Science.gov

Sample records for differentiation lipid metabolism

  1. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes

    PubMed Central

    Barbagallo, Ignazio; Vanella, Luca; Cambria, Maria T.; Tibullo, Daniele; Godos, Justyna; Guarnaccia, Laura; Zappalà, Agata; Galvano, Fabio; Li Volti, Giovanni

    2016-01-01

    Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α, and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS, and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodeling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα, and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes. PMID:26834634

  2. Disorders of Lipid Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Fats (lipids) are ... carbohydrates and low in fats. Supplements of the amino acid carnitine may be helpful. The long-term outcome ...

  3. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    SciTech Connect

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  4. Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism.

    PubMed

    Urbano, Susana Bequer; Di Capua, Cecilia; Cortez, Néstor; Farías, María E; Alvarez, Héctor M

    2014-03-01

    In general, members of Rhodococcus genus are highly resistant to desiccation. Desiccation is a complex process which includes the formation of reactive oxygen species that results in significant damage to cells. In this study, we demonstrate that extremophile actinobacterial strains isolated from diverse environments, mainly belonging to Rhodococcus genus, exhibited high tolerance to the pro-oxidants hydrogen peroxide (H2O2) and methyl viologen (MV). In addition, we investigated the possible interconnections between the responses of the oleaginous Rhodococcus opacus PD630 to oxidative stress and lipid metabolism, since both processes demand a metabolic reorganization of cells. Experiments with metabolic inhibitors showed differential effects of both pro-oxidants on lipid metabolism in PD630 cells. The inhibition of carotenoid biosynthesis by the addition of diphenylamine to the media negatively affected the tolerance of cells to H2O2, but not to MV. The inhibition of triacylglycerol (TAG) biosynthesis and accumulation in PD630 did not affect the tolerance of cells to H2O2 and MV; whereas, the blockage of lipolysis decreased the tolerance of cells to H2O2 (but not MV) under carbon-starvation conditions. Interestingly, the addition of MV to the media (but not H2O2) induced a reduction of TAG accumulation by cells. Resuming, results of this study revealed metabolic connections between lipid metabolism and oxidative stress responses in R. opacus PD630, and probably in other extremophile TAG-accumulating rhodococci.

  5. Differential Amino Acid, Carbohydrate and Lipid Metabolism Perpetuations Involved in a Subtype of Rheumatoid Arthritis with Chinese Medicine Cold Pattern

    PubMed Central

    Guo, Hongtao; Niu, Xuyan; Gu, Yan; Lu, Cheng; Xiao, Cheng; Yue, Kevin; Zhang, Ge; Pan, Xiaohua; Jiang, Miao; Tan, Yong; Kong, Hongwei; Liu, Zhenli; Xu, Guowang; Lu, Aiping

    2016-01-01

    Pattern classification is a key approach in Traditional Chinese Medicine (TCM), and it is used to classify the patients for intervention selection accordingly. TCM cold and heat patterns, two main patterns of rheumatoid arthritis (RA) had been explored with systems biology approaches. Different regulations of apoptosis were found to be involved in cold and heat classification in our previous works. For this study, the metabolic profiling of plasma was explored in RA patients with typical TCM cold or heat patterns by integrating liquid chromatography/mass spectrometry (LC/MS) and gas chromatography/mass spectrometry (GC/MS) platforms in conjunction with the Ingenuity Pathway Analysis (IPA) software. Three main processes of metabolism, including amino acid, carbohydrate and lipid were focused on for function analysis. The results showed that 29 and 19 differential metabolites were found in cold and heat patterns respectively, compared with healthy controls. The perturbation of amino acid metabolism (increased essential amino acids), carbohydrate metabolism (galactose metabolism) and lipid metabolism, were found to be involved in both cold and heat pattern RA. In particular, more metabolic perturbations in protein and collagen breakdown, decreased glycolytic activity and aerobic oxidation, and increased energy utilization associated with RA cold pattern patients. These findings may be useful for obtaining a better understanding of RA pathogenesis and for achieving a better efficacy in RA clinical practice. PMID:27775663

  6. Metabolism. Part III: Lipids.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  7. Effects of retinoids on differentiation, lipid metabolism, epidermal growth factor, and low-density lipoprotein binding in squamous carcinoma cells

    SciTech Connect

    Ponec, M.; Weerheim, A. ); Havekes, L. ); Boonstra, J. )

    1987-08-01

    The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisone stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.

  8. Chemotherapy Agents Alter Plasma Lipids in Breast Cancer Patients and Show Differential Effects on Lipid Metabolism Genes in Liver Cells.

    PubMed

    Sharma, Monika; Tuaine, Jo; McLaren, Blair; Waters, Debra L; Black, Katherine; Jones, Lynnette M; McCormick, Sally P A

    2016-01-01

    Cardiovascular complications have emerged as a major concern for cancer patients. Many chemotherapy agents are cardiotoxic and some appear to also alter lipid profiles, although the mechanism for this is unknown. We studied plasma lipid levels in 12 breast cancer patients throughout their chemotherapy. Patients received either four cycles of doxorubicin and cyclophosphamide followed by weekly paclitaxel or three cycles of epirubicin, cyclophosphamide and 5'-fluorouracil followed by three cycles of docetaxel. Patients demonstrated a significant reduction (0.32 mmol/L) in high density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA1) levels (0.18 g/L) and an elevation in apolipoprotein B (apoB) levels (0.15 g/L) after treatment. Investigation of the individual chemotherapy agents for their effect on genes involved in lipoprotein metabolism in liver cells showed that doxorubicin decreased ATP binding cassette transporter A1 (ABCA1) via a downregulation of the peroxisomal proliferator activated receptor γ (PPARγ) and liver X receptor α (LXRα) transcription factors. In contrast, ABCA1 levels were not affected by cyclophosphamide or paclitaxel. Likewise, apoA1 levels were reduced by doxorubicin and remained unaffected by cyclophosphamide and paclitaxel. Doxorubicin and paclitaxel both increased apoB protein levels and paclitaxel also decreased low density lipoprotein receptor (LDLR) protein levels. These findings correlate with the observed reduction in HDL-C and apoA1 and increase in apoB levels seen in these patients. The unfavourable lipid profiles produced by some chemotherapy agents may be detrimental in the longer term to cancer patients, especially those already at risk of cardiovascular disease (CVD). This knowledge may be useful in tailoring effective follow-up care plans for cancer survivors.

  9. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  10. Lipid Metabolism, Apoptosis and Cancer Therapy

    PubMed Central

    Huang, Chunfa; Freter, Carl

    2015-01-01

    Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy. PMID:25561239

  11. Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1.

    PubMed

    Endo, Yusuke; Asou, Hikari K; Matsugae, Nao; Hirahara, Kiyoshi; Shinoda, Kenta; Tumes, Damon J; Tokuyama, Hirotake; Yokote, Koutaro; Nakayama, Toshinori

    2015-08-11

    Chronic inflammation due to obesity contributes to the development of metabolic diseases, autoimmune diseases, and cancer. Reciprocal interactions between metabolic systems and immune cells have pivotal roles in the pathogenesis of obesity-associated diseases, although the mechanisms regulating obesity-associated inflammatory diseases are still unclear. In the present study, we performed transcriptional profiling of memory phenotype CD4 T cells in high-fat-fed mice and identified acetyl-CoA carboxylase 1 (ACC1, the gene product of Acaca) as an essential regulator of Th17 cell differentiation in vitro and of the pathogenicity of Th17 cells in vivo. ACC1 modulates the DNA binding of RORγt to target genes in differentiating Th17 cells. In addition, we found a strong correlation between IL-17A-producing CD45RO(+)CD4 T cells and the expression of ACACA in obese subjects. Thus, ACC1 confers the appropriate function of RORγt through fatty acid synthesis and regulates the obesity-related pathology of Th17 cells.

  12. Differential regulation of the expression of lipid metabolism-related genes with skeletal muscle type in growing chickens.

    PubMed

    Saneyasu, Takaoki; Kimura, Sayaka; Kitashiro, Ayana; Tsuchii, Nami; Tsuchihashi, Tatsuya; Inui, Mariko; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2015-11-01

    The regulatory mechanisms of carbohydrate and lipid metabolism are known to differ among skeletal muscle types in mammals. For example, glycolytic muscles prefer glucose as an energy source, whereas oxidative muscles prefer fatty acids (FA). We herein demonstrated differences in the expression of genes involved in carbohydrate and lipid metabolism in the pectoralis major (a glycolytic twitch muscle), adductor superficialis (an oxidative twitch muscle), and adductor profound (a tonic muscle) of 14-day-old chicks. Under ad libitum feeding conditions, the mRNA levels of muscle type phosphofructokinase-1 were markedly lower in the adductor superficialis muscle, suggesting that basal glycolytic activity is very low in this type of muscle. In contrast, high mRNA levels of lipoprotein lipase (LPL) and fatty acid translocase/cluster of differentiation 36 (FAT/CD36) in the adductor superficialis muscle suggest that FA uptake is high in this type of muscle. The mRNA levels of adipose triglyceride lipase (ATGL) and carnitine palmitoyltransferase 1b (CPT1b) were significantly higher in the adductor profound muscle than in other muscles, suggesting that basal lipolytic activity is high in this type of muscle. Furthermore, the mRNA levels of peroxisome proliferator activated receptor δ and CPT1b were significantly increased in the adductor superficialis muscle, but not in other muscles, after 24h of fasting. Therefore, the availability of FA in the oxidative twitch muscles in growing chickens appears to be upregulated by fasting. Our results suggest that lipid metabolism-related genes are upregulated under both basal and fasting conditions in the adductor superficialis in growing chickens. PMID:26188321

  13. Differential regulation of the expression of lipid metabolism-related genes with skeletal muscle type in growing chickens.

    PubMed

    Saneyasu, Takaoki; Kimura, Sayaka; Kitashiro, Ayana; Tsuchii, Nami; Tsuchihashi, Tatsuya; Inui, Mariko; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2015-11-01

    The regulatory mechanisms of carbohydrate and lipid metabolism are known to differ among skeletal muscle types in mammals. For example, glycolytic muscles prefer glucose as an energy source, whereas oxidative muscles prefer fatty acids (FA). We herein demonstrated differences in the expression of genes involved in carbohydrate and lipid metabolism in the pectoralis major (a glycolytic twitch muscle), adductor superficialis (an oxidative twitch muscle), and adductor profound (a tonic muscle) of 14-day-old chicks. Under ad libitum feeding conditions, the mRNA levels of muscle type phosphofructokinase-1 were markedly lower in the adductor superficialis muscle, suggesting that basal glycolytic activity is very low in this type of muscle. In contrast, high mRNA levels of lipoprotein lipase (LPL) and fatty acid translocase/cluster of differentiation 36 (FAT/CD36) in the adductor superficialis muscle suggest that FA uptake is high in this type of muscle. The mRNA levels of adipose triglyceride lipase (ATGL) and carnitine palmitoyltransferase 1b (CPT1b) were significantly higher in the adductor profound muscle than in other muscles, suggesting that basal lipolytic activity is high in this type of muscle. Furthermore, the mRNA levels of peroxisome proliferator activated receptor δ and CPT1b were significantly increased in the adductor superficialis muscle, but not in other muscles, after 24h of fasting. Therefore, the availability of FA in the oxidative twitch muscles in growing chickens appears to be upregulated by fasting. Our results suggest that lipid metabolism-related genes are upregulated under both basal and fasting conditions in the adductor superficialis in growing chickens.

  14. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  15. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  16. Acyl-lipid metabolism.

    PubMed

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X; Arondel, Vincent; Bates, Philip D; Baud, Sébastien; Bird, David; Debono, Allan; Durrett, Timothy P; Franke, Rochus B; Graham, Ian A; Katayama, Kenta; Kelly, Amélie A; Larson, Tony; Markham, Jonathan E; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  17. Study on the regulatory mechanism of the lipid metabolism pathways during chicken male germ cell differentiation based on RNA-seq.

    PubMed

    Zuo, Qisheng; Li, Dong; Zhang, Lei; Elsayed, Ahmed Kamel; Lian, Chao; Shi, Qingqing; Zhang, Zhentao; Zhu, Rui; Wang, Yinjie; Jin, Kai; Zhang, Yani; Li, Bichun

    2015-01-01

    Here, we explore the regulatory mechanism of lipid metabolic signaling pathways and related genes during differentiation of male germ cells in chickens, with the hope that better understanding of these pathways may improve in vitro induction. Fluorescence-activated cell sorting was used to obtain highly purified cultures of embryonic stem cells (ESCs), primitive germ cells (PGCs), and spermatogonial stem cells (SSCs). The total RNA was then extracted from each type of cell. High-throughput analysis methods (RNA-seq) were used to sequence the transcriptome of these cells. Gene Ontology (GO) analysis and the KEGG database were used to identify lipid metabolism pathways and related genes. Retinoic acid (RA), the end-product of the retinol metabolism pathway, induced in vitro differentiation of ESC into male germ cells. Quantitative real-time PCR (qRT-PCR) was used to detect changes in the expression of the genes involved in the retinol metabolic pathways. From the results of RNA-seq and the database analyses, we concluded that there are 328 genes in 27 lipid metabolic pathways continuously involved in lipid metabolism during the differentiation of ESC into SSC in vivo, including retinol metabolism. Alcohol dehydrogenase 5 (ADH5) and aldehyde dehydrogenase 1 family member A1 (ALDH1A1) are involved in RA synthesis in the cell. ADH5 was specifically expressed in PGC in our experiments and aldehyde dehydrogenase 1 family member A1 (ALDH1A1) persistently increased throughout development. CYP26b1, a member of the cytochrome P450 superfamily, is involved in the degradation of RA. Expression of CYP26b1, in contrast, decreased throughout development. Exogenous RA in the culture medium induced differentiation of ESC to SSC-like cells. The expression patterns of ADH5, ALDH1A1, and CYP26b1 were consistent with RNA-seq results. We conclude that the retinol metabolism pathway plays an important role in the process of chicken male germ cell differentiation.

  18. Three dissimilar high fat diets differentially regulate lipid and glucose metabolism in obesity-resistant Slc:Wistar/ST rats.

    PubMed

    Hashimoto, Yoko; Yamada, Kazuyo; Tsushima, Hiromi; Miyazawa, Daisuke; Mori, Mayumi; Nishio, Koji; Ohkubo, Takeshi; Hibino, Hidehiko; Ohara, Naoki; Okuyama, Harumi

    2013-08-01

    Epidemiologic and ecologic studies suggest that dietary fat plays an important role in the development of obesity. Certain Wistar rat strains do not become obese when fed high-fat diets unlike others. In a preliminary study, we confirmed that Slc:Wistar/ST rats did not become obese when fed high-fat diets. The mechanisms governing the response of hepatic lipid-metabolizing enzymes to large quantities of dietary lipids consumed by obesity-resistant animals are unknown. The aim of the present study is to examine how obesity-resistant animals metabolize various types of high-fat diets and why they do not become obese. For this purpose, male Slc:Wistar/ST rats were fed a control low-fat diet (LS) or a high-fat diet containing fish oil (HF), soybean oil (HS), or lard (HL) for 4 weeks. We observed their phenotypes and determined lipid profiles in plasma and liver as well as mRNA expression levels in liver of genes related to lipid and glucose metabolism using DNA microarray and quantitative reverse transcriptase polymerase chain analyses. The body weights of all dietary groups were similar due to isocaloric intakes, whereas the weight of white adipose tissues in the LS group was significantly lower. The HF diet lowered plasma lipid levels by accelerated lipolysis in the peroxisomes and suppressed levels of very-low-density lipoprotein (VLDL) secretion. The HS diet promoted hepatic lipid accumulation by suppressed lipolysis in the peroxisomes and normal levels of VLDL secretion. The lipid profiles of rats fed the LS or HL diet were similar. The HL diet accelerated lipid and glucose metabolism.

  19. Computational Modeling of Lipid Metabolism in Yeast

    PubMed Central

    Schützhold, Vera; Hahn, Jens; Tummler, Katja; Klipp, Edda

    2016-01-01

    Lipid metabolism is essential for all major cell functions and has recently gained increasing attention in research and health studies. However, mathematical modeling by means of classical approaches such as stoichiometric networks and ordinary differential equation systems has not yet provided satisfactory insights, due to the complexity of lipid metabolism characterized by many different species with only slight differences and by promiscuous multifunctional enzymes. Here, we present an object-oriented stochastic model approach as a way to cope with the complex lipid metabolic network. While all lipid species are treated objects in the model, they can be modified by the respective converting reactions based on reaction rules, a hybrid method that integrates benefits of agent-based and classical stochastic simulation. This approach allows to follow the dynamics of all lipid species with different fatty acids, different degrees of saturation and different headgroups over time and to analyze the effect of parameter changes, potential mutations in the catalyzing enzymes or provision of different precursors. Applied to yeast metabolism during one cell cycle period, we could analyze the distribution of all lipids to the various membranes in time-dependent manner. The presented approach allows to efficiently treat the complexity of cellular lipid metabolism and to derive conclusions on the time- and location-dependent distributions of lipid species and their properties such as saturation. It is widely applicable, easily extendable and will provide further insights in healthy and diseased states of cell metabolism. PMID:27730126

  20. Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids

    PubMed Central

    Lukovac, Sabina; Belzer, Clara; Pellis, Linette; Keijser, Bart J.; de Vos, Willem M.; Montijn, Roy C.

    2014-01-01

    ABSTRACT The gut microbiota is essential for numerous aspects of human health. However, the underlying mechanisms of many host-microbiota interactions remain unclear. The aim of this study was to characterize effects of the microbiota on host epithelium using a novel ex vivo model based on mouse ileal organoids. We have explored the transcriptional response of organoids upon exposure to short-chain fatty acids (SCFAs) and products generated by two abundant microbiota constituents, Akkermansia muciniphila and Faecalibacterium prausnitzii. We observed that A. muciniphila metabolites affect various transcription factors and genes involved in cellular lipid metabolism and growth, supporting previous in vivo findings. Contrastingly, F. prausnitzii products exerted only weak effects on host transcription. Additionally, A. muciniphila and its metabolite propionate modulated expression of Fiaf, Gpr43, histone deacetylases (HDACs), and peroxisome proliferator-activated receptor gamma (Pparγ), important regulators of transcription factor regulation, cell cycle control, lipolysis, and satiety. This work illustrates that specific bacteria and their metabolites differentially modulate epithelial transcription in mouse organoids. We demonstrate that intestinal organoids provide a novel and powerful ex vivo model for host-microbiome interaction studies. PMID:25118238

  1. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    PubMed Central

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8–/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8–/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  2. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology.

    PubMed

    Kannan, Yashaswini; Perez-Lloret, Jimena; Li, Yanda; Entwistle, Lewis J; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R; Ching-Cheng Huang, Stanley; Pearce, Edward J; Pedro S de Carvalho, Luiz; Ley, Steven C; Wilson, Mark S

    2016-08-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8-/-mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8-/-M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  3. Lipid Droplets And Cellular Lipid Metabolism

    PubMed Central

    Walther, Tobias C.; Farese, Robert V.

    2013-01-01

    Among organelles, lipid droplets (LDs) uniquely constitute a hydrophobic phase in the aqueous environment of the cytosol. Their hydrophobic core of neutral lipids stores metabolic energy and membrane components, making LDs hubs for lipid metabolism. In addition, LDs are implicated in a number of other cellular functions, ranging from protein storage and degradation to viral replication. These processes are functionally linked to many physiological and pathological conditions, including obesity and related metabolic diseases. Despite their important functions and nearly ubiquitous presence in cells, many aspects of LD biology are unknown. In the past few years, the pace of LD investigation has increased, providing new insights. Here, we review the current knowledge of LD cell biology and its translation to physiology. PMID:22524315

  4. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice

    SciTech Connect

    Yin Huquan; Kim, Mingoo; Kim, Ju-Han; Kong, Gu; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-IL; Lee, Mi-Ock; Lee, Byung-Hoon

    2007-09-15

    Ethanol induces cumulative liver damage including steatosis, steatohepatitis and cirrhosis. The aim of this study is to investigate the global intrahepatic gene expression profile in the mouse liver treated with ethanol. A single oral dose of 0.5 or 5 g/kg ethanol was administered to male ICR mice, and liver samples were obtained after 6, 24 and 72 h. Histopathological evaluation showed typical fatty livers in the high-dose group at 24 h. Microarray analysis identified 28 genes as being ethanol responsive (two-way ANOVA; p < 0.05), after adjustment by the Benjamini-Hochberg multiple testing correction; these genes displayed {>=} 2-fold induction or repression. The expression of genes that are known to be involved in fatty acid synthesis was examined. The transcript for lipogenic transcription factor, sterol regulatory element (SRE)-binding factor 1 (Srebf1), was upregulated by acute ethanol exposure. Of the genes known to contain SRE or SRE-like sequences and to be regulated by SRE-binding protein 1 (SREBP1), those encoding malic enzyme (Mod1), ATP-citrate lyase (Acly), fatty acid synthase (Fasn) and stearyl-CoA desaturase (Scd1) were induced by ethanol. Quantitative real-time PCR confirmed the changes in the expression levels of the selected genes. The change in the Srebf1 mRNA level correlates well with that of the SREBP1 protein expression as well as its binding to the promoters of the target genes. The present study identifies differentially expressed genes that can be applied to the biomarkers for alcohol-binge-induced fatty liver. These results support the hypothesis by which ethanol-induced steatosis in mice is mediated by the fatty acid synthetic pathway regulated by SREBP1.

  5. Differentiation of strains of varicella-zoster virus by changes in neutral lipid metabolism in infected cells

    SciTech Connect

    Jerkofsky, M.; De Siervo, A.J.

    1986-03-01

    Eleven isolates of varicella-zoster virus were tested for their effects on the incorporation of (/sup 14/C)acetate into lipids in infected human embryonic lung cells. By relative percent, all virus isolates demonstrated a shift from polar lipid synthesis to neutral lipid, especially triglyceride, synthesis. By data expressed as counts per minute per microgram of protein, the VZV strains could be separated into two groups: those strains which depressed lipid synthesis and those strains which did not depress, and may even have stimulated, lipid, especially triglyceride, synthesis. These results may be useful in understanding the development of lipid changes seen in children affected with Reye's syndrome following chickenpox.

  6. Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast.

    PubMed

    Bak, Ann Mosegaard; Møller, Andreas Buch; Vendelbo, Mikkel Holm; Nielsen, Thomas Svava; Viggers, Rikke; Rungby, Jørgen; Pedersen, Steen Bønløkke; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2016-07-01

    Increased availability of lipids may conserve muscle protein during catabolic stress. Our study was designed to define 1) intracellular mechanisms leading to increased lipolysis and 2) whether this scenario is associated with decreased amino acid and urea fluxes, and decreased muscle amino acid release in obese subjects under basal and fasting conditions. We therefore studied nine lean and nine obese subjects twice, after 12 and 72 h of fasting, using measurements of mRNA and protein expression and phosphorylation of lipolytic and protein metabolic signaling molecules in fat and muscle together with whole body and forearm tracer techniques. Obese subjects displayed increased whole body lipolysis, decreased urea production rates, and decreased forearm muscle protein breakdown per 100 ml of forearm tissue, differences that persisted after 72 h of fasting. Lipolysis per fat mass unit was reduced in obese subjects and, correspondingly, adipose tissue hormone-sensitive lipase (HSL) phosphorylation and mRNA and protein levels of the adipose triglyceride lipase (ATGL) coactivator CGI58 were decreased. Fasting resulted in higher HSL phosphorylations and lower protein levels of the ATGL inhibitor G0S2. Muscle protein expressions of mammalian target of rapamycin (mTOR) and 4EBP1 were lower in obese subjects, and MuRf1 mRNA was higher with fasting in lean but not obese subjects. Phosphorylation and signaling of mTOR decreased with fasting in both groups, whereas ULK1 protein and mRNA levels increased. In summary, obese subjects exhibit increased lipolysis due to a large fat mass with blunted prolipolytic signaling, together with decreased urea and amino acid fluxes both in the basal and 72-h fasted state; this is compatible with preservation of muscle and whole body protein. PMID:27245338

  7. Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew.

    PubMed

    Tayeh, Christine; Randoux, Béatrice; Bourdon, Natacha; Reignault, Philippe

    2013-12-15

    Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed.

  8. Differential gene expression pattern in hypothalamus of chickens during fasting-induced metabolic reprogramming: functions of glucose and lipid metabolism in the feed intake of chickens.

    PubMed

    Fang, Xin-Ling; Zhu, Xiao-Tong; Chen, Sheng-Feng; Zhang, Zhi-Qi; Zeng, Qing-Jie; Deng, Lin; Peng, Jian-Long; Yu, Jian-Jian; Wang, Li-Na; Wang, Song-Bo; Gao, Ping; Jiang, Qing-Yan; Shu, Gang

    2014-11-01

    Fasting-induced hypothalamic metabolic reprogramming is involved in regulating energy homeostasis and appetite in mammals, but this phenomenon remains unclear in poultry. In this study, the expression patterns of a panel of genes related to neuropeptides, glucose, and lipid metabolism enzymes in the hypothalamus of chickens during fasting and refeeding were characterized by microarray analysis and quantitative PCR. Results showed that 48 h of fasting upregulated (P < 0.05) the mRNA expressions of orexigenic neuropeptide Y and agouti-related protein but downregulated (P < 0.05) that of anorexigenic neuropeptide pro-opiomelanocortin; growth hormone-releasing hormone; islet amyloid polypeptide; thyroid-stimulating hormone, β; and glycoprotein hormones, α polypeptide. After 48 h of fasting, the mRNA expression of fatty acid β-oxidation [peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A, and forkhead box O1], energy sensor protein [sirtuin 1 (SIRT1) and forkhead box O1], and glycolysis inhibitor (pyruvate dehydrogenase kinase, isozyme 4) were enhanced, but that of fatty acid synthesis and transport associated genes (acetyl-CoA carboxylase α, fatty acid synthase, apolipoprotein A-I, endothelial lipase, and fatty acid binding protein 7) were suppressed. Liver and muscle also demonstrated similar expression patterns of genes related to glucose and lipid metabolism with hypothalamus, except for that of acetyl-CoA carboxylase α, acyl-CoA synthetase long-chain family member 4, and apolipoprotein A-I. The results of intracerebroventricular (ICV) injection experiments confirmed that α-lipoic acid (ALA, pyruvate dehydrogenase kinase, isozyme 4 inhibitor, 0.10 μmol) and NADH (SIRT1 inhibitor, 0.80 μmol) significantly suppressed the appetite of chickens, whereas 2-deoxy-d-glucose (glycolytic inhibitor, 0.12 to 1.20 μmol) and NAD(+) (SIRT1 activator, 0.08 to 0.80 μmol) increased feed intake in chickens. The orexigenic effect of NAD

  9. Differential gene expression pattern in hypothalamus of chickens during fasting-induced metabolic reprogramming: functions of glucose and lipid metabolism in the feed intake of chickens.

    PubMed

    Fang, Xin-Ling; Zhu, Xiao-Tong; Chen, Sheng-Feng; Zhang, Zhi-Qi; Zeng, Qing-Jie; Deng, Lin; Peng, Jian-Long; Yu, Jian-Jian; Wang, Li-Na; Wang, Song-Bo; Gao, Ping; Jiang, Qing-Yan; Shu, Gang

    2014-11-01

    Fasting-induced hypothalamic metabolic reprogramming is involved in regulating energy homeostasis and appetite in mammals, but this phenomenon remains unclear in poultry. In this study, the expression patterns of a panel of genes related to neuropeptides, glucose, and lipid metabolism enzymes in the hypothalamus of chickens during fasting and refeeding were characterized by microarray analysis and quantitative PCR. Results showed that 48 h of fasting upregulated (P < 0.05) the mRNA expressions of orexigenic neuropeptide Y and agouti-related protein but downregulated (P < 0.05) that of anorexigenic neuropeptide pro-opiomelanocortin; growth hormone-releasing hormone; islet amyloid polypeptide; thyroid-stimulating hormone, β; and glycoprotein hormones, α polypeptide. After 48 h of fasting, the mRNA expression of fatty acid β-oxidation [peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A, and forkhead box O1], energy sensor protein [sirtuin 1 (SIRT1) and forkhead box O1], and glycolysis inhibitor (pyruvate dehydrogenase kinase, isozyme 4) were enhanced, but that of fatty acid synthesis and transport associated genes (acetyl-CoA carboxylase α, fatty acid synthase, apolipoprotein A-I, endothelial lipase, and fatty acid binding protein 7) were suppressed. Liver and muscle also demonstrated similar expression patterns of genes related to glucose and lipid metabolism with hypothalamus, except for that of acetyl-CoA carboxylase α, acyl-CoA synthetase long-chain family member 4, and apolipoprotein A-I. The results of intracerebroventricular (ICV) injection experiments confirmed that α-lipoic acid (ALA, pyruvate dehydrogenase kinase, isozyme 4 inhibitor, 0.10 μmol) and NADH (SIRT1 inhibitor, 0.80 μmol) significantly suppressed the appetite of chickens, whereas 2-deoxy-d-glucose (glycolytic inhibitor, 0.12 to 1.20 μmol) and NAD(+) (SIRT1 activator, 0.08 to 0.80 μmol) increased feed intake in chickens. The orexigenic effect of NAD

  10. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  11. Lipid metabolism and signaling in cardiac lipotoxicity.

    PubMed

    D'Souza, Kenneth; Nzirorera, Carine; Kienesberger, Petra C

    2016-10-01

    The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia-reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.

  12. Differential effects of habitual chow-based and semi-purified diets on lipid metabolism in lactating rats and their offspring.

    PubMed

    Del Bas, Josep Maria; Caimari, Antoni; Ceresi, Enzo; Arola-Arnal, Anna; Palou, Andreu; Arola, Lluís; Crescenti, Anna

    2015-03-14

    Diet during pregnancy and lactation is a critical factor in relation to the health of dams and their offspring. Currently, control diets used in metabolic imprinting studies differ in composition and type, i.e. semi-purified diets (SD) or chow-based diets (ND). The aim of the present study was to determine whether two widely used control diets, a SD and a ND, that mainly differ in fat content (5·08 and 3·26 %, respectively) and its sources (soyabean oil for the SD and cereals and fish for the ND), fibre (6 and 15 %, respectively), and cholesterol (26 and 69 mg/kg diet, respectively) can influence the lipid metabolism of dams and their offspring. Wistar rats were fed either the SD or the ND during pregnancy and lactation. At weaning, SD-fed dams presented severe hepatic steatosis and increased levels of circulating TAG, NEFA and insulin. Importantly, the offspring presented an altered plasma lipid profile. In contrast, the ND allowed for a normal gestation and lactation process, and did not affect the metabolism of offspring. In parallel, virgin rats fed the SD showed no metabolic alterations. A higher intake of SFA and MUFA and a lower consumption of PUFA observed in SD-fed dams during the lactation period could contribute to explaining the observed effects. In conclusion, two different control diets produced very different outcomes in the lipid metabolism of lactating rats and their offspring. The present results highlight the importance of the assessment of the metabolic state of dams when interpreting the results of metabolic programming studies.

  13. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    SciTech Connect

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  14. Dietary soy isoflavones differentially regulate expression of the lipid-metabolic genes in different white adipose tissues of the female Bama mini-pigs.

    PubMed

    Jiang, Guoli; Li, Lili; Fan, Juexin; Zhang, Bin; Oso, A O; Xiao, Chaowu; Yin, Yulong

    2015-05-22

    Soy isoflavones have been shown to affect lipid metabolism, however the underlying molecular mechanism(s) have not yet been fully understood. The present study, using female Bama mini-pig as a model, examined the effects of soy isoflavones on lipid metabolism and involved gene expression in different white adipose tissues. Female Bama Xiang mini-pigs of 35 days old were fed a basal diet (control, Con), or basal diet supplemented with increasing amounts of soy isoflavones (250, 500, or 1250 mg/kg diet) for 120 days. The results showed that soy isoflavones did not affect the body weight, but decreased the dorsal subcutaneous adipose tissue (DSA) mass and increased the mass of abdominal subcutaneous adipose tissue (ASA) and perirenal adipose tissue (PRA). Besides, soy isoflavones decreased the expression of lipogenic genes and increased the expression of lipolytic genes in DSA, while the opposite effects were observed in ASA and PRA. In addition, the expression of lipoprotein lipase was down regulated in DSA while up regulated in ASA and PRA by soy isoflavones. Moreover, the expression of estrogen receptors (ERs) was up regulated in DSA, and down regulated in ASA and PRA by soy isoflavones. Our results suggest that soy isoflavones affected the lipid metabolism in white adipose tissues of Bama mini-pigs in a site-specific manner, which might be mediated through PPARs and ERs regulated gene expression.

  15. Roles of lipid metabolism in keloid development.

    PubMed

    Huang, Chenyu; Ogawa, Rei

    2013-05-01

    Keloids are common cutaneous pathological scars that are characterised by the histological accumulation of fibroblasts, collagen fibres, and clinically significant invasive growth. Although increasing lines of research on keloids have revealed genetic and environmental factors that contribute to their formation, the etiology of these scars remains unclear. Several studies have suggested the involvement of lipid metabolism, from a nutritional point of view. However, the role that lipid metabolism plays in the pathogenesis and progression of keloids has not previously been reviewed. The progress that has been made in understanding the roles of the pro- and anti-inflammatory lipid mediators in inflammation, and how they relate to the formation and progression of keloids, is also outlined. In particular, the possible relationships between mechanotransduction and lipid metabolites in keloids are explored. Mechanotransduction is the process by which physical forces are converted into biochemical signals that are then integrated into cellular responses. It is possible that lipid rafts and caveolae provide the location of lipid signaling and interactions between these signaling pathways and mechanotransduction. Moreover, interactions between lipid signaling pathway molecules and mechanotransduction molecules have been observed. A better understanding of the lipid profile changes and the functional roles lipid metabolism plays in keloids will help to identify target molecules for the development of novel interventions that can prevent, reduce, or even reverse pathological scar formation and/or progression.

  16. Lipid metabolic reprogramming in cancer cells

    PubMed Central

    Beloribi-Djefaflia, S; Vasseur, S; Guillaumond, F

    2016-01-01

    Many human diseases, including metabolic, immune and central nervous system disorders, as well as cancer, are the consequence of an alteration in lipid metabolic enzymes and their pathways. This illustrates the fundamental role played by lipids in maintaining membrane homeostasis and normal function in healthy cells. We reviewed the major lipid dysfunctions occurring during tumor development, as determined using systems biology approaches. In it, we provide detailed insight into the essential roles exerted by specific lipids in mediating intracellular oncogenic signaling, endoplasmic reticulum stress and bidirectional crosstalk between cells of the tumor microenvironment and cancer cells. Finally, we summarize the advances in ongoing research aimed at exploiting the dependency of cancer cells on lipids to abolish tumor progression. PMID:26807644

  17. Lipid metabolism in Trypanosoma brucei

    PubMed Central

    Smith, Terry K.; Bütikofer, Peter

    2013-01-01

    Trypanosoma brucei membranes consist of all major eukaryotic glycerophospholipid and sphingolipid classes. These are de novo synthesized from precursors obtained either from the host or from catabolised endocytosed lipids. In recent years, substantial progress has been made in the molecular and biochemical characterisation of several of these lipid biosynthetic pathways, using gene knockout or RNA interference strategies or by enzymatic characterization of individual reactions. Together with the completed genome, these studies have highlighted several possible differences between mammalian and trypanosome lipid biosynthesis that could be exploited for the development of drugs against the diseases caused by these parasites. PMID:20382188

  18. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    SciTech Connect

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  19. Physiology and pathophysiology of liver lipid metabolism.

    PubMed

    Ponziani, Francesca Romana; Pecere, Silvia; Gasbarrini, Antonio; Ojetti, Veronica

    2015-01-01

    Liver lipid metabolism and its modulation are involved in many pathologic conditions, such as obesity, non-alcoholic fatty liver disease, diabetes mellitus, atherosclerosis and cardiovascular disease. Metabolic disorders seem to share a similar background of low-grade chronic inflammation, even if the pathophysiological mechanisms leading to tissue and organ damage have not been completely clarified yet. The accumulation of neutral lipids in the liver is now recognized as a beneficial and protective mechanism; on the other hand, lipoperoxidation is involved in the development and progression of non-alcoholic steatohepatitis. The role of the gut microbiota in liver lipid metabolism has been the object of recent scientific investigations. It is likely that the gut microbiota is involved in a complex metabolic modulation and the translocation of gut microflora may also contribute to maintaining the low-grade inflammatory status of metabolic syndrome. Therefore, lipid metabolism pathology has vague limits and complex mechanisms, and the knowledge of these is essential to guide diagnostic and therapeutic decisions.

  20. Metabolic reprogramming during neuronal differentiation.

    PubMed

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  1. Metabolic reprogramming during neuronal differentiation

    PubMed Central

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-01-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate–glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K–Akt–mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  2. Orphan enzymes in ether lipid metabolism.

    PubMed

    Watschinger, Katrin; Werner, Ernst R

    2013-01-01

    Ether lipids are an emerging class of lipids which have so far not been investigated and understood in every detail. They have important roles as membrane components of e.g. lens, brain and testis, and as mediators such as platelet-activating factor. The metabolic enzymes for biosynthesis and degradation have been investigated to some extent. As most involved enzymes are integral membrane proteins they are tricky to handle in biochemical protocols. The sequence of some ether lipid metabolising enzymes has only recently been reported and other sequences still remain obscure. Defined enzymes without assigned sequence are known as orphan enzymes. One of these enzymes with uncharacterised sequence is plasmanylethanolamine desaturase, a key enzyme for the biosynthesis of one of the most abundant phospholipids in our body, the plasmalogens. This review aims to briefly summarise known functions of ether lipids, give an overview on their metabolism including the most prominent members, platelet-activating factor and the plasmalogens. A special focus is set on the description of orphan enzymes in ether lipid metabolism and on the successful strategies how four previous orphans have recently been assigned a sequence. Only one of these four was characterised by classical protein purification and sequencing, whereas the other three required alternative strategies such as bioinformatic candidate gene selection and recombinant expression or development of an inhibitor and multidimensional metabolic profiling.

  3. Synthetic redesign of plant lipid metabolism.

    PubMed

    Haslam, Richard P; Sayanova, Olga; Kim, Hae Jin; Cahoon, Edgar B; Napier, Johnathan A

    2016-07-01

    Plant seed lipid metabolism is an area of intensive research, including many examples of transgenic events in which oil composition has been modified. In the selected examples described in this review, progress towards the predictive manipulation of metabolism and the reconstitution of desired traits in a non-native host is considered. The advantages of a particular oilseed crop, Camelina sativa, as a flexible and utilitarian chassis for advanced metabolic engineering and applied synthetic biology are considered, as are the issues that still represent gaps in our ability to predictably alter plant lipid biosynthesis. Opportunities to deliver useful bio-based products via transgenic plants are described, some of which represent the most complex genetic engineering in plants to date. Future prospects are considered, with a focus on the desire to transition to more (computationally) directed manipulations of metabolism.

  4. Synthetic redesign of plant lipid metabolism.

    PubMed

    Haslam, Richard P; Sayanova, Olga; Kim, Hae Jin; Cahoon, Edgar B; Napier, Johnathan A

    2016-07-01

    Plant seed lipid metabolism is an area of intensive research, including many examples of transgenic events in which oil composition has been modified. In the selected examples described in this review, progress towards the predictive manipulation of metabolism and the reconstitution of desired traits in a non-native host is considered. The advantages of a particular oilseed crop, Camelina sativa, as a flexible and utilitarian chassis for advanced metabolic engineering and applied synthetic biology are considered, as are the issues that still represent gaps in our ability to predictably alter plant lipid biosynthesis. Opportunities to deliver useful bio-based products via transgenic plants are described, some of which represent the most complex genetic engineering in plants to date. Future prospects are considered, with a focus on the desire to transition to more (computationally) directed manipulations of metabolism. PMID:27483205

  5. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    SciTech Connect

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  6. Hepatic glucose and lipid metabolism.

    PubMed

    Jones, John G

    2016-06-01

    The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael

  7. [Exploration of regulating blood lipids metabolism by integrative medicine].

    PubMed

    Liu, Shan-shan; Wu, Wei; Qing, Li-jin

    2015-02-01

    Hyperlipidemia is an important risk factor of cardio-/cerebrovascular disease, and reducing lipids has become an important project for itsclinical preventing and treating. Western medicine, with its confirmative efficacy and clear mechanism, has played an irreplaceable role. Along with the development of modern medicine, integrative medicine has gradually become a growing trend in regulating blood lipids metabolism. It not only could make up the insufficient power for Chinese medicine in lowering lipids, but also could reduce adverse reactions and economic costs brought by long-term administration of Western medicine. As a modern practitioner of Chinese medicine, we should keep clear that integrative medicine regulating blood lipids metabolism does not mean a simple combination of traditional Chinese medicine and Western medicine. We should treat it guided by systematic theories. We combine disease identification and syndrome differentiation, guide lipids lowering by integrative medicine including selecting Western drugs for blood lipids lowering, Chinese medical prescriptions for syndrome typing, and effective Chinese herbs based on modern pharmacologies.

  8. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate.

    PubMed

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-01-01

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet) as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  9. Apolipoprotein gene involved in lipid metabolism

    DOEpatents

    Rubin, Edward; Pennacchio, Len A.

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  10. Gene Expression in Plant Lipid Metabolism in Arabidopsis Seedlings

    PubMed Central

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Napier, Johnathan A.; Chye, Mee-Len

    2014-01-01

    Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis. PMID:25264899

  11. Lipid abnormalities in the metabolic syndrome.

    PubMed

    Brinton, Eliot A

    2003-02-01

    The metabolic syndrome is the constellation of adverse metabolic and clinical effects of insulin resistance. Its high and increasing prevalence and its profound impact on the major diseases of the western world require that clinicians consider its diagnosis and management on a routine basis. Recently published guidelines on its definition now make convenient and reliable diagnosis possible. Also, there is new and better understanding of the complex dyslipidemias and other risk factors strongly associated with the metabolic syndrome, which greatly increase the risk of clinical atherosclerotic events. Comprehensive clinical evaluation of these dyslipidemias and associated atherosclerosis risk factors can lead to their aggressive treatment, customized according to the circumstances of each patient. These steps are now more feasible and more clearly desirable than ever before. Statins alone greatly reduce atherosclerosis risk, but combination lipid therapy is often required for optimal dyslipidemia management and atheroprevention. PMID:12643148

  12. Lipid metabolism and nutrient partitioning strategies.

    PubMed

    Morris, A M; Calsbeek, D J; Eckel, R H

    2004-10-01

    The increasing prevalence of overweight and obesity worldwide is daunting and requires prompt attention by the affected, health care profession, government and the pharmaceutical industry. Because overweight/obesity are defined as an excess of adipose tissue mass, all approaches in prevention and treatment must consider redirecting lipid storage in adipose tissue to oxidative metabolism. Lipid partitioning is a complex process that involves interaction between fat and other macronutrients, particularly carbohydrate. In an isocaloric environment, when fat is stored carbohydrate is oxidized and vice versa. Processes that influence fat partitioning in a manner in which weight is maintained must be modified by changes in organ-specific fat transport and metabolism. When therapy is considered, however, changes in lipid partitioning alone will be ineffective unless a negative energy balance is also achieved, i.e. energy expenditure exceeds energy intake. The intent of this review is to focus on molecules including hormones, enzymes, cytokines, membrane transport proteins, and transcription factors directly involved in fat trafficking and partitioning that could be potential drug targets. Some examples of favorably altering body composition by systemic and/or tissue specific modification of these molecules have already been provided with gene knockout and/or transgenic approaches in mice. The translation of this science to humans remains a challenging task. PMID:15544448

  13. Intramuscular Lipid Metabolism, Insulin Action and Obesity

    PubMed Central

    Bell, Jill A.; Houmard, Joseph A.

    2008-01-01

    Summary With the increasing prevalence of obesity, research has focused on the molecular mechanism(s) linking obesity and skeletal muscle insulin resistance. Metabolic alterations within muscle, such as changes in the cellular location of fatty acid transporter proteins, decreased mitochondrial enzyme activity and defects in mitochondrial morphology, likely contribute to obesity and insulin resistance. These defects are thought to play a role in the reduced skeletal muscle fatty acid oxidation (FAO) and increased intramuscular lipid (IMCL) accumulation that is apparent with obesity and other insulin resistant states, such as type 2 diabetes. Intramuscular triacylglycerol (IMTG) does not appear to be a ubiquitous marker of insulin resistance, although specific IMCL intermediates such as long-chain fatty acyl-CoAs (LCFA-CoAs), ceramide and diacylglycerol (DAG) may inhibit insulin signal transduction. In this review, we will briefly summarize the defects in skeletal muscle lipid metabolism associated with obesity, and discuss proposed mechanisms by which these defects may contribute to insulin resistance. PMID:18839419

  14. Mathematical modelling of hepatic lipid metabolism.

    PubMed

    Pratt, Adrian C; Wattis, Jonathan A D; Salter, Andrew M

    2015-04-01

    The aim of this paper is to develop a mathematical model capable of simulating the metabolic response to a variety of mixed meals in fed and fasted conditions with particular emphasis placed on the hepatic triglyceride element of the model. Model validation is carried out using experimental data for the ingestion of three mixed composition meals over a 24-h period. Comparison with experimental data suggests the model predicts key plasma lipids accurately given a prescribed insulin profile. One counter-intuitive observation to arise from simulations is that liver triglyceride initially decreases when a high fat meal is ingested, a phenomenon potentially explained by the carbohydrate portion of the meal raising plasma insulin.

  15. Control of lipid metabolism by Tachykinin in Drosophila

    PubMed Central

    Song, Wei; Veenstra, Jan A.; Perrimon, Norbert

    2015-01-01

    Summary The intestine is a key organ for lipid uptake and distribution, and abnormal intestinal lipid metabolism is associated with obesity and hyperlipidemia. Although multiple regulatory gut hormones secreted from enteroendocrine cells (EEs) regulate systemic lipid homeostasis, such as appetite control and energy balance in adipose tissue, their respective roles regarding lipid metabolism in the intestine are not well understood. We demonstrate that Tachykinins (TKs), one of the most abundant secreted peptides expressed in midgut EEs, regulate intestinal lipid production and subsequently control systemic lipid homeostasis in Drosophila, and that TKs repress lipogenesis in enterocytes (ECs) associated with the TKR99D receptor and PKA signaling. Interestingly, nutrient deprivation enhances the production of TKs in the midgut. Finally, unlike the physiological roles of TKs produced from the brain, gut-derived TKs do not affect behavior, thus demonstrating that gut TK hormones specifically regulate intestinal lipid metabolism without affecting neuronal functions. PMID:25263556

  16. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy

    PubMed Central

    Herman-Edelstein, Michal; Scherzer, Pnina; Tobar, Ana; Levi, Moshe; Gafter, Uzi

    2014-01-01

    Animal models link ectopic lipid accumulation to renal dysfunction, but whether this process occurs in the human kidney is uncertain. To this end, we investigated whether altered renal TG and cholesterol metabolism results in lipid accumulation in human diabetic nephropathy (DN). Lipid staining and the expression of lipid metabolism genes were studied in kidney biopsies of patients with diagnosed DN (n = 34), and compared with normal kidneys (n = 12). We observed heavy lipid deposition and increased intracellular lipid droplets. Lipid deposition was associated with dysregulation of lipid metabolism genes. Fatty acid β-oxidation pathways including PPAR-α, carnitine palmitoyltransferase 1, acyl-CoA oxidase, and L-FABP were downregulated. Downregulation of renal lipoprotein lipase, which hydrolyzes circulating TGs, was associated with increased expression of angiopoietin-like protein 4. Cholesterol uptake receptor expression, including LDL receptors, oxidized LDL receptors, and acetylated LDL receptors, was significantly increased, while there was downregulation of genes effecting cholesterol efflux, including ABCA1, ABCG1, and apoE. There was a highly significant correlation between glomerular filtration rate, inflammation, and lipid metabolism genes, supporting a possible role of abnormal lipid metabolism in the pathogenesis of DN. These data suggest that renal lipid metabolism may serve as a target for specific therapies aimed at slowing the progression of glomerulosclerosis. PMID:24371263

  17. MicroRNAs and Noncoding RNAs in Hepatic Lipid and Lipoprotein Metabolism: Potential Therapeutic Targets of Metabolic Disorders

    PubMed Central

    Sud, Neetu; Taher, Jennifer; Su, Qiaozhu

    2015-01-01

    Noncoding RNAs and microRNAs (miRNAs) represent an important class of regulatory molecules that modulate gene expression. The role of miRNAs in diverse cellular processes such as cancer, apoptosis, cell differentiation, cardiac remodeling, and inflammation has been intensively explored. Recent studies further demonstrated the important roles of miRNAs and noncoding RNAs in modulating a broad spectrum of genes involved in lipid synthesis and metabolic pathways. This overview focuses on the role of miRNAs in hepatic lipid and lipoprotein metabolism and their potential as therapeutic targets for metabolic syndrome. This included recent advances made in the understanding of their target pathways and the clinical development of miRNAs in lipid metabolic disorders. PMID:26286650

  18. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying ...

  19. New insights on glucosylated lipids: metabolism and functions.

    PubMed

    Ishibashi, Yohei; Kohyama-Koganeya, Ayako; Hirabayashi, Yoshio

    2013-09-01

    Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids. PMID:23770033

  20. The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets.

    PubMed

    Domínguez-Avila, Jesús A; Alvarez-Parrilla, Emilio; López-Díaz, José A; Maldonado-Mendoza, Ignacio E; Gómez-García, María Del Consuelo; de la Rosa, Laura A

    2015-02-01

    Tree nuts such as pecans (Carya illinoinensis) contain mostly oil but are also a source of polyphenols. Nut consumption has been linked to a reduction in serum lipid levels and oxidative stress. These effects have been attributed to the oil while overlooking the potential contribution of the polyphenols. Because the evidence regarding each fraction's bioactivity is scarce, we administered high-fat (HF) diets to male Wistar rats, supplementing them with pecan oil (HF+PO), pecan polyphenols (HF+PP) or whole pecans (HF+WP), and analysed the effects of each fraction. The HF diet increased the serum leptin and total cholesterol (TC) with respect to the control levels. The HF+WP diet prevented hyperleptinemia and decreased the TC compared with the control. The HF+WP diet upregulated the hepatic expression of apolipoprotein B and LDL receptor mRNAs with respect to the HF levels. The HF+PO diet reduced the level of triacylglycerols compared with the control. The HF+PP diet stimulated the hepatic expression of liver X receptor alpha mRNA. The HF+WP diet increased the activities of hepatic catalase, glutathione peroxidase and glutathione S transferase compared with the control, and decreased the degree of lipid peroxidation compared with the HF diet. The most bioactive diet was the WP diet.

  1. The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets.

    PubMed

    Domínguez-Avila, Jesús A; Alvarez-Parrilla, Emilio; López-Díaz, José A; Maldonado-Mendoza, Ignacio E; Gómez-García, María Del Consuelo; de la Rosa, Laura A

    2015-02-01

    Tree nuts such as pecans (Carya illinoinensis) contain mostly oil but are also a source of polyphenols. Nut consumption has been linked to a reduction in serum lipid levels and oxidative stress. These effects have been attributed to the oil while overlooking the potential contribution of the polyphenols. Because the evidence regarding each fraction's bioactivity is scarce, we administered high-fat (HF) diets to male Wistar rats, supplementing them with pecan oil (HF+PO), pecan polyphenols (HF+PP) or whole pecans (HF+WP), and analysed the effects of each fraction. The HF diet increased the serum leptin and total cholesterol (TC) with respect to the control levels. The HF+WP diet prevented hyperleptinemia and decreased the TC compared with the control. The HF+WP diet upregulated the hepatic expression of apolipoprotein B and LDL receptor mRNAs with respect to the HF levels. The HF+PO diet reduced the level of triacylglycerols compared with the control. The HF+PP diet stimulated the hepatic expression of liver X receptor alpha mRNA. The HF+WP diet increased the activities of hepatic catalase, glutathione peroxidase and glutathione S transferase compared with the control, and decreased the degree of lipid peroxidation compared with the HF diet. The most bioactive diet was the WP diet. PMID:25172744

  2. Spastin binds to lipid droplets and affects lipid metabolism.

    PubMed

    Papadopoulos, Chrisovalantis; Orso, Genny; Mancuso, Giuseppe; Herholz, Marija; Gumeni, Sentiljana; Tadepalle, Nimesha; Jüngst, Christian; Tzschichholz, Anne; Schauss, Astrid; Höning, Stefan; Trifunovic, Aleksandra; Daga, Andrea; Rugarli, Elena I

    2015-04-01

    Mutations in SPAST, encoding spastin, are the most common cause of autosomal dominant hereditary spastic paraplegia (HSP). HSP is characterized by weakness and spasticity of the lower limbs, owing to progressive retrograde degeneration of the long corticospinal axons. Spastin is a conserved microtubule (MT)-severing protein, involved in processes requiring rearrangement of the cytoskeleton in concert to membrane remodeling, such as neurite branching, axonal growth, midbody abscission, and endosome tubulation. Two isoforms of spastin are synthesized from alternative initiation codons (M1 and M87). We now show that spastin-M1 can sort from the endoplasmic reticulum (ER) to pre- and mature lipid droplets (LDs). A hydrophobic motif comprised of amino acids 57 through 86 of spastin was sufficient to direct a reporter protein to LDs, while mutation of arginine 65 to glycine abolished LD targeting. Increased levels of spastin-M1 expression reduced the number but increased the size of LDs. Expression of a mutant unable to bind and sever MTs caused clustering of LDs. Consistent with these findings, ubiquitous overexpression of Dspastin in Drosophila led to bigger and less numerous LDs in the fat bodies and increased triacylglycerol levels. In contrast, Dspastin overexpression increased LD number when expressed specifically in skeletal muscles or nerves. Downregulation of Dspastin and expression of a dominant-negative variant decreased LD number in Drosophila nerves, skeletal muscle and fat bodies, and reduced triacylglycerol levels in the larvae. Moreover, we found reduced amount of fat stores in intestinal cells of worms in which the spas-1 homologue was either depleted by RNA interference or deleted. Taken together, our data uncovers an evolutionarily conserved role of spastin as a positive regulator of LD metabolism and open up the possibility that dysfunction of LDs in axons may contribute to the pathogenesis of HSP.

  3. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition.

    PubMed

    Bergeron, Karen; Julien, Pierre; Davis, Teresa A; Myre, Alexandre; Thivierge, M Carole

    2007-11-01

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying 0% or a formula containing 3.5% LCn-3PUFAs until 10 or 28 days of age. There was a developmental decline in the insulin sensitivity of amino acid disposal in control pigs during the first month of life, with a slope of -2.24 micromol.kg(-1).h(-1) (P = 0.01) per unit of insulin increment, as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps. LCn-3PUFA feeding blunted this developmental decline, resulting in differing insulin sensitivities (P < 0.001). When protein metabolism was assessed under parenteral feeding-induced hyperinsulinemia, LCn-3PUFAs reduced by 16% whole body oxidative losses of amino acids (from 238 to 231 micromol.kg(-1).h(-1); P = 0.06), allowing 41% more amino acids to accrete into body proteins (from 90 to 127 micromol.kg(-1).h(-1); P = 0.06). The fractional synthetic rate of muscle mixed proteins remained unaltered by the LCn-3PUFA feeding. However, LCn-3PUFAs retarded a developmental increase in the essential-to-nonessential amino acid ratio of the muscle intracellular free pool (P = 0.05). Overall, alterations in metabolism were concomitant with a preferential incorporation of LCn-3PUFAs into muscle total membrane phospholipids (P < 0.001), in contrast to intramuscular triglycerides. These results underscore the potential role of LCn-3PUFAs as regulators of different aspects of protein metabolism in the neonate. PMID:17673528

  4. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition

    PubMed Central

    Bergeron, Karen; Julien, Pierre; Davis, Teresa A.; Myre, Alexandre; Thivierge, M. Carole

    2009-01-01

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying 0% or a formula containing 3.5% LCn-3PUFAs until 10 or 28 days of age. There was a developmental decline in the insulin sensitivity of amino acid disposal in control pigs during the first month of life, with a slope of −2.24 μmol·kg−1·h−1 (P = 0.01) per unit of insulin increment, as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps. LCn-3PUFA feeding blunted this developmental decline, resulting in differing insulin sensitivities (P < 0.001). When protein metabolism was assessed under parenteral feeding-induced hyperinsulinemia, LCn-3PUFAs reduced by 16% whole body oxidative losses of amino acids (from 238 to 231 μmol·kg−1·h−1; P = 0.06), allowing 41% more amino acids to accrete into body proteins (from 90 to 127 μmol·kg−1·h−1; P = 0.06). The fractional synthetic rate of muscle mixed proteins remained unaltered by the LCn-3PUFA feeding. However, LCn-3PUFAs retarded a developmental increase in the essential-to-nonessential amino acid ratio of the muscle intracellular free pool (P = 0.05). Overall, alterations in metabolism were concomitant with a preferential incorporation of LCn-3PUFAs into muscle total membrane phospholipids (P < 0.001), in contrast to intramuscular triglycerides. These results underscore the potential role of LCn-3PUFAs as regulators of different aspects of protein metabolism in the neonate. PMID:17673528

  5. Lipid mediators in the neural cell nucleus: their metabolism, signaling, and association with neurological disorders.

    PubMed

    Farooqui, Akhlaq A

    2009-08-01

    Lipid mediators are important endogenous regulators of neural cell proliferation, differentiation, oxidative stress, inflammation, and apoptosis. They originate from enzymic degradation of glycerophospholipids, sphingolipids, and cholesterol by phospholipases, sphingomyelinases, and cytochrome P450 hydroxylases, respectively. Arachidonic acid-derived lipid mediators are called eicosanoids. Eicosanoids have emerged as key regulators of cell proliferation, differentiation, oxidative stress, and neuroinflammation. Another arachidonic acid-derived lipid mediator is lipoxin. Eicosanoids have proinflammatory effects, whereas lipoxins produce antiinflammatory effects. The crossponding lipid mediators of docosahexaenoic acid metabolism are named docosanoids. They include resolvins, protectins, and neuroprotectins. Docosanoids produce antioxidant, anti-inflammatory, and antiapoptotic effects in the brain tissue. Other glycerophospholipid-derived lipid mediators are platelet-activating factor, lysophosphatidic acid, and endocannabinoids. Degradation of sphingolipids also results in the generation of sphingolipid-derived lipid mediators. Sphingolipid-derived lipid mediators are ceramide, ceramide 1-phosphate, sphingosine, and sphingosine 1-phosphate. They mediate cellular differentiation, cell growth, and apoptosis. Similarly, cholesterol-derived lipid mediators hydroxycholesterol and oxycholesterol produce apoptosis. Most of these mediators originate from the plasma membrane. The nucleus has its own set of enzymes and lipid mediators that originate from the nuclear envelope and matrix. The purpose of this commentary is to describe basic and clinical information on lipid mediators in the nucleus.

