    ERIC Educational Resources Information Center

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  4. Amino Acid Sensing in Skeletal Muscle.

    PubMed

    Moro, Tatiana; Ebert, Scott M; Adams, Christopher M; Rasmussen, Blake B

    2016-11-01

    Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mammalian/mechanistic target of rapamycin complex 1 (mTORC1)-mediated and activating transcription factor 4 (ATF4)-mediated amino acid (AA) sensing pathways, triggered by impaired AA delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength, and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle AA delivery, mTORC1 activity, and/or ATF4 activity. An improved understanding of the mechanisms and roles of AA sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia.

  5. Nonionizing radiation as a noninvasive strategy in regenerative medicine: the effect of Ca(2+)-ICR on mouse skeletal muscle cell growth and differentiation.

    PubMed

    De Carlo, Flavia; Ledda, Mario; Pozzi, Deleana; Pierimarchi, Pasquale; Zonfrillo, Manuela; Giuliani, Livio; D'Emilia, Enrico; Foletti, Alberto; Scorretti, Riccardo; Grimaldi, Settimio; Lisi, Antonella

    2012-11-01

    Controlling cell differentiation and proliferation with minimal manipulation is one of the most important goals for cell therapy in clinical applications. In this work, we evaluated the hypothesis that the exposure of myoblast cells (C2C12) to nonionizing radiation (tuned at an extremely low-frequency electromagnetic field at calcium-ion cyclotron frequency of 13.75 Hz) may drive their differentiation toward a myogenic phenotype. C2C12 cells exposed to calcium-ion cyclotron resonance (Ca(2+)-ICR) showed a decrease in cellular growth and an increase in the G(0)/G(1) phase. Severe modifications in the shape and morphology and a change in the actin distribution were revealed by the phalloidin fluorescence analysis. A significant upregulation at transcriptional and translational levels of muscle differentiation markers such as myogenin (MYOG), muscle creatine kinase (MCK), and alpha skeletal muscle actin (ASMA) was observed in exposed C2C12 cells. Moreover, the pretreatment with nifedipine (an L-type voltage-gated Ca(2+) channel blocker) led to a reduction of the Ca(2+)-ICR effect. Consequently, it induced a downregulation of the MYOG, MCK, and ASMA mRNA expression affecting adversely the differentiation process. Therefore, our data suggest that Ca(2+)-ICR exposure can upregulate C2C12 differentiation. Although further studies are needed, these results may have important implications in myodegenerative pathology therapies.

  6. Skeletal muscle patch engineering on synthetic and acellular human skeletal muscle originated scaffolds.

    PubMed

    Ay, Birol; Karaoz, Erdal; Kesemenli, Cumhur C; Kenar, Halime

    2017-03-01

    The reconstruction of skeletal muscle tissue is currently performed by transplanting a muscle tissue graft from local or distant sites of the patient's body, but this practice leads to donor site morbidity in case of large defects. With the aim of providing an alternative treatment approach, skeletal muscle tissue formation potential of human myoblasts and human menstrual blood derived mesenchymal stem cells (hMB-MSCs) on synthetic [poly(l-lactide-co-caprolactone), 70:30] scaffolds with oriented microfibers, human muscle extracellular matrix (ECM), and their hybrids was investigated in this study. The reactive muscle ECM pieces were chemically crosslinked to the synthetic scaffolds to produce the hybrids. Cell proliferation assay WST-1, scanning electron microscopy (SEM), and immunostaining were carried out after culturing the cells on the scaffolds. The ECM and the synthetic scaffolds were effective in promoting spontaneous myotube formation from human myoblasts. Anisotropic muscle patch formation was more successful when human myoblasts were grown on the synthetic scaffolds. Nonetheless, spontaneous differentiation could not be induced in hMB-MSCs on any type of the scaffolds. Human myoblast-synthetic scaffold combination is promising as a skeletal muscle patch, and can be improved further to serve as a fast integrating functional patch by introducing vascular and neuronal networks to the structure. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 879-890, 2017.

  7. Satellite cells: the architects of skeletal muscle.

    PubMed

    Chang, Natasha C; Rudnicki, Michael A

    2014-01-01

    The outstanding regenerative capacity of skeletal muscle is attributed to the resident muscle stem cell termed satellite cell. Satellite cells are essential for skeletal muscle regeneration as they ultimately provide the myogenic precursors that rebuild damaged muscle tissue. Satellite cells characteristically are a heterogeneous population of stem cells and committed progenitor cells. Delineation of cellular hierarchy and understanding how lineage fate choices are determined within the satellite cell population will be invaluable for the advancement of muscle regenerative therapies.

  8. Differential effects of leucine on translation initiation factor activation and protein synthesis in skeletal muscle, renal and adipose tissues of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    In adult rats, protein synthesis in skeletal muscle and adipose tissue increases in response to pharmacological doses of leucine (Leu) administered orally. In neonatal pigs, a physiological increase in plasma leucine stimulates protein synthesis in skeletal muscle without increasing hepatic protein...

  9. Exercise Promotes Healthy Aging of Skeletal Muscle

    PubMed Central

    Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505

  10. [Regeneration capacity of skeletal muscle].

    PubMed

    Wernig, A

    2003-07-01

    The organotypic stem cell of skeletal muscle has previously been known as satellite cell. They allow muscle fiber growth during ontogenesis, enable fiber hypertrophy and are responsible for the very efficient repair of muscle fibers. This efficient apparatus is to some degree counterbalanced by an enormous use of the satellite cell pool: fiber atrophy probably is accompanied by loss of myonuclei such that every reversal of atrophy is bound to use new myonuclei i.e. satellite cells. How often in life does this occur? Hard to say. Moreover, the potent repair capacity is challenged by an unexpected vulnerability of skeletal muscle fibers: Passive stretching of contracted muscles may cause multiple "microdamage," disruption of contractile elements or tiny areas of true necrosis (focal necrosis). How often does this happen? Well, for many of us at least once per year when we go up and down mountains during vacation time, followed by sour muscles. Others may decide to change his/her (locomotor) behaviour by severe onset of jogging; it may happen that they suffer kidney failure on Monday due to muscle microdamage and the transfer of myoproteins into the serum over weekend. Also 20 minutes of stepping up and down something like a chair will do: There is a remarkable increase in kreatin kinase and other muscle derived proteins which lasts for days and is bound to reflect some muscle damage. How about sportsmen and worker who repeatedly use their muscles in such a way? We don't have answers yet to most of these questions, but considerable amount of information has been collected over the last years both in animal and--less--in human. What is common in all cases of growth and repair is the proliferation of the satellite cells and their consequent incorporation and fusion with the parent fiber. This way focal damage is repaired often without visible reminders. We would run out of satellite cells were they not stem cells: After division one daughter remains a satellite cell

  11. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading.

    PubMed

    Pandorf, Clay E; Haddad, Fadia; Wright, Carola; Bodell, Paul W; Baldwin, Kenneth M

    2009-07-01

    Recent advances in chromatin biology have enhanced our understanding of gene regulation. It is now widely appreciated that gene regulation is dependent upon post-translational modifications to the histones which package genes in the nucleus of cells. Active genes are known to be associated with acetylation of histones (H3ac) and trimethylation of lysine 4 in histone H3 (H3K4me3). Using chromatin immunoprecipitation (ChIP), we examined histone modifications at the myosin heavy chain (MHC) genes expressed in fast vs. slow fiber-type skeletal muscle, and in a model of muscle unloading, which results in a shift to fast MHC gene expression in slow muscles. Both H3ac and H3K4me3 varied directly with the transcriptional activity of the MHC genes in fast fiber-type plantaris and slow fiber-type soleus. During MHC transitions with muscle unloading, histone H3 at the type I MHC becomes de-acetylated in correspondence with down-regulation of that gene, while upregulation of the fast type IIx and IIb MHCs occurs in conjunction with enhanced H3ac in those MHCs. Enrichment of H3K4me3 is also increased at the type IIx and IIb MHCs when these genes are induced with muscle unloading. Downregulation of IIa MHC, however, was not associated with corresponding loss of H3ac or H3K4me3. These observations demonstrate the feasibility of using the ChIP assay to understand the native chromatin environment in adult skeletal muscle, and also suggest that the transcriptional state of types I, IIx and IIb MHC genes are sensitive to histone modifications both in different muscle fiber-types and in response to altered loading states.

  12. Time course and side-by-side analysis of mesodermal, pre-myogenic, myogenic and differentiated cell markers in the chicken model for skeletal muscle formation

    PubMed Central

    Berti, Federica; Nogueira, Júlia Meireles; Wöhrle, Svenja; Sobreira, Débora Rodrigues; Hawrot, Katarzyna; Dietrich, Susanne

    2015-01-01

    The chicken is a well-established model for amniote (including human) skeletal muscle formation because the developmental anatomy of chicken skeletal muscle matches that of mammals. The accessibility of the chicken in the egg as well as the sequencing of its genome and novel molecular techniques have raised the profile of this model. Over the years, a number of regulatory and marker genes have been identified that are suited to monitor the progress of skeletal myogenesis both in wildtype and in experimental embryos. However, in the various studies, differing markers at different stages of development have been used. Moreover, contradictory results on the hierarchy of regulatory factors are now emerging, and clearly, factors need to be able to cooperate. Thus, a reference paper describing in detail and side-by-side the time course of marker gene expression during avian myogenesis is needed. We comparatively analysed onset and expression patterns of the key markers for the chicken immature paraxial mesoderm, for muscle-competent cells, for cells committed to myogenesis and for cells entering terminal differentiation. We performed this analysis from stages when the first paraxial mesoderm is being laid down to the stage when mesoderm formation comes to a conclusion. Our data show that, although the sequence of marker gene expression is the same at the various stages of development, the timing of the expression onset is quite different. Moreover, marker gene expression in myogenic cells being deployed from the dorsomedial and ventrolateral lips of the dermomyotome is different from those being deployed from the rostrocaudal lips, suggesting different molecular programs. Furthermore, expression of Myosin Heavy Chain genes is overlapping but different along the length of a myotube. Finally, Mef2c is the most likely partner of Mrf proteins, and, in contrast to the mouse and more alike frog and zebrafish fish, chicken Mrf4 is co-expressed with MyoG as cells enter terminal

  13. Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: a role for the bHLH protein twist and the cdk inhibitor p27.

    PubMed

    Leshem, Y; Spicer, D B; Gal-Levi, R; Halevy, O

    2000-07-01

    Hepatocyte growth factor (HGF) plays a crucial role in regulating the differentiation of both fetal and adult skeletal myoblasts. This study aimed at defining the intracellular factors that mediate the effect of HGF on adult myoblast differentiation. HGF increased Twist expression while decreasing p27(kip1) protein levels and not affecting the induction of p21(Cip1/Waf1) in satellite cells. Like HGF, overexpression of Twist did not affect p21 expression while inhibiting muscle-specific proteins. Both ectopic Twist-antisense (Twist-AS) and p27 partially rescued the effects of HGF on bromodeoxyuridine (BrdU) incorporation and myosin heavy chain (MHC) expression in muscle satellite cells; the two plasmids together effected full rescue, suggesting that HGF independently regulates these two factors to mediate its effects. Ectopic p27 promoted differentiation in the presence of HGF by blocking the induction of Twist. Using Twist-AS to lower Twist levels restored the HGF-dependent reduction of p27 and MHC. In the presence of ectopic HGF, satellite cells formed thin mononuclear myotubes. Neither ectopic p27, Twist-AS, or their combination reversed this change in cell morphology, suggesting that HGF acts through additional mediators to inhibit downstream events during myogenesis. Taken together, the results suggest that the effects of HGF on muscle cell proliferation and differentiation are mediated through changes in the expression levels of the myogenic-inhibitory basic helix-loop-helix (bHLH) protein Twist and the cell-cycle inhibitor p27.

  14. Redox Control of Skeletal Muscle Regeneration.

    PubMed

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  15. The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells.

    PubMed

    Hosseinzadeh, Simzar; Mahmoudifard, Matin; Mohamadyar-Toupkanlou, Farzaneh; Dodel, Masomeh; Hajarizadeh, Atena; Adabi, Mahdi; Soleimani, Masoud

    2016-07-01

    Among polymers, polyaniline (PANi) has been introduced as a good candidate for muscle regeneration due to high conductivity and also biocompatibility. Herein, for the first time, we report the use of electrospun nanofibrous membrane of PAN-PANi as efficient scaffold for muscle regeneration. The prepared PAN-PANi electrospun nanofibrous membrane was characterized by scanning electron microscopy (SEM), Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and tensile examination. The softer scaffolds of non-composite electrospun nanofibrous PAN govern a higher rate of cell growth in spite of lower differentiation value. On the other hand, PAN-PANi electrospun nanofibrous membrane exposed high cell proliferation and also differentiation value. Thank to the conductive property and higher Young's modulus of composite type due to the employment of PANi, satellite cells were induced into more matured form as analyzed by Real-Time PCR. On the other hand, grafting of composite nanofibrous electrospun scaffold with gelatin increased the surface stiffness directing satellite cells into lower cell proliferation and highest value of differentiation. Our results for first time showed the significant role of combination between conductivity, mechanical property and surface modification of PAN-PANi electrospun nanofibers and provid new insights into most biocompatible scaffolds for muscle tissue engineering. The schematic figure conveys the effective combination of conductive and surface stiffness on muscle tissue engineering.

  16. Expression of androgen receptor target genes in skeletal muscle.

    PubMed

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  17. Understanding Age-Related Changes in Skeletal Muscle Metabolism: Differences Between Females and Males.

    PubMed

    Gheller, Brandon J F; Riddle, Emily S; Lem, Melinda R; Thalacker-Mercer, Anna E

    2016-07-17

    Skeletal muscle is the largest metabolic organ system in the human body. As such, metabolic dysfunction occurring in skeletal muscle impacts whole-body nutrient homeostasis. Macronutrient metabolism changes within the skeletal muscle with aging, and these changes are associated in part with age-related skeletal muscle remodeling. Moreover, age-related changes in skeletal muscle metabolism are affected differentially between males and females and are likely driven by changes in sex hormones. Intrinsic and extrinsic factors impact observed age-related changes and sex-related differences in skeletal muscle metabolism. Despite some support for sex-specific differences in skeletal muscle metabolism with aging, more research is necessary to identify underlying differences in mechanisms. Understanding sex-specific aging skeletal muscle will assist with the development of therapies to attenuate adverse metabolic and functional outcomes.

  18. A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation

    PubMed Central

    Penn, Bennett H.; Bergstrom, Donald A.; Dilworth, F. Jeffrey; Bengal, Eyal; Tapscott, Stephen J.

    2004-01-01

    The development and differentiation of distinct cell types is achieved through the sequential expression of subsets of genes; yet, the molecular mechanisms that temporally pattern gene expression remain largely unknown. In skeletal myogenesis, gene expression is initiated by MyoD and includes the expression of specific Mef2 isoforms and activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Here, we show that p38 activity facilitates MyoD and Mef2 binding at a subset of late-activated promoters, and the binding of Mef2D recruits Pol II. Most importantly, expression of late-activated genes can be shifted to the early stages of differentiation by precocious activation of p38 and expression of Mef2D, demonstrating that a MyoD-mediated feed-forward circuit temporally patterns gene expression. PMID:15466486

  19. Satellite Cells and Skeletal Muscle Regeneration.

    PubMed

    Dumont, Nicolas A; Bentzinger, C Florian; Sincennes, Marie-Claude; Rudnicki, Michael A

    2015-07-01

    Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.

  20. Biophysical Stimulation for Engineering Functional Skeletal Muscle.

    PubMed

    Somers, Sarah; Spector, Alexander; DiGirolamo, Douglas; Grayson, Warren L

    2017-04-12

    Tissue engineering is a promising therapeutic strategy to regenerate skeletal muscle. However, ex vivo cultivation methods typically result in a low differentiation efficiency of stem cells as well as grafts that resemble the native tissues morphologically, but lack contractile function. The application of biomimetic tensile strain provides a potent stimulus for enhancing myogenic differentiation and engineering functional skeletal muscle grafts. We reviewed integrin-dependent mechanisms that potentially link mechanotransduction pathways to the upregulation of myogenic genes. Yet, gaps in our understanding make it challenging to use these pathways to theoretically determine optimal ex vivo strain regimens. A multitude of strain protocols have been applied to in vitro cultures for the cultivation of myogenic progenitors (adipose- and bone marrow-derived stem cells & satellite cells) and transformed murine myoblasts, C2C12s. Strain regimen are characterized by orientation, amplitude, and time-dependent factors (effective frequency, duration, and the rest period between successive strain cycles). Analysis of published data has identified possible minimum/maximum values for these parameters and suggests that uniaxial strains may be more potent than biaxial strains possibly because they more closely mimic physiologic strain profiles. The application of these biophysical stimuli for engineering 3D skeletal muscle grafts is non-trivial and typically requires custom-designed bioreactors used in combination with biomaterial scaffolds. Consideration of the physical properties of these scaffolds is critical for effective transmission of the applied strains to encapsulated cells. Taken together, these studies demonstrate that biomimetic tensile strain generally results in improved myogenic outcomes in myogenic progenitors and differentiated myoblasts. However, for 3D systems, the optimization of the strain regimen may require the entire system - cells, biomaterials, and

  1. Regulatory T cells and skeletal muscle regeneration.

    PubMed

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging.

  2. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model.

    PubMed

    Serena, Elena; Zatti, Susi; Zoso, Alice; Lo Verso, Francesca; Tedesco, F Saverio; Cossu, Giulio; Elvassore, Nicola

    2016-12-01

    : Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from

  3. Cyclin D3 critically regulates the balance between self-renewal and differentiation in skeletal muscle stem cells.

    PubMed

    De Luca, Giulia; Ferretti, Roberta; Bruschi, Marco; Mezzaroma, Eleonora; Caruso, Maurizia

    2013-11-01

    Satellite cells are mitotically quiescent myogenic stem cells resident beneath the basal lamina surrounding adult muscle myofibers. In response to injury, multiple extrinsic signals drive the entry of satellite cells into the cell cycle and then to proliferation, differentiation, and self-renewal of their downstream progeny. Because satellite cells must endure for a lifetime, their cell cycle activity must be carefully controlled to coordinate proliferative expansion and self-renewal with the onset of the differentiation program. In this study, we find that cyclin D3, a member of the family of mitogen-activated D-type cyclins, is critically required for proper developmental progression of myogenic progenitors. Using a cyclin D3-knockout mouse we determined that cyclin D3 deficiency leads to reduced myofiber size and impaired establishment of the satellite cell population within the adult muscle. Cyclin D3-null myogenic progenitors, studied ex vivo on isolated myofibers and in vitro, displayed impaired cell cycle progression, increased differentiation potential, and reduced self-renewal capability. Similarly, silencing of cyclin D3 in C2 myoblasts caused anticipated exit from the cell cycle and precocious onset of terminal differentiation. After induced muscle damage, cyclin D3-null myogenic progenitors exhibited proliferation deficits, a precocious ability to form newly generated myofibers and a reduced capability to repopulate the satellite cell niche at later stages of the regeneration process. These results indicate that cyclin D3 plays a cell-autonomous and nonredundant function in regulating the dynamic balance between proliferation, differentiation, and self-renewal that normally establishes an appropriate pool size of adult satellite cells. Copyright © 2013 AlphaMed Press.

  4. Sympathetic actions on the skeletal muscle.

    PubMed

    Roatta, Silvestro; Farina, Dario

    2010-01-01

    The sympathetic nervous system (SNS) modulates several functions in skeletal muscle fibers, including metabolism, ionic transport across the membrane, and contractility. These actions, together with the sympathetic control of other organ systems, support intense motor activity. However, some SNS actions on skeletal muscles may not always be functionally advantageous. Implications for motor control and sport performance are discussed.