  6. Metabolism of acyl-lipids in Chlamydomonas reinhardtii.

    PubMed

    Li-Beisson, Yonghua; Beisson, Fred; Riekhof, Wayne

    2015-05-01

    Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.

  7. Role of lipids in the metabolism and activation of immune cells.

    PubMed

    Hubler, Merla J; Kennedy, Arion J

    2016-08-01

    Immune cell plasticity has extensive implications in the pathogenesis and resolution of metabolic disorders, cancers, autoimmune diseases and chronic inflammatory disorders. Over the past decade, nutritional status has been discovered to influence the immune response. In metabolic disorders such as obesity, immune cells interact with various classes of lipids, which are capable of controlling the plasticity of macrophages and T lymphocytes. The purpose of this review is to discuss lipids and their impact on innate and adaptive immune responses, focusing on two areas: (1) the impact of altering lipid metabolism on immune cell activation, differentiation and function and (2) the mechanism by which lipids such as cholesterol and fatty acids regulate immune cell plasticity.

  8. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    PubMed

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  9. Scoparone affects lipid metabolism in primary hepatocytes using lipidomics

    PubMed Central

    Zhang, Aihua; Qiu, Shi; Sun, Hui; Zhang, Tianlei; Guan, Yu; Han, Ying; Yan, Guangli; Wang, Xijun

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, could provide valuable insights about disease mechanisms. In this study, we present a nontargeted lipidomics strategy to determine cellular lipid alterations after scoparone exposure in primary hepatocytes. Lipid metabolic profiles were analyzed by high-performance liquid chromatography coupled with time-of-flight mass spectrometry, and a novel imaging TransOmics tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. Chemometric and statistical analyses of the obtained lipid fingerprints revealed the global lipidomic alterations and tested the therapeutic effects of scoparone. Identification of ten proposed lipids contributed to the better understanding of the effects of scoparone on lipid metabolism in hepatocytes. The most striking finding was that scoparone caused comprehensive lipid changes, as represented by significant changes of the identificated lipids. The levels of identified PG(19:1(9Z)/14:0), PE(17:1(9Z)/0:0), PE(19:1(9Z)/0:0) were found to be upregulated in ethanol-induced group, whereas the levels in scoparone group were downregulated. Lipid metabolism in primary hepatocytes was changed significantly by scoparone treatment. We believe that this novel approach could substantially broaden the applications of high mass resolution mass spectrometry for cellular lipidomics. PMID:27306123

  10. Perilipin-related protein regulates lipid metabolism in C. elegans

    PubMed Central

    Chughtai, Ahmed Ali; Kaššák, Filip; Kostrouchová, Markéta; Novotný, Jan Philipp; Krause, Michael W.; Kostrouch, Zdenek

    2015-01-01

    Perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue and likely orthologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid droplets similarly as human perilipins 1 and 2. Downregulation or elimination of W01A8.1 affects the appearance of lipid droplets resulting in the formation of large lipid droplets localized around the dividing nucleus during the early zygotic divisions. Visualization of lipid containing structures by CARS microscopy in vivo showed that lipid-containing structures become gradually enlarged during oogenesis and relocate during the first zygotic division around the dividing nucleus. In mutant embryos, the lipid containing structures show defective intracellular distribution in subsequent embryonic divisions and become gradually smaller during further development. In contrast to embryos, lipid-containing structures in enterocytes and in epidermal cells of adult animals are smaller in mutants than in wild type animals. Our results demonstrate the existence of a perilipin-related regulation of fat metabolism in nematodes and provide new possibilities for functional studies of lipid metabolism. PMID:26357594

  11. Metabolism and functions of lipids in myelin.

    PubMed

    Schmitt, Sebastian; Castelvetri, Ludovici Cantuti; Simons, Mikael

    2015-08-01

    Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are lipid-rich and multilamellar membrane stacks. The lipid composition of myelin varies significantly from other biological membranes. Studies in mutant mice targeting various lipid biosynthesis pathways have shown that myelinating glia have a remarkable capacity to compensate the lack of individual lipids. However, compensation fails when it comes to maintaining long-term stability of myelin. Here, we summarize how lipids function in myelin biogenesis, axon-glia communication and in supporting long-term maintenance of myelin. We postulate that change in myelin lipid composition might be relevant for our understanding of aging and demyelinating diseases. This article is part of a Special Issue titled Brain Lipids.

  12. Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage

    PubMed Central

    Villalvilla, Amanda; Gómez, Rodolfo; Largo, Raquel; Herrero-Beaumont, Gabriel

    2013-01-01

    Cartilage is an avascular tissue and cartilage metabolism depends on molecule diffusion from synovial fluid and subchondral bone. Thus, nutrient availability is limited by matrix permeability according to the size and charge of the molecules. Matrix composition limits the access of molecules to chondrocytes, determining cell metabolism and cartilage maintenance. Lipids are important nutrients in chondrocyte metabolism and are available for these cells through de novo synthesis but also through diffusion from surrounding tissues. Cartilage status and osteoarthritis development depend on lipid availability. This paper reviews lipid transport and metabolism in cartilage. We also analyze signalling pathways directly mediated by lipids and those that involve mTOR pathways, both in normal and osteoarthritic cartilage. PMID:24135873

  13. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice.

    PubMed

    Kawakami, Takashige; Hanao, Norihide; Nishiyama, Kaori; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2012-01-01

    Metals and metalloid species are involved in homeostasis in energy systems such as glucose metabolism. Enlarged adipocytes are one of the most important causes of obesity-associated diseases. In this study, we studied the possibility that various metals, namely, CoCl(2), HgCl(2), NaAsO(2) and MnCl(2) pose risk to or have beneficial effects on white adipose tissue (WAT). Exposure to the four metals resulted in decreases in WAT weight and the size of enlarged adipocytes in mice fed a high-fat diet (HFD) without changes in liver weight, suggesting that the size and function of adipocytes are sensitive to metals. Repeated administration of CoCl(2) significantly increased serum leptin, adiponectin and high-density lipoprotein (HDL) cholesterol levels and normalized glucose level and adipose cell size in mice fed HFD. In contrast, HgCl(2) treatment significantly decreased serum leptin level with the down-regulation of leptin mRNA expression in WAT and a reduction in adipocyte size. Next, we tried to investigate possible factors that affect adipocyte size. Repeated exposure to HgCl(2) significantly decreased the expression levels of factors upon the regulation of energy such as the PPARα and PPARγ mRNA expression levels in adipocytes, whereas CoCl(2) had little effect on those genes expressions compared with that in the case of the mice fed HFD with a vehicle. In addition, repeated administration of CoCl(2) enhanced AMPK activation in a dose-dependent manner in the liver, skeletal muscle and WAT; HgCl(2) treatment also enhanced AMPK activation in the liver. Thus, both Co and Hg reduced WAT weight and the size of enlarged adipocytes, possibly mediated by AMKP activation in the mice fed HFD. However, inorganic cobalt may have a preventive role in obesity-related diseases through increased leptin, adiponectin and HDL-cholesterol levels, whereas inorganic mercury may accelerate the development of such diseases. These results may lead to the development of new approaches to

  14. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice

    SciTech Connect

    Kawakami, Takashige Hanao, Norihide; Nishiyama, Kaori; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2012-01-01

    Metals and metalloid species are involved in homeostasis in energy systems such as glucose metabolism. Enlarged adipocytes are one of the most important causes of obesity-associated diseases. In this study, we studied the possibility that various metals, namely, CoCl{sub 2}, HgCl{sub 2}, NaAsO{sub 2} and MnCl{sub 2} pose risk to or have beneficial effects on white adipose tissue (WAT). Exposure to the four metals resulted in decreases in WAT weight and the size of enlarged adipocytes in mice fed a high-fat diet (HFD) without changes in liver weight, suggesting that the size and function of adipocytes are sensitive to metals. Repeated administration of CoCl{sub 2} significantly increased serum leptin, adiponectin and high-density lipoprotein (HDL) cholesterol levels and normalized glucose level and adipose cell size in mice fed HFD. In contrast, HgCl{sub 2} treatment significantly decreased serum leptin level with the down-regulation of leptin mRNA expression in WAT and a reduction in adipocyte size. Next, we tried to investigate possible factors that affect adipocyte size. Repeated exposure to HgCl{sub 2} significantly decreased the expression levels of factors upon the regulation of energy such as the PPARα and PPARγ mRNA expression levels in adipocytes, whereas CoCl{sub 2} had little effect on those genes expressions compared with that in the case of the mice fed HFD with a vehicle. In addition, repeated administration of CoCl{sub 2} enhanced AMPK activation in a dose-dependent manner in the liver, skeletal muscle and WAT; HgCl{sub 2} treatment also enhanced AMPK activation in the liver. Thus, both Co and Hg reduced WAT weight and the size of enlarged adipocytes, possibly mediated by AMKP activation in the mice fed HFD. However, inorganic cobalt may have a preventive role in obesity-related diseases through increased leptin, adiponectin and HDL-cholesterol levels, whereas inorganic mercury may accelerate the development of such diseases. These results may lead

  15. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    PubMed

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis.

  16. Brain Natriuretic Peptide Stimulates Lipid Metabolism through Its Receptor NPR1 and the Glycerolipid Metabolism Pathway in Chicken Adipocytes.

    PubMed

    Huang, H Y; Zhao, G P; Liu, R R; Li, Q H; Zheng, M Q; Li, S F; Liang, Z; Zhao, Z H; Wen, J

    2015-11-01

    Brain natriuretic peptide (BNP) is related to lipid metabolism in mammals, but its effect and the molecular mechanisms underlying it in chickens are incompletely understood. We found that the level of natriuretic peptide precursor B (NPPB, which encodes BNP) mRNA expression in high-abdominal-fat chicken groups was significantly higher than that of low-abdominal-fat groups. Partial correlations indicated that changes in the weight of abdominal fat were positively correlated with NPPB mRNA expression level. In vitro, compared with the control group, preadipocytes with NPPB interference showed reduced levels of proliferation, differentiation, and glycerin in media. Treatments of cells with BNP led to enhanced proliferation and differentiation of cells and glycerin concentration, and mRNA expression of its receptor natriuretic peptide receptor 1 (NPR1) was upregulated significantly. In cells exposed to BNP, 482 differentially expressed genes were identified compared with controls without BNP. Four genes known to be related to lipid metabolism (diacylglycerol kinase; lipase, endothelial; 1-acylglycerol-3-phosphate O-acyltransferase 1; and 1-acylglycerol-3-phosphate O-acyltransferase 2) were enriched in the glycerolipid metabolism pathway and expressed differentially. In conclusion, BNP stimulates the proliferation, differentiation, and lipolysis of preadipocytes through upregulation of the levels of expression of its receptor NPR1 and key genes enriched in the glycerolipid metabolic pathway. PMID:26463554

  17. Lipid metabolism and body composition in Gclm(-/-) mice

    SciTech Connect

    Kendig, Eric L.; Chen, Ying; Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N.; Genter, Mary Beth; Nebert, Daniel W.; Shertzer, Howard G.

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  18. Torsins Are Essential Regulators of Cellular Lipid Metabolism.

    PubMed

    Grillet, Micheline; Dominguez Gonzalez, Beatriz; Sicart, Adria; Pöttler, Maria; Cascalho, Ana; Billion, Karolien; Hernandez Diaz, Sergio; Swerts, Jef; Naismith, Teresa V; Gounko, Natalia V; Verstreken, Patrik; Hanson, Phyllis I; Goodchild, Rose E

    2016-08-01

    Torsins are developmentally essential AAA+ proteins, and mutation of human torsinA causes the neurological disease DYT1 dystonia. They localize in the ER membranes, but their cellular function remains unclear. We now show that dTorsin is required in Drosophila adipose tissue, where it suppresses triglyceride levels, promotes cell growth, and elevates membrane lipid content. We also see that human torsinA at the inner nuclear membrane is associated with membrane expansion and elevated cellular lipid content. Furthermore, the key lipid metabolizing enzyme, lipin, is mislocalized in dTorsin-KO cells, and dTorsin increases levels of the lipin substrate, phosphatidate, and reduces the product, diacylglycerol. Finally, genetic suppression of dLipin rescues dTorsin-KO defects, including adipose cell size, animal growth, and survival. These findings identify that torsins are essential regulators of cellular lipid metabolism and implicate disturbed lipid biology in childhood-onset DYT1 dystonia. PMID:27453503

  19. [Effects of essential oil on lipid peroxidation and lipid metabolism in patients with chronic bronchitis].

    PubMed

    Siurin, S A

    1997-01-01

    Natural concentrations of some essential oils were examined for effects on the system lipid peroxidation-antioxidant defense and lipid metabolism in 150 patients with chronic bronchitis. Lowering of plasm levels of dienic conjugates and ketons, activation of catalase in red cells characteristic of antioxidant effect were observed in exposure to essential oils of rosemary, basil, fir, eucalyptus. Lavender essential oil promotes normalization of the level of total lipids, ratio of total cholesterol to its alpha-fraction. PMID:9490339

  20. The demands of lactation promote differential regulation of lipid stores in fasting elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Champagne, Cory D; Crocker, Daniel E; Costa, Daniel P

    2016-01-01

    Fasting animals must ration stored reserves appropriately for metabolic demands. Animals that experience fasting concomitant with other metabolically demanding activities are presented with conflicting demands of energy conservation and expenditure. Our objective was to understand how fasting northern elephant seals regulate the mobilization of lipid reserves and subsequently milk lipid content during lactation. We sampled 36 females early and 39 at the end of lactation. To determine the separate influences of lactation from fasting, we also sampled fasting but non-lactating females early and late (8 and 6 seals, respectively) in their molting fasting period. Mass and adiposity were measured, as well as circulating non-esterified fatty acid (NEFA), triacylglycerol (TAG), cortisol, insulin and growth hormone levels. Milk was collected from lactating females. Milk lipid content increased from 31% in early to 51% in late lactation. In lactating females plasma NEFA was positively related to cortisol and negatively related to insulin, but in molting seals, only variation in cortisol was related to NEFA. Milk lipid content varied with mass, adiposity, NEFA, TAG, cortisol and insulin. Surprisingly, growth hormone concentration was not related to lipid metabolites or milk lipid. Suppression of insulin release appears to be the differential regulator of lipolysis in lactating versus molting seals, facilitating mobilization of stored lipids and maintenance of high NEFA concentrations for milk synthesis. Milk lipid was strongly impacted by the supply of substrate to the mammary gland, indicating regulation at the level of mobilization of lipid reserves.

  1. The demands of lactation promote differential regulation of lipid stores in fasting elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Champagne, Cory D; Crocker, Daniel E; Costa, Daniel P

    2016-01-01

    Fasting animals must ration stored reserves appropriately for metabolic demands. Animals that experience fasting concomitant with other metabolically demanding activities are presented with conflicting demands of energy conservation and expenditure. Our objective was to understand how fasting northern elephant seals regulate the mobilization of lipid reserves and subsequently milk lipid content during lactation. We sampled 36 females early and 39 at the end of lactation. To determine the separate influences of lactation from fasting, we also sampled fasting but non-lactating females early and late (8 and 6 seals, respectively) in their molting fasting period. Mass and adiposity were measured, as well as circulating non-esterified fatty acid (NEFA), triacylglycerol (TAG), cortisol, insulin and growth hormone levels. Milk was collected from lactating females. Milk lipid content increased from 31% in early to 51% in late lactation. In lactating females plasma NEFA was positively related to cortisol and negatively related to insulin, but in molting seals, only variation in cortisol was related to NEFA. Milk lipid content varied with mass, adiposity, NEFA, TAG, cortisol and insulin. Surprisingly, growth hormone concentration was not related to lipid metabolites or milk lipid. Suppression of insulin release appears to be the differential regulator of lipolysis in lactating versus molting seals, facilitating mobilization of stored lipids and maintenance of high NEFA concentrations for milk synthesis. Milk lipid was strongly impacted by the supply of substrate to the mammary gland, indicating regulation at the level of mobilization of lipid reserves. PMID:26407500

  2. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism

    PubMed Central

    Miyares, Rosa L.; de Rezende, Vitor B.; Farber, Steven A.

    2014-01-01

    Dyslipidemias are a major cause of morbidity and mortality in the world, particularly in developed nations. Investigating lipid and lipoprotein metabolism in experimentally tractable animal models is a crucial step towards understanding and treating human dyslipidemias. The zebrafish, a well-established embryological model, is emerging as a notable system for studies of lipid metabolism. Here, we describe the value of the lecithotrophic, or yolk-metabolizing, stages of the zebrafish as a model for studying lipid metabolism and lipoprotein transport. We demonstrate methods to assay yolk lipid metabolism in embryonic and larval zebrafish. Injection of labeled fatty acids into the zebrafish yolk promotes efficient uptake into the circulation and rapid metabolism. Using a genetic model for abetalipoproteinemia, we show that the uptake of labeled fatty acids into the circulation is dependent on lipoprotein production. Furthermore, we examine the metabolic fate of exogenously delivered fatty acids by assaying their incorporation into complex lipids. Moreover, we demonstrate that this technique is amenable to genetic and pharmacologic studies. PMID:24812437

  3. Assessing compartmentalized flux in lipid metabolism with isotopes.

    PubMed

    Allen, Doug K

    2016-09-01

    Metabolism in plants takes place across multiple cell types and within distinct organelles. The distributions equate to spatial heterogeneity; though the limited means to experimentally assess metabolism frequently involve homogenizing tissues and mixing metabolites from different locations. Most current isotope investigations of metabolism therefore lack the ability to resolve spatially distinct events. Recognition of this limitation has resulted in inspired efforts to advance metabolic flux analysis and isotopic labeling techniques. Though a number of these efforts have been applied to studies in central metabolism; recent advances in instrumentation and techniques present an untapped opportunity to make similar progress in lipid metabolism where the use of stable isotopes has been more limited. These efforts will benefit from sophisticated radiolabeling reports that continue to enrich our knowledge on lipid biosynthetic pathways and provide some direction for stable isotope experimental design and extension of MFA. Evidence for this assertion is presented through the review of several elegant stable isotope studies and by taking stock of what has been learned from radioisotope investigations when spatial aspects of metabolism were considered. The studies emphasize that glycerolipid production occurs across several locations with assembly of lipids in the ER or plastid, fatty acid biosynthesis occurring in the plastid, and the generation of acetyl-CoA and glycerol-3-phosphate taking place at multiple sites. Considering metabolism in this context underscores the cellular and subcellular organization that is important to enhanced production of glycerolipids in plants. An attempt is made to unify salient features from a number of reports into a diagrammatic model of lipid metabolism and propose where stable isotope labeling experiments and further flux analysis may help address questions in the field. This article is part of a Special Issue entitled: Plant Lipid

  4. Methionine restriction on lipid metabolism and its possible mechanisms.

    PubMed

    Zhou, Xihong; He, Liuqin; Wan, Dan; Yang, Huansheng; Yao, Kang; Wu, Guoyao; Wu, Xin; Yin, Yulong

    2016-07-01

    Methionine restriction (MR) exerts many beneficial effects, such as increasing longevity, decreasing oxidative damage and alleviating inflammatory responses. Much attention has been recently focused on the effects of MR on metabolic health, especially lipid metabolism, since the increasing incidence of obesity, insulin resistance and type 2 diabetes causes a worldwide health problem. In general, MR is considered to increase de novo lipogenesis, lipolysis and fatty acid oxidation, with a result of reduced fat accumulation. However, different responses in lipid metabolism between adipose tissue and liver are declared. Therefore, in this review, we will focus on the changes of lipid metabolism responses to dietary MR. Moreover, the comparison of alterations of fat metabolism responses to dietary MR between adipose tissue and liver, and the comparison of changes between rodents and pigs is made to illustrate the tissue- and species-specific responses. In addition, the possible mechanisms that might be engaged in the regulation of MR diet on lipid metabolism are also discussed. PMID:27156065

  5. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth

    PubMed Central

    Trentacoste, Emily M.; Shrestha, Roshan P.; Smith, Sarah R.; Glé, Corine; Hartmann, Aaron C.; Hildebrand, Mark; Gerwick, William H.

    2013-01-01

    Biologically derived fuels are viable alternatives to traditional fossil fuels, and microalgae are a particularly promising source, but improvements are required throughout the production process to increase productivity and reduce cost. Metabolic engineering to increase yields of biofuel-relevant lipids in these organisms without compromising growth is an important aspect of advancing economic feasibility. We report that the targeted knockdown of a multifunctional lipase/phospholipase/acyltransferase increased lipid yields without affecting growth in the diatom Thalassiosira pseudonana. Antisense-expressing knockdown strains 1A6 and 1B1 exhibited wild-type–like growth and increased lipid content under both continuous light and alternating light/dark conditions. Strains 1A6 and 1B1, respectively, contained 2.4- and 3.3-fold higher lipid content than wild-type during exponential growth, and 4.1- and 3.2-fold higher lipid content than wild-type after 40 h of silicon starvation. Analyses of fatty acids, lipid classes, and membrane stability in the transgenic strains suggest a role for this enzyme in membrane lipid turnover and lipid homeostasis. These results demonstrate that targeted metabolic manipulations can be used to increase lipid accumulation in eukaryotic microalgae without compromising growth. PMID:24248374

  6. Expression profiling and comparative sequence derived insights into lipid metabolism

    SciTech Connect

    Callow, Matthew J.; Rubin, Edward M.

    2001-12-19

    Expression profiling and genomic DNA sequence comparisons are increasingly being applied to the identification and analysis of the genes involved in lipid metabolism. Not only has genome-wide expression profiling aided in the identification of novel genes involved in important processes in lipid metabolism such as sterol efflux, but the utilization of information from these studies has added to our understanding of the regulation of pathways participating in the process. Coupled with these gene expression studies, cross species comparison, searching for sequences conserved through evolution, has proven to be a powerful tool to identify important non-coding regulatory sequences as well as the discovery of novel genes relevant to lipid biology. An example of the value of this approach was the recent chance discovery of a new apolipoprotein gene (apo AV) that has dramatic effects upon triglyceride metabolism in mice and humans.

  7. Peroxisomes: a Nexus for Lipid Metabolism and Cellular Signaling

    PubMed Central

    Lodhi, Irfan J.; Semenkovich, Clay F.

    2014-01-01

    Peroxisomes are often dismissed as the cellular hoi polloi, relegated to cleaning up reactive oxygen chemical debris discarded by other organelles. However, their functions extend far beyond hydrogen peroxide metabolism. Peroxisomes are intimately associated with lipid droplets and mitochondria, and their ability to carry out fatty acid oxidation and lipid synthesis, especially the production of ether lipids, may be critical for generating cellular signals required for normal physiology. Here we review the biology of peroxisomes and their potential relevance to human disorders including cancer, obesity-related diabetes, and degenerative neurologic disease. PMID:24508507

  8. Liver X receptors in lipid metabolism: opportunities for drug discovery.

    PubMed

    Hong, Cynthia; Tontonoz, Peter

    2014-06-01

    The liver X receptors (LXRs) are pivotal regulators of lipid homeostasis in mammals. These transcription factors control the expression of a battery of genes involved in the uptake, transport, efflux and excretion of cholesterol in a tissue-dependent manner. The identification of the LXRs, and an increased understanding of the mechanisms by which LXR signalling regulates lipid homeostasis in different tissues (including the liver, intestine and brain), has highlighted new opportunities for therapeutic intervention in human metabolism. New strategies for the pharmacological manipulation of LXRs and their target genes offer promise for the treatment of human diseases in which lipids have a central role, including atherosclerosis and Alzheimer's disease.

  9. PPARβ/δ and lipid metabolism in the heart.

    PubMed

    Palomer, Xavier; Barroso, Emma; Zarei, Mohammad; Botteri, Gaia; Vázquez-Carrera, Manuel

    2016-10-01

    Cardiac lipid metabolism is the focus of attention due to its involvement in the development of cardiac disorders. Both a reduction and an increase in fatty acid utilization make the heart more prone to the development of lipotoxic cardiac dysfunction. The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR)β/δ modulates different aspects of cardiac fatty acid metabolism, and targeting this nuclear receptor can improve heart diseases caused by altered fatty acid metabolism. In addition, PPARβ/δ regulates glucose metabolism, the cardiac levels of endogenous antioxidants, mitochondrial biogenesis, cardiomyocyte apoptosis, the insulin signaling pathway and lipid-induced myocardial inflammatory responses. As a result, PPARβ/δ ligands can improve cardiac function and ameliorate the pathological progression of cardiac hypertrophy, heart failure, cardiac oxidative damage, ischemia-reperfusion injury, lipotoxic cardiac dysfunction and lipid-induced cardiac inflammation. Most of these findings have been observed in preclinical studies and it remains to be established to what extent these intriguing observations can be translated into clinical practice. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.

  10. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    SciTech Connect

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas; Heeren, Joerg

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  11. Cinnamon polyphenols regulate multiple metabolic pathways involved in intestinal lipid metabolism of primary small intestinal enterocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways including those that regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport and me...

  12. Control of Differentiation of a Mammary Cell Line by Lipids

    NASA Astrophysics Data System (ADS)

    Dulbecco, Renato; Bologna, Mauro; Unger, Michael

    1980-03-01

    A rat mammary cell line (LA7) undergoes spontaneous differentiation into domes due to production of specific inducers by the cells. Some of these inducers may be lipids, and we show that lipids regulate this differentiation as both inducers and inhibitors. One inhibitor is the tumor promoter tetradecanoyl-13 phorbol 12-acetate. The inducers are saturated fatty acids of two groups: butyric acid and acids with chain lengths from C13 to C16, especially myristic acid (C14). Other inducers are myristoyl and palmitoyl lysolecithins, myristic acid methyl ester, and two cationic detergents with a tetradecenyl chain. We propose that the lipids with a C14-C16 alkyl chain affect differentiation by recognizing specific receptors through their alkyl chains and that the effects obtained depend on the head groups. These lipids may be physiological regulators in the mammary gland.

  13. Computationally Modeling Lipid Metabolism and Aging: A Mini-review

    PubMed Central

    Mc Auley, Mark T.; Mooney, Kathleen M.

    2014-01-01

    One of the greatest challenges in biology is to improve the understanding of the mechanisms which underpin aging and how these affect health. The need to better understand aging is amplified by demographic changes, which have caused a gradual increase in the global population of older people. Aging western populations have resulted in a rise in the prevalence of age-related pathologies. Of these diseases, cardiovascular disease is the most common underlying condition in older people. The dysregulation of lipid metabolism due to aging impinges significantly on cardiovascular health. However, the multifaceted nature of lipid metabolism and the complexities of its interaction with aging make it challenging to understand by conventional means. To address this challenge computational modeling, a key component of the systems biology paradigm is being used to study the dynamics of lipid metabolism. This mini-review briefly outlines the key regulators of lipid metabolism, their dysregulation, and how computational modeling is being used to gain an increased insight into this system. PMID:25750699

  14. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls

    PubMed Central

    Singh, Mahavir; Kapoor, Aniruddh; Bhatnagar, Aruni

    2015-01-01

    Extensive research has shown that increased production of reactive oxygen species (ROS) results in tissue injury under a variety of pathological conditions and chronic degenerative diseases. While ROS are highly reactive and can incite significant injury, polyunsaturated lipids in membranes and lipoproteins are their main targets. ROS-triggered lipid peroxidation reactions generate a range of reactive carbonyl species (RCS), and these RCS spread and amplify ROS-related injury. Several RCS generated in oxidizing lipids, such as 4-hydroxy trans-2-nonenal (HNE), 4-oxo-2-(E)-nonenal (ONE), acrolein, malondialdehyde (MDA) and phospholipid aldehydes have been shown to be produced under conditions of oxidative stress and contribute to tissue injury and dysfunction by depleting glutathione and other reductants leading to the modification of proteins, lipids, and DNA. To prevent tissue injury, these RCS are metabolized by several oxidoreductases, including members of the aldo-keto reductase (AKR) superfamily, aldehyde dehydrogenases (ALDHs), and alcohol dehydrogenases (ADHs). Metabolism via these enzymes results in RCS inactivation and detoxification, although under some conditions, it can also lead to the generation of signaling molecules that trigger adaptive responses. Metabolic transformation and detoxification of RCS by oxidoreductases prevent indiscriminate ROS toxicity, while at the same time, preserving ROS signaling. A better understanding of RCS metabolism by oxidoreductases could lead to the development of novel therapeutic interventions to decrease oxidative injury in several disease states and to enhance resistance to ROS-induced toxicity. PMID:25559856

  15. Emerging role of microRNAs in lipid metabolism

    PubMed Central

    Yang, Zhihong; Cappello, Tyler; Wang, Li

    2015-01-01

    microRNAs (miRNAs or miRs) are small non-coding RNAs that are involved in post-transcriptional regulation of their target genes in a sequence-specific manner. Emerging evidence demonstrates that miRNAs are critical regulators of lipid synthesis, fatty acid oxidation and lipoprotein formation and secretion. Dysregulation of miRNAs disrupts gene regulatory network, leading to metabolic syndrome and its related diseases. In this review, we introduced epigenetic and transcriptional regulation of miRNAs expression. We emphasized on several representative miRNAs that are functionally involved into lipid metabolism, including miR-33/33⁎, miR122, miR27a/b, miR378/378⁎, miR-34a and miR-21. Understanding the function of miRNAs in lipid homeostasis may provide potential therapeutic strategies for fatty liver disease. PMID:26579440

  16. Pathogenesis of permeability barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism

    PubMed Central

    Elias, Peter M.; Williams, Mary L.; Holleran, Walter M.; Jiang, Yan J.; Schmuth, Matthias

    2010-01-01

    Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders have provided unique models to dissect physiologic processes in normal epidermis and the pathophysiology of more common scaling conditions. In most of these disorders, a permeability barrier abnormality “drives” pathophysiology through stimulation of epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO4) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase separation. However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional roles of CSO4 as a regulator of both epidermal differentiation and corneodesmosome degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of glucosylceramides as a result of to β-glucocerebrosidase deficiency). Finally, failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating epidermal proliferation, but also by inducing inflammation. PMID:18245815

  17. Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism.

    PubMed

    Li, Ruixi; Sun, Ruobai; Hicks, Glenn R; Raikhel, Natasha V

    2015-01-01

    The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red staining suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.

  18. Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus.

    PubMed

    Hoiczyk, Egbert; Ring, Michael W; McHugh, Colleen A; Schwär, Gertrud; Bode, Edna; Krug, Daniel; Altmeyer, Matthias O; Lu, Jeff Zhiqiang; Bode, Helge B

    2009-10-01

    Cell differentiation is widespread during the development of multicellular organisms, but rarely observed in prokaryotes. One example of prokaryotic differentiation is the gram-negative bacterium Myxococcus xanthus. In response to starvation, this gliding bacterium initiates a complex developmental programme that results in the formation of spore-filled fruiting bodies. How the cells metabolically support the necessary complex cellular differentiation from rod-shaped vegetative cells into spherical spores is unknown. Here, we present evidence that intracellular lipid bodies provide the necessary metabolic fuel for the development of spores. Formed at the onset of starvation, these lipid bodies gradually disappear until they are completely used up by the time the cells have become mature spores. Moreover, it appears that lipid body formation in M. xanthus is an important initial step indicating cell fate during differentiation. Upon starvation, two subpopulations of cells occur: cells that form lipid bodies invariably develop into spores, while cells that do not form lipid bodies end up becoming peripheral rods, which are cells that lack signs of morphological differentiation and stay in a vegetative-like state. These data indicate that lipid bodies not only fuel cellular differentiation but that their formation represents the first known morphological sign indicating cell fate during differentiation. PMID:19788540

  19. Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus

    PubMed Central

    Ring, Michael W.; McHugh, Colleen A.; Schwär, Gertrud; Bode, Edna; Krug, Daniel; Altmeyer, Matthias O.; Lu, Jeff Zhiqiang

    2010-01-01

    Summary Cell differentiation is widespread during the development of multicellular organisms, but rarely observed in prokaryotes. One example of prokaryotic differentiation is the Gramnegative bacterium Myxococcus xanthus. In response to starvation, this gliding bacterium initiates a complex developmental program that results in the formation of spore-filled fruiting bodies. How the cells metabolically support the necessary complex cellular differentiation from rod-shaped vegetative cells into spherical spores is unknown. Here, we present evidence that intra-cellular lipid bodies provide the necessary metabolic fuel for the development of spores. Formed at the onset of starvation, these lipid bodies gradually disappear until they are completely used up by the time the cells have become mature spores. Moreover, it appears that lipid body formation in M. xanthus is an important initial step indicating cell fate during differentiation. Upon starvation, two subpopulations of cells occur: cells that form lipid bodies invariably develop into spores, while cells that do not form lipid bodies end up becoming peripheral rods, which are cells that lack signs of morphological differentiation and stay in a vegetative-like state. These data indicate that lipid bodies not only fuel cellular differentiation but that their formation represents the first known morphological sign indicating cell fate during differentiation. PMID:19788540

  20. Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism.

    PubMed

    Porporato, Paolo E; Payen, Valéry L; Baselet, Bjorn; Sonveaux, Pierre

    2016-04-01

    Metabolic alterations are a hallmark of cancer controlling tumor progression and metastasis. Among the various metabolic phenotypes encountered in tumors, this review focuses on the contributions of mitochondria, lipid and amino acid metabolism to the metastatic process. Tumor cells require functional mitochondria to grow, proliferate and metastasize, but shifts in mitochondrial activities confer pro-metastatic traits encompassing increased production of mitochondrial reactive oxygen species (mtROS), enhanced resistance to apoptosis and the increased or de novo production of metabolic intermediates of the TCA cycle behaving as oncometabolites, including succinate, fumarate, and D-2-hydroxyglutarate that control energy production, biosynthesis and the redox state. Lipid metabolism and the metabolism of amino acids, such as glutamine, glutamate and proline are also currently emerging as focal control points of cancer metastasis.

  1. Follistatin promotes adipocyte differentiation, browning, and energy metabolism.

    PubMed

    Braga, Melissa; Reddy, Srinivasa T; Vergnes, Laurent; Pervin, Shehla; Grijalva, Victor; Stout, David; David, John; Li, Xinmin; Tomasian, Venina; Reid, Christopher B; Norris, Keith C; Devaskar, Sherin U; Reue, Karen; Singh, Rajan

    2014-03-01

    Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-β superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1α was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism. PMID:24443561

  2. Retinal lipid and glucose metabolism dictates angiogenesis through lipid sensor Ffar1

    PubMed Central

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L.; Shao, Zhuo; Evans, Lucy P.; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M.; Hurst, Christian G.; Hatton, Colman J.; Cui, Zhenghao; Pierce, Kerry A.; Bherer, Patrick; Aguilar, Edith; Powner, Michael B.; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A.; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B.; Smith, Lois E.H.

    2016-01-01

    Tissues with high metabolic rates often use lipid as well as glucose for energy, conferring a survival advantage during feast and famine.1 Current dogma suggests that high-energy consuming photoreceptors depend on glucose.2,3 Here we show that retina also uses fatty acids (FA) β-oxidation for energy. Moreover, we identify a lipid sensor Ffar1 that curbs glucose uptake when FA are available. Very low-density lipoprotein receptor (VLDLR), expressed in tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived FA.4,5 Vldlr is present in photoreceptors.6 In Vldlr−/− retinas, Ffar1, sensing high circulating lipid levels despite decreased FA uptake5, suppresses glucose transporter Glut1. This impaired glucose entry into photoreceptors results in a dual lipid/glucose fuel shortage and reduction in the Krebs cycle intermediate α-ketoglutarate (KG). Low α-KG levels promote hypoxia-induced factor-1α (Hif1a) stabilization and vascular endothelial growth factor (Vegfa) secretion by starved Vldlr−/− photoreceptors, attracting neovessels to supply fuel. These aberrant vessels invading normally avascular photoreceptors in Vldlr−/− retinas are reminiscent of retinal angiomatous proliferation (RAP), a subset of neovascular age-related macular degeneration (AMD)7, associated with high vitreous VEGF levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in neovascular AMD and other retinal diseases. PMID:26974308

  3. Lipophorin Drives Lipid Incorporation and Metabolism in Insect Trypanosomatids.

    PubMed

    Ximenes, Aline dos Anjos; Silva-Cardoso, Lívia; De Cicco, Nuccia Nicole T; Pereira, Miria G; Lourenço, Daniela C; Fampa, Patricia; Folly, Evelize; Cunha-e-Silva, Narcisa L; Silva-Neto, Mario A C; Atella, Georgia C

    2015-07-01

    Insect trypanosomatids are inhabitants of the insect digestive tract. These parasites can be either monoxenous or dixenous. Plant trypanosomatids are known as insect trypanosomatids once they and are transmitted by phytophagous insects. Such parasites can be found in latex, phloem, fruits and seeds of many plant families. Infections caused by these pathogens are a major cause of serious economic losses. Studies by independent groups have demonstrated the metabolic flow of lipids from the vertebrate host to trypanosomatids. This mechanism is usually present when parasites possess an incomplete de novo lipid biosynthesis pathway. Here, we show that both insect trypanosomatids Phytomonas françai and Leptomonas wallacei incorporate (3)H-palmitic acid and inorganic phosphate. These molecules are used for lipid biosynthesis. Moreover, we have isolated the main hemolymphatic lipoprotein, Lipophorin (Lp) from Oncopeltus fasciatus, the natural insect vector of such parasites. Both parasites were able to incorporate Lp to be utilized both as a lipid and protein source for their metabolism. Also, we have observed the presence of Lp binding sites in the membrane of a parasite. In conclusion, we believe that the elucidation of trypanosomatid metabolic pathways will lead to a better understanding of parasite-host interactions and the identification of novel potential chemotherapy targets.

  4. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences.

    PubMed

    Vaziri, Nosratola D

    2016-07-01

    Nephrotic syndrome results in hyperlipidemia and profound alterations in lipid and lipoprotein metabolism. Serum cholesterol, triglycerides, apolipoprotein B (apoB)-containing lipoproteins (very low-density lipoprotein [VLDL], immediate-density lipoprotein [IDL], and low-density lipoprotein [LDL]), lipoprotein(a) (Lp[a]), and the total cholesterol/high-density lipoprotein (HDL) cholesterol ratio are increased in nephrotic syndrome. This is accompanied by significant changes in the composition of various lipoproteins including their cholesterol-to-triglyceride, free cholesterol-to-cholesterol ester, and phospholipid-to-protein ratios. These abnormalities are mediated by changes in the expression and activities of the key proteins involved in the biosynthesis, transport, remodeling, and catabolism of lipids and lipoproteins including apoproteins A, B, C, and E; 3-hydroxy-3-methylglutaryl-coenzyme A reductase; fatty acid synthase; LDL receptor; lecithin cholesteryl ester acyltransferase; acyl coenzyme A cholesterol acyltransferase; HDL docking receptor (scavenger receptor class B, type 1 [SR-B1]); HDL endocytic receptor; lipoprotein lipase; and hepatic lipase, among others. The disorders of lipid and lipoprotein metabolism in nephrotic syndrome contribute to the development and progression of cardiovascular and kidney disease. In addition, by limiting delivery of lipid fuel to the muscles for generation of energy and to the adipose tissues for storage of energy, changes in lipid metabolism contribute to the reduction of body mass and impaired exercise capacity. This article provides an overview of the mechanisms, consequences, and treatment of lipid disorders in nephrotic syndrome. PMID:27165836

  5. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism.

    PubMed

    Michalski, M C; Genot, C; Gayet, C; Lopez, C; Fine, F; Joffre, F; Vendeuvre, J L; Bouvier, J; Chardigny, J M; Raynal-Ljutovac, K

    2013-10-01

    On a nutritional standpoint, lipids are now being studied beyond their energy content and fatty acid (FA) profiles. Dietary FA are building blocks of a huge diversity of more complex molecules such as triacylglycerols (TAG) and phospholipids (PL), themselves organised in supramolecular structures presenting different thermal behaviours. They are generally embedded in complex food matrixes. Recent reports have revealed that molecular and supramolecular structures of lipids and their liquid or solid state at the body temperature influence both the digestibility and metabolism of dietary FA. The aim of the present review is to highlight recent knowledge on the impact on FA digestion, absorption and metabolism of: (i) the intramolecular structure of TAG; (ii) the nature of the lipid molecules carrying FA; (iii) the supramolecular organization and physical state of lipids in native and formulated food products and (iv) the food matrix. Further work should be accomplished now to obtain a more reliable body of evidence and integrate these data in future dietary recommendations. Additionally, innovative lipid formulations in which the health beneficial effects of either native or recomposed structures of lipids will be taken into account can be foreseen.

  6. Gene expression profiling reveals Nef induced deregulation of lipid metabolism in HIV-1 infected T cells.

    PubMed

    Shrivastava, Surya; Trivedi, Jay; Mitra, Debashis

    2016-03-25

    Human Immunodeficiency Virus-1 (HIV-1) encodes a 27 kDa Negative Factor or Nef protein, which is increasingly proving to be a misnomer. Nef seems to be crucial for AIDS progression as individuals infected with nef-deleted strain of HIV were reported to become Long Term Non Progressors (LTNP). These findings necessitate tracing of Nef's footprint on landscape of cellular transcriptome favoring HIV-1 pathogenesis. We have tried to explore effect of Nef on cellular gene expression profile in conjunction with rest of HIV-1 proteins. Our results show that 237 genes are differentially regulated due to the presence of Nef during infection, which belong to several broad categories like "signaling", "apoptosis", "transcription" and "lipid metabolism" in gene ontology analysis. Furthermore, our results show that Nef causes disruption of lipid content in HIV-1 infected T cells. Molecular inhibitors of lipid metabolism like Atorvastatin and Ranolazine were found to have profound effect on wild type virus as compared to nef-deleted HIV-1. Thus our results suggest that interference in lipid metabolism is a potential mechanism through which Nef contributes in enhancing HIV-1 pathogenesis. PMID:26915805

  7. Studying Lipid Metabolism and Transport During Zebrafish Development.

    PubMed

    Zeituni, Erin M; Farber, Steven A

    2016-01-01

    The zebrafish model facilitates the study of lipid metabolism and transport during development. Here, we outline methods to introduce traceable fluorescent or radiolabeled fatty acids into zebrafish embryos and larvae at various developmental stages. Labeled fatty acids can be injected into the large yolk cell prior to the development of digestive organs when the larvae is entirely dependent on the yolk for its nutrition (lecithotrophic state). Once zebrafish are able to consume exogenous food, labeled fatty acids can be incorporated into their food. Our group and others have demonstrated that the transport and processing of these injected or ingested fatty acid analogs can be followed through microscopy and/or biochemical analysis. These techniques can be easily combined with targeted antisense approaches, transgenics, or drug treatments (see Note 1 ), allowing studies of lipid cell biology and metabolism that are exceedingly difficult or impossible in mammals. PMID:27464812

  8. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction.

    PubMed

    Park, Ju Yeon; Lee, Sang-Hak; Shin, Min-Jeong; Hwang, Geum-Sook

    2015-01-01

    Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.

  9. Sex-Specific Differences in Lipid and Glucose Metabolism

    PubMed Central

    Varlamov, Oleg; Bethea, Cynthia L.; Roberts, Charles T.

    2014-01-01

    Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e., females store more lipids and have higher whole-body insulin sensitivity than males, while males tend to oxidize more lipids than females. These patterns are influenced by the menstrual phase in females, and by nutritional status and exercise intensity in both sexes. This minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their regulation by sex hormones, with a primary emphasis on studies in humans and the most relevant pre-clinical model of human physiology, non-human primates. PMID:25646091

  10. Integration of Cytokine Biology and Lipid Metabolism in Stroke**

    PubMed Central

    Adibhatla, Rao Muralikrishna; Dempsey, R.; Hatcher, J. F.

    2007-01-01

    Cytokines regulate the innate and adaptive immune responses and are pleiotropic, redundant and multifunctional. Expression of most cytokines, including TNF-α and IL-1α/ß, is very low in normal brain. Metabolism of lipids is of particular interest due to their high concentration in the brain. Inflammatory response after stroke suggests that cytokines (TNF-α, IL-1 α/ß, IL-6), affect the phospholipid metabolism and subsequent production of eicosanoids, ceramide, and ROS that may potentiate brain injury. Phosphatidylcholine and sphingomyelin are source for lipid messengers. Sphingomyelin synthase serves as a bridge between metabolism of glycerolipids and sphingolipids. TNF-α and IL-1 α/ß can induce phospholipases (A2, C, and D) and sphingomyelinases, and concomitantly proteolyse phosphatidylcholine and sphingomyelin synthesizing enzymes. Together, these alterations contribute to loss of phosphatidylcholine and sphingomyelin after stroke that can be attenuated by inhibiting TNF-α or IL-1 α/ß signaling. Inflammatory responses are instrumental in the formation and destabilization of atherosclerotic plaques. Secretory PLA2 IIA is found in human atherosclerotic lesions and is implicated in initiation, progression and maturation of atherosclerosis, a risk factor for stroke. Lipoprotein-PLA2, part of apolipoprotein B-100 of LDL, plays a role in vascular inflammation and coronary endothelial dysfunction. Cytokine antagonism attenuated secretory PLA2 IIA actions, suggesting cytokine-lipid integration studies will lead to new concepts contributing to bench-to-bedside transition for stroke therapy. PMID:17981627

  11. Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism

    PubMed Central

    Li, Hong; Ma, Zheng; Jia, Lijuan; Li, Yanmin; Xu, Chunlin; Wang, Taian; Han, Ruili; Jiang, Ruirui; Li, Zhuanjian; Sun, Guirong; Kang, Xiangtao; Liu, Xiaojun

    2016-01-01

    Laying performance is an important economic trait in hens, and this physiological process is largely influenced by the liver function. The livers of hens at 20- and 30-week-old stages were investigated using the next generation sequencing to identify the differences of microRNA expression profiles. Compared with the 20-week-old hens, 67 down- and 13 up-regulated microRNAs were verified to be significant differentially expressed (false discovery rate, FDR ≤ 0.05) (SDE) in the 30-week-old. We also identified 13 down- and 6 up-regulated novel differentially expressed (DE) microRNAs. miR-22-3p and miR-146b-5p, which exhibit critical roles in mammalian lipid metabolism, showed the most abundant expression and the highest fold-change, respectively. A total of 648 potential target genes of the SDE microRNAs were identified through an integrated analysis of microRNAs and the DE genes obtained in previous RNA-sequencing, including FADS1, FADS2, ELOVL6 and ACSL5, which are critical lipid metabolism-related regulators. Bioinformatic analyses revealed that target genes were mainly enriched in lipid-related metabolism processes. This work provides the first study of the expression patterns of hepatic microRNAs between 20- and 30-week old hens. The findings may serve as a fundamental resource for understanding the detailed functions of microRNAs in the molecular regulatory systems of lipid metabolism. PMID:27535581

  12. Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges.

    PubMed

    Laforêt, Pascal; Vianey-Saban, Christine

    2010-11-01

    Disorders of muscle lipid metabolism may involve intramyocellular triglyceride degradation, carnitine uptake, long-chain fatty acids mitochondrial transport, or fatty acid β-oxidation. Three main diseases leading to permanent muscle weakness are associated with severe increased muscle lipid content (lipid storage myopathies): primary carnitine deficiency, neutral lipid storage disease and multiple acyl-CoA dehydrogenase deficiency. A moderate lipidosis may be observed in fatty acid oxidation disorders revealed by rhabdomyolysis episodes such as carnitine palmitoyl transferase II, very-long-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein deficiencies, and in recently described phosphatidic acid phosphatase deficiency. Respiratory chain disorders and congenital myasthenic syndromes may also be misdiagnosed as fatty acid oxidation disorders due to the presence of secondary muscle lipidosis. The main biochemical tests giving clues for the diagnosis of these various disorders are measurements of blood carnitine and acylcarnitines, urinary organic acid profile, and search for intracytoplasmic lipid on peripheral blood smear (Jordan's anomaly). Genetic analysis orientated by the results of biochemical investigation allows establishing a firm diagnosis. Primary carnitine deficiency and multiple acyl-CoA dehydrogenase deficiency may be treated after supplementation with carnitine, riboflavine and coenzyme Q10. New therapeutic approaches for fatty acid oxidation disorders are currently developed, based on pharmacological treatment with bezafibrate, and specific diets enriched in medium-chain triglycerides or triheptanoin. PMID:20691590

  13. Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges.

    PubMed

    Laforêt, Pascal; Vianey-Saban, Christine

    2010-11-01

    Disorders of muscle lipid metabolism may involve intramyocellular triglyceride degradation, carnitine uptake, long-chain fatty acids mitochondrial transport, or fatty acid β-oxidation. Three main diseases leading to permanent muscle weakness are associated with severe increased muscle lipid content (lipid storage myopathies): primary carnitine deficiency, neutral lipid storage disease and multiple acyl-CoA dehydrogenase deficiency. A moderate lipidosis may be observed in fatty acid oxidation disorders revealed by rhabdomyolysis episodes such as carnitine palmitoyl transferase II, very-long-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein deficiencies, and in recently described phosphatidic acid phosphatase deficiency. Respiratory chain disorders and congenital myasthenic syndromes may also be misdiagnosed as fatty acid oxidation disorders due to the presence of secondary muscle lipidosis. The main biochemical tests giving clues for the diagnosis of these various disorders are measurements of blood carnitine and acylcarnitines, urinary organic acid profile, and search for intracytoplasmic lipid on peripheral blood smear (Jordan's anomaly). Genetic analysis orientated by the results of biochemical investigation allows establishing a firm diagnosis. Primary carnitine deficiency and multiple acyl-CoA dehydrogenase deficiency may be treated after supplementation with carnitine, riboflavine and coenzyme Q10. New therapeutic approaches for fatty acid oxidation disorders are currently developed, based on pharmacological treatment with bezafibrate, and specific diets enriched in medium-chain triglycerides or triheptanoin.

  14. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    PubMed

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. PMID:26298750

  15. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example.

    PubMed

    Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A

    2014-12-01

    Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments.

  16. Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes.

    PubMed

    Huang, He; Taraboletti, Alexandra; Shriver, Leah P

    2015-08-01

    Oxidative stress contributes to pathology associated with inflammatory brain disorders and therapies that upregulate antioxidant pathways may be neuroprotective in diseases such as multiple sclerosis. Dimethyl fumarate, a small molecule therapeutic for multiple sclerosis, activates cellular antioxidant signaling pathways and may promote myelin preservation. However, it is still unclear what mechanisms may underlie this neuroprotection and whether dimethyl fumarate affects oligodendrocyte responses to oxidative stress. Here, we examine metabolic alterations in oligodendrocytes treated with dimethyl fumarate by using a global metabolomic platform that employs both hydrophilic interaction liquid chromatography-mass spectrometry and shotgun lipidomics. Prolonged treatment of oligodendrocytes with dimethyl fumarate induces changes in citric acid cycle intermediates, glutathione, and lipids, indicating that this compound can directly impact oligodendrocyte metabolism. These metabolic alterations are also associated with protection from oxidant challenge. This study provides insight into the mechanisms by which dimethyl fumarate could preserve myelin integrity in patients with multiple sclerosis. PMID:25967672

  17. Effect of Eclipta prostrata on lipid metabolism in hyperlipidemic animals.

    PubMed

    Zhao, Yun; Peng, Lu; Lu, Wei; Wang, Yiqing; Huang, Xuefeng; Gong, Chen; He, Lin; Hong, Junhao; Wu, Songsong; Jin, Xin

    2015-02-01

    Eclipta prostrata (Linn.) Linn. is a traditional Chinese medicine and has previously been reported to have hypolipidemic effects. However, its mechanism of action is not well understood. This study was conducted to identify the active fraction of Eclipta, its toxicity, its effect on hyperlipidemia, and its mechanism of action. The ethanol extract (EP) of Eclipta and fractions EPF1-EPF4, obtained by eluting with different concentrations of ethanol from a HPD-450 macroporous resin column chromatography of the EP, were screened in hyperlipidemic mice for lipid-lowering activity, and EPF3 was the most active fraction. The LD50 of EPF3 was undetectable because no mice died with administration of EPF3 at 10.4 g/kg. Then, 48 male hamsters were used and randomly assigned to normal chow diet, high-fat diet, high-fat diet with Xuezhikang (positive control) or EPF3 (75, 150 and 250 mg/kg) groups. We evaluated the effects of EPF3 on body weight gain, liver weight gain, serum lipid concentration, antioxidant enzyme activity, and the expression of genes involved in lipid metabolism in hyperlipidemic hamsters. The results showed that EPF3 significantly decreased body-weight gain and liver-weight gain and reduced the serum lipid levels in hyperlipidemic hamsters. EPF3 also increased the activities of antioxidant enzymes; up-regulated the mRNA expression of peroxisome proliferator-activated receptor α (PPARα), low density lipoprotein receptor (LDLR), lecithin-cholesterol transferase (LCAT) and scavenger receptor class B type Ι receptor (SR-BI); and down-regulated the mRNA expression of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) in the liver. These results indicate that EPF3 ameliorates hyperlipidemia, in part, by reducing oxidative stress and modulating the transcription of genes involved in lipid metabolism. PMID:25562812

  18. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1.

    PubMed

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L; Shao, Zhuo; Evans, Lucy P; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M; Hurst, Christian G; Hatton, Colman J; Cui, Zhenghao; Pierce, Kerry A; Bherer, Patrick; Aguilar, Edith; Powner, Michael B; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B; Smith, Lois E H

    2016-04-01

    Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases. PMID:26974308

  19. Lipid signaling in adipose tissue: Connecting inflammation & metabolism.

    PubMed

    Masoodi, Mojgan; Kuda, Ondrej; Rossmeisl, Martin; Flachs, Pavel; Kopecky, Jan

    2015-04-01

    Obesity-associated low-grade inflammation of white adipose tissue (WAT) contributes to development of insulin resistance and other disorders. Accumulation of immune cells, especially macrophages, and macrophage polarization from M2 to M1 state, affect intrinsic WAT signaling, namely anti-inflammatory and proinflammatory cytokines, fatty acids (FA), and lipid mediators derived from both n-6 and n-3 long-chain PUFA such as (i) arachidonic acid (AA)-derived eicosanoids and endocannabinoids, and (ii) specialized pro-resolving lipid mediators including resolvins derived from both eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), lipoxins (AA metabolites), protectins and maresins (DHA metabolites). In this respect, potential differences in modulating adipocyte metabolism by various lipid mediators formed by inflammatory M1 macrophages typical of obese state, and non-inflammatory M2 macrophages typical of lean state remain to be established. Studies in mice suggest that (i) transient accumulation of M2 macrophages could be essential for the control of tissue FA levels during activation of lipolysis, (ii) currently unidentified M2 macrophage-borne signaling molecule(s) could inhibit lipolysis and re-esterification of lipolyzed FA back to triacylglycerols (TAG/FA cycle), and (iii) the egress of M2 macrophages from rebuilt WAT and removal of the negative feedback regulation could allow for a full unmasking of metabolic activities of adipocytes. Thus, M2 macrophages could support remodeling of WAT to a tissue containing metabolically flexible adipocytes endowed with a high capacity of both TAG/FA cycling and oxidative phosphorylation. This situation could be exemplified by a combined intervention using mild calorie restriction and dietary supplementation with EPA/DHA, which enhances the formation of "healthy" adipocytes. This article is part of a Special Issue entitled Oxygenated metabolism of PUFA: analysis and biological relevance." PMID:25311170

  20. MRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas.

    PubMed

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes encoding hepatic PPARγ, adipose FABP4, adipose ADIPOQ and ΣPOP concentrations was observed. These findings suggest that lipid metabolism may be affected by contaminant exposure in the Baltic population. mRNA expression of genes encoding PPARβ, PPARγ, FABP4 and ADIPOQ were similar between the mid and inner adipose layer. Hepatic mRNA expression of genes encoding PPARα and PPARγ was higher in the pre

  1. Plasma lipids, lipoprotein metabolism and HDL lipid transfers are equally altered in metabolic syndrome and in type 2 diabetes.

    PubMed

    Silva, Vanessa M; Vinagre, Carmen G C; Dallan, Luis A O; Chacra, Ana P M; Maranhão, Raul C

    2014-07-01

    Metabolic syndrome (MetS) refers to states of insulin resistance that predispose to development of cardiovascular disease and type 2 diabetes (T2DM). The aim was to investigate whether plasma lipids and lipid metabolism differ in MetS patients compared to those with T2DM with poor glycemic control (glycated hemoglobin > 7.0). Eighteen patients with T2DM, 18 with MetS and 14 controls, paired for age (40-70 years) and body mass index (BMI), were studied. Plasma lipids and the kinetics of a triacylglycerol-rich emulsion labeled with [(3)H]-triolein ([(3)H]-TAG) and [(14)C]-cholesteryl esters ([(14)C]-CE) injected intravenously followed by one-hour blood sampling were determined. Lipid transfers from an artificial nanoemulsion donor to high-density lipoprotien (HDL) were assayed in vitro. Low-density lipoprotein (LDL) and HDL cholesterol (mg/dl) were not different in T2DM (128 ± 7; 42 ± 7) and MetS (142 ± 6; 39 ± 3), but triacylglycerols were even higher in MetS (215 ± 13) than in T2DM (161 ±11, p < 0.05). Fractional clearance rate (FCR, in min(1)) of [(3)H]-TAG and [(14)C]-CE were equal in T2DM (0.008 ± 0.018; 0.005 ± 0.024) and MetS (0.010 ± 0.016; 0.006 ± 0.013), and both were reduced compared to controls. The transfer of non-esterified cholesterol, phospholipids and triacylglycerols to HDL was higher in MetS and T2DM than in controls (p < 0.01). Cholesteryl ester transfer and HDL size were equal in all groups. Results imply that MetS is equal to poorly controlled T2DM concerning the disturbances of plasma lipid metabolism examined here, and suggest that there are different thresholds for the insulin action on glucose and lipids. These findings highlight the magnitude of the lipid disturbances in MetS, and may have implications in the prevention of cardiovascular diseases. PMID:24719245

  2. Plasma lipids, lipoprotein metabolism and HDL lipid transfers are equally altered in metabolic syndrome and in type 2 diabetes.

    PubMed

    Silva, Vanessa M; Vinagre, Carmen G C; Dallan, Luis A O; Chacra, Ana P M; Maranhão, Raul C

    2014-07-01

    Metabolic syndrome (MetS) refers to states of insulin resistance that predispose to development of cardiovascular disease and type 2 diabetes (T2DM). The aim was to investigate whether plasma lipids and lipid metabolism differ in MetS patients compared to those with T2DM with poor glycemic control (glycated hemoglobin > 7.0). Eighteen patients with T2DM, 18 with MetS and 14 controls, paired for age (40-70 years) and body mass index (BMI), were studied. Plasma lipids and the kinetics of a triacylglycerol-rich emulsion labeled with [(3)H]-triolein ([(3)H]-TAG) and [(14)C]-cholesteryl esters ([(14)C]-CE) injected intravenously followed by one-hour blood sampling were determined. Lipid transfers from an artificial nanoemulsion donor to high-density lipoprotien (HDL) were assayed in vitro. Low-density lipoprotein (LDL) and HDL cholesterol (mg/dl) were not different in T2DM (128 ± 7; 42 ± 7) and MetS (142 ± 6; 39 ± 3), but triacylglycerols were even higher in MetS (215 ± 13) than in T2DM (161 ±11, p < 0.05). Fractional clearance rate (FCR, in min(1)) of [(3)H]-TAG and [(14)C]-CE were equal in T2DM (0.008 ± 0.018; 0.005 ± 0.024) and MetS (0.010 ± 0.016; 0.006 ± 0.013), and both were reduced compared to controls. The transfer of non-esterified cholesterol, phospholipids and triacylglycerols to HDL was higher in MetS and T2DM than in controls (p < 0.01). Cholesteryl ester transfer and HDL size were equal in all groups. Results imply that MetS is equal to poorly controlled T2DM concerning the disturbances of plasma lipid metabolism examined here, and suggest that there are different thresholds for the insulin action on glucose and lipids. These findings highlight the magnitude of the lipid disturbances in MetS, and may have implications in the prevention of cardiovascular diseases.

  3. Viperin Regulates Cellular Lipid Metabolism during Human Cytomegalovirus Infection

    PubMed Central

    Seo, Jun-Young; Cresswell, Peter

    2013-01-01

    Human cytomegalovirus (HCMV) has been shown to induce increased lipogenesis in infected cells, and this is believed to be required for proper virion envelopment. We show here that this increase is a consequence of the virus-induced redistribution of the host protein viperin to mitochondria and its capacity to interact with and block the function of the mitochondrial trifunctional protein (TFP), the enzyme that mediates fatty acid-β-oxidation. The resulting decrease in cellular ATP levels activates the enzyme AMP-activated protein kinase (AMPK), which induces expression of the glucose transporter GLUT4, resulting in increased glucose import and translocation to the nucleus of the glucose-regulated transcription factor ChREBP. This induces increased transcription of genes encoding lipogenic enzymes, increased lipid synthesis and lipid droplet accumulation, and generation of the viral envelope. Viperin-dependent lipogenesis is required for optimal production of infectious virus. We show that all of these metabolic outcomes can be replicated by direct targeting of viperin to mitochondria in the absence of HCMV infection, and that the motif responsible for Fe-S cluster binding by viperin is essential. The data indicate that viperin is the major effector underlying the ability of HCMV to regulate cellular lipid metabolism. PMID:23935494

  4. Associations between lipid metabolism and fertility in the dairy cow.

    PubMed

    Wathes, D Claire; Clempson, Andrew M; Pollott, Geoff E

    2012-01-01

    Dairy cows mobilise body tissues to support milk production and, because glucose supplies are limited, lipids are used preferentially for energy production. Lipogenic activity is switched off and lipolytic mechanisms in adipose tissue increase through changes in the expression of several key enzymes. This results in a loss of body condition, together with high circulating concentrations of non-esterified fatty acids. Changes in the synthesis, secretion and signalling pathways of somatotrophic hormones (insulin, growth hormone, insulin-like growth factor 1) and adipokines (e.g. leptin) are central to the regulation of these processes. A high reliance on fatty acids as an energy source in the peripartum period causes oxidative damage to mitochondria in metabolically active tissues, including the liver and reproductive tract. The expression of genes involved in insulin resistance (PDK4, AHSG) is increased, together with expression of TIEG1, a transcription factor that can induce apoptosis via the mitochondrial pathway. Polymorphisms in TFAM and UCP2, two autosomal mitochondrial genes, have been associated with longevity in dairy cows. Polymorphisms in many other genes that affect lipid metabolism also show some associations with fertility traits. These include DGAT1, SCD1, DECR1, CRH, CBFA2T1, GH, LEP and NPY. Excess lipid accumulation in oocytes and the regenerating endometrium reduces fertility via reductions in embryo survival and increased inflammatory changes, respectively.

  5. Alterations in Lipid Metabolism and Antioxidant Status in Lichen Planus

    PubMed Central

    Panchal, Falguni H; Ray, Somshukla; Munshi, Renuka P; Bhalerao, Supriya S; Nayak, Chitra S

    2015-01-01

    Background: Lichen planus (LP), a T-cell-mediated inflammatory disorder, wherein inflammation produces lipid metabolism disturbances, is linked to increase in cardiovascular (CV) risk with dyslipidemia. Increased reactive oxygen species and lipid peroxides have also been implicated in its pathogenesis. Aim and Objective: The aim of the study was to evaluate the status on lipid disturbances, oxidative stress, and inflammation in LP patients. Materials and Methods: The study was initiated after obtaining Institutional Ethics Committee permission and written informed consent from participants. The study included 125 patients (74 LP patients and 51 age and sex-matched controls) visiting the outpatient clinic in the dermatology department of our hospital. Variables analyzed included lipid profile, C-reactive protein (CRP), malondialdehyde (MDA), and catalase (CAT) activity. Results: Analysis of lipid parameters revealed significantly higher levels of total cholesterol (TC), triglycerides, and low-density lipoprotein cholesterol (LDL-C) along with decreased levels of high-density lipoprotein cholesterol (HDL-C) in LP patients as compared to their respective controls. LP patients also presented with a significantly higher atherogenic index that is, (TC/HDL-C) and LDL-C/HDL-C ratios than the controls. A significant increase in CRP levels was observed among the LP patients. There was a statistically significant increase in the serum levels of the lipid peroxidation product, MDA and a statistically significant decrease in CAT activity in LP patients as compared to their respective controls. A statistically significant positive correlation (r = 0.96) was observed between serum MDA levels and duration of LP whereas a significantly negative correlation (r = −0.76) was seen between CAT activity and LP duration. Conclusion: Chronic inflammation in patients with LP may explain the association with dyslipidemia and CV risk. Our findings also suggest that an increase in oxidative

  6. Lipid metabolism, adipocyte depot physiology and utilization of meat animals as experimental models for metabolic research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meat animals are unique as experimental models for both lipid metabolism and adipocyte studies because of their direct economic value for animal production. This paper discusses the principles that regulate adipogenesis in major meat animals (beef cattle, dairy cattle, and pigs), the definition of a...

  7. Avocado oils and hepatic lipid metabolism in growing rats.

    PubMed

    Werman, M J; Neeman, I; Mokady, S

    1991-02-01

    The effect of various avocado oils on liver metabolism was studied in growing female rats. The rats were fed diets containing 10% (w/w) avocado oil for 4 wk. In comparison with rats fed refined avocado oil obtained from cored fruit by centrifugal separation, rats fed unrefined avocado oil obtained by organic solvent extraction from intact fruit, or its unsaponifiable components, showed a significant increase in total liver lipogenesis as well as in phospholipid and triglceride synthesis. Rats fed avocado-seed oil exhibited enhanced [1-14C]acetate incorporation into total liver lipids but showed the same distribution of label in the three main lipid classes as that of rats fed refined avocado oil. In addition, a significant reduction of triglycerides and protein content of plasma very-low-density lipoprotein and high-density lipoprotein fractions was observed in rats fed avocado-seed oil as compared with rats fed refined oil. Electron micrographs suggested that the alterations in hepatic lipogenesis are related to the marked proliferation of the smooth endoplasmic reticulum, which is known to be associated with induction of enzymes involved with lipid biosynthesis. The differences between the animals fed seed oil and those fed the unrefined oils, in the distribution of label within the main lipid classes, indicate that more than one factor is involved in the alterations caused by these oils.

  8. Effects of chlorinated drinking water on human lipid metabolism

    SciTech Connect

    Wones, R.G.; Glueck, C.J.

    1986-11-01

    Atherosclerosis with its complications is the most important health problem affecting American adults. The levels of serum cholesterol, of high and low density lipoproteins, and of apolipoproteins A1, A2, and B are major risk factors for the development of atherosclerotic lesions. Animals studies suggest that chlorinated drinking water may elevate the serum cholesterol. Studies are too limited to confirm or refute this effect in humans. Since millions of humans have had daily exposure to chlorinated drinking water, it is essential to study the effects of such exposure on human lipid metabolism. The authors have begun a protocol to discover whether consuming chlorinated drinking water elevates serum cholesterol and the other lipid components of blood known to be associated with atherosclerosis. This protocol has been designed to improve the change of observing an effect while preserving the ability to generalize the data.

  9. [Chloroquine influence on lipid metabolism and selected laboratory parameters].

    PubMed

    Woźniacka, Anna; Lesiak, Aleksandra; Smigielski, Janusz; Sysa-Jedrzejowska, Anna

    2005-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disease with complex pathogenesis, various clinical presentation and chronic course with relapses. Mode of treatment depends on the disease activity and kind of internal organ involvement. In most cases clinical remission could be obtained after antimalarials, nonsteroidal anti-inflammatory drugs, corticosteroids, and photoprotection use. Despite the approved antimalarials therapeutic value, the mechanisms by which they provide benefit in lupus, patients are not fully understood. Literature data indicate that they can influence lipid metabolism. The aim of the performed study was the objective evaluation of the influence of 3-month chloroquine treatment (Arechin, 250 mg/day) on lipid metabolism and selected laboratory parameters. In 34 patients with SLE clinical and laboratory evaluation was performed twice, before and after 3-month treatment. After 3 months significantly lower total cholesterol level was observed (mean value 184.91 mg%, 165.26 mg%, p < 0.001). Also LDL level was evidently lowered (111.27 mg%, 99.25 mg%). Similar tendency was noticed in triglycerides, which level after 3 months decreased from the average 152.38 mg% to 104.97 mg%, p < 0.001. Moreover the lowering of sedimentation rate, increasing hemoglobin level and lengthening coagulation time was perceived. The results of the study indicate the influence of chloroquine on decreasing of the disease activity, its anti-inflammatory properties and mainly the drug impact on lipid metabolism. Not only does antimalarials treatment reduce the risk of atherosclerosis development but it also minimizes corticosteroids side effects, which are considered to be the basic medication in lupus patients. PMID:16541717

  10. Effects of dietary phosphate on glucose and lipid metabolism.

    PubMed

    Abuduli, Maerjianghan; Ohminami, Hirokazu; Otani, Tamaki; Kubo, Hitoshi; Ueda, Haruka; Kawai, Yoshichika; Masuda, Masashi; Yamanaka-Okumura, Hisami; Sakaue, Hiroshi; Yamamoto, Hironori; Takeda, Eiji; Taketani, Yutaka

    2016-04-01

    Recent epidemiological and animal studies have suggested that excess intake of phosphate (Pi) is a risk factor for the progression of chronic kidney disease and its cardiovascular complications. However, little is known about the impact of dietary high Pi intake on the development of metabolic disorders such as obesity and type 2 diabetes. In this study, we investigated the effects of dietary Pi on glucose and lipid metabolism in healthy rats. Male 8-wk-old Sprague-Dawley rats were divided into three groups and given experimental diets containing varying amounts of Pi, i.e., 0.2 [low Pi(LP)], 0.6 [control Pi(CP)], and 1.2% [high Pi(HP)]. After 4 wk, the HP group showed lower visceral fat accumulation compared with other groups, accompanied by a low respiratory exchange ratio (V̇CO2/V̇O2) without alteration of locomotive activity. The HP group had lower levels of plasma insulin and nonesterified fatty acids. In addition, the HP group also showed suppressed expression of hepatic lipogenic genes, including sterol regulatory element-binding protein-1c, fatty acid synthase, and acetyl-CoA carboxylase, whereas there was no difference in hepatic fat oxidation among the groups. On the other hand, uncoupling protein (UCP) 1 and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression were significantly increased in the brown adipose tissue (BAT) of the HP group. Our data demonstrated that a high-Pi diet can negatively regulate lipid synthesis in the liver and increase mRNA expression related to lipid oxidation and UCP1 in BAT, thereby preventing visceral fat accumulation. Thus, dietary Pi is a novel metabolic regulator. PMID:26786774

  11. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

    PubMed Central

    Zhu, Shuang; Park, Soyoung; Lim, Yeseo; Shin, Sunhye

    2016-01-01

    BACKGROUND/OBJECTIVES Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS In intestine, significantly lower Cd36 mRNA expression (P < 0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P < 0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice. PMID:27698954

  12. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

    PubMed Central

    Zhu, Shuang; Park, Soyoung; Lim, Yeseo; Shin, Sunhye

    2016-01-01

    BACKGROUND/OBJECTIVES Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS In intestine, significantly lower Cd36 mRNA expression (P < 0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P < 0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice.

  13. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  14. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver.

    PubMed

    He, Jun; Wang, Weiqun; Lu, Lizhi; Tian, Yong; Niu, Dong; Ren, Jindong; Dong, Liyan; Sun, Siwei; Zhao, Yan; Chen, Li; Shen, Jianliang; Li, Xiuhong

    2016-01-01

    Fat character is an important index in duck culture that linked to local flavor, feed cost and fat intake for costumers. Since the regulation networks in duck lipid metabolism had not been reported very clearly, we aimed to explore the potential miRNA-mRNA pairs and their regulatory roles in duck lipid metabolism. Here, Cherry-Valley ducks were selected and treated with/without 5% oil added in feed for 2 weeks, and then fat content determination was performed on. The data showed that the fat contents and the fatty acid ratios of C17:1 and C18:2 were up-regulated in livers of oil-added ducks, while the C12:0 ratio was down-regulated. Then 21 differential miRNAs, including 10 novel miRNAs, were obtain from the livers by sequencing, and 73 target genes involved in lipid metabolic processes of these miRNAs were found, which constituted 316 miRNA-mRNA pairs. Two miRNA-mRNA pairs including one novel miRNA and one known miRNA, N-miR-16020-FASN and gga-miR-144-ELOVL6, were selected to validate the miRNA-mRNA negative relation. And the results showed that N-mir-16020 and gga-miR-144 could respectively bind the 3'-UTRs of FASN and ELOVL6 to control their expressions. This study provides new sights and useful information for future research on regulation network in duck lipid metabolism. PMID:27272010

  15. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver

    PubMed Central

    He, Jun; Wang, Weiqun; Lu, Lizhi; Tian, Yong; Niu, Dong; Ren, Jindong; Dong, Liyan; Sun, Siwei; Zhao, Yan; Chen, Li; Shen, Jianliang; Li, Xiuhong

    2016-01-01

    Fat character is an important index in duck culture that linked to local flavor, feed cost and fat intake for costumers. Since the regulation networks in duck lipid metabolism had not been reported very clearly, we aimed to explore the potential miRNA-mRNA pairs and their regulatory roles in duck lipid metabolism. Here, Cherry-Valley ducks were selected and treated with/without 5% oil added in feed for 2 weeks, and then fat content determination was performed on. The data showed that the fat contents and the fatty acid ratios of C17:1 and C18:2 were up-regulated in livers of oil-added ducks, while the C12:0 ratio was down-regulated. Then 21 differential miRNAs, including 10 novel miRNAs, were obtain from the livers by sequencing, and 73 target genes involved in lipid metabolic processes of these miRNAs were found, which constituted 316 miRNA-mRNA pairs. Two miRNA-mRNA pairs including one novel miRNA and one known miRNA, N-miR-16020-FASN and gga-miR-144-ELOVL6, were selected to validate the miRNA-mRNA negative relation. And the results showed that N-mir-16020 and gga-miR-144 could respectively bind the 3′-UTRs of FASN and ELOVL6 to control their expressions. This study provides new sights and useful information for future research on regulation network in duck lipid metabolism. PMID:27272010

  16. Gemfibrozil disrupts the metabolism of circulating lipids in bobwhite quails.

    PubMed

    Bussière-Côté, Sophie; Omlin, Teye; de Càssia Pinheiro, Eliana; Weber, Jean-Michel

    2016-01-01

    The circulating lipids of birds play essential roles for egg production and as an energy source for flight and thermogenesis. How lipid-lowering pharmaceuticals geared to prevent heart disease in humans and that are routinely released in the environment affect their metabolism is unknown. This study assesses the impact of the popular drug gemfibrozil (GEM) on the plasma phospholipids (PL), neutral lipids (NL), and nonesterified fatty acids (NEFA) of bobwhite quails (Colinus virginianus). Results show that bird lipoproteins are rapidly altered by GEM, even at environmentally-relevant doses. After 4 days of exposure, pharmacological amounts cause an 83% increase in circulating PL levels, a major decrease in average lipoprotein size measured as a 56% drop in the NL/PL ratio, and important changes in the fatty acid composition of PL and NEFA (increases in fatty acid unsaturation). The levels of PL carrying all individual fatty acids except arachidonate are strongly stimulated. The large decrease in bird lipoprotein size may reflect the effects seen in humans: lowering of LDL that can cause atherosclerosis and stimulation of HDL that promote cholesterol disposal. Lower (environmental) doses of GEM cause a reduction of %palmitate in all the plasma lipid fractions of quails, but particularly in the core triacylglycerol of lipoproteins (NL). No changes in mRNA levels of bird peroxisome proliferator-activated receptor (PPAR) could be demonstrated. The disrupting effects of GEM on circulating lipids reported here suggest that the pervasive presence of this drug in the environment could jeopardize reproduction and migratory behaviours in wild birds. PMID:26432161

  17. Zinc Regulates Lipid Metabolism and MMPs Expression in Lipid Disturbance Rabbits.

    PubMed

    Xu, Chenggui; Huang, Zhibin; Liu, Lijuan; Luo, Chufan; Lu, Guihua; Li, Qinglang; Gao, Xiuren

    2015-12-01

    Lipid disturbance induced by high-fat diet is a worldwide problem, and it can induce inflammation and oxidative stress in vivo. Zinc is considered as an antioxidant, anti-inflammatory agent. Since matrix metalloprotease 2 (MMP2) and matrix metalloprotease 9 (MMP9)'s expressions are changed under many pathological conditions, we would like to know how zinc affects lipid metabolism and MMP2, MMP9's expressions in the lipid disturbance rabbits. Twenty-four male New Zealand white rabbits were randomly divided into four groups. Each group had six rabbits, and they were fed with regular diet, high-fat diet, high-fat diet+zinc, and regular diet+zinc separately for 12 weeks. High-fat diet induced lipid disturbance significantly which raised the level of aspartate aminotransferase (p<0.01) and alanine transaminase (p<0.05) in the high-fat diet group, but zinc supplement reversed this phenomenon (p<0.05). Zinc did not reduce total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (p>0.05), but it lowered triglyceride (TG) and raised high-density lipoprotein cholesterol (HDL-C) (p<0.01). Zinc also reduced high-sensitivity C-reactive protein (hs-CRP) (p<0.01) and interleukin-6 (IL-6)'s expressions (p<0.05). Zinc reduced the epicardial adipose tissue and alleviated the hepatic steatosis. Zinc suppressed MMP2 and MMP9's expressions in vivo, but it did not alleviate the aorta fatty streak's severity in the lipid disturbance rabbits. Zinc protected the liver, reduced TG, hs-CRP, and IL-6 and raised HDL-C in the lipid disturbance rabbits. Zinc suppressed MMP2 and MMP9's expressions in vivo, but it did not alleviate the severity of aorta fatty streak induced by the high-fat diet.

  18. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes.

    PubMed

    Auclair, Sylvain; Uzbekov, Rustem; Elis, Sébastien; Sanchez, Laura; Kireev, Igor; Lardic, Lionel; Dalbies-Tran, Rozenn; Uzbekova, Svetlana

    2013-03-15

    Cumulus cells (CC) surround the oocyte and are coupled metabolically through regulation of nutrient intake. CC removal before in vitro maturation (IVM) decreases bovine oocyte developmental competence without affecting nuclear meiotic maturation. The objective was to investigate the influence of CC on oocyte cytoplasmic maturation in relation to energy metabolism. IVM with either cumulus-enclosed (CEO) or -denuded (DO) oocytes was performed in serum-free metabolically optimized medium. Transmission electron microscopy revealed different distribution of membrane-bound vesicles and lipid droplets between metaphase II DO and CEO. By Nile Red staining, a significant reduction in total lipid level was evidenced in DO. Global transcriptomic analysis revealed differential expression of genes regulating energy metabolism, transcription, and translation between CEO and DO. By Western blot, fatty acid synthase (FAS) and hormone-sensitive phospholipase (HSL) proteins were detected in oocytes and in CC, indicating a local lipogenesis and lypolysis. FAS protein was significantly less abundant in DO that in CEO and more highly expressed in CC than in the oocytes. On the contrary, HSL protein was more abundant in oocytes than in CC. In addition, active Ser⁵⁶³-phosphorylated HSL was detected in the oocytes only after IVM, and its level was similar in CEO and DO. In conclusion, absence of CC during IVM affected lipid metabolism in the oocyte and led to suboptimal cytoplasmic maturation. Thus, CC may influence the oocyte by orienting the consumption of nutritive storage via regulation of local fatty acid synthesis and lipolysis to provide energy for maturation. PMID:23321473

  19. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER

    PubMed Central

    Markgraf, Daniel F.; Klemm, Robin W.; Junker, Mirco; Hannibal-Bach, Hans K.; Ejsing, Christer S.; Rapoport, Tom A.

    2014-01-01

    Eukaryotic cells store neutral lipids, such as triacylglycerol (TAG), in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show in S. cerevisiae that LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein, Ice2p, facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG-degradation and -synthesis, promoting the rapid re-localization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER, and explain how cells switch neutral lipid metabolism from storage to consumption. PMID:24373967

  20. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    PubMed

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  1. Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos.

    PubMed

    Ho, Jeff C H; Hsiao, C D; Kawakami, K; Tse, William K F

    2016-04-01

    Triclosan (TCS) is an active antimicrobial ingredient used in many household products, such as skin creams and toothpaste. It is produced in high volumes, and humans are directly exposed to it and dispose it on a daily basis. TCS has been found to contaminate water worldwide. This study aimed to understand the potential developmental and metabolic abnormalities caused by TCS exposure by using zebrafish as the experimental model. Four developmental stages (70-85% epiboly, 10-12 somite, prim-5, and 5dpf) were selected to perform in situ hybridization staining to investigate the effects of TCS on dorsal ventral patterning, segmentation, brain development, and organ formation. Results showed, in terms of developmental toxicology, that neither phenotypic nor molecular changes were found after 5 days of 250μg/L TCS exposure. However, such dosage of TCS exposure resulted in lipid droplet accumulation in the yolk sac, which might due to the deregulated mRNA expression level of beta-oxidation transcripts. This study showed that 250μg/L TCS exposure does not affect normal embryogenesis or organogenesis; however, there are concerns regarding possible impairment of lipid metabolism.

  2. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.

    PubMed

    Liang, Ming-Hua; Jiang, Jian-Guo

    2013-10-01

    With the depletion of global petroleum and its increasing price, biodiesel has been becoming one of the most promising biofuels for global fuels market. Researchers exploit oleaginous microorganisms for biodiesel production due to their short life cycle, less labor required, less affection by venue, and easier to scale up. Many oleaginous microorganisms can accumulate lipids, especially triacylglycerols (TAGs), which are the main materials for biodiesel production. This review is covering the related researches on different oleaginous microorganisms, such as yeast, mold, bacteria and microalgae, which might become the potential oil feedstocks for biodiesel production in the future, showing that biodiesel from oleaginous microorganisms has a great prospect in the development of biomass energy. Microbial oils biosynthesis process includes fatty acid synthesis approach and TAG synthesis approach. In addition, the strategies to increase lipids accumulation via metabolic engineering technology, involving the enhancement of fatty acid synthesis approach, the enhancement of TAG synthesis approach, the regulation of related TAG biosynthesis bypass approaches, the blocking of competing pathways and the multi-gene approach, are discussed in detail. It is suggested that DGAT and ME are the most promising targets for gene transformation, and reducing PEPC activity is observed to be beneficial for lipid production.

  3. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.

    PubMed

    Liang, Ming-Hua; Jiang, Jian-Guo

    2013-10-01

    With the depletion of global petroleum and its increasing price, biodiesel has been becoming one of the most promising biofuels for global fuels market. Researchers exploit oleaginous microorganisms for biodiesel production due to their short life cycle, less labor required, less affection by venue, and easier to scale up. Many oleaginous microorganisms can accumulate lipids, especially triacylglycerols (TAGs), which are the main materials for biodiesel production. This review is covering the related researches on different oleaginous microorganisms, such as yeast, mold, bacteria and microalgae, which might become the potential oil feedstocks for biodiesel production in the future, showing that biodiesel from oleaginous microorganisms has a great prospect in the development of biomass energy. Microbial oils biosynthesis process includes fatty acid synthesis approach and TAG synthesis approach. In addition, the strategies to increase lipids accumulation via metabolic engineering technology, involving the enhancement of fatty acid synthesis approach, the enhancement of TAG synthesis approach, the regulation of related TAG biosynthesis bypass approaches, the blocking of competing pathways and the multi-gene approach, are discussed in detail. It is suggested that DGAT and ME are the most promising targets for gene transformation, and reducing PEPC activity is observed to be beneficial for lipid production. PMID:23685199

  4. Association of Lipid Accumulation Product with Cardio-Metabolic Risk Factors in Postmenopausal Women.

    PubMed

    Namazi Shabestari, Alireza; Asadi, Mojgan; Jouyandeh, Zahra; Qorbani, Mostafa; Kelishadi, Roya

    2016-06-01

    The lipid accumulation product is a novel, safe and inexpensive index of central lipid over accumulation based on waist circumference and fasting concentration of circulating triglycerides. This study was designed to investigate the ability of lipid accumulation product to predict Cardio-metabolic risk factors in postmenopausal women. In this Cross-sectional study, 264 postmenopausal women by using convenience sampling method were selected from menopause clinic in Tehran. Cardio-metabolic risk factors were measured, and lipid accumulation product (waist-58×triglycerides [nmol/L]) was calculated. Optimal cut-off point of lipid accumulation product for predicting metabolic syndrome was estimated by ROC (Receiver-operating characteristic) curve analysis. Metabolic syndrome was diagnosed in 41.2% of subjects. Optimal cut-off point of lipid accumulation product for predicting metabolic syndrome was 47.63 (sensitivity:75%; specificity:77.9%). High lipid accumulation product increases risk of all Cardio-metabolic risk factors except overweight, high Total Cholesterol, high Low Density Lipoprotein Cholesterol and high Fasting Blood Sugar in postmenopausal women. Our findings show that lipid accumulation product is associated with metabolic syndrome and some Cardio-metabolic risk factors Also lipid accumulation product may have been a useful tool for predicting cardiovascular disease and metabolic syndrome risk in postmenopausal women.

  5. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism

    PubMed Central

    Falcinelli, Silvia; Picchietti, Simona; Rodiles, Ana; Cossignani, Lina; Merrifield, Daniel L.; Taddei, Anna Rita; Maradonna, Francesca; Olivotto, Ike; Gioacchini, Giorgia; Carnevali, Oliana

    2015-01-01

    The microbiome plays an important role in lipid metabolism but how the introduction of probiotic communities affects host lipid metabolism is poorly understood. Using a multidisciplinary approach we addressed this knowledge gap using the zebrafish model by coupling high-throughput sequencing with biochemical, molecular and morphological analysis to evaluate the changes in the intestine. Analysis of bacterial 16S libraries revealed that Lactobacillus rhamnosus was able to modulate the gut microbiome of zebrafish larvae, elevating the abundance of Firmicutes sequences and reducing the abundance of Actinobacteria. The gut microbiome changes modulated host lipid processing by inducing transcriptional down-regulation of genes involved in cholesterol and triglycerides metabolism (fit2, agpat4, dgat2, mgll, hnf4α, scap, and cck) concomitantly decreasing total body cholesterol and triglyceride content and increasing fatty acid levels. L. rhamnosus treatment also increased microvilli and enterocyte lengths and decreased lipid droplet size in the intestinal epithelium. These changes resulted in elevated zebrafish larval growth. This integrated system investigation demonstrates probiotic modulation of the gut microbiome, highlights a novel gene network involved in lipid metabolism, provides an insight into how the microbiome regulates molecules involved in lipid metabolism, and reveals a new potential role for L. rhamnosus in the treatment of lipid disorders. PMID:25822072

  6. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism.

    PubMed

    Falcinelli, Silvia; Picchietti, Simona; Rodiles, Ana; Cossignani, Lina; Merrifield, Daniel L; Taddei, Anna Rita; Maradonna, Francesca; Olivotto, Ike; Gioacchini, Giorgia; Carnevali, Oliana

    2015-01-01

    The microbiome plays an important role in lipid metabolism but how the introduction of probiotic communities affects host lipid metabolism is poorly understood. Using a multidisciplinary approach we addressed this knowledge gap using the zebrafish model by coupling high-throughput sequencing with biochemical, molecular and morphological analysis to evaluate the changes in the intestine. Analysis of bacterial 16S libraries revealed that Lactobacillus rhamnosus was able to modulate the gut microbiome of zebrafish larvae, elevating the abundance of Firmicutes sequences and reducing the abundance of Actinobacteria. The gut microbiome changes modulated host lipid processing by inducing transcriptional down-regulation of genes involved in cholesterol and triglycerides metabolism (fit2, agpat4, dgat2, mgll, hnf4α, scap, and cck) concomitantly decreasing total body cholesterol and triglyceride content and increasing fatty acid levels. L. rhamnosus treatment also increased microvilli and enterocyte lengths and decreased lipid droplet size in the intestinal epithelium. These changes resulted in elevated zebrafish larval growth. This integrated system investigation demonstrates probiotic modulation of the gut microbiome, highlights a novel gene network involved in lipid metabolism, provides an insight into how the microbiome regulates molecules involved in lipid metabolism, and reveals a new potential role for L. rhamnosus in the treatment of lipid disorders. PMID:25822072

  7. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism.

    PubMed

    Falcinelli, Silvia; Picchietti, Simona; Rodiles, Ana; Cossignani, Lina; Merrifield, Daniel L; Taddei, Anna Rita; Maradonna, Francesca; Olivotto, Ike; Gioacchini, Giorgia; Carnevali, Oliana

    2015-03-30

    The microbiome plays an important role in lipid metabolism but how the introduction of probiotic communities affects host lipid metabolism is poorly understood. Using a multidisciplinary approach we addressed this knowledge gap using the zebrafish model by coupling high-throughput sequencing with biochemical, molecular and morphological analysis to evaluate the changes in the intestine. Analysis of bacterial 16S libraries revealed that Lactobacillus rhamnosus was able to modulate the gut microbiome of zebrafish larvae, elevating the abundance of Firmicutes sequences and reducing the abundance of Actinobacteria. The gut microbiome changes modulated host lipid processing by inducing transcriptional down-regulation of genes involved in cholesterol and triglycerides metabolism (fit2, agpat4, dgat2, mgll, hnf4α, scap, and cck) concomitantly decreasing total body cholesterol and triglyceride content and increasing fatty acid levels. L. rhamnosus treatment also increased microvilli and enterocyte lengths and decreased lipid droplet size in the intestinal epithelium. These changes resulted in elevated zebrafish larval growth. This integrated system investigation demonstrates probiotic modulation of the gut microbiome, highlights a novel gene network involved in lipid metabolism, provides an insight into how the microbiome regulates molecules involved in lipid metabolism, and reveals a new potential role for L. rhamnosus in the treatment of lipid disorders.

  8. Loss of inherited genomic imprints in mice leads to severe disruption in placental lipid metabolism

    PubMed Central

    Himes, K. P.; Young, A.; Koppes, E.; Stolz, D.; Barak, Y.; Sadovsky, Y.; Chaillet, J.R.

    2015-01-01

    Introduction Monoallelic expression of imprinted genes is necessary for placental development and normal fetal growth. Differentially methylated domains (DMDs) largely determine the parental-specific monoallelic expression of imprinted genes. Maternally derived DNA (cytosine-5-) -methyltransferase 1o (DNMT1o) maintains DMDs during the eight-cell stage of development. DNMT1o-deficient mouse placentas have a generalized disruption of genomic imprints. Previous studies have demonstrated that DNMT1o deficiency alters placental morphology and broadens the embryonic weight distribution in late gestation. Lipids are critical for fetal growth. Thus, we assessed the impact of disrupted imprinting on placental lipids. Methods Lipids were quantified from DNMT1o-deficient mouse placentas and embryos at E17.5 using a modified Folch method. Expression of select genes critical for lipid metabolism was quantified with RT-qPCR. Mitochondrial morphology was assessed by TEM and mitochondrial aconitase and cytoplasmic citrate concentrations quantified. DMD methylation was determined by EpiTYPER. Results We found that DNMT1o deficiency is associated with increased placental triacylglycerol levels. Neither fetal triacylglycerol concentrations nor expression of select genes that mediate placental lipid transport were different from wild type. Placental triacylglycerol accumulation was associated with impaired beta-oxidation and abnormal citrate metabolism with decreased mitochondrial aconitase activity and increased cytoplasmic citrate concentrations. Loss of methylation at the MEST DMD was strongly associated with placental triacylglycerol accumulation. Discussion A generalized disruption of genomic imprints leads to triacylglycerol accumulation and abnormal mitochondrial function. This could stem directly from a loss of methylation at a given DMD, such as MEST, or represent a consequence of abnormal placental development. PMID:25662615

  9. Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum

    PubMed Central

    Gulati, Sonia; Ekland, Eric H.; Ruggles, Kelly V.; Chan, Robin B.; Jayabalasingham, Bamini; Zhou, Bowen; Mantel, Pierre-Yves; Lee, Marcus C. S.; Spottiswoode, Natasha; Coburn-Flynn, Olivia; Hjelmqvist, Daisy; Worgall, Tilla S.; Marti, Matthias; Di Paolo, Gilbert

    2015-01-01

    SUMMARY During its life cycle, Plasmodium falciparum undergoes rapid proliferation fueled by de novo synthesis and acquisition of host cell lipids. Consistent with this essential role, Plasmodium lipid synthesis enzymes are emerging as potential drug targets. To explore their broader potential for therapeutic interventions, we assayed the global lipid landscape during P. falciparum asexual blood stage (ABS) and sexual development. Using liquid chromatography–mass spectrometry, we analyzed 304 lipids constituting 24 classes in ABS parasites, infected red blood cell (RBC)-derived microvesicles, gametocytes, and uninfected RBCs. Ten lipid classes were previously uncharacterized in P. falciparum and 70–75% of the lipid classes exhibited changes in abundance during ABS and gametocyte development. Utilizing compounds that target lipid metabolism, we affirmed the essentiality of major classes, including triacylglycerols. These studies highlight the interplay between host and parasite lipid metabolism and provide a comprehensive analysis of P. falciparum lipids with candidate pathways for drug discovery efforts. PMID:26355219

  10. Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification.

    PubMed

    van Dartel, Dorien A M; Schulpen, Sjors H; Theunissen, Peter T; Bunschoten, Annelies; Piersma, Aldert H; Keijer, Jaap

    2014-10-01

    Embryonic stem cells (ESC) are widely used to study embryonic development and to identify developmental toxicants. Particularly, the embryonic stem cell test (EST) is well known as in vitro model to identify developmental toxicants. Although it is clear that energy metabolism plays a crucial role in embryonic development, the modulation of energy metabolism in in vitro models, such as the EST, is not yet described. The present study is among the first studies that analyses whole genome expression data to specifically characterize metabolic changes upon ESC early differentiation. Our transcriptomic analyses showed activation of glycolysis, truncated activation of the tricarboxylic acid (TCA) cycle, activation of lipid synthesis, as well as activation of glutaminolysis during the early phase of ESC differentiation. Taken together, this energy metabolism profile points towards energy metabolism reprogramming in the provision of metabolites for biosynthesis of cellular constituents. Next, we defined a gene set that describes this energy metabolism profile. We showed that this gene set could be successfully applied in the EST to identify developmental toxicants known to modulate cellular biosynthesis (5-fluorouracil and methoxyacetic acid), while other developmental toxicants or the negative control did not modulate the expression of this gene set. Our description of dynamic changes in energy metabolism during early ESC differentiation, as well as specific identification of developmental toxicants modulating energy metabolism, is an important step forward in the definition of the applicability domain of the EST.

  11. Altered lipid metabolism in the aging kidney identified by three layered omic analysis.

    PubMed

    Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E

    2016-03-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease. PMID:26886165

  12. Altered lipid metabolism in the aging kidney identified by three layered omic analysis

    PubMed Central

    Braun, Fabian; Rinschen, Markus M.; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H.J.; Schumacher, Björn; Dollé, Martijn E.T.; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E.

    2016-01-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease. PMID:26886165

  13. [Peripheral blood parameters in lipid metabolic disturbances in Far North migrants].

    PubMed

    Buiak, M A; Salamatina, L V; Agbalian, E V; Samsonova, E G

    2009-03-01

    The authors present the results of a study of peripheral blood in Far North newcomers with lipid metabolic disturbances. All the dwellers having lipid metabolic disturbances are shown to have elevated counts of white blood cells, with the greatest changes occurring in the levels of blood corpuscles in subjects with hypertriglyceridemia.

  14. Causes of dysregulation of lipid metabolism in chronic renal failure

    PubMed Central

    Vaziri, Nosratola D.

    2010-01-01

    End-stage renal disease (ESRD) is associated with accelerated atherosclerosis and premature death from cardiovascular disease. These events are driven by oxidative stress inflammation and lipid disorders. ESRD-induced lipid abnormalities primarily stem from dysregulation of high-density lipoprotein (HDL) and triglyceride-rich lipoprotein metabolism and oxidative modification of lipoproteins. In this context, production and plasma concentration of Apo-I and Apo-II are reduced, HDL maturation is impaired, HDL composition is altered, HDL anti-oxidant and anti-inflammatory functions are depressed, clearance of triglyceride-rich lipoproteins and their atherogenic remnants is impaired, their composition is altered, and their plasma concentration is elevated in ESRD. The associated defect in HDL maturation is largely caused by acquired lecithin-cholesterol acyltransferase (LCAT) deficiency while its triglyceride enrichment is due to hepatic lipase deficiency. Hyper-triglyceridemia, abnormal composition, and impaired clearance of triglyceride-rich lipoproteins and their remnants are mediated by down-regulation of lipoprotein lipase, hepatic lipase, VLDL receptor, and LDL receptor-related protein (LRP), relative reduction of ApoC-II/ApoC-III ratio, upregulation of acyl-CoA cholesterol acyltransferase (ACAT) and elevated plasma level of cholesterol ester-poor pre-beta HDL. Impaired clearance and accumulation of oxidation- prone VLDL and chylomicron remnants and abnormal LDL composition in the face of oxidative stress and inflammation favors their uptake by macrophages and resident cells in the artery wall. The effect of heightened influx of lipids is compounded by impaired HDL-mediated reverse cholesterol transport leading to foam cell formation which is the central event in atherosclerosis plaque formation and subsequent plaque rupture, thrombosis and tissue damage. PMID:20017835

  15. [POSSIBLE DRUG CORRECTION OF LIPID METABOLISM DISTURBANCES ASSOCIATED WITH METABOLIC SYNDROME IN PATIENTS WITH PSORIASIS].

    PubMed

    Dontsova, E V

    2015-01-01

    It was studied the possibility of correcting lipid metabolism in patients with psoriasis and concomitant metabolic syndrome (MS) by using additional treatment with semax. In group 1, 58 patients received conventional therapy, while 60 patients in group 2 received the same with additional 0.1% semax solution intranasally 600 mg/day for 10 days. It was found that the inclusion of semax in complex treatment of patients with psoriasis complicated by metabolic syndrome led to a decrease in the initially elevated serum levels of total cholesterol, triglycerides, LDL cholesterol and to an increase in the initially reduced levels of HDL cholesterol, in contrast to the standard treatment, which did not produce any statistically significant effect on the levels of total cholesterol, triglycerides, LDL cholesterol, and HDL cholesterol in the blood serum.

  16. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    SciTech Connect

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  17. Nanocellulose size regulates microalgal flocculation and lipid metabolism

    PubMed Central

    Yu, Sun Il; Min, Seul Ki; Shin, Hwa Sung

    2016-01-01

    Harvesting of microalgae is a cost-consuming step for biodiesel production. Cellulose has recently been studied as a biocompatible and inexpensive flocculant for harvesting microalgae via surface modifications such as cation-modifications. In this study, we demonstrated that cellulose nanofibrils (CNF) played a role as a microalgal flocculant via its network geometry without cation modification. Sulfur acid-treated tunicate CNF flocculated microalgae, but cellulose nanocrystals (CNC) did not. In addition, desulfurization did not significantly influence the flocculation efficiency of CNF. This mechanism is likely related to encapsulation of microalgae by nanofibrous structure formation, which is derived from nanofibrils entanglement and intra-hydrogen bonding. Moreover, flocculated microalgae were subject to mechanical stress resulting in changes in metabolism induced by calcium ion influx, leading to upregulated lipid synthesis. CNF do not require surface modifications such as cation modified CNC and flocculation is derived from network geometry related to nanocellulose size; accordingly, CNF is one of the least expensive cellulose-based flocculants ever identified. If this flocculant is applied to the biodiesel process, it could decrease the cost of harvest, which is one of the most expensive steps, while increasing lipid production. PMID:27796311

  18. Lipid metabolism is associated with developmental epigenetic programming

    PubMed Central

    Marchlewicz, Elizabeth H.; Dolinoy, Dana C.; Tang, Lu; Milewski, Samantha; Jones, Tamara R.; Goodrich, Jaclyn M.; Soni, Tanu; Domino, Steven E.; Song, Peter X. K.; F. Burant, Charles; Padmanabhan, Vasantha

    2016-01-01

    Maternal diet and metabolism impact fetal development. Epigenetic reprogramming facilitates fetal adaptation to these in utero cues. To determine if maternal metabolite levels impact infant DNA methylation globally and at growth and development genes, we followed a clinical birth cohort of 40 mother-infant dyads. Targeted metabolomics and quantitative DNA methylation were analyzed in 1st trimester maternal plasma (M1) and delivery maternal plasma (M2) as well as infant umbilical cord blood plasma (CB). We found very long chain fatty acids, medium chain acylcarnitines, and histidine were: (1) stable in maternal plasma from pregnancy to delivery, (2) significantly correlated between M1, M2, and CB, and (3) in the top 10% of maternal metabolites correlating with infant DNA methylation, suggesting maternal metabolites associated with infant DNA methylation are tightly controlled. Global DNA methylation was highly correlated across M1, M2, and CB. Thus, circulating maternal lipids are associated with developmental epigenetic programming, which in turn may impact lifelong health and disease risk. Further studies are required to determine the causal link between maternal plasma lipids and infant DNA methylation patterns. PMID:27713555

  19. The Role of Glucose and Lipid Metabolism in Growth and Survival of Cancer Cells.

    PubMed

    Brault, Charlene; Schulze, Almut

    2016-01-01

    One of the prerequisites for cell growth and proliferation is the synthesis of macromolecules, including proteins, nucleic acids and lipids. Cells have to alter their metabolism to allow the production of metabolic intermediates that are the precursors for biomass production. It is now evident that oncogenic signalling pathways target metabolic processes on several levels and metabolic reprogramming has emerged as a hallmark of cancer. The increased metabolic demand of cancer cells also produces selective dependencies that could be targeted for therapeutic intervention. Understanding the role of glucose and lipid metabolism in supporting cancer cell growth and survival is crucial to identify essential processes that could provide therapeutic windows for cancer therapy. PMID:27557532

  20. Interactions between dietary boron and thiamine affect lipid metabolism

    SciTech Connect

    Herbel, J.L.; Hunt, C.D. )

    1991-03-15

    An experiment was designed to test the hypothesis that dietary boron impacts upon the function of various coenzymes involved in energy metabolism. In a 2 {times} 7 factorially-arranged experiment, weanling, vitamin D{sub 3}-deprived rats were fed a ground corn-casein-corn oil based diet supplemented with 0 or 2 mg boron/kg and 50% of the requirement for thiamine (TM), riboflavin (RF), pantothenic acid (PA) or pyridoxine (PX); 0% for folic acid (FA) or nicotinic acid (NA). All vitamins were supplemented in adequate amounts in the control diet. At 8 weeks of age, the TM dietary treatment was the one most affected by supplemental dietary boron (SDB). In rats that were fed 50% TM, SDB increased plasma concentrations of triglyceride (TG) and activity of alanine transaminase (ALT), and the liver to body weight (L/B) ratio. However, in the SDB animals, adequate amounts of TM decreased the means of those variables to near that observed in non-SDB rats fed 50% TM. The findings suggest that an interaction between dietary boron and TM affects lipid metabolism.

  1. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia

    PubMed Central

    2015-01-01

    Glucose and lipid metabolism are linked to each other in many ways. The most important clinical manifestation of this interaction is diabetic dyslipidemia, characterized by elevated triglycerides, low high density lipoprotein cholesterol (HDL-C), and predominance of small-dense LDL particles. However, in the last decade we have learned that the interaction is much more complex. Hypertriglyceridemia and low HDL-C cannot only be the consequence but also the cause of a disturbed glucose metabolism. Furthermore, it is now well established that statins are associated with a small but significant increase in the risk for new onset diabetes. The underlying mechanisms are not completely understood but modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA)-reductase may play a central role as genetic data indicate that mutations resulting in lower HMG CoA-reductase activity are also associated with obesity, higher glucose concentrations and diabetes. Very interestingly, this statin induced increased risk for new onset type 2 diabetes is not detectable in subjects with familial hypercholesterolemia. Furthermore, patients with familial hypercholesterolemia seem to have a lower risk for type 2 diabetes, a phenomenon which seems to be dose-dependent (the higher the low density lipoprotein cholesterol, the lower the risk). Whether there is also an interaction between lipoprotein(a) and diabetes is still a matter of debate. PMID:26566492

  2. [Lipids composition and speed of energy metabolism in gastropods].

    PubMed

    Arakelova, E S

    2008-01-01

    Lipid composition of digestive gland and pedal muscle of two northern freshwater pulmonate snails Lymnaea stagnalis and Lymnaea ovata and three marine prosobranch gastropods Littorina obtusata, Littorina littorea, Buccinum undatum from the White Sea was studied. The species differ in ecology, particularly in trophic nabits and motor activity. The content of triacilglycerides both in digestive gland and pedal was higher in littoral dwellers Littorina the activity of which depends on the tide level. The phospholipids content in digestive gland does not differ in quantity in all cases and does not relate to type of feeding or resource quality. In a pedal muscle of marine species the quantity of common phospholipids is higher in comparison with the freshwater ones. The amount of total phospholipids in pedal muscle correlates with mass of metabolic inert formation which constitutes a part of whole mass of snails. The presence of massive shell enhances demands in energy needed for supporting movement and activity. Because the intensity of energy metabolism is related to quantity of total phospholipids, mitochondria and activity of their oxidizing ferments, the presence of thick shell in marine snails together with motor activity costs more in terms of energy than in freshwater snails with thin shell. This hypothesis is supported by the higher specific rate of oxygen consumption in marine snails than in freshwaters. PMID:19140337

  3. [Lipids composition and speed of energy metabolism in gastropods].

    PubMed

    Arakelova, E S

    2008-01-01

    Lipid composition of digestive gland and pedal muscle of two northern freshwater pulmonate snails Lymnaea stagnalis and Lymnaea ovata and three marine prosobranch gastropods Littorina obtusata, Littorina littorea, Buccinum undatum from the White Sea was studied. The species differ in ecology, particularly in trophic nabits and motor activity. The content of triacilglycerides both in digestive gland and pedal was higher in littoral dwellers Littorina the activity of which depends on the tide level. The phospholipids content in digestive gland does not differ in quantity in all cases and does not relate to type of feeding or resource quality. In a pedal muscle of marine species the quantity of common phospholipids is higher in comparison with the freshwater ones. The amount of total phospholipids in pedal muscle correlates with mass of metabolic inert formation which constitutes a part of whole mass of snails. The presence of massive shell enhances demands in energy needed for supporting movement and activity. Because the intensity of energy metabolism is related to quantity of total phospholipids, mitochondria and activity of their oxidizing ferments, the presence of thick shell in marine snails together with motor activity costs more in terms of energy than in freshwater snails with thin shell. This hypothesis is supported by the higher specific rate of oxygen consumption in marine snails than in freshwaters.

  4. JAK and STAT members of yellow catfish Pelteobagrus fulvidraco and their roles in leptin affecting lipid metabolism.

    PubMed

    Wu, Kun; Tan, Xiao-Ying; Xu, Yi-Huan; Chen, Qi-Liang; Pan, Ya-Xiong

    2016-01-15

    The present study clones and characterizes the full-length cDNA sequences of members in JAK-STAT pathway, explores their mRNA tissue expression and the biological role in leptin influencing lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Full-length cDNA sequences of five JAKs and seven STAT members, including some splicing variants, were obtained from yellow catfish. Compared to mammals, more members of the JAKs and STATs family were found in yellow catfish, which provided evidence that the JAK and STAT family members had arisen by the whole genome duplications during vertebrate evolution. All of these members were widely expressed across the eleven tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, testis and ovary) but at the variable levels. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin changed triglyceride content and mRNA expression of several JAKs and STATs members, and genes involved in lipid metabolism. AG490, a specific inhibitor of JAK2-STAT pathway, partially reversed leptin-induced effects, indicating that the JAK2a/b-STAT3 pathway exerts main regulating actions of leptin on lipid metabolism at transcriptional level. Meanwhile, the different splicing variants were differentially regulated by leptin incubation. Thus, our data suggest that leptin activated the JAK/STAT pathway and increases the expression of target genes, which partially accounts for the leptin-induced changes in lipid metabolism in yellow catfish.

  5. JAK and STAT members of yellow catfish Pelteobagrus fulvidraco and their roles in leptin affecting lipid metabolism.

    PubMed

    Wu, Kun; Tan, Xiao-Ying; Xu, Yi-Huan; Chen, Qi-Liang; Pan, Ya-Xiong

    2016-01-15

    The present study clones and characterizes the full-length cDNA sequences of members in JAK-STAT pathway, explores their mRNA tissue expression and the biological role in leptin influencing lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Full-length cDNA sequences of five JAKs and seven STAT members, including some splicing variants, were obtained from yellow catfish. Compared to mammals, more members of the JAKs and STATs family were found in yellow catfish, which provided evidence that the JAK and STAT family members had arisen by the whole genome duplications during vertebrate evolution. All of these members were widely expressed across the eleven tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, testis and ovary) but at the variable levels. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin changed triglyceride content and mRNA expression of several JAKs and STATs members, and genes involved in lipid metabolism. AG490, a specific inhibitor of JAK2-STAT pathway, partially reversed leptin-induced effects, indicating that the JAK2a/b-STAT3 pathway exerts main regulating actions of leptin on lipid metabolism at transcriptional level. Meanwhile, the different splicing variants were differentially regulated by leptin incubation. Thus, our data suggest that leptin activated the JAK/STAT pathway and increases the expression of target genes, which partially accounts for the leptin-induced changes in lipid metabolism in yellow catfish. PMID:26704851

  6. Insight into yeast: A study model of lipid metabolism and terpenoid biosynthesis.

    PubMed

    Hu, Cheng; Lu, Wenyu

    2015-01-01

    With the development of transcriptomics, metabolomics, proteomics, and mathematical modeling, yeast Saccharomyces cerevisiae is recently considered as a model studying strain by biologists who try to reveal the mystery of microorganic metabolism or develop heterologous pharmaceutical and economic products. Among S. cerevisiae metabolic research, lipid metabolism always attracts great interest because of its dominant role in cell physiology. Related researchers have developed multiple functions from cell membrane component such as adjustment to changing environment and impact on protein folding. Nowadays, many common human diseases such as diabetes mellitus, Alzheimer's disease, obesity, and atherosclerosis are related to lipid metabolism, which makes the study of lipids a desperate need. In addition to lipid metabolism, the study of the native mevalonic acid (MVA) pathway in S. cerevisiae has increased exponentially because of its huge potential to produce economically important products terpenoids. With the progress of technology in gene engineering and metabolic engineering, more and more biosynthetic pathways will be developed and put into industrial application.

  7. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism.

    PubMed

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  8. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  9. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  10. Multiphoton fluorescence lifetime imaging of metabolic status in mesenchymal stem cell during adipogenic differentiation

    NASA Astrophysics Data System (ADS)

    Meleshina, A. V.; Dudenkova, V. V.; Shirmanova, M. V.; Bystrova, A. S.; Zagaynova, E. V.

    2016-03-01

    Non-invasive imaging of cell metabolism is a valuable approach to assess the efficacy of stem cell therapy and understand the tissue development. In this study we analyzed metabolic trajectory of the mesenchymal stem cells (MCSs) during differentiation into adipocytes by measuring fluorescence lifetimes of free and bound forms of the reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD). Undifferentiated MSCs and MSCs on the 5, 12, 19, 26 days of differentiation were imaged on a Zeiss 710 microscope with fluorescence lifetime imaging (FLIM) system B&H (Germany). Fluorescence of NAD(P)H and FAD was excited at 750 nm and 900 nm, respectively, by a femtosecond Ti:sapphire laser and detected in a range 455-500 nm and 500-550 nm, correspondingly. We observed the changes in the NAD(P)H and FAD fluorescence lifetimes and their relative contributions in the differentiated adipocytes compare to undifferentiated MSCs. Increase of fluorescence lifetimes of the free and bound forms of NAD(P)H and the contribution of protein-bound NAD(P)H was registered, that can be associated with a metabolic switch from glycolysis to oxidative phosphorylation and/or synthesis of lipids in adipogenically differentiated MSCs. We also found that the contribution of protein-bound FAD decreased during differentiation. After carrying out appropriate biochemical measurements, the observed changes in cellular metabolism can potentially serve to monitor stem cell differentiation by FLIM.