  5. Proteomic profiling of skeletal muscle plasticity.

    PubMed

    Ohlendieck, Kay

    2011-10-01

    One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physiological modifications and pathophysiological alterations. This review outlines and discusses the impact of recent proteomic profiling studies of skeletal muscle transitions, including the effects of chronic electro-stimulation, physical exercise, denervation, disuse atrophy, hypoxia, myotonia, motor neuron disease and age-related fibre type shifting. This includes studies on the human skeletal muscle proteome, animal models of muscle plasticity and major neuromuscular pathologies. The biomedical importance of establishing reliable biomarker signatures for the various molecular and cellular transition phases involved in muscle transformation is critically examined.

  6. Differential effects of 4-chloro-m-cresol and caffeine on skinned fibers from rat fast and slow skeletal muscles.

    PubMed

    Choisy, S; Huchet-Cadiou, C; Léoty, C

    2000-09-01

    Contractile responses to 4-chloro-m-cresol (4-CmC) were tested in saponin- and Triton X-100-skinned fibers from soleus and edl (extensor digitorum longus) muscles of adult rats and compared with those to caffeine. The testing of different concentrations of 4-CmC on saponin-skinned fibers showed that 4-CmC induced a dose-dependent caffeine-like transient contractile response in edl and soleus due to an activation of the ryanodine receptor. Both types of skeletal muscles showed a 10 to 20 times lower 4-CmC threshold concentration and EC(50) value (concentration providing 50% of the maximal 4-CmC contracture) than for caffeine. The results indicate that edl is more sensitive than soleus to 4-CmC and that this difference in sensitivity is more marked than with caffeine. Furthermore, an increase in cytosolic Ca(2+) activity induced a more marked shift of dose-response curves toward lower concentrations for 4-CmC than caffeine. Experiments conducted on Triton X-100-skinned fibers showed that in both muscles, 4-CmC decreased in a dose-dependent manner the Ca(2+)-activated force of contractile apparatus, particularly in edl. Furthermore, the tension pCa curves indicated that 4-CmC induced a dose-dependent sensitizing (soleus) or desensitizing (edl) effect on the Ca(2+) sensitivity of myofibrils. These results indicate that edl and soleus contractile responses can be discriminated with 4-CmC instead of caffeine and that care must be taken in interpreting results because muscular pathology could be due in part to an increase in intracellular Ca(2+).

  7. REGULATION OF NADPH OXIDASES IN SKELETAL MUSCLE

    PubMed Central

    Ferreira, Leonardo F.; Laitano, Orlando

    2016-01-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  8. Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis.

    PubMed

    Shan, Tizhong; Xu, Ziye; Liu, Jiaqi; Wu, Weiche; Wang, Yizhen

    2017-10-01

    Liver kinase B1 (Lkb1), also named as Serine/Threonine protein kinase 11 (STK11), is a serine/threonine kinase that plays crucial roles in various cellular processes including cell survival, cell division, cellular polarity, cell growth, cell differentiation, and cell metabolism. In metabolic tissues, Lkb1 regulates glucose homeostasis and energy metabolism through phosphorylating and activating the AMPK subfamily proteins. In skeletal muscle, Lkb1 affects muscle development and postnatal growth, lipid and fatty acid oxidation, glucose metabolism, and insulin sensitivity. Recently, the regulatory roles of Lkb1 in regulating division, self-renew, proliferation, and differentiation of skeletal muscle progenitor cells have been reported. In this review, we discuss the roles of Lkb1 in regulating skeletal muscle progenitor cell homeostasis and skeletal muscle development and metabolism. © 2017 Wiley Periodicals, Inc.

  9. Skeletal muscle dedifferentiation during salamander limb regeneration.

    PubMed

    Wang, Heng; Simon, András

    2016-10-01

    Salamanders can regenerate entire limbs throughout their life. A critical step during limb regeneration is formation of a blastema, which gives rise to the new extremity. Salamander limb regeneration has historically been tightly linked to the term dedifferentiation, however, with refined research tools it is important to revisit the definition of dedifferentiation in the context. To what extent do differentiated cells revert their differentiated phenotypes? To what extent do progeny from differentiated cells cross lineage boundaries during regeneration? How do cell cycle plasticity and lineage plasticity relate to each other? What is the relationship between dedifferentiation of specialized cells and activation of tissue resident stem cells in terms of their contribution to the new limb? Here we highlight these problems through the case of skeletal muscle.

  10. Glucose deprivation attenuates sortilin levels in skeletal muscle cells.

    PubMed

    Ariga, Miyako; Yoneyama, Yosuke; Fukushima, Toshiaki; Ishiuchi, Yuri; Ishii, Takayuki; Sato, Hitoshi; Hakuno, Fumihiko; Nedachi, Taku; Takahashi, Shin-Ichiro

    2017-03-31

    In skeletal muscle, sortilin plays a predominant role in the sorting of glucose transporter 4 (Glut4), thereby controlling glucose uptake. Moreover, our previous study suggested that the sortilin expression levels are also implicated in myogenesis. Despite the importance of sortilin in skeletal muscle, however, the regulation of sortilin expression has not been completely understood. In the present study, we analyzed if the sortilin expression is regulated by glucose in C2C12 myocytes and rat skeletal muscles in vivo. Sortilin protein expression was elevated upon C2C12 cell differentiation and was further enhanced in the presence of a high concentration of glucose. The gene expression and protein degradation of sortilin were not affected by glucose. On the other hand, rapamycin partially reduced sortilin induction by a high concentration of glucose, which suggested that sortilin translation could be regulated by glucose, at least in part. We also examined if the sortilin regulation by glucose was also observed in skeletal muscles that were obtained from fed or fasted rats. Sortilin expression in both gastrocnemius and extensor digitorum longus (EDL) muscle was significantly decreased by 17-18h of starvation. On the other hand, pathological levels of high blood glucose did not alter the sortilin expression in rat skeletal muscle. Overall, the present study suggests that sortilin protein levels are reduced under hypoglycemic conditions by post-transcriptional control in skeletal muscles.

  11. MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling.

    PubMed

    Huang, Qiang Kai; Qiao, Hu-Yuan; Fu, Ming-Huan; Li, Gang; Li, Wen-Bin; Chen, Zhi; Wei, Jian; Liang, Bing-Sheng

    2016-04-07

    BACKGROUND Denervation-induced skeletal muscle atrophy results in significant biochemical and physiological changes potentially leading to devastating outcomes including increased mortality. Effective treatments for skeletal muscle diseases are currently not available. Muscle-specific miRNAs, such as miR-206, play an important role in the regulation of muscle regeneration. The aim of the present study was to examine the beneficial effects of miR-206 treatment during the early changes in skeletal muscle atrophy, and to study the underlying signaling pathways in a rat skeletal muscle atrophy model. MATERIAL AND METHODS The rat denervation-induced skeletal muscle atrophy model was established. miRNA-206 was overexpressed with or without TGF-β1 inhibitor in the rats. The mRNA and protein expression of HDAC4, TGF-β1, and Smad3 was determined by real-time PCR and western blot. The gastrocnemius muscle cross-sectional area and relative muscle mass were measured. MyoD1, TGF-β1, and Pax7 were determined by immunohistochemical staining. RESULTS After sciatic nerve surgical transection, basic muscle characteristics, such as relative muscle weight, deteriorated continuously during a 2-week period. Injection of miR-206 (30 μg/rat) attenuated morphological and physiological deterioration of muscle characteristics, prevented fibrosis effectively, and inhibited the expression of TGF-β1 and HDAC4 as assessed 2 weeks after denervation. Moreover, miR-206 treatment increased the number of differentiating (MyoD1+/Pax7+) satellite cells, thereby protecting denervated muscles from atrophy. Interestingly, the ability of miR-206 to govern HDAC4 expression and to attenuate muscle atrophy was weakened after pharmacological blockage of the TGF-b1/Smad3 axis. CONCLUSIONS TGF-β1/Smad3 signaling pathway is one of the crucial signaling pathways by which miR-206 counteracts skeletal muscle atrophy by affecting proliferation and differentiation of satellite cells. miR-206 may be a potential

  12. Angiotensin II: role in skeletal muscle atrophy.

    PubMed

    Cabello-Verrugio, Claudio; Córdova, Gonzalo; Salas, José Diego

    2012-09-01

    Skeletal muscle, the main protein reservoir in the body, is a tissue that exhibits high plasticity when exposed to changes. Muscle proteins can be mobilized into free amino acids when skeletal muscle wasting occurs, a process called skeletal muscle atrophy. This wasting is an important systemic or local manifestation under disuse conditions (e.g., bed rest or immobilization), in starvation, in older adults, and in several diseases. The molecular mechanisms involved in muscle wasting imply the activation of specific signaling pathways which ultimately manage muscle responses to modulate biological events such as increases in protein catabolism, oxidative stress, and cell death by apoptosis. Many factors have been involved in the generation and maintenance of atrophy in skeletal muscle, among them angiotensin II (Ang-II), the main peptide of renin-angiotensin system (RAS). Together with Ang-II, the angiotensin-converting enzyme (ACE) and the Ang-II receptor type 1 (AT-1 receptor) are expressed in skeletal muscle, forming an important local axis that can regulate its function. In many of the conditions that lead to muscle wasting, there is an impairment of RAS in a global or local fashion. At this point, there are several pieces of evidence that suggest the participation of Ang-II, ACE, and AT-1 receptor in the generation of skeletal muscle atrophy. Interestingly, the Ang-II participation in muscle atrophy is strongly ligated to the regulation of hypertrophic activity of factors such as insulin-like growth factor 1 (IGF-1). In this article, we reviewed the current state of Ang-II and RAS function on skeletal muscle wasting and its possible use as a therapeutic target to improve skeletal muscle function under atrophic conditions.

  13. Redox control of skeletal muscle atrophy

    PubMed Central

    Powers, Scott K.; Morton, Aaron B.; Ahn, Bumsoo; Smuder, Ashley J.

    2016-01-01

    Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown. PMID:26912035

  14. Channelopathies of skeletal muscle excitability

    PubMed Central

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  15. A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells.

    PubMed

    Mughal, W; Nguyen, L; Pustylnik, S; da Silva Rosa, S C; Piotrowski, S; Chapman, D; Du, M; Alli, N S; Grigull, J; Halayko, A J; Aliani, M; Topham, M K; Epand, R M; Hatch, G M; Pereira, T J; Kereliuk, S; McDermott, J C; Rampitsch, C; Dolinsky, V W; Gordon, J W

    2015-10-29

    Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology.

  16. Characterization of human skeletal muscle Ankrd2.

    PubMed

    Pallavicini, A; Kojić, S; Bean, C; Vainzof, M; Salamon, M; Ievolella, C; Bortoletto, G; Pacchioni, B; Zatz, M; Lanfranchi, G; Faulkner, G; Valle, G

    2001-07-13

    Human Ankrd2 transcript encodes a 37-kDa protein that is similar to mouse Ankrd2 recently shown to be involved in hypertrophy of skeletal muscle. These novel ankyrin-rich proteins are related to C-193/CARP/MARP, a cardiac protein involved in the control of cardiac hypertrophy. A human genomic region of 14,300 bp was sequenced revealing a gene organization similar to mouse Ankrd2 with nine exons, four of which encode ankyrin repeats. The intracellular localization of Ankrd2 was unknown since no protein studies had been reported. In this paper we studied the intracellular localization of the protein and its expression on differentiation using polyclonal and monoclonal antibodies produced to human Ankrd2. In adult skeletal muscle Ankrd2 is found in slow fibers; however, not all of the slow fibers express Ankrd2 at the same level. This is particularly evident in dystrophic muscles, where the expression of Ankrd2 in slow fibers seems to be severely reduced. Copyright 2001 Academic Press.

  17. [Molecular mechanisms of skeletal muscle hypertrophy].

    PubMed

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  18. Bex1 knock out mice show altered skeletal muscle regeneration

    PubMed Central

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2008-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca2+/CaM may be involved in skeletal muscle regeneration. PMID:17884015

  19. Bex1 knock out mice show altered skeletal muscle regeneration

    SciTech Connect

    Koo, Jae Hyung Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-11-16

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca{sup 2+}/CaM may be involved in skeletal muscle regeneration.

  20. Skeletal muscle-smooth muscle interaction: an unusual myoelastic system.

    PubMed

    Hikida, R S; Peterson, W J

    1983-09-01

    The serratus superficialis metapatagialis (SSM) of pigeons is a skeletal muscle with unusual properties. It lies between the ribs and the trailing edge of the wing, where it is attached to the skin by a system of smooth muscles having elastic tendons. Wing movements during flight induce marked changes in this muscle's length. The SSM inserts onto the deep fascia, and at its termination the skeletal muscle contains large numbers of microtubules. Many myofibrils attach to leptomeric organelles, which then attach to the terminal end of the skeletal muscle fiber. The deep fascia next connects to the dermis of the skin by bundles of smooth muscles that have elastic tendons at both ends. This system allows large movements of the muscle while preventing its fibers from overstretching. The movements and presumed forces acting at this muscle make the presence of sensory receptors such as muscle spindles unlikely. Spindles are absent in this muscle.

  1. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering.

    PubMed

    Jana, Soumen; Levengood, Sheeny K Lan; Zhang, Miqin

    2016-12-01

    Repair of damaged skeletal-muscle tissue is limited by the regenerative capacity of the native tissue. Current clinical approaches are not optimal for the treatment of large volumetric skeletal-muscle loss. As an alternative, tissue engineering represents a promising approach for the functional restoration of damaged muscle tissue. A typical tissue-engineering process involves the design and fabrication of a scaffold that closely mimics the native skeletal-muscle extracellular matrix (ECM), allowing organization of cells into a physiologically relevant 3D architecture. In particular, anisotropic materials that mimic the morphology of the native skeletal-muscle ECM, can be fabricated using various biocompatible materials to guide cell alignment, elongation, proliferation, and differentiation into myotubes. Here, an overview of fundamental concepts associated with muscle-tissue engineering and the current status of muscle-tissue-engineering approaches is provided. Recent advances in the development of anisotropic scaffolds with micro- or nanoscale features are reviewed, and how scaffold topographical, mechanical, and biochemical cues correlate to observed cellular function and phenotype development is examined. Finally, some recent developments in both the design and utility of anisotropic materials in skeletal-muscle-tissue engineering are highlighted, along with their potential impact on future research and clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Angiopoietin-1 enhances skeletal muscle regeneration in mice.

    PubMed

    Mofarrahi, Mahroo; McClung, Joseph M; Kontos, Christopher D; Davis, Elaine C; Tappuni, Bassman; Moroz, Nicolay; Pickett, Amy E; Huck, Laurent; Harel, Sharon; Danialou, Gawiyou; Hussain, Sabah N A

    2015-04-01

    Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells.

  3. Historical Perspectives: plasticity of mammalian skeletal muscle.

    PubMed

    Pette, D

    2001-03-01

    More than 40 years ago, the nerve cross-union experiment of Buller, Eccles, and Eccles provided compelling evidence for the essential role of innervation in determining the properties of mammalian skeletal muscle fibers. Moreover, this experiment revealed that terminally differentiated muscle fibers are not inalterable but are highly versatile entities capable of changing their phenotype from fast to slow or slow to fast. With the use of various experimental models, numerous studies have since confirmed and extended the notion of muscle plasticity. Together, these studies demonstrated that motoneuron-specific impulse patterns, neuromuscular activity, and mechanical loading play important roles in both the maintenance and transition of muscle fiber phenotypes. Depending on the type, intensity, and duration of changes in any of these factors, muscle fibers adjust their phenotype to meet the altered functional demands. Fiber-type transitions resulting from multiple qualitative and quantitative changes in gene expression occur sequentially in a regular order within a spectrum of pure and hybrid fiber types.

  4. Skeletal Muscle myomiR Are Differentially Expressed by Endurance Exercise Mode and Combined Essential Amino Acid and Carbohydrate Supplementation

    PubMed Central

    Margolis, Lee M.; McClung, Holly L.; Murphy, Nancy E.; Carrigan, Christopher T.; Pasiakos, Stefan M.

    2017-01-01

    Skeletal muscle microRNAs (myomiR) expression is modulated by exercise, however, the influence of endurance exercise mode, combined with essential amino acid and carbohydrate (EAA+CHO) supplementation are not well defined. This study determined the effects of weighted versus non-weighted endurance exercise, with or without EAA+CHO ingestion on myomiR expression and their association with muscle protein synthesis (MPS). Twenty five adults performed 90 min of metabolically-matched (2.2 VO2 L·m−1) load carriage (LC; performed on a treadmill wearing a vest equal to 30% of individual body mass) or cycle ergometry (CE) exercise, during which EAA+CHO (10 g EAA and 46 g CHO) or non-nutritive control (CON) drinks were consumed. Expression of myomiR (RT-qPCR) were determined at rest (PRE), immediately post-exercise (POST), and 3 h into recovery (REC). Muscle protein synthesis (2H5-phenylalanine) was measured during exercise and recovery. Relative to PRE, POST, and REC expression of miR-1-3p, miR-206, miR-208a-5, and miR-499 was lower (P < 0.05) for LC compared to CE, regardless of dietary treatment. Independent of exercise mode, miR-1-3p and miR-208a-5p expression were lower (P < 0.05) after ingesting EAA+CHO compared to CON. Expression of miR-206 was highest for CE-CON than any other treatment (exercise-by-drink, P < 0.05). Common targets of differing myomiR were identified as markers within mTORC1 signaling, and miR-206 and miR-499 were inversely associated with MPS rates immediately post-exercise. These findings suggest the alterations in myomiR expression between exercise mode and EAA+CHO intake may in part be due to differing MPS modulation immediately post-exercise. PMID:28386239

  5. [In vitro construction of skeletal muscle tissues.

    PubMed

    Morimoto, Yuya; Takeuchi, Shoji

    In conventional culture methods using culture dishes, myotubes formed by fusion of myoblasts adhere to the surface of the culture dishes. Because the adherence causes interruption of myotube contractions and immobilization of myotubes from the culture dishes, the conventional culture methods have limitations to applications of the myotubes into drug developments and medical treatments. In order to avoid their adherence, many researchers have proposed in vitro construction of skeletal muscle tissues which both ends are fixed to anchors. The skeletal muscle tissues achieve their contractions freely according to electrical stimulations or optical stimulations, and transfer of them to other experimental setup by releasing them form the anchors. By combining the skeletal muscle tissues with force sensors, the skeletal muscle tissues are available to drug screening tests based on contractile force as a functional index. Furthermore, survival of the skeletal muscle tissues are demonstrated by implantation of them to animals. Thus, in vitro constructed skeletal muscle tissues is now recognized as attractive tools in medical fields. This review will summarize fabrication methods, properties and medical applicability of the skeletal muscle tissues.

  6. Satellite cells in human skeletal muscle plasticity.

    PubMed

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  7. Differential effects of Latrunculin-A on myofibrils in cultures of skeletal muscle cells: insights into mechanisms of myofibrillogenesis.