  11. Metabolic regulation of T cell differentiation and function

    PubMed Central

    Park, Benjamin V.; Pan, Fan

    2016-01-01

    Upon encountering pathogens, T cells mount immune responses by proliferating, increasing cellular mass and differentiating. These cellular changes impose significant energetic challenges on T cells. It was believed that TCR and cytokine-mediated signaling are dominant dictators of T cell-mediated immune responses. Recently, it was recognized that T cells utilize metabolic transporters and metabolic sensors that allow them to rapidly respond to nutrient-limiting inflammatory environments. Metabolic sensors allow T cells to find a balance between energy consumption (anabolic metabolism) and production (catabolic metabolism) in order to mount effective immune responses. Also, metabolic regulators interact with cytokine-dependent transcriptional regulators, suggesting a more integrative and advanced model of T cell activation and differentiation. In this review, we will discuss recent discoveries regarding the roles of metabolic regulators in effector and memory T cell development and their interaction with canonical transcription factors. PMID:26277275

  12. Emerging roles of the myocardin family of proteins in lipid and glucose metabolism.

    PubMed

    Swärd, Karl; Stenkula, Karin G; Rippe, Catarina; Alajbegovic, Azra; Gomez, Maria F; Albinsson, Sebastian

    2016-09-01

    Members of the myocardin family bind to the transcription factor serum response factor (SRF) and act as coactivators controlling genes of relevance for myogenic differentiation and motile function. Binding of SRF to DNA is mediated by genetic elements called CArG boxes, found often but not exclusively in muscle and growth controlling genes. Studies aimed at defining the full spectrum of these CArG elements in the genome (i.e. the CArGome) have in recent years, unveiled unexpected roles of the myocardin family proteins in lipid and glucose homeostasis. This coactivator family includes the protein myocardin (MYOCD), the myocardin-related transcription factors A and B (MRTF-A/MKL1 and MRTF-B/MKL2) and MASTR (MAMSTR). Here we discuss growing evidence that SRF-driven transcription is controlled by extracellular glucose through activation of the Rho-kinase pathway and actin polymerization. We also describe data showing that adipogenesis is influenced by MLK activity through actions upstream of peroxisome proliferator-activated receptor γ with consequences for whole body fat mass and insulin sensitivity. The recently demonstrated involvement of myocardin coactivators in the biogenesis of caveolae, Ω-shaped membrane invaginations of importance for lipid and glucose metabolism, is finally discussed. These novel roles of myocardin proteins may open the way for new unexplored strategies to combat metabolic diseases such as diabetes, which, at the current incidence, is expected to reach 333 million people worldwide by 2025. This review highlights newly discovered roles of myocardin-related transcription factors in lipid and glucose metabolism as well as novel insights into their well-established role as mediators of stretch-dependent effects in smooth muscle. As co-factors for serum response factor (SRF), MKLs regulates transcription of genes involved in the contractile function of smooth muscle cells. In addition to mechanical stimuli, this regulation has now been found to

  13. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT.

    PubMed

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1.

  14. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY.

    PubMed

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1.

  15. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT.

    PubMed

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1. PMID:26892120

  16. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY.

    PubMed

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1. PMID:26892119

  17. Environmentally Relevant Dose of Bisphenol A Does Not Affect Lipid Metabolism and Has No Synergetic or Antagonistic Effects on Genistein’s Beneficial Roles on Lipid Metabolism

    PubMed Central

    Fan, Ying; Li, Hongyu; Zhao, Nana; Yang, Huiqin; Ye, Xiaolei; He, Dongliang; Yang, Hui; Jin, Xin; Tian, Chong; Ying, Chenjiang

    2016-01-01

    Both bisphenol A (BPA, an endocrine disrupting chemicals) and genistein (a phytoestrogen mainly derived from leguminosae) are able to bind to estrogen receptors, but they are considered to have different effects on metabolic syndrome, surprisingly. We here investigate the effects of an environmentally relevant dose of BPA alone and the combined effects with genistein on lipid metabolism in rats. Eight groups of adult male Wistar rats, fed with either standard chow diet or high-fat diet, were treated with BPA (50μg/kg/day), genistein (10mg/kg/day), and BPA plus genistein for 35 weeks, respectively. Metabolic parameters in serum and liver were determined; the hematoxylin/eosin and oil Red O staining were used to observe liver histologically; gene expressions related to hepatic lipid metabolism were analyzed by Real-time PCR; protein expressions of PPARγ, PPARα and LC3 in liver were analyzed by western blotting. No difference of body weight gain, total energy intake, liver weight/body weight or body fat percentage in both STD- and HFD-fed sub-groups was observed after treatment with BPA, genistein, or BPA plus genistein (P>0.05). Genistein alleviated lipid metabolism disorder and decreased the mRNA and protein expression of PPARγ (P<0.05), and increased the protein expression of LC3II (P<0.05) in liver of HFD-fed rats. However, BPA treatment had no effect on lipid metabolism in rats alone (P>0.05) or combined with genistein. Our findings suggest that long-term environmentally relevant dose of BPA did not affect lipid metabolism, and had no synergetic or antagonistic roles on genistein’s beneficial function on hepatic lipid metabolism. PMID:27171397

  18. Environmentally Relevant Dose of Bisphenol A Does Not Affect Lipid Metabolism and Has No Synergetic or Antagonistic Effects on Genistein's Beneficial Roles on Lipid Metabolism.

    PubMed

    Ding, Shibin; Zuo, Xuezhi; Fan, Ying; Li, Hongyu; Zhao, Nana; Yang, Huiqin; Ye, Xiaolei; He, Dongliang; Yang, Hui; Jin, Xin; Tian, Chong; Ying, Chenjiang

    2016-01-01

    Both bisphenol A (BPA, an endocrine disrupting chemicals) and genistein (a phytoestrogen mainly derived from leguminosae) are able to bind to estrogen receptors, but they are considered to have different effects on metabolic syndrome, surprisingly. We here investigate the effects of an environmentally relevant dose of BPA alone and the combined effects with genistein on lipid metabolism in rats. Eight groups of adult male Wistar rats, fed with either standard chow diet or high-fat diet, were treated with BPA (50μg/kg/day), genistein (10mg/kg/day), and BPA plus genistein for 35 weeks, respectively. Metabolic parameters in serum and liver were determined; the hematoxylin/eosin and oil Red O staining were used to observe liver histologically; gene expressions related to hepatic lipid metabolism were analyzed by Real-time PCR; protein expressions of PPARγ, PPARα and LC3 in liver were analyzed by western blotting. No difference of body weight gain, total energy intake, liver weight/body weight or body fat percentage in both STD- and HFD-fed sub-groups was observed after treatment with BPA, genistein, or BPA plus genistein (P>0.05). Genistein alleviated lipid metabolism disorder and decreased the mRNA and protein expression of PPARγ (P<0.05), and increased the protein expression of LC3II (P<0.05) in liver of HFD-fed rats. However, BPA treatment had no effect on lipid metabolism in rats alone (P>0.05) or combined with genistein. Our findings suggest that long-term environmentally relevant dose of BPA did not affect lipid metabolism, and had no synergetic or antagonistic roles on genistein's beneficial function on hepatic lipid metabolism. PMID:27171397

  19. Aberrant Lipid Metabolism: An Emerging Diagnostic and Therapeutic Target in Ovarian Cancer

    PubMed Central

    Pyragius, Carmen E.; Fuller, Maria; Ricciardelli, Carmela; Oehler, Martin K.

    2013-01-01

    Ovarian cancer remains the most lethal gynaecological cancer. A better understanding of the molecular pathogenesis of ovarian cancer is of critical importance to develop early detection tests and identify new therapeutic targets that would increase survival. Cancer cells depend on de novo lipid synthesis for the generation of fatty acids to meet the energy requirements for increased tumour growth. There is increasing evidence that lipid metabolism is deregulated in cancers, including ovarian cancer. The increased expression and activity of lipogenic enzymes is largely responsible for increased lipid synthesis, which is regulated by metabolic and oncogenic signalling pathways. This article reviews the latest knowledge on lipid metabolism and the alterations in the expression of lipogenic enzymes and downstream signalling pathways in ovarian cancer. Current developments for exploiting lipids as biomarkers for the detection of early stage ovarian cancer and therapeutic targets are discussed. Current research targeting lipogenic enzymes and lipids to increase the cytotoxicity of chemotherapy drugs is also highlighted. PMID:23574936

  20. (13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.

    PubMed

    Zhao, Lina; Zhang, Huaiyuan; Wang, Liping; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2015-12-01

    The oleaginous fungus Mucor circinelloides is of industrial interest because it can produce high levels of polyunsaturated fatty acid γ-linolenic acid. M. circinelloides CBS 277.49 is able to accumulate less than 15% of cell dry weight as lipids, while M. circinelloides WJ11 can accumulate lipid up to 36%. In order to better understand the mechanisms behind the differential lipid accumulation in these two strains, tracer experiments with (13)C-glucose were performed with the growth of M. circinelloides and subsequent gas chromatography-mass spectrometric detection of (13)C-patterns in proteinogenic amino acids was carried out to identify the metabolic network topology and estimate intracellular fluxes. Our results showed that the high oleaginous strain WJ11 had higher flux of pentose phosphate pathway and malic enzyme, lower flux in tricarboxylic acid cycle, higher flux in glyoxylate cycle and ATP: citrate lyase, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis.

  1. Probing metabolic states of differentiating stem cells using two-photon FLIM

    PubMed Central

    Meleshina, Aleksandra V.; Dudenkova, Varvara V.; Shirmanova, Marina V.; Shcheslavskiy, Vladislav I.; Becker, Wolfgang; Bystrova, Alena S.; Cherkasova, Elena I.; Zagaynova, Elena V.

    2016-01-01

    The ability of stem cells to differentiate into specialized cell types presents a number of opportunities for regenerative medicine, stem cell therapy and developmental biology. Because traditional assessments of stem cells are destructive, time consuming, and logistically intensive, the use of a non-invasive, label-free approach to study of cell differentiation provides a powerful tool for rapid, high-content characterization of cell and tissue cultures. Here, we elucidate the metabolic changes in MSCs during adipogenic differentiation, based on the fluorescence of the metabolic co-factors NADH, NADPH, and FAD using the methods of two-photon fluorescence microscopy combined with FLIM. To estimate the contribution of energy metabolism and lipogenesis in the observed changes of the metabolic profile, a separate analysis of NADH and NADPH is required. In our study we demonstrated, for the first time, an increased contribution of protein-bound NADPH in adipocytes that is associated with lipogenesis. The optical redox ratio FAD/NAD(P)H decreased during adipogenic differentiation, and that this was likely to be explained by the intensive biosynthesis of lipids and the enhanced NADPH production associated with this. Based on the data on the fluorescence lifetime contribution of protein-bound NAD(P)H, we registered a metabolic switch from glycolysis to oxidative phosphorylation in adipocytes. PMID:26911347

  2. Roles of leptin and ghrelin in adipogenesis and lipid metabolism of rainbow trout adipocytes in vitro.

    PubMed

    Salmerón, Cristina; Johansson, Marcus; Asaad, Maryam; Angotzi, Anna R; Rønnestad, Ivar; Stefansson, Sigurd O; Jönsson, Elisabeth; Björnsson, Björn Thrandur; Gutiérrez, Joaquim; Navarro, Isabel; Capilla, Encarnación

    2015-10-01

    Leptin and ghrelin are important regulators of energy homeostasis in mammals, whereas their physiological roles in fish have not been fully elucidated. In the present study, the effects of leptin and ghrelin on adipogenesis, lipolysis and on expression of lipid metabolism-related genes were examined in rainbow trout adipocytes in vitro. Leptin expression and release increased from preadipocytes to mature adipocytes in culture, but did not affect the process of adipogenesis. While ghrelin and its receptor were identified in cultured differentiated adipocytes, ghrelin did not influence either preadipocyte proliferation or differentiation, indicating that it may have other adipose-related roles. Leptin and ghrelin increased lipolysis in mature freshly isolated adipocytes, but mRNA expression of lipolysis markers was not significantly modified. Leptin significantly suppressed the fatty acid transporter-1 expression, suggesting a decrease in fatty acid uptake and storage, but did not affect expression of any of the lipogenesis or β-oxidation genes studied. Ghrelin significantly increased the mRNA levels of lipoprotein lipase, fatty acid synthase and peroxisome proliferator-activated receptor-β, and thus appears to stimulate synthesis of triglycerides as well as their mobilization. Overall, the study indicates that ghrelin, but not leptin seems to be an enhancer of lipid turn-over in adipose tissue of rainbow trout, and this regulation may at least partly be mediated through autocrine/paracrine mechanisms. The mode of action of both hormones needs to be further explored to better understand their roles in regulating adiposity in fish.

  3. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism.

    PubMed

    Spicher, Livia; Kessler, Felix

    2015-06-01

    Tocopherol (vitamin E) and phylloquinone (vitamin K1) are lipid-soluble antioxidants that can only be synthesized by photosynthetic organisms. These compounds function primarily at the thylakoid membrane but are also present in chloroplast lipid droplets, also known as plastoglobules (PG). Depending on environmental conditions and stage of plant development, changes in the content, number and size of PG occur. PG are directly connected to the thylakoid membrane via the outer lipid leaflet. Apart from storage, PG are active in metabolism and likely trafficking of diverse lipid species. This review presents recent advances on how plastoglobules are implicated in the biosynthesis and metabolism of vitamin E and K.

  4. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review.

    PubMed

    Khaire, Amrita A; Kale, Anvita A; Joshi, Sadhana R

    2015-07-01

    It is well established that alterations in the mother's diet or metabolism during pregnancy has long-term adverse effects on the lipid metabolism in the offspring. There is growing interest in the role of specific nutrients especially omega-3 fatty acids in the pathophysiology of lipid disorders. A series of studies carried out in humans and rodents in our department have consistently suggested a link between omega-3 fatty acids especially docosahexaenoic acid and micronutrients (vitamin B12 and folic acid) in the one carbon metabolic cycle and its effect on the fatty acid metabolism, hepatic transcription factors and DNA methylation patterns. However the association of maternal intake or metabolism of these nutrients with fetal lipid metabolism is relatively less explored. In this review, we provide insights into the role of maternal omega-3 fatty acids and vitamin B12 and their influence on fetal lipid metabolism through various mechanisms which influence phosphatidylethanolamine-N-methyltransferase activity, peroxisome proliferator activated receptor, adiponectin signaling pathway and epigenetic process like chromatin methylation. This will help understand the possible mechanisms involved in fetal lipid metabolism and may provide important clues for the prevention of lipid disorders in the offspring.

  5. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells.

    PubMed

    Daker, Maelinda; Bhuvanendran, Saatheeyavaane; Ahmad, Munirah; Takada, Kenzo; Khoo, Alan Soo-Beng

    2013-03-01

    Nasopharyngeal carcinoma (NPC) is a unique tumour of epithelial origin with a distinct geographical distribution, closely associated with the Epstein‑Barr virus (EBV). EBV‑encoded RNAs (EBERs) are small non‑polyadenylated RNAs that are abundantly expressed in latent EBV‑infected NPC cells. To study the role of EBERs in NPC, we established stable expression of EBERs in HK1, an EBV‑negative NPC cell line. Cells expressing EBERs consistently exhibited an increased growth rate. However, EBERs did not confer resistance towards cisplatin‑induced apoptosis or promote migration or invasion ability in the cells tested. Using microarray gene expression profiling, we identified potential candidate genes that were deregulated in NPC cells expressing EBERs. Gene Ontology analysis of the data set revealed that EBERs upregulate the cellular lipid metabolic process. Upregulation of low‑density lipoprotein receptor (LDLR) and fatty acid synthase (FASN) was observed in EBER‑expressing cells. NPC cells exhibited LDL‑dependent cell proliferation. In addition, a polyphenolic flavonoid compound, quercetin, known to inhibit FASN, was found to inhibit proliferation of NPC cells.

  6. Associations among Metabolic Syndrome, Ischemia, Inflammatory, Oxidatives, and Lipids Biomarkers

    PubMed Central

    Valle Gottlieb, Maria Gabriela; da Cruz, Ivana Beatrice Mânica; Duarte, Marta M. F.; Moresco, Rafael Noal; Wiehe, Mário; Schwanke, Carla Helena Augustin; Bodanese, Luiz Carlos

    2010-01-01

    Context: Metabolic syndrome (MS) is described as a cluster of cardiometabolic risk factors. Studies suggest that ischemia-modified albumin (IMA) is a biomarker of cardiovascular diseases. IMA levels could be associated with cardiometabolic risks and represent a possible indication of microvascular dysfunction in MS patients. Objective: To confirm this possible association, we evaluated the association between IMA levels and MS. Design: We performed a case-control study (32 healthy individuals and 74 subjects with MS) to evaluate the association between MS, IMA, and other biomarkers [high-sensitivity C-reactive protein (hs-CRP), oxidized low-density lipoprotein (OxLDL), oxidized low-density lipoprotein autoantibodies (anti-OxLDL), IL-6, lipid profile, and glucose]. Results: The MS group showed higher levels of IMA (0.618 ± 0.1355) as well as higher levels of hs-CRP, OxLDL, anti-OxLDL, and IL-6 than did control subjects (IMA = 0.338 ± 0.0486) (P < 0.01). Multivariate analysis showed that IMA and MS association was independent of sex, age, diabetes mellitus 2, and hypercholesterolemia. Conclusion: We found an association between IMA and MS. Additional studies including prospective genetic variation approaches need to be performed to help elucidate this association between IMA and MS and its potential clinical role. PMID:20016051

  7. Sphingomyelin metabolism is involved in the differentiation of MDCK cells induced by environmental hypertonicity

    PubMed Central

    Favale, Nicolás Octavio; Santacreu, Bruno Jaime; Pescio, Lucila Gisele; Marquez, Maria Gabriela; Sterin-Speziale, Norma Beatriz

    2015-01-01

    Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains. We have previously shown that the adherens junction (AJ) complex, the relevant cell-cell adhesion structure involved in cell differentiation and tissue organization, is located in an SM-rich membrane lipid domain. We have also demonstrated that under hypertonic conditions, Madin-Darby canine kidney (MDCK) cells acquire a differentiated phenotype with changes in SL metabolism. For these reasons, we decided to evaluate whether SM metabolism is involved in the acquisition of the differentiated phenotype of MDCK cells. We found that SM synthesis mediated by SM synthase 1 is involved in hypertonicity-induced formation of mature AJs, necessary for correct epithelial cell differentiation. Inhibition of SM synthesis impaired the acquisition of mature AJs, evoking a disintegration-like process reflected by the dissipation of E-cadherin and β- and α-catenins from the AJ complex. As a consequence, MDCK cells did not develop the hypertonicity-induced differentiated epithelial cell phenotype. PMID:25670801

  8. Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton

    PubMed Central

    Fu, Wenfeng; Shen, Ying; Hao, Juan; Wu, Jianyong; Ke, Liping; Wu, Caiyun; Huang, Kai; Luo, Binglun; Xu, Mingfeng; Cheng, Xiaofei; Zhou, Xueping; Sun, Jie; Xing, Chaozhu; Sun, Yuqiang

    2015-01-01

    Cotton (Gossypium spp.) is an important economic crop and there is obvious heterosis in cotton, fertility has played an important role in this heterosis. However, the genes that exhibit critical roles in anther development and fertility are not well understood. Here, we report an acyl-CoA N-acyltransferase (EC2.3; GhACNAT) that plays a key role in anther development and fertility. Suppression of GhACNAT by virus-induced gene silencing in transgenic cotton (G. hirsutum L. cv. C312) resulted in indehiscent anthers that were full of pollen, diminished filaments and stamens, and plant sterility. We found GhACNAT was involved in lipid metabolism and jasmonic acid (JA) biosynthesis. The genes differentially expressed in GhACNAT-silenced plants and C312 were mainly involved in catalytic activity and transcription regulator activity in lipid metabolism. In GhACNAT-silenced plants, the expression levels of genes involved in lipid metabolism and jasmonic acid biosynthesis were significantly changed, the amount of JA in leaves and reproductive organs was significantly decreased compared with the amounts in C312. Treatments with exogenous methyl jasmonate rescued anther dehiscence and pollen release in GhACNAT-silenced plants and caused self-fertility. The GhACNAT gene may play an important role in controlling cotton fertility by regulating the pathways of lipid synthesis and JA biogenesis. PMID:26134787

  9. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  10. Desorption Electrospray Ionization Mass Spectrometry Reveals Lipid Metabolism of Individual Oocytes and Embryos

    PubMed Central

    González-Serrano, Andrés Felipe; Pirro, Valentina; Ferreira, Christina R.; Oliveri, Paolo; Eberlin, Livia S.; Heinzmann, Julia; Lucas-Hahn, Andrea; Niemann, Heiner; Cooks, Robert Graham

    2013-01-01

    Alteration of maternal lipid metabolism early in development has been shown to trigger obesity, insulin resistance, type 2 diabetes and cardiovascular diseases later in life in humans and animal models. Here, we set out to determine (i) lipid composition dynamics in single oocytes and preimplantation embryos by high mass resolution desorption electrospray ionization mass spectrometry (DESI-MS), using the bovine species as biological model, (ii) the metabolically most relevant lipid compounds by multivariate data analysis and (iii) lipid upstream metabolism by quantitative real-time PCR (qRT-PCR) analysis of several target genes (ACAT1, CPT 1b, FASN, SREBP1 and SCAP). Bovine oocytes and blastocysts were individually analyzed by DESI-MS in both positive and negative ion modes, without lipid extraction and under ambient conditions, and were profiled for free fatty acids (FFA), phospholipids (PL), cholesterol-related molecules, and triacylglycerols (TAG). Principal component analysis (PCA) and linear discriminant analysis (LDA), performed for the first time on DESI-MS fused data, allowed unequivocal discrimination between oocytes and blastocysts based on specific lipid profiles. This analytical approach resulted in broad and detailed lipid annotation of single oocytes and blastocysts. Results of DESI-MS and transcript regulation analysis demonstrate that blastocysts produced in vitro and their in vivo counterparts differed significantly in the homeostasis of cholesterol and FFA metabolism. These results should assist in the production of viable and healthy embryos by elucidating in vivo embryonic lipid metabolism. PMID:24073231

  11. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  12. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  13. Recent Research Progress in Natural Bioactive Constituents against Lipid Metabolic Diseases.

    PubMed

    Nie, Lirong; Song, Hang; He, Ai; Yao, Shun

    2016-01-01

    Lipid metabolic disorder refers to the dyslipidemia in the plasma. Abnormal working or lipid metabolism process leads to supernormal increase of one or multi kinds of lipids in plasma. It is a significant risk factor for many diseases and has become a serious danger to the mankind health. The clinical drugs adjusting lipid levels have a great variety in the market, side effects and adverse reactions. Meanwhile, many Chinese herbal medicines and natural medicines have the unnegligible role of regulating lipid metabolism, which become the research focus of medical workers in past decades. With advantages of fewer side effects, abundant resources and multi-target functions, terrestrial and marine bioactive constituents are proved as one of the important sources of the lead compounds in drug discovery and have been widely applied in the treatment and prevention of lipid metabolic diseases. In this paper, the recent advancements and current status of natural medicinal ingredients mainly based on lipid-lowering activities were reviewed in detail. Moreover, their bioactivity screening and important mechanisms in hyperlipemia progression were summarized and compared. It was also selectively introduced about related structural modification and new drug development on the basis of promising lead compounds. Finally, the current problems and possible prospects of natural constituents against lipid metabolism disorder in the future were discussed. PMID:27086784

  14. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  15. Proteomic analysis of livers from fat-fed mice deficient in either PKCδ or PKCε identifies Htatip2 as a regulator of lipid metabolism.

    PubMed

    Liao, Bing M; Raddatz, Katy; Zhong, Ling; Parker, Benjamin L; Raftery, Mark J; Schmitz-Peiffer, Carsten

    2014-11-01

    Insulin resistance contributes to the development of Type 2 diabetes, and is associated with lipid oversupply. Deletion of isoforms of the lipid-activated protein kinase C (PKC) family, PKCδ or PKCε, improves insulin action in fat-fed mice, but differentially affects hepatic lipid metabolism. To investigate the mechanisms involved, we employed an in vivo adaptation of SILAC to examine the effects of a fat diet together with deletion of PKCδ or PKCε on the expression of liver proteins. We identified a total of 3359 and 3488 proteins from the PKCδ and PKCε knockout study groups, respectively, and showed that several enzymes of lipid metabolism were affected by the fat diet. In fat-fed mice, 23 proteins showed changes upon PKCδ deletion while 19 proteins were affected by PKCε deletion. Enzymes of retinol metabolism were affected by the absence of either PKC. Pathway analysis indicated that monosaccharide metabolism was affected only upon PKCδ deletion, while isoprenoid biosynthesis was affected in a PKCε-specific manner. Certain proteins were regulated inversely, including HIV-1 tat interactive protein 2 (Htatip2). Overexpression or knockdown of Htatip2 in hepatocytes affected fatty acid storage and oxidation, consistent with a novel role in mediating the differential effects of PKC isoforms on lipid metabolism. All MS data have been deposited in the ProteomeXchange with identifier PXD000971 (http://proteomecentral.proteomexchange.org/dataset/PXD000971).

  16. The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis.

    PubMed

    Habib, Anwer; Finn, Aloke V

    2014-01-01

    Iron is an essential mineral needed for normal physiologic processes. While its function in oxygen transport and other important physiologic processes is well known, less is understood about its role in inflammatory diseases such as atherosclerosis. Existing paradigms suggest iron as a driver of atherosclerosis through its actions as a pro-oxidant capable of causing lipid oxidation and tissue damage. Recently we and others have identified hemoglobin (Hb) derived iron as an important factor in determining macrophage differentiation and function in areas of intraplaque hemorrhage within human atherosclerosis. Hb associated macrophages, M(Hb), are distinct from traditional macrophage foam cells because they do not contain large amounts of lipid or inflammatory cytokines, are characterized by high levels of expression of mannose receptor (CD206) and CD163 in addition to producing anti-inflammatory cytokines such as IL-10. Despite the well-known role of iron as an catalyst capable of producing lipid peroxidation through generation of reactive oxygen species (ROS) such as hydroxyl radical, we and others have shown that macrophages in areas of intraplaque hemorrhage demonstrate reduced intracellular iron and ROS which triggers production of anti-inflammatory cytokines as well as genes involved in cholesterol efflux. These data suggest that manipulation of macrophage iron itself may be a promising pharmacologic target for atherosclerosis prevention through its effects on macrophage inflammation and lipid metabolism. In this review we will summarize the current understanding of iron as it relates to plaque inflammation and discuss how further exploration of this subject may lead to new therapies for atherosclerosis.

  17. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis

    PubMed Central

    Lee, Sunjae; Mardinoglu, Adil; Zhang, Cheng; Lee, Doheon; Nielsen, Jens

    2016-01-01

    Hepatocellular carcinoma (HCC) has a high mortality rate and early detection of HCC is crucial for the application of effective treatment strategies. HCC is typically caused by either viral hepatitis infection or by fatty liver disease. To diagnose and treat HCC it is necessary to elucidate the underlying molecular mechanisms. As a major cause for development of HCC is fatty liver disease, we here investigated anomalies in regulation of lipid metabolism in the liver. We applied a tailored network-based approach to identify signaling hubs associated with regulation of this part of metabolism. Using transcriptomics data of HCC patients, we identified significant dysregulated expressions of lipid-regulated genes, across many different lipid metabolic pathways. Our findings, however, show that viral hepatitis causes HCC by a distinct mechanism, less likely involving lipid anomalies. Based on our analysis we suggest signaling hub genes governing overall catabolic or anabolic pathways, as novel drug targets for treatment of HCC that involves lipid anomalies. PMID:27216817

  18. The essential functions of endoplasmic reticulum chaperones in hepatic lipid metabolism.

    PubMed

    Zhang, LiChun; Wang, Hong-Hui

    2016-07-01

    The endoplasmic reticulum (ER) is an essential organelle for protein and lipid synthesis in hepatocytes. ER homeostasis is vital to maintain normal hepatocyte physiology. Perturbed ER functions causes ER stress associated with accumulation of unfolded protein in the ER that activates a series of adaptive signalling pathways, termed unfolded protein response (UPR). The UPR regulates ER chaperone levels to preserve ER protein-folding environment to protect the cell from ER stress. Recent findings reveal an array of ER chaperones that alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatocyte lipid metabolism and liver disease. In this review, we will discuss the specific functions of these chaperones in regulation of lipid metabolism, especially de novo lipogenesis and lipid transport and demonstrate their homeostatic role not only for ER-protein synthesis but also for lipid metabolism in hepatocyte. PMID:27133206

  19. Differential human urinary lipid profiles using various lipid-extraction protocols: MALDI-TOF and LIFT-TOF/TOF analyses.

    PubMed

    Tipthara, Phornpimon; Thongboonkerd, Visith

    2016-01-01

    Changes in lipid levels/profiles can reflect health status and diseases. Urinary lipidomics, thus, has a great potential in clinical diagnostics/prognostics. Previously, only chloroform and methanol were used for extracting lipids from the urine. The present study aimed to optimize lipid extraction and examine differential lipid classes obtained by various extraction protocols. Urine samples were collected from eight healthy individuals and then pooled. Lipids were extracted by six solvent protocols, including (i) chloroform/methanol (1:1, v/v), (ii) chloroform/methanol (2:1, v/v), (iii) hexane/isopropanol (3:2, v/v), (iv) chloroform, (v) diethyl ether, and (vi) hexane. Lipid profiles of the six extracts were acquired by MALDI-TOF mass spectrometry (MS) and some lipid classes were verified by LIFT-TOF/TOF MS/MS. The data revealed that phosphatidylglycerol (PG) and phosphatidylinositol (PI) could be detected by all six protocols. However, phosphatidylcholine (PC) and sphingomyelin (SM) were detectable only by protocols (i)-(iv), whereas phosphatidylserine (PS) was detectable only by protocols (iii)-(vi), and phosphatidylethanolamine (PE) was detectable only by protocols (v)-(vi). In summary, we have demonstrated differential lipidome profiles yielded by different extraction protocols. These data can serve as an important source for selection of an appropriate extraction method for further highly focused studies on particular lipid classes in the human urine. PMID:27646409

  20. Differential human urinary lipid profiles using various lipid-extraction protocols: MALDI-TOF and LIFT-TOF/TOF analyses

    PubMed Central

    Tipthara, Phornpimon; Thongboonkerd, Visith

    2016-01-01

    Changes in lipid levels/profiles can reflect health status and diseases. Urinary lipidomics, thus, has a great potential in clinical diagnostics/prognostics. Previously, only chloroform and methanol were used for extracting lipids from the urine. The present study aimed to optimize lipid extraction and examine differential lipid classes obtained by various extraction protocols. Urine samples were collected from eight healthy individuals and then pooled. Lipids were extracted by six solvent protocols, including (i) chloroform/methanol (1:1, v/v), (ii) chloroform/methanol (2:1, v/v), (iii) hexane/isopropanol (3:2, v/v), (iv) chloroform, (v) diethyl ether, and (vi) hexane. Lipid profiles of the six extracts were acquired by MALDI-TOF mass spectrometry (MS) and some lipid classes were verified by LIFT-TOF/TOF MS/MS. The data revealed that phosphatidylglycerol (PG) and phosphatidylinositol (PI) could be detected by all six protocols. However, phosphatidylcholine (PC) and sphingomyelin (SM) were detectable only by protocols (i)–(iv), whereas phosphatidylserine (PS) was detectable only by protocols (iii)–(vi), and phosphatidylethanolamine (PE) was detectable only by protocols (v)–(vi). In summary, we have demonstrated differential lipidome profiles yielded by different extraction protocols. These data can serve as an important source for selection of an appropriate extraction method for further highly focused studies on particular lipid classes in the human urine. PMID:27646409

  1. A role of lipid metabolism during cumulus-oocyte complex maturation: impact of lipid modulators to improve embryo production.

    PubMed

    Prates, E G; Nunes, J T; Pereira, R M

    2014-01-01

    Oocyte intracellular lipids are mainly stored in lipid droplets (LD) providing energy for proper growth and development. Lipids are also important signalling molecules involved in the regulatory mechanisms of maturation and hence in oocyte competence acquisition. Recent studies show that LD are highly dynamic organelles. They change their shape, volume, and location within the ooplasm as well as their interaction with other organelles during the maturation process. The droplets high lipid content has been correlated with impaired oocyte developmental competence and low cryosurvival. Yet the underlying mechanisms are not fully understood. In particular, the lipid-rich pig oocyte might be an excellent model to understand the role of lipids and fatty acid metabolism during the mammalian oocyte maturation and their implications on subsequent monospermic fertilization and preimplantation embryo development. The possibility of using chemical molecules to modulate the lipid content of oocytes and embryos to improve cryopreservation as well as its biological effects during development is here described. Furthermore, these principles of lipid content modulation may be applied not only to germ cells and embryo cryopreservation in livestock production but also to biomedical fundamental research.

  2. Effects of gemfibrozil on lipid metabolism, steroidogenesis and reproduction in the fathead minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPARs), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fi...

  3. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    PubMed

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  4. Acute and chronic toxicity of endosulfan to crab: Effect on lipid metabolism

    SciTech Connect

    Rafi, G.Md.; Srinivas, T.; Reddy, S.J.; Reddy, D.C.; Ramamurthi, R. )

    1991-12-01

    Endosulfan is toxic to fish and its toxic effects have been studied in several freshwater fish. However, information regarding toxicity of endosulfan to many freshwater invertebrates is fragmentary. Few reports are available on the toxic effect of endosulfan on carbohydrate and protein metabolisms of freshwater field crab, Oziotelphusa senex senex, another nontarget organism of aquatic ecosystem. The work on lipid metabolism under organochloride insecticide (OCI) stress is scant. The OCI tend to accumulate in the lipid rich tissues of the biosystem due to their lipophilic nature. The changes in lipid profiles under OCI stress reported to cause profound changes in the metabolism and physiology of animals. Therefore, this paper presents the effects of endosulfan on lipid metabolism in O. senex senex.

  5. Brown Adipose Tissue Activation Is Linked to Distinct Systemic Effects on Lipid Metabolism in Humans.

    PubMed

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Saraf, Manish K; Annamalai, Palam; Yfanti, Christina; Chao, Tony; Wong, Daniel; Shinoda, Kosaku; Labbė, Sebastien M; Hurren, Nicholas M; Cesani, Fernardo; Kajimura, Shingo; Sidossis, Labros S

    2016-06-14

    Recent studies suggest that brown adipose tissue (BAT) plays a role in energy and glucose metabolism in humans. However, the physiological significance of human BAT in lipid metabolism remains unknown. We studied 16 overweight/obese men during prolonged, non-shivering cold and thermoneutral conditions using stable isotopic tracer methodologies in conjunction with hyperinsulinemic-euglycemic clamps and BAT and white adipose tissue (WAT) biopsies. BAT volume was significantly associated with increased whole-body lipolysis, triglyceride-free fatty acid (FFA) cycling, FFA oxidation, and adipose tissue insulin sensitivity. Functional analysis of BAT and WAT demonstrated the greater thermogenic capacity of BAT compared to WAT, while molecular analysis revealed a cold-induced upregulation of genes involved in lipid metabolism only in BAT. The accelerated mobilization and oxidation of lipids upon BAT activation supports a putative role for BAT in the regulation of lipid metabolism in humans. PMID:27238638

  6. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    PubMed

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes.

  7. Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses.

    PubMed

    Villareal, Valerie A; Rodgers, Mary A; Costello, Deirdre A; Yang, Priscilla L

    2015-12-01

    Lipids are necessary for every step in the replication cycle of hepatitis C virus (HCV) and dengue virus (DENV), members of the family Flaviviridae. Recent studies have demonstrated that discrete steps in the replication cycles of these viruses can be inhibited by pharmacological agents that target host factors mediating lipid synthesis, metabolism, trafficking, and signal transduction. Despite this, targeting host lipid metabolism and trafficking as an antiviral strategy by blockade of entire pathways may be limited due to host toxicity. Knowledge of the molecular details of lipid structure and function in replication and the mechanisms whereby specific lipids are generated and trafficked to the relevant sites may enable more targeted antiviral strategies without global effects on the host cell. In this review, we discuss lipids demonstrated to be critical to the replication cycles of HCV and DENV and highlight potential areas for anti-viral development. This review article forms part of a symposium on flavivirus drug discovery in Antiviral Research.

  8. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    SciTech Connect

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  9. Transcriptome survey of the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the salmon louse Caligus rogercresseyi (Crustacea: Copepoda).

    PubMed

    Gonçalves, Ana Teresa; Farlora, Rodolfo; Gallardo-Escárate, Cristian

    2014-10-01

    The goal of this study was to identify and analyze the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the ectoparasite copepod Caligus rogercresseyi. Massive transcriptome sequencing analysis was performed during the infectious copepodid larval stage, during the attached chalimus larval stage, and also in female and male adults. Thirty genes were selected for describing the pathways, and these were annotated for proteins or enzymes involved in lipid digestion, absorption, and transport; fatty acid degradation; the synthesis and degradation of ketone bodies; and steroid and ecdysteroid syntheses. Differential expression of these genes was analyzed by ontogenic stage and discussed considering each stage's feeding habits and energetic needs. Copepodids showed a low expression of fatty acid digestion genes, reflected by a non-feeding behavior, and the upregulation of genes involved in steroid biosynthesis, which was consistent with a pathway for cholesterol synthesis during ecdysis. The chalimus stage showed an upregulation of genes related to fatty acid digestion, absorption, and transport, as well as to fatty acid degradation and the synthesis of ketone bodies, therefore suggesting that lipids ingested from the mucus and skin of the host fish are metabolized as important sources of energy. Adult females also showed a pattern of high lipid metabolism for energy supply and mobilization in relation to reproduction and vitellogenesis. Adult females and males revealed different lipid metabolism patterns that reflected different energetic needs. This study reports for the first time the probable lipid metabolic pathways involved in the energy production and ecdysteroid synthesis of C. rogercresseyi.

  10. MALDI Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries

    PubMed Central

    Uzbekova, Svetlana; Elis, Sebastien; Teixeira-Gomes, Ana-Paula; Desmarchais, Alice; Maillard, Virginie; Labas, Valerie

    2015-01-01

    In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs). Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus) and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments. PMID:25756245

  11. Sasa quelpaertensis leaf extract improves high fat diet-induced lipid abnormalities and regulation of lipid metabolism genes in rats.

    PubMed

    Kim, Jina; Kim, Yoo-Sun; Lee, Hyun Ah; Lim, Ji Ye; Kim, Mina; Kwon, Oran; Ko, Hee-Chul; Kim, Se-Jae; Shin, Jae-Ho; Kim, Yuri

    2014-05-01

    Sasa quelpaertensis is a bamboo leaf that is only grown on Jeju Island in South Korea. It is used as a bamboo tea that is consumed for therapeutic purposes, particularly for its anti-diabetic, diuretic, and anti-inflammatory effects. This study investigated the effect of S. quelpaertensis leaf extract (SQE) on high fat-induced lipid abnormalities and regulation of lipid metabolism-related gene expressions in rats. SQE supplementation significantly decreased the levels of plasma triglycerides, total cholesterol, and low-density lipoprotein cholesterol as well as the atherogenic index. SQE restored levels of plasma high-density lipoprotein cholesterol, which were lowered by a high fat diet. Plasma and cardiac resistin levels were also significantly decreased by SQE supplementation. In adipose tissue, mRNA levels of CAAT/enhancer-binding protein β (C/EBPβ) were suppressed in the SQE group. SQE supplementation decreased the accumulation of lipid droplets, inflammatory cell infiltrations, levels of triglycerides, and total lipids in the liver and effectively down-regulated expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthetase (FAS), and uncoupling protein 2 (UCP-2). These results suggest that SQE may be a potential treatment for high fat-related disorders by improving lipid profiles and modulating lipid metabolism.

  12. Effect of lipid source and oxidation level on metabolic oxidation status of young pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the effects of lipid source and oxidation level on metabolic oxidation status of young pigs, 108 barrows (~ 6.66 kg BW) were assigned to 1 of 13 dietary treatments in a 4 × 3 factorial design, including one control diet and 12 diets containing 10% lipid [corn oil (CN), canola oil (CA), p...

  13. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    PubMed

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  14. Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis

    PubMed Central

    Deep, Gagan; Schlaepfer, Isabel R.

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men in United States. Recent studies have focused on the identification of novel metabolic characteristics of PCa, aimed at devising better preventive and therapeutic approaches. PCa cells have revealed unique metabolic features such as higher expression of several enzymes associated with de novo lipogenesis, fatty acid up-take and β-oxidation. This aberrant lipid metabolism has been reported to be important for PCa growth, hormone-refractory progression and treatment resistance. Furthermore, PCa cells effectively use lipid metabolism under adverse environmental conditions for their survival advantage. Specifically, hypoxic cancer cells accumulate higher amount of lipids through a combination of metabolic alterations including high glutamine and fatty acid uptake, as well as decreased fatty acid oxidation. These stored lipids serve to protect cancer cells from oxidative and endoplasmic reticulum stress, and play important roles in fueling cancer cell proliferation following re-oxygenation. Lastly, cellular lipids have also been implicated in extracellular vesicle biogenesis, which play a vital role in intercellular communication. Overall, the new understanding of lipid metabolism in recent years has offered several novel targets to better target and manage clinical PCa. PMID:27384557

  15. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    PubMed

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem. PMID:27305777

  16. Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis.

    PubMed

    Deep, Gagan; Schlaepfer, Isabel R

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men in United States. Recent studies have focused on the identification of novel metabolic characteristics of PCa, aimed at devising better preventive and therapeutic approaches. PCa cells have revealed unique metabolic features such as higher expression of several enzymes associated with de novo lipogenesis, fatty acid up-take and β-oxidation. This aberrant lipid metabolism has been reported to be important for PCa growth, hormone-refractory progression and treatment resistance. Furthermore, PCa cells effectively use lipid metabolism under adverse environmental conditions for their survival advantage. Specifically, hypoxic cancer cells accumulate higher amount of lipids through a combination of metabolic alterations including high glutamine and fatty acid uptake, as well as decreased fatty acid oxidation. These stored lipids serve to protect cancer cells from oxidative and endoplasmic reticulum stress, and play important roles in fueling cancer cell proliferation following re-oxygenation. Lastly, cellular lipids have also been implicated in extracellular vesicle biogenesis, which play a vital role in intercellular communication. Overall, the new understanding of lipid metabolism in recent years has offered several novel targets to better target and manage clinical PCa. PMID:27384557

  17. Salivary composition in obese vs normal-weight subjects: towards a role in postprandial lipid metabolism?

    PubMed

    Vors, C; Drai, J; Gabert, L; Pineau, G; Laville, M; Vidal, H; Guichard, E; Michalski, M-C; Feron, G

    2015-09-01

    In the pathophysiological context of obesity, oral exposure to dietary fat can modulate lipid digestion and absorption, but underlying in-mouth mechanisms have not been clearly identified. Therefore, we tested the hypothesis that salivary components related to dietary fat sensitivity would differ according to body mass index (BMI) and postprandial lipid metabolism in young men. Saliva was collected from nine normal-weight (BMI=22.3±0.5 kg m(-2)) and nine non-morbid obese (BMI=31.7±0.3 kg m(-2)) men before an 8-h postprandial metabolic exploration test involving the consumption of a 40-g fat meal, in which obese subjects revealed a delayed postprandial lipid metabolism. Nine salivary characteristics (flow, protein content, lipolysis, amylase, proteolysis, total antioxidant status, lysozyme, lipocalin 1 and carbonic anhydrase-VI) were investigated. We show that, under fasting conditions, salivary lipolysis was lower in obese vs normal-weight subjects, whereas proteolysis and carbonic anhydrase VI were higher. We reveal through multivariate and Mann-Whitney analysis that differences in fasting salivary lipolysis and proteolysis between both groups are related to differences in postprandial lipid metabolism including exogenous fatty-acid absorption and β-oxidation. These results suggest a potential role of salivary composition on postprandial lipid metabolism and bring novel causal hypotheses on the links between salivary composition, sensitivity to dietary fat oral income and postprandial lipid metabolism according to BMI.

  18. SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation.

    PubMed

    Pang, Shanshan; Lynn, Dana A; Lo, Jacqueline Y; Paek, Jennifer; Curran, Sean P

    2014-10-06

    Mechanisms that coordinate different metabolic pathways, such as glucose and lipid, have been recognized. However, a potential interaction between amino acid and lipid metabolism remains largely elusive. Here we show that during starvation of Caenorhabditis elegans, proline catabolism is coupled with lipid metabolism by SKN-1. Mutation of alh-6, a conserved proline catabolic enzyme, accelerates fat mobilization, enhances the expression of genes involved in fatty acid oxidation and reduces survival in response to fasting. This metabolic coordination is mediated by the activation of the transcription factor SKN-1/Nrf2, possibly due to the accumulation of the alh-6 substrate P5C, and also requires the transcriptional co-regulator MDT-15. Constitutive activation of SKN-1 induces a similar transcriptional response, which protects animals from fat accumulation when fed a high carbohydrate diet. In human cells, an orthologous alh-6 enzyme, ALDH4A1, is also linked to the activity of Nrf2, the human orthologue of SKN-1, and regulates the expression of lipid metabolic genes. Our findings identify a link between proline catabolism and lipid metabolism, and uncover a physiological role for SKN-1 in metabolism.

  19. Fluid lipid membranes: from differential geometry to curvature stresses.

    PubMed

    Deserno, Markus

    2015-01-01

    A fluid lipid membrane transmits stresses and torques that are fully determined by its geometry. They can be described by a stress- and torque-tensor, respectively, which yield the force or torque per length through any curve drawn on the membrane's surface. In the absence of external forces or torques the surface divergence of these tensors vanishes, revealing them as conserved quantities of the underlying Euler-Lagrange equation for the membrane's shape. This review provides a comprehensive introduction into these concepts without assuming the reader's familiarity with differential geometry, which instead will be developed as needed, relying on little more than vector calculus. The Helfrich Hamiltonian is then introduced and discussed in some depth. By expressing the quest for the energy-minimizing shape as a functional variation problem subject to geometric constraints, as proposed by Guven (2004), stress- and torque-tensors naturally emerge, and their connection to the shape equation becomes evident. How to reason with both tensors is then illustrated with a number of simple examples, after which this review concludes with four more sophisticated applications: boundary conditions for adhering membranes, corrections to the classical micropipette aspiration equation, membrane buckling, and membrane mediated interactions.

  20. Role of lipid rafts in neuronal differentiation of dental pulp-derived stem cells.

    PubMed

    Mattei, Vincenzo; Santacroce, Costantino; Tasciotti, Vincenzo; Martellucci, Stefano; Santilli, Francesca; Manganelli, Valeria; Piccoli, Luca; Misasi, Roberta; Sorice, Maurizio; Garofalo, Tina

    2015-12-10

    Human dental pulp-derived stem cells (hDPSCs) are characterized by a typical fibroblast-like morphology. They express specific markers for mesenchymal stem cells and are capable of differentiation into osteoblasts, adipoblasts and neurons in vitro. Previous studies showed that gangliosides are involved in the induction of early neuronal differentiation of hDPSCs. This study was undertaken to investigate the role of lipid rafts in this process. Lipid rafts are signaling microdomains enriched in glycosphingolipids, cholesterol, tyrosine kinase receptors, mono- or heterotrimeric G proteins and GPI-anchored proteins. We preliminary showed that established cells expressed multipotent mesenchymal stromal-specific surface antigens. Then, we analyzed the distribution of lipid rafts, revealing plasma membrane microdomains with GM2 and EGF-R enrichment. Following stimulation with EGF/bFGF, neuronal differentiation was observed. To analyze the functional role of lipid rafts in EGF/bFGF-induced hDPSCs differentiation, cells were preincubated with lipid raft affecting agents, i.e. [D]-PDMP or methyl-β-cyclodextrin. These compounds significantly prevented neuronal-specific antigen expression, as well as Akt and ERK 1/2 phosphorylation, induced by EGF/bFGF, indicating that lipid raft integrity is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that lipid rafts may represent specific chambers, where multimolecular signaling complexes, including lipids (gangliosides, cholesterol) and proteins (EGF-R), play a role in hDPSCs differentiation.

  1. Assessing compartmentalized flux in lipid metabolism with isotopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolism in plants takes place across multiple cell types and subpopulations in distinct organelles. The distributions equate to spatial heterogeneity; though the limited means to experimentally asses metabolism frequently involve homogenizing tissues and mixing metabolites from different location...

  2. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities.

  3. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation.

    PubMed

    Soeters, Maarten R; Soeters, Peter B; Schooneman, Marieke G; Houten, Sander M; Romijn, Johannes A

    2012-12-15

    The human organism has tools to cope with metabolic challenges like starvation that are crucial for survival. Lipolysis, lipid oxidation, ketone body synthesis, tailored endogenous glucose production and uptake, and decreased glucose oxidation serve to protect against excessive erosion of protein mass, which is the predominant supplier of carbon chains for synthesis of newly formed glucose. The starvation response shows that the adaptation to energy deficit is very effective and coordinated with different adaptations in different organs. From an evolutionary perspective, this lipid-induced effect on glucose oxidation and uptake is very strong and may therefore help to understand why insulin resistance in obesity and type 2 diabetes mellitus is difficult to treat. The importance of reciprocity in lipid and glucose metabolism during human starvation should be taken into account when studying lipid and glucose metabolism in general and in pathophysiological conditions in particular.

  4. Obesity-Related Chronic Kidney Disease—The Role of Lipid Metabolism

    PubMed Central

    Mount, Peter; Davies, Matthew; Choy, Suet-Wan; Cook, Natasha; Power, David

    2015-01-01

    Obesity is an independent risk factor for chronic kidney disease (CKD). The mechanisms linking obesity and CKD include systemic changes such as high blood pressure and hyperglycemia, and intrarenal effects relating to lipid accumulation. Normal lipid metabolism is integral to renal physiology and disturbances of renal lipid and energy metabolism are increasingly being linked with kidney disease. AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) are important regulators of fatty acid oxidation, which is frequently abnormal in the kidney with CKD. A high fat diet reduces renal AMPK activity, thereby contributing to reduced fatty acid oxidation and energy imbalance, and treatments to activate AMPK are beneficial in animal models of obesity-related CKD. Studies have found that the specific cell types affected by excessive lipid accumulation are proximal tubular cells, podocytes, and mesangial cells. Targeting disturbances of renal energy metabolism is a promising approach to addressing the current epidemic of obesity-related kidney disease. PMID:26690487

  5. Protein Kinase A Subunit Balance Regulates Lipid Metabolism in Caenorhabditis elegans and Mammalian Adipocytes.

    PubMed

    Lee, Jung Hyun; Han, Ji Seul; Kong, Jinuk; Ji, Yul; Lv, Xuchao; Lee, Junho; Li, Peng; Kim, Jae Bum

    2016-09-23

    Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIβ via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism.

  6. Protein Kinase A Subunit Balance Regulates Lipid Metabolism in Caenorhabditis elegans and Mammalian Adipocytes.

    PubMed

    Lee, Jung Hyun; Han, Ji Seul; Kong, Jinuk; Ji, Yul; Lv, Xuchao; Lee, Junho; Li, Peng; Kim, Jae Bum

    2016-09-23

    Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIβ via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism. PMID:27496951

  7. Transcriptome-Wide Analysis Reveals the Role of PPARγ Controlling the Lipid Metabolism in Goat Mammary Epithelial Cells

    PubMed Central

    Zhao, Wangsheng; Zhang, Changhui

    2016-01-01

    To explore the large-scale effect of peroxisome proliferator-activated receptor γ (PPARG) in goat mammary epithelial cells (GMEC), an oligonucleotide microarray platform was used for transcriptome profiling in cells overexpressing PPARG and incubated with or without rosiglitazone (ROSI, a PPARγ agonist). A total of 1143 differentially expressed genes (DEG) due to treatment were detected. The Dynamic Impact Approach (DIA) analysis uncovered the most impacted and induced pathways “fatty acid elongation in mitochondria,” “glycosaminoglycan biosynthesis-keratan sulfate,” and “pentose phosphate pathway.” The data highlights the central role of PPARG in milk fatty acid metabolism via controlling fatty acid elongation, biosynthesis of unsaturated fatty acid, lipid formation, and lipid secretion; furthermore, its role related to carbohydrate metabolism promotes the production of intermediates required for milk fat synthesis. Analysis of upstream regulators indicated that PPARG participates in multiple physiological processes via controlling or cross talking with other key transcription factors such as PPARD and NR1H3 (also known as liver-X-receptor-α). This transcriptome-wide analysis represents the first attempt to better understand the biological relevance of PPARG expression in ruminant mammary cells. Overall, the data underscored the importance of PPARG in mammary lipid metabolism and transcription factor control.

  8. Lipid composition and metabolism in embryos of Brassica napus

    SciTech Connect

    Sparace, S.A. ); Pomroy, M.K. )

    1990-05-01

    Seven and 14-day old microspore-derived developing embryos of the low-erucate Brassica napus L. (cv. Topas) were analyzed for their acyl lipid composition and capacity to incorporate ({sup 14}C)acetate into lipid. The most significant changes in the lipid compositions of these ages of embryos are (1) increased total lipid from 2 to 5% of fresh weight; (2) increased proportion of TAG from 31 to 74%, and shifts in the fatty acid composition of TAG from 25 to 50% 18:1; 28 to 23% 18:2; and 24 to 13% 18:3. Lipids of 7-day embryos also consist of primarily 8% DAG, 2% MG, 12% FFA, 10% DGDG, 15% PA and approximately 5% each of PC, PE and PG. The levels of these lipids generally decrease as the embryos mature and accumulate TAG. ({sup 14}C)Acetate is incorporated into all lipids and fatty acids except 18:2 or 18:3. As much as 39, 59 and 34% of the fatty acid radioactivity of Mg was recovered in 20:0, 22:0 and 24:0, respectively.

  9. Transcriptome Analyses Reveal Lipid Metabolic Process in Liver Related to the Difference of Carcass Fat Content in Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Hu, Guo; Gu, Wei; Sun, Peng; Bai, Qingli

    2016-01-01

    Excessive accumulation of carcass fat in farm animals, including fish, has a significant impact on meat quality and on the cost of feeding. Similar to farmed animals and humans, the liver can be considered one of the most important organs involved in lipid metabolism in rainbow trout (Oncorhynchus mykiss). RNA-seq based whole transcriptome sequencing was performed to liver tissue of rainbow trout with high and low carcass fat content in this study. In total 1,694 differentially expressed transcripts were identified, including many genes involved in lipid metabolism, such as L-FABP, adiponectin, PPAR-α, PPAR-β, and IGFBP1a. Evidence presented in this study indicated that lipid metabolic process in liver may be related to the difference of carcass fat content. The relevance of PPAR-α and PPAR-β as molecular markers for fat storage in liver should be worthy of further investigation. PMID:27652256

  10. Transcriptome Analyses Reveal Lipid Metabolic Process in Liver Related to the Difference of Carcass Fat Content in Rainbow Trout (Oncorhynchus mykiss).

    PubMed

    Hu, Guo; Gu, Wei; Sun, Peng; Bai, Qingli; Wang, Bingqian

    2016-01-01

    Excessive accumulation of carcass fat in farm animals, including fish, has a significant impact on meat quality and on the cost of feeding. Similar to farmed animals and humans, the liver can be considered one of the most important organs involved in lipid metabolism in rainbow trout (Oncorhynchus mykiss). RNA-seq based whole transcriptome sequencing was performed to liver tissue of rainbow trout with high and low carcass fat content in this study. In total 1,694 differentially expressed transcripts were identified, including many genes involved in lipid metabolism, such as L-FABP, adiponectin, PPAR-α, PPAR-β, and IGFBP1a. Evidence presented in this study indicated that lipid metabolic process in liver may be related to the difference of carcass fat content. The relevance of PPAR-α and PPAR-β as molecular markers for fat storage in liver should be worthy of further investigation. PMID:27652256

  11. Transcriptome Analyses Reveal Lipid Metabolic Process in Liver Related to the Difference of Carcass Fat Content in Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Hu, Guo; Gu, Wei; Sun, Peng; Bai, Qingli

    2016-01-01

    Excessive accumulation of carcass fat in farm animals, including fish, has a significant impact on meat quality and on the cost of feeding. Similar to farmed animals and humans, the liver can be considered one of the most important organs involved in lipid metabolism in rainbow trout (Oncorhynchus mykiss). RNA-seq based whole transcriptome sequencing was performed to liver tissue of rainbow trout with high and low carcass fat content in this study. In total 1,694 differentially expressed transcripts were identified, including many genes involved in lipid metabolism, such as L-FABP, adiponectin, PPAR-α, PPAR-β, and IGFBP1a. Evidence presented in this study indicated that lipid metabolic process in liver may be related to the difference of carcass fat content. The relevance of PPAR-α and PPAR-β as molecular markers for fat storage in liver should be worthy of further investigation.

  12. Lipid metabolism genes in contralateral unaffected breast and estrogen receptor status of breast cancer.

    PubMed

    Wang, Jun; Scholtens, Denise; Holko, Michelle; Ivancic, David; Lee, Oukseub; Hu, Hong; Chatterton, Robert T; Sullivan, Megan E; Hansen, Nora; Bethke, Kevin; Zalles, Carola M; Khan, Seema A

    2013-04-01

    Risk biomarkers that are specific to estrogen receptor (ER) subtypes of breast cancer would aid the development and implementation of distinct prevention strategies. The contralateral unaffected breast of women with unilateral breast cancer (cases) is a good model for defining subtype-specific risk because women with ER-negative (ER-) index primaries are at high risk for subsequent ER-negative primary cancers. We conducted random fine needle aspiration of the unaffected breasts of cases. Samples from 30 subjects [15 ER-positive (ER+) and 15 ER- cases matched for age, race and menopausal status] were used for Illumina expression array analysis. Findings were confirmed using quantitative real-time PCR (qRT-PCR) in the same samples. A validation set consisting of 36 subjects (12 ER+, 12 ER- and 12 standard-risk healthy controls) was used to compare gene expression across groups. ER- case samples displayed significantly higher expression of 18 genes/transcripts, 8 of which were associated with lipid metabolism on gene ontology analysis (GO: 0006629). This pattern was confirmed by qRT-PCR in the same samples, and in the 24 cases of the validation set. When compared to the healthy controls in the validation set, significant overexpression of 4 genes (DHRS2, HMGCS2, HPGD and ACSL3) was observed in ER- cases, with significantly lower expression of UGT2B11 and APOD in ER+ cases, and decreased expression of UGT2B7 in both subtypes. These data suggest that differential expression of lipid metabolism genes may be involved in the risk for subtypes of breast cancer, and are potential biomarkers of ER-specific breast cancer risk. PMID:23512947

  13. Lipidomics in situ: insights into plant lipid metabolism from high resolution spatial maps of metabolites.

    PubMed

    Horn, Patrick J; Chapman, Kent D

    2014-04-01

    The emergence of 'omics' technologies (i.e. genomics, proteomics, metabolomics, etc.) have revealed new avenues for exploring plant metabolism through data-rich experimentation and integration of complementary methodologies. Over the past decade, the lipidomics field has benefited from advances in instrumentation, especially mass spectrometry (MS)-based approaches that are well-suited for detailed lipid analysis. The broad classification of what constitutes a lipid lends itself to a structurally diverse range of molecules that contribute to a variety of biological processes in plants including membrane structure and transport, primary and secondary metabolism, abiotic and biotic stress tolerances, extracellular and intracellular signaling, and energy-rich storage of carbon. Progress in these research areas has been advanced in part through approaches analyzing chemical compositions of lipids in extracts from cells, tissues and/or whole organisms (e.g. shotgun lipidomics), and through visualization approaches primarily through microscopy-based methodologies (e.g. fluorescence, bright field, electron microscopy, etc.). While these techniques on their own provide rich biochemical and biological information, coordinated analyses of the complexity of lipid composition with the localization of these lipids at a high spatial resolution will help to develop a new level of understanding of lipid metabolism within the context of tissue/cellular compartmentation. This review will elaborate on recent advances of one such approach--mass spectrometry imaging (MSI)--that integrates in situ visualization with chemical-based lipidomics. We will illustrate, with an emphasis on oilseed lipid metabolism, how MS imaging can provide new insights and questions related to the spatial compartmentation of lipid metabolism in plants. Further it will be apparent that this MS imaging approach has broad application in plant metabolic research well beyond that of triacylglycerol biosynthesis in

  14. HORMONE MEASUREMENT GUIDELINES: Tracing lipid metabolism: the value of stable isotopes.

    PubMed

    Umpleby, A Margot

    2015-09-01

    Labelling molecules with stable isotopes to create tracers has become a gold-standard method to study the metabolism of lipids and lipoproteins in humans. There are a range of techniques which use stable isotopes to measure fatty acid flux and oxidation, hepatic fatty synthesis, cholesterol absorption and synthesis and lipoprotein metabolism in humans. Stable isotope tracers are safe to use, enabling repeated studies to be undertaken and allowing studies to be undertaken in children and pregnant women. This review provides details of the most appropriate tracers to use, the techniques which have been developed and validated for measuring different aspects of lipid metabolism and some of the limitations of the methodology.

  15. Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.

    PubMed

    Iwata, Junichi; Suzuki, Akiko; Pelikan, Richard C; Ho, Thach-Vu; Sanchez-Lara, Pedro A; Chai, Yang

    2014-01-01

    Mutations in transforming growth factor beta (TGFβ) receptor type II (TGFBR2) cause Loeys-Dietz syndrome, characterized by craniofacial and cardiovascular abnormalities. Mice with a deletion of Tgfbr2 in cranial neural crest cells (Tgfbr2(fl/fl);Wnt1-Cre mice) develop cleft palate as the result of abnormal TGFβ signaling activation. However, little is known about metabolic processes downstream of TGFβ signaling during palatogenesis. Here, we show that Tgfbr2 mutant palatal mesenchymal cells spontaneously accumulate lipid droplets, resulting from reduced lipolysis activity. Tgfbr2 mutant palatal mesenchymal cells failed to respond to the cell proliferation stimulator sonic hedgehog, derived from the palatal epithelium. Treatment with p38 mitogen-activated protein kinase (MAPK) inhibitor or telmisartan, a modulator of p38 MAPK activation and lipid metabolism, blocked abnormal TGFβ-mediated p38 MAPK activation, restoring lipid metabolism and cell proliferation activity both in vitro and in vivo. Our results highlight the influence of alternative TGFβ signaling on lipid metabolic activities, as well as how lipid metabolic defects can affect cell proliferation and adversely impact palatogenesis. This discovery has broader implications for the understanding of metabolic defects and potential prevention of congenital birth defects. PMID:23975680

  16. Effect of Drought Stress on Lipid Metabolism in the Leaves of Arabidopsis thaliana (Ecotype Columbia)

    PubMed Central

    GIGON, AGNÈS; MATOS, ANA-RITA; LAFFRAY, DANIEL; ZUILY-FODIL, YASMINE; PHAM-THI, ANH-THU

    2004-01-01

    • Background and Aims Cell membranes are major targets of environmental stresses. Lipids are important membrane components, and changes in their composition may help to maintain membrane integrity and preserve cell compartmentation under water stress conditions. The aim of this work was to investigate the effects of water stress on membrane lipid composition and other aspects of lipid metabolism in the leaves of the model plant, Arabidopsis thaliana. • Methods Arabidopsis thaliana (ecotype Columbia) plants were submitted to progressive drought stress by withholding irrigation. Studies were carried out in plants with hydration levels ranging from slight to very severe water deficit. Enzymatic activities hydrolysing MGDG, DGDG and PC were measured. Expression of several genes essential to lipid metabolism, such as genes coding for enzymes involved in lipid biosynthesis (MGDG synthase, DGDG synthase) and degradation (phospholipases D, lipoxygenase, patatin-like lipolytic-acylhydrolase), was studied. • Key Results In response to drought, total leaf lipid contents decreased progressively. However, for leaf relative water content as low as 47·5 %, total fatty acids still represented 61 % of control contents. Lipid content of extremely dehydrated leaves rapidly increased after rehydration. The time-course of the decrease in leaf lipid contents correlated well with the increase in lipolytic activities of leaf extracts and with the expression of genes involved in lipid degradation. Despite a decrease in total lipid content, lipid class distribution remained relatively stable until the stress became very severe. • Conclusions Arabidopsis leaf membranes appeared to be very resistant to water deficit, as shown by their capacity to maintain their polar lipid contents and the stability of their lipid composition under severe water loss conditions. Moreover, arabidopsis displayed several characteristics indicative of a so far unknown adaptation capacity to drought

  17. Lipid Profiling of In Vitro Cell Models of Adipogenic Differentiation: Relationships With Mouse Adipose Tissues.

    PubMed

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A; Anunciado-Koza, Rea V; Siviski, Matthew E; Lindner, Volkhard; Friesel, Robert E; Rosen, Clifford J; Baker, Paul R S; Simons, Brigitte; Vary, Calvin P H

    2016-09-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc.

  18. Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells.

    PubMed

    Elis, Sebastien; Desmarchais, Alice; Maillard, Virginie; Uzbekova, Svetlana; Monget, Philippe; Dupont, Joëlle

    2015-03-15

    In dairy cows, lipids are essential to support energy supplies for all biological functions, especially during early lactation. Lipid metabolism is crucial for sustaining proper reproductive function. Alteration of lipid metabolism impacts follicular development and affects oocyte developmental competence. Indeed, nonesterified fatty acids are able to decrease granulosa cell (GC) proliferation and affect estradiol synthesis, thus potentially affecting follicular growth and viability. The objective of this study was to assess the impact of lipid metabolism on bovine GCs, through the use of the lipid metabolism inhibitors etomoxir, an inhibitor of fatty acid (FA) oxidation through inhibition of carnitine palmitoyl transferase 1 (CPT1), and C75, an inhibitor of FA synthesis through inhibition of fatty acid synthase. We showed that etomoxir and C75 significantly inhibited DNA synthesis in vitro; C75 also significantly decreased progesterone synthesis. Both inhibitors significantly reduced AMPK (5' adenosine monophosphate-activated protein kinase) and acetyl-CoA carboxylase phosphorylation. Etomoxir also affected the AKT (protein kinase B) signaling pathway. Combined, these data suggest that both FA oxidation and synthesis are important for the bovine GCs to express a proliferative and steroidogenic phenotype and, thus, for sustaining follicular growth. Despite these findings, it is important to note that the changes caused by the inhibitors of FA metabolism on GCs in vitro are globally mild, suggesting that lipid metabolism is not as critical in GCs as was observed in the oocyte-cumulus complex. Further studies are needed to investigate the detailed mechanisms by which lipid metabolism interacts with GC functions.

  19. Glutamate and Lipid Metabolic Perturbation in the Hippocampi of Asymptomatic Borna Disease Virus-Infected Horses

    PubMed Central

    Lei, Yang; Wang, Xiao; Liu, Zhao; Li, Dan; Zheng, Peng; Zhang, Lujun; Chen, Shigang; Xie, Peng

    2014-01-01

    Borna disease virus (BDV) is a neurotropic, enveloped, non-segmented, negative-stranded RNA virus that infects a wide variety of vertebrate species from birds to humans across a broad global geographic distribution. Animal symptomatology range from asymptomatic infection to behavioral abnormalities to acute meningoencephalitis. Asymptomatic BDV infection has been shown to be more frequent than conventionally estimated. However, the molecular mechanism(s) underyling asymptomatic BDV infection remain largely unknown. Here, based on real-time quantitative PCR and Western blotting, a total of 18 horse hippocampi were divided into BDV-infected (n = 8) and non-infected control (n = 10) groups. A gas chromatography coupled with mass spectrometry (GC-MS) metabolomic approach, in conjunction with multivariate statistical analysis, was used to characterize the hippocampal metabolic changes associated with asymptomatic BDV infection. Multivariate statistical analysis showed a significant discrimination between the BDV-infected and control groups. BDV-infected hippocampi were characterized by lower levels of D-myo-inositol-1-phosphate, glutamate, phosphoethanolamine, heptadecanoic acid, and linoleic acid in combination with a higher level of ammonia. These differential metabolites are primarily involved in glutamate and lipid metabolism. These finding provide an improved understanding of hippocampal changes associated with asymptomatic BDV infection. PMID:24956478

  20. Mammalian hibernation and regulation of lipid metabolism: a focus on non-coding RNAs.

    PubMed

    Lang-Ouellette, D; Richard, T G; Morin, P

    2014-11-01

    Numerous species will confront severe environmental conditions by undergoing significant metabolic rate reduction. Mammalian hibernation is one such natural model of hypometabolism. Hibernators experience considerable physiological, metabolic, and molecular changes to survive the harsh challenges associated with winter. Whether as fuel source or as key signaling molecules, lipids are of primary importance for a successful bout of hibernation and their careful regulation throughout this process is essential. In recent years, a plethora of non-coding RNAs has emerged as potential regulators of targets implicated in lipid metabolism in diverse models. In this review, we introduce the general characteristics associated with mammalian hibernation, present the importance of lipid metabolism prior to and during hibernation, as well as discuss the potential relevance of non-coding RNAs such as miRNAs and lncRNAs during this process.

  1. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.

    PubMed

    Settembre, Carmine; De Cegli, Rossella; Mansueto, Gelsomina; Saha, Pradip K; Vetrini, Francesco; Visvikis, Orane; Huynh, Tuong; Carissimo, Annamaria; Palmer, Donna; Klisch, Tiemo Jürgen; Wollenberg, Amanda C; Di Bernardo, Diego; Chan, Lawrence; Irazoqui, Javier E; Ballabio, Andrea

    2013-06-01

    The lysosomal-autophagic pathway is activated by starvation and plays an important role in both cellular clearance and lipid catabolism. However, the transcriptional regulation of this pathway in response to metabolic cues is uncharacterized. Here we show that the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is induced by starvation through an autoregulatory feedback loop and exerts a global transcriptional control on lipid catabolism via Ppargc1α and Ppar1α. Thus, during starvation a transcriptional mechanism links the autophagic pathway to cellular energy metabolism. The conservation of this mechanism in Caenorhabditis elegans suggests a fundamental role for TFEB in the evolution of the adaptive response to food deprivation. Viral delivery of TFEB to the liver prevented weight gain and metabolic syndrome in both diet-induced and genetic mouse models of obesity, suggesting a new therapeutic strategy for disorders of lipid metabolism.

  2. The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling.

    PubMed

    Chiapparino, Antonella; Maeda, Kenji; Turei, Denes; Saez-Rodriguez, Julio; Gavin, Anne-Claude

    2016-01-01

    Within the eukaryotic cell, more than 1000 species of lipids define a series of membranes essential for cell function. Tightly controlled systems of lipid transport underlie the proper spatiotemporal distribution of membrane lipids, the coordination of spatially separated lipid metabolic pathways, and lipid signaling mediated by soluble proteins that may be localized some distance away from membranes. Alongside the well-established vesicular transport of lipids, non-vesicular transport mediated by a group of proteins referred to as lipid-transfer proteins (LTPs) is emerging as a key mechanism of lipid transport in a broad range of biological processes. More than a hundred LTPs exist in humans and these can be divided into at least ten protein families. LTPs are widely distributed in tissues, organelles and membrane contact sites (MCSs), as well as in the extracellular space. They all possess a soluble and globular domain that encapsulates a lipid monomer and they specifically bind and transport a wide range of lipids. Here, we present the most recent discoveries in the functions and physiological roles of LTPs, which have expanded the playground of lipids into the aqueous spaces of cells.

  3. Differential distribution of lipids in epidermis, gastrodermis and hosted Symbiodinium in the sea anemone Anemonia viridis.

    PubMed

    Revel, Johana; Massi, Lionel; Mehiri, Mohamed; Boutoute, Marc; Mayzaud, Patrick; Capron, Laure; Sabourault, Cécile

    2016-01-01

    Cnidarian-dinoflagellate symbiosis mainly relies on nutrient recycling, thus providing both partners with a competitive advantage in nutrient-poor waters. Essential processes related to lipid metabolism can be influenced by various factors, including hyperthermal stress. This can affect the lipid content and distribution in both partners, while contributing to symbiosis disruption and bleaching. In order to gain further insight into the role and distribution of lipids in the cnidarian metabolism, we investigated the lipid composition of the sea anemone Anemonia viridis and its photosynthetic dinoflagellate endosymbionts (Symbiodinium). We compared the lipid content and fatty acid profiles of the host cellular layers, non-symbiotic epidermal and symbiont-containing gastrodermal cells, and those of Symbiodinium, in a mass spectrometry-based assessment. Lipids were more concentrated in Symbiodinium cells, and the lipid class distribution was dominated by polar lipids in all tissues. The fatty acid distribution between host cell layers and Symbiodinium cells suggested potential lipid transfers between the partners. The lipid composition and distribution was modified during short-term hyperthermal stress, mainly in Symbiodinium cells and gastrodermis. Exposure to elevated temperature rapidly caused a decrease in polar lipid C18 unsaturated fatty acids and a strong and rapid decrease in the abundance of polar lipid fatty acids relative to sterols. These lipid indicators could therefore be used as sensitive biomarkers to assess the physiology of symbiotic cnidarians, especially the effect of thermal stress at the onset of cnidarian bleaching. Overall, the findings of this study provide some insight on key lipids that may regulate maintenance of the symbiotic interaction. PMID:26478191

  4. Altered lipid metabolism in a Drosophila model of Friedreich's ataxia.

    PubMed

    Navarro, Juan A; Ohmann, Elisabeth; Sanchez, Diego; Botella, José A; Liebisch, Gerhard; Moltó, María D; Ganfornina, María D; Schmitz, Gerd; Schneuwly, Stephan

    2010-07-15

    Friedreich's ataxia (FRDA) is the most common form of autosomal recessive ataxia caused by a deficit in the mitochondrial protein frataxin. Although demyelination is a common symptom in FRDA patients, no multicellular model has yet been developed to study the involvement of glial cells in FRDA. Using the recently established RNAi lines for targeted suppression of frataxin in Drosophila, we were able to study the effects of general versus glial-specific frataxin downregulation. In particular, we wanted to study the interplay between lowered frataxin content, lipid accumulation and peroxidation and the consequences of these effects on the sensitivity to oxidative stress and fly fitness. Interestingly, ubiquitous frataxin reduction leads to an increase in fatty acids catalyzing an enhancement of lipid peroxidation levels, elevating the intracellular toxic potential. Specific loss of frataxin in glial cells triggers a similar phenotype which can be visualized by accumulating lipid droplets in glial cells. This phenotype is associated with a reduced lifespan, an increased sensitivity to oxidative insult, neurodegenerative effects and a serious impairment of locomotor activity. These symptoms fit very well with our observation of an increase in intracellular toxicity by lipid peroxides. Interestingly, co-expression of a Drosophila apolipoprotein D ortholog (glial lazarillo) has a strong protective effect in our frataxin models, mainly by controlling the level of lipid peroxidation. Our results clearly support a strong involvement of glial cells and lipid peroxidation in the generation of FRDA-like symptoms.

  5. Metabolic Inflammation-Differential Modulation by Dietary Constituents

    PubMed Central

    Lyons, Claire L.; Kennedy, Elaine B.; Roche, Helen M.

    2016-01-01

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin’s action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review. PMID:27128935

  6. Metabolic Inflammation-Differential Modulation by Dietary Constituents.

    PubMed

    Lyons, Claire L; Kennedy, Elaine B; Roche, Helen M

    2016-01-01

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin's action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review. PMID:27128935

  7. Metabolic Inflammation-Differential Modulation by Dietary Constituents.

    PubMed

    Lyons, Claire L; Kennedy, Elaine B; Roche, Helen M

    2016-04-27

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin's action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review.

  8. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    PubMed

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  9. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  10. Identification of candidate diagnostic biomarkers for adolescent idiopathic scoliosis using UPLC/QTOF-MS analysis: a first report of lipid metabolism profiles

    PubMed Central

    Sun, Zhi-jian; Jia, Hong-mei; Qiu, Gui-xing; Zhou, Chao; Guo, Shigong; Zhang, Jian-guo; Shen, Jian-xiong; Zhao, Yu; Zou, Zhong-mei

    2016-01-01

    Adolescent idiopathic scoliosis (AIS) is a complex spine deformity, affecting approximately 1–3% adolescents. Earlier diagnosis could increase the likelihood of successful conservative treatment and hence reduce the need for surgical intervention. We conducted a serum metabonomic study to explore the potential biomarkers of AIS for early diagnosis. Serum metabolic profiles were firstly explored between 30 AIS patients and 31 healthy controls by ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Then, the candidate metabolites were validated in an independent cohort including 31 AIS patients and 44 controls. The results showed that metabolic profiles of AIS patients generally deviated from healthy controls in both the discovery set and replication set. Seven differential metabolites were identified as candidate diagnostic biomarkers, including PC(20:4), 2-hexenoylcarnitine, beta-D-glucopyranuronicacid, DG(38:9), MG(20:3), LysoPC(18:2) and LysoPC(16:0). These candidate metabolites indicated disrupted lipid metabolism in AIS, including glycerophospholipid, glycerolipid and fatty acid metabolism. Elevated expressions of adipose triglyceride lipase and hormone sensitive lipase in adipose tissue further corroborated our findings of increased lipid metabolism in AIS. Our findings suggest that differential metabolites discovered in AIS could be used as potential diagnostic biomarkers and that lipid metabolism plays a role in the pathogenesis of AIS. PMID:26928931

  11. Lipid metabolism in various regions of squid giant nerve fiber.

    PubMed

    Tanaka, T; Yamaguchi, H; Kishimoto, Y; Gould, R M

    1987-10-31

    The purpose of this investigation was to compare the incorporation of radioactivity from various precursors into lipids of different regions of squid giant nerve fiber systems including axoplasm, axon sheath, giant fiber lobes which contain stellate ganglion cell bodies, and the remaining ganglion including giant synapses. To identify the labeled lipids, stellate ganglia including giant fiber lobes and the remaining tissue were first incubated separately with [14C]glucose, [32P]phosphate, [14C]serine, [14C]acetate and [3H]myristate. The radioactivity from glucose, after conversion to glycerol and fatty acids, was incorporated into most lipids, including triacylglycerol, free fatty acids, cardiolipin, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, sphingomyelin and ceramide 2-aminoethylphosphanate [corrected]. The radioactivity from serine was largely incorporated into phosphatidylserine and, to a lesser extent, into other phospholipids, mainly as the base component. The sphingoid bases of ceramide and sphingomyelin were also significantly labeled. Saturated and monounsaturated and, to a lesser extent, polyunsaturated fatty acids of these lipids were synthesized from acetate, glucose and myristate. Among the major lipids, cholesterol was not labeled by any of the radioactive compounds used. Ganglion residues incorporated the most radioactivity in total lipids from either [14C]glucose or [14C]serine, followed by giant fiber lobes and then sheath. Axoplasm incorporated the least. Among various lipids, phosphatidylethanolamine with shorter saturated fatty acids and phosphatidylglycerol contained the most radioactivity from glucose in all regions. Axoplasm was characterized by a higher proportion of glucose radioactivity in ceramide, sphingomyelin and phosphatidylglycerol. Axoplasm and sheath contained a higher proportion of serine radioactivity than did the other two regions in ceramide. Essentially no

  12. Effects of Pu-erh tea aqueous extract (PTAE) on blood lipid metabolism enzymes.

    PubMed

    Zeng, Liang; Yan, Jingna; Luo, Liyong; Zhang, Dongying

    2015-06-01

    Disorders of blood lipid metabolism are the primary risk factors for many diseases. Recently, the effect of Pu-erh tea on blood lipid metabolism has received increasing attention. However, the mechanism underlying its ability to regulate blood lipid metabolism is unclear. We set out to study this through assessing the effects of Pu-erh tea aqueous extract (PTAE) on the central enzymes of blood lipid metabolism, including lipoprotein-associated phospholipase A2 (Lp-PLA2), lecithin: cholesterol acyltransferase (LCAT), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and pancreatic lipase (PL). We find that the Lp-PLA2, HMRG and PL activities are inhibited by PTAE in a dose-dependent manner and that the LCAT activity tends to increase with increasing PTAE concentrations. Lineweaver-Burk plot analyses reveal that PTAE acts as a competitive inhibitor for HMGR and PL and as a noncompetitive inhibitor for Lp-PLA2. Moreover, we determine that its active ingredients include catechins, gallic acid, caffeine, free amino acids, and soluble sugar. However, the effect of each ingredient and whether any of them have synergistic effects are still unknown. The results suggest that Pu-erh tea has a potent ability to regulate blood lipid metabolism and knowledge of the mechanisms provides insights into its potential therapeutic application as an alternative hypolipidemic drug.

  13. Effects of Pu-erh tea aqueous extract (PTAE) on blood lipid metabolism enzymes.

    PubMed

    Zeng, Liang; Yan, Jingna; Luo, Liyong; Zhang, Dongying

    2015-06-01

    Disorders of blood lipid metabolism are the primary risk factors for many diseases. Recently, the effect of Pu-erh tea on blood lipid metabolism has received increasing attention. However, the mechanism underlying its ability to regulate blood lipid metabolism is unclear. We set out to study this through assessing the effects of Pu-erh tea aqueous extract (PTAE) on the central enzymes of blood lipid metabolism, including lipoprotein-associated phospholipase A2 (Lp-PLA2), lecithin: cholesterol acyltransferase (LCAT), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and pancreatic lipase (PL). We find that the Lp-PLA2, HMRG and PL activities are inhibited by PTAE in a dose-dependent manner and that the LCAT activity tends to increase with increasing PTAE concentrations. Lineweaver-Burk plot analyses reveal that PTAE acts as a competitive inhibitor for HMGR and PL and as a noncompetitive inhibitor for Lp-PLA2. Moreover, we determine that its active ingredients include catechins, gallic acid, caffeine, free amino acids, and soluble sugar. However, the effect of each ingredient and whether any of them have synergistic effects are still unknown. The results suggest that Pu-erh tea has a potent ability to regulate blood lipid metabolism and knowledge of the mechanisms provides insights into its potential therapeutic application as an alternative hypolipidemic drug. PMID:26018873

  14. Association of Polymorphisms of Genes Involved in Lipid Metabolism with Blood Pressure and Lipid Values in Mexican Hypertensive Individuals

    PubMed Central

    Ríos-González, Blanca Estela; Ibarra-Cortés, Bertha; Ramírez-López, Guadalupe; Sánchez-Corona, José; Magaña-Torres, María Teresa

    2014-01-01

    Hypertension and dyslipidemia exhibit an important clinical relationship because an increase in blood lipids yields an increase in blood pressure (BP). We analyzed the associations of seven polymorphisms of genes involved in lipid metabolism (APOA5 rs3135506, APOB rs1042031, FABP2 rs1799883, LDLR rs5925, LIPC rs1800588, LPL rs328, and MTTP rs1800591) with blood pressure and lipid values in Mexican hypertensive (HT) patients. A total of 160 HT patients and 160 normotensive individuals were included. Genotyping was performed through PCR-RFLP, PCR-AIRS, and sequencing. The results showed significant associations in the HT group and HT subgroups classified as normolipemic and hyperlipemic. The alleles FABP2 p.55T, LIPC −514T, and MTTP −493T were associated with elevated systolic BP. Five alleles were associated with lipids. LPL p.474X and FABP2 p.55T were associated with decreased total cholesterol and LDL-C, respectively; APOA5 p.19W with increased HDL-C; APOA5 p.19W and FABP2 p.55T with increased triglycerides; and APOB p.4181K and LDLR c.1959T with decreased triglycerides. The APOB p.E4181K polymorphism increases the risk for HT (OR = 1.85, 95% CI: 1.17–2.93; P = 0.001) under the dominant model. These findings indicate that polymorphisms of lipid metabolism genes modify systolic BP and lipid levels and may be important in the development of essential hypertension and dyslipidemia in Mexican HT patients. PMID:25587205

  15. Association of polymorphisms of genes involved in lipid metabolism with blood pressure and lipid values in mexican hypertensive individuals.

    PubMed

    Ríos-González, Blanca Estela; Ibarra-Cortés, Bertha; Ramírez-López, Guadalupe; Sánchez-Corona, José; Magaña-Torres, María Teresa

    2014-01-01

    Hypertension and dyslipidemia exhibit an important clinical relationship because an increase in blood lipids yields an increase in blood pressure (BP). We analyzed the associations of seven polymorphisms of genes involved in lipid metabolism (APOA5 rs3135506, APOB rs1042031, FABP2 rs1799883, LDLR rs5925, LIPC rs1800588, LPL rs328, and MTTP rs1800591) with blood pressure and lipid values in Mexican hypertensive (HT) patients. A total of 160 HT patients and 160 normotensive individuals were included. Genotyping was performed through PCR-RFLP, PCR-AIRS, and sequencing. The results showed significant associations in the HT group and HT subgroups classified as normolipemic and hyperlipemic. The alleles FABP2 p.55T, LIPC -514T, and MTTP -493T were associated with elevated systolic BP. Five alleles were associated with lipids. LPL p.474X and FABP2 p.55T were associated with decreased total cholesterol and LDL-C, respectively; APOA5 p.19W with increased HDL-C; APOA5 p.19W and FABP2 p.55T with increased triglycerides; and APOB p.4181K and LDLR c.1959T with decreased triglycerides. The APOB p.E4181K polymorphism increases the risk for HT (OR = 1.85, 95% CI: 1.17-2.93; P = 0.001) under the dominant model. These findings indicate that polymorphisms of lipid metabolism genes modify systolic BP and lipid levels and may be important in the development of essential hypertension and dyslipidemia in Mexican HT patients.

  16. Effect of geraniol, a plant derived monoterpene on lipids and lipid metabolizing enzymes in experimental hyperlipidemic hamsters.

    PubMed

    Jayachandran, Muthukumaran; Chandrasekaran, Balaji; Namasivayam, Nalini

    2015-01-01

    Hyperlipidemia is a major, modifiable risk factor for atherosclerosis and cardiovascular disease. In the present study, we have focused on the effect of different doses of geraniol (GOH) on the lipid profile and lipid metabolizing enzymes in atherogenic diet (AD) fed hamsters. Male Syrian hamsters were grouped into seven: group 1 were control animals; group 2 were animals fed GOH alone (200 mg/kg b.w); group 3 were animals fed AD (10 % coconut oil, 0.25 % cholesterol, and 0.25 % cholic acid); group 4 were animals fed AD + corn oil (2.5 ml/kg b.w); and groups 5, 6, and 7 were fed AD as in group 3 + different doses of GOH (50, 100, and 200 mg/kg b.w), respectively, for 12 weeks. At the end of the experimental period, animals were sacrificed by cervical dislocation and various assays were performed in the plasma and tissues. The AD hamsters showed marked changes in lipid profile and lipid metabolizing enzymes. However, supplementation with GOH counteracted the hyperlipidemia by inhibiting HMG CoA reductase and suppressing lipogenesis. The antihyperlipidemic efficacy of GOH was found to be effective at the dose of 100 mg/kg b.w. This study illustrates that GOH is effective in lowering the risk of hyperlipidemia in AD fed hamsters.

  17. The effects of time-restricted feeding on lipid metabolism and adiposity.

    PubMed

    Chaix, Amandine; Zarrinpar, Amir

    2015-01-01

    Maintaining natural feeding rhythms with time-restricted feeding (TRF), without altering nutritional intake, prevents and reverses diet-induced obesity (DIO) and its associated metabolic disorders in mice. TRF has a direct effect on animal adiposity, causes an alteration of adipokine signaling, and diminishes white adipose tissue inflammation. Many genes involved in lipid metabolism are normally circadian, but their expression is perturbed with DIO; TRF restores their cyclical expression. One mechanism through which TRF could affect host metabolism is by altering the gut microbiome. Changes in the gut microbiome are coupled with an altered stool bile acid profile. Hence, TRF could affect lipid metabolism by altering bile acid signaling. TRF introduces many new possibilities in treating obesity and its associated metabolic disorders. However, further studies are needed to show whether these physiological findings in mice translate to humans.

  18. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    PubMed

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  19. [COMPARATIVE ANALYSIS OF LIPID METABOLISM INDICES IN SOME PARASITES OF THE WHITE CHARR (SALVELINUS ALBUS) FROM THE LAKE KRINOTSKOE].

    PubMed

    Gordeev, I I; Mikryakov, D V; Silkina, N I

    2015-01-01

    Comparative study of lipid metabolism indices (total lipids, separate lipid fractions, level of the lipid peroxidation processes, and antioxidant protection) was carried out in three parasite species collected from the white char in the Lake Kronotskoe: Diphyllobothrium ditremum Crepin, 1825 (Cestoda), Philonema oncorhynchi Kuitunen-Ekbaum, 1933 (Nematoda) H Neoechinorhynchus salmonis Ching, 1984 (Acanthocephala). Acanthocephalans possessed significantly greater levels of total lipids, triacylglycerol, and malondialdehyde; nematodes, of cholesterol and sterol esters; and cestodes, in phospholipids and constants of the substrate oxidation. Dependence between lipid metabolism of helminths and their taxonomic affiliation, morpho-functional features, the stage of the life cycle, and the site of infection in the host are discussed.

  20. [COMPARATIVE ANALYSIS OF LIPID METABOLISM INDICES IN SOME PARASITES OF THE WHITE CHARR (SALVELINUS ALBUS) FROM THE LAKE KRINOTSKOE].

    PubMed

    Gordeev, I I; Mikryakov, D V; Silkina, N I

    2015-01-01

    Comparative study of lipid metabolism indices (total lipids, separate lipid fractions, level of the lipid peroxidation processes, and antioxidant protection) was carried out in three parasite species collected from the white char in the Lake Kronotskoe: Diphyllobothrium ditremum Crepin, 1825 (Cestoda), Philonema oncorhynchi Kuitunen-Ekbaum, 1933 (Nematoda) H Neoechinorhynchus salmonis Ching, 1984 (Acanthocephala). Acanthocephalans possessed significantly greater levels of total lipids, triacylglycerol, and malondialdehyde; nematodes, of cholesterol and sterol esters; and cestodes, in phospholipids and constants of the substrate oxidation. Dependence between lipid metabolism of helminths and their taxonomic affiliation, morpho-functional features, the stage of the life cycle, and the site of infection in the host are discussed. PMID:26314155

  1. In Vivo Metabolic Fingerprinting of Neutral Lipids with Hyperspectral Stimulated Raman Scattering Microscopy

    PubMed Central

    2015-01-01

    Metabolic fingerprinting provides valuable information on the physiopathological states of cells and tissues. Traditional imaging mass spectrometry and magnetic resonance imaging are unable to probe the spatial-temporal dynamics of metabolites at the subcellular level due to either lack of spatial resolution or inability to perform live cell imaging. Here we report a complementary metabolic imaging technique that is based on hyperspectral stimulated Raman scattering (hsSRS). We demonstrated the use of hsSRS imaging in quantifying two major neutral lipids: cholesteryl ester and triacylglycerol in cells and tissues. Our imaging results revealed previously unknown changes of lipid composition associated with obesity and steatohepatitis. We further used stable-isotope labeling to trace the metabolic dynamics of fatty acids in live cells and live Caenorhabditis elegans with hsSRS imaging. We found that unsaturated fatty acid has preferential uptake into lipid storage while saturated fatty acid exhibits toxicity in hepatic cells. Simultaneous metabolic fingerprinting of deuterium-labeled saturated and unsaturated fatty acids in living C. elegans revealed that there is a lack of interaction between the two, unlike previously hypothesized. Our findings provide new approaches for metabolic tracing of neutral lipids and their precursors in living cells and organisms, and could potentially serve as a general approach for metabolic fingerprinting of other metabolites. PMID:24869754

  2. Wolbachia Modulates Lipid Metabolism in Aedes albopictus Mosquito Cells

    PubMed Central

    Molloy, Jennifer C.; Sommer, Ulf; Viant, Mark R.

    2016-01-01

    ABSTRACT Certain strains of the intracellular endosymbiont Wolbachia can strongly inhibit or block the transmission of viruses such as dengue virus (DENV) by Aedes mosquitoes, and the mechanisms responsible are still not well understood. Direct infusion and liquid chromatography-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry-based lipidomics analyses were conducted using Aedes albopictus Aa23 cells that were infected with the wMel and wMelPop strains of Wolbachia in comparison to uninfected Aa23-T cells. Substantial shifts in the cellular lipid profile were apparent in the presence of Wolbachia. Most significantly, almost all sphingolipid classes were depleted, and some reductions in diacylglycerols and phosphatidylcholines were also observed. These lipid classes have previously been shown to be selectively enriched in DENV-infected mosquito cells, suggesting that Wolbachia may produce a cellular lipid environment that is antagonistic to viral replication. The data improve our understanding of the intracellular interactions between Wolbachia and mosquitoes. IMPORTANCE Mosquitoes transmit a variety of important viruses to humans, such as dengue virus and Zika virus. Certain strains of the intracellular bacterial genus called Wolbachia found in or introduced into mosquitoes can block the transmission of viruses, including dengue virus, but the mechanisms responsible are not well understood. We found substantial shifts in the cellular lipid profiles in the presence of these bacteria. Some lipid classes previously shown to be enriched in dengue virus-infected mosquito cells were depleted in the presence of Wolbachia, suggesting that Wolbachia may produce a cellular lipid environment that inhibits mosquito-borne viruses. PMID:26994075

  3. The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet.

    PubMed

    Salaj, Rastislav; Stofilová, Jana; Soltesová, Alena; Hertelyová, Zdenka; Hijová, Emília; Bertková, Izabela; Strojný, Ladislav; Kružliak, Peter; Bomba, Alojz

    2013-01-01

    The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet. Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat. These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance.

  4. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass

    PubMed Central

    Chai, Jie; Zou, Lei; Li, Xirui; Han, Dali; Wang, Shan; Hu, Sanyuan; Guan, Jie

    2015-01-01

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway. PMID:26884847

  5. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    NASA Astrophysics Data System (ADS)

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-06-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

  6. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells.

    PubMed

    Nunn, Abigail D G; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-01-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome. PMID:27320682

  7. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    PubMed Central

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-01-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome. PMID:27320682

  8. Effect and mechanism of waterborne prolonged Zn exposure influencing hepatic lipid metabolism in javelin goby Synechogobius hasta.

    PubMed

    Huang, Chao; Luo, Zhi; Hogstrand, Christer; Chen, Feng; Shi, Xi; Chen, Qi-Liang; Song, Yu-Feng; Pan, Ya-Xiong

    2016-07-01

    The present study was conducted to determine the effect and mechanism of waterborne Zn exposure influencing hepatic lipid deposition and metabolism in javelin goby Synechogobius hasta. S. hasta were exposed to four waterborne Zn concentrations (Zn 0.005 [control], 0.18, 0.36 and 0.55 mg l(-1) , respectively) for 60 days. Sampling occurred at days 20, 40 and 60, respectively. Zn exposure increased Zn content, declined hepatic lipid content and reduced viscerosomatic and hepatosomatic indices and lipogenic enzyme activities, including 6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and fatty acid synthase (FAS). At days 20 and 60, Zn exposure decreased hepatic mRNA levels of 6PGD, G6PD, ME, FAS, acetyl-CoA carboxylase (ACC)α, ACCβ, hormone-sensitive lipase (HSL)a, HSLb, sterol-regulator element-binding protein (SREBP)-1, peroxisome proliferators-activated receptor (PPAR)α and PPARγ. However, the mRNA levels of CPT 1 and adipose triglyceride lipase increased following Zn exposure. On day 40, Zn exposure reduced hepatic mRNA expression of 6PGD, G6PD, ME, FAS, ACCα, ACCβ, HSLa, HSLb, SREBP-1 and PPARγ but increased mRNA expression of CPT 1, adipose triglyceride lipase and PPARα. General speaking, Zn exposure reduced hepatic lipid content by inhibiting lipogenesis and stimulating lipolysis. For the first time, the present study provided evidence that chronic Zn exposure differentially influenced mRNA expression and activities of genes and enzymes involved in lipogenic and lipolytic metabolism in a duration-dependent manner, and provided new insight into the relationship between metal elements and lipid metabolism. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26602879

  9. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage.

  10. Effects of bisphenol A on lipid metabolism in rare minnow Gobiocypris rarus.

    PubMed

    Guan, Yongjing; Gao, Jiancao; Zhang, Yingying; Chen, Shu; Yuan, Cong; Wang, Zaizhao

    2016-01-01

    As one of the most abundant endocrine disrupting compounds (EDCs), bisphenol A (BPA) exists ubiquitously in an aquatic environment. Many studies on fish have focused on the reproductive toxicity effects of BPA. However, few has involved the effects of BPA on lipid metabolism. To evaluate the effects of BPA on lipid metabolism, we determine the hepato-somatic index, triglyceride contents in the liver and serum, the activities of acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN), carnitine palmitoyltransferase (CPT1), and glycerol-3-phosphate acyltransferase (GPAT) enzymes and the mRNA expression of acaca, acacb, fasn, gpat1 and cpt1α in Gobiocypris rarus after exposure to BPA for 28days. BPA induced increasing tendency of triglyceride contents in male fish, possibly due to up-regulated lipid synthesis. Although in this process, fatty acid β-oxidation was up-regulated, it might be compensated by increasing lipogenesis. Our result also revealed that the GPAT enzyme might play a key role in lipid metabolism disturbance by BPA in females. Besides, the effect of BPA on the fatty acid β-oxidation pathway might be gender-dependent in G. rarus. Further studies are needed to investigate BPA's effects on the signaling pathway of lipid metabolism. PMID:26494506

  11. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer

    PubMed Central

    Swierczynski, Julian; Hebanowska, Areta; Sledzinski, Tomasz

    2014-01-01

    There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation. PMID:24605027

  12. Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Firmino-Diógenes, Alexandre; Larroquet, Laurence; Panserat, Stéphane; Oliva-Teles, Aires

    2016-07-01

    The long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH-) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase. Expression of phosphoenolpyruvate carboxykinase was down-regulated by carbohydrate intake, whereas, unexpectedly, glucose 6-phosphatase was up-regulated. Lipogenic enzyme activities (glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase) and ∆6 fatty acyl desaturase (FADS2) transcripts were increased in liver of fish fed CH+ diets, supporting an enhanced potential for lipogenesis and long-chain PUFA (LC-PUFA) biosynthesis. Despite the lower hepatic cholesterol content in CH+ groups, no influence on the expression of genes related to cholesterol efflux (ATP-binding cassette G5) and biosynthesis (lanosterol 14 α-demethylase, cytochrome P450 51 cytochrome P450 51 (CYP51A1); 7-dehydrocholesterol reductase) was recorded at the hepatic level. At the intestinal level, however, induction of CYP51A1 transcripts by carbohydrate intake was recorded. Dietary VO led to decreased plasma phospholipid and cholesterol concentrations but not on the transcripts of proteins involved in phospholipid biosynthesis (glycerol-3-phosphate acyltransferase) and cholesterol metabolism at intestinal and hepatic levels. Hepatic and muscular fatty acid profiles reflected that of diets, despite the up-regulation of FADS2 transcripts. Overall, this study demonstrated that dietary carbohydrates mainly affected carbohydrate metabolism, lipogenesis and LC-PUFA biosynthesis, whereas effects of dietary lipid source were mostly related with tissue fatty acid composition

  13. Differential Metabolic Actions of Specific Statins: Clinical and Therapeutic Considerations

    PubMed Central

    Lim, Soo; Sakuma, Ichiro; Quon, Michael J.

    2014-01-01

    Abstract Significance: Statins, the most widely prescribed drugs in clinical practice, mainly act by reducing the plasma level of low-density lipoprotein (LDL)-cholesterol. A shift in redox homeostasis to an imbalance between reactive oxygen species generation and endogenous antioxidant mechanisms results in oxidative stress that has been implicated in the pathogenesis of various diseases, including those of the cardiovascular system. Beyond their efficacy in lowering LDL cholesterol, statins modulate redox systems that are implicated in the development of atherosclerosis, cardiovascular morbidity, and mortality. Recent Advances: Differences in specific statins or their dosages result in differential metabolic actions arising from off-target or unknown mechanisms of action that can have important implications for overall patient morbidity and mortality. Critical Issues: A recent meta-analysis and a combined analysis have suggested that high doses of statins increase the risk of developing type 2 diabetes mellitus, but reduce the risk of cardiovascular events. Thus, it is important to consider the cardiovascular and metabolic context and natural history of diseases when choosing a specific statin therapy for optimal individual patient health over the long term. Future Directions: More information is needed regarding the metabolism of statins, and the off-target or unknown actions of statins in affecting insulin resistance and metabolic homeostasis. The differential metabolic effects of specific statins should be considered in formulating optimal therapeutic strategies to reduce not just cardiovascular-related but also overall patient morbidity and mortality. Antioxid. Redox Signal. 20, 1286–1299. PMID:23924053

  14. Circadian clock control of hepatic lipid metabolism: role of small heterodimer partner (Shp).

    PubMed

    Wang, Li; Liangpunsakul, Suthat

    2016-10-01

    Hepatic steatosis, the accumulation of triglyceride droplets in the hepatocytes, is a common hepatic pathology seen in subjects with obesity/metabolic syndrome and those with excessive alcohol use. The pathogenesis underlying hepatic steatosis is complex. Recent studies have shown the specific role played by the molecular clock mechanism in the control of lipid metabolism and that the disruption of these tissue clocks may lead to the disturbances in lipid homeostasis. This review reports a novel role of small heterodimer partner in maintaining triglyceride and lipoprotein homeostasis through neuronal PAS domain protein 2. PMID:27473715

  15. PERK Utilizes Intrinsic Lipid Kinase Activity To Generate Phosphatidic Acid, Mediate Akt Activation, and Promote Adipocyte Differentiation

    PubMed Central

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J.; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A.; Witze, Eric S.

    2012-01-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought. PMID:22493067

  16. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation.

    PubMed

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A; Witze, Eric S; Diehl, J Alan

    2012-06-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.

  17. Altered lipid metabolism in Drosophila model of Huntington’s disease

    PubMed Central

    Aditi, Kumari; Shakarad, Mallikarjun N.; Agrawal, Namita

    2016-01-01

    Huntington’s disease (HD) is late-onset, progressive neurodegenerative disorder caused by expansion of polyglutamine (polyQ) repeat within Huntingtin (Htt) protein. In HD patients, energy-related manifestations such as modulation of weight during entire course of disease with energy deficit at terminal stage have been reported, however, underlying reason remains elusive till date. Lipids, carbohydrate and protein constitute a predominant fraction of body’s energy reservoir and perturbation in their homeostasis may influence weight. To discern role of these energy molecules in weight alteration, we quantified them in an in vivo transgenic Drosophila model of HD. We document that diseased flies exhibit change in weight due to an altered lipid metabolism, as evident from considerably high lipid levels at the time of disease onset followed by a pathologic decline at end-stage. An alteration in intracellular lipid droplet size suggested altered cellular lipid turnover. Furthermore, diseased flies displayed substantial changes in carbohydrate and protein content. Interestingly, alteration in weight and lipid levels are independent of the feeding pattern in diseased condition and exhibit weak correlation with insulin-like peptide or adipokinetic hormone producing cells. We propose that therapeutic intervention aimed at restoring lipid levels and associated metabolic pathways may improve longevity and quality of patient’s life. PMID:27506601

  18. Effects of Maternal Chromium Restriction on the Long-Term Programming in MAPK Signaling Pathway of Lipid Metabolism in Mice.

    PubMed

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2016-01-01

    It is now broadly accepted that the nutritional environment in early life is a key factor in susceptibility to metabolic diseases. In this study, we evaluated the effects of maternal chromium restriction in vivo on the modulation of lipid metabolism and the mechanisms involved in this process. Sixteen pregnant C57BL mice were randomly divided into two dietary treatments: a control (C) diet group and a low chromium (L) diet group. The diet treatment was maintained through gestation and lactation period. After weaning, some of the pups continued with either the control diet or low chromium diet (CC or LL), whereas other pups switched to another diet (CL or LC). At 32 weeks of age, serum lipid metabolism, proinflammatory indexes, oxidative stress and anti-oxidant markers, and DNA methylation status in adipose tissue were measured. The results indicated that the maternal low chromium diet increased body weight, fat pad weight, serum triglyceride (TG), low-density lipoprotein cholesterol (LDL), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and oxidized glutathione (GSSG). There was a decrease in serum reduced/oxidized glutathione (GSH/GSSG) ratio at 32 weeks of age in female offspring. From adipose tissue, we identified 1214 individual hypomethylated CpG sites and 411 individual hypermethylated CpG sites in the LC group when compared to the CC group. Pathway analysis of the differential methylation genes revealed a significant increase in hypomethylated genes in the mitogen-activated protein kinase (MAPK) signaling pathway in the LC group. Our study highlights the importance of the MAPK signaling pathway in epigenetic changes involved in the lipid metabolism of the offspring from chromium-restricted dams. PMID:27517955

  19. Effects of Maternal Chromium Restriction on the Long-Term Programming in MAPK Signaling Pathway of Lipid Metabolism in Mice

    PubMed Central

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2016-01-01

    It is now broadly accepted that the nutritional environment in early life is a key factor in susceptibility to metabolic diseases. In this study, we evaluated the effects of maternal chromium restriction in vivo on the modulation of lipid metabolism and the mechanisms involved in this process. Sixteen pregnant C57BL mice were randomly divided into two dietary treatments: a control (C) diet group and a low chromium (L) diet group. The diet treatment was maintained through gestation and lactation period. After weaning, some of the pups continued with either the control diet or low chromium diet (CC or LL), whereas other pups switched to another diet (CL or LC). At 32 weeks of age, serum lipid metabolism, proinflammatory indexes, oxidative stress and anti-oxidant markers, and DNA methylation status in adipose tissue were measured. The results indicated that the maternal low chromium diet increased body weight, fat pad weight, serum triglyceride (TG), low-density lipoprotein cholesterol (LDL), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and oxidized glutathione (GSSG). There was a decrease in serum reduced/oxidized glutathione (GSH/GSSG) ratio at 32 weeks of age in female offspring. From adipose tissue, we identified 1214 individual hypomethylated CpG sites and 411 individual hypermethylated CpG sites in the LC group when compared to the CC group. Pathway analysis of the differential methylation genes revealed a significant increase in hypomethylated genes in the mitogen-activated protein kinase (MAPK) signaling pathway in the LC group. Our study highlights the importance of the MAPK signaling pathway in epigenetic changes involved in the lipid metabolism of the offspring from chromium-restricted dams. PMID:27517955

  20. Effects of Cadmium on Lipid Storage and Metabolism in the Freshwater Crab Sinopotamon henanense

    PubMed Central

    Yang, Jian; Liu, Dongmei; Jing, Weixin; Dahms, Hans-Uwe; Wang, Lan

    2013-01-01

    Since environmental effects of molecular traits are often questioned we analyze here the molecular effects of cadmium (Cd) on lipid pathways and their effects on tissues development. Lipids are an important energy source for the developing embryo, and accumulate in the ovary and hepatopancreas of decapod crustaceans. The extend of Cd affecting lipid storage and metabolism, is studied here with the freshwater crabs Sinopotamon henanense. Crabs were exposed to water-born Cd at 1.45, 2.9, 5.8 mg/l for 10, 15, and 20 days. With significantly increased Cd accumulation in exposed crabs, lipid content in hepatopancreas and ovary showed a time-dependent and concentration-dependent reduction, being at least one of the reasons for a lower ovarian index (OI) and hepatopancreatic index (HI). After 10-day exposure increased triglyceride (TG) level in hemolymph and up-regulation of pancreatic lipase (PL) activity in the hepatopancreas suggested an increased nutritional lipid uptake. However, two processes led to lower lipid levels upon Cd exposure: an increased utilization of lipids and a down-regulated lipoprotein lipase (LPL) led to insufficient lipid transport. 10-day Cd exposure also triggered the production of β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH), as well as to the synthesis of adenosine triphosphate (ATP) and fatty acids. With increasing exposure time, the crabs at 15 and 20-day exposure contained less lipid and TG, suggesting that more energy was consumed during the exposure time. Meanwhile, the level of NADPH, ATP and the activity of PL, LPL, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) activity was down-regulated suggesting an impairment of the crab metabolism by Cd in addition to causing a lower lipid level. PMID:24130894

  1. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna; Rychlik, Joanna; Grajek, Włodzimierz

    2015-10-15

    It has previously been shown that lyophilized cranberries (LCB) decreased lipid accumulation in 3T3-L1 cells and inhibited preadipocyte differentiation by down-regulation of the expression of key transcription factors (PPARγ, C/EBPα, SREBP1) of the adipogenesis pathway. To elucidate the molecular basis of anti-lipogenic activity of LCB, the expression of several genes involved in lipid metabolism, such as adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), hormone sensitive lipase (HSL) and perilipin 1 (PLIN1), was examined in the present study. Additionally, the effects of LCB on adiponectin and leptin expression and protein secretion were also investigated. LCB reduced lipid accumulation during preadipocyte differentiation by down-regulation of the mRNA level of aP2, FAS, LPL, HSL and PLIN1. Moreover, LCB decreased leptin gene expression and increased adiponectin gene expression and protein secretion in a dose-dependent manner. Therefore cranberries could be considered as bioactive factors, which are effective in the inhibition of adipose tissue mass production. PMID:25952883

  2. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna; Rychlik, Joanna; Grajek, Włodzimierz

    2015-10-15

    It has previously been shown that lyophilized cranberries (LCB) decreased lipid accumulation in 3T3-L1 cells and inhibited preadipocyte differentiation by down-regulation of the expression of key transcription factors (PPARγ, C/EBPα, SREBP1) of the adipogenesis pathway. To elucidate the molecular basis of anti-lipogenic activity of LCB, the expression of several genes involved in lipid metabolism, such as adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), hormone sensitive lipase (HSL) and perilipin 1 (PLIN1), was examined in the present study. Additionally, the effects of LCB on adiponectin and leptin expression and protein secretion were also investigated. LCB reduced lipid accumulation during preadipocyte differentiation by down-regulation of the mRNA level of aP2, FAS, LPL, HSL and PLIN1. Moreover, LCB decreased leptin gene expression and increased adiponectin gene expression and protein secretion in a dose-dependent manner. Therefore cranberries could be considered as bioactive factors, which are effective in the inhibition of adipose tissue mass production.

  3. Nuclear inositol lipid metabolism: more than just second messenger generation?

    PubMed

    Martelli, Alberto M; Follo, Matilde Yung; Evangelisti, Camilla; Falà, Federica; Fiume, Roberta; Billi, Anna Maria; Cocco, Lucio

    2005-10-01

    A distinct polyphosphoinositide cycle is present in the nucleus, and growing evidence suggests its importance in DNA replication, gene transcription, and apoptosis. Even though it was initially thought that nuclear inositol lipids would function as a source for second messengers, recent findings strongly indicate that lipids present in the nucleus also fulfil other roles. The scope of this review is to highlight the most intriguing advances made in the field over the last few years, such as the possibility that nuclear phosphatidylinositol (4,5) bisphosphate is involved in maintaining chromatin in a transcriptionally active conformation, the new emerging roles for intranuclear phosphatidylinositol (3,4,5) trisphosphate and phosphoinositide 3-kinase, and the evidence which suggests a tight relationship between a decreased level of nuclear phosphoinositide specific phospholipase C-beta1 and the evolution of myelodisplastic syndrome into acute myeloid leukemia.

  4. Role of Lipid Metabolism in Plant Pollen Exine Development.

    PubMed

    Zhang, Dabing; Shi, Jianxin; Yang, Xijia

    2016-01-01

    Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.

  5. Role of Lipid Metabolism in Plant Pollen Exine Development.

    PubMed

    Zhang, Dabing; Shi, Jianxin; Yang, Xijia

    2016-01-01

    Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted. PMID:27023241

  6. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes.

    PubMed

    Xu, Wenyi; Wu, Lizhen; Yu, Miao; Chen, Feng-Jung; Arshad, Muhammad; Xia, Xiayu; Ren, Hao; Yu, Jinhai; Xu, Li; Xu, Dijin; Li, John Zhong; Li, Peng; Zhou, Linkang

    2016-02-26

    Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions. PMID:26733203

  7. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes.

    PubMed

    Xu, Wenyi; Wu, Lizhen; Yu, Miao; Chen, Feng-Jung; Arshad, Muhammad; Xia, Xiayu; Ren, Hao; Yu, Jinhai; Xu, Li; Xu, Dijin; Li, John Zhong; Li, Peng; Zhou, Linkang

    2016-02-26

    Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions.

  8. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome.

    PubMed

    Jacome-Sosa, M Miriam; Borthwick, Faye; Mangat, Rabban; Uwiera, Richard; Reaney, Martin J; Shen, Jianheng; Quiroga, Ariel D; Jacobs, René L; Lehner, Richard; Proctor, Spencer D; Nelson, Randal C

    2014-07-01

    Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats. PMID:24775093

  9. Effect of hydrogen fluoride inhalation on lipid metabolism in guinea pigs

    SciTech Connect

    Philibert, C.; Dousset, J.C.; Rioufol, C.; Bourbon, P. )

    1991-01-01

    The action of fluoride in vivo (exposure 96 hrs to 7 mg/m3) on the metabolism of cyclic AMP and relationship between cAMP and lipid metabolism was investigated. The mean values for cAMP, non esterified fatty acids and cholesterol were significantly increased after hydrogen fluoride exposure. cAMP is directly responsible for the increased lipolysis. In animals exposed to HF, theophylline injection causes increases of non esterified fatty acids and not produces modification of cholesterol level.