    PubMed

    Wang, Jushuo; Sanger, Jean M; Sanger, Joseph W

    2005-09-01

    To test different models of myofibrillogenesis, we followed live cells expressing Green Fluorescent Proteins ligated to either actin or alpha-actinin and analyzed stress fibers, premyofibrils, and myofibrils in quail myotube cultures. Actin filaments in the three types of fibers were compared by analyzing the effects of Latrunculin-A (Lat-A), a monomeric actin binding macrolide drug (M.W. = 422 Daltons), on stress fibers in fibroblasts and on myofibrils in skeletal myotubes in the same culture. Lat-A, at low concentrations (0.2 microM), induced the loss of stress fibers in fibroblasts within a few hours and within 10 min when Lat-A was increased to 1.0 microM. The effect was reversible with reformation of the stress fibers when the drug was removed. In contrast to the Lat-A induced disassembly of stress fibers in fibroblasts, assembling myofibrils in the skeletal muscle cells were not affected by 1.0-microM concentrations of Lat-A. With increasing concentrations of Lat-A (up to 5 microM), and increasing incubation times, however, the drug induced premyofibrils, the precursors of mature myofibrils, to disassemble and the accumulation of mature myofibrils to be halted. Removal of the drug led to the reformation of premyofibrils and the resumption of myofibrillogenesis in the spreading edges of the myotubes. In contrast, the mature myofibrils in the central shaft of the myotubes were stable in doses of Lat-A as high as 50 microM. The newly assembled mature myofibrils located adjacent to the premyofibrils at the ends and sides of the myotube were intermediate in sensitivity to Lat-A, disassembling when exposed to 10 microM Lat-A for one hour. To determine how a change in the actin filaments during myofibrillogenesis might confer greater resistance to depolymerization by Lat-A, we stained the myotubes with an antibody directed against CapZ, a protein that blocks the release of monomer actin from the barbed ends of actin filaments. CapZ was absent from premyofibrils. It

  8. Lipid droplet dynamics in skeletal muscle.

    PubMed

    Bosma, Madeleen

    2016-01-15

    The skeletal muscle is subjected to high mechanical and energetic demands. Lipid droplets are an important source of energy substrates for the working muscle. Muscle cells contain a variety of lipid droplets, which are fundamentally smaller than those found in adipocytes. This translates into a greater lipid droplet surface area serving as the interface for intracellular lipid metabolism. The skeletal muscle has a high plasticity, it is subjected to major remodeling following training and detraining. This coincides with adaptations in lipid droplet characteristics and dynamics. The majority of lipid droplets in skeletal muscle are located in the subsarcolemmal region or in-between the myofibrils, in close vicinity to mitochondria. The vastly organized nature of skeletal muscle fibers limits organelle mobility. The high metabolic rate and substrate turnover in skeletal muscle demands a strict coordination of intramyocellular lipid metabolism and LD dynamics, in which lipid droplet coat proteins play an important role. This review provides insights into the characteristics, diversity and dynamics of skeletal muscle lipid droplets.

  9. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis.

    PubMed

    Contreras, Osvaldo; Rebolledo, Daniela L; Oyarzún, Juan Esteban; Olguín, Hugo C; Brandan, Enrique

    2016-06-01

    Fibrosis occurs in skeletal muscle under various pathophysiological conditions such as Duchenne muscular dystrophy (DMD), a devastating disease characterized by fiber degeneration that results in progressive loss of muscle mass, weakness and increased extracellular matrix (ECM) accumulation. Fibrosis is also observed after skeletal muscle denervation and repeated cycles of damage followed by regeneration. The ECM is synthesized largely by fibroblasts in the muscle connective tissue under normal conditions. Myofibroblasts, cells that express α-smooth muscle actin (α-SMA), play a role in many tissues affected by fibrosis. In skeletal muscle, fibro/adipogenic progenitors (FAPs) that express cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and the transcription factor Tcf4 seem to be responsible for connective tissue synthesis and are good candidates for the origin of myofibroblasts. We show that cells positive for Tcf4 and PDGFR-α are expressed in skeletal muscle under normal conditions and are increased in various skeletal muscles of mdx mice, a murine model for DMD, wild type muscle after sciatic denervation and muscle subjected to chronic damage. These cells co-label with the myofibroblast marker α-SMA in dystrophic muscle but not in normal tissue. The Tcf4-positive cells lie near macrophages mainly concentrated in dystrophic necrotic-regenerating foci. The close proximity of Tcf4-positive cells to inflammatory cells and their previously described role in muscle regeneration might reflect an active interaction between these cell types and growth factors, possibly resulting in a muscular regenerative or fibrotic condition.

  10. Cardiac and skeletal muscle myosin polymorphism.

    PubMed

    Lowey, S

    1986-06-01

    Skeletal muscles, unlike cardiac tissue, express several myosin isozymes during development which differ in primary structure from adult myosin. Monoclonal antibodies have shown the presence of at least two embryonic myosins, followed by a post-hatch myosin that persists until the appearance of adult myosin in chicken pectoralis muscle. Although the two major cardiac isozymes differ in enzymatic activity, the avian skeletal myosin isozymes all share the same high level of ATPase activity found for adult pectoralis myosin. The functional basis for the extensive myosin polymorphism in skeletal muscles thus remains to be determined.

  11. Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression.

    PubMed

    Clause, Kelly C; Tchao, Jason; Powell, Mary C; Liu, Li J; Huard, Johnny; Keller, Bradley B; Tobita, Kimimasa

    2012-01-01

    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle.

  12. Regulation of skeletal muscle perfusion during exercise

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  13. Regulation of skeletal muscle perfusion during exercise

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  14. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential.

    PubMed

    Murray, Iain R; Baily, James E; Chen, William C W; Dar, Ayelet; Gonzalez, Zaniah N; Jensen, Andrew R; Petrigliano, Frank A; Deb, Arjun; Henderson, Neil C

    2017-03-01

    Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease.

  15. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  16. Skeletal muscle design to meet functional demands.

    PubMed

    Lieber, Richard L; Ward, Samuel R

    2011-05-27

    Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties.

  17. Skeletal muscle design to meet functional demands

    PubMed Central

    Lieber, Richard L.; Ward, Samuel R.

    2011-01-01

    Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties. PMID:21502118

  18. Low-dose benzo(a)pyrene and its epoxide metabolite inhibit myogenic differentiation in human skeletal muscle-derived progenitor cells.

    PubMed

    Chiu, Chen-Yuan; Yen, Yuan-Peng; Tsai, Keh-Sung; Yang, Rong-Sen; Liu, Shing-Hwa

    2014-04-01

    The risk of low birth weights is elevated in prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), which are ubiquitous environmental pollutants generated from combustion of organic compounds, including cigarette smoke. We hypothesized that benzo(a)pyrene (BaP), a member of PAHs existing in cigarette smoke, may affect the myogenesis to cause low birth weights. We investigated the effects of BaP and its main metabolite, benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), on the myogenic differentiation of human skeletal muscle-derived progenitor cells (HSMPCs). HSMPCs were isolated by a modified preplate technique and cultured in myogenic differentiation media with or without BaP and BPDE (0.25 and 0.5 μM) for 4 days. The multinucleated myotube formation was morphologically analyzed by hematoxylin and eosin staining. The expressions of myogenic differentiation markers and related signaling proteins were determined by Western blotting. Both BaP and BPDE at the submicromolar concentrations (0.25 and 0.5 μM) dose-dependently repressed HSMPCs myogenic differentiation without obvious cell toxicity. Both BaP and BPDE inhibited the muscle-specific protein expressions (myogenin and myosin heavy chain) and phosphorylation of Akt (a known modulator in myogenesis), which could be significantly reversed by the inhibitors for aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and nuclear factor (NF)-κB. BaP- and BPDE-activated NF-κB-p65 protein phosphorylation could also be attenuated by both AhR and ER inhibitors. The inhibitory effects of BaP and BPDE on myogenesis were reversed after withdrawing BaP exposure, but not after BPDE withdrawal. These results suggest that both BaP and BPDE are capable of inhibiting myogenesis via an AhR- or/and ER-regulated NF-κB/Akt signaling pathway.

  19. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  20. Space travel directly induces skeletal muscle atrophy.

    PubMed

    Vandenburgh, H; Chromiak, J; Shansky, J; Del Tatto, M; Lemaire, J

    1999-06-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  1. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  2. Heterogeneous ageing of skeletal muscle microvascular function.

    PubMed

    Muller-Delp, Judy M

    2016-04-15

    The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts.

  3. Isolation and characterization of primary skeletal muscle satellite cells from rats.

    PubMed

    Liu, Yuan; Chen, Sifan; Li, Wenxue; Du, Hongyan; Zhu, Wei

    2012-11-01

    The purpose of this study was to isolate and characterize skeletal muscle satellite cells from rats using tissue block culture method. Specific Pathogen Free (SPF) level Sprague-Dawley (SD) rats were used to isolate skeletal muscle satellite cells. Morphology, expression and distribution of α-actin and Desmin within the cytoplasm of skeletal muscle satellite cells were compared with those of C2C12 myoblasts. The results showed that tissue block culturing method achieved robust proliferation and excellent differentiation of skeletal muscle satellite cells. Immunofluorescence and immunohistochemistry results showed that α-actin and Desmin proteins were expressed in the cytoplasm of both skeletal muscle satellite cells and myoblasts. We concluded that tissue block culturing method can obtain highly purified skeletal muscle satellite cells with robust proliferation and excellent differentiation capabilities.

  4. Differential contractile impairment of fast- and slow-twitch skeletal muscles in a rat model of doxorubicin-induced congestive heart failure.

    PubMed

    Ertunc, Mert; Sara, Yildirim; Korkusuz, Petek; Onur, Rustu

    2009-01-01

    Congestive heart failure (CHF) is associated with exercise intolerance that cannot be entirely explained by hypoperfusion of the skeletal muscles. We studied the contractile properties of fast-twitch (extensor digitorum longus; EDL) and slow-twitch (soleus; SOL) skeletal muscles in doxorubicin-induced CHF in rats, and evaluated the defective steps of excitation-contraction coupling. Both types of muscles-obtained from CHF rats displayed significant reduction in twitch and tetanic contractions. Twitch half-relaxation times of CHF SOL muscles were prolonged while there was no significant difference in EDL muscles. High K(+) application induced lower contracture amplitudes in CHF muscles. Caffeine-induced contractures were significantly diminished in CHF SOL. Verapamil application depressed tetanic contractions in all preparations while depression was more pronounced in CHF SOL. Immunohistochemistry revealed reduced expression of sarcoplasmic reticulum Ca(2+)-ATPase-1 and -2 in CHF EDL and in CHF SOL, respectively. Sarcolemmal excitability and spontaneous neurotransmitter release were unaffected since resting membrane potential, action potential and miniature end-plate potentials were unaltered in CHF muscles. We conclude that CHF induces contractile impairment that occurs predominantly in rat slow-twitch skeletal muscles. Our results suggest that this muscle-type-specific effect of CHF is related to the defective intracellular Ca(2+) release and uptake mechanisms and reduced sarcolemmal-dihydropyridine-sensitive Ca(2+) channel activity.

  5. Male ironman triathletes lose skeletal muscle mass.

    PubMed

    Knechtle, Beat; Baumann, Barbara; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2010-01-01

    We investigated whether male triathletes in an Ironman triathlon lose body mass in the form of fat mass or skeletal muscle mass in a field study at the Ironman Switzerland in 27 male Caucasian non-professional Ironman triathletes. Pre- and post-race body mass, fat mass and skeletal muscle mass were determined. In addition, total body water, hematological and urinary parameters were measured in order to quantify hydration status. Body mass decreased by 1.8 kg (p< 0.05), skeletal muscle decreased by 1.0 kg (p< 0.05) whereas fat mass showed no changes. Urinary specific gravity, plasma urea and plasma volume increased (p< 0.05). Pre- to post-race change (Delta) in body mass was not associated with ? skeletal muscle mass. Additionally, there was no association between Delta plasma urea and Delta skeletal muscle mass; Delta plasma volume was not associated with Delta total body water (p< 0.05). We concluded that male triathletes in an Ironman triathlon lose 1.8 kg of body mass and 1 kg of skeletal muscle mass, presumably due to a depletion of intramyocellular stored glycogen and lipids.

  6. ISOLATION OF SKELETAL MUSCLE NUCLEI

    PubMed Central

    Edelman, Jean C.; Edelman, P. Michael; Knigge, Karl M.; Schwartz, Irving L.

    1965-01-01

    A method employing aqueous media for isolation of nuclei from rat skeletal muscle is described. The technique involves (a) mincing and then homogenizing in a 0.32 M sucrose-salt solution with a Potter-Elvehjem type homogenizer using a Delrin (an acetal resin) pestle and a carefully controlled, relatively large pestle-to-glass clearance, (b) filtering through fiberglass and stainless steel screens of predetermined mesh size to remove myofibrils and connective tissue, and (c) centrifuging in a 2.15 M sucrose-salt solution containing 0.7 mM ATP. Electron and phase-contrast microscopic observations show that the nuclei are intact, unencumbered by cytoplasmic tags, and possess well preserved distinct nucleoli, nucleoplasm, and nuclear membranes. Cytoplasmic contamination is minimal and mainly mitochondrial. Chemical assays of the nuclear fraction show that the DNA/protein and RNA/DNA ratios are comparable to those obtained in other tissues. These ratios, as well as the low specific activity obtained for cytochrome c oxidase and the virtual absence of myofibrillar ATPase, indicate a high degree of purity with minimal mitochondrial and myofibrillar contamination. The steps comprising the technique and the reasons for their selection are discussed. PMID:4287141

  7. Skeletal muscle weakness in osteogeneis imperfecta mice

    PubMed Central

    Gentry, Bettina A; Ferreira, J. Andries; McCambridge, Amanda J.; Brown, Marybeth; Phillips, Charlotte L.

    2010-01-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (Po, Po/mg and Po/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased Po and an inability to sustain Po for the 300 ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. PMID:20619344

  8. Do inflammatory cells influence skeletal muscle hypertrophy?

    PubMed

    Koh, Timothy J; Pizza, Francis X

    2009-06-01

    Most research on muscle hypertrophy has focused on the responses of muscle cells to mechanical loading; however, a number of studies also suggest that inflammatory cells may influence muscle hypertrophy. Neutrophils and macrophages accumulate in skeletal muscle following increased mechanical loading, and we have demonstrated that macrophages are essential for hypertrophy following synergist ablation. Whether neutrophils are required remains to be determined. Non-steroidal anti-inflammatory drugs impair adaptive responses of skeletal muscle in both human and animal experiments suggesting that the routine use of such drugs could impair muscle performance. Much remains to be learned about the role of inflammatory cells in muscle hypertrophy, including the molecular signals involved in calling neutrophils and macrophages to skeletal muscle as well as those that regulate their function in muscle. In addition, although we have demonstrated that macrophages produce growth promoting factors during muscle hypertrophy, the full range of functional activities involved in muscle hypertrophy remains to be determined. Further investigation should provide insight into the intriguing hypothesis that inflammatory cells play integral roles in regulating muscle hypertrophy.

  9. PC4/Tis7/IFRD1 Stimulates Skeletal Muscle Regeneration and Is Involved in Myoblast Differentiation as a Regulator of MyoD and NF-κB*

    PubMed Central

    Micheli, Laura; Leonardi, Luca; Conti, Filippo; Maresca, Giovanna; Colazingari, Sandra; Mattei, Elisabetta; Lira, Sergio A.; Farioli-Vecchioli, Stefano; Caruso, Maurizia; Tirone, Felice

    2011-01-01

    In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes delayed exit from the cell cycle, accompanied by delayed differentiation, and we show that such an effect is MyoD-dependent. We provide evidence revealing a novel mechanism underlying the promyogenic actions of PC4, by which PC4 functions as a negative regulator of NF-κB, known to inhibit MyoD expression post-transcriptionally. In fact, up-regulation of PC4 in primary myoblasts induces the deacetylation, and hence the inactivation and nuclear export of NF-κB p65, in concomitance with induction of MyoD expression. On the contrary, PC4 silencing in myoblasts induces the acetylation and nuclear import of p65, in parallel with a decrease of MyoD levels. We also observe that PC4 potentiates the inhibition of NF-κB transcriptional activity mediated by histone deacetylases and that PC4 is able to form trimolecular complexes with p65 and HDAC3. This suggests that PC4 stimulates deacetylation of p65 by favoring the recruitment of HDAC3 to p65. As a whole, these results indicate that PC4 plays a role in muscle differentiation by controlling the MyoD pathway through multiple mechanisms, and as such, it positively regulates regenerative myogenesis. PMID:21127072

  10. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    PubMed

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  11. Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity

    PubMed Central

    Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut

    2015-01-01

    Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235

  12. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis

    PubMed Central

    Tierney, Matthew T.; Sacco, Alessandra

    2016-01-01

    The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity. PMID:26948993

  13. lnc133b, a novel, long non-coding RNA, regulates bovine skeletal muscle satellite cell proliferation and differentiation by mediating miR-133b.

    PubMed

    Jin, Cong Fei; Li, Yan; Ding, Xiang Bin; Li, Xin; Zhang, Lin Lin; Liu, Xin Feng; Guo, Hong

    2017-09-30

    The proliferation and differentiation of skeletal muscle satellite cells is regulated by multiple regulatory factors including non-coding RNAs. It has been reported that miR-133b regulates myogenesis. In this study, we detected a novel lncRNA, lnc133b, which is completely complemented by mature miR-133b, indicating that lnc133b may regulate the expression of miR-133b by "sponge" miR-133b. A luciferase report assay confirmed that lnc133b interacts with miR-133b in regions complemented by miR-133b. We successfully constructed lnc133b gain/loss-of-function cell models by infecting LV-1nc133b and transfecting si-lnc133b into satellite cells. Results of quantitative real-time polymerase chain reaction (qRT-PCR) and 5-ethynyl-2'-deoxyuridine (EdU) assays showed that overexpression or inhibition of lnc133b could promote the proliferation or inhibition of satellite cell differentiation. The qRT-PCR results also showed that lnc133b negatively regulates miR-133b expression and a Western blot assay showed that lnc133b positively regulates IGF1R expression, indicating that the lnc133b/miR-133b/IGF1R axis is a potential pathway for promoting satellite cell proliferation and repressing their differentiation through the ceRNA mechanism. Building on the findings of previous reports, we constructed the lnc133b/miR-133b/FGFR1 & PP2AC pathway to improve the lnc133b regulation network regulating the proliferation and differentiation of satellite cells. The current study provides a new perspective for understanding the mechanism regulating satellite cell proliferation and differentiation through the interaction of miR-133b and lnc133b. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Systemic skeletal muscle necrosis induced by crotoxin.

    PubMed

    Salvini, T F; Amaral, A C; Miyabara, E H; Turri, J A; Danella, P M; Selistre de Araújo, H S

    2001-08-01

    Systemic skeletal muscle necrosis induced by crotoxin, the major component of the venom of Crotalus durissus terrificus, was investigated. Mice received an intramuscular injection of crotoxin (0.35mg/kg body weight) into the right tibialis anterior (TA) muscles, which were evaluated 3h, 24h and 3 days later. Control mice were injected with saline. Right and left TAs, gastrocnemius, soleus and right masseter and longissimus dorsi were removed and frozen. Histological sections were stained with Toluidine Blue or incubated for acidic phosphatase reaction. Three and 24h after the injection, signals of muscle fiber injury were found: (a) in the injected TA muscles; (b) in both right and contralateral soleus and red gastrocnemius; and (c) in the masseter muscles. Contralateral TA, longissimus dorsi and white gastrocnemius muscles were not injured. In conclusion, crotoxin induced a systemic and selective muscle injury in muscles or muscle regions composed by oxidative muscle fibers.