  10. Apolipoprotein D in Lipid Metabolism and Its Functional Implication in Atherosclerosis and Aging

    PubMed Central

    Perdomo, German; Dong, H. Henry

    2009-01-01

    Dyslipidemia is characterized by increased triglyceride and low-density lipoprotein (LDL) levels, and decreased high-density lipoprotein (HDL) levels. Such an atherogenic lipid profile often predisposes an at risk individual to coronary artery disease with incompletely understood mechanisms. Apolipoprotein D (apoD) is an atypical apolipoprotein. Unlike canonical apolipoproteins that are produced mainly in liver and intestine, apoD is expressed widely in mammalian tissues. ApoD does not share significant degrees of homology in amino acid sequence with other apolipoproteins. Instead, apoD is structurally similar to lipocalins, a diverse family of lipid-binding proteins that are responsible for transporting lipids and other small hydrophobic molecules for metabolism. Plasma ApoD is present mainly in HDL and to a lesser extent in low density lipoproteins (LDL) and very low-density lipoproteins (VLDL). Genetic variants of apoD are associated with abnormal lipid metabolism and increased risk of developing metabolic syndrome. Increased apoD deposition is detectable in atherosclerotic lesions of humans with established cardiovascular disease as well as mice with premature atherosclerosis. Moreover, apoD is associated with anti-oxidation and anti-stress activities, contributing to lifespan expansion in fruit flies. Elderly subjects and patients with Alzheimer exhibit markedly elevated apoD production in the brain. Thus, apoD is emerged as a significant player in lipid metabolism and aging. Here we focus our review on recent advances toward our understanding of apoD in lipid metabolism and address whether apoD dysregulation contributes to the pathogenesis of dyslipidemia and atherosclerosis. We will also discuss the functional implication of apoD in aging. PMID:19946382

  11. Daily Rhythms in Expression of Genes of Hepatic Lipid Metabolism in Atlantic Salmon (Salmo salar L.)

    PubMed Central

    Betancor, Mónica B.; McStay, Elsbeth; Minghetti, Matteo; Migaud, Hervé; Tocher, Douglas R.; Davie, Andrew

    2014-01-01

    In mammals, several genes involved in liver lipid and cholesterol homeostasis are rhythmically expressed with expression shown to be regulated by clock genes via Rev-erb 1α. In order to elucidate clock gene regulation of genes involved in lipid metabolism in Atlantic salmon (Salmo salar L.), the orphan nuclear receptor Rev-erb 1α was cloned and 24 h expression of clock genes, transcription factors and genes involved in cholesterol and lipid metabolism determined in liver of parr acclimated to a long-day photoperiod, which was previously shown to elicit rhythmic clock gene expression in the brain. Of the 31 genes analysed, significant daily expression was demonstrated in the clock gene Bmal1, transcription factor genes Srebp1, Lxr, Pparα and Pparγ, and several lipid metabolism genes Hmgcr, Ipi, ApoCII and El. The possible regulatory mechanisms and pathways, and the functional significance of these patterns of expression were discussed. Importantly and in contrast to mammals, Per1, Per2, Fas, Srebp2, Cyp71α and Rev-erb 1α did not display significant daily rhythmicity in salmon. The present study is the first report characterising 24 h profiles of gene expression in liver of Atlantic salmon. However, more importantly, the predominant role of lipids in the nutrition and metabolism of fish, and of feed efficiency in determining farming economics, means that daily rhythmicity in the regulation of lipid metabolism will be an area of considerable interest for future research in commercially important species. PMID:25184355

  12. [Bone diseases caused by impaired glucose and lipid metabolism].

    PubMed

    Kanazawa, Ippei; Sugimoto, Toshitsugu

    2013-11-01

    The number of patients with lifestyle-related diseases is rapidly increasing in Japan. Metabolic syndrome caused by abdominal fat accumulation induces diabetes mellitus, dyslipidemia, and hypertension, resulting in an increase in cardiovascular diseases. On the other hand, recent studies have shown that the lifestyle-related diseases are risk factors of osteoporotic fractures. Although it remains still unclear how metabolic disorders affect bone tissue, oxidative stress and/or glycation stress might directly have negative impacts on bone tissue and increase the risk of fractures. In this review, we describe the association of diabetes mellitus and dyslipidemia with the fracture risk through oxidative stress and glycation stress.

  13. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice

    PubMed Central

    Jackson, Kathryn C.; Wohlers, Lindsay M.; Lovering, Richard M.; Schuh, Rosemary A.; Maher, Amy C.; Bonen, Arend; Koves, Timothy R.; Ilkayeva, Olga; Thomson, David M.; Muoio, Deborah M.

    2013-01-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile. PMID:23193112

  14. Identification of dual PPARα/γ agonists and their effects on lipid metabolism.

    PubMed

    Gao, Quanqing; Hanh, Jacky; Váradi, Linda; Cairns, Rose; Sjöström, Helena; Liao, Vivian W Y; Wood, Peta; Balaban, Seher; Ong, Jennifer Ai; Lin, Hsuan-Yu Jennifer; Lai, Felcia; Hoy, Andrew J; Grewal, Thomas; Groundwater, Paul W; Hibbs, David E

    2015-12-15

    The three peroxisome proliferator-activated receptor (PPAR) isoforms; PPARα, PPARγ and PPARδ, play central roles in lipid metabolism and glucose homeostasis. Dual PPARα/γ agonists, which stimulate both PPARα and PPARγ isoforms to similar extents, are gaining popularity as it is believed that they are able to ameliorate the unwanted side effects of selective PPARα and PPARγ agonists; and may also be used to treat dyslipidemia and type 2 diabetes mellitus simultaneously. In this study, virtual screening of natural product libraries, using both structure-based and ligand-based drug discovery approaches, identified ten potential dual PPARα/γ agonist lead compounds (9-13 and 16-20). In vitro assays confirmed these compounds to show no statistically significant toxicity to cells, with the exception of compound 12 which inhibited cell growth to 74.5%±3.5 and 54.1%±3.7 at 50μM and 100μM, respectively. In support of their potential as dual PPARα/γ agonists, all ten compounds upregulated the expression of cholesterol transporters ABCA1 and ABCG1 in THP-1 macrophages, with indoline derivative 16 producing the greatest elevation (2.3-fold; 3.3-fold, respectively). Furthermore, comparable to the activity of established PPARα and PPARγ agonists, compound 16 stimulated triacylglycerol accumulation during 3T3-L1 adipocyte differentiation as well as fatty acid β-oxidation in HuH7 hepatocytes. PMID:26616289

  15. Dietary n-3 PUFA affect lipid metabolism and tissue function-related genes in bovine muscle.

    PubMed

    Hiller, Beate; Hocquette, Jean-Francois; Cassar-Malek, Isabelle; Nuernberg, Gerd; Nuernberg, Karin

    2012-09-01

    Gene expression profiles of bovine longissimus muscle as affected by dietary n-3 v. n-6 fatty acid (FA) intervention were analysed by microarray pre-screening of >3000 muscle biology/meat quality-related genes as well as subsequent quantitative RT-PCR gene expression validation of genes encoding lipogenesis-related transcription factors (CCAAT/enhancer-binding protein β, sterol regulatory element-binding transcription factor 1), key-lipogenic enzymes (acetyl-CoA carboxylase α (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD)), lipid storage-associated proteins (adipose differentiation-related protein (ADFP)) and muscle biology-related proteins (cholinergic receptor, nicotinic, α1, farnesyl diphosphate farnesyl transferase 1, sema domain 3C (SEMA3C)). Down-regulation of ACACA (P = 0·00), FASN (P = 0·09) and SCD (P = 0·02) gene expression upon an n-3 FA intervention directly corresponded to reduced SFA, MUFA and total FA concentrations in longissimus muscle, whereas changes in ADFP (P = 0·00) and SEMA3C (P = 0·05) gene expression indicated improved muscle function via enhanced energy metabolism, vasculogenesis, innervation and mediator synthesis. The present study highlights the significance of dietary n-3 FA intervention on muscle development, maintenance and function, which are relevant for meat quality tailoring of bovine tissues and modulating animal production-relevant physiological processes.

  16. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal

    PubMed Central

    Muñoz, Mario F.; Argüelles, Sandro

    2014-01-01

    Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown. PMID:24999379

  17. Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism.

    PubMed

    Toda, Kazuya; Takeda, Shogo; Hitoe, Shoketsu; Nakamura, Seikou; Matsuda, Hisashi; Shimoda, Hiroshi

    2016-04-01

    Enhancement of muscular energy production is thought to improve locomotive functions and prevent metabolic syndromes including diabetes and lipidemia. Black ginger (Kaempferia parviflora) has been cultivated for traditional medicine in Thailand. Recent studies have shown that black ginger extract (KPE) activated brown adipocytes and lipolysis in white adipose tissue, which may cure obesity-related dysfunction of lipid metabolism. However, the effect of KPE on glucose and lipid utilization in muscle cells has not been examined yet. Hence, we evaluated the effect of KPE and its constituents on energy metabolism in pre-differentiated (p) and differentiated (d) C2C12 myoblasts. KPE (0.1-10 μg/ml) was added to pC2C12 cells in the differentiation process for a week or used to treat dC2C12 cells for 24 h. After culturing, parameters of glucose and lipid metabolism and mitochondrial biogenesis were assessed. In terms of the results, KPE enhanced the uptake of 2-deoxyglucose and lactic acid as well as the mRNA expression of glucose transporter (GLUT) 4 and monocarboxylate transporter (MCT) 1 in both types of cells. The expression of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α was enhanced in pC2C12 cells. In addition, KPE enhanced the production of ATP and mitochondrial biogenesis. Polymethoxy flavonoids in KPE including 5-hydroxy-7-methoxyflavone, 5-hydroxy-3,7,4'-trimethoxyflavone and 5,7-dimethoxyflavone enhanced the expression of GLUT4 and PGC-1α. Moreover, KPE and 5,7-dimethoxyflavone enhanced the phosphorylation of 5'AMP-activated protein kinase (AMPK). In conclusion, KPE and its polymethoxy flavonoids were found to enhance energy metabolism in myocytes. KPE may improve the dysfunction of muscle metabolism that leads to metabolic syndrome and locomotive dysfunction.

  18. High-calorie diet partially ameliorates dysregulation of intrarenal lipid metabolism in remnant kidney.

    PubMed

    Kim, Hyun Ju; Yuan, Jun; Norris, Keith; Vaziri, Nosratola D

    2010-10-01

    Chronic renal failure (CRF) is associated with malnutrition and renal tissue accumulation of lipids, which can contribute to progression of renal disease. This study was designed to explore the effect of a high-calorie diet on pathways involved in lipid metabolism in the remnant kidney of rats with CRF. 5/6 nephrectomized rats were randomized to receive a regular diet (3.0 kcal/g) or a high-calorie diet (4.5 kcal/g) for 12 weeks. Renal lipid contents and abundance of molecules involved in cholesterol and fatty acid metabolism were studied. The CRF group consuming a regular diet exhibited growth retardation; azotemia; proteinuria; glomerulosclerosis; tubulointerstitial injury; heavy lipid accumulation in the remnant kidney; up-regulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), ATP-binding cassette transporter-1 (ABCA1), liver X receptor (LXR) α/β, carbohydrate-responsive element binding protein (ChREBP) and acyl-CoA carboxylase (ACC); and down-regulation of peroxisome proliferator-activated receptor-α (PPAR-α), carnitine palmitoyltransferase-1 (CPT1) and liver-type fatty acid binding protein (L-FABP). The high-calorie diet restored growth; reduced the severity of tubulointerstitial injury, proteinuria and azotemia; partially lowered renal tissue lipid contents; attenuated the up-regulation of mediators of lipid influx (LOX-1), lipid efflux (LXR-α/β and ABCA1) and fatty acid biosynthesis (ChREBP and ACC); and reversed the down-regulation of factors involved in fatty acid oxidation (PPAR-α, CPT1 and L-FABP). In conclusion, a high-calorie diet restores growth, improves renal function and structure, and lowers lipid burden in the remnant kidney. The latter is associated with and most likely due to reduction in lipid influx and enhancement of fatty acid oxidation. PMID:19954950

  19. Depletion of Myostatin b Promotes Somatic Growth and Lipid Metabolism in Zebrafish.

    PubMed

    Gao, Yanping; Dai, Ziru; Shi, Chuang; Zhai, Gang; Jin, Xia; He, Jiangyan; Lou, Qiyong; Yin, Zhan

    2016-01-01

    Myostatin (MSTN) is a negative regulator of myogenesis in vertebrates. Depletion of mstn resulted in elevated muscle growth in several animal species. However, the report on the complete ablation of mstn in teleost fish has not yet become available. In this study, two independent mstnb-deficient mutant lines in zebrafish were generated with the TALENs technique. In the mstnb-deficient zebrafish, enhanced muscle growth with muscle fiber hyperplasia was achieved. Beginning at the adult stage (80 days postfertilization), the mstnb-deficient zebrafish exhibited increased circumferences and body weights compared with the wild-type sibling control fish. Although the overall total lipid/body weight ratios remained similar between the mstnb-deficient zebrafish and the control fish, the distribution of lipids was altered. The size of the visceral adipose tissues became smaller while more lipids accumulated in skeletal muscle in the mstnb-deficient zebrafish than in the wild-type control fish. Based on the transcriptional expression profiles, our results revealed that lipid metabolism, including lipolysis and lipogenesis processes, was highly activated in the mstnb-deficient zebrafish, which indicated the transition of energy metabolism from protein-dependent to lipid-dependent in mstnb-deficient zebrafish. Our mstnb-deficient model could be valuable in understanding not only the growth trait regulation in teleosts but also the mechanisms of teleost energy metabolism. PMID:27458428

  20. Tribbles-1: a novel regulator of hepatic lipid metabolism in humans

    PubMed Central

    Bauer, Robert C.; Yenilmez, Batuhan O.; Rader, Daniel J.

    2015-01-01

    The protein tribbles-1, encoded by the gene TRIB1, is increasingly recognized as a major regulator of multiple cellular and physiological processes in humans. Recent human genetic studies, as well as molecular biological approaches, have implicated this intriguing protein in the aetiology of multiple human diseases, including myeloid leukaemia, Crohn's disease, non-alcoholic fatty liver disease (NAFLD), dyslipidaemia and coronary artery disease (CAD). Genome-wide association studies (GWAS) have repeatedly identified variants at the genomic TRIB1 locus as being significantly associated with multiple plasma lipid traits and cardiovascular disease (CVD) in humans. The involvement of TRIB1 in hepatic lipid metabolism has been validated through viral-mediated hepatic overexpression of the gene in mice; increasing levels of TRIB1 decreased plasma lipids in a dose-dependent manner. Additional studies have implicated TRIB1 in the regulation of hepatic lipogenesis and NAFLD. The exact mechanisms of TRIB1 regulation of both plasma lipids and hepatic lipogenesis remain undetermined, although multiple signalling pathways and transcription factors have been implicated in tribbles-1 function. Recent reports have been aimed at developing TRIB1-based lipid therapeutics. In summary, tribbles-1 is an important modulator of human energy metabolism and metabolic syndromes and worthy of future studies aimed at investigating its potential as a therapeutic target. PMID:26517927

  1. Depletion of Myostatin b Promotes Somatic Growth and Lipid Metabolism in Zebrafish

    PubMed Central

    Gao, Yanping; Dai, Ziru; Shi, Chuang; Zhai, Gang; Jin, Xia; He, Jiangyan; Lou, Qiyong; Yin, Zhan

    2016-01-01

    Myostatin (MSTN) is a negative regulator of myogenesis in vertebrates. Depletion of mstn resulted in elevated muscle growth in several animal species. However, the report on the complete ablation of mstn in teleost fish has not yet become available. In this study, two independent mstnb-deficient mutant lines in zebrafish were generated with the TALENs technique. In the mstnb-deficient zebrafish, enhanced muscle growth with muscle fiber hyperplasia was achieved. Beginning at the adult stage (80 days postfertilization), the mstnb-deficient zebrafish exhibited increased circumferences and body weights compared with the wild-type sibling control fish. Although the overall total lipid/body weight ratios remained similar between the mstnb-deficient zebrafish and the control fish, the distribution of lipids was altered. The size of the visceral adipose tissues became smaller while more lipids accumulated in skeletal muscle in the mstnb-deficient zebrafish than in the wild-type control fish. Based on the transcriptional expression profiles, our results revealed that lipid metabolism, including lipolysis and lipogenesis processes, was highly activated in the mstnb-deficient zebrafish, which indicated the transition of energy metabolism from protein-dependent to lipid-dependent in mstnb-deficient zebrafish. Our mstnb-deficient model could be valuable in understanding not only the growth trait regulation in teleosts but also the mechanisms of teleost energy metabolism. PMID:27458428

  2. Dietary supplementation with soy isoflavones or replacement with soy proteins prevents hepatic lipid droplet accumulation and alters expression of genes involved in lipid metabolism in rats.

    PubMed

    Xiao, Chao Wu; Wood, Carla M; Weber, Dorcas; Aziz, Syed A; Mehta, Rekha; Griffin, Philip; Cockell, Kevin A

    2014-01-01

    Accumulation of hepatic lipid droplet (HLD) is the hallmark pathology of non-alcoholic fatty liver disease (NAFLD). This study examined the effects of soy isoflavones (ISF) and different amounts of soy proteins on the accumulation of HLD, lipid metabolism and related gene expression in rats. Weanling Sprague-Dawley rats were fed diets containing either 20 % casein protein without (D1) or with (D2) supplemental ISF (50 mg/kg diet) or substitution of casein with increasing amounts of alcohol-washed soy protein isolate (SPI, 5, 10, and 20 %; D3, D4, D5) for 90 days. Dietary casein (20 %) induced accumulation of HLD in female, but not in male rats. Both soy proteins and ISF remarkably prevented the formation of HLD. Soy proteins lowered hepatic total cholesterol and triglyceride in a dose-dependent manner. Interestingly, soy proteins but not ISF significantly increased free fatty acids in the liver of the female rats compared to D1. Proteomic analysis showed that at least 3 enzymes involved in lipogenesis were down-regulated and 7 proteins related to fatty acid β-oxidation or lipolysis were up-regulated by soy protein over D1. Additionally, 9 differentially expressed proteins identified were related to amino acid metabolism, 5 to glycolysis and 2 to cholesterol metabolism. Dietary ISF and SPI markedly reduced hepatic-peroxisome-proliferator-activated receptor γ2 (PPARγ2) and fat-specific protein 27 (FSP27) in female rats. Overall, this study has shown that partial or full replacement of dietary casein by soy protein or supplementation with soy ISF can effectively prevent the accumulation of HLD. The potential molecular mechanism(s) involved might be due to suppression of lipogenesis and stimulation of lipolysis and down-regulation of PPARγ2 and FSP27. This suggests that consumption of soy foods or supplements might be a useful strategy for the prevention or treatment of fatty liver diseases.

  3. Cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously showed that curcumin (CUR) may increase lipid accumulation in cultured THP-1 monocytes/macrophages, but tetrahydrocurcumin (THC), an in vivo metabolite of CUR, had no such effect. In the present study, we have hypothesized that different cellular uptake and/or metabolism of CUR and THC...

  4. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.

    PubMed

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-08-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.

  5. Effects of transgenic expression of HIV-1 Vpr on lipid and energy metabolism in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HIV infection is associated with abnormal lipid metabolism, body fat redistribution, and altered energy expenditure. The pathogenesis of these complex abnormalities is unclear. Viral protein R (Vpr), an HIV-1 accessory protein, can regulate gene transcription mediated by the glucocorticoid receptor ...

  6. Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crossbred steers (n = 20; 235 +/- 4 kg) were fed 53 days during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brandChromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0...

  7. Chromium supplementation alters the glucose and lipid metabolism of feedlot cattle during the receiving period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crossbreed steers (n = 20; 235 ± 4 kg) were fed 53 d during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brand Chromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0 (C...

  8. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii

    PubMed Central

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F. Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R.; Shachar-Hill, Yair; Hicks, Leslie M.; Gang, David R.

    2015-01-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism. PMID:26022256

  9. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet

    SciTech Connect

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-02-14

    Highlights: • The expression of Jazf1 in the liver suppressed lipid accumulation. • Jazf1 significantly increases transcription of fatty acid synthase. • Jazf1 plays a critical role in the regulation of energy and lipid homeostasis. • Jazf1 associates the development of metabolic disorder. • Jazf1 may provide a new therapeutic target in the management of metabolic disorder. - Abstract: Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1’s role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  10. Monitoring intra-cellular lipid metabolism in macrophages by Raman- and CARS-microscopy

    NASA Astrophysics Data System (ADS)

    Matthäus, Christian; Bergner, Gero; Krafft, Christoph; Dietzek, Benjamin; Lorkowski, Stefan; Popp, Jürgen

    2010-04-01

    Monocyte-derived macrophages play a key role in lipid metabolism in vessel wall tissues. Macrophages can take up lipids by various mechanisms. As phagocytes, macrophages are important for the decomposition of lipid plaques within arterial walls that contribute to arteriosclerosis. Of special interest are uptake dynamics and intra-cellular fate of different individual types of lipids as, for example, fatty acids, triglycerides or free and esterified cholesterol. Here we utilize Raman microscopy to image the metabolism of such lipids and follow subsequent storage or degradation patterns. The combination of optical microscopy with Raman spectroscopy allows visualization at the diffraction limit of the employed laser light and biochemical characterization through the associated spectral information. Relatively long measuring times, due to the weakness of Raman scattering can be overcome by non-linear effects such as coherent anti-Stokes Raman scattering (CARS). With this contribution we introduce first results to monitor the incorporation of lipid components into individual cells employing Raman and CARS microscopy.

  11. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition. PMID:26783361

  12. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition.

  13. The Sheep Genome Illuminates Biology of the Rumen and Lipid Metabolism

    PubMed Central

    Talbot, Richard; Maddox, Jillian F.; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M.; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C.; Hourlier, Thibaut; Aken, Bronwen L.; Searle, Stephen M.J.; Adelson, David L.; Bian, Chao; Cam, Graham R.; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R.; Fu, Shaoyin; Guan, Rui; Highland, Margaret A.; Holder, Michael E.; Huang, Guodong; Ingham, Aaron B.; Jhangiani, Shalini N.; Kalra, Divya; Kovar, Christie L.; Lee, Sandra L.; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N.; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B.; Kristensen, Karsten; Gibbs, Richard A.; Flicek, Paul; Warkup, Christopher C.; Jones, Huw E.; Oddy, V. Hutton; Nicholas, Frank W.; McEwan, John C.; Kijas, James; Wang, Jun; Worley, Kim C.; Archibald, Alan L.; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P.

    2014-01-01

    Sheep (Ovis aries) are a major source of meat, milk and fiber in the form of wool, and represent a distinct class of animals that have a specialized digestive organ, the rumen, which carries out the initial digestion of plant material. We have developed and analyzed a high quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants, compared to non-ruminant animals. PMID:24904168

  14. Polysaccharide from seeds of Plantago asiatica L. affects lipid metabolism and colon microbiota of mouse.

    PubMed

    Hu, Jie-Lun; Nie, Shao-Ping; Wu, Qi-Meng; Li, Chang; Fu, Zhi-Hong; Gong, Joshua; Cui, Steve W; Xie, Ming-Yong

    2014-01-01

    Polysaccharide from the seeds of Plantago asiatica L. was given via oral administration to mice (0.4 g/kg body weight, 30 days) to observe its effects on mouse nutrient metabolism and colon microbiota. It was found the polysaccharide intake could lower the apparent absorption of lipid. Total triglyceride, cholesterol, and atherogenic index in blood serum with total lipid and cholesterol levels in liver of polysaccharide group mice were all significantly lower than those of the control group (p < 0.05). Furthermore, the effect of the polysaccharide intake on mouse colon bacterial communities was investigated. Mice from the polysaccharide group showed a higher colon bacterial diversity than the control group. Bacteroides sp., Eubacterium sp., butyrate-producing bacteria Butyrivibrio sp., and probiotics Bifidobacterium bifidum , Lactobacillus fermentum , and Lactobacillus reuteri in mouse colon were all increased after polysaccharide intake. These indicated that the intake of polysaccharide from P. asiatica L. could be beneficial for lipid metabolism and colon microbiota. PMID:24341731

  15. The sheep genome illuminates biology of the rumen and lipid metabolism.

    PubMed

    Jiang, Yu; Xie, Min; Chen, Wenbin; Talbot, Richard; Maddox, Jillian F; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C; Hourlier, Thibaut; Aken, Bronwen L; Searle, Stephen M J; Adelson, David L; Bian, Chao; Cam, Graham R; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R; Fu, Shaoyin; Fuentes-Utrilla, Pablo; Guan, Rui; Highland, Margaret A; Holder, Michael E; Huang, Guodong; Ingham, Aaron B; Jhangiani, Shalini N; Kalra, Divya; Kovar, Christie L; Lee, Sandra L; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B; Kristiansen, Karsten; Gibbs, Richard A; Flicek, Paul; Warkup, Christopher C; Jones, Huw E; Oddy, V Hutton; Nicholas, Frank W; McEwan, John C; Kijas, James W; Wang, Jun; Worley, Kim C; Archibald, Alan L; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P

    2014-06-01

    Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.

  16. Insights from human congenital disorders of intestinal lipid metabolism

    PubMed Central

    Levy, Emile

    2015-01-01

    The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These “experiments of nature” are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader’s comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders. PMID:25387865

  17. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics

    PubMed Central

    Bouchoux, Julien; Beilstein, Frauke; Pauquai, Thomas; Guerrera, I. Chiara; Chateau, Danielle; Ly, Nathalie; Alqub, Malik; Klein, Christophe; Chambaz, Jean; Rousset, Monique; Lacorte, Jean-Marc; Morel, Etienne; Demignot, Sylvie

    2011-01-01

    Background information. Intestinal absorption of alimentary lipids is a complex process ensured by enterocytes and leading to TRL [TAG (triacylglycerol)-rich lipoprotein] assembly and secretion. The accumulation of circulating intestine-derived TRL is associated with atherosclerosis, stressing the importance of the control of postprandial hypertriglyceridaemia. During the postprandial period, TAGs are also transiently stored as CLDs (cytosolic lipid droplets) in enterocytes. As a first step for determining whether CLDs could play a role in the control of enterocyte TRL secretion, we analysed the protein endowment of CLDs isolated by sucrose-gradient centrifugation from differentiated Caco-2/TC7 enterocytes, the only human model able to secrete TRL in culture and to store transiently TAGs as CLDs when supplied with lipids. Cells were analysed after a 24 h incubation with lipid micelles and thus in a state of CLD-associated TAG mobilization. Results. Among the 105 proteins identified in the CLD fraction by LC-MS/MS (liquid chromatography coupled with tandem MS), 27 were directly involved in lipid metabolism pathways potentially relevant to enterocyte-specific functions. The transient feature of CLDs was consistent with the presence of proteins necessary for fatty acid activation (acyl-CoA synthetases) and for TAG hydrolysis. In differentiated Caco-2/TC7 enterocytes, we identified for the first time LPCAT2 (lysophosphatidylcholine acyltransferase 2), involved in PC (phosphatidylcholine) synthesis, and 3BHS1 (3-β-hydroxysteroid dehydrogenase 1), involved in steroid metabolism, and confirmed their partial CLD localization by immunofluorescence. In enterocytes, LPCAT2 may provide an economical source of PC, necessary for membrane synthesis and lipoprotein assembly, from the lysoPC present in the intestinal lumen. We also identified proteins involved in lipoprotein metabolism, such as ApoA-IV (apolipoprotein A-IV), which is specifically expressed by enterocytes and has

  18. Alterations in Lipid and Inositol Metabolisms in Two Dopaminergic Disorders

    PubMed Central

    Berger, Hannah S.; Do, Kieu Trinh; Kastenmüller, Gabi; Wahl, Simone; Adamski, Jerzy; Peters, Annette; Krumsiek, Jan; Suhre, Karsten; Haslinger, Bernhard; Ceballos-Baumann, Andres; Gieger, Christian; Winkelmann, Juliane

    2016-01-01

    Background Serum metabolite profiling can be used to identify pathways involved in the pathogenesis of and potential biomarkers for a given disease. Both restless legs syndrome (RLS) and Parkinson`s disease (PD) represent movement disorders for which currently no blood-based biomarkers are available and whose pathogenesis has not been uncovered conclusively. We performed unbiased serum metabolite profiling in search of signature metabolic changes for both diseases. Methods 456 metabolites were quantified in serum samples of 1272 general population controls belonging to the KORA cohort, 82 PD cases and 95 RLS cases by liquid-phase chromatography and gas chromatography separation coupled with tandem mass spectrometry. Genetically determined metabotypes were calculated using genome-wide genotyping data for the 1272 general population controls. Results After stringent quality control, we identified decreased levels of long-chain (polyunsaturated) fatty acids of individuals with PD compared to both RLS (PD vs. RLS: p = 0.0001 to 5.80x10-9) and general population controls (PD vs. KORA: p = 6.09x10-5 to 3.45x10-32). In RLS, inositol metabolites were increased specifically (RLS vs. KORA: p = 1.35x10-6 to 3.96x10-7). The impact of dopaminergic drugs was reflected in changes in the phenylalanine/tyrosine/dopamine metabolism observed in both individuals with RLS and PD. Conclusions A first discovery approach using serum metabolite profiling in two dopamine-related movement disorders compared to a large general population sample identified significant alterations in the polyunsaturated fatty acid metabolism in PD and implicated the inositol metabolism in RLS. These results provide a starting point for further studies investigating new perspectives on factors involved in the pathogenesis of the two diseases as well as possible points of therapeutic intervention. PMID:26808974

  19. Effects of waterborne Cu exposure on intestinal copper transport and lipid metabolism of Synechogobius hasta.

    PubMed

    Chen, Feng; Luo, Zhi; Chen, Guang-Hui; Shi, Xi; Liu, Xu; Song, Yu-Feng; Pan, Ya-Xiong

    2016-09-01

    The present study was conducted to explore the effects of waterborne Cu exposure on intestinal Cu transport and lipid metabolism of Synechogobius hasta. S. hasta were exposed to 0, 0.4721 and 0.9442μM Cu, respectively. Sampling occurred on days 0, 21 and 42, respectively. Growth performance, intestinal lipid deposition, Cu content, and activities and mRNA expression of enzymes and genes involved in Cu transport and lipid metabolism were analyzed. Cu exposure decreased WG and SGR on days 21 and 42. Cu exposure increased intestinal Cu and lipid contents. Increased Cu accumulation was attributable to increased enzymatic activities (Cu-ATPase and Cu, Zn-SOD) and genes' (CTR1, CTR2, DMT1, ATP7a, ATP7b, MT1 and MT2) expression involved in Cu transport. Waterborne Cu exposure also increased activities of lipogenic enzymes (6PGD and ICDH on both days 21 and 42, ME on day 42), up-regulated mRNA levels of lipogenic genes (G6PD, 6PGD, ME, ICDH, FAS and ACCa), lipolytic genes (ACCb, CPT I and HSLa) and genes involved in intestinal fatty acid uptake (IFABP and FATP4) on both days 21 and 42. The up-regulation of lipolysis may result from the increased metabolic expenditure for detoxification and maintenance of the normal body functions in a response to Cu exposure. Meantime, Cu exposure increased lipogenesis and fatty acid uptake, leading to net lipid accumulation in the intestine despite increased lipolysis. To our knowledge, this is the first report involved in intestinal lipid metabolism in combination with intestinal Cu absorption following waterborne Cu exposure, which provides new insights and evidence into Cu toxicity in fish. PMID:27509383

  20. Does overfeeding enhance genotype effects on energy metabolism and lipid deposition in breast muscle of ducks?

    PubMed

    Chartrin, Pascal; Bernadet, Marie-Dominique; Guy, Gérard; Mourot, Jacques; Hocquette, Jean-François; Rideau, Nicole; Duclos, Michel Jacques; Baéza, Elisabeth

    2006-12-01

    We evaluated the effects of genotype (Muscovy, Pekin and their crossbreed hinny and mule ducks) and feeding levels (overfeeding between 12 and 14 weeks of age vs ad libitum feeding) on energy metabolism and lipid deposition in breast muscle of ducks. Samples of breast muscle (Pectoralis major) were collected at 14 weeks of age from 8 birds per group. Overfeeding induced an accumulation of lipids in breast muscle (1.5- to 1.7-fold, depending on genotype) mainly induced by triglyceride deposition. It also induced a considerable increase in the amounts (expressed as g/100 g of tissue) of saturated and mono-unsaturated fatty acids (SFA, MUFA), while the amounts of poly-unsaturated fatty acids (PUFA) remained unchanged in hinny and Muscovy ducks or slightly increased in Pekin and mule ducks. In breast muscle, overfeeding decreased the activity of the main enzymes involved in lipogenesis from glucose (glucose-6-phosphate dehydrogenase, G6PDH, malic enzyme, ME, acetyl CoA carboxylase, ACX). Lipoprotein lipase (LPL) activity in Pectoralis major muscle was also significantly decreased (-21%). The ability of muscle tissues to catabolize long-chain fatty acids, as assessed by beta-hydroxyacyl CoA dehydrogenase (HAD) activity, was increased in Pectoralis major muscle, as was cytochrome-c oxidase (COX) activity. Hybrid and Pekin ducks exhibited higher levels of ACX and LPL activity in Pectoralis major muscle than Muscovy ducks, suggesting a greater ability to synthesise lipids in situ, and to take up circulating lipids. Total lipid content in breast muscle of hybrid and Pekin ducks was higher than in that of Muscovy ducks. In hybrid and Pekin ducks, lipid composition of breast muscle was characterized by higher amounts of triglycerides, SFA and MUFA than in Muscovy ducks. Finally, oxidative metabolism was greater in Pectoralis major muscles of hybrid and Pekin ducks than in Muscovy ducks, suggesting an adaptative strategy of muscle energy metabolism according to lipid level.

  1. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice.

    PubMed

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice.

  2. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  3. The role of CD36 in the regulation of myocardial lipid metabolism.

    PubMed

    Kim, Ty T; Dyck, Jason R B

    2016-10-01

    Since the heart has one of the highest energy requirements of all organs in the body, it requires a constant and plentiful supply of fuel to function properly. Mitochondrial oxidation of lipids provides a major source of ATP for the heart, and the cellular processes that regulate lipid uptake and utilization are important contributors to maintaining proper myocardial energetic status. Although numerous proteins are coordinately regulated in order to ensure proper fatty acid utilization in the cardiomyocyte, a key first step in this process is the entry of fatty acids into the cell. An important protein involved in the transport of fatty acids into the cardiomyocyte is the plasma membrane-associated protein known as fatty acid translocase (FAT; also known as CD36). While multiple proteins are involved in facilitating fatty acid uptake in the heart, CD36 accounts for approximately 50-70% of the total fatty acid taken up in cardiomyocytes. As such, myocardial metabolism of fatty acids may depend upon proper CD36 function. Consistent with this, changes in CD36 levels/function have been implicated in the alteration of myocardial metabolism in the pathophysiology of certain cardiovascular diseases. As such, a better understanding of the role and function of CD36 in the heart may provide important insights for the development of new treatments for specific cardiovascular diseases. Herein, we review the role of CD36 in myocardial lipid metabolism in the healthy heart and describe how CD36-mediated alterations in lipid metabolism may contribute to cardiovascular disease. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26995462

  4. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome.

    PubMed

    Whigham, Leah D; Butz, Daniel E; Dashti, Hesam; Tonelli, Marco; Johnson, Luann K; Cook, Mark E; Porter, Warren P; Eghbalnia, Hamid R; Markley, John L; Lindheim, Steven R; Schoeller, Dale A; Abbott, David H; Assadi-Porter, Fariba M

    2014-01-01

    Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (p<0.030) lipid use as a metabolic substrate during overnight fasting in PCOS compared to normal women. Accompanying urinary analyses showed a trending correlation (p<0.057) between overnight total nitrogen and circulating testosterone in PCOS women, alone. Serum analyzed by NMR spectroscopy following overnight, fast and at 2 h following an oral glucose tolerance test showed that a transient elevation in blood glucose levels decreased circulating levels of lipid, glucose and amino acid metabolic intermediates (acetone, 2-oxocaporate, 2-aminobutyrate, pyruvate, formate, and sarcosine) in PCOS women, whereas the 2 h glucose challenge led to increases in the same intermediates in normal women. These pilot data suggest that PCOS-related inflexibility in fasting-related switching between lipid and carbohydrate/protein utilization for carbon metabolism may contribute to enhanced weight gain. PMID:24765590

  5. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome

    PubMed Central

    Whigham, Leah D.; Butz, Daniel E.; Dashti, Hesam; Tonelli, Marco; Johnson, LuAnn K.; Cook, Mark E.; Porter, Warren P.; Eghbalnia, Hamid R.; Markley, John L.; Lindheim, Steven R.; Schoeller, Dale A.; Abbott, David H.; Assadi-Porter, Fariba M.

    2014-01-01

    Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (p<0.030) lipid use as a metabolic substrate during overnight fasting in PCOS compared to normal women. Accompanying urinary analyses showed a trending correlation (p<0.057) between overnight total nitrogen and circulating testosterone in PCOS women, alone. Serum analyzed by NMR spectroscopy following overnight, fast and at 2 h following an oral glucose tolerance test showed that a transient elevation in blood glucose levels decreased circulating levels of lipid, glucose and amino acid metabolic intermediates (acetone, 2-oxocaporate, 2-aminobutyrate, pyruvate, formate, and sarcosine) in PCOS women, whereas the 2 h glucose challenge led to increases in the same intermediates in normal women. These pilot data suggest that PCOS-related inflexibility in fasting-related switching between lipid and carbohydrate/protein utilization for carbon metabolism may contribute to enhanced weight gain. PMID:24765590

  6. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation

    PubMed Central

    Tao, Jun; Ma, Yi-Cheng; Yang, Zhong-Shan; Zou, Cheng-Gang; Zhang, Ke-Qin

    2016-01-01

    Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms. PMID:27386520

  7. Role of BAF60a/BAF60c in chromatin remodeling and hepatic lipid metabolism.

    PubMed

    Zhang, Ping; Li, Lulu; Bao, Zhengxi; Huang, Feiruo

    2016-01-01

    The switching defective/sucrose non-fermenting (SWI/SNF) complexes play an important role in hepatic lipid metabolism regulating both transcriptional activation and repression. BAF60a is a core subunit of the SWI/SNF chromatin-remodeling complexes that activates the transcription of fatty acid oxidation genes during fasting/glucagon. BAF60c, another subunit of SWI/SNF complexes, is recruited to form the lipoBAF complex that activates lipogenic genes, promoting lipogenesis and increasing the triglyceride level in response to feeding/insulin. Interestingly, hepatocytes located in the periportal and perivenous zones of the liver display a remarkable heterogeneity in the activity of various enzymes, metabolic functions and gene expression. Especially, fatty-acid oxidation was shown to be mostly periportal, whereas lipogenesis was mostly perivenous. Therefore, the present review highlights the role of of SWI/SNF regulating lipid metabolism under nutritional and hormonal control, which may be associated with hepatocyte heterogeneity. PMID:27127533

  8. Temperature-dependent lipid metabolism in the blow fly Lucilia sericata.

    PubMed

    Muntzer, A; Montagne, C; Ellse, L; Wall, R

    2015-09-01

    An understanding of how arthropods use energy is fundamental to explaining their diverse life histories and adaptation to specific environments. It is also of importance when attempting to predict the impacts of environmental change on patterns of development and phenology. Here, lipid use by the economically important agent of ovine myiasis, Lucilia sericata (Diptera: Calliphoridae), was quantified at a range of temperatures. During pupation, at temperatures above the minimum temperature required for development (9 °C), pupae depleted an average of 30% of their total lipid over the course of pupation regardless of temperature. There was no detectable loss of lipid during pupation at temperatures below 9 °C. In general, larger individuals had the same relative amounts of lipid as smaller individuals. Newly emerged adults metabolized about 16% of the lipid reserves with which they emerged in the first 24 h during flight-related activity. Starved adults, with access to water but without sucrose or protein, depleted their lipid reserves and died within about 4 days of emergence. However, adults with access to protein and/or carbohydrate were able to maintain a stored lipid content of about 2.38% of their total body mass for at least 14 days after emergence, irrespective of sex. This finding is similar to that in field-caught individuals, in which lipid content was found to be a mean of 3% of body mass. The data suggest that warmer environmental conditions, within the temperature limits tested here, although shortening the time required for development and altering the patterns of seasonal abundance of L. sericata, are unlikely to impact on fly survival because of greater metabolic demands during non-feeding stages of the lifecycle.

  9. Effects of Different Intensities of Endurance Exercise in Morning and Evening on the Lipid Metabolism Response

    PubMed Central

    Kim, Hyeon-Ki; Ando, Karina; Tabata, Hiroki; Konishi, Masayuki; Takahashi, Masaki; Nishimaki, Mio; Xiang, Mi; Sakamoto, Shizuo

    2016-01-01

    To study the effects of different exercise intensity performed at different exercise times on lipid metabolism response during prolonged exercise. Nine young men performed endurance exercise at different exercise intensities (60%VO2max or Fatmax) in the morning (9 am to 10 am) or evening (5 pm to 6 pm); blood samples were collected before exercise and immediately and one and two hours after exercise completion. Expired gas was analyzed from the start of exercise until two hours after exercise completion. There were no significant changes in catecholamine (adrenaline and noradrenaline) and free fatty acid levels between morning and evening trials for each endurance exercise intensity. However, the morning and evening trials both exhibited significantly higher lipid oxidation at Fatmax than that at 60%VO2max. These results suggest that exercise at Fatmax offers greater lipid oxidation than that at 60%VO2max, regardless of exercise timing. Key points It is important to consider exercise intensity when evaluating lipid oxidation. Few studies have investigated the effects of the intensity of exercise on lipid oxidation in the morning and evening. Fatmax exhibited greater total lipid oxidation compared to that of 60%VO2max when energy expenditure was equated, but time of day did not affect lipid oxidation in prolonged exercise. PMID:27803625

  10. The Role of Gastrointestinal Hormones in Hepatic Lipid Metabolism

    PubMed Central

    Mells, Jamie Eugene; Anania, Frank A.

    2014-01-01

    Hepatocellular accumulation of free fatty acids (FFAs) in the form of triglycerides constitutes the metabolic basis for the development of nonalcoholic fatty liver disease (NAFLD). Recent data demonstrate that excess FFA hepatocyte storage is likely to lead to lipotoxicity and hepatocyte apoptosis. Hence, FFA-mediated hepatocyte injury is a key contributor to the pathogenesis of nonalcoholic steatohepatitis (NASH). Nonalcoholic steatohepatitis, obesity, type 2 diabetes, essential hypertension, and other common medical problems together comprise metabolic syndrome. Evidence suggests that peptide hormones from the L cells of the distal small intestine, which comprise the core of the enteroendocrine system (EES), play two key roles, serving either as incretins, or as mediators of appetite and satiety in the central nervous system. Recent data related to glucagon-like peptide-1 (GLP-1) and other known L-cell hormones have accumulated due to the increasing frequency of bariatric surgery, which increase delivery of bile salts to the hindgut. Bile acids are a key stimulus for the TGR5 receptor of the L cells. Enhanced bile-salt flow and subsequent EES stimulation may be central to elimination of hepatic steatosis following bariatric surgery. Although GLP-1 is a clinically relevant pharmacological analogue that drives pancreatic β-cell insulin output, GLP-1 analogues also have independent benefits via their effects on hepatocellular FFA metabolism. The authors also discuss recent data regarding the role of the major peptides released by the EES, which promote satiety and modulate energy homeostasis and utilization, as well as those that control fat absorption and intestinal permeability. Taken together, elucidating novel functions for EES-related peptides and pharmacologic development of peptide analogues offer potential far-ranging treatment for obesity-related human disease. PMID:24222092

  11. Insulin signalling and the regulation of glucose and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  12. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2015-10-01

    Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force.

  13. Myogenic differentiation of the muscle clonal cell line BC3H-1 is accompanied by changes in its lipid composition.

    PubMed

    Pediconi, M F; Politi, L E; Bouzat, C B; De Los Santos, E B; Barrantes, F J

    1992-09-01

    Phospholipid and neutral lipid composition was studied in the course of myogenic differentiation of the clonal cell line BC3H-1. Total phospholipid content increased during differentiation, predominantly in the major classes of choline and ethanolamine glycerophospholipids. The contents of other lipids, such as triacylglycerols, diminished more than 50% during this period. The content and distribution of fatty acids also underwent marked differentiation-dependent changes. The polyunsaturated (tetrapenta- and hexaenoic) fatty acid species of several phospholipid classes diminished during differentiation, especially those in choline, serine and inositol glycerophospholipids. Most noticeable were the changes in phosphatidylserine; long-chain fatty acids having 20 to 22 carbon atoms and 4 to 6 double bonds decreased from about 30 to about 10 mol%. Although increased levels of saturation in other phospholipid fatty acyl chains appear to accompany the myogenic changes of BC3H-1 cells, some unsaturated fatty acids, such as oleic acid (18:1), increased by as much as 80% during the same period, suggesting the activation of a delta 9 desaturase. Sphingomyelin contained only saturated and monoenoic fatty acids and exhibited a four- to five-fold decrease in its content of monoenoic acyl groups. Diacylglycerols became enriched in arachidonate and docosahexaenoate. The amount of cholesterol and its esters increased slightly during differentiation of BC3H-1 cells. The data show that several metabolic pathways change during myogenic differentiation of the BC3H-1 clonal cell line, particularly de novo biosynthetic pathways, elongation/desaturation reactions, and acyl chain turnover.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes.

    PubMed

    Wang, Zhuowei; Jiang, Tao; Li, Jinping; Proctor, Gregory; McManaman, James L; Lucia, Scott; Chua, Streamson; Levi, Moshe

    2005-08-01

    Diabetic kidney disease has been associated with the presence of lipid deposits, but the mechanisms for the lipid accumulation have not been fully determined. In the present study, we found that db/db mice on the FVB genetic background with loss-of-function mutation of the leptin receptor (FVB-Lepr(db) mice or FVBdb/db) develop severe diabetic nephropathy, including glomerulosclerosis, tubulointerstitial fibrosis, increased expression of type IV collagen and fibronectin, and proteinuria, which is associated with increased renal mRNA abundance of transforming growth factor-beta, plasminogen activator inhibitor-1, and vascular endothelial growth factor. Electron microscopy demonstrates increases in glomerular basement membrane thickness and foot process (podocyte) length. We found that there is a marked increase in neutral lipid deposits in glomeruli and tubules by oil red O staining and biochemical analysis for cholesterol and triglycerides. We also detected a significant increase in the renal expression of adipocyte differentiation-related protein (adipophilin), a marker of cytoplasmic lipid droplets. We examined the expression of sterol regulatory element-binding protein (SREBP)-1 and -2, transcriptional factors that play an important role in the regulation of fatty acid, triglyceride, and cholesterol synthesis. We found significant increases in SREBP-1 and -2 protein levels in nuclear extracts from the kidneys of FVBdb/db mice, with increases in the mRNA abundance of acetyl-CoA carboxylase, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoA reductase, which mediates the increase in renal triglyceride and cholesterol content. Our results indicate that in FVBdb/db mice, renal triglyceride and cholesterol accumulation is mediated by increased activity of SREBP-1 and -2. Based on our previous results with transgenic mice overexpressing SREBP-1 in the kidney, we propose that increased expression of SREBPs plays an important role in causing renal lipid

  15. Serotonergic agonists stimulate inositol lipid metabolism in rabbit platelets

    SciTech Connect

    Schaechter, M.; Godfrey, P.P.; Minchin, M.C.W.; McClue, S.J.; Young, M.M.

    1985-10-28

    The metabolism of inositol phospholipids in response to serotonergic agonists was investigated in rabbit platelets. In platelets prelabelled with (/sup 3/H)-inositol, in a medium containing 10 mM LiCl which blocks the enzyme inositol-1-phosphatase, 5-hydroxytryptamine (5-HT) caused a dose-dependent accumulation of inositol phosphates (IP). This suggests a phospholipase-C-mediated breakdown of phosphoinositides. Ketanserin, a selective 5-HT/sub 2/ antagonist, was a potent inhibitor of the 5-HT response, with a Ki of 28 nM, indicating that 5-HT is activating receptors of the 5-HT/sub 2/ type in the platelet. Lysergic acid diethylamide (LSD) and quipazine also caused dose-related increases in inositol phosphate levels, though these were considerably less than those produced by 5-HT. These results show that relatively small changes in phosphoinositide metabolism induced by serotonergic agonists can be investigated in the rabbit platelet, and this cell may therefore be a useful model for the study of some 5-HT receptors. 30 references, 4 figures.

  16. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  17. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    SciTech Connect

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-02-22

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity.

  18. Selective upregulation of lipid metabolism in skeletal muscle of foraging juvenile king penguins: an integrative study.

    PubMed

    Teulier, Loic; Dégletagne, Cyril; Rey, Benjamin; Tornos, Jérémy; Keime, Céline; de Dinechin, Marc; Raccurt, Mireille; Rouanet, Jean-Louis; Roussel, Damien; Duchamp, Claude

    2012-06-22

    The passage from shore to marine life of juvenile penguins represents a major energetic challenge to fuel intense and prolonged demands for thermoregulation and locomotion. Some functional changes developed at this crucial step were investigated by comparing pre-fledging king penguins with sea-acclimatized (SA) juveniles (Aptenodytes patagonicus). Transcriptomic analysis of pectoralis muscle biopsies revealed that most genes encoding proteins involved in lipid transport or catabolism were upregulated, while genes involved in carbohydrate metabolism were mostly downregulated in SA birds. Determination of muscle enzymatic activities showed no changes in enzymes involved in the glycolytic pathway, but increased 3-hydroxyacyl-CoA dehydrogenase, an enzyme of the β-oxidation pathway. The respiratory rates of isolated muscle mitochondria were much higher with a substrate arising from lipid metabolism (palmitoyl-L-carnitine) in SA juveniles than in terrestrial controls, while no difference emerged with a substrate arising from carbohydrate metabolism (pyruvate). In vivo, perfusion of a lipid emulsion induced a fourfold larger thermogenic effect in SA than in control juveniles. The present integrative study shows that fuel selection towards lipid oxidation characterizes penguin acclimatization to marine life. Such acclimatization may involve thyroid hormones through their nuclear beta receptor and nuclear coactivators. PMID:22357259

  19. Selective upregulation of lipid metabolism in skeletal muscle of foraging juvenile king penguins: an integrative study

    PubMed Central

    Teulier, Loic; Dégletagne, Cyril; Rey, Benjamin; Tornos, Jérémy; Keime, Céline; de Dinechin, Marc; Raccurt, Mireille; Rouanet, Jean-Louis; Roussel, Damien; Duchamp, Claude

    2012-01-01

    The passage from shore to marine life of juvenile penguins represents a major energetic challenge to fuel intense and prolonged demands for thermoregulation and locomotion. Some functional changes developed at this crucial step were investigated by comparing pre-fledging king penguins with sea-acclimatized (SA) juveniles (Aptenodytes patagonicus). Transcriptomic analysis of pectoralis muscle biopsies revealed that most genes encoding proteins involved in lipid transport or catabolism were upregulated, while genes involved in carbohydrate metabolism were mostly downregulated in SA birds. Determination of muscle enzymatic activities showed no changes in enzymes involved in the glycolytic pathway, but increased 3-hydroxyacyl-CoA dehydrogenase, an enzyme of the β-oxidation pathway. The respiratory rates of isolated muscle mitochondria were much higher with a substrate arising from lipid metabolism (palmitoyl-l-carnitine) in SA juveniles than in terrestrial controls, while no difference emerged with a substrate arising from carbohydrate metabolism (pyruvate). In vivo, perfusion of a lipid emulsion induced a fourfold larger thermogenic effect in SA than in control juveniles. The present integrative study shows that fuel selection towards lipid oxidation characterizes penguin acclimatization to marine life. Such acclimatization may involve thyroid hormones through their nuclear beta receptor and nuclear coactivators. PMID:22357259

  20. Selective upregulation of lipid metabolism in skeletal muscle of foraging juvenile king penguins: an integrative study.

    PubMed

    Teulier, Loic; Dégletagne, Cyril; Rey, Benjamin; Tornos, Jérémy; Keime, Céline; de Dinechin, Marc; Raccurt, Mireille; Rouanet, Jean-Louis; Roussel, Damien; Duchamp, Claude

    2012-06-22

    The passage from shore to marine life of juvenile penguins represents a major energetic challenge to fuel intense and prolonged demands for thermoregulation and locomotion. Some functional changes developed at this crucial step were investigated by comparing pre-fledging king penguins with sea-acclimatized (SA) juveniles (Aptenodytes patagonicus). Transcriptomic analysis of pectoralis muscle biopsies revealed that most genes encoding proteins involved in lipid transport or catabolism were upregulated, while genes involved in carbohydrate metabolism were mostly downregulated in SA birds. Determination of muscle enzymatic activities showed no changes in enzymes involved in the glycolytic pathway, but increased 3-hydroxyacyl-CoA dehydrogenase, an enzyme of the β-oxidation pathway. The respiratory rates of isolated muscle mitochondria were much higher with a substrate arising from lipid metabolism (palmitoyl-L-carnitine) in SA juveniles than in terrestrial controls, while no difference emerged with a substrate arising from carbohydrate metabolism (pyruvate). In vivo, perfusion of a lipid emulsion induced a fourfold larger thermogenic effect in SA than in control juveniles. The present integrative study shows that fuel selection towards lipid oxidation characterizes penguin acclimatization to marine life. Such acclimatization may involve thyroid hormones through their nuclear beta receptor and nuclear coactivators.

  1. Metabolic response to lipid infusion in fasting winter-acclimatized king penguin chicks (Aptenodytes patagonicus).

    PubMed

    Teulier, Loïc; Tornos, Jérémy; Rouanet, Jean-Louis; Rey, Benjamin; Roussel, Damien

    2013-05-01

    During the cold austral winter, king penguin chicks are infrequently fed by their parents and thus experience severe nutritional deprivation under harsh environmental conditions. These energetic constraints lead to a range of energy sparing mechanisms balanced by the maintenance of efficient thermogenic processes. The present work investigated whether the high thermogenic capacities exhibited by winter-acclimatized king penguin chicks could be related to an increase in lipid substrate supply and oxidation in skeletal muscle, the main site of thermogenesis in birds. To test this hypothesis, we examined i) the effect of an experimental rise in plasma triglyceride on the whole metabolic rate in winter-acclimatized (WA) and de-acclimatized king penguin chicks kept at thermoneutrality (TN), and ii) investigated the fuel preference of muscle mitochondria. In vivo, a perfusion of a lipid emulsion induced a small 10% increase of metabolic rate in WA chicks but not in TN group. In vitro, the oxidation rate of muscle mitochondria respiring on lipid-derived substrate was +40% higher in WA chicks than in TN, while no differences were found between groups when mitochondria oxidized carbohydrate-derived substrate or succinate. Despite an enhanced fuel selection towards lipid oxidation in skeletal muscle, a rise of circulating lipids per se was not sufficient to fully unravel the thermogenic capacity of winter-acclimatized king penguin chicks. PMID:23428720

  2. Metabolic response to lipid infusion in fasting winter-acclimatized king penguin chicks (Aptenodytes patagonicus).

    PubMed

    Teulier, Loïc; Tornos, Jérémy; Rouanet, Jean-Louis; Rey, Benjamin; Roussel, Damien

    2013-05-01

    During the cold austral winter, king penguin chicks are infrequently fed by their parents and thus experience severe nutritional deprivation under harsh environmental conditions. These energetic constraints lead to a range of energy sparing mechanisms balanced by the maintenance of efficient thermogenic processes. The present work investigated whether the high thermogenic capacities exhibited by winter-acclimatized king penguin chicks could be related to an increase in lipid substrate supply and oxidation in skeletal muscle, the main site of thermogenesis in birds. To test this hypothesis, we examined i) the effect of an experimental rise in plasma triglyceride on the whole metabolic rate in winter-acclimatized (WA) and de-acclimatized king penguin chicks kept at thermoneutrality (TN), and ii) investigated the fuel preference of muscle mitochondria. In vivo, a perfusion of a lipid emulsion induced a small 10% increase of metabolic rate in WA chicks but not in TN group. In vitro, the oxidation rate of muscle mitochondria respiring on lipid-derived substrate was +40% higher in WA chicks than in TN, while no differences were found between groups when mitochondria oxidized carbohydrate-derived substrate or succinate. Despite an enhanced fuel selection towards lipid oxidation in skeletal muscle, a rise of circulating lipids per se was not sufficient to fully unravel the thermogenic capacity of winter-acclimatized king penguin chicks.

  3. The Roles of Genetic Polymorphisms and Human Immunodeficiency Virus Infection in Lipid Metabolism

    PubMed Central

    de Almeida, Elaine Regina Delicato; Reiche, Edna Maria Vissoci; Flauzino, Tamires; Watanabe, Maria Angelica Ehara

    2013-01-01

    Dyslipidemia has been frequently observed among individuals infected with human immunodeficiency virus type 1 (HIV-1), and factors related to HIV-1, the host, and antiretroviral therapy (ART) are involved in this phenomenon. This study reviews the roles of genetic polymorphisms, HIV-1 infection, and highly active antiretroviral therapy (HAART) in lipid metabolism. Lipid abnormalities can vary according to the HAART regimen, such as those with protease inhibitors (PIs). However, genetic factors may also be involved in dyslipidemia because not all patients receiving the same HAART regimen and with comparable demographic, virological, and immunological characteristics develop variations in the lipid profile. Polymorphisms in a large number of genes are involved in the synthesis of structural proteins, and enzymes related to lipid metabolism account for variations in the lipid profile of each individual. As some genetic polymorphisms may cause dyslipidemia, these allele variants should be investigated in HIV-1-infected patients to identify individuals with an increased risk of developing dyslipidemia during treatment with HAART, particularly during therapy with PIs. This knowledge may guide individualized treatment decisions and lead to the development of new therapeutic targets for the treatment of dyslipidemia in these patients. PMID:24319689

  4. Diacylglycerol kinase-δ regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics.

    PubMed

    Jiang, Lake Q; de Castro Barbosa, Thais; Massart, Julie; Deshmukh, Atul S; Löfgren, Lars; Duque-Guimaraes, Daniella E; Ozilgen, Arda; Osler, Megan E; Chibalin, Alexander V; Zierath, Juleen R

    2016-01-01

    Decrease of AMPK-related signal transduction and insufficient lipid oxidation contributes to the pathogenesis of obesity and type 2 diabetes. Previously, we identified that diacylglycerol kinase-δ (DGKδ), an enzyme involved in triglyceride biosynthesis, is reduced in skeletal muscle from type 2 diabetic patients. Here, we tested the hypothesis that DGKδ plays a role in maintaining appropriate AMPK action in skeletal muscle and energetic aspects of contraction. Voluntary running activity was reduced in DGKδ(+/-) mice, but glycogen content and mitochondrial markers were unaltered, suggesting that DGKδ deficiency affects skeletal muscle energetics but not mitochondrial protein abundance. We next determined the role of DGKδ in AMPK-related signal transduction and lipid metabolism in isolated skeletal muscle. AMPK activation and signaling were reduced in DGKδ(+/-) mice, concomitant with impaired lipid oxidation and elevated incorporation of free fatty acids into triglycerides. Strikingly, DGKδ deficiency impaired work performance, as evident by altered force production and relaxation dynamics in response to repeated contractions. In conclusion, DGKδ deficiency impairs AMPK signaling and lipid metabolism, thereby highlighting the deleterious role of excessive lipid metabolites in the development of peripheral insulin resistance and type 2 diabetes pathogenesis. DGKδ deficiency also influences skeletal muscle energetics, which may lead to low physical activity levels in type 2 diabetes.

  5. Metabolic switch during adipogenesis: From branched chain amino acid catabolism to lipid synthesis.

    PubMed

    Halama, Anna; Horsch, Marion; Kastenmüller, Gabriele; Möller, Gabriele; Kumar, Pankaj; Prehn, Cornelia; Laumen, Helmut; Hauner, Hans; Hrabĕ de Angelis, Martin; Beckers, Johannes; Suhre, Karsten; Adamski, Jerzy

    2016-01-01

    Fat cell metabolism has an impact on body homeostasis and its proper function. Nevertheless, the knowledge about simultaneous metabolic processes, which occur during adipogenesis and in mature adipocytes, is limited. Identification of key metabolic events associated with fat cell metabolism could be beneficial in the field of novel drug development, drug repurposing, as well as for the discovery of patterns predicting obesity risk. The main objective of our work was to provide comprehensive characterization of metabolic processes occurring during adipogenesis and in mature adipocytes. In order to globally determine crucial metabolic pathways involved in fat cell metabolism, metabolomics and transcriptomics approaches were applied. We observed significantly regulated metabolites correlating with significantly regulated genes at different stages of adipogenesis. We identified the synthesis of phosphatidylcholines, the metabolism of even and odd chain fatty acids, as well as the catabolism of branched chain amino acids (BCAA; leucine, isoleucine and valine) as key regulated pathways. Our further analysis led to identification of an enzymatic switch comprising the enzymes Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase) and Auh (AU RNA binding protein/enoyl-CoA hydratase) which connects leucine degradation with cholesterol synthesis. In addition, propionyl-CoA, a product of isoleucine degradation, was identified as a putative substrate for odd chain fatty acid synthesis. The uncovered crosstalks between BCAA and lipid metabolism during adipogenesis might contribute to the understanding of molecular mechanisms of obesity and have potential implications in obesity prediction. PMID:26408941

  6. Effects of rs7903146 Variation in the Tcf7l2 Gene in the Lipid Metabolism of Three Different Populations

    PubMed Central

    Garcia-Rios, Antonio; Yubero-Serrano, Elena M.; Camargo, Antonio; Gomez-Luna, Maria J.; Marin, Carmen; Gomez-Luna, Purificacion; Dembinska-Kiec, Aldona; Rodriguez-Cantalejo, Fernando; Tinahones, Francisco J.; Roche, Helen M.; Perez-Jimenez, Francisco; Lopez-Miranda, Jose; Delgado-Lista, Javier

    2012-01-01

    Background TCF7L2 rs7903146 is an important genetic factor predicting type 2 diabetes (T2DM) which has also been linked to higher cardiovascular risk. To date, there is little information about the additional impact of this single nucleotide polymorphism (SNP) beyond glucose metabolism. Methodology/Principal Findings We studied whether rs7903146 influenced postprandial lipid metabolism in three different populations (healthy young men, metabolic syndrome (MetS) patients and elderly persons). Eighty-eight healthy males were submitted to a single saturated fatty acid-rich test meal. Additionally, 110 middle-aged MetS patients and 20 healthy elderly persons (≥65 years) were submitted to three different dietary models followed by test meals. Minor allele homozygotes for rs7903146 showed a worse postprandial lipemia profile in young males, as seen by a lower HDL-cholesterol and Apo A1 concentration during the postprandial lipemia and a trend towards higher triglycerides (TG), than the other genotypes. In healthy elderly persons, carriers of the minor allele showed higher total cholesterol, LDL-cholesterol, Apo B and TG in the fasting state, and a higher postprandial area under the curve for total cholesterol, Apo B, small-triglyceride rich lipoprotein (TRL) cholesterol and small-(TRL) triglycerides. These results were accompanied by differential changes in adipokines. We did not observe any influence of rs7903146 on the postprandium of MetS patients. Conclusions/Significance Healthy young males and elderly persons who are carriers of the mutant allele for rs7903146 have an impaired postprandial lipid metabolism that may be mediated by an alteration in adipokine regulation, and may be related to the higher cardiovascular risk observed in these persons. Trial Registration ClinicalTrials.gov NCT00429195 PMID:22916254

  7. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Pérez-Jiménez, Amalia; Larroquet, Laurence; Cluzeaud, Marianne; Panserat, Stéphane; Oliva-Teles, Aires

    2015-10-28

    Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.

  8. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Pérez-Jiménez, Amalia; Larroquet, Laurence; Cluzeaud, Marianne; Panserat, Stéphane; Oliva-Teles, Aires

    2015-10-28

    Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated. PMID:26306559

  9. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism

    PubMed Central

    Molehin, Deborah

    2016-01-01

    Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557

  10. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism.

    PubMed

    Molehin, Deborah; Dekker Nitert, Marloes; Richard, Kerry

    2016-01-01

    Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557

  11. 'Micro-managers' of hepatic lipid metabolism and NAFLD.

    PubMed

    Liu, Wei; Cao, Hongchao; Yan, Jun; Huang, Ruimin; Ying, Hao

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is tightly associated with insulin resistance, type 2 diabetes, and obesity. As the defining feature of NAFLD, hepatic steatosis develops as a consequence of metabolic dysregulation of de novo lipogenesis, fatty acid uptake, fatty acid oxidation, and triglycerides (TG) export. MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs, play critical roles in various biological processes through regulating gene expression at post-transcriptional level. A growing body of evidence suggests that miRNAs not only maintain hepatic TG homeostasis under physiological condition, but also participate in the pathogenesis of NAFLD. In this review, we focus on the current knowledge of the hepatic miRNAs associated with the development of liver steatosis and the regulatory mechanisms involved, which might be helpful to further understand the nature of NAFLD and provide a sound scientific basis for the drug development. PMID:26198708

  12. Lipid-binding properties of human ApoD and Lazarillo-related lipocalins: functional implications for cell differentiation.

    PubMed

    Ruiz, Mario; Sanchez, Diego; Correnti, Colin; Strong, Roland K; Ganfornina, Maria D

    2013-08-01

    Lipocalins are a family of proteins characterized by a conserved eight-stranded β-barrel structure with a ligand-binding pocket. They perform a wide range of biological functions and this functional multiplicity must relate to the lipid partner involved. Apolipoprotein D (ApoD) and its insect homologues, Lazarillo (Laz) and neural Lazarillo (NLaz), share common ancestral functions like longevity, stress resistance and lipid metabolism regulation, coexisting with very specialized functions, like courtship behavior. Using tryptophan fluorescence titration, we screened the binding of 15 potential lipid partners for NLaz, ApoD and Laz and uncovered several novel ligands with apparent dissociation constants in the low micromolar range. Retinoic acid (RA), retinol, fatty acids and sphingomyelin are shared ligands. Sterols, however, showed a species-specific binding pattern: cholesterol did not show strong binding to human ApoD, whereas NLaz and Laz did bind ergosterol. Among the lipocalin-specific ligands, we found that ApoD selectively binds the endocannabinoid anandamide but not 2-acylglycerol, and that NLaz binds the pheromone 7-tricosene, but not 7,11-heptacosadiene or 11-cis-vaccenyl acetate. To test the functional relevance of lipocalin ligand binding at the cellular level, we analyzed the effect of ApoD, Laz and NLaz preloaded with RA on neuronal differentiation. Our results show that ApoD is necessary and sufficient to allow for RA differentiating activity. Both human ApoD and Drosophila NLaz successfully deliver RA to immature neurons, driving neurite outgrowth. We conclude that ApoD, NLaz and Laz bind selectively to a different but overlapping set of lipid ligands. This multispecificity can explain their varied physiological functions.

  13. Effect of Evolvulus alsinoides on lipid metabolism of streptozotocin induced diabetic rats

    PubMed Central

    Gomathi, Duraisamy; Ravikumar, Ganesan; Kalaiselvi, Manokaran; Devaki, Kanakasabapathi; Uma, Chandrasekar

    2013-01-01

    Objective To determine the effect of ethanolic extract of Evolvulus alsinoides (E. alsinoides) on diabetes-induced changes in lipid metabolism. Methods The ethanolic extract of E. alsinoides on serum and tissue lipid levels were examined in control and experimental group rats. Results Oral administration of E. alsinoides extract to streptozotocin induced diabetic rats for 45 d significantly reduced the levels of triglycerids, phospholipids, cholesterol and free fatty acids in serum and tissues, it increases the high density lipoprotein in serum as that of control. Conclusions The ethanolic extract of E. alsinoides supplementation is useful in hyperlipidemia prevention during diabetes mellitus.

  14. [Characteristics of hypothyroidism correction and lipid metabolism disorder in iodine deficiency].

    PubMed

    Voronych-Semchenko, N M

    2007-01-01

    The serum biochemical indexes (level of triiodthyronine, thyroxin, thyrothropic hormone of adenohypophysis, level of cholesterol, triglycerides) and the level of iodine excretion with urine in rats with hypothyrosis corrected by "Iodid-100" and along with excessive intake of chlorine and fluorine ions into the organism had been studied. It has been revealed that hypothyrosis has negative influence on lipid metabolism indexes. "Iodid- 100" usage stabilized hormonal and lipid status. Excessive intake of chlorine and fluorine ions by the organism decreased the effectiveness of iodine containing drugs.

  15. Lipid mobilisation and oxidative stress as metabolic adaptation processes in dairy heifers during transition period.

    PubMed

    Turk, R; Podpečan, O; Mrkun, J; Kosec, M; Flegar-Meštrić, Z; Perkov, S; Starič, J; Robić, M; Belić, M; Zrimšek, P

    2013-10-01

    The objective of this study was to evaluate metabolic disorders and oxidative stress in dairy heifers during the transition period. Possible relationships between lipid mobilisation indicators and oxidative stress markers were investigated as well. Nineteen dairy heifers were included in the study. Blood samples were collected at the time of estrus synchronisation in heifers, at insemination, three weeks after insemination, one week before calving, at calving and 1, 2, 4 and 8 weeks postpartum. Common metabolic parameters, beta-hydroxybutyrate (BHB), free fatty acids (FFA), paraoxonase-1 (PON1) activity and total antioxidative status (TAS) were analysed. Around insemination, no significant difference was observed in the majority of tested parameters (P>0.05). However, the transition period markedly affected the concentration of triglycerides, total cholesterol, HDL-C, BHB, FFA, TAS and PON1activity. Positive correlations between PON1 activity and total cholesterol, HDL-C and triglycerides were noted but inverse correlations with FFA, BHB and bilirubin were found indicating that PON1 activity changed with lipid metabolism and was influenced by negative energy balance. These findings suggest that lipid mobilisation and oxidative stress are part of a complex metabolic adaptation to low energy balance which reaches equilibrium later in advanced lactation.

  16. Lipid Droplet Accumulation and Impaired Fat Efflux in Polarized Hepatic Cells: Consequences of Ethanol Metabolism

    PubMed Central

    McVicker, Benita L.; Rasineni, Karuna; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2012-01-01

    Steatosis, an early manifestation in alcoholic liver disease, is associated with the accumulation of hepatocellular lipid droplets (LDs). However, the role ethanol metabolism has in LD formation and turnover remains undefined. Here, we assessed LD dynamics following ethanol and oleic acid treatment to ethanol-metabolizing WIF-B cells (a hybrid of human fibroblasts (WI 38) and Fao rat hepatoma cells). An OA dose-dependent increase in triglyceride and stained lipids was identified which doubled (P < 0.05) in the presence of ethanol. This effect was blunted with the inclusion of an alcohol metabolism inhibitor. The ethanol/ OA combination also induced adipophilin, LD coat protein involved in the attenuation of lipolysis. Additionally, ethanol treatment resulted in a significant reduction in lipid efflux. These data demonstrate that the metabolism of ethanol in hepatic cells is related to LD accumulation, impaired fat efflux, and enhancements in LD-associated proteins. These alterations in LD dynamics may contribute to ethanol-mediated defects in hepatocellular LD regulation and the formation of steatosis. PMID:22506128

  17. Kruppel-like Factor 15 Is a Critical Regulator of Cardiac Lipid Metabolism*

    PubMed Central

    Prosdocimo, Domenick A.; Anand, Priti; Liao, Xudong; Zhu, Han; Shelkay, Shamanthika; Artero-Calderon, Pedro; Zhang, Lilei; Kirsh, Jacob; Moore, D'Vesharronne; Rosca, Mariana G.; Vazquez, Edwin; Kerner, Janos; Akat, Kemal M.; Williams, Zev; Zhao, Jihe; Fujioka, Hisashi; Tuschl, Thomas; Bai, Xiaodong; Schulze, P. Christian; Hoppel, Charles L.; Jain, Mukesh K.; Haldar, Saptarsi M.

    2014-01-01

    The mammalian heart, the body's largest energy consumer, has evolved robust mechanisms to tightly couple fuel supply with energy demand across a wide range of physiologic and pathophysiologic states, yet, when compared with other organs, relatively little is known about the molecular machinery that directly governs metabolic plasticity in the heart. Although previous studies have defined Kruppel-like factor 15 (KLF15) as a transcriptional repressor of pathologic cardiac hypertrophy, a direct role for the KLF family in cardiac metabolism has not been previously established. We show in human heart samples that KLF15 is induced after birth and reduced in heart failure, a myocardial expression pattern that parallels reliance on lipid oxidation. Isolated working heart studies and unbiased transcriptomic profiling in Klf15-deficient hearts demonstrate that KLF15 is an essential regulator of lipid flux and metabolic homeostasis in the adult myocardium. An important mechanism by which KLF15 regulates its direct transcriptional targets is via interaction with p300 and recruitment of this critical co-activator to promoters. This study establishes KLF15 as a key regulator of myocardial lipid utilization and is the first to implicate the KLF transcription factor family in cardiac metabolism. PMID:24407292

  18. Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles.

    PubMed

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Liu, Xin-Qi; Zhang, Wei-Dong; Ding, Zhao-Peng; Wang, Shi-Wen; Shen, Wei; Min, Ling-Jiang; Hao, Zhi-Hui

    2016-04-01

    This investigation was designed to explore the effects of Zinc Oxide Nanoparticles (ZnO NP) on egg quality and the mechanism of decreasing of yolk lipids. Different concentration of ZnO NP and ZnSO4 were used to treat hens for 24 weeks. The body weight and egg laying frequency were recorded and analyzed. Albumen height, Haugh unit, and yolk color score were analyzed by an Egg Multi Tester. Breaking strength was determined by an Egg Force Reader. Egg shell thickness was measured using an Egg Shell Thickness Gouge. Shell color was detected by a spectrophotometer. Egg shape index was measured by Egg Form Coefficient Measuring Instrument. Albumen and yolk protein was determined by the Kjeldahl method. Amino acids were determined by an amino acids analyzer. Trace elements Zn, Fe, Cu, and P (mg/kg wet mass) were determined in digested solutions using Inductively Coupled Plasma-Optical Emission Spectrometry. TC and TG were measured using commercial analytical kits. Yolk triglyceride, total cholesterol, pancreatic lipase, and phospholipids were determined by appropriate kits. β-carotene was determined by spectrophotometry. Lipid metabolism was also investigated with liver, plasma, and ovary samples. ZnO NP did not change the body weight of hens during the treatment period. ZnO NP slowed down egg laying frequency at the beginning of egg laying period but not at later time. ZnO NP did not affect egg protein or water contents, slightly decreased egg physical parameters (12 to 30%) and trace elements (20 to 35%) after 24 weeks treatment. However, yolk lipids content were significantly decreased by ZnO NP (20 to 35%). The mechanism of Zinc oxide nanoparticles decreasing yolk lipids was that they decreased the synthesis of lipids and increased lipid digestion. These data suggested ZnO NP affected egg quality and specifically regulated lipids metabolism in hens through altering the function of hen's ovary and liver. PMID:26908885

  19. Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles.

    PubMed

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Liu, Xin-Qi; Zhang, Wei-Dong; Ding, Zhao-Peng; Wang, Shi-Wen; Shen, Wei; Min, Ling-Jiang; Hao, Zhi-Hui

    2016-04-01

    This investigation was designed to explore the effects of Zinc Oxide Nanoparticles (ZnO NP) on egg quality and the mechanism of decreasing of yolk lipids. Different concentration of ZnO NP and ZnSO4 were used to treat hens for 24 weeks. The body weight and egg laying frequency were recorded and analyzed. Albumen height, Haugh unit, and yolk color score were analyzed by an Egg Multi Tester. Breaking strength was determined by an Egg Force Reader. Egg shell thickness was measured using an Egg Shell Thickness Gouge. Shell color was detected by a spectrophotometer. Egg shape index was measured by Egg Form Coefficient Measuring Instrument. Albumen and yolk protein was determined by the Kjeldahl method. Amino acids were determined by an amino acids analyzer. Trace elements Zn, Fe, Cu, and P (mg/kg wet mass) were determined in digested solutions using Inductively Coupled Plasma-Optical Emission Spectrometry. TC and TG were measured using commercial analytical kits. Yolk triglyceride, total cholesterol, pancreatic lipase, and phospholipids were determined by appropriate kits. β-carotene was determined by spectrophotometry. Lipid metabolism was also investigated with liver, plasma, and ovary samples. ZnO NP did not change the body weight of hens during the treatment period. ZnO NP slowed down egg laying frequency at the beginning of egg laying period but not at later time. ZnO NP did not affect egg protein or water contents, slightly decreased egg physical parameters (12 to 30%) and trace elements (20 to 35%) after 24 weeks treatment. However, yolk lipids content were significantly decreased by ZnO NP (20 to 35%). The mechanism of Zinc oxide nanoparticles decreasing yolk lipids was that they decreased the synthesis of lipids and increased lipid digestion. These data suggested ZnO NP affected egg quality and specifically regulated lipids metabolism in hens through altering the function of hen's ovary and liver.

  20. Effects of Starvation on Lipid Metabolism and Gluconeogenesis in Yak

    PubMed Central

    Yu, Xiaoqiang; Peng, Quanhui; Luo, Xiaolin; An, Tianwu; Guan, Jiuqiang; Wang, Zhisheng

    2016-01-01

    This research was conducted to investigate the physiological consequences of undernourished yak. Twelve Maiwa yak (110.3±5.85 kg) were randomly divided into two groups (baseline and starvation group). The yak of baseline group were slaughtered at day 0, while the other group of yak were kept in shed without feed but allowed free access to water, salt and free movement for 9 days. Blood samples of the starvation group were collected on day 0, 1, 2, 3, 5, 7, 9 and the starved yak were slaughtered after the final blood sample collection. The liver and muscle glycogen of the starvation group decreased (p<0.01), and the lipid content also decreased while the content of moisture and ash increased (p<0.05) both in Longissimus dorsi and liver compared with the baseline group. The plasma insulin and glucose of the starved yak decreased at first and then kept stable but at a relatively lower level during the following days (p<0.01). On the contrary, the non-esterified fatty acids was increased (p<0.01). Beyond our expectation, the ketone bodies of β-hydroxybutyric acid and acetoacetic acid decreased with prolonged starvation (p<0.01). Furthermore, the mRNA expression of lipogenetic enzyme fatty acid synthase and lipoprotein lipase in subcutaneous adipose tissue of starved yak were down-regulated (p<0.01), whereas the mRNA expression of lipolytic enzyme carnitine palmitoyltransferase-1 and hormone sensitive lipase were up-regulated (p<0.01) after 9 days of starvation. The phosphoenolpyruvate carboxykinase and pyruvate carboxylase, responsible for hepatic gluconeogenesis were up-regulated (p<0.01). It was concluded that yak derive energy by gluconeogenesis promotion and fat storage mobilization during starvation but without ketone body accumulation in the plasma. PMID:26954191

  1. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803.

    PubMed

    Wang, Xi; Xiong, Xiaochao; Sa, Na; Roje, Sanja; Chen, Shulin

    2016-07-01

    With the growing attention to global warming and energy sustainability, biosynthesis of lipids by photosynthetic microorganisms has attracted more interest for the production of renewable transportation fuels. Recently, the cyanobacterium Synechocystis sp. PCC 6803 has been widely used for biofuel production through metabolic engineering because of its efficient photosynthesis and well-developed genetic tools. In lipid biosynthesis, glycerol-3-phosphate (G3P) is a key node for both CO2 fixation and lipid metabolism in cyanobacteria. However, few studies have explored the use of G3P synthesis to improve photosynthetic lipid production. In this study, metabolic engineering combined with flux balance analysis (FBA) was conducted to reveal the effect of G3P synthesis on lipid production. Heterologous genes that encoded glycerol-3-phosphate dehydrogenase (GPD) and diacylglycerol acyltransferase (DGAT) were engineered into Synechocystis sp. PCC 6803 to enhance G3P supply and lipid production. The resultant recombinant Synechocystis produced higher levels of lipids without a significant reduction in cell growth. Compared with the wild-type strain, lipid content and productivity of the engineered cyanobacteria increased by up to 36 and 31 %, respectively, under autotrophic conditions. Lipid production under mixotrophic conditions of the engineered cyanobacteria was also investigated. This work demonstrated that enhanced G3P synthesis was an important factor in photosynthetic lipid production and that introducing heterologous GPD and DGAT genes was an effective strategy to increase lipid production in Synechocystis sp. PCC 6803. PMID:27154348

  2. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803.

    PubMed

    Wang, Xi; Xiong, Xiaochao; Sa, Na; Roje, Sanja; Chen, Shulin

    2016-07-01

    With the growing attention to global warming and energy sustainability, biosynthesis of lipids by photosynthetic microorganisms has attracted more interest for the production of renewable transportation fuels. Recently, the cyanobacterium Synechocystis sp. PCC 6803 has been widely used for biofuel production through metabolic engineering because of its efficient photosynthesis and well-developed genetic tools. In lipid biosynthesis, glycerol-3-phosphate (G3P) is a key node for both CO2 fixation and lipid metabolism in cyanobacteria. However, few studies have explored the use of G3P synthesis to improve photosynthetic lipid production. In this study, metabolic engineering combined with flux balance analysis (FBA) was conducted to reveal the effect of G3P synthesis on lipid production. Heterologous genes that encoded glycerol-3-phosphate dehydrogenase (GPD) and diacylglycerol acyltransferase (DGAT) were engineered into Synechocystis sp. PCC 6803 to enhance G3P supply and lipid production. The resultant recombinant Synechocystis produced higher levels of lipids without a significant reduction in cell growth. Compared with the wild-type strain, lipid content and productivity of the engineered cyanobacteria increased by up to 36 and 31 %, respectively, under autotrophic conditions. Lipid production under mixotrophic conditions of the engineered cyanobacteria was also investigated. This work demonstrated that enhanced G3P synthesis was an important factor in photosynthetic lipid production and that introducing heterologous GPD and DGAT genes was an effective strategy to increase lipid production in Synechocystis sp. PCC 6803.

  3. Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime.

    PubMed

    Li, Yuqin; Xu, Hua; Han, Fangxin; Mu, Jinxiu; Chen, Di; Feng, Bo; Zeng, Hongyan

    2015-09-01

    Proteomics in conjunction with biochemical strategy was employed to unravel regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime (HPC). Interestingly, HPC triggered transiently synthesis of starch followed by substantial lipid accumulation. And a marked decrease in intracellular protein and chlorophyll contents was also observed after 12h of photo-induction. The highest lipid content of 50.5% was achieved upon the photo-induction stage, which represented 69.3% higher than that of the end of heterotrophic cultivation. Results suggested that turnover of carbon-nitrogen-rich compounds such as starch, protein, and chlorophyll might provide carbon or energy for lipid accumulation. The proteomics analysis indicated that several pathways including glycolysis, TCA cycle, β-oxidation of fatty acids, Calvin cycle, photosynthesis, energy and transport, protein biosynthesis, regulate and defense were involved in the lipid biosynthesis. Malate dehydrogenase and acyl-CoA dehydrogenase were suggested as key regulatory factors in enhancing lipid accumulation. PMID:25127016

  4. Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime.

    PubMed

    Li, Yuqin; Xu, Hua; Han, Fangxin; Mu, Jinxiu; Chen, Di; Feng, Bo; Zeng, Hongyan

    2015-09-01

    Proteomics in conjunction with biochemical strategy was employed to unravel regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime (HPC). Interestingly, HPC triggered transiently synthesis of starch followed by substantial lipid accumulation. And a marked decrease in intracellular protein and chlorophyll contents was also observed after 12h of photo-induction. The highest lipid content of 50.5% was achieved upon the photo-induction stage, which represented 69.3% higher than that of the end of heterotrophic cultivation. Results suggested that turnover of carbon-nitrogen-rich compounds such as starch, protein, and chlorophyll might provide carbon or energy for lipid accumulation. The proteomics analysis indicated that several pathways including glycolysis, TCA cycle, β-oxidation of fatty acids, Calvin cycle, photosynthesis, energy and transport, protein biosynthesis, regulate and defense were involved in the lipid biosynthesis. Malate dehydrogenase and acyl-CoA dehydrogenase were suggested as key regulatory factors in enhancing lipid accumulation.

  5. Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats.

    PubMed

    Silva, Ana Paula S; Guimarães, Daniella E D; Mizurini, Daniella M; Maia, Ingrid C; Ortiz-Costa, Susana; Sardinha, Fátima L; do Carmo, Maria G Tavares

    2006-06-01

    The purpose of this study was to evaluate the effects of four isoenergetic diets of differing fat composition on blood lipid profile and adiposity in young rats. Diets containing different lipid sources--partially hydrogenated vegetable oil (PHVO), palm oil (PO), canola oil (CO), and soy oil (SO)--were fed to lactating rats during the 21 days of lactation, and then fed to young males following weaning until the 45th day of life. In vivo lipogenesis rate (LR), lipid content (LC), relative level of FA, and the activity of lipoprotein lipase (LPL) enzyme were measured in epididymal adipose tissue (EPI). Fasting blood lipoproteins and LC in the carcass were also appraised. Body weight of PO and PHVO groups was significantly higher than CO and SO groups from day 14 of lactation to day 45, despite the lower food intake in the PHVO group. PO and PHVO groups presented higher LR and LC in EPI than SO and CO groups. Carcass fat content was significantly higher in PHVO and PO groups than in CO and SO groups. The LPL activity in EPI was unaffected by dietary lipids. PHVO group had increased total cholesterol and TAG concentrations in comparison with the PO group, and significantly lower HDL level compared with the other groups. These results show that the kind of FA in the dietary lipid offered early in life can affect lipid metabolism and adiposity.

  6. Lipid metabolism during embryonic development of the common snapping turtle, Chelydra serpentina.

    PubMed

    Lawniczak, Cynthia J; Teece, Mark A

    2009-05-01

    The metabolism of lipids and fatty acids during embryonic development of Chelydra serpentina (common snapping turtle) was investigated. Substantial changes in lipid class and fatty acid composition occurred as lipids were transferred from the yolk to the yolk sac membrane (YSM) and then to the brain, eyes, heart, and lungs of the hatchling. Lipids were hydrolyzed in the yolk prior to transport to the YSM, shown by a large increase in free fatty acids (FFAs) during the second half of development. Triglyceride-derived docosahexaenoic acid (DHA) was utilized preferentially to phospholipid-derived DHA. In the YSM, arachidonic acid (ARA) was selectively incorporated into phospholipids while DHA was preferentially incorporated into triglycerides. Selective incorporation of DHA and ARA into the brain and eyes, and ARA into the heart was observed, indicating the importance of these PUFAs for organ development and function. The amount of DHA and ARA in each organ was less than 1% of that measured in the yolk of the freshly laid egg, indicating that only a small portion of yolk PUFAs were incorporated into the hatchling organs studied. We discuss the differences in the mechanisms and utilization of yolk lipids in turtles compared with lipid uptake during embryonic development in birds. PMID:19416694

  7. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  8. The emerging role of autophagy in peroxisome dynamics and lipid metabolism of phyllosphere microorganisms.

    PubMed

    Oku, Masahide; Takano, Yoshitaka; Sakai, Yasuyoshi

    2014-01-01

    Eukaryotic microorganisms resident in the phyllosphere (above-ground, plant-surface environments) undergo dynamic changes in nutrient conditions and adapt their metabolic pathways during proliferation or in the course of infection of host plants. Some of these metabolic switches are accomplished by regulation of organelle abundance. Recent studies have shown that autophagy plays a major role in reducing the organelle quantity, thereby contributing to the metabolic switch required for survival or virulence of the microorganisms in the phyllosphere. In this mini review the metabolic pathways in several phytopathogenic fungi and the non-infectious asporogenous yeast Candida boidinii, which involve lipid droplets and peroxisomes, are summarized. The physiological functions of Atg (Autophagy-related) proteins in these organisms are discussed in relation to the dynamics of these two important organelles. PMID:24653730

  9. ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients

    PubMed Central

    Vargas, Teodoro; Moreno-Rubio, Juan; Herranz, Jesús; Cejas, Paloma; Molina, Susana; González-Vallinas, Margarita; Mendiola, Marta; Burgos, Emilio; Aguayo, Cristina; Custodio, Ana B.; Machado, Isidro; Ramos, David; Gironella, Meritxell; Espinosa-Salinas, Isabel; Ramos, Ricardo; Martín-Hernández, Roberto; Risueño, Alberto; De Las Rivas, Javier; Reglero, Guillermo; Yaya, Ricardo; Fernández-Martos, Carlos; Aparicio, Jorge; Maurel, Joan; Feliu, Jaime; de Molina, Ana Ramírez

    2015-01-01

    Lipid metabolism plays an essential role in carcinogenesis due to the requirements of tumoral cells to sustain increased structural, energetic and biosynthetic precursor demands for cell proliferation. We investigated the association between expression of lipid metabolism-related genes and clinical outcome in intermediate-stage colon cancer patients with the aim of identifying a metabolic profile associated with greater malignancy and increased risk of relapse. Expression profile of 70 lipid metabolism-related genes was determined in 77 patients with stage II colon cancer. Cox regression analyses using c-index methodology was applied to identify a metabolic-related signature associated to prognosis. The metabolic signature was further confirmed in two independent validation sets of 120 patients and additionally, in a group of 264 patients from a public database. The combined analysis of these 4 genes, ABCA1, ACSL1, AGPAT1 and SCD, constitutes a metabolic-signature (ColoLipidGene) able to accurately stratify stage II colon cancer patients with 5-fold higher risk of relapse with strong statistical power in the four independent groups of patients. The identification of a group of 4 genes that predict survival in intermediate-stage colon cancer patients allows delineation of a high-risk group that may benefit from adjuvant therapy, and avoids the toxic and unnecessary chemotherapy in patients classified as low-risk group. PMID:25749516

  10. FGF21 mediates the lipid metabolism response to amino acid starvation

    PubMed Central

    De Sousa-Coelho, Ana Luísa; Relat, Joana; Hondares, Elayne; Pérez-Martí, Albert; Ribas, Francesc; Villarroya, Francesc; Marrero, Pedro F.; Haro, Diego

    2013-01-01

    Lipogenic gene expression in liver is repressed in mice upon leucine deprivation. The hormone fibroblast growth factor 21 (FGF21), which is critical to the adaptive metabolic response to starvation, is also induced under amino acid deprivation. Upon leucine deprivation, we found that FGF21 is needed to repress expression of lipogenic genes in liver and white adipose tissue, and stimulate phosphorylation of hormone-sensitive lipase in white adipose tissue. The increased expression of Ucp1 in brown adipose tissue under these circumstances is also impaired in FGF21-deficient mice. Our results demonstrate the important role of FGF21 in the regulation of lipid metabolism during amino acid starvation. PMID:23661803

  11. Macroautophagy and Cell Responses Related to Mitochondrial Dysfunction, Lipid Metabolism and Unconventional Secretion of Proteins

    PubMed Central

    Demine, Stéphane; Michel, Sébastien; Vannuvel, Kayleen; Wanet, Anaïs; Renard, Patricia; Arnould, Thierry

    2012-01-01

    Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion. PMID:24710422

  12. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans

    PubMed Central

    Chua, Eric Chern-Pin; Shui, Guanghou; Lee, Ivan Tian-Guang; Lau, Pauline; Tan, Luuan-Chin; Yeo, Sing-Chen; Lam, Buu Duyen; Bulchand, Sarada; Summers, Scott A.; Puvanendran, Kathiravelu; Rozen, Steven G.; Wenk, Markus R.; Gooley, Joshua J.

    2013-01-01

    The circadian system regulates daily rhythms in lipid metabolism and adipose tissue function. Although disruption of circadian clock function is associated with negative cardiometabolic end points, very little is known about interindividual variation in circadian-regulated metabolic pathways. Here, we used targeted lipidomics-based approaches to profile the time course of 263 lipids in blood plasma in 20 healthy individuals. Over a span of 28 h, blood was collected every 4 h and plasma lipids were analyzed by HPLC/MS. Across subjects, about 13% of lipid metabolites showed circadian variation. Rhythmicity spanned all metabolite classes examined, suggesting widespread circadian control of lipid-mediated energy storage, transport, and signaling. Intersubject agreement for lipids identified as rhythmic was only about 20%, however, and the timing of lipid rhythms ranged up to 12 h apart between individuals. Healthy subjects therefore showed substantial variation in the timing and strength of rhythms across different lipid species. Strong interindividual differences were also observed for rhythms of blood glucose and insulin, but not cortisol. Using consensus clustering with iterative feature selection, subjects clustered into different groups based on strength of rhythmicity for a subset of triglycerides and phosphatidylcholines, suggesting that there are different circadian metabolic phenotypes in the general population. These results have potential implications for lipid metabolism disorders linked to circadian clock disruption. PMID:23946426

  13. Proto-Organism Kinetics: Evolutionary Dynamics of Lipid Aggregates with Genes and Metabolism

    NASA Astrophysics Data System (ADS)

    Rasmussen, Steen; Chen, Liaohai; Stadler, Bärbel M. R.; Stadler, Peter F.

    2004-02-01

    A synthetic proto-organism could be self-assembled by integrating a lipid proto-container with a proto-metabolic subsystem and a proto-genetic subsystem. This three-component system can use energy and nutrients by means of either redox or photo-chemical reactions, evolve its proto-genome by means of template directed replication, and ultimately die. The evolutionary dynamics of the proto-organism depends crucially on the chemical kinetics of its sub-systems and on their interplay. In this work the template replication kinetics is investigated and it is found that the product inhibition inherent in the ligation-like replication process allows for coexistence of unrelated self-replicating proto-genes in the lipid surface layer. The combined catalytic effects from the proto-genes on the metabolic production rates determine the fate of the strain protocell.

  14. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism.

    PubMed

    Péterfy, Miklós

    2012-05-01

    Mutations in lipase maturation factor 1 (LMF1) are associated with severe hypertriglyceridemia in mice and human subjects. The underlying cause is impaired lipid clearance due to lipase deficiency. LMF1 is a chaperone of the endoplasmic reticulum (ER) and it is critically required for the post-translational activation of three vascular lipases: lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). As LMF1 is only required for the maturation of homodimeric, but not monomeric, lipases, it is likely involved in the assembly of inactive lipase subunits into active enzymes and/or the stabilization of active dimers. Herein, we provide an overview of current understanding of LMF1 function and propose that it may play a regulatory role in lipase activation and lipid metabolism. Further studies will be required to test this hypothesis and elucidate the full spectrum of phenotypes in combined lipase deficiency. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease. PMID:22063272

  15. Inositol Phosphate Recycling Regulates Glycolytic and Lipid Metabolism That Drives Cancer Aggressiveness

    PubMed Central

    2015-01-01

    Cancer cells possess fundamentally altered metabolism that supports their pathogenic features, which includes a heightened reliance on aerobic glycolysis to provide precursors for synthesis of biomass. We show here that inositol polyphosphate phosphatase 1 (INPP1) is highly expressed in aggressive human cancer cells and primary high-grade human tumors. Inactivation of INPP1 leads to a reduction in glycolytic intermediates that feed into the synthesis of the oncogenic signaling lipid lysophosphatidic acid (LPA), which in turn impairs LPA signaling and further attenuates glycolytic metabolism in a feed-forward mechanism to impair cancer cell motility, invasiveness, and tumorigenicity. Taken together these findings reveal a novel mode of glycolytic control in cancer cells that can serve to promote key oncogenic lipid signaling pathways that drive cancer pathogenicity. PMID:24738946

  16. The effects of eicozanoids and lipoxygenase inhibitors on the lipid metabolism of aortic cells.

    PubMed

    Tertov, V V; Panosyan, A G; Akopov, S E; Orekhov, A N

    1988-01-01

    The influence of stable analogues of prostacyclin (carbacyclin) and thromboxane A2 (U46619), as well as lipoxygenase inhibitors, on the lipid metabolism of cells cultured from atherosclerotic intima of human aorta was analyzed. Carbacyclin and at concentrations of 200 ng/ml during 24 hours of incubation caused a 2-fold decrease in the level of cholesteryl esters and triglycerides in cells obtained from atherosclerotic lesion. Phospholipid and free cholesterol content did not change during the same period. Carbacylin decreased incorporation of [14C]oleate into intracellular neutral lipids. U46619 produced intracellular lipid accumulation. U46619 stimulated uptake [14C]oleate into triglycerides and cholesteryl esters. Two lipoxygenase inhibitors possessed "antiatherosclerotic" activity in primary culture significantly reducing cholesteryl ester content of cells isolated from atherosclerotic lesions. PMID:3150271

  17. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism

    PubMed Central

    Ouimet, Mireille; Koster, Stefan; Sakowski, Erik; Ramkhelawon, Bhama; van Solingen, Coen; Oldebeken, Scott; Karunakaran, Denuja; Celhay, Cynthia Portal; Sheedy, Frederick J.; Ray, Tathagat Dutta; Cecchini, Katharine; Zamore, Philip D; Rayner, Katey J; Marcel, Yves L; Philips, Jennifer A; Moore, Kathryn J

    2016-01-01

    Mycobacterium tuberculosis (Mtb) survives within macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. Here we show that by inducing miR-33 and its passenger strand miR-33*, Mtb inhibits integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promotes autophagy flux through derepression of key autophagy effectors such as ATG5, ATG12, LC3B and LAMP1 and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, enhancing lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit utilized by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host. PMID:27089382

  18. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism.

    PubMed

    Ouimet, Mireille; Koster, Stefan; Sakowski, Erik; Ramkhelawon, Bhama; van Solingen, Coen; Oldebeken, Scott; Karunakaran, Denuja; Portal-Celhay, Cynthia; Sheedy, Frederick J; Ray, Tathagat Dutta; Cecchini, Katharine; Zamore, Philip D; Rayner, Katey J; Marcel, Yves L; Philips, Jennifer A; Moore, Kathryn J

    2016-06-01

    Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host. PMID:27089382

  19. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    PubMed

    Zheng, Guodong; Lin, Lezhen; Zhong, Shusheng; Zhang, Qingfeng; Li, Dongming

    2015-01-01

    In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD), and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT) weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK), carnitine acyltransferase (CAT) and hormone-sensitive lipase (HSL) were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2) was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases. PMID:25822741

  20. Differential expression analysis of transcripts related to oil metabolism in maturing seeds of Jatropha curcas L.

    PubMed

    Chandran, Divya; Sankararamasubramanian, H M; Kumar, M Ashok; Parida, Ajay

    2014-04-01

    Jatropha curcas has been widely studied at the molecular level due to its potential as an alternative source of fuel. Many of the reports till date on this plant have focussed mainly on genes contributing to the accumulation of oil in its seeds. A suppression subtractive hybridization strategy was employed to identify genes which are differentially expressed in the mid maturation stage of J. curcas seeds. Random expressed sequence tag sequencing of the cDNA subtraction library resulted in 385 contigs and 1,428 singletons, with 591 expressed sequence tags mapping for enzymes having catalytic roles in various metabolic pathways. Differences in transcript levels in early and mid-to-late maturation stages of seeds were also investigated using sequence information obtained from the cDNA subtraction library. Seven out of 12 transcripts having putative roles in central carbon metabolism were up regulated in early seed maturation stage while lipid metabolism related transcripts were detected at higher levels in the later stage of seed maturation. Interestingly, 4 of the transcripts revealed putative alternative splice variants that were specifically present or up regulated in the early or late maturation stage of the seeds. Transcript expression patterns from the current study using maturing seeds of J. curcas reveal a subtle balancing of oil accumulation and utilization, which may be influenced by their energy requirements.

  1. Serum lipids and bone metabolism in Spanish men: the Camargo cohort study.

    PubMed

    Hernández, José L; Olmos, José M; Ramos, Carmen; Martínez, Josefina; de Juan, Julia; Valero, Carmen; Nan, Daniel; González-Macías, Jesus

    2010-01-01

    There is growing evidence of a link between lipid and bone metabolism, although data on this association in European men are scarce. This cross-sectional study from a community-based prospective cohort aims to explore the association of serum lipids with different aspects of bone metabolism in Spanish men. Demographic and anthropometric measurements, biochemical parameters including serum lipids, bone remodelling markers and calciotropic hormones, bone mineral density (BMD) assessed by dual X-ray absorptiometry and heel quantitative ultrasound, and prevalent vertebral and non-vertebral fractures, were evaluated in 289 men. Calciotropic hormones or bone markers were not associated with serum lipids. Serum total (TC) and LDL cholesterol, as well as LDL/HDL ratio were positively correlated to BMD at lumbar spine and hip. No significant correlation was noted for triglycerides or HDL. We observed a positive association between triglycerides, LDL/HDL ratio and BUA, and between TC/HDL ratio and both, QUI and BUA. BMD at the femoral neck and total hip was significantly higher in men with hypercholesterolemia after controlling for all the covariates (p=0.007). We did not observe any association between serum lipids and prevalent vertebral fractures. However, we found that TC (p=0.03) and LDL (p=0.04) were lower in subjects with non-vertebral fractures. In conclusion, we have found that a more unfavorable lipid profile (mainly higher LDL-C levels) is associated with higher BMD at lumbar spine and hip in Spanish men. Moreover, we did not observe any association between hypercholesterolemia and prevalent vertebral fractures, but we found lower serum TC and LDL-C levels in men with prevalent non-vertebral fractures.

  2. Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes.

    PubMed

    Momchilova, Albena; Petkova, Diana; Staneva, Galya; Markovska, Tania; Pankov, Roumen; Skrobanska, Ralica; Nikolova-Karakashian, Mariana; Koumanov, Kamen

    2014-01-25

    Investigations were performed on the influence of resveratrol on the lipid composition, metabolism, fatty acid and peroxide level in plasma membranes of hepatocytes, isolated from aged rats. Hepatocytes were chosen due to the central role of the liver in lipid metabolism and homeostasis. The obtained results showed that the level of sphingomyelin (SM) and phosphatidylserine (PS) was augmented in plasma membranes of resveratrol-treated senescent hepatocytes. The saturated/unsaturated fatty acids ratio of the two most abundant membrane phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), was decreased as a result of resveratrol treatment. The neutral sphingomyelinase was found to be responsible for the increase of SM and the decrease of ceramide in plasma membranes of resveratrol-treated senescent hepatocytes. Using labeled acetate as a precursor of lipid synthesis we demonstrated, that resveratrol treatment resulted in inhibition mainly of phospholipid synthesis, followed by fatty acids synthesis. Resveratrol induced reduction of specific membrane-associated markers of apoptosis such as localization of PS in the external plasma membrane monolayer and ceramide level. Finally, the content of lipid peroxides was investigated, because the unsaturated fatty acids, which were augmented as a result of resveratrol treatment, are an excellent target of oxidative attack. The results showed that the lipid peroxide level was significantly lower, ROS were slightly reduced and GSH was almost unchanged in resveratrol-treated hepatocytes. We suggest, that one possible biochemical mechanism, underlying the reported resveratrol-induced changes, is the partial inactivation of neutral sphingomyelinase, leading to increase of SM, the latter acting as a native membrane antioxidant. In conclusion, our studies indicate that resveratrol treatment induces beneficial alterations in the phospholipid and fatty acid composition, as well as in the ceramide and peroxide

  3. Is hepatic lipid metabolism of beef cattle influenced by breed and dietary silage level?

    PubMed Central

    2014-01-01

    Background In ruminants, unsaturated dietary fatty acids are biohydrogenated in the rumen and are further metabolised in various tissues, including liver, which has an important role in lipid and lipoprotein metabolism. Therefore, manipulation of muscle fatty acid composition should take into account liver metabolism. In the present study, the influence of breed and diet on liver lipid composition and gene expression was investigated in order to clarify the role of this organ in the lipid metabolism of ruminants. Forty purebred young bulls from two phylogenetically distant autochthonous cattle breeds, Alentejana and Barrosã, were assigned to two different diets (low vs. high silage) and slaughtered at 18 months of age. Liver fatty acid composition, mRNA levels of enzymes and transcription factors involved in lipid metabolism, as well as the plasma lipid profile, were assessed. Results In spite of similar plasma non-esterified fatty acids levels, liver triacylglycerols content was higher in Barrosã than in Alentejana bulls. Moreover, the fatty acid composition of liver was clearly distinct from the remaining tissues involved in fatty acid metabolism of ruminants, as shown by Principal Components Analysis. The hepatic tissue is particularly rich in α-linolenic acid and their products of desaturation and elongation. Results indicate that DGAT1, ELOVL2, FADS1 and FADS2 genes influence the fatty acid composition of the liver the most. Moreover, genes such as DGAT1 and ELOVL2 appear to be more sensitive to genetic background than to dietary manipulation, whereas genes encoding for desaturases, such as FADS1, appear to be modulated by dietary silage level. Conclusions Our results indicate that liver plays an important role in the biosynthesis of n-3 LC-PUFA. It is also suggested that dietary silage level influences the hepatic fatty acid metabolism in a breed-dependent manner, through changes in the expression of genes encoding for enzymes associated with the

  4. Carbon Uptake and the Metabolism and Transport of Lipids in an Arbuscular Mycorrhiza1

    PubMed Central

    Pfeffer, Philip E.; Douds, David D.; Bécard, Guillaume; Shachar-Hill, Yair

    1999-01-01

    Both the plant and the fungus benefit nutritionally in the arbuscular mycorrhizal symbiosis: The host plant enjoys enhanced mineral uptake and the fungus receives fixed carbon. In this exchange the uptake, metabolism, and translocation of carbon by the fungal partner are poorly understood. We therefore analyzed the fate of isotopically labeled substrates in an arbuscular mycorrhiza (in vitro cultures of Ri T-DNA-transformed carrot [Daucus carota] roots colonized by Glomus intraradices) using nuclear magnetic resonance spectroscopy. Labeling patterns observed in lipids and carbohydrates after substrates were supplied to the mycorrhizal roots or the extraradical mycelium indicated that: (a) 13C-labeled glucose and fructose (but not mannitol or succinate) are effectively taken up by the fungus within the root and are metabolized to yield labeled carbohydrates and lipids; (b) the extraradical mycelium does not use exogenous sugars for catabolism, storage, or transfer to the host; (c) the fungus converts sugars taken up in the root compartment into lipids that are then translocated to the extraradical mycelium (there being little or no lipid synthesis in the external mycelium); and (d) hexose in fungal tissue undergoes substantially higher fluxes through an oxidative pentose phosphate pathway than does hexose in the host plant. PMID:10364411

  5. An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation.

    PubMed

    Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Sawicki, Grzegorz; Woźniak, Mieczysław

    2016-03-01

    The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells.

  6. MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases

    PubMed Central

    Aranda, Juan F.; Madrigal-Matute, Julio; Rotllan, Noemi; Fernández-Hernando, Carlos

    2014-01-01

    The regulation of cholesterol metabolism is one of the most studied biological processes since its first isolation from gallstones in 1784. High levels of plasma low-density lipoprotein (LDL) cholesterol and reduced levels of plasma high-density lipoprotein (HDL) cholesterol are widely recognized as major risk factors of cardiovascular disease. An imbalance in the production of reactive oxygen species (ROS) can oxidize LDL particles increasing the levels of the highly pro-atherogenic oxidized LDLs (ox-LDLs). Furthermore, under pathological scenarios, numerous molecules can function as pro-oxidants, such as iron or high-glucose levels. In addition to the classical mechanisms regulating lipid homeostasis, recent studies have demonstrated the important role of microRNAs (miRNAs) as regulators of lipoprotein metabolism, its oxidative derivatives and redox balance. Here, we summarize the recent findings in the field, highlighting the contribution of some miRNAs in lipid and oxidative-associated pathologies. We also discuss how therapeutic intervention of miRNAs may be a promising strategy to decrease LDL, increase HDL and ameliorate lipid and oxidative related disorders, including atherosclerosis, non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome. PMID:23871755

  7. Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism.

    PubMed

    Liu, Qingqing; Yuan, Bingbing; Lo, Kinyui Alice; Patterson, Heide Christine; Sun, Yutong; Lodish, Harvey F

    2012-09-01

    The effects of adiponectin on hepatic glucose and lipid metabolism at transcriptional level are largely unknown. We profiled hepatic gene expression in adiponectin knockout (KO) and wild-type (WT) mice by RNA sequencing. Compared with WT mice, adiponectin KO mice fed a chow diet exhibited decreased mRNA expression of rate-limiting enzymes in several important glucose and lipid metabolic pathways, including glycolysis, tricarboxylic acid cycle, fatty-acid activation and synthesis, triglyceride synthesis, and cholesterol synthesis. In addition, binding of the transcription factor Hnf4a to DNAs encoding several key metabolic enzymes was reduced in KO mice, suggesting that adiponectin might regulate hepatic gene expression via Hnf4a. Phenotypically, adiponectin KO mice possessed smaller epididymal fat pads and showed reduced body weight compared with WT mice. When fed a high-fat diet, adiponectin KO mice showed significantly reduced lipid accumulation in the liver. These lipogenic defects are consistent with the down-regulation of lipogenic genes in the KO mice.

  8. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats.

    PubMed

    Rogalska, Joanna; Brzóska, Małgorzata M; Roszczenko, Alicja; Moniuszko-Jakoniuk, Janina

    2009-01-27

    It has been investigated, based on a rat model of human exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced alterations in lipid metabolism. For this purpose, the concentrations of free fatty acids (FFA), phospholipids (PL), triglycerides (TG), total cholesterol (TCh), and high and low density lipoprotein cholesterol (HDL and LDL, respectively) as well as the concentrations of chosen indices of lipid peroxidation such as lipid peroxides (LPO), F2-isoprostane (F2-IsoP) and oxidized LDL (oxLDL) were estimated in the serum of male Wistar rats administered Cd (5 or 50mg/l) or/and Zn (30 or 60mg/l) in drinking water for 6 months. The exposure to 5 and 50mg Cd/l resulted in marked alterations in the lipid status reflected in increased concentrations of FFA, TCh, LDL, LPO, F2-IsoP and oxLDL, and decreased concentrations of PL and HDL in the serum. The concentrations of LDL, LPO, F2-IsoP and oxLDL were more markedly enhanced at the higher Cd dosage. The supplementation with Zn during the exposure to 5 and 50mg Cd/l entirely prevented all the Cd-induced changes in the serum concentrations of the estimated lipid compounds and indices of lipid peroxidation, except for the F2-IsoP for which Zn provided only partial protection. Based on the results it can be concluded that Zn supplementation during exposure to Cd may have a protective effect on lipid metabolism consisting in its ability to prevent hyperlipidemia, including especially hypercholesterolemia, and to protect from lipid peroxidation. The findings seem to suggest that enhanced dietary Zn intake during Cd exposure, via preventing alterations in the body status of lipids may, at least partly, protect against some effects of Cd toxicity, including oxidative damage to the cellular membranes and atherogenic action. The paper is the first report suggesting protective impact of Zn against proatherogenic Cd action on experimental model of chronic moderate and relatively high human exposure to

  9. Dietary rapeseed oil affects the expression of genes involved in hepatic lipid metabolism in Atlantic salmon (Salmo salar L.).

    PubMed

    Jordal, Ann-Elise O; Torstensen, Bente E; Tsoi, Stephen; Tocher, Douglas R; Lall, Santosh P; Douglas, Susan E

    2005-10-01

    Supplies of marine fish oils (FO) are limited, and sustainable production in aquaculture dictates that alternatives that do not compromise fish health and product quality, such as vegetable oils, must be found. Nutrigenomics will increase our understanding of how nutrition influences metabolic pathways and homeostatic control, and may be used to measure and validate subtle changes in organ-specific, metabolic gene expression signatures. We compared 2 groups of Atlantic salmon fed diets containing 100% FO or 75% rapeseed oil (RO) for 42 wk. A small-scale cDNA microarray was constructed to screen for changes in the expression of lipid metabolism genes in the liver resulting from this partial substitution of RO for FO. Delta5 fatty acid desaturase gene expression was significantly greater in fish fed 75% RO than in fish fed the control diet; this was confirmed by quantitative real time PCR analysis. In addition, several genes, among these mitochondrial proteins, peroxisome proliferator-activated receptor gamma, as well as other transcription factors, coactivators, and signal transducers, showed significant differential regulation. This partially validated microarray may be used for further gene expression profiling using other dietary comparisons, and for further characterization of selected genes.

  10. Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man.

    PubMed

    Chapman, Kent D; Dyer, John M; Mullen, Robert T

    2012-02-01

    The compartmentation of neutral lipids in plants is mostly associated with seed tissues, where triacylglycerols (TAGs) stored within lipid droplets (LDs) serve as an essential physiological energy and carbon reserve during postgerminative growth. However, some nonseed tissues, such as leaves, flowers and fruits, also synthesize and store TAGs, yet relatively little is known about the formation or function of LDs in these tissues. Characterization of LD-associated proteins, such as oleosins, caleosins, and sterol dehydrogenases (steroleosins), has revealed surprising features of LD function in plants, including stress responses, hormone signaling pathways, and various aspects of plant growth and development. Although oleosin and caleosin proteins are specific to plants, LD-associated sterol dehydrogenases also are present in mammals, and in both plants and mammals these enzymes have been shown to be important in (steroid) hormone metabolism and signaling. In addition, several other proteins known to be important in LD biogenesis in yeasts and mammals are conserved in plants, suggesting that at least some aspects of LD biogenesis and/or function are evolutionarily conserved. PMID:22045929

  11. Effect of Chromium Supplementation on Glucose Metabolism and Lipids: A Systematic Review with Meta-Analysis of Randomized Controlled Trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. A systematic review of the effect of chromium supplementation on glucose metabolism and lipid levels. Research Design and Methods. Literature search conducted in MEDLINE and Commonwealth Agricultural Bureau. Eligible studies were English language randomized controlled trials of chromium ...