  15. Skeletal muscle aging and the mitochondria

    PubMed Central

    Johnson, Matthew L.; Robinson, Matthew M.; Nair, K. Sreekumaran

    2013-01-01

    The decline in human muscle mass and strength (sarcopenia) is a hallmark of the aging process. A growing body of research in the areas of bioenergetics and protein turnover has placed the mitochondria at the center of this process. It is now clear that unless an active life style is rigorously followed, skeletal muscle mitochondrial decline occurs as humans’ age. Increasing research on mitochondrial biology has elucidated the regulatory pathways involved in mitochondrial biogenesis, many of which are potential therapeutic targets, and highlight the beneficial effects of vigorous physical activity on skeletal muscle health for an aging population. PMID:23375520

  16. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

    PubMed Central

    2014-01-01

    Background Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. Results We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. Conclusion Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required. PMID:24484525

  17. The benefits of coffee on skeletal muscle.

    PubMed

    Dirks-Naylor, Amie J

    2015-12-15

    Coffee is consumed worldwide with greater than a billion cups of coffee ingested every day. Epidemiological studies have revealed an association of coffee consumption with reduced incidence of a variety of chronic diseases as well as all-cause mortality. Current research has primarily focused on the effects of coffee or its components on various organ systems such as the cardiovascular system, with relatively little attention on skeletal muscle. Summary of current literature suggests that coffee has beneficial effects on skeletal muscle. Coffee has been shown to induce autophagy, improve insulin sensitivity, stimulate glucose uptake, slow the progression of sarcopenia, and promote the regeneration of injured muscle. Much more research is needed to reveal the full scope of benefits that coffee consumption may exert on skeletal muscle structure and function. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    PubMed

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Coaxing stem cells for skeletal muscle repair

    PubMed Central

    McCullagh, Karl J.A.; Perlingeiro, Rita C. R.

    2014-01-01

    Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders. PMID:25049085

  20. Denervation and reinnervation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Mayer, R. F.; Max, S. R.

    1983-01-01

    A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.

  1. Myoglobin Function in Exercising Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Cole, Randolph P.

    1982-04-01

    Short-term perfusion of the isolated dog gastrocnemius-plantaris muscle with hydrogen peroxide resulted in a decrease in steady-state muscle oxygen consumption and isometric tension generation. Hydrogen peroxide converted intracellular myoglobin to products incapable of combination with oxygen, but had no deleterious effect on neuromuscular transmission or on mitochondrial oxidative phosphorylation. It is concluded that functional intracellular myoglobin is important in maintaining oxygen consumption and tension generation in exercising skeletal muscle.

  2. Leucine stimulation of skeletal muscle protein synthesis

    SciTech Connect

    Layman, D.K.; Grogan, C.K.

    1986-03-01

    Previous work in this laboratory has demonstrated a stimulatory effect of leucine on skeletal muscle protein synthesis measured in vitro during catabolic conditions. Studies in other laboratories have consistently found this effect in diaphragm muscle, however, studies examining effects on nitrogen balance or with in vivo protein synthesis in skeletal muscle are equivocal. This experiment was designed to determine the potential of leucine to stimulate skeletal muscle protein synthesis in vivo. Male Sprague-Dawley rats weighing 200 g were fasted for 12 hrs, anesthetized, a jugular cannula inserted, and protein synthesis measured using a primed continuous infusion of /sup 14/C-tyrosine. A plateau in specific activity was reached after 30 to 60 min and maintained for 3 hrs. The leucine dose consisted of a 240 umole priming dose followed by a continuous infusion of 160 umoles/hr. Leucine infusion stimulated protein synthesis in the soleus muscle (28%) and in the red (28%) and white portions (12%) of the gastrocnemius muscle compared with controls infused with only tyrosine. The increased rates of protein synthesis were due to increased incorporation of tyrosine into protein and to decreased specific activity of the free tyrosine pool. These data indicate that infusion of leucine has the potential to stimulate in vivo protein synthesis in skeletal muscles.

  3. GRMD cardiac and skeletal muscle metabolism gene profiles are distinct.

    PubMed

    Markham, Larry W; Brinkmeyer-Langford, Candice L; Soslow, Jonathan H; Gupte, Manisha; Sawyer, Douglas B; Kornegay, Joe N; Galindo, Cristi L

    2017-04-08

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, which codes for the dystrophin protein. While progress has been made in defining the molecular basis and pathogenesis of DMD, major gaps remain in understanding mechanisms that contribute to the marked delay in cardiac compared to skeletal muscle dysfunction. To address this question, we analyzed cardiac and skeletal muscle tissue microarrays from golden retriever muscular dystrophy (GRMD) dogs, a genetically and clinically homologous model for DMD. A total of 15 dogs, 3 each GRMD and controls at 6 and 12 months plus 3 older (47-93 months) GRMD dogs, were assessed. GRMD dogs exhibited tissue- and age-specific transcriptional profiles and enriched functions in skeletal but not cardiac muscle, consistent with a "metabolic crisis" seen with DMD microarray studies. Most notably, dozens of energy production-associated molecules, including all of the TCA cycle enzymes and multiple electron transport components, were down regulated. Glycolytic and glycolysis shunt pathway-associated enzymes, such as those of the anabolic pentose phosphate pathway, were also altered, in keeping with gene expression in other forms of muscle atrophy. On the other hand, GRMD cardiac muscle genes were enriched in nucleotide metabolism and pathways that are critical for neuromuscular junction maintenance, synaptic function and conduction. These findings suggest differential metabolic dysfunction may contribute to distinct pathological phenotypes in skeletal and cardiac muscle.

  4. Kelch proteins: emerging roles in skeletal muscle development and diseases

    PubMed Central

    2014-01-01

    Our understanding of genes that cause skeletal muscle disease has increased tremendously over the past three decades. Advances in approaches to genetics and genomics have aided in the identification of new pathogenic mechanisms in rare genetic disorders and have opened up new avenues for therapeutic interventions by identification of new molecular pathways in muscle disease. Recent studies have identified mutations of several Kelch proteins in skeletal muscle disorders. The Kelch superfamily is one of the largest evolutionary conserved gene families. The 66 known family members all possess a Kelch-repeat containing domain and are implicated in diverse biological functions. In skeletal muscle development, several Kelch family members regulate the processes of proliferation and/or differentiation resulting in normal functioning of mature muscles. Importantly, many Kelch proteins function as substrate-specific adaptors for Cullin E3 ubiquitin ligase (Cul3), a core component of the ubiquitin-proteasome system to regulate the protein turnover. This review discusses the emerging roles of Kelch proteins in skeletal muscle function and disease. PMID:24959344

  5. Human Skeletal Muscle Health with Spaceflight

    NASA Astrophysics Data System (ADS)

    Trappe, Scott

    2012-07-01

    This lecture will overview the most recent aerobic and resistance exercise programs used by crewmembers while aboard the International Space Station (ISS) for six months and examine its effectiveness for protecting skeletal muscle health. Detailed information on the exercise prescription program, whole muscle size, whole muscle performance, and cellular data obtained from muscle biopsy samples will be presented. Historically, detailed information on the exercise program while in space has not been available. These most recent exercise and muscle physiology findings provide a critical foundation to guide the exercise countermeasure program forward for future long-duration space missions.

  6. Palmdelphin promotes myoblast differentiation and muscle regeneration

    PubMed Central

    Nie, Yaping; Chen, Hu; Guo, Cilin; Yuan, Zhuning; Zhou, Xingyu; Zhang, Ying; Zhang, Xumeng; Mo, Delin; Chen, Yaosheng

    2017-01-01

    Differentiation of myoblasts is essential in the development and regeneration of skeletal muscles to form multinucleated, contractile muscle fibers. However, the process of myoblast differentiation in mammals is complicated and requires to be further investigated. In this study, we found Palmdelphin (Palmd), a cytosolic protein, promotes myoblast differentiation. Palmd is predominantly expressed in the cytosol of myoblasts and is gradually up-regulated after differentiation. Knockdown of Palmd by small interfering RNA (siRNA) in C2C12 markedly inhibits myogenic differentiation, suggesting a specific role of Palmd in the morphological changes of myoblast differentiation program. Overexpression of Palmd in C2C12 enhances myogenic differentiation. Remarkably, inhibition of Palmd results in impaired myotube formation during muscle regeneration after injury. These findings reveal a new cytosolic protein that promotes mammalian myoblast differentiation and provide new insights into the molecular regulation of muscle formation. PMID:28148961

  7. Rat skeletal muscle glycogen degradation pathways reveal differential association of glycogen-related proteins with glycogen granules.

    PubMed

    Xu, Hongyang; Stapleton, David; Murphy, Robyn M

    2015-06-01

    Glycogenin, glycogen-debranching enzyme (GDE) and glycogen phosphorylase (GP) are important enzymes that contribute to glycogen particle metabolism. In Long-Evans Hooded rat whole muscle homogenates prepared from extensor digitorum longus (EDL, fast-twitch) and soleus (SOL, oxidative, predominantly slow twitch), it was necessary to include α-amylase, which releases glucosyl units from glycogen, to detect glycogenin but not GDE or GP. Up to ∼12 % of intramuscular glycogen pool was broken down using either in vitro electrical stimulation or leaving muscle at room temperature >3 h (delayed, post-mortem). Electrical stimulation did not reveal glycogenin unless α-amylase was added, although in post-mortem muscle ∼50 and ∼30 % of glycogenin in EDL and SOL muscles, respectively, was detected compared to the amount detected with α-amylase treatment. Single muscle fibres were dissected from fresh or post-mortem EDL muscles, mechanically skinned to remove surface membrane and the presence of glycogenin, GDE and GP as freely diffusible proteins (i.e. cytoplasmic localization) compared by Western blotting. Diffusibility of glycogenin (∼20 %) and GP (∼60 %) was not different between muscles, although GDE increased from ∼15 % diffusible in fresh muscle to ∼60 % in post-mortem muscle. Under physiologically relevant circumstances, in rat muscle and within detection limits: (1) The total cellular pool of glycogenin is always associated with glycogen granules, (2) GDE is associated with glycogen granules with over half the total pool associated with the outer tiers of glycogen, (3) GP is only ever weakly associated with glycogen granules and (4) addition of α-amylase is necessary in order to detect glycogenin, but not GDE or GP.

  8. Molecular regulation of skeletal muscle mass.

    PubMed

    Russell, Aaron P

    2010-03-01

    1. The maintenance of skeletal muscle mass is determined by a fine balance between protein synthesis and protein degradation. Skeletal mass is increased when there is a net gain in protein synthesis, which can occur following progressive exercise training. In contrast, skeletal muscle mass is lost when degradation occurs more rapidly than synthesis and is observed in numerous conditions, including neuromuscular disease, chronic disease, ageing, as well as following limb immobilization or prolonged bed rest due to injury or trauma. 2. Understanding the molecular pathways that regulate skeletal muscle protein synthesis and degradation is vital for identifying potential therapeutic targets that can attenuate muscle atrophy during disease and disuse. 3. The regulation of skeletal mass is complex and involves the precise coordination of several intracellular signalling pathways. The present review focuses on the role and regulation of pathways involving Akt, atrogin-1 and muscle ring finger-1 (MuRF1; atrogenes), peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and striated activator of Rho signalling (STARS), with exercise and disease.

  9. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    SciTech Connect

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.; and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  10. Focal adhesion kinase and its role in skeletal muscle

    PubMed Central

    Graham, Zachary A.; Gallagher, Philip M.; Cardozo, Christopher P.

    2015-01-01

    Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health. PMID:26142360

  11. Focal adhesion kinase and its role in skeletal muscle.

    PubMed

    Graham, Zachary A; Gallagher, Philip M; Cardozo, Christopher P

    2015-10-01

    Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.

  12. Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1990-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  13. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vanderburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1991-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  14. Regulation and phylogeny of skeletal muscle regeneration.

    PubMed

    Baghdadi, Meryem B; Tajbakhsh, Shahragim

    2017-08-12

    One of the most fascinating questions in regenerative biology is why some animals can regenerate injured structures while others cannot. Skeletal muscle has a remarkable capacity to regenerate even after repeated traumas, yet limited information is available on muscle repair mechanisms and how they have evolved. For decades, the main focus in the study of muscle regeneration was on muscle stem cells, however, their interaction with their progeny and stromal cells is only starting to emerge, and this is crucial for successful repair and re-establishment of homeostasis after injury. In addition, numerous murine injury models are used to investigate the regeneration process, and some can lead to discrepancies in observed phenotypes. This review addresses these issues and provides an overview of the some of the main regulatory cellular and molecular players involved in skeletal muscle repair. Copyright © 2017. Published by Elsevier Inc.

  15. Lactate oxidation in human skeletal muscle mitochondria.

    PubMed

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B; Lundby, Carsten

    2013-04-01

    Lactate is an important intermediate metabolite in human bioenergetics and is oxidized in many different tissues including the heart, brain, kidney, adipose tissue, liver, and skeletal muscle. The mechanism(s) explaining the metabolism of lactate in these tissues, however, remains unclear. Here, we analyze the ability of skeletal muscle to respire lactate by using an in situ mitochondrial preparation that leaves the native tubular reticulum and subcellular interactions of the organelle unaltered. Skeletal muscle biopsies were obtained from vastus lateralis muscle in 16 human subjects. Samples were chemically permeabilized with saponin, which selectively perforates the sarcolemma and facilitates the loss of cytosolic content without altering mitochondrial membranes, structure, and subcellular interactions. High-resolution respirometry was performed on permeabilized muscle biopsy preparations. By use of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P ≤ 0.003). The addition of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within the mitochondrial intermembrane space with the pyruvate subsequently taken into the mitochondrial matrix where it enters the TCA cycle and is ultimately oxidized.

  16. Insights into skeletal muscle development and applications in regenerative medicine.

    PubMed

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Localisation of AMPK γ subunits in cardiac and skeletal muscles.

    PubMed

    Pinter, Katalin; Grignani, Robert T; Watkins, Hugh; Redwood, Charles

    2013-12-01

    The trimeric protein AMP-activated protein kinase (AMPK) is an important sensor of energetic status and cellular stress, and mutations in genes encoding two of the regulatory γ subunits cause inherited disorders of either cardiac or skeletal muscle. AMPKγ2 mutations cause hypertrophic cardiomyopathy with glycogen deposition and conduction abnormalities; mutations in AMPKγ3 result in increased skeletal muscle glycogen. In order to gain further insight into the roles of the different γ subunits in muscle and into possible disease mechanisms, we localised the γ2 and γ3 subunits, along with the more abundant γ1 subunit, by immunofluorescence in cardiomyocytes and skeletal muscle fibres. The predominant cardiac γ2 variant, γ2-3B, gave a striated pattern in cardiomyocytes, aligning with the Z-disk but with punctate staining similar to T-tubule (L-type Ca(2+) channel) and sarcoplasmic reticulum (SERCA2) markers. In skeletal muscle fibres AMPKγ3 localises to the I band, presenting a uniform staining that flanks the Z-disk, also coinciding with the position of Ca(2+) influx in these muscles. The localisation of γ2-3B- and γ3-containing AMPK suggests that these trimers may have similar functions in the different muscles. AMPK containing γ2-3B was detected in oxidative skeletal muscles which had low expression of γ3, confirming that these two regulatory subunits may be co-ordinately regulated in response to metabolic requirements. Compartmentalisation of AMPK complexes is most likely dependent on the regulatory γ subunit and this differential localisation may direct substrate selection and specify particular functional roles.

  18. Gene Regions Responding to Skeletal Muscle Atrophy

    NASA Technical Reports Server (NTRS)

    Booth, Frank W.

    1997-01-01

    Our stated specific aims for this project were: 1) Identify the region(s) of the mouse IIb myosin heavy chain (MHC) promoter necessary for in vivo expression in mouse fast-twitch muscle, and 2) Identify the region(s) of the mouse IIb MHC promoter responsive to immobilization in mouse slow-twitch muscle in vivo. We sought to address these specific aims by introducing various MHC IIb promoter/reporter gene constructs directly into the tibialis anterior and gastrocnemius muscles of living mice. Although the method of somatic gene transfer into skeletal muscle by direct injection has been successfully used in our laboratory to study the regulation of the skeletal alpha actin gene in chicken skeletal muscle, we had many difficulties utilizing this procedure in the mouse. Because of the small size of the mouse soleus and the difficulty in obtaining consistent results, we elected not to study this muscle as first proposed. Rather, our MHC IIb promoter deletion experiments were performed in the gastrocnemius. Further, we decided to use hindlimb unloading via tail suspension to induce an upregulation of the MHC IIb gene, rather than immobilization of the hindlimbs via plaster casts. This change was made because tail suspension more closely mimics spaceflight, and this procedure in our lab results in a smaller loss of overall body mass than the mouse hindlimb immobilization procedure. This suggests that the stress level during tail suspension is less than during immobilization. This research has provided an important beginning point towards understanding the molecular regulation of the MHC lIb gene in response to unweighting of skeletal muscle Future work will focus on the regulation of MHC IIb mRNA stability in response to altered loading of skeletal muscle

  19. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate

  20. Functional heterogeneity of side population cells in skeletal muscle

    SciTech Connect

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro; Ikemoto, Madoka; Masuda, Satoru; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi . E-mail: takeda@ncnp.go.jp

    2006-03-17

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31{sup -}CD45{sup -} SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31{sup -}CD45{sup -} SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31{sup -}CD45{sup -} SP cells participate in muscle regeneration.

  1. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle.

    PubMed

    Fujimaki, Shin; Machida, Masanao; Wakabayashi, Tamami; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2016-01-01

    Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.

  2. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle

    PubMed Central

    Fujimaki, Shin; Machida, Masanao; Wakabayashi, Tamami; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2016-01-01

    Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise. PMID:26779264

  3. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  4. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  5. Insulin binding to individual rat skeletal muscles

    SciTech Connect

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G. )

    1990-10-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white (extensor digitorum longus (EDL), gastrocnemius) muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding.

  6. Transmission of polarized light in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Shuaib, Ali; Li, Xin; Yao, Gang

    2011-02-01

    Experiments were conducted to study polarized light transmission in fresh bovine skeletal muscle of varying thicknesses. Two-dimensional polarization-sensitive transmission images were acquired and analyzed using a numerical parametric fitting algorithm. The total transmittance intensity and degree-of-polarization were calculated for both central ballistic and surrounding scattering regions. Full Mueller matrix images were derived from the raw polarization images and the polar decomposition algorithm was applied to extract polarization parameters. The results suggest that polarized light propagation through skeletal muscle is affected by strong birefringence, diattenuation, multiple scattering induced depolarization and the sarcomere diffraction effect.

  7. Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: an insulin signaling pathway approach.

    PubMed

    Zeanandin, Gilbert; Balage, Michèle; Schneider, Stéphane M; Dupont, Joëlle; Hébuterne, Xavier; Mothe-Satney, Isabelle; Dardevet, Dominique

    2012-04-01

    Leucine acts as a signal nutrient in promoting protein synthesis in skeletal muscle and adipose tissue via mTOR pathway activation, and may be of interest in age-related sarcopenia. However, hyper-activation of mTOR/S6K1 has been suggested to inhibit the first steps of insulin signaling and finally promote insulin resistance. The impact of long-term dietary leucine supplementation on insulin signaling and sensitivity was investigated in old rats (18 months old) fed a 15% protein diet supplemented (LEU group) or not (C group) with 4.5% leucine for 6 months. The resulting effects on muscle and fat were examined. mTOR/S6K1 signaling pathway was not significantly altered in muscle from old rats subjected to long-term dietary leucine excess, whereas it was increased in adipose tissue. Overall glucose tolerance was not changed but insulin-stimulated glucose transport was improved in muscles from leucine-supplemented rats related to improvement in Akt expression and phosphorylation in response to food intake. No change in skeletal muscle mass was observed, whereas perirenal adipose tissue mass accumulated (+45%) in leucine-supplemented rats. A prolonged leucine supplementation in old rats differently modulates mTOR/S6K pathways in muscle and adipose tissue. It does not increase muscle mass but seems to promote hypertrophy and hyperplasia of adipose tissue that did not result in insulin resistance.

  8. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  9. Mechanotransduction pathways in skeletal muscle hypertrophy.

    PubMed

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.

  10. Cardiac Myosin Binding Protein-C Plays No Regulatory Role in Skeletal Muscle Structure and Function

    PubMed Central

    Lin, Brian; Govindan, Suresh; Lee, Kyounghwan; Zhao, Piming; Han, Renzhi; Runte, K. Elisabeth; Craig, Roger; Palmer, Bradley M.; Sadayappan, Sakthivel

    2013-01-01

    Myosin binding protein-C (MyBP-C) exists in three major isoforms: slow skeletal, fast skeletal, and cardiac. While cardiac MyBP-C (cMyBP-C) expression is restricted to the heart in the adult, it is transiently expressed in neonatal stages of some skeletal muscles. However, it is unclear whether this expression is necessary for the proper development and function of skeletal muscle. Our aim was to determine whether the absence of cMyBP-C alters the structure, function, or MyBP-C isoform expression in adult skeletal muscle using a cMyBP-C null mouse model (cMyBP-C(t/t)). Slow MyBP-C was expressed in both slow and fast skeletal muscles, whereas fast MyBP-C was mostly restricted to fast skeletal muscles. Expression of these isoforms was unaffected in skeletal muscle from cMyBP-C(t/t) mice. Slow and fast skeletal muscles in cMyBP-C(t/t) mice showed no histological or ultrastructural changes in comparison to the wild-type control. In addition, slow muscle twitch, tetanus tension, and susceptibility to injury were all similar to the wild-type controls. Interestingly, fMyBP-C expression was significantly increased in the cMyBP-C(t/t) hearts undergoing severe dilated cardiomyopathy, though this does not seem to prevent dysfunction. Additionally, expression of both slow and fast isoforms was increased in myopathic skeletal muscles. Our data demonstrate that i) MyBP-C isoforms are differentially regulated in both cardiac and skeletal muscles, ii) cMyBP-C is dispensable for the development of skeletal muscle with no functional or structural consequences in the adult myocyte, and iii) skeletal isoforms can transcomplement in the heart in the absence of cMyBP-C. PMID:23936073

  11. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    PubMed

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  12. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    PubMed

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-09-16

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  13. Skeletal muscle oxidative metabolism in an animal model of pulmonary emphysema: formoterol and skeletal muscle dysfunction.

    PubMed

    Sullo, Nikol; Roviezzo, Fiorentina; Matteis, Maria; Spaziano, Giuseppe; Del Gaudio, Stefania; Lombardi, Assunta; Lucattelli, Monica; Polverino, Francesca; Lungarella, Giuseppe; Cirino, Giuseppe; Rossi, Francesco; D'Agostino, Bruno

    2013-02-01

    Skeletal muscle dysfunction is a significant contributor to exercise limitation in pulmonary emphysema. This study investigated skeletal muscle oxidative metabolism before and after aerosol exposure to a long-acting β-agonist (LABA), such as formoterol, in the pallid mouse (B6.Cg-Pldnpa/J), which has a deficiency in serum α(1)-antitrypsin (α(1)-PI) and develops spontaneous pulmonary emphysema. C57 BL/6J and its congener pallid mice of 8-12 and 16 months of age were treated with vehicle or formoterol aerosol challenge for 120 seconds. Morphological and morphometric studies and evaluations of mitochondrial adenosine diphosphate-stimulated respiration and of cytochrome oxidase activity on skeletal muscle were performed. Moreover, the mtDNA content in skeletal muscle and the mediators linked to muscle mitochondrial function and biogenesis, as well as TNF-α and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), were also evaluated. The lungs of pallid mice at 12 and 16 months of age showed patchy areas of airspace enlargements, with the destruction of alveolar septa. No significant differences were observed in basal values of mitochondrial skeletal muscle oxidative processes between C57 BL/6J and pallid mice. Exposure to LABA significantly improved mitochondrial skeletal muscle oxidative processes in emphysematous mice, where the mtDNA content was significantly higher with respect to 8-month-old pallid mice. This effect was compared with a significant increase of PGC-1α in skeletal muscles of 16-month-old pallid mice, with no significant changes in TNF-α concentrations. In conclusion, in emphysematous mice that showed an increased mtDNA content, exposure to inhaled LABA can improve mitochondrial skeletal muscle oxidative processes. PGC-1α may serve as a possible mediator of this effect.

  14. 1α,25(OH)2D3-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells.

    PubMed

    Buitrago, Claudia G; Arango, Nadia S; Boland, Ricardo L

    2012-04-01

    We previously reported that 1α,25-dihydroxy-vitamin D(3) [1α,25(OH)(2)D(3)] induces non-transcriptional rapid responses through activation of Src and MAPKs in the skeletal muscle cell line C2C12. In the present study we investigated the modulation of Akt by the secosteroid hormone in C2C12 cells at proliferative stage (myoblasts) and at early differentiation stage. In proliferating cells, 1α,25(OH)(2)D(3) activates Akt by phosphorylation in Ser473 in a time-dependent manner (5-60 min). When these cells were pretreated with methyl-beta-cyclodextrin to disrupt caveolae microdomains, hormone-induced activation of Akt was suppressed. Similar results were obtained by siRNA silencing of caveolin-1 expression, further indicating that hormone effects on cell membrane caveolae are required for downstream signaling. PI3K and p38 MAPK, but not ERK1/2, participate in 1α,25(OH)(2)D(3) activation of Akt in myoblasts. The involvement of p38 MAPK in Akt phosphorylation by the hormone probably occurs through MAPK-activated protein kinase 2 (MK2), which is activated by the steroid. In addition, the participation of Src in Akt phosphorylation by 1α,25(OH)(2)D(3) was demonstrated using the inhibitor PP2 and antisense oligodeoxynucleotides that suppress Src expression. We also observed that PI3K participates in hormone-induced proliferation. During the early phase of C2C12 cell differentiation 1α,25(OH)(2)D(3) also increases Akt phosphorylation and activates Src. Of relevance, Src and PI3K are involved in Akt activation and in MHC and myogenin increased expression by 1α,25(OH)(2)D(3). Altogether, these data suggest that 1α,25(OH)(2)D(3) upregulates Akt through Src, PI(3)K, and p38 MAPK to stimulate myogenesis in C2C12 cells.

  15. Molecular mechanism underlying the differential MYF6 expression in postnatal skeletal muscle of Duroc and Pietrain breeds.

    PubMed

    Fan, Huitao; Cinar, Mehmet Ulas; Phatsara, Chirawath; Tesfaye, Dawit; Tholen, Ernst; Looft, Christian; Schellander, Karl

    2011-10-15

    Among modern western pigs, Duroc (high meat fat ratio) and Pietrain (low meat fat ratio) breeds extensively utilized in commercial pork production differ extremely for their muscle phenotypes. The molecular mechanism, especially the epigenetic mechanism, underlying these breed-specific differences is poorly known. Myogenic factor 6 (MYF6) is the most abundantly expressed myogenic factor in adult muscle. Moreover, MYF6 tends to be expressed more highly in muscle tissue of the lean selection line and is supposed to be one promising candidate gene for growth- and meat quality-related traits in adult pigs. Six months old female Duroc and Pietrain pure breed pigs were used in this study. Protein and mRNA levels of MYF6 in loin eye muscle were determined by Western blotting and quantitative Real-time reverse transcription PCR (qRT-PCR), respectively. The DNA methylation status of the MYF6 5'-regulatory region was determined by bisulfite sequencing PCR (BSP). The global Histone 4 acetylation at lysines 5 (H4K5) and 8 (H4K8) were examined by Western blotting. Pietrain pigs exhibited significant higher expression of MYF6 and hypermethylated E2F1 binding element within MYF6 5'-regulatory region as compared with Duroc pigs. Significant elevation in DNA methyltransferase 1 (DNMT1) expression was observed in Pietrain pigs which are in agreement with hypermethylation of MYF6. Histone acetylation level at neither H4K5 nor H4K8 is significant between two breed pigs. Nevertheless, mRNA and protein expression of E2F1 were significantly elevated in the Pietrain breed. It is thus conceivable that the upregulation of MYF6 transcription in postnatal Pietrain pigs is not associated with cis-activation by epigenetic modification of MYF6 5'-regulatory region, but may be attributed to trans-activation through enriched expression of E2F1.

  16. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    PubMed

    Eftestøl, Einar; Alver, Tine Norman; Gundersen, Kristian; Bruusgaard, Jo C

    2014-01-01

    Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX) is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  17. Oxidative proteome alterations during skeletal muscle ageing

    PubMed Central

    Lourenço dos Santos, Sofia; Baraibar, Martin A.; Lundberg, Staffan; Eeg-Olofsson, Orvar; Larsson, Lars; Friguet, Bertrand

    2015-01-01

    Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated) proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype. PMID:26073261

  18. Oxidative proteome alterations during skeletal muscle ageing.

    PubMed

    Lourenço dos Santos, Sofia; Baraibar, Martin A; Lundberg, Staffan; Eeg-Olofsson, Orvar; Larsson, Lars; Friguet, Bertrand

    2015-08-01

    Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated) proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the 'oxi-proteome' or 'carbonylome', have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.

  19. Introduction to respiratory control in skeletal muscle.

    PubMed

    Starnes, J W

    1994-01-01

    It is well known that a linear relationship exists for submaximum exercise intensity and oxygen consumption. Most of the increase in oxygen consumption is by skeletal muscle mitochondria for the purpose of producing enough ATP to match the energy needs of the muscle. The control of mitochondrial ATP production in muscle when workload is varied is a complex process and remains a very active area of research. Thus, the purpose of this symposium is to discuss the factors involved in the coupling between increases in work and increased oxygen consumption by muscle. The program will begin with a consideration of the challenges faced by skeletal muscle when attempting to meet its energy demands and the intracellular strategies that have evolved to optimize energy delivery. Next the major control theories for mitochondrial respiration will be discussed. Finally, experiments will be presented that are designed to determine which of these theories are best suited for specific skeletal muscle fiber types. It is hoped that the information presented will increase our awareness of different energy supply-demand strategies among fiber types and how supply-demand strategies are optimized by endurance training.

  20. Macrophage colony-stimulating factor-induced macrophage differentiation promotes regrowth in atrophied skeletal muscles and C2C12 myotubes.

    PubMed

    Dumont, Nicolas A; Frenette, Jérôme

    2013-02-01

    Skeletal muscle injury and regeneration are closely associated with an inflammatory reaction that is usually characterized by sequential recruitment of neutrophils and monocytes or macrophages. Selective macrophage depletion models have shown that macrophages are essential for complete regeneration of muscle fibers after freeze injuries, toxin injuries, ischemia-reperfusion, and hindlimb unloading and reloading. Although there is growing evidence that macrophages possess major myogenic capacities, it is not known whether the positive effects of macrophages can be optimized to stimulate muscle regrowth. We used in vivo and in vitro mouse models of atrophy to investigate the effects of stimulating macrophages with macrophage colony-stimulating factor (M-CSF) on muscle regrowth. When atrophied soleus muscles were injected intramuscularly with M-CSF, we observed a 1.6-fold increase in macrophage density and a faster recovery in muscle force (20%), combined with an increase in muscle fiber diameter (10%), after 7 days of reloading, compared with PBS-injected soleus muscles. Furthermore, coculture of atrophied myotubes with or without bone marrow-derived macrophages (BMDM) and/or M-CSF revealed that the combination of BMDMs and M-CSF was required to promote myotube growth (15%). More specifically, M-CSF promoted the anti-inflammatory macrophage phenotype, which in turn decreased protein degradation and MuRF-1 expression by 25% in growing myotubes. These results indicate that specific macrophage subsets can be stimulated to promote muscle cell regrowth after atrophy.

  1. Selenium regulates gene expression of selenoprotein W in chicken skeletal muscle system.

    PubMed

    Ruan, Hongfeng; Zhang, Ziwei; Wu, Qiong; Yao, Haidong; Li, Jinlong; Li, Shu; Xu, Shiwen

    2012-01-01

    Selenoprotein W (SelW) is abundantly expressed in skeletal muscles of mammals and necessary for the metabolism of skeletal muscles. However, its expression pattern in skeletal muscle system of birds is still uncovered. Herein, to investigate the distribution of SelW mRNA in chicken skeletal muscle system and its response to different selenium (Se) status, 1-day-old chickens were exposed to various concentrations of Se as sodium selenite in the feed for 35 days. In addition, myoblasts were treated with different concentrations of Se in the medium for 72 h. Then the levels of SelW mRNA in skeletal muscles (wing muscle, pectoral muscle, thigh muscle) and myoblasts were determined on days 1, 15, 25, and 35 and at 0, 24, 48, and 72 h, respectively. The results showed that SelW was detected in all these muscle components and it increased both along with the growth of organism and the differentiation process of myoblasts. The thigh muscle is more responsive to Se intake than the other two skeletal muscle tissues while the optimal Se supplementation for SelW mRNA expression in chicken myoblasts was 10(-7) M. In summary, Se plays important roles in the development of chicken skeletal muscles. To effect optimal SelW gene expression, Se must be provided in the diet and the media in adequate amounts and neither at excessive nor deficient levels.

  2. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    The two major goals for this project is to (1) examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter; and (2) examine skeletal muscle.

  3. Skeletal muscle fibre types in the dog.

    PubMed Central

    Latorre, R; Gil, F; Vázquez, J M; Moreno, F; Mascarello, F; Ramirez, G

    1993-01-01

    Using a variety of histochemical methods we have investigated the mATPase reaction of skeletal muscle fibres in the dog. Types I, IIA, IIDog (peculiar to the dog) and IIC fibres were identified. The results reveal that the interpretation of the fibre type composition depends on the methods used. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8226288

  4. Metabolism and Skeletal Muscle Homeostasis in Lung Disease.

    PubMed

    Ceco, Ermelinda; Weinberg, Samuel E; Chandel, Navdeep S; Sznajder, Jacob I

    2017-07-01

    There is increased awareness that patients with lung diseases develop muscle dysfunction. Muscle dysfunction is a major contributor to a decreased quality of life in patients with chronic pulmonary diseases. Furthermore, muscle dysfunction exacerbates lung disease outcome, as a decrease in muscle mass and function are associated with increased morbidity, often long after critical illness or lung disease has been resolved. As we are learning more about the role of metabolism in health and disease, we are appreciating more the direct role of metabolism in skeletal muscle homeostasis. Altered metabolism is associated with numerous skeletal muscle pathologies and, conversely, skeletal muscle diseases are associated with significant changes in metabolic pathways. In this review, we highlight the role of metabolism in the regulation of skeletal muscle homeostasis. Understanding the metabolic pathways that underlie skeletal muscle wasting is of significant clinical interest for critically ill patients as well as patients with chronic lung disease, in which proper skeletal muscle function is essential to disease outcome.

  5. Study of photon migration in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Ranasinghesagara, J.; Yao, G.

    2007-09-01

    A clear understanding of how light propagation in muscle is important for developing optical methods for muscle characterization. We investigated photon migration in muscle by imaging the optical reflectance from fresh prerigor skeletal muscles. We found the acquired reflectance patterns can not be described using existing theories. In order to quantify the equi-intensity contours of acquired reflectance images, we developed a numerical fitting function. Using this model, we studied the changes of reflectance profile during stretching and rigor process. The observed unique anisotropic features diminished after rigor completion. These results suggested that muscle sarcomere structures played important roles in modulating light propagation in whole muscle. To explain the observed patterns, we incorporated the sarcomere diffraction in a Monte Carlo model and we showed that the resulting reflectance profiles quantitatively resembled the experimental observation.

  6. Expression of glucocorticoid receptors in the regenerating human skeletal muscle.

    PubMed

    Filipović, D; Pirkmajer, S; Mis, K; Mars, T; Grubic, Z

    2011-01-01

    Many stress conditions are accompanied by skeletal muscle dysfunction and regeneration, which is essentially a recapitulation of the embryonic development. However, regeneration usually occurs under conditions of hypothalamus-pituitary-adrenal gland axis activation and therefore increased glucocorticoid (GC) levels. Glucocorticoid receptor (GR), the main determinant of cellular responsiveness to GCs, exists in two isoforms (GRalpha and GRbeta) in humans. While the role of GRalpha is well characterized, GRbeta remains an elusive player in GC signalling. To elucidate basic characteristics of GC signalling in the regenerating human skeletal muscle we assessed GRalpha and GRbeta expression pattern in cultured human myoblasts and myotubes and their response to 24-hour dexamethasone (DEX) treatment. There was no difference in GRalpha mRNA and protein expression or DEX-mediated GRalpha down-regulation in myoblasts and myotubes. GRbeta mRNA level was very low in myoblasts and remained unaffected by differentiation and/or DEX. GRbeta protein could not be detected. These results indicate that response to GCs is established very early during human skeletal muscle regeneration and that it remains practically unchanged before innervation is established. Very low GRbeta mRNA expression and inability to detect GRbeta protein suggests that GRbeta is not a major player in the early stages of human skeletal muscle regeneration.

  7. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  8. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    PubMed

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  9. Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle.

    PubMed

    Pisani, Didier F; Clement, Noémie; Loubat, Agnès; Plaisant, Magali; Sacconi, Sabrina; Kurzenne, Jean-Yves; Desnuelle, Claude; Dani, Christian; Dechesne, Claude A

    2010-12-01

    Skeletal muscle cells constitute a heterogeneous population that maintains muscle integrity through a high myogenic regenerative capacity. More unexpectedly, this population is also endowed with an adipogenic potential, even in humans, and intramuscular adipocytes have been found to be present in several disorders. We tested the distribution of myogenic and adipogenic commitments in human muscle-derived cells to decipher the cellular basis of the myoadipogenic balance. Clonal analysis showed that adipogenic progenitors can be separated from myogenic progenitors and, interestingly, from myoadipogenic bipotent progenitors. These progenitors were isolated in the CD34(+) population on the basis of the expression of CD56 and CD15 cell surface markers. In vivo, these different cell types have been found in the interstitial compartment of human muscle. In vitro, we show that the proliferation of bipotent myoadipogenic CD56(+)CD15(+) progenitors gives rise to myogenic CD56(+)CD15(-) progenitors and adipogenic CD56(-)CD15(+) progenitors. A cellular hierarchy of muscle and fat progenitors thus occurs within human muscle. These results provide cellular bases for adipogenic differentiation in human skeletal muscle, which may explain the fat development encountered in different muscle pathological situations.

  10. Effects of ACE inhibitors on skeletal muscle.

    PubMed

    Onder, Graziano; Vedova, Cecilia Della; Pahor, Marco

    2006-01-01

    Angiotensin-converting enzyme (ACE) inhibitors reduce morbidity, mortality, hospital admissions, and decline in physical function and exercise capacity in congestive heart failure (CHF) patients. These therapeutic effects are attributed primarily to beneficial cardiovascular actions of these drugs. However, it has been suggested that ACE inhibitor-induced positive effects may also be mediated by direct action on the skeletal muscle. In particular, two recently published observational studies documented that among hypertensive subjects free of CHF, treatment with ACE inhibitors was associated with better performance and muscular outcomes and genetic studies also support the hypothesis that the ACE system may be involved in physical performance and skeletal muscle function. Effects on the skeletal muscle are probably mediated by mechanical, metabolic, anti-inflammatory, nutritional, neurological and angiogenetic actions of these drugs. These studies may have major public health implications for older adults, as consequence of the fact that, in this population, gradual loss of muscle mass and muscle strength can play a key role in the onset and progression of disability. Therefore, if findings of observational studies will be later confirmed in randomized controlled trials, ACE inhibitors could represent an effective intervention to prevent physical decline in the elderly, leading to greater autonomy in this growing population.

  11. Insulin Increases Ceramide Synthesis in Skeletal Muscle

    PubMed Central

    Hansen, M. E.; Tippetts, T. S.; Anderson, M. C.; Holub, Z. E.; Moulton, E. R.; Swensen, A. C.; Prince, J. T.; Bikman, B. T.

    2014-01-01

    Aims. The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. Methods. Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG) were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. Results. In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. Conclusions. This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects. PMID:24949486

  12. Photothermal imaging of skeletal muscle mitochondria

    PubMed Central

    Tomimatsu, Toru; Miyazaki, Jun; Kano, Yutaka; Kobayashi, Takayoshi

    2017-01-01

    The morphology and topology of mitochondria provide useful information about the physiological function of skeletal muscle. Previous studies of skeletal muscle mitochondria are based on observation with transmission, scanning electron microscopy or fluorescence microscopy. In contrast, photothermal (PT) microscopy has advantages over the above commonly used microscopic techniques because of no requirement for complex sample preparation by fixation or fluorescent-dye staining. Here, we employed the PT technique using a simple diode laser to visualize skeletal muscle mitochondria in unstained and stained tissues. The fine mitochondrial network structures in muscle fibers could be imaged with the PT imaging system, even in unstained tissues. PT imaging of tissues stained with toluidine blue revealed the structures of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria and the swelling behavior of mitochondria in damaged muscle fibers with sufficient image quality. PT image analyses based on fast Fourier transform (FFT) and Grey-level co-occurrence matrix (GLCM) were performed to derive the characteristic size of mitochondria and to discriminate the image patterns of normal and damaged fibers. PMID:28663919

  13. Oxidative system in aged skeletal muscle.

    PubMed

    Buonocore, Daniela; Rucci, Sara; Vandoni, Matteo; Negro, Massimo; Marzatico, Fulvio

    2011-07-01

    Aging is an inevitable biological process that is characterized by a general decline in the physiological and biochemical functions of the major systems. In the case of the neuromuscular system, reductions in strength and mobility cause a deterioration in motor performance, impaired mobility and disability. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS). As the level of oxidative stress in skeletal muscle increases with age, the age-process is characterized by an imbalance between an increase in ROS production in the organism, and antioxidant defences as a whole. We have reviewed the literature on oxidative stress in aging human skeletal muscles, and to assesss the impact of differences in physiological factors (sex, fiber composition, muscle type and function).

  14. Skeletal muscle adaptations and muscle genomics of performance horses.

    PubMed

    Rivero, José-Luis L; Hill, Emmeline W

    2016-03-01

    Skeletal muscles in horses are characterised by specific adaptations, which are the result of the natural evolution of the horse as a grazing animal, centuries of selective breeding and the adaptability of this tissue in response to training. These adaptations include an increased muscle mass relative to body weight, a great locomotor efficiency based upon an admirable muscle-tendon architectural design and an adaptable fibre-type composition with intrinsic shortening velocities greater than would be predicted from an animal of comparable body size. Furthermore, equine skeletal muscles have a high mitochondrial volume that permits a higher whole animal aerobic capacity, as well as large intramuscular stores of energy substrates (glycogen in particular). Finally, high buffer and lactate transport capacities preserve muscles against fatigue during anaerobic exercise. Many of these adaptations can improve with training. The publication of the equine genome sequence in 2009 has provided a major advance towards an improved understanding of equine muscle physiology. Equine muscle genomics studies have revealed a number of genes associated with elite physical performance and have also identified changes in structural and metabolic genes following exercise and training. Genes involved in muscle growth, muscle contraction and specific metabolic pathways have been found to be functionally relevant for the early performance evaluation of elite athletic horses. The candidate genes discussed in this review are important for a healthy individual to improve performance. However, muscle performance limiting conditions are widespread in horses and many of these conditions are also genetically influenced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Pannexin 1 channels in skeletal muscles.

    PubMed

    Cea, Luis A; Riquelme, Manuel A; Vargas, Anibal A; Urrutia, Carolina; Sáez, Juan C

    2014-01-01

    Normal myotubes and adult innervated skeletal myofibers express the glycoprotein pannexin1 (Panx1). Six of them form a "gap junction hemichannel-like" structure that connects the cytoplasm with the extracellular space; here they will be called Panx1 channels. These are poorly selective channels permeable to ions, small metabolic substrate, and signaling molecules. So far little is known about the role of Panx1 channels in muscles but skeletal muscles of Panx1(-/-) mice do not show an evident phenotype. Innervated adult fast and slow skeletal myofibers show Panx1 reactivity in close proximity to dihydropyridine receptors in the sarcolemma of T-tubules. These Panx1 channels are activated by electrical stimulation and extracellular ATP. Panx1 channels play a relevant role in potentiation of muscle contraction because they allow release of ATP and uptake of glucose, two molecules required for this response. In support of this notion, the absence of Panx1 abrogates the potentiation of muscle contraction elicited by repetitive electrical stimulation, which is reversed by exogenously applied ATP. Phosphorylation of Panx1 Thr and Ser residues might be involved in Panx1 channel activation since it is enhanced during potentiation of muscle contraction. Under denervation, Panx1 levels are upregulated and this partially explains the reduction in electrochemical gradient, however its absence does not prevent denervation-induced atrophy but prevents the higher oxidative state. Panx1 also forms functional channels at the cell surface of myotubes and their functional state has been associated with intracellular Ca(2+) signals and regulation of myotube plasticity evoked by electrical stimulation. We proposed that Panx1 channels participate as ATP channels and help to keep a normal oxidative state in skeletal muscles.

  16. Engineered skeletal muscle tissue networks with controllable architecture

    PubMed Central

    Bian, Weining; Bursac, Nenad

    2009-01-01

    The engineering of functional skeletal muscle tissue substitutes holds promise for the treatment of various muscular diseases and injuries. However, no tissue fabrication technology currently exists for the generation of a relatively large and thick bioartificial muscle made of densely packed, uniformly aligned, and differentiated myofibers. In this study, we describe a versatile cell/hydrogel micromolding approach where polydimethylsiloxane (PDMS) molds containing an array of elongated posts were used to fabricate relatively large neonatal rat skeletal muscle tissue networks with reproducible and controllable architecture. By combining cell-mediated fibrin gel compaction and precise microfabrication of mold dimensions including the length and height of the PDMS posts, we were able to simultaneously support high cell viability, guide cell alignment along the microfabricated tissue pores, and reproducibly control the overall tissue porosity, size, and thickness. The interconnected muscle bundles within the porous tissue networks were composed of densely packed, aligned, and highly differentiated myofibers. The formed myofibers expressed myogenin, developed abundant cross-striations, and generated spontaneous tissue contractions at the macroscopic spatial scale. The proliferation of non-muscle cells was significantly reduced compared to monolayer cultures. The more complex muscle tissue architectures were fabricated by controlling the spatial distribution and direction of the PDMS posts. PMID:19070360

  17. Rapidly aggravated skeletal muscle metastases from an intrahepatic cholangiocarcinoma

    PubMed Central

    Lee, Jiyoung; Lee, Sung Wook; Han, Sang Young; Baek, Yang Hyun; Kim, Su Young; Rhyou, Hyo In

    2015-01-01

    We present a rare case of intrahepatic cholangiocarcinoma (ICC) with multiple skeletal muscle metastases. The patient was a 55-year-old Asian woman presenting with abdominal pain; abdominal and pelvic computed tomography and magnetic resonance cholangiopancreatography revealed an unresectable ICC with hepatic metastasis and metastastatic lymphadenopathy in the porto-caval area. After 3 mo of treatment with palliative radiotherapy and chemotherapy, magnetic resonance imaging of the thoracolumbar spine detected right psoas muscle and paraspinous muscle metastases. We performed an ultrasound-guided percutaneous fine-needle biopsy that confirmed a similar pattern of poorly differentiated adenocarcinoma. The patient treated with palliative chemotherapy and achieved 10 mo of survival. Here we report the first case quickly spread to multiple sites of muscle even though the three-month treatment, compare to the other cases reported muscle metastases at diagnosis. PMID:25684968

  18. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  19. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    PubMed Central

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  20. Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology.

    PubMed

    Donati, Chiara; Cencetti, Francesca; Bruni, Paola

    2013-11-25

    Sphingosine 1-phosphate (S1P) is a bioactive lipid involved in the regulation of biological processes such as proliferation, differentiation, motility, and survival. Here we review the role of S1P in the biology and homeostasis of skeletal muscle. S1P derives from the catabolism of sphingomyelin and is produced by sphingosine phosphorylation catalyzed by sphingosine kinase (SK). S1P can act either intracellularly or extracellularly through specific ligation to its five G protein-coupled receptors (GPCR) named S1P receptors (S1PR). Many experimental findings obtained in the last 20 years demonstrate that S1P and its metabolism play a multifaceted role in the regulation of skeletal muscle regeneration. Indeed, this lipid is known to activate muscle-resident satellite cells, regulating their proliferation and differentiation, as well as mesenchymal progenitors such as mesoangioblasts that originate outside skeletal muscle, both involved in tissue repair following an injury or disease. The molecular mechanism of action of S1P in skeletal muscle cell precursors is highly complex, especially because S1P axis is under the control of a number of growth factors and cytokines, canonical regulators of skeletal muscle biology. Moreover, this lipid is crucially involved in the regulation of skeletal muscle contractile properties, responsiveness to insulin, fatigue resistance and tropism. Overall, on the basis of these findings S1P signaling appears to be an appealing pharmacological target for improving skeletal muscle repair. Nevertheless, further understanding is required on the regulation of S1P downstream signaling pathways and the expression of S1PR. This article will resume our current knowledge on S1P signaling in skeletal muscle, hopefully stimulating further investigation in the field, aimed at individuating novel molecular targets for ameliorating skeletal muscle regeneration and reducing fibrosis of the tissue after a trauma or due to skeletal muscle diseases.

  1. Factors related to skeletal muscle mass in the frail elderly.

    PubMed

    Sagawa, Keiichiro; Kikutani, Takeshi; Tamura, Fumiyo; Yoshida, Mitsuyoshi

    2017-01-01

    It is important for the elderly to maintain their skeletal muscle mass, which in turn helps to maintain physical functions. This study aimed to clarify factors related to skeletal muscle mass maintenance. Home-bound elderly (94 men and 216 women), at least 75 years of age, attending a day-care center in Tokyo, were enrolled in this study. Dentists specializing in dysphagia rehabilitation evaluated skeletal muscle mass, occlusal status and swallowing function. Physical function, cognitive function and nutritional status were also evaluated by interviewing caregivers. Correlations of skeletal muscle mass with various factors were determined in each gender group. Multiple regression analysis revealed that skeletal muscle mass was significantly related to nutritional status in both men and women. In men, there was a significant difference in skeletal muscle mass between those with and without occlusion of the natural teeth. Our results suggest that dental treatments and dentures would be useful for maintaining skeletal muscle mass, especially in men.

  2. Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1

    PubMed Central

    Lyfenko, Alla D; Dirksen, Robert T

    2008-01-01

    In non-excitable cells, agonist-induced depletion of intracellular Ca2+ stores triggers Ca2+ influx via a process termed store-operated Ca2+ entry (SOCE). In T-lymphocytes, stromal interaction molecule 1 (STIM1) acts as the intra-store Ca2+ sensor and Orai1 functions as the Ca2+-permeable SOCE channel activated by STIM1 following store depletion. Two functionally distinct Ca2+ entry pathways exist in skeletal muscle; one activated by store depletion (SOCE) and a second by sustained/repetitive depolarization that does not require store depletion (excitation-coupled Ca2+ entry, ECCE). However, the role of STIM1 and Orai1 in coordinating SOCE and ECCE activity in skeletal muscle and whether these two Ca2+ entry pathways represent distinct molecular entities or two different activation mechanisms of the same channel complex is unknown. Here we address these issues using siRNA-mediated STIM1 knockdown, dominant-negative Orai1, and permeation-defective Orai1 to determine the role of STIM1 and Orai1 in store-operated and excitation-coupled Ca2+ entry in skeletal myotubes. SOCE and ECCE activity were quantified from both intracellular Ca2+ measurements and Mn2+ quench assays. We found that STIM1 siRNA reduced STIM1 protein by more than 90% and abolished SOCE activity, while expression of siRNA-resistant hSTIM1 fully restored SOCE. SOCE was also abolished by dominant-negative Orai1 (E106Q) and markedly reduced by expression of a permeation-defective Orai1 (E190Q). In contrast, ECCE was unaffected by STIM1 knockdown, E106Q expression or E190Q expression. These results are the first to demonstrate that SOCE in skeletal muscle requires both STIM1 and Orai1 and that SOCE and ECCE represent two distinct molecular entities. PMID:18772199

  3. Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1.

    PubMed

    Lyfenko, Alla D; Dirksen, Robert T

    2008-10-15

    In non-excitable cells, agonist-induced depletion of intracellular Ca(2+) stores triggers Ca(2+) influx via a process termed store-operated Ca(2+) entry (SOCE). In T-lymphocytes, stromal interaction molecule 1 (STIM1) acts as the intra-store Ca(2+) sensor and Orai1 functions as the Ca(2+)-permeable SOCE channel activated by STIM1 following store depletion. Two functionally distinct Ca(2+) entry pathways exist in skeletal muscle; one activated by store depletion (SOCE) and a second by sustained/repetitive depolarization that does not require store depletion (excitation-coupled Ca(2+) entry, ECCE). However, the role of STIM1 and Orai1 in coordinating SOCE and ECCE activity in skeletal muscle and whether these two Ca(2+) entry pathways represent distinct molecular entities or two different activation mechanisms of the same channel complex is unknown. Here we address these issues using siRNA-mediated STIM1 knockdown, dominant-negative Orai1, and permeation-defective Orai1 to determine the role of STIM1 and Orai1 in store-operated and excitation-coupled Ca(2+) entry in skeletal myotubes. SOCE and ECCE activity were quantified from both intracellular Ca(2+) measurements and Mn(2+) quench assays. We found that STIM1 siRNA reduced STIM1 protein by more than 90% and abolished SOCE activity, while expression of siRNA-resistant hSTIM1 fully restored SOCE. SOCE was also abolished by dominant-negative Orai1 (E106Q) and markedly reduced by expression of a permeation-defective Orai1 (E190Q). In contrast, ECCE was unaffected by STIM1 knockdown, E106Q expression or E190Q expression. These results are the first to demonstrate that SOCE in skeletal muscle requires both STIM1 and Orai1 and that SOCE and ECCE represent two distinct molecular entities.

  4. Nestin contributes to skeletal muscle homeostasis and regeneration.

    PubMed

    Lindqvist, Julia; Torvaldson, Elin; Gullmets, Josef; Karvonen, Henok; Nagy, Andras; Taimen, Pekka; Eriksson, John E

    2017-09-01

    Nestin, a member of the cytoskeletal family of intermediate filaments, regulates the onset of myogenic differentiation through bidirectional signaling with the kinase Cdk5. Here, we show that these effects are also reflected at the organism level, as there is a loss of skeletal muscle mass in nestin(-/-) (NesKO) mice, reflected as reduced lean (muscle) mass in the mice. Further examination of muscles in male mice revealed that these effects stemmed from nestin-deficient muscles being more prone to spontaneous regeneration. When the regeneration capacity of the compromised NesKO muscle was tested by muscle injury experiments, a significant healing delay was observed. NesKO satellite cells showed delayed proliferation kinetics in conjunction with an elevation in p35 (encoded by Cdk5r1) levels and Cdk5 activity. These results reveal that nestin deficiency generates a spontaneous regenerative phenotype in skeletal muscle that relates to a disturbed proliferation cycle that is associated with uncontrolled Cdk5 activity. © 2017. Published by The Company of Biologists Ltd.

  5. Myostatin: a modulator of skeletal-muscle stem cells.

    PubMed

    Walsh, F S; Celeste, A J

    2005-12-01

    Myostatin, or GDF-8 (growth and differentiation factor-8), was first identified through sequence identity with members of the BMP (bone morphogenetic protein)/TGF-beta (transforming growth factor-beta) superfamily. The skeletal-muscle-specific expression pattern of myostatin suggested a role in muscle development. Mice with a targeted deletion of the myostatin gene exhibit a hypermuscular phenotype. In addition, inactivating mutations in the myostatin gene have been identified in 'double muscled' cattle breeds, such as the Belgian Blue and Piedmontese, as well as in a hypermuscular child. These findings define myostatin as a negative regulator of skeletal-muscle development. Myostatin binds with high affinity to the receptor serine threonine kinase ActRIIB (activin type IIB receptor), which initiates signalling through a smad2/3-dependent pathway. In an effort to validate myostatin as a therapeutic target in a post-embryonic setting, a neutralizing antibody was developed by screening for inhibition of myostatin binding to ActRIIB. Administration of this antimyostatin antibody to adult mice resulted in a significant increase in both muscle mass and functional strength. Importantly, similar results were obtained in a murine model of muscular dystrophy, the mdx mouse. Unlike the myostatin-deficient animals, which exhibit both muscle hypertrophy and hyperplasia, the antibody-treated mice demonstrate increased musculature through a hypertrophic mechanism. These results validate myostatin inhibition as a therapeutic approach to muscle wasting diseases such as muscular dystrophy, sarcopenic frailty of the elderly and amylotrophic lateral sclerosis.

  6. Muscle disuse atrophy is not accompanied by changes in skeletal muscle satellite cell content.

    PubMed

    Snijders, Tim; Wall, Benjamin T; Dirks, Marlou L; Senden, Joan M G; Hartgens, Fred; Dolmans, John; Losen, Mario; Verdijk, Lex B; van Loon, Luc J C

    2014-04-01

    Muscle disuse leads to a considerable loss in skeletal muscle mass and strength. However, the cellular mechanisms underlying disuse-induced muscle fibre atrophy remain to be elucidated. Therefore we assessed the effect of muscle disuse on the CSA (cross-sectional area), muscle fibre size, satellite cell content and associated myocellular signalling pathways of the quadriceps muscle. A total of 12 healthy young (24±1 years of age) men were subjected to 2 weeks of one-legged knee immobilization via a full-leg cast. Before and immediately after the immobilization period and after 6 weeks of natural rehabilitation, muscle strength [1RM (one-repetition maximum)], muscle CSA [single slice CT (computed tomography) scan] and muscle fibre type characteristics (muscle biopsies) were assessed. Protein and/or mRNA expression of key genes [i.e. MYOD (myogenic differentiation), MYOG (myogenin) and MSTN (myostatin)] in the satellite cell regulatory pathways were determined using Western blotting and RT-PCR (real-time PCR) analyses respectively. The present study found that quadriceps CSA declined following immobilization by 8±2% (P<0.05). In agreement, both type I and type II muscle fibre size decreased 7±3% and 13±4% respectively (P<0.05). No changes were observed in satellite cell content following immobilization in either type I or type II muscle fibres. Muscle MYOG mRNA expression doubled (P<0.05), whereas MSTN protein expression decreased 30±9% (P<0.05) following immobilization. Muscle mass and strength returned to the baseline values within 6 weeks of recovery without any specific rehabilitative programme. In conclusion, 2 weeks of muscle disuse leads to considerable loss in skeletal muscle mass and strength. The loss in muscle mass was attributed to both type I and type II muscle fibre atrophy, and was not accompanied by a decline in satellite cell content.

  7. Coaxing stem cells for skeletal muscle repair.

    PubMed

    McCullagh, Karl J A; Perlingeiro, Rita C R

    2015-04-01

    Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Wave biomechanics of the skeletal muscle

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Sarvazyan, A. P.

    2006-12-01

    Results of acoustic measurements in skeletal muscle are generalized. It is shown that assessment of the pathologies and functional condition of the muscular system is possible with the use of shear waves. The velocity of these waves in muscles is much smaller than the velocity of sound; therefore, a higher symmetry type is formed for them. In the presence of a preferential direction (along muscle fibers), it is characterized by only two rather than five (as in usual media with the same anisotropy) moduli of elasticity. A covariant form of the corresponding wave equation is presented. It is shown that dissipation properties of skeletal muscles can be controlled by contracting them isometrically. Pulsed loads (shocks) and vibrations are damped differently, depending on their frequency spectrum. Characteristic frequencies on the order of tens and hundreds of hertz are attenuated due to actin-myosin bridges association/dissociation dynamics in the contracted muscle. At higher (kilohertz) frequencies, when the muscle is tensed, viscosity of the tissue increases by a factor of several tens because of the increase in friction experienced by fibrillar structures as they move relative to the surrounding liquid; the tension of the fibers changes the hydrodynamic conditions of the flow around them. Finally, at higher frequencies, the attenuation is associated with the rheological properties of biological molecules, in particular, with their conformational dynamics in the wave field. Models that describe the controlled shock dissipation mechanisms are proposed. Corresponding solutions are found, including those that allow for nonlinear effects.

  9. Skeletal muscle proteomics in livestock production.

    PubMed

    Picard, Brigitte; Berri, Cécile; Lefaucheur, Louis; Molette, Caroline; Sayd, Thierry; Terlouw, Claudia

    2010-05-01

    Proteomics allows studying large numbers of proteins, including their post-translational modifications. Proteomics has been, and still are, used in numerous studies on skeletal muscle. In this article, we focus on its use in the study of livestock muscle development and meat quality. Changes in protein profiles during myogenesis are described in cattle, pigs and fowl using comparative analyses across different ontogenetic stages. This approach allows a better understanding of the key stages of myogenesis and helps identifying processes that are similar or divergent between species. Genetic variability of muscle properties analysed by the study of hypertrophied cattle and sheep are discussed. Biological markers of meat quality, particularly tenderness in cattle, pigs and fowl are presented, including protein modifications during meat ageing in cattle, protein markers of PSE meat in turkeys and of post-mortem muscle metabolism in pigs. Finally, we discuss the interest of proteomics as a tool to understand better biochemical mechanisms underlying the effects of stress during the pre-slaughter period on meat quality traits. In conclusion, the study of proteomics in skeletal muscles allows generating large amounts of scientific knowledge that helps to improve our understanding of myogenesis and muscle growth and to control better meat quality.

  10. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice

    SciTech Connect

    Bhagavati, Satyakam . E-mail: satyakamb@hotmail.com; Xu Weimin

    2005-07-29

    Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells.

  11. Conchotome and needle percutaneous biopsy of skeletal muscle.

    PubMed Central

    Dietrichson, P; Coakley, J; Smith, P E; Griffiths, R D; Helliwell, T R; Edwards, R H

    1987-01-01

    Percutaneous muscle biopsy is an important and acceptable technique in the study of conditions involving human skeletal muscle. A review of 436 conchotome and needle muscle biopsies obtained over 18 months in this centre is presented. Images PMID:3694206

  12. Characterization of muscle ankyrin repeat proteins in human skeletal muscle.

    PubMed

    Wette, Stefan G; Smith, Heather K; Lamb, Graham D; Murphy, Robyn M

    2017-09-01

    Muscle ankyrin repeat proteins (MARPs) are a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. In cardiac muscle, cardiac ankyrin repeat protein (CARP) and diabetes-related ankyrin repeat protein (DARP) reportedly redistribute from binding sites on titin to the nucleus following a prolonged stretch. However, it is unclear whether ankyrin repeat domain protein 2 (Ankrd 2) shows comparable stretch-induced redistribution to the nucleus. We measured the following in rested human skeletal muscle: 1) the absolute amount of MARPs and 2) the distribution of Ankrd 2 and DARP in both single fibers and whole muscle preparations. In absolute amounts, Ankrd 2 is the most abundant MARP in human skeletal muscle, there being ~3.1 µmol/kg, much greater than DARP and CARP (~0.11 and ~0.02 µmol/kg, respectively). All DARP was found to be tightly bound at cytoskeletal (or possibly nuclear) sites. In contrast, ~70% of the total Ankrd 2 is freely diffusible in the cytosol [including virtually all of the phosphorylated (p)Ankrd 2-Ser99 form], ~15% is bound to non-nuclear membranes, and ~15% is bound at cytoskeletal sites, likely at the N2A region of titin. These data are not consistent with the proposal that Ankrd 2, per se, or pAnkrd 2-Ser99 mediates stretch-induced signaling in skeletal muscle, dissociating from titin and translocating to the nucleus, because the majority of these forms of Ankrd 2 are already free in the cytosol. It will be necessary to show that the titin-associated Ankrd 2 is modified by stretch in some as-yet-unidentified way, distinct from the diffusible pool, if it is to act as a stretch-sensitive signaling molecule. Copyright © 2017 the American Physiological Society.

  13. Systemic Regulators of Skeletal Muscle Regeneration in Obesity

    PubMed Central

    Sinha, Indranil; Sakthivel, Dharaniya; Varon, David E.

    2017-01-01

    Skeletal muscle maintenance is a dynamic process and undergoes constant repair and regeneration. However, skeletal muscle regenerative capacity declines in obesity. In this review, we focus on obesity-associated changes in inflammation, metabolism, and impaired insulin signaling, which are pathologically dysregulated and ultimately result in a loss of muscle mass and function. In addition, we examine the relationships between skeletal muscle, liver, and visceral adipose tissue in an obese state. PMID:28261159

  14. Skeletal muscle deiodinase type 2 regulation during illness in mice.

    PubMed

    Kwakkel, J; van Beeren, H C; Ackermans, M T; Platvoet-Ter Schiphorst, M C; Fliers, E; Wiersinga, W M; Boelen, A

    2009-11-01

    We have previously shown that skeletal muscle deiodinase type 2 (D2) mRNA (listed as Dio2 in MGI Database) is upregulated in an animal model of acute illness. However, human studies on the expression of muscle D2 during illness report conflicting data. Therefore, we evaluated the expression of skeletal muscle D2 and D2-regulating factors in two mouse models of illness that differ in timing and severity of illness: 1) turpentine-induced inflammation, and 2) Streptococcus pneumoniae infection. During turpentine-induced inflammation, D2 mRNA and activity increased compared to pair-fed controls, most prominently at day 1 and 2, whereas after S. pneumoniae infection D2 mRNA decreased. We evaluated the association of D2 expression with serum thyroid hormones, (de-)ubiquitinating enzymes ubiquitin-specific peptidase 33 and WD repeat and SOCS box-containing 1 (Wsb1), cytokine expression and activation of inflammatory pathways and cAMP pathway. During chronic inflammation the increased muscle D2 expression is associated with the activation of the cAMP pathway. The normalization of D2 5 days after turpentine injection coincides with increased Wsb1 and tumor necrosis factor alpha expression. Muscle interleukin-1beta (Il1b) expression correlated with decreased D2 mRNA expression after S. pneumoniae infection. In conclusion, muscle D2 expression is differentially regulated during illness, probably related to differences in the inflammatory response and type of pathology. D2 mRNA and activity increases in skeletal muscle during the acute phase of chronic inflammation compared to pair-fed controls probably due to activation of the cAMP pathway. In contrast, muscle D2 mRNA decreases 48 h after a severe bacterial infection, which is associated with local Il1b mRNA expression and might also be due to diminished food-intake.

  15. Stretching Skeletal Muscle: Chronic Muscle Lengthening through Sarcomerogenesis

    PubMed Central

    Zöllner, Alexander M.; Abilez, Oscar J.; Böl, Markus; Kuhl, Ellen

    2012-01-01

    Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09m to 3.51m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance treatment for patients with ill proportioned limbs, tendon

  16. Exercise and the Skeletal Muscle Epigenome.

    PubMed

    McGee, Sean L; Walder, Ken R

    2017-03-20

    An acute bout of exercise is sufficient to induce changes in skeletal muscle gene expression that are ultimately responsible for the adaptive responses to exercise. Although much research has described the intracellular signaling responses to exercise that are linked to transcriptional regulation, the epigenetic mechanisms involved are only just emerging. This review will provide an overview of epigenetic mechanisms and what is known in the context of exercise. Additionally, we will explore potential interactions between metabolism during exercise and epigenetic regulation, which serves as a framework for potential areas for future research. Finally, we will consider emerging opportunities to pharmacologically manipulate epigenetic regulators and mechanisms to induce aspects of the skeletal muscle exercise adaptive response for therapeutic intervention in various disease states.

  17. Autophagy and Skeletal Muscles in Sepsis

    PubMed Central

    Mofarrahi, Mahroo; Sigala, Ioanna; Guo, Yeting; Godin, Richard; Davis, Elaine C.; Petrof, Basil; Sandri, Marco

    2012-01-01

    Background Mitochondrial injury develops in skeletal muscles during the course of severe sepsis. Autophagy is a protein and organelle recycling pathway which functions to degrade or recycle unnecessary, redundant, or inefficient cellular components. No information is available regarding the degree of sepsis-induced mitochondrial injury and autophagy in the ventilatory and locomotor muscles. This study tests the hypotheses that the locomotor muscles are more prone to sepsis-induced mitochondrial injury, depressed biogenesis and autophagy induction compared with the ventilatory muscles. Methodology/Principal Findings Adult male C57/Bl6 mice were injected with i.p. phosphate buffered saline (PBS) or E. coli lipopolysaccharide (LPS, 20 mg/kg) and sacrificed 24 h later. The tibialis anterior (TA), soleus (SOLD) and diaphragm (DIA) muscles were quickly excised and examined for mitochondrial morphological injury, Ca++ retention capacity and biogenesis. Autophagy was detected with electron microscopy, lipidation of Lc3b proteins and by measuring gene expression of several autophagy-related genes. Electron microscopy revealed ultrastructural injuries in the mitochondria of each muscle, however, injuries were more severe in the TA and SOL muscles than they were in the DIA. Gene expressions of nuclear and mitochondrial DNA transcription factors and co-activators (indicators of biogenesis) were significantly depressed in all treated muscles, although to a greater extent in the TA and SOL muscles. Significant autophagosome formation, Lc3b protein lipidation and upregulation of autophagy-related proteins were detected to a greater extent in the TA and SOL muscles and less so in the DIA. Lipidation of Lc3b and the degree of induction of autophagy-related proteins were significantly blunted in mice expressing a muscle-specific IκBα superrepresor. Conclusion/Significance We conclude that locomotor muscles are more prone to sepsis-induced mitochondrial injury, decreased biogenesis

  18. Suturing of lacerations of skeletal muscle.

    PubMed

    Kragh, J F; Svoboda, S J; Wenke, J C; Ward, J A; Walters, T J

    2005-09-01

    Our aim was to compare the biomechanical properties of suturing methods to determine a better method for the repair of lacerated skeletal muscle. We tested Kessler stitches and the combination of Mason-Allen and perimeter stitches. Individual stitches were placed in the muscle belly of quadriceps femoris from a pig cadaver and were tensioned mechanically. The maximum loads and strains were measured and failure modes recorded. The mean load and strain for the Kessler stitches were significantly less than those for combination stitches. All five Kessler stitches tore out longitudinally from the muscle. All five combination stitches did not fail but successfully elongated. Our study has shown that the better method of repair for suturing muscle is the use of combination stitches.

  19. Skeletal muscle regeneration and impact of aging and nutrition.

    PubMed

    Domingues-Faria, Carla; Vasson, Marie-Paule; Goncalves-Mendes, Nicolas; Boirie, Yves; Walrand, Stephane

    2016-03-01

    After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential

    PubMed Central

    Pietrangelo, Tiziana; Di Filippo, Ester S.; Mancinelli, Rosa; Doria, Christian; Rotini, Alessio; Fanò-Illic, Giorgio; Fulle, Stefania

    2015-01-01

    Purpose: The aim of this study was to determine whether 12 days of low-to-moderate exercise training at low altitude (598 m a.s.l.) improves skeletal muscle regeneration in sedentary adult women. Methods: Satellite cells were obtained from the vastus lateralis skeletal muscle of seven women before and after this exercise training at low altitude. They were investigated for differentiation aspects, superoxide anion production, antioxidant enzymes, mitochondrial potential variation after a depolarizing insult, intracellular Ca2+ concentrations, and micro (mi)RNA expression (miR-1, miR-133, miR-206). Results: In these myogenic populations of adult stem cells, those obtained after exercise training, showed increased Fusion Index and intracellular Ca2+ concentrations. This exercise training also generally reduced superoxide anion production in cells (by 12–67%), although not in two women, where there was an increase of ~15% along with a reduced superoxide dismutase activity. miRNA expression showed an exercise-induced epigenetic transcription profile that was specific according to the reduced or increased superoxide anion production of the cells. Conclusions: The present study shows that low-to-moderate exercise training at low altitude improves the regenerative capacity of skeletal muscle in adult women. The differentiation of cells was favored by increased intracellular calcium concentration and increased the fusion index. This low-to-moderate training at low altitude also depicted the epigenetic signature of cells. PMID:26733888

  1. Skeletal Muscle Mitochondria and Aging: A Review

    PubMed Central

    Peterson, Courtney M.; Johannsen, Darcy L.; Ravussin, Eric

    2012-01-01

    Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline. PMID:22888430

  2. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    There were two major goals for my project. One was to examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter. This initial goal was subsequently modified so that additional developmental measures were taken (e.g. body weight, eye opening) as the progeny developed, and the study period was lengthened to eighty days. Also videotapes taken shortly after the pregnant Flight dams returned to Earth were scored for locomotor activity and compared to those for the Synchronous control dams at the same stage of pregnancy. The second goal was to examine skeletal muscle. Selected hindlimb skeletal muscles were to be identified, weighed, and examined for the presence and integrity of muscle receptors, (both muscle spindles and tendon organs), at the level of the light and electron microscope. Muscles were examined from rats that were at fetal (G20), newborn (postnatal day 1 or P1, where P1 = day of birth), and young adult (approx. P100) stages. At the present time data from only the last group of rats (i.e. P100) has been completely examined.

  3. Skeletal muscle disease: patterns of MRI appearances.

    PubMed

    Theodorou, D J; Theodorou, S J; Kakitsubata, Y

    2012-12-01

    Although the presumptive diagnosis of skeletal muscle disease (myopathy) may be made on the basis of clinical-radiological correlation in many cases, muscle biopsy remains the cornerstone of diagnosis. Myopathy is suspected when patients complain that the involved muscle is painful and tender, when they experience difficulty performing tasks that require muscle strength or when they develop various systemic manifestations. Because the cause of musculoskeletal pain may be difficult to determine clinically in many cases, MRI is increasingly utilised to assess the anatomical location, extent and severity of several pathological conditions affecting muscle. Infectious, inflammatory, traumatic, neurological, neoplastic and iatrogenic conditions can cause abnormal signal intensity on MRI. Although diverse, some diseases have similar MRI appearances, whereas others present distinct patterns of signal intensity abnormality. In general, alterations in muscle signal intensity fall into one of three cardinal patterns: muscle oedema, fatty infiltration and mass lesion. Because some of the muscular disorders may require medical or surgical treatment, correct diagnosis is essential. In this regard, MRI features, when correlated with clinical and laboratory findings as well as findings from other methods such as electromyography, may facilitate correct diagnosis. This article will review and illustrate the spectrum of MRI appearances in several primary and systemic disorders affecting muscle, both common and uncommon. The aim of this article is to provide radiologists and clinicians with a collective, yet succinct and useful, guide to a wide array of myopathies.

  4. Effect of limb immobilization on skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1982-01-01

    Current knowledge and questions remaining concerning the effects of limb immobilization on skeletal muscle is reviewed. The most dramatic of these effects is muscle atrophy, which has been noted in cases of muscles fixed at or below their resting length. Immobilization is also accompanied by a substantial decrease in motoneuronal discharges, which results in the conversion of slow-twitch muscle to muscle with fast-twitch characteristics. Sarcolemma effects include no change or a decrease in resting membrane potential, the appearance of extrajunctional acetylcholine receptors, and no change in acetylcholinesterase activity. Evidence of changes in motoneuron after hyperpolarization characteristics suggests that the muscle inactivity is responsible for neuronal changes, rather than vice versa. The rate of protein loss from atrophying muscles is determined solely by the first-order rate constant for degradation. Various other biochemical and functional changes have been noted, including decreased insulin responsiveness and protein synthesis. The model of limb immobilization may also be useful for related studies of muscle adaptation.

  5. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles

    PubMed Central

    Dufresne, Sébastien S.; Dumont, Nicolas A.; Boulanger-Piette, Antoine; Fajardo, Val A.; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M.; Pape, Paul C.; Tupling, A. Russell

    2016-01-01

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca2+ sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca2+ storage and SERCA activity, ultimately affecting denervated skeletal muscle function. PMID:26825123

  6. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles.

    PubMed

    Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme

    2016-04-15

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function.

  7. Nonmyogenic cells in skeletal muscle regeneration.

    PubMed

    Paylor, Ben; Natarajan, Anuradha; Zhang, Regan-Heng; Rossi, Fabio

    2011-01-01

    Although classical dogma dictates that satellite cells are the primary cell type involved in skeletal muscle regeneration, alternative cell types such as a variety of inflammatory and stromal cells are also actively involved in this process. A model describing myogenic cells as direct contributors to regeneration and nonmyogenic cells from other developmental sources as important accessories has emerged, with similar systems having been described in numerous other tissues in the body. Increasing evidence supports the notion that inflammatory cells function as supportive accessory cells, and are not merely involved in clearing damage following skeletal muscle injury. Additionally, recent studies have highlighted the role of tissue resident mesenchymal cell populations as playing a central role in regulating regeneration. These "accessory" cell populations are proposed to influence myogenesis via direct cell contact and secretion of paracrine trophic factors. The basic foundations of accessory cell understanding should be recognized as a crucial component to all prospects of regenerative medicine, and this chapter intends to provide a comprehensive background on the current literature describing immune and tissue-resident mesenchymal cells' role in skeletal muscle regeneration.

  8. Extrarenal potassium adaptation: role of skeletal muscle

    SciTech Connect

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-08-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using /sup 86/Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of /sup 86/Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium.

  9. Identification of New Dystroglycan Complexes in Skeletal Muscle

    PubMed Central

    Johnson, Eric K.; Li, Bin; Yoon, Jung Hae; Flanigan, Kevin M.; Martin, Paul T.; Ervasti, James; Montanaro, Federica

    2013-01-01

    The dystroglycan complex contains the transmembrane protein β-dystroglycan and its interacting extracellular mucin-like protein α-dystroglycan. In skeletal muscle fibers, the dystroglycan complex plays an important structural role by linking the cytoskeletal protein dystrophin to laminin in the extracellular matrix. Mutations that affect any of the proteins involved in this structural axis lead to myofiber degeneration and are associated with muscular dystrophies and congenital myopathies. Because loss of dystrophin in Duchenne muscular dystrophy (DMD) leads to an almost complete loss of dystroglycan complexes at the myofiber membrane, it is generally assumed that the vast majority of dystroglycan complexes within skeletal muscle fibers interact with dystrophin. The residual dystroglycan present in dystrophin-deficient muscle is thought to be preserved by utrophin, a structural homolog of dystrophin that is up-regulated in dystrophic muscles. However, we found that dystroglycan complexes are still present at the myofiber membrane in the absence of both dystrophin and utrophin. Our data show that only a minority of dystroglycan complexes associate with dystrophin in wild type muscle. Furthermore, we provide evidence for at least three separate pools of dystroglycan complexes within myofibers that differ in composition and are differentially affected by loss of dystrophin. Our findings indicate a more complex role of dystroglycan in muscle than currently recognized and may help explain differences in disease pathology and severity among myopathies linked to mutations in DAPC members. PMID:23951345

  10. Peptide Antibody Specific for the Amino Terminus of Skeletal Muscle α -actin

    NASA Astrophysics Data System (ADS)

    Bulinski, Jeannette Chloe; Kumar, Santosh; Titani, Koiti; Hauschka, Stephen D.

    1983-03-01

    The NH2-terminal peptide of skeletal muscle α -actin (Sα N peptide), which contains a primary sequence unique to this actin isozyme, was used to prepare an isozyme-specific peptide antibody. Sα N peptide was purified from chicken breast muscle actin by preparative reverse-phase HPLC and was coupled to hemocyanin. This complex was used to immunize rabbits in order to elicit actin antibodies specific for the skeletal muscle α -actin isozyme. The antibody obtained, called Sα N antibody, was reactive with Sα N peptide and with skeletal muscle α -actin as well as with cardiac muscle α -actin. Sα N antibody did not react with either of the actin isozymes present in smooth muscle (smooth muscle α and γ ) or in brain (nonmuscle β and γ ). Sα N antibody was used to detect muscle-specific actin in differentiating mouse and human myoblasts by using immunoblots of myoblast extracts and immunofluorescent staining of fixed cells.

  11. Developmental programming of fetal skeletal muscle and adipose tissue development.

    PubMed

    Yan, Xu; Zhu, Mei-Jun; Dodson, Michael V; Du, Min

    2013-01-01

    All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the proliferation of myogenic precursor cells and reduces the number of muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal stem cells, molecular events which regulate the commitment of stem cells to different lineages directly impact fetal muscle and adipose tissue development. Recent studies indicate that microRNA is intensively involved in myogenic and adipogenic differentiation from mesenchymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell lineage commitment during fetal muscle and adipose tissue development.

  12. Histopathological changes in skeletal muscle associated with chronic ischaemia.

    PubMed

    Roos, Sara; Fyhr, Ing-Marie; Sunnerhagen, Katharina S; Moslemi, Ali-Reza; Oldfors, Anders; Ullman, Michael

    2016-11-01

    Muscle biopsy is an essential part in the diagnostic workup in patients with suspected neuromuscular disorders. It is therefore important to be aware of morphological alterations that can be caused by systemic factors or natural ageing. Chronic limb ischaemia is frequent in elderly individuals. This study was performed to examine histopathological and mitochondrial changes in muscle in patients with chronic critical limb ischaemia. Muscle biopsy of skeletal muscle of the lower limb of patients with chronic ischaemia leading to amputation was performed and compared with muscle biopsies of healthy, age-matched controls. The histopathological abnormalities included fibrosis, necrosis, atrophy, glycogen depletion, internal nuclei, rimmed vacuoles, fibre type grouping, cytochrome c oxidase deficient fibres, MHC-I upregulation, and signs of microangiopathy. The only alteration found in age-matched controls was a few cytochrome c oxidase deficient fibres. There were also increased levels of multiple mitochondrial DNA deletions in ischaemic muscles compared with controls. Critical limb ischaemia is associated with significant histopathological changes in muscle tissue and also increased levels of mitochondrial DNA deletions. Since the alterations mimic different primary myopathic changes, chronic ischaemia is important to consider as a differential diagnosis in elderly individuals, investigated with muscle biopsy for muscle disease.

  13. GLUT-3 expression in human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Stuart, C. A.; Wen, G.; Peng, B. H.; Popov, V. L.; Hudnall, S. D.; Campbell, G. A.

    2000-01-01

    Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.

  14. Dorsal root vasodilatation in cat skeletal muscle.

    PubMed Central

    Hilton, S M; Marshall, J M

    1980-01-01

    1. A study has been made, in the cat anaesthetized with chloralose, of the effects of antidromic stimulation of dorsal roots L6-S1 on the blood flow through the gastrocnemius muscle. 2. Stimulation of the peripheral ends of the ligated dorsal roots with current pulses of 0.3-0.5 msec duration and at intensities most effective in activating the smaller afferent fibres, for periods of 15-20 sec, produced a 50-60% increase in muscle vascular conductance which was slow in onset and long outlasted the stimulus. 3. This muscle vasodilatation could be evoked in the paralysed animal and was unaffected by guanethidine or atropine. It was, however, greatly reduced or even abolished by the prostaglandin synthetase inhibitors, indomethacin or acetylsalicylic acid, in doses which had no effect on the dilatation produced by a local injection of acetylcholine or the functional hyperaemia induced by muscle contraction. 4. It is concluded that activity in the smaller myelinated or unmyelinated afferent fibres of skeletal muscle produces an increase in muscle blood flow which is mediated, at least in part, by prostaglandins locally synthesized within the muscle. PMID:7381769

  15. Phosphorylation of human skeletal muscle myosin

    SciTech Connect

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-03-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

  16. GLUT-3 expression in human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Stuart, C. A.; Wen, G.; Peng, B. H.; Popov, V. L.; Hudnall, S. D.; Campbell, G. A.

    2000-01-01

    Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.

  17. Translational control mechanisms modulate skeletal muscle gene expression during hypertrophy.

    PubMed

    Bolster, Douglas R; Kimball, Scot R; Jefferson, Leonard S

    2003-07-01

    Understanding the basic mechanisms regulating skeletal muscle hypertrophy is essential to providing strategies for optimizing and maintaining skeletal muscle mass. This review focuses on the importance of mRNA translation in mediating acute increases in protein synthesis after resistance exercise as well as the anabolic response of muscle growth.

  18. Apoptosis-Inducing Factor Regulates Skeletal Muscle Progenitor Cell Number and Muscle Phenotype

    PubMed Central

    Djeghloul, Dounia; Lécolle, Sylvie; Bertrand, Anne T.; Biondi, Olivier; De Windt, Leon J.; Chanoine, Christophe

    2011-01-01

    Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in “slow” muscles such as soleus, as well as in “fast” muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation. PMID:22076146

  19. PTRH2 gene mutation causes progressive congenital skeletal muscle pathology.

    PubMed

    Doe, Jinger; Kaindl, Angela M; Jijiwa, Mayumi; de la Vega, Michelle; Hu, Hao; Griffiths, Genevieve S; Fontelonga, Tatiana M; Barraza, Pamela; Cruz, Vivian; Van Ry, Pam; Ramos, Joe W; Burkin, Dean J; Matter, Michelle L

    2017-04-15

    Peptidyl-tRNA hydrolase 2 (PTRH2) regulates integrin-mediated pro-survival and apoptotic signaling. PTRH2 is critical in muscle development and regulates myogenic differentiation. In humans a biallelic mutation in the PTRH2 gene causes infantile-onset multisystem disease with progressive muscle weakness. We report here that the Ptrh2 knockout mouse model recapitulates the progressive congenital muscle pathology observed in patients. Ptrh2 null mice demonstrate multiple degenerating and regenerating muscle fibers, increased central nuclei, elevated creatine kinase activity and endomysial fibrosis. This progressive muscle pathology resembles the muscular dystrophy phenotype in humans and mice lacking the α7 integrin. We demonstrate that in normal muscle Ptrh2 associates in a complex with the α7β1 integrin at the sarcolemma and Ptrh2 expression is decreased in α7 integrin null muscle. Furthermore, Ptrh2 expression is altered in skeletal muscle of classical congenital muscular dystrophy mouse models. Ptrh2 levels were up-regulated in dystrophin deficient mdx muscle, which correlates with the elevated levels of the α7β1 integrin observed in mdx muscle and Duchenne muscular dystrophy patients. Similar to the α7 integrin, Ptrh2 expression was decreased in laminin-α2 dyW null gastrocnemius muscle. Our data establishes a PTRH2 mutation as a novel driver of congenital muscle degeneration and identifies a potential novel target to treat muscle myopathies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Cardiac and skeletal muscles show molecularly distinct responses to cancer cachexia.

    PubMed

    Shum, Angie M Y; Fung, David C Y; Corley, Susan M; McGill, Max C; Bentley, Nicholas L; Tan, Timothy C; Wilkins, Marc R; Polly, Patsie

    2015-12-01

    Cancer cachexia is a systemic, paraneoplastic syndrome seen in patients with advanced cancer. There is growing interest in the altered muscle pathophysiology experienced by cachectic patients. This study reports the microarray analysis of gene expression in cardiac and skeletal muscle in the colon 26 (C26) carcinoma mouse model of cancer cachexia. A total of 268 genes were found to be differentially expressed in cardiac muscle tissue, compared with nontumor-bearing controls. This was fewer than the 1,533 genes that changed in cachectic skeletal muscle. In addition to different numbers of genes changing, different cellular functions were seen to change in each tissue. The cachectic heart showed signs of inflammation, similar to cachectic skeletal muscle, but did not show the upregulation of ubiquitin-dependent protein catabolic processes or downregulation of genes involved in cellular energetics and muscle regeneration that characterizes skeletal muscle cachexia. Quantitative PCR was used to investigate a subset of inflammatory genes in the cardiac and skeletal muscle of independent cachectic samples; this revealed that B4galt1, C1s, Serpina3n, and Vsig4 were significantly upregulated in cardiac tissue, whereas C1s and Serpina3n were significantly upregulated in skeletal tissue. Our skeletal muscle microarray results were also compared with those from three published microarray studies and found to be consistent in terms of the genes differentially expressed and the functional processes affected. Our study highlights that skeletal and cardiac muscles are affected differently in the C26 mouse model of cachexia and that therapeutic strategies cannot assume that both muscle types will show a similar response.

  1. Contractile properties of esophageal striated muscle: comparison with cardiac and skeletal muscles in rats.

    PubMed

    Shiina, Takahiko; Shima, Takeshi; Masuda, Kazuaki; Hirayama, Haruko; Iwami, Momoe; Takewaki, Tadashi; Kuramoto, Hirofumi; Shimizu, Yasutake

    2010-01-01

    The external muscle layer of the mammalian esophagus consists of striated muscles. We investigated the contractile properties of esophageal striated muscle by comparison with those of skeletal and cardiac muscles. Electrical field stimulation with single pulses evoked twitch-like contractile responses in esophageal muscle, similar to those in skeletal muscle in duration and similar to those in cardiac muscle in amplitude. The contractions of esophageal muscle were not affected by an inhibitor of gap junctions. Contractile responses induced by high potassium or caffeine in esophageal muscle were analogous to those in skeletal muscle. High-frequency stimulation induced a transient summation of contractions followed by sustained contractions with amplitudes similar to those of twitch-like contractions, although a large summation was observed in skeletal muscle. The results demonstrate that esophageal muscle has properties similar but not identical to those of skeletal muscle and that some specific properties may be beneficial for esophageal peristalsis.

  2. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  3. Mechanical stimulation improves tissue-engineered human skeletal muscle.

    PubMed

    Powell, Courtney A; Smiley, Beth L; Mills, John; Vandenburgh, Herman H

    2002-11-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  4. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  5. Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1.

    PubMed

    Doherty, Jason T; Lenhart, Kaitlin C; Cameron, Morgan V; Mack, Christopher P; Conlon, Frank L; Taylor, Joan M

    2011-07-22

    Although RhoA activity is necessary for promoting myogenic mesenchymal stem cell fates, recent studies in cultured cells suggest that down-regulation of RhoA activity in specified myoblasts is required for subsequent differentiation and myotube formation. However, whether this phenomenon occurs in vivo and which Rho modifiers control these later events remain unclear. We found that expression of the Rho-GTPase-activating protein, GRAF1, was transiently up-regulated during myogenesis, and studies in C2C12 cells revealed that GRAF1 is necessary and sufficient for mediating RhoA down-regulation and inducing muscle differentiation. Moreover, forced expression of GRAF1 in pre-differentiated myoblasts drives robust muscle fusion by a process that requires GTPase-activating protein-dependent actin remodeling and BAR-dependent membrane binding or sculpting. Moreover, morpholino-based knockdown studies in Xenopus laevis determined that GRAF1 expression is critical for muscle development. GRAF1-depleted embryos exhibited elevated RhoA activity and defective myofibrillogenesis that resulted in progressive muscle degeneration, defective motility, and embryonic lethality. Our results are the first to identify a GTPase-activating protein that regulates muscle maturation and to highlight the functional importance of BAR domains in myotube formation.

  6. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  7. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  8. REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE

    PubMed Central

    Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.

    2014-01-01

    It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208

  9. Carbohydrate oxidation disorders of skeletal muscle.

    PubMed

    Vorgerd, Matthias; Zange, Jochen

    2002-11-01

    The major energy sources for muscle contraction are glycogen, glucose and fatty acids, and defects in their oxidative pathways cause metabolic myopathies. Eleven specific enzyme deficiencies of carbohydrate oxidation affect skeletal muscle alone or in combination with other tissues, such as liver, heart or red blood cells. These hereditary glycogen storage diseases cause two major clinical presentations: one characterized by fixed, often progressive muscle weakness, and the other by acute, intermittent, and reversible muscle dysfunction manifesting as exercise intolerance (myalgia on exertion, muscle contractures, myoglobinuria). The focus of this review is on recent developments in: clinical features, including a brief description of the newest identified glycogen storage disease type XIII; molecular genetic studies discussing genotype-phenotype correlations in some carbohydrate oxidation disorders; pathophysiological mechanisms, especially those assessed by non-invasive P magnetic resonance spectroscopy; and therapeutic approaches such as nutritional supplementation and gene therapy, including recombinant enzyme replacement. Although major progress has been made in an understanding of the molecular genetic bases of carbohydrate oxidation defects, the pathophysiology of exercise intolerance and muscle weakness remains to be further clarified. Gene therapy and dietary therapeutic regimes appear promising, but need to be actively investigated in the future.

  10. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    PubMed Central

    Sakuma, Kunihiro; Yamaguchi, Akihiko

    2010-01-01

    Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles. PMID:20379369

  11. Increased Excitability of Acidified Skeletal Muscle

    PubMed Central

    Pedersen, Thomas H.; de Paoli, Frank; Nielsen, Ole B.

    2005-01-01

    Generation of the action potentials (AP) necessary to activate skeletal muscle fibers requires that inward membrane currents exceed outward currents and thereby depolarize the fibers to the voltage threshold for AP generation. Excitability therefore depends on both excitatory Na+ currents and inhibitory K+ and Cl− currents. During intensive exercise, active muscle loses K+ and extracellular K+ ([K+]o) increases. Since high [K+]o leads to depolarization and ensuing inactivation of voltage-gated Na+ channels and loss of excitability in isolated muscles, exercise-induced loss of K+ is likely to reduce muscle excitability and thereby contribute to muscle fatigue in vivo. Intensive exercise, however, also leads to muscle acidification, which recently was shown to recover excitability in isolated K+-depressed muscles of the rat. Here we show that in rat soleus muscles at 11 mM K+, the almost complete recovery of compound action potentials and force with muscle acidification (CO2 changed from 5 to 24%) was associated with reduced chloride conductance (1731 ± 151 to 938 ± 64 μS/cm2, P < 0.01) but not with changes in potassium conductance (405 ± 20 to 455 ± 30 μS/cm2, P < 0.16). Furthermore, acidification reduced the rheobase current by 26% at 4 mM K+ and increased the number of excitable fibers at elevated [K+]o. At 11 mM K+ and normal pH, a recovery of excitability and force similar to the observations with muscle acidification could be induced by reducing extracellular Cl− or by blocking the major muscle Cl− channel, ClC-1, with 30 μM 9-AC. It is concluded that recovery of excitability in K+-depressed muscles induced by muscle acidification is related to reduction in the inhibitory Cl− currents, possibly through inhibition of ClC-1 channels, and acidosis thereby reduces the Na+ current needed to generate and propagate an AP. Thus short term regulation of Cl− channels is important for maintenance of excitability in working muscle. PMID:15684096

  12. Do skeletal muscle MSCs in humans contribute to bone repair? A systematic review.

    PubMed

    Owston, Heather; Giannoudis, Peter V; Jones, Elena

    2016-12-01

    Mesenchymal stem cells (MSC) from bone marrow and periosteum are known to be heavily involved in fracture repair and bone regeneration is thought to be impaired when the surrounding skeletal muscle is damaged. Recent literature from mouse in vivo models suggest that cells originating from skeletal muscle can occupy a fracture callus during open fracture repair when periosteum is compromised. This systematic review set out to ascertain whether there are MSCs residing in human skeletal muscle and whether cells from human skeletal muscle are capable of forming bone in vitro and in vivo. Original journal articles were selected if they included the terms "skeletal muscle" and "mesenchymal" and used human skeletal muscle samples. Between January 2005 and September 2016, 1000 articles were screened of which, 16 studies met the inclusion criteria for this review. Human skeletal muscle derived cells (SMDC) had the MSC phenotype, positive for CD73, CD90 and CD105 and negative for CD34 and CD45 as well as the potential to differentiate into osteoblasts, chondrocytes and adipocytes in vitro. In addition, SMDC could form bone in vivo when seeded onto an osteoinductive scaffold. A subset of SMDC expressing a pericyte marker (PDGFRα) also expressed the MSC phenotype and were more osteogenic in vivo in comparison to SMDC expressing a satellite cell marker (CD56). The studies included were limited through variation of SMDC extraction methods and tissue culture conditions, which causes heterogeneuous cell cultures. Also, in vitro differentiation assays were not always carried out with bone marrow MSC positive controls. Current evidence suggests that cells with the MSC phenotype reside within human skeletal muscle and are capable of in vivo bone formation in combination with osteoinductive bone scaffolds. This has implications of future development of guided bone regeneration strategies to enhance large bone defect repair, whereby more thought into whether the fracture site should

  13. Enrichment and terminal differentiation of striated muscle progenitors in vitro

    SciTech Connect

    Becher, Ulrich M.; Breitbach, Martin; Sasse, Philipp; Garbe, Stephan; Ven, Peter F.M. van der; Fuerst, Dieter O.; Fleischmann, Bernd K.

    2009-10-01

    Enrichment and terminal differentiation of mammalian striated muscle cells is severely hampered by fibroblast overgrowth, de-differentiation and/or lack of functional differentiation. Herein we report a new, reproducible and simple method to enrich and terminally differentiate muscle stem cells and progenitors from mice and humans. We show that a single gamma irradiation of muscle cells induces their massive differentiation into structurally and functionally intact myotubes and cardiomyocytes and that these cells can be kept in culture for many weeks. Similar results are also obtained when treating skeletal muscle-derived stem cells and progenitors with Mitomycin C.

  14. Circadian rhythms, the molecular clock, and skeletal muscle.

    PubMed

    Harfmann, Brianna D; Schroder, Elizabeth A; Esser, Karyn A

    2015-04-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle.

  15. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Harfmann, Brianna D.; Schroder, Elizabeth A.; Esser, Karyn A.

    2015-01-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. T