  12. Blueberry, blackberry, and blackcurrant differentially affect plasma lipids and pro-inflammatory markers in diet-induced obesity mice

    PubMed Central

    Kim, Bohkyung; Lee, Sang Gil; Park, Young-Ki; Ku, Chai Siah; Pham, Tho X.; Wegner, Casey J.; Yang, Yue; Koo, Sung I.; Chun, Ock K.

    2016-01-01

    BACKGROUND/OBJECTIVES Evidence indicates that berry anthocyanins are anti-atherogenic, antioxidant, and anti-inflammatory. However, berries differ vastly in their anthocyanin composition and thus potentially in their biological and metabolic effects. The present study compared hypolipidemic, antioxidant, and anti-inflammatory properties of blueberry (BB), blackberry (BK), and blackcurrant (BC) in a diet-induced obesity (DIO) mouse model. MATERIALS/METHODS Male C57BL/6J mice were fed a high fat (HF; 35% fat, w/w) control diet or a HF diet supplemented with freeze-dried 5% BB, 6.3% BK or 5.7% BC for 12 weeks (10 mice/group) to achieve the same total anthocyanin content in each diet. Plasma lipids, antioxidant status and pro-inflammatory cytokines were measured. The expression of genes involved in antioxidant defense, inflammation, and lipid metabolism was determined in the liver, epididymal adipose tissue, proximal intestine, and skeletal muscle. Histological analysis was performed to identify crown-like structure (CLS) in epididymal fat pads to determine macrophage infiltration. RESULTS No differences were noted between the control and any berry-fed groups in plasma levels of liver enzymes, insulin, glucose, ferric reducing antioxidant power, superoxide dismutase, and tumor necrosis factor α. However, BK significantly lowered plasma triglyceride compared with the HF control and other berries, whereas BC significantly reduced F4/80 mRNA and the number of CLS in the epididymal fat pad, indicative of less macrophage infiltration. CONCLUSIONS The present study provides evidence that BB, BK and BC with varying anthocyanin composition differentially affect plasma lipids and adipose macrophage infiltration in DIO mice, but with no differences in their antioxidant capacity and anti-inflammatory potential.

  13. Blueberry, blackberry, and blackcurrant differentially affect plasma lipids and pro-inflammatory markers in diet-induced obesity mice

    PubMed Central

    Kim, Bohkyung; Lee, Sang Gil; Park, Young-Ki; Ku, Chai Siah; Pham, Tho X.; Wegner, Casey J.; Yang, Yue; Koo, Sung I.; Chun, Ock K.

    2016-01-01

    BACKGROUND/OBJECTIVES Evidence indicates that berry anthocyanins are anti-atherogenic, antioxidant, and anti-inflammatory. However, berries differ vastly in their anthocyanin composition and thus potentially in their biological and metabolic effects. The present study compared hypolipidemic, antioxidant, and anti-inflammatory properties of blueberry (BB), blackberry (BK), and blackcurrant (BC) in a diet-induced obesity (DIO) mouse model. MATERIALS/METHODS Male C57BL/6J mice were fed a high fat (HF; 35% fat, w/w) control diet or a HF diet supplemented with freeze-dried 5% BB, 6.3% BK or 5.7% BC for 12 weeks (10 mice/group) to achieve the same total anthocyanin content in each diet. Plasma lipids, antioxidant status and pro-inflammatory cytokines were measured. The expression of genes involved in antioxidant defense, inflammation, and lipid metabolism was determined in the liver, epididymal adipose tissue, proximal intestine, and skeletal muscle. Histological analysis was performed to identify crown-like structure (CLS) in epididymal fat pads to determine macrophage infiltration. RESULTS No differences were noted between the control and any berry-fed groups in plasma levels of liver enzymes, insulin, glucose, ferric reducing antioxidant power, superoxide dismutase, and tumor necrosis factor α. However, BK significantly lowered plasma triglyceride compared with the HF control and other berries, whereas BC significantly reduced F4/80 mRNA and the number of CLS in the epididymal fat pad, indicative of less macrophage infiltration. CONCLUSIONS The present study provides evidence that BB, BK and BC with varying anthocyanin composition differentially affect plasma lipids and adipose macrophage infiltration in DIO mice, but with no differences in their antioxidant capacity and anti-inflammatory potential. PMID:27698956

  14. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism.

    PubMed

    Toledo, Daniel A M; Roque, Natália R; Teixeira, Lívia; Milán-Garcés, Erix A; Carneiro, Alan B; Almeida, Mariana R; Andrade, Gustavo F S; Martins, Jefferson S; Pinho, Roberto R; Freire-de-Lima, Célio G; Bozza, Patrícia T; D'Avila, Heloisa; Melo, Rossana C N

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  15. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    PubMed Central

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  16. Sequential ordered fatty acid alpha oxidation and Delta9 desaturation are major determinants of lipid storage and utilization in differentiating adipocytes.

    PubMed

    Su, Xiong; Han, Xianlin; Yang, Jingyue; Mancuso, David J; Chen, Jeannie; Bickel, Perry E; Gross, Richard W

    2004-05-01

    Herein, we exploit the power of global lipidomics to identify the critical role of peroxisomal processing of fatty acids in adipocyte lipid storage and metabolism. Remarkably, 3T3-L1 differentiating adipocytes rapidly acquired the ability to alpha oxidize unbranched fatty acids, which is manifested in the accumulation of odd chain length unbranched fatty acids in all major lipid classes. Moreover, in differentiating adipocytes, unsaturated odd chain length fatty acids in TAG molecular species contained exclusively Delta9 olefinic linkages. Unsaturated fatty acids (e.g., oleic and palmitoleic acids) were not subject to alpha oxidation, resulting in the absence of Delta8 unsaturated odd chain length fatty acids. This highly selective substrate utilization resulted in the obligatory sequential ordering of alpha oxidation prior to Delta9 desaturation. On the basis of these results, a putative type 2 peroxisomal localization sequence was identified at the N-terminus of mouse stearoyl-CoA desaturase I (SCD I) comprised of (30)KVKTVPLHL(38). Kinetic analysis demonstrated that the rate of alpha oxidation of exogenously administered [9,10-(3)H]palmitic acid increased 4-fold during differentiation. Similarly, quantitative PCR demonstrated a 4-fold increase in phytanoyl-CoA alpha hydroxylase (PAHX) and fatty acyl-CoA oxidase (FACO) mRNA levels during differentiation. Collectively, these results underscore the role of peroxisomal fatty acid processing as an important determinant of the metabolic fate of fatty acids in the differentiating adipocyte.

  17. M. tuberculosis Secretory Protein ESAT-6 Induces Metabolic Flux Perturbations to Drive Foamy Macrophage Differentiation.

    PubMed

    Singh, Varshneya; Kaur, Charanpreet; Chaudhary, Vijay K; Rao, Kanury V S; Chatterjee, Samrat

    2015-01-01

    The Foamy Macrophage (FM) differentiation forms a major component of the host dependent survival axis of M. tuberculosis. The FM which are characterized by the intracellular accumulation of lipid bodies (LBs), ensure a privileged existence for the bacilli through ready provision of nutrients and by conferring protection against bactericidal pathways. The mycobacterial secretory protein ESAT-6 has been identified as the molecular mediator of the FM differentiation process although little is known about the mechanism through which it induces this process. In the present study, we show that ESAT-6 induces GLUT-1 mediated enhanced glucose uptake by macrophages which is coupled to metabolic flux perturbations in the glycolytic pathway caused by differential rates of reaction at several steps in the pathway. Two major changes identified were the simultaneous buildup of DHAP (for Triglyceride synthesis) and AcCoA (for synthesis of 3-HB, ligand for the anti-lipolytic GPR109A). We also show that part of the observed effects involve protein- protein interactions between ESAT-6 and the macrophage glycolytic enzymes, Enolase1 and Phosphoglycerate kinase1. PMID:26250836

  18. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2015-10-01

    Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force. PMID:26297225

  19. [Effect of 1-O-alkyl-glyceride ethers isolated from lipids of the squid Berrytteuthis magister liver on lipid metabolism and hematological parameters of rats with experimental dislipidemia].

    PubMed

    Novgorodtseva, T P; Karaman, Iu K; Kas'ianov, S P; Vitkina, T I

    2009-01-01

    On the white Wistar rats with alimentary dyslipidemia investigated influence 1-O-alkyl-glycerides ethers (AGE), received by a method of hydrolysis 1-O-alkyl-diacylglycerides from lipids of the squid Berryteuthis magister liver, on a lipid metabolism, hepatobiliary functions of liver, antioxidant systems and parameters of blood. Are revealed antioxidant, antianemia and immunoactive properties of AGE. AGE raise a level of glucose and activity of enzymes hepatobiliary systems in blood, interfere the decrease of a cholesterol in blood.

  20. Effect of dietary fibres on small intestine histomorphology and lipid metabolism in young broiler chickens.

    PubMed

    Rahmatnejad, E; Saki, A A

    2016-08-01

    Two experiments were conducted to determine the influence of dietary fibres on small intestine histomorphology and lipid metabolism in broilers from 1 to 21 day of age. In experiment 1, diets containing insoluble [cellulose (CEL); 2% and 4%] or soluble [carboxymethyl cellulose (CMC); 2% and 4%] fibre were fed to broilers from day 1 to 21 post-hatch and ileal tissue was collected at day 21 of age for histological evaluation. In experiment 2, broilers diet was supplemented with 0%, 1% or 2% insoluble fibre (Arbocel) during day 7 to 21 post-hatch and plasma and liver lipid metabolism were evaluated at day 21. In experiment 1, inclusion of CMC reduced body weight gain (BWG) and feed intake (FI) and increased feed conversion ratio (FCR) compared with others. Intestinal histomorphology was unaffected by CEL, but CMC led to an increase in crypt depth (CD) and serosa thickness and a decrease in villus height (VH), villus width (VW), VH:CD ratio and villus surface area (VSA), rather than control and CEL groups. Treatment did not affect goblet cell type. Moreover, the CMC-fed birds had greater total goblet cell count (GCC) as compared with others. In experiment 2, fibre inclusion was associated with increases in BWG from 7 to 14 day of age and an improvement in FCR, whereas FI was not influenced by treatments. Inclusion of fibre in the diet decreased the weight of the abdominal fat and cholesterol concentrations of liver and plasma. No significant effects on fatty acid composition of liver lipid were observed by fibre supplementation. These findings suggest dietary fibre affects performance, intestinal histomorphology and lipid metabolism in young chicks, which may directly affect poultry feeding strategies.

  1. Effect of dietary fibres on small intestine histomorphology and lipid metabolism in young broiler chickens.

    PubMed

    Rahmatnejad, E; Saki, A A

    2016-08-01

    Two experiments were conducted to determine the influence of dietary fibres on small intestine histomorphology and lipid metabolism in broilers from 1 to 21 day of age. In experiment 1, diets containing insoluble [cellulose (CEL); 2% and 4%] or soluble [carboxymethyl cellulose (CMC); 2% and 4%] fibre were fed to broilers from day 1 to 21 post-hatch and ileal tissue was collected at day 21 of age for histological evaluation. In experiment 2, broilers diet was supplemented with 0%, 1% or 2% insoluble fibre (Arbocel) during day 7 to 21 post-hatch and plasma and liver lipid metabolism were evaluated at day 21. In experiment 1, inclusion of CMC reduced body weight gain (BWG) and feed intake (FI) and increased feed conversion ratio (FCR) compared with others. Intestinal histomorphology was unaffected by CEL, but CMC led to an increase in crypt depth (CD) and serosa thickness and a decrease in villus height (VH), villus width (VW), VH:CD ratio and villus surface area (VSA), rather than control and CEL groups. Treatment did not affect goblet cell type. Moreover, the CMC-fed birds had greater total goblet cell count (GCC) as compared with others. In experiment 2, fibre inclusion was associated with increases in BWG from 7 to 14 day of age and an improvement in FCR, whereas FI was not influenced by treatments. Inclusion of fibre in the diet decreased the weight of the abdominal fat and cholesterol concentrations of liver and plasma. No significant effects on fatty acid composition of liver lipid were observed by fibre supplementation. These findings suggest dietary fibre affects performance, intestinal histomorphology and lipid metabolism in young chicks, which may directly affect poultry feeding strategies. PMID:26667363

  2. D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism

    NASA Astrophysics Data System (ADS)

    Wijker, Reto S.; Sessions, Alex L.

    2016-04-01

    Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and

  3. D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism

    NASA Astrophysics Data System (ADS)

    Wijker, R. S.; Sessions, A. L.

    2015-12-01

    Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the first trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and

  4. Identifying Differentially Abundant Metabolic Pathways in Metagenomic Datasets

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Pop, Mihai

    Enabled by rapid advances in sequencing technology, metagenomic studies aim to characterize entire communities of microbes bypassing the need for culturing individual bacterial members. One major goal of such studies is to identify specific functional adaptations of microbial communities to their habitats. Here we describe a powerful analytical method (MetaPath) that can identify differentially abundant pathways in metagenomic data-sets, relying on a combination of metagenomic sequence data and prior metabolic pathway knowledge. We show that MetaPath outperforms other common approaches when evaluated on simulated datasets. We also demonstrate the power of our methods in analyzing two, publicly available, metagenomic datasets: a comparison of the gut microbiome of obese and lean twins; and a comparison of the gut microbiome of infant and adult subjects. We demonstrate that the subpathways identified by our method provide valuable insights into the biological activities of the microbiome.

  5. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut.

    PubMed

    Joyce, Susan A; MacSharry, John; Casey, Patrick G; Kinsella, Michael; Murphy, Eileen F; Shanahan, Fergus; Hill, Colin; Gahan, Cormac G M

    2014-05-20

    Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the key microbial functions influencing host energy metabolism and adiposity remain to be determined. Despite an increased understanding of the genetic content of the gastrointestinal microbiome, functional analyses of common microbial gene sets are required. We established a controlled expression system for the parallel functional analysis of microbial alleles in the murine gut. Using this approach we show that bacterial bile salt hydrolase (BSH) mediates a microbe-host dialogue that functionally regulates host lipid metabolism and plays a profound role in cholesterol metabolism and weight gain in the host. Expression of cloned BSH enzymes in the gastrointestinal tract of gnotobiotic or conventionally raised mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (Pparγ, Angptl4), cholesterol metabolism (Abcg5/8), gastrointestinal homeostasis (RegIIIγ), and circadian rhythm (Dbp, Per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in a significant reduction in host weight gain, plasma cholesterol, and liver triglycerides, demonstrating the overall impact of elevated BSH activity on host physiology. In addition, BSH activity in vivo varied according to BSH allele group, indicating that subtle differences in activity can have significant effects on the host. In summary, we demonstrate that bacterial BSH activity significantly impacts the systemic metabolic processes and adiposity in the host and represents a key mechanistic target for the control of obesity and hypercholesterolemia. PMID:24799697

  6. Effects of Excess Energy Intake on Glucose and Lipid Metabolism in C57BL/6 Mice.

    PubMed

    Pang, Jing; Xi, Chao; Huang, Xiuqing; Cui, Ju; Gong, Huan; Zhang, Tiemei

    2016-01-01

    Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice. PMID:26745179

  7. Effects of Excess Energy Intake on Glucose and Lipid Metabolism in C57BL/6 Mice

    PubMed Central

    Huang, Xiuqing; Cui, Ju; Gong, Huan; Zhang, Tiemei

    2016-01-01

    Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice. PMID:26745179

  8. Nut consumption has favorable effects on lipid profiles of Korean women with metabolic syndrome.

    PubMed

    Lee, Young Joo; Nam, Ga Eun; Seo, Ji A; Yoon, Taehyung; Seo, Ilwon; Lee, Jin Hee; Im, Donggil; Bahn, Kyeong-Nyeo; Jeong, Si An; Kang, Tae Seok; Ahn, Jae Hee; Kim, Do Hoon; Kim, Nan Hee

    2014-09-01

    Nut consumption has been studied for its cardioprotective effects. However, the findings of clinical intervention studies are inconsistent; and no intervention studies have been conducted in the Korean population. We hypothesized that nut supplementation may have favorable influence on metabolic markers. Therefore, this study aimed to investigate the effects of nut consumption on metabolic parameters and biomarkers related to inflammation, oxidative stress, and endothelial function in Korean adults with metabolic syndrome. To this end, we designed a randomized, parallel, controlled dietary intervention study (ClinicalTrials.gov NCT02023749). Subjects with metabolic syndrome and a body mass index of at least 23 kg/m(2) were randomized to the Control group and the Nut group, which received supplementation with 30 g/d of mixed nuts (walnuts, peanuts, and pine nuts) for 6 weeks. Sixty volunteers were included in the final analysis. Metabolic markers were evaluated at baseline and at the end of the study. Total cholesterol and non-high-density lipoprotein cholesterol levels significantly improved in the Nut group compared to those in the Control group (P = .023 and P = .016, respectively) in women. Biomarkers related to inflammation, oxidative stress, and endothelial function did not significantly change from baseline in either group. Thus, supplementing a usual diet with mixed nuts for 6 weeks had favorable effects on several lipid parameters in Korean women with metabolic syndrome. These findings present a possible mechanism for the cardioprotective effects of nut consumption.

  9. To Assess the Association between Glucose Metabolism and Ectopic Lipid Content in Different Clinical Classifications of PCOS

    PubMed Central

    Göbl, Christian S.; Ott, Johannes; Bozkurt, Latife; Feichtinger, Michael; Rehmann, Victoria; Cserjan, Anna; Heinisch, Maike; Steinbrecher, Helmut; JustKukurova, Ivica; Tuskova, Radka; Leutner, Michael; Vytiska-Binstorfer, Elisabeth; Kurz, Christine; Weghofer, Andrea; Tura, Andrea; Egarter, Christian; Kautzky-Willer, Alexandra

    2016-01-01

    Aims There are emerging data indicating an association between PCOS (polycystic ovary syndrome) and metabolic derangements with potential impact on its clinical presentation. This study aims to evaluate the pathophysiological processes beyond PCOS with particular focus on carbohydrate metabolism, ectopic lipids and their possible interaction. Differences between the two established classifications of the disease should be additionally evaluated. Methods A metabolic characterization was performed in 53 untreated PCOS patients as well as 20 controls including an extended oral glucose tolerance test (OGTT, to assess insulin sensitivity, secretion and ß-cell function) in addition to a detailed examination of ectopic lipid content in muscle and liver by nuclear magnetic resonance spectroscopy. Results Women with PCOS classified by the original NIH 1990 definition showed a more adverse metabolic risk profile compared to women characterized by the additional Rotterdam 2003 phenotypes. Subtle metabolic derangements were observed in both subgroups, including altered shapes of OGTT curves, impaired insulin action and hyperinsulinemia due to increased secretion and attenuated hepatic extraction. No differences were observed for ectopic lipids between the groups. However, particularly hepatocellular lipid content was significantly related to clinical parameters of PCOS like whole body insulin sensitivity, dyslipidemia and free androgen index. Conclusions Subtle alterations in carbohydrate metabolism are present in both PCOS classifications, but more profound in subjects meeting the NIH 1990 criteria. Females with PCOS and controls did not differ in ectopic lipids, however, liver fat was tightly related to hyperandrogenism and an adverse metabolic risk profile. PMID:27505055

  10. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts.

    PubMed

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird's-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant's developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  11. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts.

    PubMed

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-06-15

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird's-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant's developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  12. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    PubMed Central

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  13. Changes in the daily rhythm of lipid metabolism in the diabetic retina.

    PubMed

    Wang, Qi; Tikhonenko, Maria; Bozack, Svetlana N; Lydic, Todd A; Yan, Lily; Panchy, Nicholas L; McSorley, Kelly M; Faber, Matthew S; Yan, Yuanqing; Boulton, Michael E; Grant, Maria B; Busik, Julia V

    2014-01-01

    Disruption of circadian regulation was recently shown to cause diabetes and metabolic disease. We have previously demonstrated that retinal lipid metabolism contributed to the development of diabetic retinopathy. The goal of this study was to determine the effect of diabetes on circadian regulation of clock genes and lipid metabolism genes in the retina and retinal endothelial cells (REC). Diabetes had a pronounced inhibitory effect on the negative clock arm with lower amplitude of the period (per) 1 in the retina; lower amplitude and a phase shift of per2 in the liver; and a loss of cryptochrome (cry) 2 rhythmic pattern in suprachiasmatic nucleus (SCN). The positive clock arm was increased by diabetes with higher amplitude of circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1 (bmal1) and phase shift in bmal1 rhythmic oscillations in the retina; and higher bmal1 amplitude in the SCN. Peroxisome proliferator-activated receptor (PPAR) α exhibited rhythmic oscillation in retina and liver; PPARγ had lower amplitude in diabetic liver; sterol regulatory element-binding protein (srebp) 1c had higher amplitude in the retina but lower in the liver in STZ- induced diabetic animals. Both of Elongase (Elovl) 2 and Elovl4 had a rhythmic oscillation pattern in the control retina. Diabetic retinas lost Elovl4 rhythmic oscillation and had lower amplitude of Elovl2 oscillations. In line with the in vivo data, circadian expression levels of CLOCK, bmal1 and srebp1c had higher amplitude in rat REC (rREC) isolated from diabetic rats compared with control rats, while PPARγ and Elovl2 had lower amplitude in diabetic rREC. In conclusion, diabetes causes dysregulation of circadian expression of clock genes and the genes controlling lipid metabolism in the retina with potential implications for the development of diabetic retinopathy. PMID:24736612

  14. Altered maternal lipid metabolism is associated with higher inflammation in obese women during late pregnancy

    PubMed Central

    Tinius, Rachel A.; Cahill, Alison G.; Strand, Eric A.; Cade, W. Todd

    2016-01-01

    Inflammation is elevated in obese pregnant women and is associated with adverse maternal and neonatal outcomes. Maternal lipid metabolism and its relationships with maternal inflammation, insulin resistance and neonatal metabolic health are poorly understood in obese pregnant women. 18 lean (age: 26.1 ± 5.0 years, pre-pregnancy BMI: 21.5 ± 1.9 kg/m2) and 16 obese (age: 25.0 ± 4.8 years, pre-pregnancy BMI: 36.3 ± 4.3 kg/m2) women participated in this case-control study during the third trimester of pregnancy. Maternal plasma markers of insulin resistance (HOMA-IR) and inflammation (C-reactive protein (CRP)) were measured at rest, and lipid concentration and kinetics (lipid oxidation rate and lipolysis) were measured at rest, during a 30-minute bout of low-intensity (40% VO2peak) exercise, and during a recovery period. Umbilical cord blood was collected for measurement of neonatal plasma insulin sensitivity, inflammation, and lipid concentration. Neonatal body composition was measured via air displacement plethysmography. Pregnant obese women had higher plasma CRP (9.1 ± 4.0 mg/L versus 2.3 ± 1.8 mg/L, p<0.001) and higher HOMA-IR (3.8 ± 1.9 versus 2.3 ± 1.5, p=0.009) compared to pregnant lean women. Obese women had higher lipid oxidation rates during recovery from low-intensity exercise (0.13 ± 0.03 g/min versus 0.11 ±0.04 g/min, p=0.02) that was associated with higher maternal CRP (r=0.55, p=0.001). Maternal CRP was positively associated with maternal HOMA-IR (r=0.40, p<0.02) and systolic blood pressure (r=0.40, p<0.02). Maternal lipid metabolism-associated inflammation may contribute to insulin resistance and higher blood pressure in obese women during pregnancy. PMID:27239331

  15. Lack of Maf1 enhances pyruvate kinase activity and fermentative metabolism while influencing lipid homeostasis in Saccharomyces cerevisiae.

    PubMed

    Mierzejewska, Jolanta; Chreptowicz, Karolina

    2016-01-01

    The Maf1 protein is a general negative repressor of RNA polymerase III, which is conserved in eukaryotes from yeast to humans. Herein, we show the yeast maf1Δ mutant increases pyruvate kinase activity, the key enzyme in glycolysis and an important player in switching between fermentative and oxidative metabolism. We observed enhanced ethanol production and elevated lipid content in the maf1Δ strain grown on glucose. However, after shifting to a non-fermentable carbon source, the opposite effect was observed, and the mutant cells accumulated smaller lipid droplets. Thus, it has been concluded that the Maf1 protein is essential for regulation of glucose metabolism and lipid homeostasis.

  16. The mutant Moonwalker TRPC3 channel links calcium signaling to lipid metabolism in the developing cerebellum.

    PubMed

    Dulneva, Anna; Lee, Sheena; Oliver, Peter L; Di Gleria, Katalin; Kessler, Benedikt M; Davies, Kay E; Becker, Esther B E

    2015-07-15

    The Moonwalker (Mwk) mouse is a model of dominantly inherited cerebellar ataxia caused by a gain-of-function mutation in the transient receptor potential (TRP) channel TRPC3. Here, we report impairments in dendritic growth and synapse formation early on during Purkinje cell development in the Mwk cerebellum that are accompanied by alterations in calcium signaling. To elucidate the molecular effector pathways that regulate Purkinje cell dendritic arborization downstream of mutant TRPC3, we employed transcriptomic analysis of developing Purkinje cells isolated by laser-capture microdissection. We identified significant gene and protein expression changes in molecules involved in lipid metabolism. Consistently, lipid homeostasis in the Mwk cerebellum was found to be disturbed, and treatment of organotypic cerebellar slices with ceramide significantly improved dendritic outgrowth of Mwk Purkinje cells. These findings provide the first mechanistic insights into the TRPC3-dependent mechanisms, by which activated calcium signaling is coupled to lipid metabolism and the regulation of Purkinje cell development in the Mwk cerebellum.

  17. Effects of extract from cole pollen on lipid metabolism in experimental hyperlipidemic rats.

    PubMed

    Geng, Yue; Tu, Wen-li; Zhang, Jing-jing; Zhang, Liang; Zhang, Jian

    2014-01-01

    In order to evaluate the effects of extract by SCE (supercritical carbon dioxide extraction) from cole pollen on lipid metabolism in hyperlipidemic rats, the experimental hyperlipidemic rats were established by providing with high fat diets, and randomized into six groups. After four weeks of perfusion diets into stomach, the rats were executed, and lipid levels of serum and hepatic tissue were detected. The serum levels of TC and TG were significantly lower in the pollen extract groups and MC group than in HFC group. Hepatic TC levels were decreased in rats fed pollen extract and lovastatin compared with HFC group. A higher concentration of HDL-C and apoAI in hepatic tissue was measured after intake of the pollen extract compared to the HFC group (P < 0.05). LCAT activity in serum of pollen extract groups was significantly higher than that in HFC group, and also HMG-CoA reductase showed decreasing tendency in pollen extract groups. The contents of DHA in pollen extract groups were found higher than those in HFC group. Cole pollen extract enriched in alpha-linolenic acid is likely to be a novel source of ALA which is probably responsible for favorable lipid changes through promoting transportation, excretion, and metabolism of cholesterol in hepatic tissue and serum.

  18. Effect of dietary phosphorus levels on meat quality and lipid metabolism in broiler chickens.

    PubMed

    Li, Xue-Ke; Wang, Jin-Zhi; Wang, Chun-Qing; Zhang, Chun-Hui; Li, Xia; Tang, Chun-Hong; Wei, Xiu-Li

    2016-08-15

    To analyze the influence of dietary phosphorus (P) levels on meat quality and lipid metabolism, a 42-day feeding experiment (P deficient group; normal group; high P level groups of H1 and H2, respectively) using 100 one-day-old broilers was conducted. Results demonstrated that the quality of broiler chicken meat in deficient or high P groups decreased relative to the normal group. High P diets resulted in increased lightness, redness values, shear forces and decreased fatty acid contents and intramuscular fat content in breast meat (p<0.01). Compared with normal group, lower malic enzyme activity, higher fatty acid synthase and AMP-activated protein kinase activities were observed in the treatment groups (p<0.05). Chickens fed with normal diets had the lowest serum total cholesterol and triglyceride levels which differed from that of other treatments (p<0.05). High-P diets significantly decreased the lipid accumulation in the liver (p<0.01), whereas phosphorus levels in breast meat increased significantly (p<0.01). It can be concluded that deficient or higher P levels could affect meat quality and expression of indicators on lipid metabolism of broiler chickens.

  19. Effect of dietary phosphorus levels on meat quality and lipid metabolism in broiler chickens.

    PubMed

    Li, Xue-Ke; Wang, Jin-Zhi; Wang, Chun-Qing; Zhang, Chun-Hui; Li, Xia; Tang, Chun-Hong; Wei, Xiu-Li

    2016-08-15

    To analyze the influence of dietary phosphorus (P) levels on meat quality and lipid metabolism, a 42-day feeding experiment (P deficient group; normal group; high P level groups of H1 and H2, respectively) using 100 one-day-old broilers was conducted. Results demonstrated that the quality of broiler chicken meat in deficient or high P groups decreased relative to the normal group. High P diets resulted in increased lightness, redness values, shear forces and decreased fatty acid contents and intramuscular fat content in breast meat (p<0.01). Compared with normal group, lower malic enzyme activity, higher fatty acid synthase and AMP-activated protein kinase activities were observed in the treatment groups (p<0.05). Chickens fed with normal diets had the lowest serum total cholesterol and triglyceride levels which differed from that of other treatments (p<0.05). High-P diets significantly decreased the lipid accumulation in the liver (p<0.01), whereas phosphorus levels in breast meat increased significantly (p<0.01). It can be concluded that deficient or higher P levels could affect meat quality and expression of indicators on lipid metabolism of broiler chickens. PMID:27006242

  20. Effects of Extract from Cole Pollen on Lipid Metabolism in Experimental Hyperlipidemic Rats

    PubMed Central

    Geng, Yue; Tu, Wen-li; Zhang, Jing-jing; Zhang, Liang; Zhang, Jian

    2014-01-01

    In order to evaluate the effects of extract by SCE (supercritical carbon dioxide extraction) from cole pollen on lipid metabolism in hyperlipidemic rats, the experimental hyperlipidemic rats were established by providing with high fat diets, and randomized into six groups. After four weeks of perfusion diets into stomach, the rats were executed, and lipid levels of serum and hepatic tissue were detected. The serum levels of TC and TG were significantly lower in the pollen extract groups and MC group than in HFC group. Hepatic TC levels were decreased in rats fed pollen extract and lovastatin compared with HFC group. A higher concentration of HDL-C and apoAI in hepatic tissue was measured after intake of the pollen extract compared to the HFC group (P < 0.05). LCAT activity in serum of pollen extract groups was significantly higher than that in HFC group, and also HMG-CoA reductase showed decreasing tendency in pollen extract groups. The contents of DHA in pollen extract groups were found higher than those in HFC group. Cole pollen extract enriched in alpha-linolenic acid is likely to be a novel source of ALA which is probably responsible for favorable lipid changes through promoting transportation, excretion, and metabolism of cholesterol in hepatic tissue and serum. PMID:25152932

  1. Effects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside.

    PubMed

    Sá, Carla; Oliveira, Ana Rita; Machado, Cátia; Azevedo, Marisa; Pereira-Wilson, Cristina

    2015-01-01

    Disruptions in whole-body lipid metabolism can lead to the onset of several pathologies such as nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). The present study aimed at elucidating the molecular mechanisms behind the lipid-lowering effects of the flavone luteolin-7-glucoside (L7G) which we previously showed to improve plasma lipid profile in rats. L7G is abundant in plant foods of Mediterranean diet such as aromatic plants used as herbs. Results show that dietary supplementation with L7G for one week induced the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and of its target gene carnitine palmitoyl transferase 1 (CPT-1) in rat liver. L7G showed a tendency to decrease the hepatic expression of sterol regulatory element-binding protein-1 (SREBP-1), without affecting fatty acid synthase (FAS) protein levels. Although SREBP-2 and LDLr mRNA levels did not change, the expression of HMG CoA reductase (HMGCR) was significantly repressed by L7G. L7G also inhibited this enzyme's in vitro activity in a dose dependent manner, but only at high and not physiologically relevant concentrations. These results add new evidence that the flavone luteolin-7-glucoside may help in preventing metabolic diseases and clarify the mechanisms underlying the beneficial health effects of diets rich in fruits and vegetables.

  2. Effects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside

    PubMed Central

    Sá, Carla; Oliveira, Ana Rita; Machado, Cátia; Azevedo, Marisa; Pereira-Wilson, Cristina

    2015-01-01

    Disruptions in whole-body lipid metabolism can lead to the onset of several pathologies such as nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). The present study aimed at elucidating the molecular mechanisms behind the lipid-lowering effects of the flavone luteolin-7-glucoside (L7G) which we previously showed to improve plasma lipid profile in rats. L7G is abundant in plant foods of Mediterranean diet such as aromatic plants used as herbs. Results show that dietary supplementation with L7G for one week induced the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and of its target gene carnitine palmitoyl transferase 1 (CPT-1) in rat liver. L7G showed a tendency to decrease the hepatic expression of sterol regulatory element-binding protein-1 (SREBP-1), without affecting fatty acid synthase (FAS) protein levels. Although SREBP-2 and LDLr mRNA levels did not change, the expression of HMG CoA reductase (HMGCR) was significantly repressed by L7G. L7G also inhibited this enzyme's in vitro activity in a dose dependent manner, but only at high and not physiologically relevant concentrations. These results add new evidence that the flavone luteolin-7-glucoside may help in preventing metabolic diseases and clarify the mechanisms underlying the beneficial health effects of diets rich in fruits and vegetables. PMID:26113868

  3. Effects of extract from cole pollen on lipid metabolism in experimental hyperlipidemic rats.

    PubMed

    Geng, Yue; Tu, Wen-li; Zhang, Jing-jing; Zhang, Liang; Zhang, Jian

    2014-01-01

    In order to evaluate the effects of extract by SCE (supercritical carbon dioxide extraction) from cole pollen on lipid metabolism in hyperlipidemic rats, the experimental hyperlipidemic rats were established by providing with high fat diets, and randomized into six groups. After four weeks of perfusion diets into stomach, the rats were executed, and lipid levels of serum and hepatic tissue were detected. The serum levels of TC and TG were significantly lower in the pollen extract groups and MC group than in HFC group. Hepatic TC levels were decreased in rats fed pollen extract and lovastatin compared with HFC group. A higher concentration of HDL-C and apoAI in hepatic tissue was measured after intake of the pollen extract compared to the HFC group (P < 0.05). LCAT activity in serum of pollen extract groups was significantly higher than that in HFC group, and also HMG-CoA reductase showed decreasing tendency in pollen extract groups. The contents of DHA in pollen extract groups were found higher than those in HFC group. Cole pollen extract enriched in alpha-linolenic acid is likely to be a novel source of ALA which is probably responsible for favorable lipid changes through promoting transportation, excretion, and metabolism of cholesterol in hepatic tissue and serum. PMID:25152932

  4. Effects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside.

    PubMed

    Sá, Carla; Oliveira, Ana Rita; Machado, Cátia; Azevedo, Marisa; Pereira-Wilson, Cristina

    2015-01-01

    Disruptions in whole-body lipid metabolism can lead to the onset of several pathologies such as nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). The present study aimed at elucidating the molecular mechanisms behind the lipid-lowering effects of the flavone luteolin-7-glucoside (L7G) which we previously showed to improve plasma lipid profile in rats. L7G is abundant in plant foods of Mediterranean diet such as aromatic plants used as herbs. Results show that dietary supplementation with L7G for one week induced the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and of its target gene carnitine palmitoyl transferase 1 (CPT-1) in rat liver. L7G showed a tendency to decrease the hepatic expression of sterol regulatory element-binding protein-1 (SREBP-1), without affecting fatty acid synthase (FAS) protein levels. Although SREBP-2 and LDLr mRNA levels did not change, the expression of HMG CoA reductase (HMGCR) was significantly repressed by L7G. L7G also inhibited this enzyme's in vitro activity in a dose dependent manner, but only at high and not physiologically relevant concentrations. These results add new evidence that the flavone luteolin-7-glucoside may help in preventing metabolic diseases and clarify the mechanisms underlying the beneficial health effects of diets rich in fruits and vegetables. PMID:26113868

  5. Reprogramming Neutral Lipid Metabolism in Mouse Dendritic Leucocytes Hosting Live Leishmania amazonensis Amastigotes

    PubMed Central

    Lecoeur, Hervé; Giraud, Emilie; Prévost, Marie-Christine; Milon, Geneviève; Lang, Thierry

    2013-01-01

    Background After loading with live Leishmania (L) amazonensis amastigotes, mouse myeloid dendritic leucocytes/DLs are known to undergo reprogramming of their immune functions. In the study reported here, we investigated whether the presence of live L. amazonensis amastigotes in mouse bone marrow-derived DLs is able to trigger re-programming of DL lipid, and particularly neutral lipid metabolism. Methodology/Principal Findings Affymetrix-based transcriptional profiles were determined in C57BL/6 and DBA/2 mouse bone marrow-derived DLs that had been sorted from cultures exposed or not to live L. amazonensis amastigotes. This showed that live amastigote-hosting DLs exhibited a coordinated increase in: (i) long-chain fatty acids (LCFA) and cholesterol uptake/transport, (ii) LCFA and cholesterol (re)-esterification to triacyl-sn-glycerol (TAG) and cholesteryl esters (CE), respectively. As these neutral lipids are known to make up the lipid body (LB) core, oleic acid was added to DL cultures and LB accumulation was compared in live amastigote-hosting versus amastigote-free DLs by epi-fluorescence and transmission electron microscopy. This showed that LBs were both significantly larger and more numerous in live amastigote-hosting mouse dendritic leucocytes. Moreover, many of the larger LB showed intimate contact with the membrane of the parasitophorous vacuoles hosting the live L. amazonensis amastigotes. Conclusions/Significance As leucocyte LBs are known to be more than simple neutral lipid repositories, we set about addressing two related questions. Could LBs provide lipids to live amastigotes hosted within the DL parasitophorous vacuole and also deliver? Could LBs impact either directly or indirectly on the persistence of L. amazonensis amastigotes in rodent skin? PMID:23785538

  6. Comprehensive Transcriptome Analyses of the Fructose-Fed Syrian Golden Hamster Liver Provides Novel Insights into Lipid Metabolism

    PubMed Central

    Li, Ziyang; Xiong, Chaoliang; Mo, Suo; Tian, Haiying; Yu, Mengqian; Mao, Tingting; Chen, Qian; Luo, Haitao; Li, Quanzhen; Lu, Jianxin; Zhao, Yi

    2016-01-01

    Dyslipidemia has been widely proven to contribute to cardiovascular diseases and other metabolic disorders, especially in insulin resistance and type 2 diabetes. The overproduction of VLDL is a significant characteristic of dyslipidemia, indicating the dysfunction of hepatic lipid metabolism, from triglyceride synthesis to transport. The fructose-fed Syrian golden hamster is an established animal model for the study of VLDL assembly with insulin resistance, however, it remains unknown how VLDL production is regulated at the transcriptional level due to the absence of a complete hamster genome. Here, we performed deep sequencing and constructed an mRNA-miRNA-lncRNA interaction network of Syrian golden hamster liver in order to reveal the global transcription profile and find potential RNA molecular regulation of VLDL production. We identified 4,450 novel multi-exon hamster lncRNAs and 755 miRNAs expressed in liver. Additionally, 146 differentially expressed coding genes, 27 differentially expressed lncRNA genes, as well as 16 differentially expressed miRNAs were identified. We then constructed an mRNA-miRNA-lncRNA interaction network that may potentially regulate VLDL production, and interestingly found several microRNA-centered regulatory networks. In order to verify our interpretation, miR-486 was selected for further experiments. Overexpression or down-regulation of miR-486 in fructose-fed hamsters resulted in altered hepatic expression of proteins involved in VLDL production, and in modulated levels of circulating VLDL. Our findings implicated that miR-486 is a potential regulator of circulating VLDL levels. These results provide new insights and a valuable resource for further study of the molecular mechanisms of VLDL secretion. PMID:27589064

  7. Comprehensive Transcriptome Analyses of the Fructose-Fed Syrian Golden Hamster Liver Provides Novel Insights into Lipid Metabolism.

    PubMed

    Li, Ziyang; Xiong, Chaoliang; Mo, Suo; Tian, Haiying; Yu, Mengqian; Mao, Tingting; Chen, Qian; Luo, Haitao; Li, Quanzhen; Lu, Jianxin; Zhao, Yi; Li, Wei

    2016-01-01

    Dyslipidemia has been widely proven to contribute to cardiovascular diseases and other metabolic disorders, especially in insulin resistance and type 2 diabetes. The overproduction of VLDL is a significant characteristic of dyslipidemia, indicating the dysfunction of hepatic lipid metabolism, from triglyceride synthesis to transport. The fructose-fed Syrian golden hamster is an established animal model for the study of VLDL assembly with insulin resistance, however, it remains unknown how VLDL production is regulated at the transcriptional level due to the absence of a complete hamster genome. Here, we performed deep sequencing and constructed an mRNA-miRNA-lncRNA interaction network of Syrian golden hamster liver in order to reveal the global transcription profile and find potential RNA molecular regulation of VLDL production. We identified 4,450 novel multi-exon hamster lncRNAs and 755 miRNAs expressed in liver. Additionally, 146 differentially expressed coding genes, 27 differentially expressed lncRNA genes, as well as 16 differentially expressed miRNAs were identified. We then constructed an mRNA-miRNA-lncRNA interaction network that may potentially regulate VLDL production, and interestingly found several microRNA-centered regulatory networks. In order to verify our interpretation, miR-486 was selected for further experiments. Overexpression or down-regulation of miR-486 in fructose-fed hamsters resulted in altered hepatic expression of proteins involved in VLDL production, and in modulated levels of circulating VLDL. Our findings implicated that miR-486 is a potential regulator of circulating VLDL levels. These results provide new insights and a valuable resource for further study of the molecular mechanisms of VLDL secretion. PMID:27589064

  8. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis

    PubMed Central

    Olejníčková, Veronika; Tkáčová, Nikola; Santulli, Gaetano

    2016-01-01

    MicroRNAs (miRNAs, miRs) represent a group of powerful and versatile posttranscriptional regulators of gene expression being involved in the fine control of a plethora of physiological and pathological processes. Besides their well-established crucial roles in the regulation of cell cycle, embryogenesis or tumorigenesis, these tiny molecules have also been shown to participate in the regulation of lipid metabolism. In particular, miRs orchestrate cholesterol and fatty acids synthesis, transport, and degradation and low-density and high-density lipoprotein (LDL and HDL) formation. It is thus not surprising that they have also been reported to affect the development and progression of several lipid metabolism-related disorders including liver steatosis and atherosclerosis. Mounting evidence suggests that miRs might represent important “posttranscriptional hubs” of lipid metabolism, which means that one miR usually targets 3′-untranslated regions of various mRNAs that are involved in different steps of one precise metabolic/signaling pathway, e.g., one miR targets mRNAs of enzymes important for cholesterol synthesis, degradation, and transport. Therefore, changes in the levels of one key miR affect various steps of one pathway, which is thereby promoted or inhibited. This makes miRs potent future diagnostic and even therapeutic tools for personalized medicine. Within this chapter, the most prominent microRNAs involved in lipid metabolism, e.g., miR-27a/b, miR-33/33*, miR-122, miR-144, or miR-223, and their intracellular and extracellular functions will be extensively discussed, in particular focusing on their mechanistic role in the pathophysiology of atherosclerosis. Special emphasis will be given on miR-122, the first microRNA currently in clinical trials for the treatment of hepatitis C and on miR-223, the most abundant miR in lipoprotein particles. PMID:26662987

  9. A Genome-Wide Screen Indicates Correlation between Differentiation and Expression of Metabolism Related Genes

    PubMed Central

    Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462

  10. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future.

    PubMed

    Allen, Doug K; Bates, Philip D; Tjellström, Henrik

    2015-04-01

    Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant

  11. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis.

    PubMed

    Shih, Diana M; Wang, Zeneng; Lee, Richard; Meng, Yonghong; Che, Nam; Charugundla, Sarada; Qi, Hannah; Wu, Judy; Pan, Calvin; Brown, J Mark; Vallim, Thomas; Bennett, Brian J; Graham, Mark; Hazen, Stanley L; Lusis, Aldons J

    2015-01-01

    We performed silencing and overexpression studies of flavin containing monooxygenase (FMO) 3 in hyperlipidemic mouse models to examine its effects on trimethylamine N-oxide (TMAO) levels and atherosclerosis. Knockdown of hepatic FMO3 in LDL receptor knockout mice using an antisense oligonucleotide resulted in decreased circulating TMAO levels and atherosclerosis. Surprisingly, we also observed significant decreases in hepatic lipids and in levels of plasma lipids, ketone bodies, glucose, and insulin. FMO3 overexpression in transgenic mice, on the other hand, increased hepatic and plasma lipids. Global gene expression analyses suggested that these effects of FMO3 on lipogenesis and gluconeogenesis may be mediated through the PPARα and Kruppel-like factor 15 pathways. In vivo and in vitro results were consistent with the concept that the effects were mediated directly by FMO3 rather than trimethylamine/TMAO; in particular, overexpression of FMO3 in the human hepatoma cell line, Hep3B, resulted in significantly increased glucose secretion and lipogenesis. Our results indicate a major role for FMO3 in modulating glucose and lipid homeostasis in vivo, and they suggest that pharmacologic inhibition of FMO3 to reduce TMAO levels would be confounded by metabolic interactions. PMID:25378658

  12. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells

    PubMed Central

    McGee-Lawrence, Meghan E; Carpio, Lomeli R; Schulze, Ryan J; Pierce, Jessica L; McNiven, Mark A; Farr, Joshua N; Khosla, Sundeep; Oursler, Merry Jo; Westendorf, Jennifer J

    2016-01-01

    Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. PMID:26211746

  13. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulates carotenoid and lipid metabolism in mice

    PubMed Central

    Ford, Nikki A.; Elsen, Amy C.; Erdman, John W.

    2013-01-01

    Carotene-15,15'-monooxygenase (CMO-I) cleaves β-carotene to form vitamin A while carotene-9’,10’-monooxygenase (CMO-II) preferentially cleaves non-provitamin A carotenoids. Recent reports indicate that beta-carotene metabolites regulate dietary lipid uptake while lycopene regulates peroxisome-proliferated activator receptor (PPAR) expression. To determine the physiologic consequences of carotenoids and their interactions with CMO-I and CMO-II, we characterized mammalian carotenoid metabolism, metabolic perturbations and lipid metabolism in female CMO-I−/− and CMO-II−/− mice fed lycopene or tomato-containing diets for 30 days. We hypothesized that there would be significant interactions between diet and genotype on carotenoid accumulation and lipid parameters. CMO-I−/− mice had higher levels of leptin, insulin and hepatic lipidosis, but lower levels of serum cholesterol. CMO-II−/− mice had increased tissue lycopene and phytofluene accumulation, reduced IGF-1 levels and cholesterol levels, but elevated liver lipids and cholesterol compared with WT mice. The diets did not modulate these genotypic perturbations, but lycopene and tomato powder did significantly decrease serum insulin-like growth factor-I. Tomato powder also reduced hepatic PPAR expression, independent of genotype. These data point to the pleiotropic actions of CMO-I and CMO-II supporting a strong role of these proteins in regulating tissue carotenoid accumulation and the lipid metabolic phenotype, as well as tomato carotenoid-independent regulation of lipid metabolism. PMID:24034573

  14. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulate carotenoid and lipid metabolism in mice.

    PubMed

    Ford, Nikki A; Elsen, Amy C; Erdman, John W

    2013-09-01

    Carotene-15,15'-monooxygenase (CMO-I) cleaves β-carotene to form vitamin A, whereas carotene-9',10'-monooxygenase (CMO-II) preferentially cleaves non-provitamin A carotenoids. Recent reports indicate that β-carotene metabolites regulate dietary lipid uptake, whereas lycopene regulates peroxisome proliferator-activated receptor expression. To determine the physiologic consequences of carotenoids and their interactions with CMO-I and CMO-II, we characterized mammalian carotenoid metabolism, metabolic perturbations, and lipid metabolism in female CMO-I(-/-) and CMO-II(-/-) mice fed lycopene or tomato-containing diets for 30 days. We hypothesized that there would be significant interactions between diet and genotype on carotenoid accumulation and lipid parameters. CMO-I(-/-) mice had higher levels of leptin, insulin, and hepatic lipidosis but lower levels of serum cholesterol. CMO-II(-/-) mice had increased tissue lycopene and phytofluene accumulation, reduced insulin-like growth factor 1 levels and cholesterol levels, but elevated liver lipids and cholesterol compared with wild-type mice. The diets did not modulate these genotypic perturbations, but lycopene and tomato powder significantly decreased serum insulin-like growth factor 1. Tomato powder also increased hepatic peroxisome proliferator-activated receptor expression, independent of genotype. These data point to the pleiotropic actions of CMO-I and CMO-II supporting a strong role of these proteins in regulating tissue carotenoid accumulation and the lipid metabolic phenotype as well as tomato carotenoid-independent regulation of lipid metabolism. PMID:24034573

  15. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Li, Xiaobo; Jonikas, Martin C

    2016-01-01

    Microalgal lipid metabolism is of broad interest because microalgae accumulate large amounts of triacylglycerols (TAGs) that can be used for biodiesel production (Durrett et al Plant J 54(4):593-607, 2008; Hu et al Plant J 54(4):621-639, 2008). Additionally, green algae are close relatives of land plants and serve as models to understand conserved lipid metabolism pathways in the green lineage. The green alga Chlamydomonas reinhardtii (Chlamydomonas hereafter) is a powerful model organism for understanding algal lipid metabolism. Various methods have been used to screen Chlamydomonas mutants for lipid amount or composition, and for identification of the mutated loci in mutants of interest. In this chapter, we summarize the advantages and caveats for each of these methods with a focus on screens for mutants with perturbed TAG content. We also discuss technical opportunities and new tools that are becoming available for screens of mutants altered in TAG content or perturbed in other processes in Chlamydomonas.

  16. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Li, Xiaobo; Jonikas, Martin C

    2016-01-01

    Microalgal lipid metabolism is of broad interest because microalgae accumulate large amounts of triacylglycerols (TAGs) that can be used for biodiesel production (Durrett et al Plant J 54(4):593-607, 2008; Hu et al Plant J 54(4):621-639, 2008). Additionally, green algae are close relatives of land plants and serve as models to understand conserved lipid metabolism pathways in the green lineage. The green alga Chlamydomonas reinhardtii (Chlamydomonas hereafter) is a powerful model organism for understanding algal lipid metabolism. Various methods have been used to screen Chlamydomonas mutants for lipid amount or composition, and for identification of the mutated loci in mutants of interest. In this chapter, we summarize the advantages and caveats for each of these methods with a focus on screens for mutants with perturbed TAG content. We also discuss technical opportunities and new tools that are becoming available for screens of mutants altered in TAG content or perturbed in other processes in Chlamydomonas. PMID:27023238

  17. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  18. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction.

    PubMed

    Rahtu-Korpela, Lea; Karsikas, Sara; Hörkkö, Sohvi; Blanco Sequeiros, Roberto; Lammentausta, Eveliina; Mäkelä, Kari A; Herzig, Karl-Heinz; Walkinshaw, Gail; Kivirikko, Kari I; Myllyharju, Johanna; Serpi, Raisa; Koivunen, Peppi

    2014-10-01

    Obesity is a major public health problem, predisposing subjects to metabolic syndrome, type 2 diabetes, and cardiovascular diseases. Specific prolyl 4-hydroxylases (P4Hs) regulate the stability of the hypoxia-inducible factor (HIF), a potent governor of metabolism, with isoenzyme 2 being the main regulator. We investigated whether HIF-P4H-2 inhibition could be used to treat obesity and its consequences. Hif-p4h-2-deficient mice, whether fed normal chow or a high-fat diet, had less adipose tissue, smaller adipocytes, and less adipose tissue inflammation than their littermates. They also had improved glucose tolerance and insulin sensitivity. Furthermore, the mRNA levels of the HIF-1 targets glucose transporters, glycolytic enzymes, and pyruvate dehydrogenase kinase-1 were increased in their tissues, whereas acetyl-CoA concentration was decreased. The hepatic mRNA level of the HIF-2 target insulin receptor substrate-2 was higher, whereas that of two key enzymes of fatty acid synthesis was lower. Serum cholesterol levels and de novo lipid synthesis were decreased, and the mice were protected against hepatic steatosis. Oral administration of an HIF-P4H inhibitor, FG-4497, to wild-type mice with metabolic dysfunction phenocopied these beneficial effects. HIF-P4H-2 inhibition may be a novel therapy that not only protects against the development of obesity and its consequences but also reverses these conditions.

  19. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    PubMed Central

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. PMID:26898711

  20. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    NASA Astrophysics Data System (ADS)

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-02-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.

  1. Effect of alcohol consumption on hormones involved in carbohydrate and lipid metabolism in premenopausal women

    SciTech Connect

    Law, J.S.; Bhathena, S.J.; Kim, Y.C.; Berlin, E.; Judd, J.T.; Reichman, M.E.; Taylor, P.R.; Schatzkin, A. NCI, Bethesda, MD )

    1991-03-15

    Alcohol consumption alters carbohydrate and lipid metabolism which are in part regulated by pancreatic and adrenal hormones. The menstrual cycle per se produces changes in several peptide and steroid hormones besides the sex hormones. The authors investigated the effect of moderate alcohol consumption on plasma hormone levels in 40 premenopausal women. The subjects were fed controlled diets containing 35% of calories from fat. In a random crossover design women were given either alcohol or a soft-drink of equal caloric value for 3 menstrual cycles. Fasting blood samples were collected in the third cycle during follicular, ovulatory and luteal phases. Plasma dehydroepiandrosterone-sulphate (DHEA-S), insulin, glucagon and cortisol levels were measured by radioimmunoassay. Moderate alcohol consumption had no effect on plasma insulin and DHEA-S levels but significantly increased glucagon and cortisol levels. Menstrual cycle per se affected plasma glucagon level in that the levels were higher during follicular phase than luteal phase. Thus, changes in carbohydrate and lipid metabolism following alcohol consumption are mediated in part by alterations in hormones involved in their metabolism.

  2. DHEA-mediated inhibition of the pentose phosphate pathway alters oocyte lipid metabolism in mice.

    PubMed

    Jimenez, Patricia T; Frolova, Antonina I; Chi, Maggie M; Grindler, Natalia M; Willcockson, Alexandra R; Reynolds, Kasey A; Zhao, Quihong; Moley, Kelle H

    2013-12-01

    Women with polycystic ovary syndrome (PCOS) and hyperandrogenism have altered hormone levels and suffer from ovarian dysfunction leading to subfertility. We have attempted to generate a model of hyperandrogenism by feeding mice chow supplemented with dehydroepiandrosterone (DHEA), an androgen precursor that is often elevated in women with PCOS. Treated mice had polycystic ovaries, low ovulation rates, disrupted estrous cycles, and altered hormone levels. Because DHEA is an inhibitor of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme in the pentose phosphate pathway, we tested the hypothesis that oocytes from DHEA-exposed mice would have metabolic disruptions. Citrate levels, glucose-6-phosphate dehydrogenase activity, and lipid content in denuded oocytes from these mice were significantly lower than controls, suggesting abnormal tricarboxylic acid and pentose phosphate pathway metabolism. The lipid and citrate effects were reversible by supplementation with nicotinic acid, a precursor for reduced nicotinamide adenine dinucleotide phosphate. These findings suggest that elevations in systemic DHEA can have a negative impact on oocyte metabolism and may contribute to poor pregnancy outcomes in women with hyperandrogenism and PCOS.

  3. The metabolism of fatty alcohols in lipid nanoparticles by alcohol dehydrogenase.

    PubMed

    Dong, X; Mumper, R J

    2006-09-01

    Fatty alcohols are commonly used in lipid-based drug delivery systems including parenteral emulsions and solid lipid nanoparticles (NPs). The purpose of these studies was to determine whether horse liver alcohol dehydrogenase (HLADH), a NAD-dependent enzyme, could metabolize the fatty alcohols within the NPs and thus serve as a mechanism to degrade these NPs in the body. Solid nanoparticles (<100 nm) were engineered from oil-in-water microemulsion precursors using emulsifying wax NF as the oil phase and polyoxyethylene 20-stearyl ether (Brij 78) as the surfactant. Emulsifying wax contains both cetyl and stearyl alcohols. NPs were incubated with the enzyme and NAD+ at 37 degrees C for up to 48 h, and the concentrations of fatty alcohols were quantitatively determined over time by gas chromatography (GC). The concentrations of cetyl alcohol and stearyl alcohol within the NPs decreased to only 10-20% remaining after 15-24 h of incubation. In parallel, NP size, turbidity and the fluorescence intensity of NADH all increased over time. It was concluded that horse liver alcohol dehydrogenase/NAD+ was able to metabolize the fatty alcohols within the NPs, suggesting that NPs made of fatty alcohols may be metabolized in the body via endogenous alcohol dehydrogenase enzyme systems. PMID:16954110

  4. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism

    PubMed Central

    Madiraju, Anila K.; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W.; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T.; Kibbey, Richard G.; Shulman, Gerald I.

    2016-01-01

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic