Sample records for differing phagocytic function

  1. Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro

    PubMed Central

    Claudia, Meindl; Kristin, Öhlinger; Jennifer, Ober; Eva, Roblegg; Eleonore, Fröhlich

    2017-01-01

    At many portals of entry the relative uptake by phagocytes and non-phagocytic cells has a prominent effect on availability and biological action of nanoparticles (NPs). Cellular uptake can be determined for fluorescence-labeled NPs. The present study compares three methods (plate reader, flow cytometry and image analysis) in order to investigate the influence of particle size and functionalization and medium content on cellular uptake of fluorescence–labeled polystyrene particles and to study the respective method’s suitability for uptake studies. For comparison between the techniques, ratios of macrophage to alveolar epithelial cell uptakes were used. Presence of serum protein in the exposure solution decreased uptake of carboxyl-functionalized and non-functionalized particles; there was no clear effect for the amine-functionalized particles. The 200 nm non- or carboxyl-functionalized NPs were taken up preferentially by phagocytes while for amine-functionalized particles preference was lowest. The presence of the serum slightly increased the preference for these particles. In conclusion, due to the possibility of calibration, plate reader measurements might present a better option than the other techniques to (semi)quantify differences between phagocytes and non-phagocytic cells for particles with different fluorescence. In order to obtain unbiased data the fluorescent labeling has to fulfill certain requirements. PMID:28065592

  2. Mononuclear phagocytes as a target, not a barrier, for drug delivery.

    PubMed

    Yong, Seok-Beom; Song, Yoonsung; Kim, Hyung Jin; Ain, Qurrat Ul; Kim, Yong-Hee

    2017-08-10

    Mononuclear phagocytes have been generally recognized as a barrier to drug delivery. Recently, a new understanding of mononuclear phagocytes (MPS) ontogeny has surfaced and their functions in disease have been unveiled, demonstrating the need for re-evaluation of perspectives on mononuclear phagocytes in drug delivery. In this review, we described mononuclear phagocyte biology and focus on their accumulation mechanisms in disease sites with explanations of monocyte heterogeneity. In the 'MPS as a barrier' section, we summarized recent studies on mechanisms to avoid phagocytosis based on two different biological principles: protein adsorption and self-recognition. In the 'MPS as a target' section, more detailed descriptions were given on mononuclear phagocyte-targeted drug delivery systems and their applications to various diseases. Collectively, we emphasize in this review that mononuclear phagocytes are potent targets for future drug delivery systems. Mononuclear phagocyte-targeted delivery systems should be created with an understanding of mononuclear phagocyte ontogeny and pathology. Each specific subset of phagocytes should be targeted differently by location and function for improved disease-drug delivery while avoiding RES clearance such as Kupffer cells and splenic macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro.

    PubMed

    Claudia, Meindl; Kristin, Öhlinger; Jennifer, Ober; Eva, Roblegg; Eleonore, Fröhlich

    2017-03-01

    At many portals of entry the relative uptake by phagocytes and non-phagocytic cells has a prominent effect on availability and biological action of nanoparticles (NPs). Cellular uptake can be determined for fluorescence-labeled NPs. The present study compares three methods (plate reader, flow cytometry and image analysis) in order to investigate the influence of particle size and functionalization and medium content on cellular uptake of fluorescence-labeled polystyrene particles and to study the respective method́s suitability for uptake studies. For comparison between the techniques, ratios of macrophage to alveolar epithelial cell uptakes were used. Presence of serum protein in the exposure solution decreased uptake of carboxyl-functionalized and non-functionalized particles; there was no clear effect for the amine-functionalized particles. The 200nm non- or carboxyl-functionalized NPs were taken up preferentially by phagocytes while for amine-functionalized particles preference was lowest. The presence of the serum slightly increased the preference for these particles. In conclusion, due to the possibility of calibration, plate reader measurements might present a better option than the other techniques to (semi)quantify differences between phagocytes and non-phagocytic cells for particles with different fluorescence. In order to obtain unbiased data the fluorescent labeling has to fulfill certain requirements. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. [Phagocyte migration: an overview].

    PubMed

    Le Cabec, Véronique; Van Goethem, Emeline; Guiet, Romain; Maridonneau-Parini, Isabelle

    2011-12-01

    Phagocytes are the first line of host defense thanks to their capacity to infiltrate infected and wounded tissues, where they exert their bactericidal and tissue repair functions. However, tissue infiltration of phagocytes also stimulates the progression of pathologies such as cancer and chronic inflammatory diseases. It is therefore necessary to identify the molecular and cellular mechanisms that control this process to identify new therapeutic targets. Phagocytes leave the blood stream by crossing the vascular wall and infiltrate interstitial tissues, a three-dimensional environment. A state-of-the-art of the different steps of phagocyte tissue recruitment in vivo and of the different in vitro models is developed in this synthesis. We focus on recent data concerning the migration of phagocytes in three-dimensional environments. The use of two different migration modes, amoeboid and mesenchymal, by macrophages and the role of podosomes and proteases in the mesenchymal migration are discussed. © 2011 médecine/sciences – Inserm / SRMS.

  5. Molecular Determinants in Phagocyte-Bacteria Interactions.

    PubMed

    Kaufmann, Stefan H E; Dorhoi, Anca

    2016-03-15

    Phagocytes are crucial for host defense against bacterial pathogens. As first demonstrated by Metchnikoff, neutrophils and mononuclear phagocytes share the capacity to engulf, kill, and digest microbial invaders. Generally, neutrophils focus on extracellular, and mononuclear phagocytes on intracellular, pathogens. Reciprocally, extracellular pathogens often capitalize on hindering phagocytosis and killing of phagocytes, whereas intracellular bacteria frequently allow their engulfment and then block intracellular killing. As foreseen by Metchnikoff, phagocytes become highly versatile by acquiring diverse phenotypes, but still retaining some plasticity. Further, phagocytes engage in active crosstalk with parenchymal and immune cells to promote adjunctive reactions, including inflammation, tissue healing, and remodeling. This dynamic network allows the host to cope with different types of microbial invaders. Here we present an update of molecular and cellular mechanisms underlying phagocyte functions in antibacterial defense. We focus on four exemplary bacteria ranging from an opportunistic extracellular to a persistent intracellular pathogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions

    PubMed Central

    Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc

    2015-01-01

    Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and species. PMID:26082777

  7. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs.

    PubMed

    Cummings, Ryan J; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C; Cho, Judy; Lira, Sergio A; Blander, J Magarian

    2016-11-24

    Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions, are not merely extruded to maintain homeostatic cell numbers, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4 + T-cell activation. A common 'suppression of inflammation' signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4 + T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and set the stage for development of novel therapeutics to alleviate chronic inflammatory diseases such as inflammatory bowel disease.

  8. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes.

    PubMed

    Botting, Rachel A; Bertram, Kirstie M; Baharlou, Heeva; Sandgren, Kerrie J; Fletcher, James; Rhodes, Jake W; Rana, Hafsa; Plasto, Toby M; Wang, Xin Maggie; Lim, Jake J K; Barnouti, Laith; Kohout, Mark P; Papadopoulos, Tim; Merten, Steve; Olbourne, Norman; Cunningham, Anthony L; Haniffa, Muzlifah; Harman, Andrew N

    2017-06-01

    Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue. © The Author(s).

  9. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes

    PubMed Central

    Botting, Rachel A.; Bertram, Kirstie M.; Baharlou, Heeva; Sandgren, Kerrie J.; Fletcher, James; Rhodes, Jake W.; Rana, Hafsa; Plasto, Toby M.; Wang, Xin Maggie; Lim, Jake J. K.; Barnouti, Laith; Kohout, Mark P.; Papadopoulos, Tim; Merten, Steve; Olbourne, Norman; Cunningham, Anthony L.; Haniffa, Muzlifah; Harman, Andrew N.

    2017-01-01

    Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue. PMID:28270408

  10. Evaluating the Effects of Stressors on Immune Function during Simulated Dives in Marine Mammals

    DTIC Science & Technology

    2015-04-24

    differed the most from all other exposures. In contrast, human cells tended to display either smaller decreases, or increases, in phagocytic activity...phagocytosis similar to baseline samples; decreased phagocytic activity for the dive periods of pressure exposures, with increased activity following the

  11. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs

    PubMed Central

    Cummings, Ryan J.; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M.; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C.; Cho, Judy; Lira, Sergio A.; Blander, J. Magarian

    2017-01-01

    Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies1,2. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions3, are not merely extruded to maintain homeostatic cell numbers4, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria5,6. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4+ T-cell activation. A common ‘suppression of inflammation’ signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4+ T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease7. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and set the stage for development of novel therapeutics to alleviate chronic inflammatory diseases such as inflammatory bowel disease. PMID:27828940

  12. Characterization of phagocytic hemocytes in Ornithodoros moubata (Acari: Ixodidae).

    PubMed

    Inoue, N; Hanada, K; Tsuji, N; Igarashi, I; Nagasawa, H; Mikami, T; Fujisaki, K

    2001-07-01

    Effects of fetal bovine serum (FBS) and complement on phagocytic activity in Ornithodaros moubata (Murray 1877) hemocytes and protease activity in the hemocytes were examined. At least three morphologically different cell types, granulocytes, plasmatocytes, and prohemocytes, were detected in hemolymph of O. moubata, and granulocytes and plasmatocytes showed phagocytic activity. FBS altered phagocytic activity of granulocytes, and complement affected phagocytic activity of plasmatocytes. Ticks were inoculated with fluorescent polystyrene beads in combination with FBS or complement. The average number of beads in granulocytes was significantly higher in the FBS injected group than the control (P < 0.01). The percentage of bead-ingesting plasmatocytes in complement inoculated ticks was significantly lower than that in heat-inactivated complement inoculated and control ticks (P < 0.05). Proteases of tick hemocytes localized in small granules in the cytoplasm not only in phagocytic hemocytes but also in prohemocytes. Results suggested modulation of tick hemocyte function through serum components, and digestion of phagocytosed foreign bodies in the hemocytes.

  13. Comparative Anatomy of Phagocytic and Immunological Synapses

    PubMed Central

    Niedergang, Florence; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-01-01

    The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated. PMID:26858721

  14. [Effect of hydroxyethyl starch, oxypolygelatin and human albumin on the phagocytic function of the reticuloendothelial system in healthy subjects].

    PubMed

    Lenz, G; Hempel, V; Junger, H; Werle, H; Buckenmaier, P

    1986-07-01

    RES phagocytic function was determined in healthy volunteers prior to and up to 5 h after application of 10 ml/kg body weight of 6% hydroxyethyl starch (450,000; 0.7), 5.5% oxypolygelatin (30,000), or 5.0% human albumin solution. Phagocytosis (phagocytic index K) was evaluated in vivo by intravascular lipid clearance (Lipofundin clearance test). Immediately after infusion, the phagocytic rate increased by 30% in the hydroxyethyl starch group (n = 10; p less than 0.05), 14% in the oxypolygelatin group (n = 10; ns), and 24% in the albumin group (n = 8; ns). 2 h after infusion phagocytosis was still increased by 35% in the hydroxyethyl starch group (n = 10; p less than 0.05), by 18% in the oxypolygelatin group (n = 10; ns), and 13% in the albumin group (n = 8; ns). 5 h after infusion, K values had returned to normal in the albumin group (n = 4), but were still increased by 40% in the hydroxyethyl starch group (n = 4; ns). No statistically significant differences could be established among the 3 groups. The increase in the phagocytic rate, particularly after application of hydroxyethyl starch, might be explained by a dilution effect.

  15. Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women

    PubMed Central

    Fagundes, Danny L. G.; Calderon, Iracema M. P.; França, Eduardo L.

    2013-01-01

    Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity. PMID:23437270

  16. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1

    PubMed Central

    Walsh, Naomi M.; Wuthrich, Marcel; Wang, Huafeng; Klein, Bruce; Hull, Christina M.

    2017-01-01

    Phagocytosis by innate immune cells is an important process for protection against multiple pathologies and is particularly important for resistance to infection. However, phagocytosis has also been implicated in the progression of some diseases, including the dissemination of the human fungal pathogen, Cryptococcus neoformans. Previously, we identified Dectin-1 as a likely phagocytic receptor for C. neoformans spores through the use of soluble components in receptor-ligand blocking experiments. In this study, we used gain-of-function and loss-of-function assays with intact cells to evaluate the in vivo role of Dectin-1 and other C-type lectins in interactions with C. neoformans spores and discovered stark differences in outcome when compared with previous assays. First, we found that non-phagocytic cells expressing Dectin-1 were unable to bind spores and that highly sensitive reporter cells expressing Dectin-1 were not stimulated by spores. Second, we determined that some phagocytes from Dectin-1-/- mice interacted with spores differently than wild type (WT) cells, but the effects varied among assays and were modest overall. Third, while we detected small but statistically significant reductions in phagocytosis by primary alveolar macrophages from Dectin-1-/- mice compared to WT, we found no differences in survival between WT and Dectin-1-/- mice challenged with spores. Further analyses to assess the roles of other C-type lectins and their adapters revealed very weak stimulation of Dectin-2 reporter cells by spores and modest differences in binding and phagocytosis by Dectin-2-/- bone marrow-derived phagocytes. There were no discernable defects in binding or phagocytosis by phagocytes lacking Mannose Receptor, Mincle, Card-9, or FcRγ. Taken together, these results lead to the conclusion that Dectin-1 and other C-type lectins do not individually play a major roles in phagocytosis and innate defense by phagocytes against C. neoformans spores and highlight challenges in using soluble receptor/ligand blocking experiments to recapitulate biologically relevant interactions. PMID:28282442

  17. Influence of the acute alcoholism on the phagocytic function of the mononuclear phagocytic system

    PubMed Central

    Sabino, KR; Petroianu, A; Alberti, LR

    2011-01-01

    Rationale:Alcoholics are more likely to have infections, mainly in the respiratory system. Alcohol seems to inhibit the immune system. Despite the extensive literature related to alcoholism, data related to the immune system are still not conclusive. Objective: The purpose of this study was to verify the influence of acute alcohol intake on colloid distribution in the organs of the mononuclear phagocyte system. Methods and Results: Thirteen male Swiss mice were divided into two groups: Group 1 (n = 5) – control, and Group 2 (n = 8) – animals that received 0.5 ml ethanol 50%, 30 minutes before the experiment. Colloidal sulphur labeled with ⁸⁸mTc was used to evaluate colloid distribution in the liver, spleen and lungs. Colloid clearance was assessed as well. A gamma camera was used to measure the radioactivity of these organs and of a blood clot. No difference was found in the presence of colloid in the organs of both groups. The liver showed the highest phagocytic intake, followed by the spleen and lungs (p = 0.021 for Group 1 and p = 0.003 for Group 2). A minimum amount of radiation remained in the blood of both groups. Discussion: According to the experiential conditions of this work, acute ingestion of alcohol did not interfere with the phagocytic function of the mononuclear phagocyte system in mice. PMID:22514578

  18. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis.

    PubMed

    Hirayama, Daisuke; Iida, Tomoya; Nakase, Hiroshi

    2017-12-29

    Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.

  19. Induced pluripotent stem cell-derived myeloid phagocytes: disease modeling and therapeutic applications.

    PubMed

    Goodridge, Helen S

    2014-06-01

    Myeloid phagocytes (neutrophils, monocytes, macrophages and dendritic cells) have key roles in immune defense, as well as in tissue repair and remodeling. Defective or dysregulated myeloid phagocyte production or function can cause immune dysfunction, blood cell malignancies and inflammatory diseases. The tumor microenvironment can also condition myeloid phagocytes to promote tumor growth. Studies of their physiological and pathophysiological roles and the mechanisms regulating their production and function are crucial for the identification of novel therapeutic targets. In this review, we examine the use of induced pluripotent stem cells to study myeloid phagocytes in human diseases and develop future therapeutic strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The biological function of antibodies induced by the RTS,S/AS01 malaria vaccine candidate is determined by their fine specificity.

    PubMed

    Chaudhury, Sidhartha; Ockenhouse, Christian F; Regules, Jason A; Dutta, Sheetij; Wallqvist, Anders; Jongert, Erik; Waters, Norman C; Lemiale, Franck; Bergmann-Leitner, Elke

    2016-05-31

    Recent vaccine studies have shown that the magnitude of an antibody response is often insufficient to explain efficacy, suggesting that characteristics regarding the quality of the antibody response, such as its fine specificity and functional activity, may play a major role in protection. Previous studies of the lead malaria vaccine candidate, RTS,S, have shown that circumsporozoite protein (CSP)-specific antibodies and CD4(+) T cell responses are associated with protection, however the role of fine specificity and biological function of CSP-specific antibodies remains to be elucidated. Here, the relationship between fine specificity, opsonization-dependent phagocytic activity and protection in RTS,S-induced antibodies is explored. A new method for measuring the phagocytic activity mediated by CSP-specific antibodies in THP-1 cells is presented and applied to samples from a recently completed phase 2 RTS,S/AS01 clinical trial. The fine specificity of the antibody response was assessed using ELISA against three antigen constructs of CSP: the central repeat region, the C-terminal domain and the full-length protein. A multi-parameter analysis of phagocytic activity and fine-specificity data was carried out to identify potential correlates of protection in RTS,S. Results from the newly developed assay revealed that serum samples from RTS,S recipients displayed a wide range of robust and repeatable phagocytic activity. Phagocytic activity was correlated with full-length CSP and C-terminal specific antibody titres, but not to repeat region antibody titres, suggesting that phagocytic activity is primarily driven by C-terminal antibodies. Although no significant difference in overall phagocytic activity was observed with respect to protection, phagocytic activity expressed as 'opsonization index', a relative measure that normalizes phagocytic activity with CS antibody titres, was found to be significantly lower in protected subjects than non-protected subjects. Opsonization index was identified as a surrogate marker of protection induced by the RTS,S/AS01 vaccine and determined how antibody fine specificity is linked to opsonization activity. These findings suggest that the role of opsonization in protection in the RTS,S vaccine may be more complex than previously thought, and demonstrate how integrating multiple immune measures can provide insight into underlying mechanisms of immunity and protection.

  1. Phagocyte dysfunction, tissue aging and degeneration

    PubMed Central

    2013-01-01

    Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. PMID:23748186

  2. Phagocytic cell function in active brucellosis.

    PubMed Central

    Ocon, P; Reguera, J M; Morata, P; Juarez, C; Alonso, A; Colmenero, J D

    1994-01-01

    In this study, we analyzed phagocytic cell function in 51 patients with active brucellosis and its relationship with different clinical, serological, and evolutionary variables. A control group was made up of 30 blood donors of similar geographic extraction, age, and sex, with no previous history of brucellosis or known exposure ot the infection or specific antibodies. The investigations were carried out at the time of diagnosis, at the conclusion of treatment, and after 6 months of follow-up. Polymorphonuclear leukocyte adherence and nitroblue tetrazolium reduction in response to Brucella antigen were significantly increased in the patients at the time of diagnosis with respect to the control group. In contrast, chemotaxis in response to Brucella antigen and phagocytosis were significantly reduced in the patients with respect to the control group. The alterations in phagocytic cell function were greater in patients with bacteremia, with focal forms of the disease, or with a longer diagnostic delay. Most of these initial alterations tended to normalize with treatment, indicating their transient character. PMID:8112863

  3. Phagocyte dysfunction, tissue aging and degeneration.

    PubMed

    Li, Wei

    2013-09-01

    Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Grouper (Epinephelus coioides) IL-34/MCSF2 and MCSFR1/MCSFR2 were involved in mononuclear phagocytes activation against Cryptocaryon irritans infection.

    PubMed

    Mo, Ze-Quan; Li, Yan-Wei; Zhou, Ling; Li, An-Xing; Luo, Xiao-Chun; Dan, Xue-Ming

    2015-03-01

    MCSF and its well-known receptor MCSFR had been well studied in humans, regulating the differentiation, proliferation, and survival of the mononuclear phagocyte system. IL-34, which is an alternative ligand of MCSF receptor, was recently identified as a novel cytokine and functionally overlaps with MCSF. However, the functional study of these receptors and their ligands in fish are largely unknown. In the present study, the cDNA of two potential grouper MCSFR ligands have been cloned, EcIL-34 (657 bp) and EcMCSF2 (804 bp), as well as an additional copy of grouper MCSFR, EcMCSFR2 (3141 bp). Sequence analysis showed that these three molecules had higher identities with other fish counterparts compared to mammals and their conserved structures and important functional residues were also analyzed. Tissue distribution analysis showed that EcIL-34 is dominant in brain, gill and spleen compared to EcMCSF2, which is dominant in head kidney, trunk kidney, skin, heart and muscle. EcMCSFR1 was dominant in the most tissues except head kidney and liver compared to EcMCSFR2. The different tissue distribution patterns of these two grouper MCSF receptors and their two ligands indicate the different mononuclear phagocyte differentiation and activation modes in different tissues. In Cryptocaryon irritans infected grouper, EcIL-34 and EcMCSFR2 were the most strongly up-regulated ligand and receptor in the infected sites, gill and skin. Their up-regulation confirmed the proliferation and activation of phagocytes in C. irritans infected sites, which would improve the antigen presentation and elicit the host local specific immune response. In C. irritans infected grouper head kidney, both ligands EcIL-34 and EcMCSF2 (especially EcMCSF2) were up-regulated, but both receptors EcMCSFR1 and EcMCSFR2 were down-regulated, which indicated that the phagocytes differentiation and proliferation may have occurred in this hemopoietic organ, and after that they migrated to the infected cites. The down-regulation of EcIL-34 and EcMCSF2 and no significant change of EcMCSFR1 and EcMCSFR2 in most time point of grouper spleen showed it was less involved in phagocytes response to C. irritans infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in Chronic Granulomatous Disease

    PubMed Central

    Fernandez-Boyanapalli, Ruby F.; Frasch, S. Courtney; Thomas, Stacey M.; Malcolm, Kenneth C.; Nicks, Michael; Harbeck, Ronald J.; Jakubzick, Claudia V.; Nemenoff, Raphael; Henson, Peter M.; Holland, Steven M.; Bratton, Donna L.

    2015-01-01

    Background Deficient production of reactive oxygen species (ROS) by the phagocyte NADPH oxidase in Chronic Granulomatous Disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. PPARγ agonists including pioglitazone (Pio), approved for Type 2 diabetes therapy, alter cellular metabolism and can heighten ROS production. It was hypothesized that Pio treatment of gp91phox−/− mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of S. aureus, a significant pathogen in this disorder. Objectives We sought to determine if Pio treatment of gp91phox−/− mice enhanced phagocyte oxidant production and host defense. Methods Wild type (WT) and gp91phox−/− mice were treated with the PPARγ agonist Pio, and phagocyte ROS and killing of S. aureus investigated. Results As demonstrated by three different ROS sensing probes, short-term treatment of gp91phox−/− mice with Pio enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS (mtROS). Findings were replicated in human CGD monocytes following ex vivo Pio treatment. Importantly, while mtROS were deficient in gp91phox−/− phagocytes, their restoration with treatment significantly enabled killing of S. aureus both ex vivo and in vivo. Conclusions Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production, and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD. PMID:25498313

  6. M-CSF Mediates Host Defense during Bacterial Pneumonia by Promoting the Survival of Lung and Liver Mononuclear Phagocytes.

    PubMed

    Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R Elaine; Vincent, Isaah S; Burdick, Marie D; Kadl, Alexandra; Mehrad, Borna

    2016-06-15

    Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. M-CSF mediates host defense during bacterial pneumonia by promoting the survival of lung and liver mononuclear phagocytes

    PubMed Central

    Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R. Elaine; Vincent, Isaah S.; Burdick, Marie D.; Kadl, Alexandra; Mehrad, Borna

    2016-01-01

    Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. Macrophage-colony stimulating factor (M-CSF) has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, the proliferation of precursors or the recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and anti-microbial functions of both lung and liver mononuclear phagocytes during pneumonia and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and anti-microbial functions of mononuclear phagocytes in the lungs and liver. PMID:27183631

  8. The modulatory role of cytokines IL-4 and IL-17 in the functional activity of phagocytes in diabetic pregnant women.

    PubMed

    Fagundes, Danny L G; França, Eduardo L; Gonzatti, Michelangelo B; Rugde, Marilza V C; Calderon, Iracema M P; Honorio-França, Adenilda C

    2018-01-01

    The study investigated the role of cytokines IL-4 and IL-17 in the modulation of the functional activity of mononuclear phagocytes in diabetic pregnant women with hyperglycemia. Sixty pregnant women were assigned to the following groups: nondiabetic (ND), mild gestational hyperglycemia (MGH), gestational diabetes mellitus (GDM), or type 2 diabetes mellitus (DM2). The functional activity of phagocytes from maternal blood, cord blood, and colostrum was assessed by determining their superoxide release, phagocytosis, microbicidal activity, and intracellular Ca 2+ release. Irrespective of glycemic status, colostrum and blood cells treated with IL-4 and IL-17 increased superoxide release in the presence of enteropathogenic Escherichia coli (EPEC). The highest phagocytosis rate was observed in cells from the DM2 group treated with IL-4. In all the groups, phagocytes from colostrum, maternal blood, and cord blood exhibited higher microbicidal activity against EPEC when treated with cytokines. IL-17 increased intracellular Ca 2+ release by colostrum phagocytes in diabetic groups. The results indicate that the IL-4 and IL-17 modulate the functional activity of phagocytes in the maternal blood, cord blood, and colostrum of diabetic mother. The natural immunity resulting from the interaction between the cells and cytokines tested may be an alternative procedure to improve the prognosis of maternal and newborn infections. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  9. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo.

    PubMed

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs.

  10. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo

    PubMed Central

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. PMID:26060398

  11. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart

    PubMed Central

    DeBerge, Matthew; Zhang, Shuang; Glinton, Kristofor; Grigoryeva, Luba; Hussein, Islam; Vorovich, Esther; Ho, Karen; Luo, Xunrong; Thorp, Edward B.

    2017-01-01

    Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells. During cardiac development, phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of aging, including myocardial infarction, heightened levels of cell death require efficient phagocytic debridement to salvage further loss of terminally differentiated adult cardiomyocytes. Additional risk factors, including insulin resistance and other systemic risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and delayed cardiac inflammation resolution. Under such conditions, inflammatory presentation of myocardial antigen may lead to autoimmunity and even possible rejection of transplanted heart allografts. Increased understanding of these basic mechanisms offers therapeutic opportunities. PMID:29163503

  12. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease.

    PubMed

    Fernandez-Boyanapalli, Ruby F; Frasch, S Courtney; Thomas, Stacey M; Malcolm, Kenneth C; Nicks, Michael; Harbeck, Ronald J; Jakubzick, Claudia V; Nemenoff, Raphael; Henson, Peter M; Holland, Steven M; Bratton, Donna L

    2015-02-01

    Deficient production of reactive oxygen species (ROS) by the phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase in patients with chronic granulomatous disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. Peroxisome proliferator-activated receptor (PPAR) γ agonists, including pioglitazone, approved for type 2 diabetes therapy alter cellular metabolism and can heighten ROS production. It was hypothesized that pioglitazone treatment of gp91(phox-/-) mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of Staphylococcus aureus, a significant pathogen in patients with this disorder. We sought to determine whether pioglitazone treatment of gp91(phox-/-) mice enhanced phagocyte oxidant production and host defense. Wild-type and gp91(phox-/-) mice were treated with the PPARγ agonist pioglitazone, and phagocyte ROS and killing of S aureus were investigated. As demonstrated by 3 different ROS-sensing probes, short-term treatment of gp91(phox-/-) mice with pioglitazone enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS. Findings were replicated in human monocytes from patients with CGD after ex vivo pioglitazone treatment. Importantly, although mitochondrial (mt)ROS were deficient in gp91(phox-/-) phagocytes, their restoration with treatment significantly enabled killing of S aureus both ex vivo and in vivo. Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Microautophagy in nutritive phagocytes of sea urchins.

    PubMed

    Kalachev, Alexander V; Yurchenko, Olga V

    2017-01-01

    Two types of cells were observed in germinative epithelium of male and female sea urchins: germ cells and somatic accessory cells; the latter referred to as nutritive phagocytes. At the onset of gametogenesis, nutritive phagocytes accumulate nutrients and greatly increase in their size. As gametogenesis progresses, the accumulated nutrients are transferred from nutritive phagocytes into developing gametes, and size of the nutritive phagocytes decreases. An electron microscopic study of nutritive phagocytes in sea urchins, Strongylocentrotus intermedius, at different stages of annual reproductive cycle showed for the first time that both macro- and microautophagy take place in nutritive phagocytes. Both processes occur simultaneously and regulate size and composition of nutritive phagocytes in male and female sea urchins. Nutritive phagocytes consume redundant cytoplasm via macroautophagy. Microautophagy is probably involved in consumption of redundant membranes that appear within nutritive phagocytes due to destruction of nutrient-storing globules, macroautophagy, and phagocytosis of germ cells or their remnants.

  14. Plasticity of Human THP-1 Cell Phagocytic Activity during Macrophagic Differentiation.

    PubMed

    Kurynina, A V; Erokhina, M V; Makarevich, O A; Sysoeva, V Yu; Lepekha, L N; Kuznetsov, S A; Onishchenko, G E

    2018-03-01

    Studies of the role of macrophages in phagocytosis are of great theoretical and practical importance for understanding how these cells are involved in the organism's defense response and in the development of various pathologies. Here we investigated phagocytic plasticity of THP-1 (acute monocytic human leukemia) cells at different stages (days 1, 3, and 7) of phorbol ester (PMA)-induced macrophage differentiation. Analysis of cytokine profiles showed that PMA at a concentration of 100 nM induced development of the proinflammatory macrophage population. The functional activity of macrophages was assessed on days 3 and 7 of differentiation using unlabeled latex beads and latex beads conjugated with ligands (gelatin, mannan, and IgG Fc fragment) that bind to the corresponding specific receptors. The general phagocytic activity increased significantly (1.5-2.0-fold) in the course of differentiation; phagocytosis occurred mostly through the Fc receptors, as shown previously for M1 macrophages. On day 7, the levels of phagocytosis of gelatin- and Fc-covered beads were high; however, the intensity of ingestion of mannan-conjugated beads via mannose receptors increased 2.5-3.0-fold as well, which indicated formation of cells with an alternative phenotype similar to that of M2 macrophages. Thus, the type and the plasticity of phagocytic activity at certain stages of macrophage differentiation can be associated with the formation of functionally mature morphological phenotype. This allows macrophages to exhibit their phagocytic potential in response to specific ligands. These data are of fundamental importance and can be used to develop therapeutic methods for correcting the M1/M2 macrophage ratio in an organism.

  15. Intestinal Mononuclear Phagocytes in Health and Disease.

    PubMed

    Sanders, Theodore J; Yrlid, Ulf; Maloy, Kevin J

    2017-01-01

    The intestine is the tissue of the body with the highest constitutive exposure to foreign antigen and is also a common entry portal for many local and systemic pathogens. Therefore, the local immune system has the unenviable task of balancing efficient responses to dangerous pathogens with tolerance toward beneficial microbiota and food antigens. As in most tissues, the decision between tolerance and immunity is critically governed by the activity of local myeloid cells. However, the unique challenges posed by the intestinal environment have necessitated the development of several specialized mononuclear phagocyte populations with distinct phenotypic and functional characteristics that have vital roles in maintaining barrier function and immune homeostasis in the intestine. Intestinal mononuclear phagocyte populations, comprising dendritic cells and macrophages, are crucial for raising appropriate active immune responses against ingested pathogens. Recent technical advances, including microsurgical approaches allowing collection of cells migrating in intestinal lymph, intravital microscopy, and novel gene-targeting approaches, have led to clearer distinctions between mononuclear phagocyte populations in intestinal tissue. In this review, we present an overview of the various subpopulations of intestinal mononuclear phagocytes and discuss their phenotypic and functional characteristics. We also outline their roles in host protection from infection and their regulatory functions in maintaining immune tolerance toward beneficial intestinal antigens.

  16. Effect of cefodizime and ceftriaxone on phagocytic function in patients with severe infections.

    PubMed Central

    Wenisch, C; Parschalk, B; Hasenhündl, M; Wiesinger, E; Graninger, W

    1995-01-01

    Thirty patients with severe bacterial infections were treated with 50 mg of cefodizime per kg of body weight once daily or 50 mg of ceftriaxone per kg once daily for 10 +/- 3 days. The effect of cefodizime and ceftriaxone on the phagocytic capacity and generation of reactive oxygen intermediates after phagocytosis by granulocytes was assessed prior to, during, and after therapy. Flow cytometry was used to study phagocytic capacity by measuring the uptake of fluorescein-labeled bacteria. The generation of reactive oxygen intermediates after phagocytosis was estimated by the quantification of the intracellular conversion of dihydrorhodamine 123 to rhodamine 123. Prior to therapy, patients in both groups exhibited a decreased capacity to phagocytize Escherichia coli and subsequently to generate reactive oxygen intermediates. Granulocyte function increased after the initiation of therapy and normalized within 7 days for the ceftriaxone-treated patients and within 3 days for the cefodizime group (P < 0.05). In the cefodizime group, an enhancement of phagocytic capacity was observed 14 days after the initiation of therapy (P < 0.05). Prior to therapy, phagocytic capacity was significantly correlated with the generation of reactive oxygen products (r = 0.674 and P < 0.005). PMID:7793871

  17. Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling.

    PubMed

    Alvarez-Zarate, Julian; Matlung, Hanke L; Matozaki, Takashi; Kuijpers, Taco W; Maridonneau-Parini, Isabelle; van den Berg, Timo K

    2015-01-01

    Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling.

  18. Phagocyte-Myocyte Interactions and Consequences during Hypoxic Wound Healing

    PubMed Central

    Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, KJ; Hudson, Barry; Thorp, Edward

    2014-01-01

    Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. PMID:24862542

  19. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein

    PubMed Central

    Park, Daeho; Han, Claudia; Elliott, Michael R.; Kinchen, Jason M.; Trampont, Paul C.; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J.; Hoehn, Kyle L.; Ravichandran, Kodi S.

    2012-01-01

    Rapid and efficient removal of apoptotic cells by phagocytes plays a key role during development, tissue homeostasis, and in controlling immune responses1–5. An important feature of efficient clearance is the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the increased load of corpse-derived cellular material6–9. However, factors that influence sustained phagocytic capacity or how they in turn influence continued clearance by phagocytes are not known. Here we identify that the ability of a phagocyte to control its mitochondrial membrane potential is a critical factor in the capacity of a phagocyte to engulf apoptotic cells. Changing the phagocyte mitochondrial membrane potential (genetically or pharmacologically) significantly affected phagocytosis, with lower potential enhancing engulfment and higher membrane potential inhibiting uptake. We then identified that Ucp2, a mitochondrial membrane protein that acts to lower the mitochondrial membrane potential10–12, is upregulated in phagocytes engulfing apoptotic cells (but not synthetic targets, bacteria, or yeast). Loss of Ucp2 limited the capacity of phagocytes to continually ingest apoptotic cells, while overexpression of Ucp2 increased the capacity for engulfment and the ability to engulf multiple apoptotic cells. Mutational and pharmacological inhibition of Ucp2 uncoupling activity reversed the positive effect of Ucp2 on engulfment capacity, suggesting a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice13, 14 were impaired in their capacity to engulf apoptotic cells in vitro, and Ucp2-deficient mice displayed profound in vivo defects in clearing dying cells in the thymus and the testes. Collectively, these data suggest that phagocytes alter the mitochondrial membrane potential during engulfment to regulate uptake of sequential apoptotic cells, and that Ucp2 is a key molecular determinant of this step in vivo. Since Ucp2 function has also been linked to metabolic diseases and atherosclerosis14–16, these data identifying a new role for Ucp2 in regulating apoptotic cell clearance may provide additional insights toward understanding the complex etiology and pathogenesis of these diseases. PMID:21857682

  20. Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling

    PubMed Central

    Alvarez-Zarate, Julian; Matlung, Hanke L.; Matozaki, Takashi; Kuijpers, Taco W.; Maridonneau-Parini, Isabelle; van den Berg, Timo K.

    2015-01-01

    Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling. PMID:26057870

  1. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; McAndrew, Elizabeth G; Tsoukas, Stephen; Licht, Anna F; Irvine, Darrell J; Alter, Galit

    2013-05-01

    While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.

  2. Role of caspofungin in restoring the impaired phagocyte-dependent innate immunity towards Candida albicans in chronic haemodialysis patients.

    PubMed

    Scalas, Daniela; Banche, Giuliana; Merlino, Chiara; Giacchino, Franca; Allizond, Valeria; Garneri, Giuseppe; Patti, Rosaria; Roana, Janira; Mandras, Narcisa; Tullio, Vivian; Cuffini, Anna Maria

    2012-01-01

    Phagocyte-dependent cellular immunity in chronic kidney disease patients undergoing haemodialysis treatment is frequently impaired owing to the uraemic state, resulting in an intrinsic susceptibility to developing invasive fungal infections with high mortality rates. Since synergism between phagocytic cells and antifungal drugs may be crucial for successful therapy, the aim of this study was to evaluate the effects exerted by caspofungin (CAS) on the functional activities of polymorphonuclear cells (PMNs) in haemodialysed patients (HDs) towards Candida albicans compared with those of PMNs from healthy subjects (HSs). PMNs were separated from venous blood samples of 66 HDs and 30 HSs (as controls), and measurement of phagocytic and intracellular fungicidal activities of HD-PMNs and HS-PMNs was performed in the presence of CAS at the minimum inhibitory concentration (MIC) and at sub-MICs. CAS-free controls were also included. In the drug-free test condition, no significant difference between the phagocytic activity of HD-PMNs and HS-PMNs was detected. In contrast, a progressive decline in the intracellular killing activity of HD-PMNs against proliferating yeasts was observed. CAS at MIC and sub-MIC levels was able to improve significantly the intracellular fungicidal activity of HD-PMNs against C. albicans, restoring their functionality. These findings provide evidence that CAS exerts a synergistic effect on HD-PMNs against C. albicans, being able to strength the depressed intracellular killing activity. These results corroborate the use of CAS as an effective therapeutic option for the treatment of invasive fungal infections in HDs, in whom even a marginal influence of antifungal drugs on host response may have a relevant effect. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  3. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat.

    PubMed

    Tartaro, Karrie; VanVolkenburg, Maria; Wilkie, Dean; Coskran, Timothy M; Kreeger, John M; Kawabata, Thomas T; Casinghino, Sandra

    2015-01-01

    The mononuclear phagocyte system (MPS) which provides protection against infection is made up of phagocytic cells that engulf and digest bacteria or other foreign substances. Suppression of the MPS may lead to decreased clearance of pathogenic microbes. Drug delivery systems and immunomodulatory therapeutics that target phagocytes have a potential to inhibit MPS function. Available methods to measure inhibition of MPS function use uptake of radioactively-labeled cells or labor-intensive semi-quantitative histologic techniques. The objective of this work was to develop a non-radioactive quantitative method to measure MPS function in vivo by administering heat-killed E. coli conjugated to a pH-sensitive fluorescent dye (Bioparticles(®)). Fluorescence of the Bioparticles(®) is increased at low pH when they are in phagocytic lysosomes. The amount of Bioparticles(®) phagocytosed by MPS organs in rats was determined by measuring fluorescence intensity in livers and spleens ex vivo using an IVIS(®) Spectrum Pre-clinical In Vivo Imaging System. Phagocytosis of the particles by peripheral blood neutrophils was measured by flow cytometry. To assess method sensitivity, compounds likely to suppress the MPS [clodronate-containing liposomes, carboxylate-modified latex particles, maleic vinyl ether (MVE) polymer] were administered to rats prior to injection of the Bioparticles(®). The E. coli particles consistently co-localized with macrophage markers in the liver but not in the spleen. All of the compounds tested decreased phagocytosis in the liver, but had no consistent effects on phagocytic activity in the spleen. In addition, administration of clodronate liposomes and MVE polymer increased the percentage of peripheral blood neutrophils that phagocytosed the Bioparticles(®). In conclusion, an in vivo rat model was developed that measures phagocytosis of E. coli particles in the liver and may be used to assess the impact of test compounds on MPS function. Still, the detection of inhibition of splenic macrophage function will require further assay development.

  4. [EFFICIENCY OF COMBINATION OF ROFLUMILAST AND QUERCETIN FOR CORRECTION OXYGEN- INDEPENDENT MECHANISMS AND PHAGOCYTIC ACTIVITY OF MACROPHAGE CELLS OF PATIENTS WITH ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE WHEN COMBINED WITH CORONARY HEART DISEASE].

    PubMed

    Gerych, P; Yatsyshyn, R

    2015-01-01

    Studied oxygen independent reaction and phagocytic activity of macrophage cells of patients with chronic obstructive pulmonary disease (COPD) II-III stage when combined with coronary heart disease (CHD). The increasing oxygen independent reactions monocytes and neutrophils and a decrease of the parameters that characterize the functional state of phagocytic cells, indicating a decrease in the functional capacity of macrophage phagocytic system (MPS) in patients with acute exacerbation of COPD, which runs as its own or in combination with stable coronary heart disease angina I-II. FC. Severity immunodeficiency state in terms of cellular component of nonspecific immunity in patients with acute exacerbation of COPD II-III stage in conjunction with the accompanying CHD increases with the progression of heart failure. Inclusion of basic therapy of COPD exacerbation and standard treatment of coronary artery disease and drug combinations Roflumilastand quercetin causes normalization of phagocytic indices MFS, indicating improved immune status and improves myocardial perfusion in terms of daily ECG monitoring.

  5. Phagocyte-myocyte interactions and consequences during hypoxic wound healing.

    PubMed

    Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, Ki-Jong; Hudson, Barry; Thorp, Edward B

    2014-01-01

    Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Ovarian phagocyte subsets and their distinct tissue distribution patterns.

    PubMed

    Carlock, Colin; Wu, Jean; Zhou, Cindy; Ross, April; Adams, Henry; Lou, Yahuan

    2013-01-01

    Ovarian macrophages, which play critical roles in various ovarian events, are probably derived from multiple lineages. Thus, a systemic classification of their subsets is a necessary first step for determination of their functions. Utilizing antibodies to five phagocyte markers, i.e. IA/IE (major histocompatibility complex class II), F4/80, CD11b (Mac-1), CD11c, and CD68, this study investigated subsets of ovarian phagocytes in mice. Three-color immunofluorescence and flow cytometry, together with morphological observation on isolated ovarian cells, demonstrated complicated phenotypes of ovarian phagocytes. Four macrophage and one dendritic cell subset, in addition to many minor phagocyte subsets, were identified. A dendritic cell-like population with a unique phenotype of CD11c(high)IA/IE⁻F4/80⁻ was also frequently observed. A preliminary age-dependent study showed dramatic increases in IA/IE⁺ macrophages and IA/IE⁺ dendritic cells after puberty. Furthermore, immunofluorescences on ovarian sections showed that each subset displayed a distinct tissue distribution pattern. The pattern for each subset may hint to their role in an ovarian function. In addition, partial isolation of ovarian macrophage subset using CD11b antibodies was attempted. Establishment of this isolation method may have provided us a tool for more precise investigation of each subset's functions at the cellular and molecular levels.

  7. Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics

    PubMed Central

    Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej

    2017-01-01

    Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes—contained in granules—that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy. The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy. PMID:28613272

  8. Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics.

    PubMed

    Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej

    2017-06-14

    Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes-contained in granules-that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy . The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy.

  9. The Peyer’s Patch Mononuclear Phagocyte System at Steady State and during Infection

    PubMed Central

    Da Silva, Clément; Wagner, Camille; Bonnardel, Johnny; Gorvel, Jean-Pierre; Lelouard, Hugues

    2017-01-01

    The gut represents a potential entry site for a wide range of pathogens including protozoa, bacteria, viruses, or fungi. Consequently, it is protected by one of the largest and most diversified population of immune cells of the body. Its surveillance requires the constant sampling of its encounters by dedicated sentinels composed of follicles and their associated epithelium located in specialized area. In the small intestine, Peyer’s patches (PPs) are the most important of these mucosal immune response inductive sites. Through several mechanisms including transcytosis by specialized epithelial cells called M-cells, access to the gut lumen is facilitated in PPs. Although antigen sampling is critical to the initiation of the mucosal immune response, pathogens have evolved strategies to take advantage of this permissive gateway to enter the host and disseminate. It is, therefore, critical to decipher the mechanisms that underlie both host defense and pathogen subversive strategies in order to develop new mucosal-based therapeutic approaches. Whereas penetration of pathogens through M cells has been well described, their fate once they have reached the subepithelial dome (SED) remains less well understood. Nevertheless, it is clear that the mononuclear phagocyte system (MPS) plays a critical role in handling these pathogens. MPS members, including both dendritic cells and macrophages, are indeed strongly enriched in the SED, interact with M cells, and are necessary for antigen presentation to immune effector cells. This review focuses on recent advances, which have allowed distinguishing the different PP mononuclear phagocyte subsets. It gives an overview of their diversity, specificity, location, and functions. Interaction of PP phagocytes with the microbiota and the follicle-associated epithelium as well as PP infection studies are described in the light of these new criteria of PP phagocyte identification. Finally, known alterations affecting the different phagocyte subsets during PP stimulation or infection are discussed. PMID:29038658

  10. Effect of phenolic extracts from different extra-virgin olive oil varieties on osteoblast-like cells.

    PubMed

    Melguizo-Rodríguez, Lucía; Ramos-Torrecillas, Javier; Manzano-Moreno, Francisco Javier; Illescas-Montes, Rebeca; Rivas, Ana; Ruiz, Concepción; De Luna-Bertos, Elvira; García-Martínez, Olga

    2018-01-01

    The reported incidence of osteoporosis is lower in countries in which the Mediterranean diet predominates, and this apparent relationship may be mediated by the phenolic compounds present in olive oil. The objective of this study was to determine the effect of phenolic extracts from different varieties of extra-virgin olive oil (Picual, Arbequina, Picudo, and Hojiblanca) on the differentiation, antigenic expression, and phagocytic capacity of osteoblast-like MG-63 cells. At 24 h of treatment a significant increase in phosphatase alkaline activity and significant reductions in CD54, CD80, and HLA-DR expression and in phagocytic activity were observed in comparison to untreated controls. The in vitro study performed has demonstrated that phenolic compounds from different extra virgin olive oil varieties can modulate different parameters related to osteoblast differentiation and function.

  11. In vitro immunotoxicity assessment of culture-derived extracellular vesicles in human monocytes

    PubMed Central

    Rosas, Lucia E.; Elgamal, Ola A.; Mo, Xiaokui; Phelps, Mitch A.; Schmittgen, Thomas D.; Papenfuss, Tracey L.

    2016-01-01

    The potential to engineer extracellular vesicles (EV) that target specific cells and deliver a therapeutic payload has propelled a growing interest in their development as promising therapeutics. These EV are often produced from cultured cells. Very little is known about the interaction of cell culture-derived EV with cells of the immune system and their potential immunomodulatory effects. The present study evaluated potential immunotoxic effects of HEK293T-derived EV on the human monocytic cell lines THP-1 and U937. Incubation of cells with different doses of EV for 16–24 h was followed by assessment of cytotoxicity and cell function by flow cytometry. Changes in cell functionality were evaluated by the capacity of cells to phagocytize fluorescent microspheres. In addition, the internalization of labeled EV in THP-1 and U937 cells was evaluated. Exposure to EV did not affect the viability of THP-1 or U937 cells. Although lower doses of the EV increased phagocytic capacity in both cell lines, phagocytic efficiency of individual cells was not affected by EV exposure at any of the doses evaluated. This study also demonstrated that THP-1 and U937 monocytic cells are highly permissive to EV entry in a dose-response manner. These results suggest that, although HEK293T-derived EV are efficiently internalized by human monocytic cells, they do not exert a cytotoxic effect or alter phagocytic efficiency on the cell lines evaluated. PMID:27075513

  12. Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.

    PubMed

    Lovewell, Rustin R; Collins, Ryan M; Acker, Julie L; O'Toole, George A; Wargo, Matthew J; Berwin, Brent

    2011-09-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.

  13. Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion

    PubMed Central

    Lovewell, Rustin R.; Collins, Ryan M.; Acker, Julie L.; O'Toole, George A.; Wargo, Matthew J.; Berwin, Brent

    2011-01-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria. PMID:21949654

  14. The cytochemical and ultrastructural characteristics of phagocytes in the Pacific oyster Crassostrea gigas.

    PubMed

    Jiang, Shuai; Jia, Zhihao; Xin, Lusheng; Sun, Ying; Zhang, Ran; Wang, Weilin; Wang, Lingling; Song, Linsheng

    2016-08-01

    Phagocytes have been proved to play vital roles in the innate immune response. However, the cellular characteristics of phagocytes in invertebrates, especially in molluscs, remain largely unknown. In the present study, fluorescence activated cell sorting (FACS) was employed to sort the phagocytes from the non-phagocytic haemocytes of the Pacific oyster Crassostrea gigas. The cytochemical staining analysis revealed that phagocytes were positive staining for α-naphthyl acetate esterase and myeloperoxidase, while negative staining for toluidine blue and periodic acid-Schiff. The non-phagocytic haemocytes exhibited positive staining for periodic acid-Schiff, weak positive staining for toluidine blue, but negative staining for α-naphthyl acetate esterase and myeloperoxidase. In addition, phagocytes exhibited ultrastructural cellular features similar to those of macrophages, with large cell diameter, rough cell membrane and extended pseudopodia revealed by the scanning electron microscopy, while the non-phagocytic haemocytes exhibited small cell diameter, smooth cell surface and round spherical shape. Transmission electron microscopy further demonstrated that phagocytes were abundant of cytoplasmic bodies and mitochondria, while non-phagocytic haemocytes were characterized as the comparatively large cell nucleus with contorted and condensed heterochromatin adherent to the nuclear envelope. Moreover, compared with non-phagocytic haemocytes, phagocytes exhibited significantly higher levels of intracellular cytokines, including tumor necrosis factor, interferon-like protein and interleukin-17, and significantly higher abundance of lysosome and reactive oxygen species, which were of great importance to the activation of immune response and pathogen clearance. Taken together, these findings revealed the different cytochemical and ultrastructural features between phagocytes and non-phagocytic haemocytes in C. gigas, which would provide an important clue to investigate the mechanism of phagocytosis underlying the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of in vivo exposure of Mya arenaria to organic and inorganic mercury on phagocytic activity of hemocytes.

    PubMed

    Fournier, M; Pellerin, J; Clermont, Y; Morin, Y; Brousseau, P

    2001-03-28

    Marine bivalves are aquatic invertebrate organisms which can be used as bioindicators in environmental monitoring. In vivo effects of mercuric chloride (HgCl(2)) and methylmercury (CH(3)HgCl) on phagocytic function of Mya arenaria hemocytes were evaluated in this study. Clams were exposed to single metal in water for up to 28 days at concentrations ranging from 10(-9) to 10(-5) M. Phagocytic activity of hemocytes was determined by uptake of fluorescent microspheres and flow cytometry. All clams exposed to 10(-5) M HgCl(2) died by day 7 of exposure. The viability of hemocytes was decreased only in clams exposed to 10(-6) M HgCl(2) for 28 days. A significant decrease in phagocytic activity of hemocytes was observed in clams exposed to 10(-6) M of HgCl(2) for 28 days. A similar pattern was observed with CH(3)HgCl, but at an earlier time. Chemical analysis performed on the tissues of the animals clearly show a greater uptake of the organic form of mercury by clams. Furthermore, a clear correlation was established between body burden of mercury and effects on phagocytic activity of hemocytes. Overall, the results of this study show that both speciations of mercury inhibited phagocytic function of Mya arenaria hemocytes following in vivo exposures.

  16. Sword and shield: linked group B streptococcal beta-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense.

    PubMed

    Liu, George Y; Doran, Kelly S; Lawrence, Toby; Turkson, Nicole; Puliti, Manuela; Tissi, Luciana; Nizet, Victor

    2004-10-05

    Group B Streptococcus (GBS) is a major cause of pneumonia, bacteremia, and meningitis in neonates and has been found to persist inside host phagocytic cells. The pore-forming GBS beta-hemolysin/cytolysin (betaH/C) encoded by cylE is an important virulence factor as demonstrated in several in vivo models. Interestingly, cylE deletion results not only in the loss of betaH/C activity, but also in the loss of a carotenoid pigment of unknown function. In this study, we sought to define the mechanism(s) by which cylE may contribute to GBS phagocyte resistance and increased virulence potential. We found that cylE-deficient GBS was more readily cleared from a mouse's bloodstream, human whole blood, and isolated macrophage and neutrophil cultures. Survival was linked to the ability of betaH/C to induce cytolysis and apoptosis of the phagocytes. At a lower bacterial inoculum, cylE also contributed to enhanced survival within phagocytes that was attributed to the ability of carotenoid to shield GBS from oxidative damage. In oxidant killing assays, cylE mutants were shown to be more susceptible to hydrogen peroxide, hypochlorite, superoxide, and singlet oxygen. Together, these data suggest a mechanism by which the linked cylE-encoded phenotypes, betaH/C (sword) and carotenoid (shield), act in partnership to thwart the immune phagocytic defenses.

  17. Isolation and functional characteristics of adherent phagocytic cells from mouse Peyer's patches.

    PubMed Central

    MacDonald, T T; Carter, P B

    1982-01-01

    Attempts were made to isolate adherent phagocytic cells (macrophages) from mouse Peyer's patch cell suspensions. Cell suspensions prepared by teasing apart the Peyer's patches contained no adherent phagocytic cells. However, if Peyer's patch fragments were treated with collagenase to disrupt the tissue matrix, cells prepared in this way contained a subpopulation of adherent phagocytic cells. These cells comprised only 0.1-0.2% of the total nucleated cell population of the Peyer's patch. Similar cells could also be isolated from the Peyer's patches of germ-free mice, but as judged by their ability to ingest opsonized erythrocytes, these cells were less activated than cells from the Peyer's patches of normal mice. Adherent cells from the Peyer's patches of normal mice could present antigen (ovalbumin) to T cells, and Peyer's patches cell suspensions containing adherent cells could be stimulated in vitro to produce an anti-sheep red blood cell plaque-forming cell response in the absence of 2-mercaptoethanol. These studies show that although the frequency of phagocytic adherent cells is extremely low in Peyer's patches, these cells have functions consistent with that of adherent cells in other lymphoid tissues. PMID:7068173

  18. Phagocytizing activity of PMN from severe trauma patients in different post-traumatic phases during the 10-days post-injury course.

    PubMed

    Sturm, Ramona; Heftrig, David; Mörs, Katharina; Wagner, Nils; Kontradowitz, Kerstin; Jurida, Katrin; Marzi, Ingo; Relja, Borna

    2017-02-01

    Phagocytizing leukocytes (granulocytes and monocytes) play a fundamental role in immunological defense against pathogens and clearance of cellular debris after tissue injury due to trauma. According to the "two-hit hypothesis", phagocytes become primed due to/after trauma. Subsequently, a secondary stimulus may lead to their exaggerated response. This immune dysfunction can result in serious infectious complications, also depending on trauma injury pattern. Here, we investigated the phagocytizing capacity of leukocytes, and its correlation to trauma injury pattern. Peripheral whole blood was taken daily from 29 severely injured trauma patients (TP, Injury Severity Score, ISS≥28) for ten days (1-10) following admission to the emergency department (ED). Sixteen healthy volunteers served as controls (HV). Samples were incubated with opsonized Staphylococcus aureus labelled with pHrodo fluorescent reagent and the percentage of phagocytizing activity was assessed by flow cytometry. Abbreviated Injury Scales (AIS)≥3 of head, chest and extremities were used for injury pattern analysis. Overall distribution of active phagocytes (out of 100% phagocytizing leukocytes) in TP included granulocytes with 28.6±1.5% and monocytes with 59.3±1.9% at ED, and was comparable to HV (31.5±1.6% granulocytes and 60.1±1.6% monocytes). The percentage of phagocytizing granulocytes increased significantly after D2 (39.1±1.2%), while the percentage of phagocytizing monocytes (52.0±1.2%, p<0.05) decreased after D2. These changes persisted during the whole time course. Phagocytizing activity of granulocytes (27.9±2.8%) and monocytes (55.2±3.3%) was significantly decreased at ED compared to HV (42.4±4.1% and 78.1±3.1%, respectively). After D2 up to D10, phagocytizing activity was significantly enhanced in granulocytes. Phagocytizing activity of monocytes remained decreased on D1 and has risen continuously during the ten days time course to values comparable to HV. No significant differences in phagocytosis could be associated to certain injury pattern. Our data demonstrate that the increasing percentage of phagocytizing granulocytes may indicate their enhanced mobilization out of bone marrow persisting until post-injury day 10. Furthermore, an initially decreased phagocytizing activity of granulocytes is strongly increased in the 10-days post-injury course. The altered activity of phagocytes due to injury could not be linked to any trauma injury pattern, and emerged rather as a general characteristic of phagocytes after severe trauma. Copyright © 2016. Published by Elsevier GmbH.

  19. Reactivity of airway phagocytes during the development of acute pneumonia under conditions of stimulation of mononuclear phagocyte system with zymosan.

    PubMed

    Makarova, O P

    2008-12-01

    Pneumonia was induced in (CBA x C57Bl)F1 mice under conditions of stimulation of the mononuclear phagocyte system with zymosan. The number of neutrophils in airways increased after 3 days; by day 14, the number of cells in the bronchoalveolar lavage fluid further increased due to migration of macrophages. After zymosan prestimulation, the number and functional activity of neutrophils during the early period of inflammation (3 days) did not change, but the increase in phagocytic activity of macrophages was inhibited by 20%. By day 14, the effect of prestimulation manifested in 4.5-fold decreased capacity of neutrophils and macrophages to reduce NBT.

  20. The Biological Function of Antibodies Induced by the RTS,S/AS01 Malaria Vaccine Candidate is Determined by Their Fine Specificity

    DTIC Science & Technology

    2016-05-31

    specificity, opsonization‑dependent phagocytic activity and protection in RTS,S‑induced antibodies is explored. Methods: A new method for measuring...the phagocytic activity mediated by CSP‑specific antibodies in THP‑1 cells is presented and applied to samples from a recently completed phase 2 RTS,S...repeat region, the C‑terminal domain and the full‑length protein. A multi‑parameter analysis of phagocytic activity and fine‑specific‑ ity data was

  1. Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes.

    PubMed

    Desch, A Nicole; Gibbings, Sophie L; Goyal, Rajni; Kolde, Raivo; Bednarek, Joe; Bruno, Tullia; Slansky, Jill E; Jacobelli, Jordan; Mason, Robert; Ito, Yoko; Messier, Elise; Randolph, Gwendalyn J; Prabagar, Miglena; Atif, Shaikh M; Segura, Elodie; Xavier, Ramnik J; Bratton, Donna L; Janssen, William J; Henson, Peter M; Jakubzick, Claudia V

    2016-03-15

    The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.

  2. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood ( n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  3. Differentiation and Glucocorticoid Regulated Apopto-Phagocytic Gene Expression Patterns in Human Macrophages. Role of Mertk in Enhanced Phagocytosis

    PubMed Central

    Zahuczky, Gábor; Kristóf, Endre; Majai, Gyöngyike; Fésüs, László

    2011-01-01

    The daily clearance of physiologically dying cells is performed safely mainly by cells in the mononuclear phagocyte system. They can recognize and engulf dying cells utilizing several cooperative mechanisms. In our study we show that the expression of a broad range of apopto-phagocytic genes is strongly up-regulated during differentiation of human monocytes to macrophages with different donor variability. The glucocorticoid dexamethasone has a profound effect on this process by selectively up-regulating six genes and down-regulating several others. The key role of the up-regulated mer tyrosine kinase (Mertk) in dexamethasone induced enhancement of phagocytosis could be demonstrated in human monocyte derived macrophages by gene silencing as well as blocking antibodies, and also in a monocyte-macrophage like cell line. However, the additional role of other glucocorticoid induced elements must be also considered since the presence of autologous serum during phagocytosis could almost completely compensate for the blocked function of Mertk. PMID:21731712

  4. Specific and non-overlapping functions of testosterone and 11-ketotestosterone in the regulation of professional phagocyte responses in the teleost fish gilthead seabream.

    PubMed

    Aguila, S; Castillo-Briceño, P; Sánchez, M; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2013-03-01

    Sex hormones, both estrogens and androgens, have a strong impact on immunity in mammals. In fish, the role of androgens in immunity has received little attention and contradictory conclusions have been obtained. However, it is well known that sex steroids are involved in fish growth, osmoregulation and gonad remodelation. In this study, we examine the in vitro effects of testosterone and 11-ketotestosterone, the two main fish androgens, on the professional phagocytes of the teleost fish gilthead seabream (Sparus aurata L.). Although both testosterone and 11-ketotestosterone failed to modulate the respiratory burst of seabream phagocytes, testosterone but not 11-ketotestosterone was able to increase the phagocytic ability of non-activated phagocytes. Curiously, 11-ketotestosterone was more powerful than testosterone at inducing the expression of its own receptor, namely androgen receptor b (ARb), in acidophilic granulocytes (AGs), but none of them affected the basal ARb expression levels in macrophages (MØ). Furthermore, although physiological concentrations of testosterone exerted a pro-inflammatory effect on both AGs and MØs, 11-ketotestosterone showed an anti-inflammatory effect in AGs and a strong pro-inflammatory effect in MØs. Interestingly, both androgens modulated the expression of toll-like receptors in these two immune cell types, suggesting that androgens might regulate the sensitivity of phagocytes to pathogens and damage signals. Testosterone and 11-ketotestosterone have a competitive effect, at least, on the modulation of the expression of some genes. Therefore, our results show for the first time a non-overlapping role for testosterone and 11-ketotestosterone in the regulation of professional phagocyte functions in fish. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. MiR-155 enhances phagocytic activity of β-thalassemia/HbE monocytes via targeting of BACH1.

    PubMed

    Srinoun, Kanitta; Nopparatana, Chamnong; Wongchanchailert, Malai; Fucharoen, Suthat

    2017-11-01

    Abnormal red blood cell (RBC) clearance in β-thalassemia is triggered by activated monocytes. Recent reports indicate that miRNA (miR-) plays a role in monocyte activation. To study phagocytic function, we co-cultured monocytes of normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals with RBCs obtained from normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals. The phagocytic activity of β-thalassemia/HbE monocytes co-cultured with β-thalassemia/HbE RBCs was significantly higher than that of normal monocytes co-cultured with normal RBCs. Upregulation of monocyte miR-155 was observed in β-thalassemia/HbE patients. Increased miR-155 was associated with reductions in BTB and CNC Homology1 (BACH1) target gene expression and increased phagocytic activity of β-thalassemia/HbE monocytes. Taken together, these findings suggested that increased miR-155 expression in activated monocytes leads to enhanced phagocytic activity via BACH-1 regulation in β-thalassemia/HbE. This provides novel insights into the phagocytic clearance of abnormal RBCs in β-thalassemia/HbE.

  6. Chloride flux in phagocytes.

    PubMed

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Neuroimmunological response of beluga whales (Delphinapterus leucas) to translocation and a novel social environment.

    PubMed

    Spoon, Tracey R; Romano, Tracy A

    2012-01-01

    This study assessed changes in phagocyte function and activation of the sympatho-adrenal medullary and hypothalamo-pituitary adrenal axes of beluga whales (Delphinapterus leucas) in response to translocation and introduction to a novel social environment. Transported belugas exhibited increases in epinephrine (E), norepinephrine (NE), and cortisol levels in response to the translocation process. In response to the introduction of the transported belugas, resident belugas exhibited an increase in E and NE but not cortisol. Moreover, the increase in E and NE shown by the transported belugas was significantly greater than the increase exhibited by the resident belugas. Resident belugas exhibited a concomitant decrease in neutrophil and monocyte phagocytosis associated with the introduction of the transported belugas. In contrast, transported belugas exhibited an attendant increase in phagocytosis and respiratory burst activity immediately following transport. Differences in phagocyte response may derive from differences in hormonal milieu, stressor modality and/or intensity, or phagocyte priming. Investigating the complex interactions between types of stressors, neuroendocrine response, and immunocompetence will lead to a better understanding of the impacts of environmental challenges, including anthropogenic perturbations, on the health of cetacean populations. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein.

    PubMed

    Park, Daeho; Han, Claudia Z; Elliott, Michael R; Kinchen, Jason M; Trampont, Paul C; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J; Hoehn, Kyle L; Ravichandran, Kodi S

    2011-08-21

    Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.

  9. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease.

    PubMed

    Buvelot, Helene; Posfay-Barbe, Klara M; Linder, Patrick; Schrenzel, Jacques; Krause, Karl-Heinz

    2017-03-01

    Dysfunction of phagocytes is a relevant risk factor for staphylococcal infection. The most common hereditary phagocyte dysfunction is chronic granulomatous disease (CGD), characterized by impaired generation of reactive oxygen species (ROS) due to loss of function mutations within the phagocyte NADPH oxidase NOX2. Phagocytes ROS generation is fundamental to eliminate pathogens and to regulate the inflammatory response to infection. CGD is characterized by recurrent and severe bacterial and fungal infections, with Staphylococcus aureus as the most frequent pathogen, and skin and lung abscesses as the most common clinical entities. Staphylococcus aureus infection may occur in virtually any human host, presumably because of the many virulence factors of the bacterium. However, in the presence of functional NOX2, staphylococcal infections remain rare and are mainly linked to breaches of the skin barrier. In contrast, in patients with CGD, S. aureus readily survives and frequently causes clinically apparent disease. Astonishingly, little is known why S. aureus, which possesses a wide range of antioxidant enzymes (e.g. catalase, SOD), is particularly sensitive to control through NOX2. In this review, we will evaluate the discovery of CGD and our present knowledge of the role of NOX2 in S. aureus infection. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Mononuclear phagocyte subpopulations in the mouse kidney.

    PubMed

    George, James F; Lever, Jeremie M; Agarwal, Anupam

    2017-04-01

    Mononuclear phagocytes are the most common cells in the kidney associated with immunity and inflammation. Although the presence of these cells in the kidney has been known for decades, the study of mononuclear phagocytes in the context of kidney function and dysfunction is still at an early stage. The purpose of this review is to summarize the present knowledge regarding classification of these cells in the mouse kidney and to identify relevant questions that would further advance the field and potentially lead to new opportunities for treatment of acute kidney injury and other kidney diseases.

  11. Development of an In Vitro Model for the Multi-Parametric Quantification of the Cellular Interactions between Candida Yeasts and Phagocytes

    PubMed Central

    Noël, Thierry

    2012-01-01

    We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes. PMID:22479332

  12. Suppressive effect of delta 9-tetrahydrocannabinol in vitro on phagocytosis by murine macrophages.

    PubMed

    Friedman, M; Cepero, M L; Klein, T; Friedman, H

    1986-06-01

    Incubation of normal mouse peritoneal cells consisting of over 90% phagocytizing macrophages with delta 9-tetrahydrocannabinol (THC) resulted in a inhibition of phagocytic function. The THC in a dose-related manner suppressed the percentage of macrophages per culture which ingested yeast and the average number of yeast particles ingested by the phagocytizing macrophages. The vehicle used to suspend the THC in vitro, i.e., DMSO, had no detectable effect on macrophage function. Suppression of phagocytosis with no effects on viability or cell number occurred with doses of 10 micrograms or less THC per milliliter culture medium. Measurable suppression also occurred after 24- to 48-hr treatment of the macrophages with the THC. This compound had little if any detectable effect on phagocytosis when added directly to the cultures shortly before testing for phagocytosis. Further studies concerning the effects of THC on macrophage function appear warranted.

  13. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    PubMed Central

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  14. Effects of Acer okamotoanum sap on the function of polymorphonuclear neutrophilic leukocytes in vitro and in vivo.

    PubMed

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Yang, Mhan-Pyo; Jeung, Eui-Bae

    2013-02-01

    Sap is a plant fluid that primarily consists of water and small amounts of mineral elements, sugars, hormones and other nutrients. Acer mono (A. mono) is an endemic Korean mono maple which was recently suggested to have health benefits due to its abundant calcium and magnesium ion content. In the present study, we examined the effects of sap from Acer okamotoanum (A. okamotoanum) on the phagocytic response of mouse neutrophils in vivo and rat and canine neutrophils in vitro. We tested the regulation of phagocytic activity, oxidative burst activity (OBA) and the levels of filamentous polymeric actin (F-actin) in the absence and presence of dexamethasone (DEX) in vitro and in vivo. Our results showed that DEX primarily reduced OBA in the mouse neutrophils, and that this was reversed in the presence of the sap. By contrast, the phagocytic activity of the mouse cells was not regulated by either DEX or the sap. Rat and canine polymorphonuclear neutrophilic leukocytes (PMNs) responded in vitro to the sap in a similar manner by increasing OBA. However, regulation of phagocytic activity by the sap was different between the species. In canine PMNs, phagocytic activity was enhanced by the sap at a high dose, while it did not significantly modulate this activity in rat PMNs. These findings suggest that the sap of A. okamotoanum stimulates neutrophil activity in the mouse, rat and canine by increasing OBA in vivo and in vitro, and thus may have a potential antimicrobial effect in the PMNs of patients with infections.

  15. Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: cell types and their role after in vivo artificial non-self challenge.

    PubMed

    Giulianini, Piero Giulio; Bierti, Manuel; Lorenzon, Simonetta; Battistella, Silvia; Ferrero, Enrico Antonio

    2007-01-01

    The freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) is an important aquacultured decapod species as well as an invasive species in some European countries. In the current investigation we characterized the different classes of circulating blood cells in A. leptodactylus by means of light and electron microscopy analysis and we explored their reaction to different latex beads particles in vivo by total and differential cell counts at 0.5, 1, 2 and 4h after injections. We identified hemocytes by granule size morphometry as hyaline hemocytes with no or rare tiny granules, small granule hemocytes, unimodal medium diameter granule hemocytes and both small and large granule containing hemocytes. The latter granular hemocytes showed the strongest phenoloxidase l-DOPA reactivity both in granules and cytoplasm. A. leptodactylus respond to foreign particles with strong cellular immune responses. All treatments elicited a total hemocyte increase with a conspicuous recruitment of large granule containing hemocytes. All hemocyte types mounted some phagocytic response but the small granule hemocytes were the only ones involved in phagocytic response to all foreign particles with the highest percentages. These results (1) depict the variability in decapod hemocyte functional morphology; (2) identify the small granule hemocyte as the major phagocytic cell; (3) suggest that the rather rapid recruitment of large granule hemocyte in all treatments plays a relevant role by this hemocyte type in defense against foreign particles, probably in nodule formation.

  16. Biologic consequences of Stat1-independent IFN signaling

    PubMed Central

    Gil, M. Pilar; Bohn, Erwin; O'Guin, Andrew K.; Ramana, Chilakamarti V.; Levine, Beth; Stark, George R.; Virgin, Herbert W.; Schreiber, Robert D.

    2001-01-01

    Although Stat1 is required for many IFN-dependent responses, recent work has shown that IFNγ functions independently of Stat1 to affect the growth of tumor cells or immortalized fibroblasts. We now demonstrate that both IFNγ and IFNα/β regulate proliferative responses in cells of the mononuclear phagocyte lineage derived from Stat1-null mice. Using both representational difference analysis and gene arrays, we show that IFNγ exerts its Stat1-independent actions on mononuclear phagocytes by regulating the expression of many genes. This result was confirmed by monitoring changes in expression and function of the corresponding gene products. Regulation of the expression of these genes requires the IFNγ receptor and Jak1. The physiologic relevance of IFN-dependent, Stat1-independent signaling was demonstrated by monitoring antiviral responses in Stat1-null mice. Thus, the IFN receptors engage alternative Stat1-independent signaling pathways that have important physiological consequences. PMID:11390995

  17. Regulation of phagocytosis by TAM receptors and their ligands

    PubMed Central

    Lu, Qingxian; Li, Qiutang; Lu, Qingjun

    2010-01-01

    The TAM family of receptors is preferentially expressed by professional and non-professional phagocytes, including macrophages, dendritic cells and natural killer cells in the immune system, osteoclasts in bone, Sertoli cells in testis, and retinal pigmental epithelium cells in the retina. Mutations in the Mertk single gene or in different combinations of the double or triple gene mutations in the same cell cause complete or partial impairment in phagocytosis of their preys; and as a result, either the normal apoptotic cells cannot be efficiently removed or the tissue neighbor cells die by apoptosis. This scenario of TAM regulation represents a widely adapted model system used by phagocytes in all different tissues. The present review will summarize current known functional roles of TAM receptors and their ligands, Gas 6 and protein S, in the regulation of phagocytosis. PMID:21057587

  18. Every day I'm rufflin': Calcium sensing and actin dynamics in the growth factor-independent membrane ruffling of professional phagocytes.

    PubMed

    Schlam, Daniel; Canton, Johnathan

    2017-04-03

    Professional phagocytes continuously extend dynamic, actin-driven membrane protrusions. These protrusions, often referred to as membrane ruffles, serve a critical role in the essential phagocyte processes of macropinocytosis and phagocytosis. Small GTPases, such as RAC1/2, spatially and temporally regulate membrane ruffle formation. We have recently shown that extracellular calcium regulates the elaboration of membrane ruffles primarily through the synthesis of phosphatidic acid (PtdOH) at the plasma membrane. RAC1/2 guanine nucleotide exchange factors harbouring polybasic stretches are recruited by PtdOH to sites of ruffle formation. Here we discuss our findings and offer perspectives on how the regulation of dynamic actin structures at the plasma membrane by small GTPases is a critical component of phagocyte function.

  19. [Modulating Effect of Extracellular HSP70 on Generation of Reactive Oxigen Species in Populations of Phagocytes].

    PubMed

    Troyanova, N I; Shevchenko, M A; Boyko, A A; Mirzoyev, R R; Pertseva, M A; Kovalenko, E I; Sapozhnikov, A M

    2015-01-01

    Reactive oxygen species (ROS) produced by phagocytic cells of the innate immune system play an important role in the first line of defense protecting the host from pathogens. The NADPH oxidase multi-subunit complex is the main source of ROS in all types of the phagocytes. Formation of the membrane-associated enzyme complex and its activity are dependent on many different factors controlling both intensification and suppression of the ROS production rate. However, the evidences are emerging in recent years indicating existence of poorly studied mechanisms of restriction of ROS generation level in phagocytes directed at protection of host tissues in the sites of inflammation from destruction caused by the oxygen free radicals. Our previous data and results of other authors demonstrate that a mechanism of the limitation of ROS production by phagocytes may by connected with immunomodulating activity of extracellular pool. of HSP70. In the present work, we used inhibitors of NADPH oxidase and in vitro cultures of different phagocytes to study a possible relationship between down-regulating effect of exogenous HSP70 on ROS generation and the interaction of the protein with the enzyme subunits. Our results confirmed the literature data concerning the ability of extracellular HSP70 to modulate NADPH oxidase activity and demonstrated for the first time an inhibitory effect of the protein on intracellular ROS generation in phagocytes.

  20. Phagocytic activities of hemocytes from the deep-sea symbiotic mussels Bathymodiolus japonicus, B. platifrons, and B. septemdierum.

    PubMed

    Tame, Akihiro; Yoshida, Takao; Ohishi, Kazue; Maruyama, Tadashi

    2015-07-01

    Deep-sea mytilid mussels harbor symbiotic bacteria in their gill epithelial cells that are horizontally or environmentally transmitted to the next generation of hosts. To understand the immune defense system in deep-sea symbiotic mussels, we examined the hemocyte populations of the symbiotic Bathymodiolus mussel species Bathymodiolus japonicus, Bathymodiolus platifrons, and Bathymodiolus septemdierum, and characterized three types of hemocytes: agranulocytes (AGs), basophilic granulocytes (BGs), and eosinophilic granulocytes (EGs). Of these, the EG cells were the largest (diameter, 8.4-10.0 μm) and had eosinophilic cytoplasm with numerous eosinophilic granules (diameter, 0.8-1.2 μm). Meanwhile, the BGs were of medium size (diameter, 6.7-8.0 μm) and contained small basophilic granules (diameter, 0.3-0.4 μm) in basophilic cytoplasm, and the AGs, the smallest of the hemocytes (diameter, 4.8-6.0 μm), had basophilic cytoplasm lacking granules. A lectin binding assay revealed that concanavalin A bound to all three hemocyte types, while wheat germ agglutinin bound exclusively to EGs and BGs. The total hemocyte population densities within the hemolymph of all three Bathymodiolus mussel species were similar (8.4-13.3 × 10(5) cells/mL), and the percentages of circulating AGs, BGs, and EGs in the hemolymph of these organisms were 44.7-48.5%, 14.3-17.6%, and 34.3-41.0%, respectively. To analyze the functional differences between these hemocytes, the phagocytic activity and post-phagocytic phagosome-lysosome fusion events were analyzed in each cell type using a fluorescent Alexa Fluor(®) 488-conjugated Escherichia coli bioparticle and a LysoTracker(®) lysosomal marker, respectively. While the AGs exhibited no phagocytic activity, both types of granulocytes were phagocytic. Of the three hemocyte types, the EGs exhibited the highest level of phagocytic activity as well as rapid phagosome-lysosome fusion, which occurred within 2 h of incubation. Meanwhile, the BGs showed lower phagocytic activity and lower rates of phagosome-lysosome fusion than the EGs. These findings indicate that the two types of granulocyte play distinct roles in the defense system. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases

    PubMed Central

    Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar

    2018-01-01

    Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies. PMID:29375564

  2. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases.

    PubMed

    Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar

    2017-01-01

    Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi , the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.

  3. Unique phagocytic properties of hemocytes of Pacific oyster Crassostrea gigas against yeast and yeast cell-wall derivatives.

    PubMed

    Takahashi, Keisuke G; Izumi-Nakajima, Nakako; Mori, Katsuyoshi

    2017-11-01

    For a marine bivalve mollusk such as Pacific oyster Crassostrea gigas, the elimination of foreign particles via hemocyte phagocytosis plays an important role in host defense mechanisms. The hemocytes of C. gigas have a high phagocytic ability for baker's yeast (Saccharomyces cerevisiae) and its cell-wall product zymosan. C. gigas hemocytes might phagocytose yeast cells after binding to polysaccharides on the cell-wall surface, but it is unknown how and what kinds of polysaccharide molecules are recognized. We conducted experiments to determine differences in the phagocytic ability of C. gigas hemocytes against heat-killed yeast (HK yeast), zymosan and zymocel, which are similarly sized and shaped but differ in the polysaccharide composition of their particle surface. We found that both the agranulocytes and granulocytes exerted strong phagocytic ability on all tested particles. The phagocytic index (PI) of granulocytes for zymosan was 9.4 ± 1.7, which significantly differed with that for HK yeast and zymocel (P < 0.05). To evaluate the PI for the three types of particles, and especially to understand the outcome of the much higher PI for zymosan, PI was gauged in increments of 5 (1-5, 6-10, 11-15, and ≥16), and the phagocytic frequencies were compared according to these increments. The results show that a markedly high PI of ≥16 was exhibited by 18.1% of granulocytes for zymosan, significantly higher than 1.7% and 3.9% shown for HK yeast and zymocel, respectively (P < 0.05). These findings indicate that the relatively high PI for zymosan could not be attributed to a situation wherein all phagocytic hemocytes shared a high mean PI, but rather to the ability of some hemocytes to phagocytose a larger portion of zymosan. To determine whether the phagocytosis of these respective particles depended on the recognition of specific polysaccharide receptors on the hemocyte surface, C. gigas hemocytes were pretreated with soluble α-mannan or β-laminarin and then allowed to phagocytose the three types of the particles. The percentage of phagocytic cells of β-laminarin-treated granulocytes decreased significantly for zymosan and zymocel, but not for yeast. These results suggest that C. gigas might possess at least two types of hemocytes, and that one type of the hemocytes (granulocytes) is more active for phagocytosis. The granulocytes were found to have multiple subtypes with different phagocytic abilities and multiple phagocytic receptors. Some of the granulocyte subtypes revealed a much stronger phagocytic ability, depending on the presence of β-glucan receptors for phagocytosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. It takes two to tango: Phagocyte and lymphocyte numbers in a small mammalian hibernator.

    PubMed

    Havenstein, Nadine; Langer, Franz; Stefanski, Volker; Fietz, Joanna

    2016-02-01

    Immunity is energetically costly and competes for resources with other physiological body functions, which may result in trade-offs that impair fitness during demanding situations. Endocrine mediators, particularly stress hormones, play a central role in these relationships and directly impact leukocyte differentials. To determine the effects of external stressors, energetic restraints and competing physiological functions on immune parameters and their relevance for fitness, we investigated leukocyte profiles during the active season of a small obligate hibernator, the edible dormouse (Glis glis), in five different study sites in south-western Germany. The highly synchronized yearly cycle of this species and the close adaptation of its life history to the irregular abundance of food resources provide a natural experiment to elucidate mechanisms underlying variations in fitness parameters. In contrast to previous studies on hibernators, that showed an immediate recovery of all leukocyte subtypes upon emergence, our study revealed that hibernation results in depleted phagocyte (neutrophils and monocytes) stores that recovered only slowly. As the phenomenon of low phagocyte counts was even more pronounced at the beginning of a low food year and primarily immature neutrophils were present in the blood upon emergence, preparatory mechanisms seem to determine the regeneration of phagocytes before hibernation is terminated. Surprisingly, the recovery of phagocytes thereafter took several weeks, presumably due to energetic restrictions. This impaired first line of defense coincides with lowest survival probabilities during the annual cycle of our study species. Reduced survival could furthermore be linked to drastic increases in the P/L ratio (phagocytes/lymphocytes), an indicator of physiological stress, during reproduction. On the other hand, moderate augmentations in the P/L ratio occurred during periods of low food availability and were associated with increased survival, but reproductive failure. In this case, the stress response probably represents an adaptive reaction that contributes to survival by activating energy resources. In contrast to our expectation, we could not detect an amplification of stress through high population densities. Summarized, results of our study clearly reveal that the leukocyte picture of active edible dormice responds sensitively to physiological conditions associated with hibernation, reproductive activity and food availability and can be linked to fitness parameters such as survival. Thus edible dormice represent an excellent model organism to investigate regulatory mechanisms of the immune system under natural conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Nano-sized and micro-sized polystyrene particles affect phagocyte function

    PubMed Central

    Prietl, B.; Meindl, C.; Roblegg, E.; Pieber, T. R.; Lanzer, G.; Fröhlich, E.

    2015-01-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes. PMID:24292270

  6. Nano-sized and micro-sized polystyrene particles affect phagocyte function.

    PubMed

    Prietl, B; Meindl, C; Roblegg, E; Pieber, T R; Lanzer, G; Fröhlich, E

    2014-02-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.

  7. Mononuclear phagocyte subpopulations in the mouse kidney

    PubMed Central

    George, James F.; Lever, Jeremie M.

    2017-01-01

    Mononuclear phagocytes are the most common cells in the kidney associated with immunity and inflammation. Although the presence of these cells in the kidney has been known for decades, the study of mononuclear phagocytes in the context of kidney function and dysfunction is still at an early stage. The purpose of this review is to summarize the present knowledge regarding classification of these cells in the mouse kidney and to identify relevant questions that would further advance the field and potentially lead to new opportunities for treatment of acute kidney injury and other kidney diseases. PMID:28100500

  8. Interference of Antibacterial Agents with Phagocyte Functions: Immunomodulation or “Immuno-Fairy Tales”?

    PubMed Central

    Labro, Marie-Thérése

    2000-01-01

    Professional phagocytes (polymorphonuclear neutrophils and monocytes/macrophages) are a main component of the immune system. These cells are involved in both host defenses and various pathological settings characterized by excessive inflammation. Accordingly, they are key targets for immunomodulatory drugs, among which antibacterial agents are promising candidates. The basic and historical concepts of immunomodulation will first be briefly reviewed. Phagocyte complexity will then be unravelled (at least in terms of what we know about the origin, subsets, ambivalent roles, functional capacities, and transductional pathways of this cell and how to explore them). The core subject of this review will be the many possible interactions between antibacterial agents and phagocytes, classified according to demonstrated or potential clinical relevance (e.g., neutropenia, intracellular accumulation, and modulation of bacterial virulence). A detailed review of direct in vitro effects will be provided for the various antibacterial drug families, followed by a discussion of the clinical relevance of these effects in two particular settings: immune deficiency and inflammatory diseases. The prophylactic and therapeutic use of immunomodulatory antibiotics will be considered before conclusions are drawn about the emerging (optimistic) vision of future therapeutic prospects to deal with largely unknown new diseases and new pathogens by using new agents, new techniques, and a better understanding of the phagocyte in particular and the immune system in general. PMID:11023961

  9. Pranic meditation affects phagocyte functions and hormonal levels of recent practitioners.

    PubMed

    Fernandes, César A; Nóbrega, Yanna K M; Tosta, C Eduardo

    2012-08-01

    Despite the recognized importance of phagocytes in the maintenance and recovery of health, the influence of meditation on their functions is not properly established. This investigation aimed at evaluating the influence of pranic meditation on the functions of phagocytes, and on the levels of hormones that influence them. A pre-post design was adopted. The investigation was carried out at a university research laboratory. Twenty-nine (29) healthy individuals of both sexes, 24-67 years old (median 45), with no previous experience in meditation, received 3-hour-duration weekly training on pranic meditation during 10 weeks and agreed to engage in daily home practice for 20 minutes. Pranic meditation is a novel method of meditation, based on the Vedic tradition, which uses techniques of breathing and visualization for quieting the mind, and for capturing and intentionally directing prana ("vital energy") wherever necessary. For assessing phagocytosis, the production of hydrogen peroxide and nitric oxide by monocytes, and the concentrations of corticotrophin and cortisol, blood was collected at the beginning (week 1), at the middle (week 5), and by the end (week 10) of the practice period. At the same intervals, melatonin concentrations were evaluated in the saliva. Those who meditated for more than 980 minutes showed increased phagocytosis, their monocytes produced higher concentrations of hydrogen peroxide, and their plasma levels of corticotrophin were reduced. The production of nitric oxide by monocytes, and the levels of cortisol and melatonin were not modified by meditation. This is the first study to show that a short program of pranic meditation practice was able to upregulate the function and metabolism of phagocytes, in parallel with the reduction of the plasma levels of corticotrophin. The results of this study point to a possible causal effect between these events, and indicate that pranic meditation could be useful for stimulating the function and metabolism of phagocytes.

  10. Inhibitory effect of heparin on neutrophil phagocytosis and burst production using a new whole-blood cytofluorometric method for determination.

    PubMed

    Salih, H; Husfeld, L; Adam, D

    1997-12-31

    The influence of heparin on Polymorphonuclear (PMN s) leukocytes was investigated using a new whole-blood cytofluorometric method (patent granted for the test with the number P 4334935.8-41) with Candida albicans and Staphylococcus aureus as test microorganisms. After comparing the effect of equal volumes of two widely used heparins we examined the influence of 5 different heparin-concentrations. Using both yeasts and bacteria, we found a significant, dose-depending decrease of the percentage of phagocyting PMN's and of phagocytized microorganisms as well as of the resulting percentage of PMN s producing respiratory burst along the kinetics. Furthermore we could demonstrate that heparin independently of phagocytosis produces a dose-dependent decrease of burst production of PMN's. Our results indicate that the use of heparins as anticoagulant for immunological investigations as well as clinically with patients under immunosuppressive therapy should be critically reconsidered. This applies even more because due to the evaluated dose-dependent decrease of phagocyte function no boundary for the inhibiting effect can be declared.

  11. Selective Biological Responses of Phagocytes and Lungs to Purified Histones.

    PubMed

    Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope; Dick, Rachel S; Parlett, Michella; Zetoune, Firas S; Nuñez, Gabriel; Ward, Peter A

    2017-01-01

    Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4. © 2017 S. Karger AG, Basel.

  12. Phenotype and function of CD209+ bovine blood dendritic cells, monocyte-derived-dendritic cells and monocyte-derived macrophages

    USDA-ARS?s Scientific Manuscript database

    Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...

  13. Developing immune function assays to monitor fish health in field studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C.D.; Kergosien, D.H.; Adams, S.M.

    1995-12-31

    The East Fork Poplar Creek system, a 24km long stream in TN that receives point source discharges of contaminants near its headwaters, was chosen to evaluate a field approach to fish immunotoxicology. Previous studies in this stream have shown that cytochrome P4501A activity, liver somatic indices, macrophage aggregates, and parasitic liver lesions are significantly elevated in sunfish with the degree of impact decreasing with distance from the contaminant source. Red-breasted sunfish were collected between May 23 and June 3 of 1994. Captured fish were anesthetized in MS-222 and processed by two different methods. One group was sacrificed at each samplingmore » station, weights and lengths recorded, and the spleen and anterior kidney tissues removed and placed in buffer on ice. The other group was kept in MS-222 for 2 hr and transported to the laboratory. The spleen and anterior kidney from each fish were then prepared as a single cell suspension and shipped overnight to Mississippi State University. Cells were then washed by centrifugation and resuspended in appropriate media to evaluate PMA-stimulated phagocyte oxidative burst and non-specific cytotoxic cell (NCC) activity against K562 tumor targets. Oxidative burst responses were dramatically suppressed in both groups at stations near the headwaters but returned to reference levels further downstream. There were no differences between treatment groups at each station. NCC activities did not follow gradient-response patterns observed with phagocyte oxidative burst data and there were inconsistent differences between treatment groups at each station. These data show that simple immune function assays, such as phagocyte oxidative burst responses, can be used as an ancillary biomarker in fish health monitoring.« less

  14. The multifaceted role of the renal mononuclear phagocyte system.

    PubMed

    Viehmann, Susanne F; Böhner, Alexander M C; Kurts, Christian; Brähler, Sebastian

    2018-04-22

    The kidney contains a large and complex network of mononuclear phagocytes, which includes dendritic cells (DCs) and macrophages (MØs). The distinction between these cell types is traditionally based on the expression of molecular markers and morphology. However, several classification systems are used in parallel to identify DCs and MØs, leading to considerable uncertainty about their identity and functional roles. The discovery that a substantial proportion of macrophages in tissues like the kidney are embryonically derived further complicates the situation. Recent studies have used newly identified transcription factors such as ZBTB46 and lineage tracing techniques for classifying mononuclear phagocytes. These approaches have shed new light on the functional specialization of these cells in health and disease, uncovered an influence of the renal microenvironment and revealed considerable cellular plasticity, especially in inflammatory situations. In this review, the current knowledge about the developmental origins and versatile functional roles of DCs and MØs in kidney homeostasis and disease is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Divergence of macrophage phagocytic and antimicrobial programs in leprosy.

    PubMed

    Montoya, Dennis; Cruz, Daniel; Teles, Rosane M B; Lee, Delphine J; Ochoa, Maria Teresa; Krutzik, Stephan R; Chun, Rene; Schenk, Mirjam; Zhang, Xiaoran; Ferguson, Benjamin G; Burdick, Anne E; Sarno, Euzenir N; Rea, Thomas H; Hewison, Martin; Adams, John S; Cheng, Genhong; Modlin, Robert L

    2009-10-22

    Effective innate immunity against many microbial pathogens requires macrophage programs that upregulate phagocytosis and direct antimicrobial pathways, two functions generally assumed to be coordinately regulated. We investigated the regulation of these key functions in human blood-derived macrophages. Interleukin-10 (IL-10) induced the phagocytic pathway, including the C-type lectin CD209 and scavenger receptors, resulting in phagocytosis of mycobacteria and oxidized low-density lipoprotein. IL-15 induced the vitamin D-dependent antimicrobial pathway and CD209, yet the cells were less phagocytic. The differential regulation of macrophage functional programs was confirmed by analysis of leprosy lesions: the macrophage phagocytosis pathway was prominent in the clinically progressive, multibacillary form of the disease, whereas the vitamin D-dependent antimicrobial pathway predominated in the self-limited form and in patients undergoing reversal reactions from the multibacillary to the self-limited form. These data indicate that macrophage programs for phagocytosis and antimicrobial responses are distinct and differentially regulated in innate immunity to bacterial infections.

  16. The many ways tissue phagocytes respond to dying cells

    PubMed Central

    Blander, J. Magarian

    2017-01-01

    Summary Apoptosis is an important component of normal tissue physiology, and the prompt removal of apoptotic cells is equally essential to avoid the undesirable consequences of their accumulation and disintegration. Professional phagocytes are highly specialized for engulfing apoptotic cells. The recent ability to track cells that have undergone apoptosis in situ has revealed a division of labor among the tissue resident phagocytes that sample them. Macrophages are uniquely programmed to process internalized apoptotic cell-derived fatty acids, cholesterol and nucleotides, as a reflection of their dominant role in clearing the bulk of apoptotic cells. Dendritic cells carry apoptotic cells to lymph nodes where they signal the emergence and expansion of highly suppressive regulatory CD4 T cells. A broad suppression of inflammation is executed through distinct phagocyte-specific mechanisms. A clever induction of negative regulatory nodes is notable in dendritic cells serving to simultaneously shut down multiple pathways of inflammation. Several of the genes and pathways modulated in phagocytes in response to apoptotic cells have been linked to chronic inflammatory and autoimmune diseases such as atherosclerosis, inflammatory bowel disease and systemic lupus erythematosus. Our collective understanding of old and new phagocyte functions after apoptotic cell phagocytosis demonstrates the enormity of ways to mediate immune suppression and enforce tissue homeostasis. PMID:28462530

  17. The many ways tissue phagocytes respond to dying cells.

    PubMed

    Blander, J Magarian

    2017-05-01

    Apoptosis is an important component of normal tissue physiology, and the prompt removal of apoptotic cells is equally essential to avoid the undesirable consequences of their accumulation and disintegration. Professional phagocytes are highly specialized for engulfing apoptotic cells. The recent ability to track cells that have undergone apoptosis in situ has revealed a division of labor among the tissue resident phagocytes that sample them. Macrophages are uniquely programmed to process internalized apoptotic cell-derived fatty acids, cholesterol and nucleotides, as a reflection of their dominant role in clearing the bulk of apoptotic cells. Dendritic cells carry apoptotic cells to lymph nodes where they signal the emergence and expansion of highly suppressive regulatory CD4 T cells. A broad suppression of inflammation is executed through distinct phagocyte-specific mechanisms. A clever induction of negative regulatory nodes is notable in dendritic cells serving to simultaneously shut down multiple pathways of inflammation. Several of the genes and pathways modulated in phagocytes in response to apoptotic cells have been linked to chronic inflammatory and autoimmune diseases such as atherosclerosis, inflammatory bowel disease and systemic lupus erythematosus. Our collective understanding of old and new phagocyte functions after apoptotic cell phagocytosis demonstrates the enormity of ways to mediate immune suppression and enforce tissue homeostasis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary.

    PubMed

    Serizier, Sandy B; McCall, Kimberly

    2017-01-01

    For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes.

  19. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary

    PubMed Central

    Serizier, Sandy B.; McCall, Kimberly

    2017-01-01

    For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes. PMID:29238344

  20. Immunomagnetic isolation of pathogen-containing phagosomes and apoptotic blebs from primary phagocytes.

    PubMed

    Steinhäuser, Christine; Dallenga, Tobias; Tchikov, Vladimir; Schaible, Ulrich E; Schütze, Stefan; Reiling, Norbert

    2014-04-02

    Macrophages and polymorphonuclear neutrophils are professional phagocytes essential in the initial host response against intracellular pathogens such as Mycobacterium tuberculosis. Phagocytosis is the first step in phagocyte-pathogen interaction, where the pathogen is engulfed into a membrane-enclosed compartment termed a phagosome. Subsequent effector functions of phagocytes result in killing and degradation of the pathogen by promoting phagosome maturation, and, terminally, phago-lysosome fusion. Intracellular pathogenic microbes use various strategies to avoid detection and elimination by phagocytes, including induction of apoptosis to escape host cells, thereby generating apoptotic blebs as shuttles to other cells for pathogens and antigens thereof. Hence, phagosomes represent compartments where host and pathogen become quite intimate, and apoptotic blebs are carrier bags of the pathogen's legacy. In order to investigate the molecular mechanisms underlying these interactions, both phagosomes and apoptotic blebs are required as purified subcellular fractions for subsequent analysis of their biochemical properties. Here, we describe a lipid-based procedure to magnetically label surfaces of either pathogenic mycobacteria or apoptotic blebs for purification by a strong magnetic field in a novel free-flow system. Copyright © 2014 John Wiley & Sons, Inc.

  1. Comparative studies of mononuclear phagocyte function in patients with Crohn's disease and colon neoplasms.

    PubMed Central

    Beeken, W L; St Andre-Ukena, S; Gundel, R M

    1983-01-01

    Phagocytosis and cellular cytotoxicity by mononuclear phagocytes of blood and intestinal mucosa were studied in patients with Crohn's disease and large bowel neoplasms. Antibody coated sheep erythrocytes were used for phagocytic assays and cellular cytotoxicity in vitro was measured by 24 hour isotope release from 75Selenium methionine-labelled RPMI 4788 human cancer cell cultures in the presence of mononuclear phagocyte-enriched effector populations. The mean percent of mononuclear phagocytes in Ficoll-Hypaque purified mononuclear cell suspensions of blood of healthy controls was 25.9 compared with 44.6 in patients with Crohn's disease, 45.6 in patients with colon neoplasms and 11.6 in intestinal mucosa. Phagocytic indices were similar in all groups, but the phagocytic capacity of mucosal macrophages was twice that of blood monocytes. Mean cytotoxicity of monocytes of patients with Crohn's disease was 12.8% compared with 22.9% for monocytes from normal controls, and 29.4% for patients with colon tumours. Mean cytotoxicity by mucosal macrophages was 18.0% compared with 13.2% by mucosal lymphocyte populations. Exposure of monocytes of Crohn's disease patients to bacterial lipopolysaccharide modestly increased cytotoxicity, but exposure did not alter phagocytosis by monocytes of patients or controls. The results indicate that monocytes of patients with Crohn's disease exhibit subnormal in vitro cytotoxicity. Mucosal macrophages from patients with various diseases show enhanced phagocytosis compared with blood monocytes, and they can mediate cellular cytotoxicity in vitro. PMID:6629113

  2. Phagocyte dynamics in a highly regenerative urochordate: insights into development and host defense.

    PubMed

    Lauzon, Robert J; Brown, Christina; Kerr, Louie; Tiozzo, Stefano

    2013-02-15

    Phagocytosis is a cellular process by which particles and foreign bodies are engulfed and degraded by specialized cells. It is functionally involved in nutrient acquisition and represents a fundamental mechanism used to remove pathogens and cellular debris. In the marine invertebrate chordate Botryllus schlosseri, cell corpse engulfment by phagocytic cells is the recurrent mechanism of programmed cell clearance and a critical process for the successful execution of asexual regeneration and colony homeostasis. In the present study, we have utilized a naturally occurring process of vascular parabiosis coupled with intravascular microinjection of fluorescent bioparticles and liposomes as tools to investigate the dynamics of phagocyte behavior in real-time during cyclical body regeneration. Our findings indicate that B. schlosseri harbors two major populations of post-mitotic phagocytes, which display distinct phagocytic specificity and homing patterns: a static population that lines the circulatory system epithelia, and a mobile population that continuously recirculates throughout the colony and exhibits a characteristic homing pattern within mesenchymal niches called ventral islands (VI). We observed that a significant proportion of ventral island phagocytes (VIP) die and are engulfed by other VIP following takeover. Selective impairment of VIP activity curtailed zooid resorption and asexual development. Together, these findings strongly suggest that ventral islands are sites of phagocyte homing and turnover. As botryllid ascidians represent invertebrate chordates capable of whole body regeneration in a non-embryonic scenario, we discuss the pivotal role that phagocytosis plays in homeostasis, tissue renewal and host defense. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Effect of single oral dose of azithromycin, clarithromycin, and roxithromycin on polymorphonuclear leukocyte function assessed ex vivo by flow cytometry.

    PubMed Central

    Wenisch, C; Parschalk, B; Zedtwitz-Liebenstein, K; Weihs, A; el Menyawi, I; Graninger, W

    1996-01-01

    Azithromycin was given as a single oral dose (20 mg/kg of body weight) to 12 volunteers in a crossover study with roxithromycin (8 to 12 mg/kg) and clarithromycin (8 to 12 mg/kg). Flow cytometry was used to study the phagocytic functions and the release of reactive oxygen products following phagocytosis by neutrophil granulocytes prior to administration of the three drugs, 16 h after azithromycin administration, and 3 h after clarithromycin and roxithromycin administration. Phagocytic capacity was assessed by measuring the uptake of fluorescein isothiocyanate-labeled bacteria. Reactive oxygen generation after phagocytosis of unlabeled bacteria was estimated by the amount of dihydrorhodamine 123 converted to rhodamine 123 intracellularly. Azithromycin resulted in decreased capacities of the cells to phagocytize Escherichia coli (median [range], 62% [27 to 91%] of the control values; P < 0.01) and generate reactive oxygen products (75% [34 to 26%] of the control values; P < 0.01). Clarithromycin resulted in reduced phagocytosis (82% [75 to 98%] of control values; P < 0.01) but did not alter reactive oxygen production (84% [63 to 113%] of the control values; P > 0.05). Roxithromycin treatment did not affect granulocyte phagocytosis (92% [62 to 118%] of the control values; P > 0.05) or reactive oxygen production (94% [66 to 128%] of the control value; P > 0.05). No relation between intra- and/or extracellular concentrations of azithromycin and/or roxithromycin and the polymorphonuclear phagocyte function and/or reactive oxygen production existed (P > 0.05 for all comparisons). These results demonstrate that the accumulation of macrolides in neutrophils can suppress the response of phagocytic cells to bacterial pathogens after a therapeutic dose. PMID:8878577

  4. Defining Mononuclear Phagocyte Subset Homology Across Several Distant Warm-Blooded Vertebrates Through Comparative Transcriptomics

    PubMed Central

    Vu Manh, Thien-Phong; Elhmouzi-Younes, Jamila; Urien, Céline; Ruscanu, Suzana; Jouneau, Luc; Bourge, Mickaël; Moroldo, Marco; Foucras, Gilles; Salmon, Henri; Marty, Hélène; Quéré, Pascale; Bertho, Nicolas; Boudinot, Pierre; Dalod, Marc; Schwartz-Cornil, Isabelle

    2015-01-01

    Mononuclear phagocytes are organized in a complex system of ontogenetically and functionally distinct subsets, that has been best described in mouse and to some extent in human. Identification of homologous mononuclear phagocyte subsets in other vertebrate species of biomedical, economic, and environmental interest is needed to improve our knowledge in physiologic and physio-pathologic processes, and to design intervention strategies against a variety of diseases, including zoonotic infections. We developed a streamlined approach combining refined cell sorting and integrated comparative transcriptomics analyses which revealed conservation of the mononuclear phagocyte organization across human, mouse, sheep, pigs and, in some respect, chicken. This strategy should help democratizing the use of omics analyses for the identification and study of cell types across tissues and species. Moreover, we identified conserved gene signatures that enable robust identification and universal definition of these cell types. We identified new evolutionarily conserved gene candidates and gene interaction networks for the molecular regulation of the development or functions of these cell types, as well as conserved surface candidates for refined subset phenotyping throughout species. A phylogenetic analysis revealed that orthologous genes of the conserved signatures exist in teleost fishes and apparently not in Lamprey. PMID:26150816

  5. Nanoparticles of barium induce apoptosis in human phagocytes

    PubMed Central

    Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina

    2015-01-01

    Purpose Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Methods Colostrum was collected from 24 clinically healthy women (aged 18–35 years). Cell viability, superoxide release, intracellular Ca2+ release, and phagocyte apoptosis were analyzed in the samples. Results Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. Conclusion These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element. PMID:26451108

  6. Nanoparticles of barium induce apoptosis in human phagocytes.

    PubMed

    Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina

    2015-01-01

    Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Colostrum was collected from 24 clinically healthy women (aged 18-35 years). Cell viability, superoxide release, intracellular Ca(2+) release, and phagocyte apoptosis were analyzed in the samples. Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element.

  7. Live Candida albicans suppresses production of reactive oxygen species in phagocytes.

    PubMed

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-beta-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-beta-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-beta-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-beta-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism.

  8. Dynamics of mononuclear phagocyte system Fc receptor function in systemic lupus erythematosus. Relation to disease activity and circulating immune complexes.

    PubMed Central

    Kimberly, R P; Parris, T M; Inman, R D; McDougal, J S

    1983-01-01

    Seventeen pairs of longitudinal studies of mononuclear phagocyte system (MPS) Fc receptor function in 15 patients with systemic lupus were performed to explore the dynamic range of Fc receptor dysfunction in lupus and to establish the relationships between MPS function, clinical disease activity and circulating immune complexes (CIC). Fc receptor function was measured by the clearance of IgG sensitized autologous erythrocytes. At the time of first study the degree of MPS dysfunction was correlated with both clinical activity (P less than 0.05) and CIC (P less than 0.05). At follow-up patients with a change in clinical status show significantly larger changes in clearance function compared to clinically stable patients (206 min vs 7 min; P less than 0.001). MPS function changed concordantly with a change in clinical status in all cases (P = 0.002). Longitudinal assessments did not demonstrate concordance of changes in MPS function and CIC, measured by three different assays. The MPS Fc receptor defect in systemic lupus is dynamic and closely associated with disease activity. The lack of concordance of the defect with changes in CIC suggests that either CIC does not adequately reflect receptor site saturation or that other factors may also contribute to the magnitude of MPS dysfunction. PMID:6839542

  9. High temperature affects the phagocytic activity of human peripheral blood mononuclear cells.

    PubMed

    Djaldetti, Meir; Bessler, Hanna

    2015-10-01

    The ability for engulfment of pathogens and inert particles is the key hallmark of the phagocytic cells. Phagocytes play a significant role in the modulation of local or extended inflammation. Since fever activates a number of factors linked with the immune response it was the goal of this study to examine the in vitro effect of hyperthermia on the phagocytic capacity, the number of phagocytic cells and the viability of human peripheral blood mononuclear cells (PBMC) at 37 and 40°C. PBMC were incubated with 0.8 μm polysterene latex beads, for 2 hours at 37 and 40°C. The number of phagocytic cells, and that of latex particles internalized by each individual cell was counted with a light microscope. In addition, the percentage of viable cells and the number of active metabolic cells was evaluated. A temperature of 40°C significantly increased the number of phagocytic cells and the phagocytic index by 41 and 37% respectively, as compared to cells incubated at 37°C. While the number of vital cells (trypan blue test) did not differ statistically at both temperatures, the number of active metabolic cells (XTT test) after 2 h of incubation at 40°C was 17% higher as compared with that at 37°C. However, the number of active metabolic cells after 24 h of incubation at 40°C was 51% lower compared with cells incubated at 37°C. The increased phagocytic capacity of human peripheral blood monocytes at high temperature further enlightens the immunomodulatory effect of fever in the immune responses during inflammation.

  10. Myeloperoxidase-Mediated Iodination by Granulocytes INTRACELLULAR SITE OF OPERATION AND SOME REGULATING FACTORS

    PubMed Central

    Root, Richard K.; Stossel, Thomas P.

    1974-01-01

    The intracellular site of operation of the myeloperoxidase-H2O2-halide antibacterial system of granulocytes has been determined by utilizing measurements of the fixation of iodide to trichloracetic acid (TCA) precipitates of subcellular fractions, including intact phagocytic vesicles. Na125I was added to suspensions of guinea pig granulocytes in Krebs-Ringer phosphate buffer, and they were then permitted to phagocytize different particles. Phagocytic vesicles were formed by allowing cells to ingest a paraffin oil emulsion (POE) and collected by flotation on sucrose after homogenization. Measurement of 125I bound to TCA precipitates of the different fractions and the homogenates disclosed that the lysosome-rich fraction obtained by centrifugation from control (nonphagocytizing) cells accounted for a mean 93.1% of the total cellular activity. With phagocytosis of POE, TCA-precipitable iodination increased two- to sevenfold, and the lysosomal contribution fell to a mean 36.9% of the total. The appearance of activity within phagocytic vesicles accounted for almost the entire increase seen with phagocytosis (a mean 75.7%), and iodide was bound within these structures with high specific activity. More iodide was taken up by cells than fixed, regardless of iodide concentration, and was distributed widely throughout the cell rather than selectively trapped within the vesicles. The amount of iodide taken up and fixed varied considerably with the phagocytic particle employed. Yeast particles were found to stimulate iodination to a far greater degree than the ingestion of POE or latex. Such observations are consistent with the concept that the ingested particle is a major recipient of the iodination process. Measurements of metabolic activities related to the formation and utilization of peroxide by cells phagocytizing different particles were made and correlated with iodination. The findings suggest that mechanisms must exist within granulocytes to collect or perhaps even synthesize H2O2 within phagocytic vesicles to serve as substrate for myeloperoxidase. The simultaneous stimulation of other metabolic pathways for peroxide disposal and its release into the medium by phagocytizing cells is consistent with the high diffusability of this important bactericidal substance. PMID:4596505

  11. Effects of Enrofloxacin on Porcine Phagocytic Function

    PubMed Central

    Schoevers, E. J.; van Leengoed, L. A. M. G.; Verheijden, J. H. M.; Niewold, T. A.

    1999-01-01

    The interaction between enrofloxacin and porcine phagocytes was studied with clinically relevant concentrations of enrofloxacin. Enrofloxacin accumulated in phagocytes, with cellular concentration/extracellular concentration ratios of 9 for polymorphonuclear leukocytes (PMNs) and 5 for alveolar macrophages (AMs). Cells with accumulated enrofloxacin brought into enrofloxacin-free medium released approximately 80% (AMs) to 90% (PMNs) of their enrofloxacin within the first 10 min, after which no further release was seen. Enrofloxacin affected neither the viability of PMNs and AMs nor the chemotaxis of PMNs at concentrations ranging from 0 to 10 μg/ml. Enrofloxacin (0.5 μg/ml) did not alter the capability of PMNs and AMs to phagocytize fluorescent microparticles or Actinobacillus pleuropneumoniae, Pasteurella multocida, and Staphylococcus aureus. Significant differences in intracellular killing were seen with enrofloxacin at 5× the MIC compared with that for controls not treated with enrofloxacin. PMNs killed all S. aureus isolates in 3 h with or without enrofloxacin. Intracellular S. aureus isolates in AMs were less susceptible than extracellular S. aureus isolates to the bactericidal effect of enrofloxacin. P. multocida was not phagocytosed by PMNs. AMs did not kill P. multocida, and similar intra- and extracellular reductions of P. multocida isolates by enrofloxacin were found. Intraphagocytic killing of A. pleuropneumoniae was significantly enhanced by enrofloxacin at 5× the MIC in both PMNs and AMs. AMs are very susceptible to the A. pleuropneumoniae cytotoxin. This suggests that in serologically naive pigs the enhancing effect of enrofloxacin on the bactericidal action of PMNs may have clinical relevance. PMID:10471554

  12. One-year follow-up of the phagocytic activity of leukocytes after exposure of rats to asbestos and basalt fibers.

    PubMed Central

    Hurbánková, M

    1994-01-01

    The phagocytic activity of leukocytes in peripheral blood was investigated after 2, 24, and 48 hr; 1, 2, 4, and 8 weeks; and 6 and 12 months following intraperitoneal administration of asbestos and basalt fibers to Wistar rats. Asbestos and basalt fibers differed in their effects on the parameters studied. Both granulocyte count and phagocytic activity of leukocytes during the 1-year dynamic follow-up in both dust-exposed groups of animals changed in two phases, characterized by the initial stimulation of the acute phase I, followed by the suppression of the parameters in the chronic phase II. Exposure to asbestos and basalt fibers led, in phase II, to impairment of the phagocytic activity of granulocytes. Asbestos fibers also significantly decreased phagocytic activity of monocytes. Exposure to basalt fibers did not affect the phagocytic activity of monocytes in phase II. Results suggest that the monocytic component of leukocytes plays an important role in the development of diseases caused by exposure to fibrous dusts, but basalt fibers have lesser biological effects than asbestos fibers. PMID:7882931

  13. Effect of lead acetate on the in vitro engulfment and killing capability of toad (Bufo arenarum) neutrophils.

    PubMed

    Rosenberg, Carolina E; Fink, Nilda E; Arrieta, Marcos A; Salibián, Alfredo

    2003-11-01

    Lead is an element of risk for the environment and human health and has harmful effects that may exceed those of other inorganic toxicants. The immune system is one of the targets of lead. Its immunomodulatory actions depend on the level of exposure, and it has been demonstrated that environmental amounts of the metal alter immune function. Very little information is available regarding the effect of the metal on different aspects of the immune system of lower vertebrates, in particular of amphibians. The aim of this study was to investigate the effect of sublethal lead (as acetate) on the function of polymorphonuclear cells of Bufo arenarum. The results revealed that phagocytic and lytic functions of the adherent blood cells collected from sublethal lead-injected toads and incubated with suspensions of Candida pseudotropicalis were affected negatively. The decrease of the phagocytic activity was correlated with increased blood lead levels (P < 0.0001). Additional information referred to the total and differential leukocyte counts was presented; the only difference found was in the number of blast-like cells that resulted augmented in the samples of lead-injected toads. It was concluded that the evaluation of these parameters might be a reliable tool for the biological monitoring of the immune status of amphibians.

  14. The Eng1 β-Glucanase Enhances Histoplasma Virulence by Reducing β-Glucan Exposure

    PubMed Central

    Garfoot, Andrew L.; Shen, Qian; Wüthrich, Marcel; Klein, Bruce S.

    2016-01-01

    ABSTRACT The fungal pathogen Histoplasma capsulatum parasitizes host phagocytes. To avoid antimicrobial immune responses, Histoplasma yeasts must minimize their detection by host receptors while simultaneously interacting with the phagocyte. Pathogenic Histoplasma yeast cells, but not avirulent mycelial cells, secrete the Eng1 protein, which is a member of the glycosylhydrolase 81 (GH81) family. We show that Histoplasma Eng1 is a glucanase that hydrolyzes β-(1,3)-glycosyl linkages but is not required for Histoplasma growth in vitro or for cell separation. However, Histoplasma yeasts lacking Eng1 function have attenuated virulence in vivo, particularly during the cell-mediated immunity stage. Histoplasma yeasts deficient for Eng1 show increased exposure of cell wall β-glucans, which results in enhanced binding to the Dectin-1 β-glucan receptor. Consistent with this, Eng1-deficient yeasts trigger increased tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) cytokine production from macrophages and dendritic cells. While not responsible for large-scale cell wall structure and function, the secreted Eng1 reduces levels of exposed β-glucans at the yeast cell wall, thereby diminishing potential recognition by Dectin-1 and proinflammatory cytokine production by phagocytes. In α-glucan-producing Histoplasma strains, Eng1 acts in concert with α-glucan to minimize β-glucan exposure: α-glucan provides a masking function by covering the β-glucan-rich cell wall, while Eng1 removes any remaining exposed β-glucans. Thus, Histoplasma Eng1 has evolved a specialized pathogenesis function to remove exposed β-glucans, thereby enhancing the ability of yeasts to escape detection by host phagocytes. PMID:27094334

  15. A novel phagocytic receptor (CgNimC) from Pacific oyster Crassostrea gigas with lipopolysaccharide and gram-negative bacteria binding activity.

    PubMed

    Wang, Weilin; Liu, Rui; Zhang, Tao; Zhang, Ran; Song, Xuan; Wang, Lingling; Song, Linsheng

    2015-03-01

    Phagocytosis is an evolutionarily conserved process to ingest the invading microbes and apoptotic or necrotic corpses, playing vital roles in defensing invaders and maintenance of normal physiological conditions. In the present study, a new Nimrod family phagocytic receptor with three EGF-like domains was identified in Pacific oyster Crassostrea gigas (designated CgNimC). CgNimC shared homology with other identified multiple EGF-like domain containing proteins. The mRNA transcripts of CgNimC were mainly distributed in mantle and hemocytes. Its relative expression level in hemocytes was significantly (P < 0.01) up-regulated after the injection of bacteria Vibrio anguillarum. Different to the NimC in Drosophila and Anopheles gambiae, the recombinant protein of CgNimC (rCgNimC) could bind directly to two gram-negative bacteria V. anguillarum and Vibrio splendidus, but not to gram-positive bacteria Staphylococci aureus, Micrococcus luteus or fungi Yarrowia lipolytica and Pichia pastoris. The affinity of rCgNimC toward M. luteus and Y. lipolytica was enhanced when the microorganisms were pre-incubated with the cell free hemolymph. rCgNimC exhibited higher affinity to lipopolysaccharide (LPS) and relatively lower affinity to peptidoglycan (PGN), while no affinity to glucan (GLU). After the CgNimC receptor was blocked by anti-rCgNimC antibody in vitro, the phagocytic rate of hemocytes toward two gram-negative bacteria V. anguillarum and V. splendidus was reduced significantly (P < 0.05), but no significant change of phagocytic rate was observed toward M. luteus and Y. lipolytica. All these results implied that CgNimC, with significant binding capability to LPS and gram-negative bacteria, was a novel phagocytic receptor involved in immune response of Pacific oyster. Further, it was speculated that receptors of Nimrod family might function as a phagocytic receptor to recognize PAMPs on the invaders and its recognition could be promoted by opsonization of molecules in hemolymph. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Immunomodulatory Activity of Oenothein B Isolated from Epilobium angustifolium1

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Jakiw, Larissa; Khlebnikov, Andrei I.; Blaskovich, Christie L.; Jutila, Mark A.; Quinn, Mark T.

    2009-01-01

    Epilobium angustifolium has been traditionally used to treat of a number of diseases; however, not much is known regarding its effect on innate immune cells. Here, we report that extracts of E. angustifolium activated functional responses in neutrophils and monocyte/macrophages. Activity-guided fractionation, followed by mass spectroscopy and NMR analysis, resulted in the identification of oenothein B as the primary component responsible for phagocyte activation. Oenothein B, a dimeric hydrolysable tannin, dose-dependently induced a number of phagocyte functions in vitro, including intracellular Ca2+ flux, production of reactive oxygen species (ROS), chemotaxis, nuclear factor (NF)-κB activation, and proinflammatory cytokine production. Furthermore, oenothein B was active in vivo, inducing keratinocyte chemoattractant (KC) production and neutrophil recruitment to the peritoneum after intraperitoneal administration. Biological activity required the full oenothein B structure, as substructures of oenothein B (pyrocatechol, gallic acid, pyrogallol, 3,4-dihydroxybenzoic acid) were all inactive. The ability of oenothein B to modulate phagocyte functions in vitro and in vivo suggests that this compound is responsible for at least part of the therapeutic properties of E. angustifolium extracts. PMID:19846877

  17. The Phagocyte, Metchnikoff, and the Foundation of Immunology.

    PubMed

    Teti, Giuseppe; Biondo, Carmelo; Beninati, Concetta

    2016-04-01

    Since the ability of some cells to engulf particulate material was observed before Metchnikoff, he did not "discover" phagocytosis, as is sometimes mentioned in textbooks. Rather, he assigned to particle internalization the role of defending the host against noxious stimuli, which represented a new function relative to the previously recognized task of intracellular digestion. With this proposal, Metchnikoff built the conceptual framework within which immunity could finally be seen as an active host function triggered by noxious stimuli. In this sense, Metchnikoff can be rightly regarded as the father of all immunological sciences and not only of innate immunity or myeloid cell biology. Moreover, the recognition properties of his phagocyte fit surprisingly well with recent discoveries and modern models of immune sensing. For example, rather than assigning to immune recognition exclusively the function of eliminating nonself components (as others did after him), Metchnikoff viewed phagocytes as homeostatic agents capable of monitoring the internal environment and promoting tissue remodeling, thereby continuously defining the identity of the organism. No doubt, Metchnikoff's life and creativity can provide, still today, a rich source of inspiration.

  18. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells.

    PubMed

    Thorek, Daniel L J; Tsourkas, Andrew

    2008-09-01

    A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33nm to nearly 1.5microm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose-dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however, micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50nm).

  19. Size, Charge and Concentration Dependent Uptake of Iron Oxide Particles by Non-Phagocytic Cells

    PubMed Central

    Thorek, Daniel L.J.; Tsourkas, Andrew

    2008-01-01

    A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33 nm to nearly 1.5 μm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107 nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50 nm). PMID:18533252

  20. Phagocytosis and Respiratory Burst Activity in Lumpsucker (Cyclopterus lumpus L.) Leucocytes Analysed by Flow Cytometry

    PubMed Central

    Haugland, Gyri T.; Jakobsen, Ragnhild Aakre; Vestvik, Nils; Ulven, Kristian; Stokka, Lene; Wergeland, Heidrun I.

    2012-01-01

    In the present study, we have isolated leucocytes from peripheral blood, head kidney and spleen from lumpsucker (Cyclopterus lumpus L.), and performed functional studies like phagocytosis and respiratory burst, as well as morphological and cytochemical analyses. Different leucocytes were identified, such as lymphocytes, monocytes/macrophages and polymorphonuclear cells with bean shaped or bilobed nuclei. In addition, cells with similar morphology as described for dendritic cells in trout were abundant among the isolated leucocytes. Flow cytometry was successfully used for measuring phagocytosis and respiratory burst activity. The phagocytic capacity and ability were very high, and cells with different morphology in all three leucocyte preparations phagocytised beads rapidly. Due to lack of available cell markers, the identity of the phagocytic cells could not be determined. The potent non-specific phagocytosis was in accordance with a high number of cells positive for myeloperoxidase, an enzyme involved in oxygen-dependent killing mechanism present in phagocytic cells. Further, high respiratory burst activity was present in the leucocytes samples, verifying a potent oxygen- dependent degradation. At present, the specific antibody immune response could not be measured, as immunoglobulin or B-cells have not yet been isolated. Therefore, analyses of the specific immune response in this fish species await further clarification. The present study presents the first analyses of lumpsucker immunity and also the first within the order Scopaeniformes. PMID:23112870

  1. Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes▿ †

    PubMed Central

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J.

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-β-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-β-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-β-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-β-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism. PMID:18981256

  2. Our Immune System

    MedlinePlus

    ... can stop now! 9 Another protector is the Phagocyte (Phag-o-cyte). Phagocytes kill germs by eating them! They also send signals to other Phagocytes Calling all Phagocytes! Calling all Phagocytes! Help! Help! ...

  3. Exploiting Uptake of Nanoparticles by Phagocytes for Cancer Treatment.

    PubMed

    Sheen, Mee Rie; Fiering, Steven

    2017-01-01

    Many cancers including ovarian, pancreatic, colon, liver, and stomach cancers are largely confined to the peritoneal cavity. Peritoneal tumors are directly accessible by intraperitoneal injections. Previously we demonstrated that intraperitoneal injection of nanoparticles and subsequent ingestion by tumor-associated phagocytes can be used to either directly impact tumors or stimulate antitumor immune responses. Here we outline methods to specifically utilize iron oxide nanoparticles with the ID8-Defb29/Vegf-A murine ovarian cancer model and discuss the tendency of phagocytes to ingest nanoparticles and the potential of phagocytes to carry nanoparticles to tumors resulting in direct killing of tumor cells or stimulate antitumor immune responses in peritoneal cancers. This basic approach can be modified as needed for different types of tumors and nanoparticles.

  4. CRISPR-Mediated Knockout of Cybb in NSG Mice Establishes a Model of Chronic Granulomatous Disease for Human Stem-Cell Gene Therapy Transplants.

    PubMed

    Sweeney, Colin L; Choi, Uimook; Liu, Chengyu; Koontz, Sherry; Ha, Seung-Kwon; Malech, Harry L

    2017-07-01

    Chronic granulomatous disease (CGD) is characterized by defects in the production of microbicidal reactive oxygen species (ROS) by phagocytes. Testing of gene and cell therapies for the treatment of CGD in human hematopoietic cells requires preclinical transplant models. The use of the lymphocyte-deficient NOD.Cg-Prkdc scid Il2rg tm1Wjl/ SzJ (NSG) mouse strain for human hematopoietic cell xenografts to test CGD therapies is complicated by the presence of functional mouse granulocytes capable of producing ROS for subsequent bacterial and fungal killing. To establish a phagocyte-defective mouse model of X-linked CGD (X-CGD) in NSG mice, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was utilized for targeted knockout of mouse Cybb on the X-chromosome by microinjection of NSG mouse zygotes with Cas9 mRNA and CRISPR single-guide RNA targeting Cybb exon 1 or exon 3. This resulted in a high incidence of indel formation at the CRISPR target site, with all mice exhibiting deletions in at least one Cybb allele based on sequence analysis of tail snip DNA. A female mouse heterozygous for a 235-bp deletion in Cybb exon 1 was bred to an NSG male to establish the X-CGD NSG mouse strain, NSG.Cybb[KO]. Resulting male offspring with the 235 bp deletion were found to be defective for production of ROS by neutrophils and other phagocytes, and demonstrated increased susceptibility to spontaneous bacterial and fungal infections with granulomatous inflammation. The establishment of the phagocyte-defective NSG.Cybb[KO] mouse model enables the in vivo assessment of gene and cell therapy strategies for treating CGD in human hematopoietic cell transplants without obfuscation by functional mouse phagocytes, and may also be useful for modeling other phagocyte disorders in humanized NSG mouse xenografts.

  5. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes

    NASA Astrophysics Data System (ADS)

    Qie, Yaqing; Yuan, Hengfeng; von Roemeling, Christina A.; Chen, Yuanxin; Liu, Xiujie; Shih, Kevin D.; Knight, Joshua A.; Tun, Han W.; Wharen, Robert E.; Jiang, Wen; Kim, Betty Y. S.

    2016-05-01

    Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.

  6. Tunable particles alter macrophage uptake based on combinatorial effects of physical properties

    PubMed Central

    Garapaty, Anusha

    2017-01-01

    Abstract The ability to tune phagocytosis of particle‐based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non‐phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer‐by‐layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod‐shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc‐functionalized particles with macrophages during phagocytosis. PMID:29313025

  7. Caspase Activity Is Required for Engulfment of Apoptotic Cells

    PubMed Central

    Shklyar, Boris; Levy-Adam, Flonia; Mishnaevski, Ketty

    2013-01-01

    Clearance of apoptotic cells by phagocytic neighbors is crucial for normal development of multicellular organisms. However, how phagocytes discriminate between healthy and dying cells remains poorly understood. We focus on glial phagocytosis of apoptotic neurons during development of the Drosophila central nervous system. We identified phosphatidylserine (PS) as a ligand on apoptotic cells for the phagocytic receptor Six Microns Under (SIMU) and report that PS alone is not sufficient for engulfment. Our data reveal that, additionally to PS exposure, caspase activity is required for clearance of apoptotic cells by phagocytes. Here we demonstrate that SIMU recognizes and binds PS on apoptotic cells through its N-terminal EMILIN (EMI), Nimrod 1 (NIM1), and NIM2 repeats, whereas the C-terminal NIM3 and NIM4 repeats control SIMU affinity to PS. Based on the structure-function analysis of SIMU, we discovered a novel mechanism of internal inhibition responsible for differential affinities of SIMU to its ligand which might prevent elimination of living cells exposing PS on their surfaces. PMID:23754750

  8. Classification and phagocytosis of circulating haemocytes in Chinese mitten crab (Eriocheir sinensis) and the effect of extrinsic stimulation on circulating haemocytes in vivo.

    PubMed

    Lv, Sunjian; Xu, Jiehao; Zhao, Jing; Yin, Na; Lu, Binjie; Li, Song; Chen, Yuyin; Xu, Haisheng

    2014-08-01

    Eriocheir sinensis (Henri Milne Edwards 1854) is one of the most important aquaculture species in China. In this investigation, we characterised the different types of haemocytes of E. sinensis using light and electron microscopy combined with cytochemical analysis and determined the in vivo phagocytic ability of different haemocyte types by injecting polystyrene beads. The haemocytes of E. sinensis were divided into three types: hyalinocytes, semigranulocytes and granulocytes. The hyalinocytes had no or few cytoplasmic granules; the semigranulocytes contained abundant small granules and a few large refractile cytoplasmic granules; and the granulocytes contained numerous large refractile cytoplasmic granules. The hyalinocytes were demonstrated to be the most abundant circulating haemocytes and the most avid phagocytic haemocytes, accounting for approximately 88.7% of the total phagocytes. The haemocyte-containing granules displayed limited phagocytic ability, with approximately 5.0% of granulocytes and 6.3% of semigranulocytes displaying positive phagocytic ability against the invading polystyrene beads in vivo. After injection with Aeromonas hydrophila, Bacillus subtilis and different concentrations of lipopolysaccharide for 0.25, 0.5, 1, 2, 4, 6 and 8 h, all three types of haemocytes experienced dramatic decline and then rapid recovery to their initial levels. A high concentration of lipopolysaccharide and A. hydrophila were extremely toxic to the crabs, as they induced a more serious loss of haemocytes compared with a low concentration of lipopolysaccharide and B. subtilis. Overall, the results obtained in this study indicate that a small proportion of the haemocytes of E. sinensis contributed to the phagocytic process, and the migration of haemocytes and haemocyte lysis were most likely a prominent pathway for pathogen elimination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Similarities and differences between the responses induced in human phagocytes through activation of the medium chain fatty acid receptor GPR84 and the short chain fatty acid receptor FFA2R.

    PubMed

    Sundqvist, Martina; Christenson, Karin; Holdfeldt, André; Gabl, Michael; Mårtensson, Jonas; Björkman, Lena; Dieckmann, Regis; Dahlgren, Claes; Forsman, Huamei

    2018-05-01

    GPR84 is a recently de-orphanized member of the G-protein coupled receptor (GPCR) family recognizing medium chain fatty acids, and has been suggested to play important roles in inflammation. Due to the lack of potent and selective GPR84 ligands, the basic knowledge related to GPR84 functions is very limited. In this study, we have characterized the GPR84 activation profile and regulation mechanism in human phagocytes, using two recently developed small molecules that specifically target GPR84 agonistically (ZQ16) and antagonistically (GLPG1205), respectively. Compared to our earlier characterization of the short chain fatty acid receptor FFA2R which is functionally expressed in neutrophils but not in monocytes, GPR84 is expressed in both cell types and in monocyte-derived macrophages. In neutrophils, the GPR84 agonist had an activation profile very similar to that of FFA2R. The GPR84-mediated superoxide release was low in naïve cells, but the response could be significantly primed by TNFα and by the actin cytoskeleton disrupting agent Latrunculin A. Similar to that of FFA2R, a desensitization mechanism bypassing the actin cytoskeleton was utilized by GPR84. All ZQ16-mediated cellular responses were sensitive to GLPG1205, confirming the GPR84-dependency. Finally, our data of in vivo transmigrated tissue neutrophils indicate that both GPR84 and FFA2R are involved in neutrophil recruitment processes in vivo. In summary, we show functional similarities but also some important differences between GPR84 and FFA2R in human phagocytes, thus providing some mechanistic insights into GPR84 regulation in blood neutrophils and cells recruited to an aseptic inflammatory site in vivo. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms

    PubMed Central

    Li, Zao; Venegas, Victor; Nagaoka, Yuji; Morino, Eri; Raghavan, Prashant; Audhya, Anjon; Nakanishi, Yoshinobu; Zhou, Zheng

    2015-01-01

    Necrosis, a kind of cell death closely associated with pathogenesis and genetic programs, is distinct from apoptosis in both morphology and mechanism. Like apoptotic cells, necrotic cells are swiftly removed from animal bodies to prevent harmful inflammatory and autoimmune responses. In the nematode Caenorhabditis elegans, gain-of-function mutations in certain ion channel subunits result in the excitotoxic necrosis of six touch neurons and their subsequent engulfment and degradation inside engulfing cells. How necrotic cells are recognized by engulfing cells is unclear. Phosphatidylserine (PS) is an important apoptotic-cell surface signal that attracts engulfing cells. Here we observed PS exposure on the surface of necrotic touch neurons. In addition, the phagocytic receptor CED-1 clusters around necrotic cells and promotes their engulfment. The extracellular domain of CED-1 associates with PS in vitro. We further identified a necrotic cell-specific function of CED-7, a member of the ATP-binding cassette (ABC) transporter family, in promoting PS exposure. In addition to CED-7, anoctamin homolog-1 (ANOH-1), the C. elegans homolog of the mammalian Ca2+-dependent phospholipid scramblase TMEM16F, plays an independent role in promoting PS exposure on necrotic cells. The combined activities from CED-7 and ANOH-1 ensure efficient exposure of PS on necrotic cells to attract their phagocytes. In addition, CED-8, the C. elegans homolog of mammalian Xk-related protein 8 also makes a contribution to necrotic cell-removal at the first larval stage. Our work indicates that cells killed by different mechanisms (necrosis or apoptosis) expose a common “eat me” signal to attract their phagocytic receptor(s); furthermore, unlike what was previously believed, necrotic cells actively present PS on their outer surfaces through at least two distinct molecular mechanisms rather than leaking out PS passively. PMID:26061275

  11. Single sea urchin phagocytes express messages of a single sequence from the diverse Sp185/333 gene family in response to bacterial challenge.

    PubMed

    Majeske, Audrey J; Oren, Matan; Sacchi, Sandro; Smith, L Courtney

    2014-12-01

    Immune systems in animals rely on fast and efficient responses to a wide variety of pathogens. The Sp185/333 gene family in the purple sea urchin, Strongylocentrotus purpuratus, consists of an estimated 50 (±10) members per genome that share a basic gene structure but show high sequence diversity, primarily due to the mosaic appearance of short blocks of sequence called elements. The genes show significantly elevated expression in three subpopulations of phagocytes responding to marine bacteria. The encoded Sp185/333 proteins are highly diverse and have central effector functions in the immune system. In this study we report the Sp185/333 gene expression in single sea urchin phagocytes. Sea urchins challenged with heat-killed marine bacteria resulted in a typical increase in coelomocyte concentration within 24 h, which included an increased proportion of phagocytes expressing Sp185/333 proteins. Phagocyte fractions enriched from coelomocytes were used in limiting dilutions to obtain samples of single cells that were evaluated for Sp185/333 gene expression by nested RT-PCR. Amplicon sequences showed identical or nearly identical Sp185/333 amplicon sequences in single phagocytes with matches to six known Sp185/333 element patterns, including both common and rare element patterns. This suggested that single phagocytes show restricted expression from the Sp185/333 gene family and infers a diverse, flexible, and efficient response to pathogens. This type of expression pattern from a family of immune response genes in single cells has not been identified previously in other invertebrates. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. Potential Link between the Sphingosine-1-Phosphate (S1P) System and Defective Alveolar Macrophage Phagocytic Function in Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    Barnawi, Jameel; Tran, Hai; Jersmann, Hubertus; Pitson, Stuart; Roscioli, Eugene; Hodge, Greg; Meech, Robyn; Haberberger, Rainer; Hodge, Sandra

    2015-01-01

    Introduction We previously reported that alveolar macrophages from patients with chronic obstructive pulmonary disease (COPD) are defective in their ability to phagocytose apoptotic cells, with a similar defect in response to cigarette smoke. The exact mechanisms for this defect are unknown. Sphingolipids including ceramide, sphingosine and sphingosine-1-phosphate (S1P) are involved in diverse cellular processes and we hypothesised that a comprehensive analysis of this system in alveolar macrophages in COPD may help to delineate the reasons for defective phagocytic function. Methods We compared mRNA expression of sphingosine kinases (SPHK1/2), S1P receptors (S1PR1-5) and S1P-degrading enzymes (SGPP1, SGPP2, SGPL1) in bronchoalveolar lavage-derived alveolar macrophages from 10 healthy controls, 7 healthy smokers and 20 COPD patients (10 current- and 10 ex-smokers) using Real-Time PCR. Phagocytosis of apoptotic cells was investigated using flow cytometry. Functional associations were assessed between sphingosine signalling system components and alveolar macrophage phagocytic ability in COPD. To elucidate functional effects of increased S1PR5 on macrophage phagocytic ability, we performed the phagocytosis assay in the presence of varying concentrations of suramin, an antagonist of S1PR3 and S1PR5. The effects of cigarette smoking on the S1P system were investigated using a THP-1 macrophage cell line model. Results We found significant increases in SPHK1/2 (3.4- and 2.1-fold increases respectively), S1PR2 and 5 (4.3- and 14.6-fold increases respectively), and SGPL1 (4.5-fold increase) in COPD vs. controls. S1PR5 and SGPL1 expression was unaffected by smoking status, suggesting a COPD “disease effect” rather than smoke effect per se. Significant associations were noted between S1PR5 and both lung function and phagocytosis. Cigarette smoke extract significantly increased mRNA expression of SPHK1, SPHK2, S1PR2 and S1PR5 by THP-1 macrophages, confirming the results in patient-derived macrophages. Antagonising SIPR5 significantly improved phagocytosis. Conclusion Our results suggest a potential link between the S1P signalling system and defective macrophage phagocytic function in COPD and advise therapeutic targets. PMID:26485657

  13. Dysregulation of the Cytokine GM-CSF Induces Spontaneous Phagocyte Invasion and Immunopathology in the Central Nervous System.

    PubMed

    Spath, Sabine; Komuczki, Juliana; Hermann, Mario; Pelczar, Pawel; Mair, Florian; Schreiner, Bettina; Becher, Burkhard

    2017-02-21

    Chronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells. Antigen-independent GM-CSF release led to the invasion of inflammatory myeloid cells into the central nervous system (CNS), which was accompanied by the spontaneous development of severe neurological deficits. CNS-invading phagocytes produced reactive oxygen species and exhibited a distinct genetic signature compared to myeloid cells invading other organs. We propose that the CNS is particularly vulnerable to the attack of monocyte-derived phagocytes and that the effector functions of GM-CSF-expanded myeloid cells are in turn guided by the tissue microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. M-ficolin concentrations in cord blood are related to circulating phagocytes and to early-onset sepsis.

    PubMed

    Schlapbach, Luregn J; Kjaer, Troels R; Thiel, Steffen; Mattmann, Maika; Nelle, Mathias; Wagner, Bendicht P; Ammann, Roland A; Aebi, Christoph; Jensenius, Jens C

    2012-04-01

    The pattern-recognition molecule M-ficolin is synthesized by monocytes and neutrophils. M-ficolin activates the complement system in a manner similar to mannan-binding lectin (MBL), but little is known about its role in host defense. Neonates are highly vulnerable to bacterial sepsis, in particular, due to their decreased phagocytic function. M-ficolin cord blood concentration was positively correlated with the absolute phagocyte count (ρ 0.51, P < 0.001) and with immature/total neutrophil ratio (ρ 0.34, P < 0.001). When comparing infants with sepsis and controls, a high M-ficolin cord blood concentration (>1,000 ng/ml) was associated with early-onset sepsis (EOS) (multivariate odds ratio 10.92, 95% confidence interval 2.21-54.02, P = 0.003). Experimental exposure of phagocytes isolated from adult donors to Escherichia coli resulted in a significant time- and dose-dependent release of M-ficolin. In conclusion, M-ficolin concentrations were related to circulating phagocytes and EOS. Our results indicate that bacterial sepsis can trigger M-ficolin release by phagocytes. Future studies should investigate whether M-ficolin may be used as a marker of neutrophil activation during invasive infections. We investigated M-ficolin in 47 infants with culture-positive sepsis during the first 30 days of life (13 with EOS and in 94 matched controls. M-ficolin was measured in cord blood using time-resolved immunofluorometric assay (TRIFMA). Multivariate logistic regression was performed.

  15. Consumption of Bifidobacterium lactis Bi-07 by healthy elderly adults enhances phagocytic activity of monocytes and granulocytes.

    PubMed

    Maneerat, Sujira; Lehtinen, Markus J; Childs, Caroline E; Forssten, Sofia D; Alhoniemi, Esa; Tiphaine, Milin; Yaqoob, Parveen; Ouwehand, Arthur C; Rastall, Robert A

    2013-01-01

    Elderly adults have alterations in their gut microbiota and immune functions that are associated with higher susceptibility to infections and metabolic disorders. Probiotics and prebiotics, and their synbiotic combinations are food supplements that have been shown to improve both gut and immune function. The objective of this randomised, double-blind, placebo-controlled, cross-over human clinical trial was to study immune function and the gut microbiota in healthy elderly adults. Volunteers (n 37) consumed prebiotic galacto-oligosaccharides (GOS; 8 g/d), probiotic Bifidobacterium lactis Bi-07 (Bi-07; 10(9) colony-forming units/d), their combination (Bi-07 + GOS) and maltodextrin control (8 g/d) in four 3-week periods separated by 4-week wash-out periods. Immune function was analysed by determining the phagocytic and oxidative burst activity of monocytes and granulocytes, whole-blood response to lipopolysaccharide, plasma chemokine concentrations and salivary IgA levels. Gut microbiota composition and faecal SCFA content were determined using 16S ribosomal RNA fluorescence in situ hybridisation and HPLC, respectively. Primary statistical analyses indicated the presence of carry-over effects and thus measurements from only the first supplementation period were considered valid. Subsequent statistical analysis showed that consumption of Bi-07 improved the phagocytic activity of monocytes (P < 0·001) and granulocytes (P = 0·02). Other parameters were unchanged. We have for the first time shown that the probiotic Bi-07 may provide health benefits to elderly individuals by improving the phagocytic activity of monocytes and granulocytes. The present results also suggest that in the elderly, the effects of some probiotics and prebiotics may last longer than in adults.

  16. The Intimate and Controversial Relationship between Voltage Gated Proton Channels and the Phagocyte NADPH Oxidase

    PubMed Central

    DeCoursey, Thomas E.

    2016-01-01

    Summary One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the NADPH oxidase complex and voltage gated proton channels (HV1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987–1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV1, and HV1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase -- an industrial strength producer of reactive oxygen species (ROS) -- to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come. PMID:27558336

  17. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes

    PubMed Central

    Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which—together with confocal microscopy and flow cytometry—allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity. PMID:28877227

  18. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes.

    PubMed

    Hystad, Eva Marit; Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

  19. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation.

    PubMed

    Han, Claudia Z; Juncadella, Ignacio J; Kinchen, Jason M; Buckley, Monica W; Klibanov, Alexander L; Dryden, Kelly; Onengut-Gumuscu, Suna; Erdbrügger, Uta; Turner, Stephen D; Shim, Yun M; Tung, Kenneth S; Ravichandran, Kodi S

    2016-11-24

    Professional phagocytes (such as macrophages) and non-professional phagocytes (such as epithelial cells) clear billions of apoptotic cells and particles on a daily basis. Although professional and non-professional macrophages reside in proximity in most tissues, whether they communicate with each other during cell clearance, and how this might affect inflammation, is not known. Here we show that macrophages, through the release of a soluble growth factor and microvesicles, alter the type of particles engulfed by non-professional phagocytes and influence their inflammatory response. During phagocytosis of apoptotic cells or in response to inflammation-associated cytokines, macrophages released insulin-like growth factor 1 (IGF-1). The binding of IGF-1 to its receptor on non-professional phagocytes redirected their phagocytosis, such that uptake of larger apoptotic cells was reduced whereas engulfment of microvesicles was increased. IGF-1 did not alter engulfment by macrophages. Macrophages also released microvesicles, whose uptake by epithelial cells was enhanced by IGF-1 and led to decreased inflammatory responses by epithelial cells. Consistent with these observations, deletion of IGF-1 receptor in airway epithelial cells led to exacerbated lung inflammation after allergen exposure. These genetic and functional studies reveal that IGF-1- and microvesicle-dependent communication between macrophages and epithelial cells can critically influence the magnitude of tissue inflammation in vivo.

  20. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    PubMed

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment.

  1. Elevated Mitochondrial Reactive Oxygen Species and Cellular Redox Imbalance in Human NADPH-Oxidase-Deficient Phagocytes

    PubMed Central

    Sundqvist, Martina; Christenson, Karin; Björnsdottir, Halla; Osla, Veronica; Karlsson, Anna; Dahlgren, Claes; Speert, David P.; Fasth, Anders; Brown, Kelly L.; Bylund, Johan

    2017-01-01

    Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD. PMID:29375548

  2. Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions

    PubMed Central

    Kawakami, Takahisa; Lichtnekert, Julia; Thompson, Lucas J.; Karna, Prasanthi; Bouabe, Hicham; Hohl, Tobias M.; Heinecke, Jay W.; Ziegler, Steven F.; Nelson, Peter J.; Duffield, Jeremy S.

    2013-01-01

    Recent reports have highlighted greater complexity, plasticity and functional diversity of mononuclear phagocytes (MPCs), including monocytes, macrophages and dendritic cells (DCs), in our organs, than previously understood. The functions and origins of MPCs resident within healthy organs, especially in the kidney, are less well understood, while studies suggest they play roles in disease states distinct from recruited monocytes. We developed an unbiased approach using flow cytometry to analyze MPCs residing in the normal mouse kidney, and identified five discrete subpopulations according to CD11b/CD11c expression as well as F4/80, CD103, CD14, CD16 and CD64 expression. In addition to distinct marker profiles, these subpopulations have different lineages and expression of genes involved in tissue homeostasis, including angiogenesis. Among them, the CD11bint CD11cint F4/80hi subpopulation notably exhibited high capacity to produce a representative anti-inflammatory cytokine, IL-10. Each subpopulation had different degrees of both macrophage (phagocytosis) and DC (antigen presentation) capacities, with a tendency to promote differentiation of regulatory T cells, while two of these showed expression of transcription factors reported to be highly expressed by classical DCs, and proclivity to exit the kidney following stimulation with LPS. In summary, resident kidney MPCs comprise discrete subpopulations, which cannot be simply classified into the conventional entities, and they produce anti-inflammatory and tissue-homeostatic factors to differing degrees. PMID:23956422

  3. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic Hemocytes in the Circulation and the Kidney

    PubMed Central

    Vega, Israel A.; Castro-Vazquez, Alfredo

    2015-01-01

    Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail. PMID:25893243

  4. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic Hemocytes in the Circulation and the Kidney.

    PubMed

    Cueto, Juan A; Rodriguez, Cristian; Vega, Israel A; Castro-Vazquez, Alfredo

    2015-01-01

    Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail.

  5. Effects of short-term hypothermal and contrast exposure on immunophysiological parameters of laboratory animals.

    PubMed

    Kalenova, L F; Fisher, T A; Suhovey, J G; Besedin, I M

    2009-05-01

    Experiments on inbred animals showed that short-term exposure in cold water significantly modified structural and functional parameters of the immune system at different levels of its organization, from bone marrow hemopoiesis to effector stage of the immune response to antigen. The thermal factor caused changes in nonspecific and specific mechanisms of the immune system. Hypothermal exposure (7-9 degrees C, 5 sec) increased the thymic index and bone marrow lymphocyte count, reduced absorption capacity and stimulated metabolic activity of phagocytes, stimulated cell-mediated and suppressed humoral immunity. Contrast exposure in cold and hot water (7-9 degrees C, 5 sec/40-42 degrees C, 30 sec) increased monocyte count in bone marrow and reduced it in the their peripheral blood, reduced metabolic activity of phagocytes, stimulated cell-mediated and suppressed humoral immunity. These data demonstrate physiological mechanisms of interactions between the thermoregulatory and immune systems.

  6. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae.

    PubMed

    Knox, Benjamin P; Deng, Qing; Rood, Mary; Eickhoff, Jens C; Keller, Nancy P; Huttenlocher, Anna

    2014-10-01

    Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. THE CONTRIBUTION OF TYRO3 FAMILY RECEPTOR TYROSINE KINASES TO THE HETEROGENEITY OF APOPTOTIC CELL UPTAKE BY MONONUCLEAR PHAGOCYTES

    PubMed Central

    Curtis, Jeffrey L.; Todt, Jill C.; Hu, Bin; Osterholzer, John J.; Freeman, Christine M.

    2014-01-01

    Mononuclear phagocytes comprise a mobile, broadly dispersed and highly adaptable system that lies at the very epicenter of host defense against pathogens and the interplay of the innate and adaptive arms of immunity. Understanding the molecular mechanisms that control the response of mononuclear phagocytes to apoptotic cells and the anti-inflammatory consequences of that response is an important goal with implications for multiple areas of biomedical sciences. This review details current understanding of the heterogeneity of apoptotic cell uptake by different members of the mononuclear phagocyte family in humans and mice. It also recounts the unique role of the Tyro3 family of receptor tyrosine kinases, best characterized for Mertk, in the signal transduction leading both to apoptotic cell ingestion and the anti-inflammatory effects that result. PMID:19273223

  8. The structure of mononuclear phagocytes differentiating in vivo. III. The effect of particulate foreign substances.

    PubMed

    Goldner, R D; Adams, D O

    1977-11-01

    The response of mononuclear phagocytes to three inert particles--barium sulfate, talc, and thorium dioxide--was studied by correlated light and electron microscopy. All three particles induced maturation of the mononuclear phagocytes, which proceeded to the stage of the mature macrophage and required 7 to 9 days. Once established, maturation persisted as long as 45 days, as did the inert particles. The resultant lesions, dense aggregates of mature macrophages, were termed mature granulomas. The resultant maturation differed from that produced by digestible bacteria in tempo and extent but not in pattern.

  9. High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production.

    PubMed Central

    Wenisch, C; Parschalk, B; Weiss, A; Zedwitz-Liebenstein, K; Hahsler, B; Wenisch, H; Georgopoulos, A; Graninger, W

    1996-01-01

    Flow cytometry was used to study phagocytic function (uptake of fluorescein isothiocyanate-labeled bacteria) and release of reactive oxygen products (dihydrorhodamine 123 converted to rhodamine 123) following phagocytosis by neutrophil granulocytes of heparinized whole blood treated with adrenaline, noradrenaline, dopamine, dobutamine, or orciprenaline. Reduced neutrophil phagocytosis and reactive oxygen production were seen at 12 micrograms of adrenaline per liter (72% each compared with control values); at 120 micrograms of noradrenaline (72% each), dobutamine (83 and 80%, respectively), and orciprenaline (81 and 80%, respectively) per liter; and at 100 micrograms of dopamine per liter (66 and 70%) (P < 0.05 for all). At these dosages, neutrophil chemotaxis was reduced to < 50% of control values for all catecholamines. Treatment with catecholamines at lower dosages had no significant effect on phagocytosis or generation of reactive oxygen products or chemotaxis. The phagocytic capacity of granulocytes was related to the generation of reactive oxygen products (r = 0.789; P < 0.05). The results demonstrate that catecholamines have a suppressive effect on the response of phagocytic cells to bacterial pathogens at high therapeutic levels in blood. PMID:8807207

  10. The Neutrophil’s Choice: Phagocytose vs Make Neutrophil Extracellular Traps

    PubMed Central

    Manfredi, Angelo A.; Ramirez, Giuseppe A.; Rovere-Querini, Patrizia; Maugeri, Norma

    2018-01-01

    Neutrophils recognize particulate substrates of microbial or endogenous origin and react by sequestering the cargo via phagocytosis or by releasing neutrophil extracellular traps (NETs) outside the cell, thus modifying and alerting the environment and bystander leukocytes. The signals that determine the choice between phagocytosis and the generation of NETs are still poorly characterized. Neutrophils that had phagocytosed bulky particulate substrates, such as apoptotic cells and activated platelets, appear to be “poised” in an unresponsive state. Environmental conditions, the metabolic, adhesive and activation state of the phagocyte, and the size of and signals associated with the tethered phagocytic cargo influence the choice of the neutrophils, prompting either phagocytic clearance or the generation of NETs. The choice is dichotomic and apparently irreversible. Defects in phagocytosis may foster the intravascular generation of NETs, thus promoting vascular inflammation and morbidities associated with diseases characterized by defective phagocytic clearance, such as systemic lupus erythematosus. There is a strong potential for novel treatments based on new knowledge of the events determining the inflammatory and pro-thrombotic function of inflammatory leukocytes. PMID:29515586

  11. Immunomodulatory effect of prolactin on Atlantic salmon (Salmo salar) macrophage function.

    PubMed

    Paredes, Marco; Gonzalez, Katerina; Figueroa, Jaime; Montiel-Eulefi, Enrique

    2013-10-01

    The in vitro and in vivo effect of prolactin (PRL) on kidney macrophages from Atlantic salmon (Salmo salar) was investigated under the assumption that PRL stimulates immune innate response in mammals. Kidney macrophages were treated two ways: first, cultured in RPMI 1640 medium containing 10, 25, 50 and 100 ng/mL of PRL and second, isolated from a fish with a PRL-injected dose of 100 ng/Kg. Reduced nitro blue tetrazolium (formazan) was used to produce intracellular superoxide anion. Phagocytic activity of PRL was determined in treated cells by optical microscopy observation of phagocytized Congo red-stained yeast. Kidney lysozyme activity was measured in PRL-injected fish. In vitro and in vivo macrophages treated with PRL presented an enhanced superoxide anion production, elevated phagocytic index and increased phagocytic activity. Treated fish showed higher levels of lysozyme activity in the head kidney compared to the control. These results indicate that PRL-stimulated innate immune response in Atlantic salmon and future studies will allow us to assess the possibility of using PRL as an immunostimulant in the Chilean salmon industry.

  12. The scavenger activity of the human P2X7 receptor differs from P2X7 pore function by insensitivity to antagonists, genetic variation and sodium concentration: Relevance to inflammatory brain diseases.

    PubMed

    Ou, Amber; Gu, Ben J; Wiley, James S

    2018-04-01

    Activation of P2X7 receptors is widely recognised to initiate proinflammatory responses. However P2X7 also has a dual function as a scavenger receptor which is active in the absence of ATP and plasma proteins and may be important in central nervous system (CNS) diseases. Here, we investigated both P2X7 pore formation and its phagocytic function in fresh human monocytes (as a model of microglia) by measuring ATP-induced ethidium dye uptake and fluorescent bead uptake respectively. This was studied in monocytes expressing various polymorphic variants as well as in the presence of different P2X7 antagonists and ionic media. P2X7-mediated phagocytosis was found to account for about half of Latrunculin (or Cytochalasin D)-sensitive bead engulfment by fresh human monocytes. Monocytes harbouring P2X7 Ala348Thr or Glu496Ala polymorphic variants showed increase or loss of ethidium uptake respectively, but these changes in pore formation did not always correspond to the changes in phagocytosis of YG beads. Unlike pore function, P2X7-mediated phagocytosis was not affected by three potent selective P2X7 antagonists and remained identical in Na + and K + media. Taken together, our results show that P2X7 is a scavenger receptor with important function in the CNS but its phagocytic function has features distinct from its pore function. Both P2X7 pore formation and P2X7-mediated phagocytosis should be considered in the design of new P2X7 antagonists for the treatment of CNS diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Aspergillus-induced superoxide production by cystic fibrosis phagocytes is associated with disease severity.

    PubMed

    Brunel, Shan F; Willment, Janet A; Brown, Gordon D; Devereux, Graham; Warris, Adilia

    2018-04-01

    Aspergillus fumigatus infects up to 50% of cystic fibrosis (CF) patients and may play a role in progressive lung disease. As cystic fibrosis transmembrane conductance regulator is expressed in cells of the innate immune system, we hypothesised that impaired antifungal immune responses play a role in CF-related Aspergillus lung disease. Peripheral blood mononuclear cells, polymorphonuclear cells (PMN) and monocytes were isolated from blood samples taken from CF patients and healthy volunteers. Live-cell imaging and colorimetric assays were used to assess antifungal activity in vitro . Production of reactive oxygen species (ROS) was measured using luminol-induced chemiluminescence and was related to clinical metrics as collected by case report forms. CF phagocytes are as effective as those from healthy controls with regards to phagocytosis, killing and restricting germination of A. fumigatus conidia. ROS production by CF phagocytes was up to four-fold greater than healthy controls (p<0.05). This effect could not be replicated in healthy phagocytes by priming with lipopolysaccharide or serum from CF donors. Increased production of ROS against A. fumigatus by CF PMN was associated with an increased number of clinical exacerbations in the previous year (p=0.007) and reduced lung function (by forced expiratory volume in 1 s) (p=0.014). CF phagocytes mount an intrinsic exaggerated release of ROS upon A. fumigatus stimulation which is associated with clinical disease severity.

  14. Aspergillus-induced superoxide production by cystic fibrosis phagocytes is associated with disease severity

    PubMed Central

    Brunel, Shan F.; Brown, Gordon D.; Devereux, Graham; Warris, Adilia

    2018-01-01

    Aspergillus fumigatus infects up to 50% of cystic fibrosis (CF) patients and may play a role in progressive lung disease. As cystic fibrosis transmembrane conductance regulator is expressed in cells of the innate immune system, we hypothesised that impaired antifungal immune responses play a role in CF-related Aspergillus lung disease. Peripheral blood mononuclear cells, polymorphonuclear cells (PMN) and monocytes were isolated from blood samples taken from CF patients and healthy volunteers. Live-cell imaging and colorimetric assays were used to assess antifungal activity in vitro. Production of reactive oxygen species (ROS) was measured using luminol-induced chemiluminescence and was related to clinical metrics as collected by case report forms. CF phagocytes are as effective as those from healthy controls with regards to phagocytosis, killing and restricting germination of A. fumigatus conidia. ROS production by CF phagocytes was up to four-fold greater than healthy controls (p<0.05). This effect could not be replicated in healthy phagocytes by priming with lipopolysaccharide or serum from CF donors. Increased production of ROS against A. fumigatus by CF PMN was associated with an increased number of clinical exacerbations in the previous year (p=0.007) and reduced lung function (by forced expiratory volume in 1 s) (p=0.014). CF phagocytes mount an intrinsic exaggerated release of ROS upon A. fumigatus stimulation which is associated with clinical disease severity. PMID:29651422

  15. NADPH Oxidase-Driven Phagocyte Recruitment Controls Candida albicans Filamentous Growth and Prevents Mortality

    PubMed Central

    Brothers, Kimberly M.; Gratacap, Remi L.; Barker, Sarah E.; Newman, Zachary R.; Norum, Ashley; Wheeler, Robert T.

    2013-01-01

    Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis. PMID:24098114

  16. A pharmacologic study on the mechanism of action of Kakkon-to: body temperature elevation and phagocytic activation of macrophages in dogs.

    PubMed

    Muraoka, Kenichi; Yoshida, Satoshi; Hasegawa, Kazumasa; Nakanishi, Nobuo; Fukuzawa, Isao; Tomita, Akio; Cyong, Jong Chol

    2004-10-01

    The phagocytic activity of macrophages as a novel approach to scientific elucidation of the effects of Chinese medicines was studied through administration of a kampo preparation, by measuring the rise in body temperature, which is thought to stimulate innate defensive functions of organisms and enhance the immune systems. Using dogs as experimental models, a rise in body temperature following administration of Kakkon-to was observed, and the average number and average rate of phagocytosis of macrophages in blood using latex micro-particles was investigated. The body temperature of the treated animals significantly increased 30 minutes after administration (p<0.01), and remained elevated for more than 5 hours. A comparison of body temperatures before and after administration showed significant increases over controls from 1 to 11 hours, p<0.01; and at 12 hours, p<0.05 after administration. The average number and the average rate of phagocytosis were significantly increased 1 (p<0.05) and 2 (p<0.01) hours after administration. The mean number of phagocytized cells significantly increased (p<0.05) at 1 hour after administration compared with that before administration, and the mean phagocytic rate also increased significantly (p<0.01) 2 hours after administration. Increases (p<0.01) in both the rate of phagocytosis and the number of cells phagocytized were found at every measurement point from 2 to 24 hours after administration. Significant increases (p<0.01) were also observed in both the rate of phagocytosis and the number of cells phagocytized 3 hours after administration, when compared with the control group. This paper demonstrates that ingestion of Kakkon-to not only increases the body temperature but also enhances the phagocytic activity of macrophages, an in vivo defense mechanism, suggesting that Kakkon-to contributes to the suppression of multiplication of common cold viruses and influenza viruses, which consequently results in improvement of various symptoms during infection with common cold viruses.

  17. Mononuclear Phagocyte-Mediated Antifungal Immunity: The Role of Chemotactic Receptors and Ligands

    PubMed Central

    Swamydas, Muthulekha; Break, Timothy J.; Lionakis, Michail S.

    2015-01-01

    Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4+ T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens. PMID:25715741

  18. Immunomodulation of Homeopathic Thymulin 5CH in a BCG-Induced Granuloma Model

    PubMed Central

    Bonamin, Leoni Villano; Sato, Cesar; Zalla Neto, Ruggero; Morante, Graziela; Cardoso, Thayná Neves; de Santana, Fabiana Rodrigues; Coelho, Cideli de Paula; Osugui, Lika; Popi, Ana Flavia; Hurtado, Elizabeth Cristina Perez; Mariano, Mario

    2013-01-01

    The present study analyzed the immune modulation mechanisms of thymulin 5CH in a granuloma experimental model. Male adult Balb/c mice were inoculated with BCG into the footpad to induce granuloma, which was quantitatively evaluated. The phenotypic characterization of phagocyte, T- and B-lymphocyte populations in the peritoneum, and local lymph node was done by flow cytometry. During all experimental periods, thymulin 5CH and vehicle (control) were given ad libitum to mice, diluted into the drinking water (1.6 × 10−17 M). After 7 days from inoculation, thymulin-treated mice presented reduction in the number of epithelioid cytokeratine-positive cells (P = 0.0001) in the lesion, in relation to young phagocytes. After 21 days, the differentiation of B1 peritoneal stem cells into phagocytes reached the peak, being higher in thymulin-treated mice (P = 0.0001). Simultaneously, the score of infected phagocytes in the lesion decreased (P = 0.001), and the number of B1-derived phagocytes, CD4+ and CD8+ T lymphocytes in the local lymph node increased in relation to control (P = 0.0001). No difference was seen on the CD25+ Treg cells. The results show that thymulin 5CH treatment is able to improve the granuloma inflammatory process and the infection remission, by modulating local and systemic phagocyte differentiation. PMID:23431344

  19. Modulation of mononuclear phagocyte inflammatory response by liposome-encapsulated voltage gated sodium channel inhibitor ameliorates myocardial ischemia/reperfusion injury in rats.

    PubMed

    Zhou, Xin; Luo, Yue-Chen; Ji, Wen-Jie; Zhang, Li; Dong, Yan; Ge, Lan; Lu, Rui-Yi; Sun, Hai-Ying; Guo, Zao-Zeng; Yang, Guo-Hong; Jiang, Tie-Min; Li, Yu-Ming

    2013-01-01

    Emerging evidence shows that anti-inflammatory strategies targeting inflammatory monocyte subset could reduce excessive inflammation and improve cardiovascular outcomes. Functional expression of voltage-gated sodium channels (VGSCs) have been demonstrated in monocytes and macrophages. We hypothesized that mononuclear phagocyte VGSCs are a target for monocyte/macrophage phenotypic switch, and liposome mediated inhibition of mononuclear phagocyte VGSC may attenuate myocardial ischemia/reperfusion (I/R) injury and improve post-infarction left ventricular remodeling. Thin film dispersion method was used to prepare phenytoin (PHT, a non-selective VGSC inhibitor) entrapped liposomes. Pharmacokinetic study revealed that the distribution and elimination half-life of PHT entrapped liposomes were shorter than those of free PHT, indicating a rapid uptake by mononuclear phagocytes after intravenous injection. In rat peritoneal macrophages, several VGSC α subunits (NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaVX, Scn1b, Scn3b and Scn4b) and β subunits were expressed at mRNA level, and PHT could suppress lipopolysaccharide induced M1 polarization (decreased TNF-α and CCL5 expression) and facilitate interleukin-4 induced M2 polarization (increased Arg1 and TGF-β1 expression). In vivo study using rat model of myocardial I/R injury, demonstrated that PHT entrapped liposome could partially suppress I/R injury induced CD43+ inflammatory monocyte expansion, along with decreased infarct size and left ventricular fibrosis. Transthoracic echocardiography and invasive hemodynamic analysis revealed that PHT entrapped liposome treatment could attenuate left ventricular structural and functional remodeling, as shown by increased ejection fraction, reduced end-systolic and end-diastolic volume, as well as an amelioration of left ventricular systolic (+dP/dt max) and diastolic (-dP/dt min) functions. Our work for the first time demonstrates the therapeutic potential of VGSC antagonism via liposome mediated monocyte/macrophage targeting in acute phase after myocardial I/R injury. These results suggest that VGSCs in mononuclear phagocyte system might be a novel target for immunomodulation and treatment of myocardial I/R injury.

  20. Inhaled corticosteroid treatment for 6 months was not sufficient to normalize phagocytosis in asthmatic children.

    PubMed

    da Silva-Martins, Carmen Lívia Faria; Couto, Shirley Claudino; Muniz-Junqueira, Maria Imaculada

    2013-08-30

    Corticosteroids are the first-line therapy for asthma; however, the effect of corticosteroids on the innate immune system remains unclear. This study's objective was to evaluate the effect of inhaled corticosteroid therapy (ICT) on phagocytic functions. To evaluate the impact of ICT, the phagocytosis of Saccharomyces cerevisiae by blood monocytes and neutrophils and the production of superoxide anions were assessed before and after three and six months of ICT treatment in 58 children with persistent asthma and 21 healthy controls. We showed that the phagocytic capacity of monocytes and neutrophils that occurred via pattern recognition receptors or was mediated by complement and immunoglobulin receptors in asthmatic children before treatment was significantly lower than in healthy controls (p<0.05, Mann-Whitney test) and was not influenced by the severity of the clinical form of the disease. Although there was clinical improvement with treatment, ICT for 6 months was not sufficient to normalize phagocytosis by the phagocytes. Superoxide anion production was also decreased in the asthmatic children before treatment, and ICT normalized the O- production only for children with mild persistent asthma when assessed at baseline but caused this function to decrease after stimulation (p<0.05, Kruskal-Wallis test). Our data suggest that an immunodeficiency in phagocytes remained even after treatment. However, this immunodeficiency does not appear to correspond with the clinical evolution of asthma because an improvement in clinical parameters occurred.

  1. Signaling pathway for phagocyte priming upon encounter with apoptotic cells

    PubMed Central

    Ando, Yuki; Kanetani, Takuto; Hoshi, Chiharu; Nakai, Yuji

    2017-01-01

    The phagocytic elimination of cells undergoing apoptosis is an evolutionarily conserved innate immune mechanism for eliminating unnecessary cells. Previous studies showed an increase in the level of engulfment receptors in phagocytes after the phagocytosis of apoptotic cells, which leads to the enhancement of their phagocytic activity. However, precise mechanisms underlying this phenomenon require further clarification. We found that the pre-incubation of a Drosophila phagocyte cell line with the fragments of apoptotic cells enhanced the subsequent phagocytosis of apoptotic cells, accompanied by an augmented expression of the engulfment receptors Draper and integrin αPS3. The DNA-binding activity of the transcription repressor Tailless was transiently raised in those phagocytes, depending on two partially overlapping signal-transduction pathways for the induction of phagocytosis as well as the occurrence of engulfment. The RNAi knockdown of tailless in phagocytes abrogated the enhancement of both phagocytosis and engulfment receptor expression. Furthermore, the hemocyte-specific RNAi of tailless reduced apoptotic cell clearance in Drosophila embryos. Taken together, we propose the following mechanism for the activation of Drosophila phagocytes after an encounter with apoptotic cells: two partially overlapping signal-transduction pathways for phagocytosis are initiated; transcription repressor Tailless is activated; expression of engulfment receptors is stimulated; and phagocytic activity is enhanced. This phenomenon most likely ensures the phagocytic elimination of apoptotic cells by stimulated phagocytes and is thus considered as a mechanism to prime phagocytes in innate immunity. PMID:28325838

  2. Some news from the unknown soldier, the Peyer's patch macrophage.

    PubMed

    Wagner, Camille; Bonnardel, Johnny; Da Silva, Clément; Martens, Liesbet; Gorvel, Jean-Pierre; Lelouard, Hugues

    2018-01-31

    In mammals, macrophages (MF) are present in virtually all tissues where they serve many different functions linked primarily to the maintenance of homeostasis, innate defense against pathogens, tissue repair and metabolism. Although some of these functions appear common to all tissues, others are specific to the homing tissue. Thus, MF become adapted to perform particular functions in a given tissue. Accordingly, MF express common markers but also sets of tissue-specific markers linked to dedicated functions. One of the largest pool of MF in the body lines up the wall of the gut. Located in the small intestine, Peyer's patches (PP) are primary antigen sampling and mucosal immune response inductive sites. Surprisingly, although markers of intestinal MF, such as F4/80, have been identified more than 30 years ago, MF of PP escaped any kind of phenotypic description and remained "unknown" for decades. In absence of MF identification, the characterization of the PP mononuclear phagocyte system (MPS) functions has been impaired. However, taking into account that PP are privileged sites of entry for pathogens, it is important to understand how the latter are handled by and/or escape the PP MPS, especially MF, which role in killing invaders is well known. This review focuses on recent advances on the PP MPS, which have allowed, through new criteria of PP phagocyte subset identification, the characterization of PP MF origin, diversity, specificity, location and functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. [Effect of glucidic and fat total parenteral nutrition on macrophage phagocytosis in rats].

    PubMed

    Cukier, C; Waitzberg, D L; Soares, S R; Logullo, A F; Bacchi, C E; Travassos, V H; Saldiva, P H; Torrinhas, R S; de Oliveira, T S

    1997-01-01

    Fat lipid emulsions in Total Parenteral Nutrition (TPN) have been associated to Mononuclear Phagocytary System (MPS) changes. Intravenous lipid emulsions may alter macrophage membrane composition but there are controversies about their effects on MPS function. The aim of the present investigation was to assess the influence of fat free TPN and fat emulsions TPN on the macrophage phagocytosis. Wistar rats (70) with external jugular vein canulation were divided in seven groups. The rats received, intravenously (i.v.) different isocaloric (1.16 kcal/mL), isonitrogenous (1.5 g/mL), and isolipidic (30 to 32% of non-proteic caloric value) TPN regimens or oral diet: 1) Group OS: oral diet with i.v. infusion of saline; 2) Group GLU: fat-free TPN; 3) Group LCT: TPN with 10% long chain triglecide emulsion (TCL); 6) Group MCT: TPN with 10% lipid emulsion with medium chain triglycerides (TCM-50%) and TCL (50%). After 96 hours of TPN or saline infusion, colloidal carbon was i.v. injected at 1.0 mL/kg body weight. The rats were sacrificed after three hours. Liver, spleen and lung were weighted and studied by immunohistochemistry by the avidine-biotine method. Under light microscopy the total macrophage number (MT) and colloidal carbon phagocytic macrophages number (MF) were established. Phagocytic index was MT/MF x 100. The results were statistically analysed (p < 0.05). The group under oral diet (OS) was the only one to gain weight. There were no differences in organ weight in any group. There were changes in MT, MF and phagocytic index in all TPN groups. Fat free TPN inhibited liver, spleen and lung macrophage phagocytosis. Fat TPN with TCL inhibited liver and lung macrophage phagocytosis. At conclusion fat free TPN or with long chain tryglicerides may inhibit MPS phagocytosis. Further studies are necessary to estabilish the effect of TPN on other MPS function.

  4. Do not let death do us part: 'find-me' signals in communication between dying cells and the phagocytes.

    PubMed

    Medina, C B; Ravichandran, K S

    2016-06-01

    The turnover and clearance of cells is an essential process that is part of many physiological and pathological processes. Improper or deficient clearance of apoptotic cells can lead to excessive inflammation and autoimmune disease. The steps involved in cell clearance include: migration of the phagocyte toward the proximity of the dying cells, specific recognition and internalization of the dying cell, and degradation of the corpse. The ability of phagocytes to recognize and react to dying cells to perform efficient and immunologically silent engulfment has been well-characterized in vitro and in vivo. However, how apoptotic cells themselves initiate the corpse removal and also influence the cells within the neighboring environment during clearance was less understood. Recent exciting observations suggest that apoptotic cells can attract phagocytes through the regulated release of 'find-me' signals. More recent studies also suggest that these find-me signals can have additional roles outside of phagocyte attraction to help orchestrate engulfment. This review will discuss our current understanding of the different find-me signals released by apoptotic cells, how they may be relevant in vivo, and their additional roles in facilitating engulfment.

  5. Do not let death do us part: ‘find-me' signals in communication between dying cells and the phagocytes

    PubMed Central

    Medina, C B; Ravichandran, K S

    2016-01-01

    The turnover and clearance of cells is an essential process that is part of many physiological and pathological processes. Improper or deficient clearance of apoptotic cells can lead to excessive inflammation and autoimmune disease. The steps involved in cell clearance include: migration of the phagocyte toward the proximity of the dying cells, specific recognition and internalization of the dying cell, and degradation of the corpse. The ability of phagocytes to recognize and react to dying cells to perform efficient and immunologically silent engulfment has been well-characterized in vitro and in vivo. However, how apoptotic cells themselves initiate the corpse removal and also influence the cells within the neighboring environment during clearance was less understood. Recent exciting observations suggest that apoptotic cells can attract phagocytes through the regulated release of ‘find-me' signals. More recent studies also suggest that these find-me signals can have additional roles outside of phagocyte attraction to help orchestrate engulfment. This review will discuss our current understanding of the different find-me signals released by apoptotic cells, how they may be relevant in vivo, and their additional roles in facilitating engulfment. PMID:26891690

  6. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase.

    PubMed

    DeCoursey, Thomas E

    2016-09-01

    One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes.

    PubMed

    Cellier, Mathieu F M

    2017-05-03

    NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression.

  8. Simultaneous cytofluorometric measurement of phagocytosis, burst production and killing of human phagocytes using Candida albicans and Staphylococcus aureus as target organisms.

    PubMed

    Salih, H R; Husfeld, L; Adam, D

    2000-05-01

    Polymorphonuclear leukocytes (PMN) play a central role in the elimination of most extracellular pathogens, and an impairment of their functions predisposes an individual towards local and systemic bacterial and fungal infections. Here we describe a rapid and easy-to-perform cytofluorometric assay for investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms. Phagocytes were stained with anti-CD13-RPE antibody, and microorganisms were stained with calcein-AM. Oxidative burst production was measured by oxidation of dihydroethidium. The percentage of killed target organisms after ingestion was determined by staining with ethidium-homodimer-1 after lysis of human cells. The dyes and procedures used in this method were chosen after comparison of different stains and cell preparation techniques described in previous assays. Concerning phagocytosis, the percentages of active phagocytes and of ingested microorganisms were determined. Furthermore, the method allowed measurement of the resulting percentage of PMNs producing respiratory burst, and of the percentage of killed microorganisms. We minimized artifactual changes, which might have been the reason for the difficulties and conflicting results of other cytofluorometric methods. The described method provides a new whole blood cytofluorometric assay, which combines rapid and simple handling with high reproducibility of results obtained by investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms.

  9. SpTransformer proteins from the purple sea urchin opsonize bacteria, augment phagocytosis, and retard bacterial growth

    PubMed Central

    Chou, Hung-Yen; Lun, Cheng Man

    2018-01-01

    The purple sea urchin, Strongylocentrotus purpuratus, has a complex and robust immune system that is mediated by a number of multi-gene families including the SpTransformer (SpTrf) gene family (formerly Sp185/333). In response to immune challenge from bacteria and various pathogen-associated molecular patterns, the SpTrf genes are up-regulated in sea urchin phagocytes and express a diverse array of SpTrf proteins. We show here that SpTrf proteins from coelomocytes and isolated by nickel affinity (cNi-SpTrf) bind to Gram-positive and Gram-negative bacteria and to Baker’s yeast, Saccharomyces cerevisiae, with saturable kinetics and specificity. cNi-SpTrf opsonization of the marine bacteria, Vibrio diazotrophicus, augments phagocytosis, however, opsonization by the recombinant protein, rSpTrf-E1, does not. Binding by cNi-SpTrf proteins retards growth rates significantly for several species of bacteria. SpTrf proteins, previously thought to be strictly membrane-associated, are secreted from phagocytes in short term cultures and bind V. diazotrophicus that are located both outside of and within phagocytes. Our results demonstrate anti-microbial activities of native SpTrf proteins and suggest variable functions among different SpTrf isoforms. Multiple isoforms may act synergistically to detect a wide array of pathogens and provide flexible and efficient host immunity. PMID:29738524

  10. Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface

    PubMed Central

    Medina, Eva; van Rooijen, Willemien J.; Spaan, András N.; van Kessel, Kok P. M.; Höök, Magnus; Rooijakkers, Suzan H. M.

    2013-01-01

    Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. PMID:24348255

  11. Are soluble factors relevant for polymorphonuclear leukocyte dysregulation in septicemia?

    PubMed Central

    Wenisch, C; Graninger, W

    1995-01-01

    Polymorphonuclear leukocytes (PMNs) of twelve patients with gram-negative septicemia exhibited a decreased capacity to phagocytize Escherichia coli and generate reactive oxygen products which normalized within 7 days of treatment. Ex vivo exchange of plasma from age-, sex-, and blood-group-identical normal controls resulted in an increase of both phagocytic capacity and reactive oxygen intermediate generation in PMNs of septicemic patients and transiently reduced phagocytosis and reactive oxygen intermediate production in PMNs of normal controls. These results suggest that extrinsic factors are crucial for PMN function. PMID:7697538

  12. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    PubMed Central

    Lina, Taslima T.; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W.

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival. PMID:27303657

  13. Signaling pathway for phagocyte priming upon encounter with apoptotic cells.

    PubMed

    Nonaka, Saori; Ando, Yuki; Kanetani, Takuto; Hoshi, Chiharu; Nakai, Yuji; Nainu, Firzan; Nagaosa, Kaz; Shiratsuchi, Akiko; Nakanishi, Yoshinobu

    2017-05-12

    The phagocytic elimination of cells undergoing apoptosis is an evolutionarily conserved innate immune mechanism for eliminating unnecessary cells. Previous studies showed an increase in the level of engulfment receptors in phagocytes after the phagocytosis of apoptotic cells, which leads to the enhancement of their phagocytic activity. However, precise mechanisms underlying this phenomenon require further clarification. We found that the pre-incubation of a Drosophila phagocyte cell line with the fragments of apoptotic cells enhanced the subsequent phagocytosis of apoptotic cells, accompanied by an augmented expression of the engulfment receptors Draper and integrin αPS3. The DNA-binding activity of the transcription repressor Tailless was transiently raised in those phagocytes, depending on two partially overlapping signal-transduction pathways for the induction of phagocytosis as well as the occurrence of engulfment. The RNAi knockdown of tailless in phagocytes abrogated the enhancement of both phagocytosis and engulfment receptor expression. Furthermore, the hemocyte-specific RNAi of tailless reduced apoptotic cell clearance in Drosophila embryos. Taken together, we propose the following mechanism for the activation of Drosophila phagocytes after an encounter with apoptotic cells: two partially overlapping signal-transduction pathways for phagocytosis are initiated; transcription repressor Tailless is activated; expression of engulfment receptors is stimulated; and phagocytic activity is enhanced. This phenomenon most likely ensures the phagocytic elimination of apoptotic cells by stimulated phagocytes and is thus considered as a mechanism to prime phagocytes in innate immunity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity.

    PubMed

    Wu, Gongqing; Liu, Yi; Ding, Ying; Yi, Yunhong

    2016-08-01

    Galleria mellonella larvae have been widely used as a model to study the virulence of various human pathogens. Hemocytes play important roles in the innate immune response of G. mellonella. In this study, the hemocytes of G. mellonella larvae were analyzed by transmission electron microscope, light microscope, and cytochemistry. The cytological and morphological analyses revealed four types of hemocytes; Plasmatocytes, granular cells, spherule cells and oenocytoids. Differential hemocyte counts showed that under our conditions plasmatocytes and granular cells were the most abundant circulating cell types in the hemolymph. We also investigated the role of different types of hemocytes in the cellular and humoral immune defenses. The in-vivo experiment showed that plasmatocytes, granular cells and oenocytoids phagocytized FITC-labelled Escherichia coli bacteria in larvae of G. mellonella, whereas the granular cells exhibited the strongest phagocytic ability against these microbial cells. After incubation with L-DOPA, plasmatocytes, granular cells and oenocytoids are stained brown, indicating the presence of phenoloxidase activity. These results shed new light on our understanding of the immune function of G. mellonella hemocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Immune response of greenback flounder Rhombosolea tapirina after exposure to contaminated marine sediment and diet.

    PubMed

    Mondon, J A; Duda, S; Nowak, B F

    2000-01-01

    Non-specific immune response of greenback flounder, Rhombosolea tapirina, exposed to contaminated marine sediments was examined. Reference sediments from Port Sorell and contaminated sediments from Deceitful Cove, Tasmania, Australia were investigated. Hatchery-reared flounder were exposed to reference sediment, contaminated sediment or contaminated sediment and diet for 6 weeks. Phagocytic capacity and lysozyme response in flounder were examined on cessation of exposure trial. Significant differences were found in phagocytic capacity and lysozyme response between treatments. Exposure to contaminated sediment, irrespective of diet or benthic disturbance elicited inhibition of phagocytic efficiency in flounder. Disturbance of contaminated sediment stimulated lysozyme activity. The immune response in flounder indicates potential immunotoxicity of sediment from Deceitful Cove.

  16. Robust Phagocyte Recruitment Controls the Opportunistic Fungal Pathogen Mucor circinelloides in Innate Granulomas In Vivo.

    PubMed

    Inglesfield, Sarah; Jasiulewicz, Aleksandra; Hopwood, Matthew; Tyrrell, James; Youlden, George; Mazon-Moya, Maria; Millington, Owain R; Mostowy, Serge; Jabbari, Sara; Voelz, Kerstin

    2018-03-27

    Mucormycosis is an emerging fungal infection with extremely high mortality rates in patients with defects in their innate immune response, specifically in functions mediated through phagocytes. However, we currently have a limited understanding of the molecular and cellular interactions between these innate immune effectors and mucormycete spores during the early immune response. Here, the early events of innate immune recruitment in response to infection by Mucor circinelloides spores are modeled by a combined in silico modeling approach and real-time in vivo microscopy. Phagocytes are rapidly recruited to the site of infection in a zebrafish larval model of mucormycosis. This robust early recruitment protects from disease onset in vivo In silico analysis identified that protection is dependent on the number of phagocytes at the infection site, but not the speed of recruitment. The mathematical model highlights the role of proinflammatory signals for phagocyte recruitment and the importance of inhibition of spore germination for protection from active fungal disease. These in silico data are supported by an in vivo lack of fungal spore killing and lack of reactive oxygen burst, which together result in latent fungal infection. During this latent stage of infection, spores are controlled in innate granulomas in vivo Disease can be reactivated by immunosuppression. Together, these data represent the first in vivo real-time analysis of innate granuloma formation during the early stages of a fungal infection. The results highlight a potential latent stage during mucormycosis that should urgently be considered for clinical management of patients. IMPORTANCE Mucormycosis is a dramatic fungal infection frequently leading to the death of patients. We know little about the immune response to the fungus causing this infection, although evidence points toward defects in early immune events after infection. Here, we dissect this early immune response to infectious fungal spores. We show that specialized white blood cells (phagocytes) rapidly respond to these spores and accumulate around the fungus. However, we demonstrate that the mechanisms that enable phagocytes to kill the fungus fail, allowing for survival of spores. Instead a cluster of phagocytes resembling an early granuloma is formed around spores to control the latent infection. This study is the first detailed analysis of early granuloma formation during a fungal infection highlighting a latent stage that needs to be considered for clinical management of patients. Copyright © 2018 Inglesfield et al.

  17. Programmed death 1-mediated T cell exhaustion during visceral leishmaniasis impairs phagocyte function.

    PubMed

    Esch, Kevin J; Juelsgaard, Rachel; Martinez, Pedro A; Jones, Douglas E; Petersen, Christine A

    2013-12-01

    Control of Leishmania infantum infection is dependent upon Th1 CD4(+) T cells to promote macrophage intracellular clearance of parasites. Deficient CD4(+) T cell effector responses during clinical visceral leishmaniasis (VL) are associated with elevated production of IL-10. In the primary domestic reservoir of VL, dogs, we define occurrence of both CD4(+) and CD8(+) T cell exhaustion as a significant stepwise loss of Ag-specific proliferation and IFN-γ production, corresponding to increasing VL symptoms. Exhaustion was associated with a 4-fold increase in the population of T cells with surface expression of programmed death 1 (PD-1) between control and symptomatic populations. Importantly, exhausted populations of CD8(+) T cells and to a lesser extent CD4(+) T cells were present prior to onset of clinical VL. VL-exhausted T cells did not undergo significant apoptosis ex vivo after Ag stimulation. Ab block of PD-1 ligand, B7.H1, promoted return of CD4(+) and CD8(+) T cell function and dramatically increased reactive oxygen species production in cocultured monocyte-derived phagocytes. As a result, these phagocytes had decreased parasite load. To our knowledge, we demonstrate for the first time that pan-T cell, PD-1-mediated, exhaustion during VL influenced macrophage-reactive oxygen intermediate production. Blockade of the PD-1 pathway improved the ability of phagocytes isolated from dogs presenting with clinical VL to clear intracellular parasites. T cell exhaustion during symptomatic canine leishmaniasis has implications for the response to vaccination and therapeutic strategies for control of Leishmania infantum in this important reservoir species.

  18. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via a TLR2-mediated mechanism.

    PubMed

    Gambero, Monica; Teixeira, Daniela; Butin, Liane; Ishimura, Mayari Eika; Mariano, Mario; Popi, Ana Flavia; Longo-Maugéri, Ieda Maria

    2016-09-01

    B-1 lymphocytes are present in large numbers in the mouse peritoneal cavity, as are macrophages, and are responsible for natural IgM production. These lymphocytes migrate to inflammatory foci and are also involved in innate immunity. It was also demonstrated that B-1 cells are able to differentiated into phagocytes (B-1CDP), which is characterized by expression of F4/80 and increased phagocytic activity. B-1 cell responses to antigens and adjuvants are poorly characterized. It has been shown that Propionibacterium acnes suspensions induce immunomodulatory effects in both macrophages and B-2 lymphocytes. We recently demonstrated that this bacterium has the ability to increase B-1 cell populations both in vitro and in vivo. P. acnes induces B-1CDP differentiation, increases the expression of TLR2, TLR4 and TLR9 and augments the expression of CD80, CD86 and CD40 in B-1 and B-1CDP cells. Because P. acnes has been shown to modulate TLR expression, in this study, we investigated the role of TLR2 and TLR4 in B-1 cell population, including B-1CDP differentiation and phagocytic activity in vitro and in vivo. Interestingly, we have demonstrated that TLR2 signaling could be involved in the increase in the B-1 cell population induced by P. acnes. Furthermore, the early differentiation of B-1CDP is also dependent of TLR2. It was also observed that TLR signals also interfere in the phagocytic ability of B-1 cells and their phagocytes. According to these data, it is clear that P. acnes promotes an important adjuvant effect in B-1 cells by inducing them to differentiate into B-1CDP cells and modulates their phagocytic functions both in vivo and in vitro. Moreover, most of these effects are mediated primarily via TLR2. These data reinforce the findings that such bacterial suspensions have powerful adjuvant properties. The responses of B-1 cells to exogenous stimulation indicate that these cells are important to the innate immune response. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. EFFECT OF SINGLE AND REPEATED TETRACYCLINE ADMINISTRATION ON THE PHAGOCYTIC FUNCTION OF RETICULENDOTHELIAL SYSTEMS

    DTIC Science & Technology

    It was previously established that single administration of chlortetracycline and oxytetracycline to white mice stimulates the absorptive function of...upon repeated administration. The effect of single and repeated administration of chlortetracycline, tetracycline, and oxytetracycline on the absorptive function of mouse RES were studied.

  20. In vitro and in vivo transfection of primary phagocytes via microbubble-mediated intraphagosomal sonoporation.

    PubMed

    Lemmon, Jason C M; McFarland, Ryan J; Rybicka, Joanna M; Balce, Dale R; McKeown, Kyle R; Krohn, Regina M; Matsunaga, Terry O; Yates, Robin M

    2011-08-31

    The professional phagocytes, such as macrophages and dendritic cells, are the subject of numerous research efforts in immunology and cell biology. The use of primary phagocytes in these investigations however, are limited by their inherent resistance to transfection with DNA constructs. As a result, the use of phagocyte-like immortalized cell lines is widespread. While these cell lines are transfection permissive, they are generally regarded as poor biological substitutes for primary phagocytes. By exploiting the phagocytic machinery of primary phagocytes, we developed a non-viral method of DNA transfection of macrophages that employs intraphagosomal sonoporation mediated by internalized lipid-based microbubbles. This approach enables the transfection of primary phagocytes in vitro, with a modest, but reliable efficiency. Furthermore, this methodology was readily adapted to transfect murine peritoneal macrophages in vivo. This technology has immediate application to current research efforts and has potential for use in gene therapy and vaccination strategies. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. [Formation of endogenous pyrogen by mononuclear phagocytes].

    PubMed

    Agasarov, L G; Sorokin, A V; Ukhanova, I K

    1984-07-01

    Production of endogenous pyrogen by human and rabbit blood monocytes in response to stimulation with agents of different origin was studied by inhibitory analysis under comparable conditions. Actinomycin D and cytochalasin B were applied. New evidence was obtained about an important role in the mechanism of activation of mononuclear phagocytes of initial interaction between a stimulating agent and the leukocyte membrane and of the biphasic process of endogenous pyrogen production.

  2. New method for estimating digestion of Paracoccidioides brasiliensis by phagocytic cells in vitro.

    PubMed Central

    Goihman-Yahr, M; Essenfeld-Yahr, E; Albornoz, M C; Yarzábal, L; de Gómez, M H; San Martín, B; Ocanto, A; Convit, J

    1979-01-01

    We describe a method by which phagocytosis and digestion of Paracoccidioides brasiliensis yeast cells by polymorphonuclear leukocytes or other phagocytic cells may be estimated. Suspensions of P. brasiliensis in its yeastlike phase were sonicated, counted, and incubated with known numbers of peripheral blood polymorphonuclear leukocytes. At given intervals, cytocentrifuge droplets were stained by a variation of Papanicolaou's method. Stained preparations were examined with phase-contrast optics. Digested organisms showed total or partial disappearance of protoplasm. Green-stained cell walls resisted digestion. The proportion of digested cells as a function of time was estimated. Images PMID:90683

  3. Robust Phagocyte Recruitment Controls the Opportunistic Fungal Pathogen Mucor circinelloides in Innate Granulomas In Vivo

    PubMed Central

    2018-01-01

    ABSTRACT Mucormycosis is an emerging fungal infection with extremely high mortality rates in patients with defects in their innate immune response, specifically in functions mediated through phagocytes. However, we currently have a limited understanding of the molecular and cellular interactions between these innate immune effectors and mucormycete spores during the early immune response. Here, the early events of innate immune recruitment in response to infection by Mucor circinelloides spores are modeled by a combined in silico modeling approach and real-time in vivo microscopy. Phagocytes are rapidly recruited to the site of infection in a zebrafish larval model of mucormycosis. This robust early recruitment protects from disease onset in vivo. In silico analysis identified that protection is dependent on the number of phagocytes at the infection site, but not the speed of recruitment. The mathematical model highlights the role of proinflammatory signals for phagocyte recruitment and the importance of inhibition of spore germination for protection from active fungal disease. These in silico data are supported by an in vivo lack of fungal spore killing and lack of reactive oxygen burst, which together result in latent fungal infection. During this latent stage of infection, spores are controlled in innate granulomas in vivo. Disease can be reactivated by immunosuppression. Together, these data represent the first in vivo real-time analysis of innate granuloma formation during the early stages of a fungal infection. The results highlight a potential latent stage during mucormycosis that should urgently be considered for clinical management of patients. PMID:29588406

  4. Wright-Giemsa staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum.

    PubMed

    Yu, Ying; Cao, Yueqing; Xia, Yuxian; Liu, Feihong

    2016-09-01

    Hemocytes are the first line of defense in the invertebrate immune system. Understanding their roles in cellular immunity is important for developing more efficient mycoinsecticides. However, the exact classification of hemocytes has been inconsistent and the various types of phagocytes in Locusta migratoria are poorly defined. Herein, the Wright-Giemsa staining method and microscopy were employed to characterize the hemocytes of L. migratoria following infection by Metarhizium acridum. Hemocytes were classified into four types, including granulocytes, plasmatocytes, prohemocytes, and oenocytoids, based on size, morphology, and dye-staining properties. Each type of hemocyte was classified into several subtypes according to different ultrastructural features. At least four subtypes of granulocytes or plasmatocytes, including small-nucleus plasmatocytes, basophil vacuolated plasmatocytes, homogeneous plasmatocytes, and eosinophilic granulocytes, carried out phagocytosis. The percentage of total phagocytes increased two days after infection by M. acridum, then gradually declined during the next two days, and then increased sharply again at the fifth day. Our data suggested that plasmatocytes and granulocytes may be the major phagocytes that protect against invasion by a fungal pathogen in L. migratoria. Total hemocytes in locusts significantly increased in the initial days after infection and decreased in the late period of infection compared to controls. In the hemocoel, hyphal bodies were recognized, enwrapped, and digested by the phagocytes. Then, the broken hyphal pieces were packaged as vesicles to be secreted from the cell. Moreover, locusts might have a sensitive and efficient cellular immune system that can regulate phagocyte differentiation and proliferation before fungi colonize the host hemolymph. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Spores of two probiotic Bacillus species enhance cellular immunity in BALB/C mice.

    PubMed

    Gong, Li; Huang, Qin; Fu, Aikun; Wu, YanPing; Li, Yali; Xu, Xiaogang; Huang, Yi; Yu, Dongyou; Li, Weifen

    2018-01-01

    Previous studies found that Bacillus subtilis BS02 and B. subtilis subsp. natto BS04 isolated in our laboratory could activate the immune response of murine macrophages in vitro. This study aims to investigate the effects of dietary supplementation with Bacillus species spores on the systemic cellular immune response in BALB/C mice. Results showed that both B. subtilis BS02 and B. subtilis natto BS04 enhanced the phagocytic function of the mononuclear phagocyte system (MPS) and the cytotoxicity of natural killer (NK) cells. In addition, B. subtilis BS02 could increase the respiratory burst activity of blood phagocytes. Furthermore, B. subtilis BS02 and B. subtilis natto BS04 increased the percentage of gamma-interferon-producing CD4 + cells and CD8 + T-cells, but only BS04 increased the percentage of CD3 + cells and CD3 +  CD4 + cells in splenocytes. However, there were no effects on other subsets of splenic lymphocytes and mitogen-induced splenic lymphocyte proliferation. All data suggested that oral administration of B. subtilis BS02 or B. subtilis natto BS04 could significantly enhance cellular immunity in BALB/C mice by increasing phagocytic activity of MPS and cytotoxic activity of NK cells in a strain-specific manner.

  6. Immunomodulatory effect of ganoderma lucidum polysaccharides (GLP) on long-term heavy-load exercising mice.

    PubMed

    Shi, Yali; Cai, Dehua; Wang, Xiaojie; Liu, Xinshen

    2012-12-01

    Long-term heavy-load exercise can lead to a decrease in the organism's immune response. In this study, we used 100 Kunming (KM) mice to investigate the immune-regulatory effects of Ganoderma lucidum polysaccharides (GLP) on long-term heavy-load exercising mice. Peripheral white blood cells (WBC), the absolute value of neutrophils (NEUT), the phagocytic function of macrophages, serum agglutination valence, and the number of plaque-forming cells (PFC) were evaluated 4 weeks after gavaging long-term heavy-load exercising mice with GLP. After exercise, the WBC count in peripheral blood, absolute neutrophil count, macrophage phagocytic index, serum agglutination valence, and the number of plaque-forming cells were significantly reduced in the mice not fed GLP. Both medium and high doses of GLP drastically increased peripheral WBC, absolute neutrophil count, macrophage phagocytic index, serum agglutination valence, and the number of plaque-forming cells in long-term heavy-load exercising mice. High doses of GLP increased peritoneal macrophage phagocytic rate considerably. With this study, we demonstrate that 4 weeks of heavy-load exercise can lead to exercise-induced immunosuppression in mice. A supplement of GLP fed to these mice improves both non-specific and specific immune responses among these mice. The effect for the high-dose GLP treatment is especially significant.

  7. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis

    PubMed Central

    Kuipers, Annemarie; Stapels, Daphne A. C.; Weerwind, Lleroy T.; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C.; van Kessel, Kok P. M.

    2016-01-01

    Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance. PMID:27112346

  8. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis.

    PubMed

    Kuipers, Annemarie; Stapels, Daphne A C; Weerwind, Lleroy T; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C; van Kessel, Kok P M; Rooijakkers, Suzan H M

    2016-07-01

    Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.

  9. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses

    PubMed Central

    2014-01-01

    Background Insufficient clearance by microglial cells, prevalent in several neurological conditions and diseases, is intricately intertwined with MFG-E8 expression and inflammatory responses. Electromagnetic field (EMF) exposure can elicit the pro-inflammatory activation and may also trigger an alteration of the clearance function in microglial cells. Curcumin has important roles in the anti-inflammatory and phagocytic process. Here, we evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed microglial cells (N9 cells) and documented relative pathways. Methods N9 cells were pretreated with or without recombinant murine MFG-E8 (rmMFG-E8), curcumin and an antibody of toll-like receptor 4 (anti-TLR4), and subsequently treated with EMF or a sham exposure. Their phagocytic ability was evaluated using phosphatidylserine-containing fluorescent bioparticles. The pro-inflammatory activation of microglia was assessed via CD11b immunoreactivity and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and nitric oxide (NO) via the enzyme-linked immunosorbent assay or the Griess test. We evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed N9 cells, including checking the expression of MFG-E8, αvβ3 integrin, TLR4, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) using Western blotting. Results EMF exposure dramatically enhanced the expression of CD11b and depressed the phagocytic ability of N9 cells. rmMFG-E8 could clearly ameliorate the phagocytic ability of N9 cells after EMF exposure. We also found that EMF exposure significantly increased the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and the production of NO; however, these increases were efficiently chilled by the addition of curcumin to the culture medium. This reduction led to the amelioration of the phagocytic ability of EMF-exposed N9 cells. Western blot analysis revealed that curcumin and naloxone restored the expression of MFG-E8 but had no effect on TLR4 and cytosolic STAT3. Moreover, curcumin significantly reduced the expression of NF-κB p65 in nuclei and phospho-STAT3 (p-STAT3) in cytosols and nuclei. Conclusions This study indicates that curcumin ameliorates the depressed MFG-E8 expression and the attenuated phagocytic ability of EMF-exposed N9 cells, which is attributable to the inhibition of the pro-inflammatory response through the NF-κB and STAT3 pathways. PMID:24645646

  10. Evolutionary and Functional Relationships of B Cells from Fish and Mammals: Insights into their Novel Roles in Phagocytosis and Presentation of Particulate Antigen

    PubMed Central

    Sunyer, J. Oriol

    2012-01-01

    The evolutionary origins of Ig-producing B cells appear to be linked to the emergence of fish in this planet. There are three major classes of living fish species, which from most primitive to modern they are referred to as agnathan (e.g., lampreys), Chondrichthyes (e.g., sharks), and teleost fish (e.g., rainbow trout). Agnathans do not have immunoglobulin-producing B cells, however these fish contain a subset of lymphocytes-like cells producing type B variable lymphocyte receptors (VLRBs) that appear to act as functional analogs of immunoglobulins. Chondrichthyes fish represent the most primitive living species containing bona-fide immunoglobulin-producing B cells. Their B cells are known to secrete three types of antibodies, IgM, IgW and IgNAR. Teleost fish are also called bony fish since they represent the most ancient living species containing true bones. Teleost B cells produce three different immunoglobulin isotypes, IgM, IgD and the recently described IgT. While teleost IgM is the principal player in systemic immunity, IgT appears to be a teleost immunoglobulin class specialized in mucosal immune responses. Thus far, three major B cell lineages have been described in teleost, those expressing either IgT or IgD, and the most common lineage which co-expresses IgD and IgM. A few years ago, the study of teleost fish B cells revealed for the first time in vertebrates the existence of B cell subsets with phagocytic and intracellular bactericidal capacities. This finding represented a paradigm shift as professional phagocytosis was believed to be exclusively performed by some cells of the myeloid lineage (i.e., macrophages, monocytes, neutrophils). This phagocytic capacity was also found in amphibians and reptiles, suggesting that this innate capacity was evolutionarily conserved in certain B cell subsets of vertebrates. Recently, the existence of subsets of B cells with phagocytic and bactericidal abilities have also been confirmed in mammals. Moreover, it has been shown that phagocytic B-1 B cells have a potent ability to present particulate antigen to CD4+ T cells. Thus, studies carried out originally on fish B cells have lead to the discovery of new innate and adaptive roles of B cells in mammals. This review will concentrate on the evolutionary and functional relationships of fish and mammalian B cells, focusing mainly on the newly discovered roles of these cells in phagocytosis, intracellular killing and presentation of particulate antigen. PMID:22394174

  11. Measuring Phagosome pH by Ratiometric Fluorescence Microscopy

    PubMed Central

    Nunes, Paula; Guido, Daniele; Demaurex, Nicolas

    2015-01-01

    Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H+ is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized protocol for the functional imaging of phagosomes. PMID:26710109

  12. Role of the phagocytes on embryos: some morphological aspects.

    PubMed

    Da Silva, José Roberto Machado Cunha

    2002-06-15

    Phagocytosis in embryos was studied by Elie Metchnikoff more than a century ago and is a pillar of the Phagocytic Theory. Throughout the last three decades phagocytosis in embryos has been studied from different perspectives, which this review describes and analyzes. The following branches were identified: 1) the search for the origin and first identification of well-known adult phagocytes in embryos, including their role after induced injuries; 2) the search for the occurrence of phagocytosis in embryos and its role during their physiological development; and 3) the search for phagocytosis in embryos, as a tool to study identity and self-recognition. It is possible to verify that different cell types are able to undertake phagocytosis, under a variety of different stimuli, and that the nature of what is phagocytosed also varies widely. Although the overwhelming majority of species described among metazoarians are invertebrates, most published articles in this field relate to mammals (particularly mice and humans) and birds (particularly chicks). In order to enrich this field of knowledge, research using a wider variety of vertebrate and invertebrate species should be undertaken. Furthermore, the present knowledge of phagocytosis in embryos needs a revised paradigm capable of embracing all the above-mentioned research trends under a single, more general, biological theory. In this sense, Metchnikoff's Phagocytic Theory, which is based on a broad biological paradigm and is thus capable of dealing with all research trends mentioned herein, should be revisited in order to contribute to this edification. Copyright 2002 Wiley-Liss, Inc.

  13. Pretranslational regulation of the synthesis of the third component of complement in human mononuclear phagocytes by the lipid A portion of lipopolysaccharide.

    PubMed Central

    Strunk, R C; Whitehead, A S; Cole, F S

    1985-01-01

    The third component of complement (C3) is a plasma glycoprotein with a variety of biologic functions in the initiation and maintenance of host response to infectious agents. While the hepatocyte is the primary source of plasma C3, mononuclear phagocytes contribute to the regulation of tissue availability of C3. Lipopolysaccharide (LPS), a constituent of cell walls of gram-negative bacteria, consists of a polysaccharide moiety (core polysaccharide and O antigen) covalently linked to a lipid portion (lipid A). Using metabolic labeling with [35S]methionine, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis, we examined the effects of LPS on synthesis of C3 by human mononuclear phagocytes as well as synthesis of the second component of complement (C2), factor B, lysozyme, and total protein. LPS increased C3 synthesis 5-30-fold without affecting the kinetics of secretion of C3 or the synthesis of C2, lysozyme, or total protein. Factor B synthesis was consistently increased by LPS. Experiments with lipid A-inactivated LPS (alkaline treated), LPS from a polysaccharide mutant strain, and lipid X (a lipid A precursor) indicated that the lipid A portion is the structural element required for this effect. Northern blot analysis demonstrated at least a fivefold increase in C3 mRNA in LPS-treated monolayers, which suggests that the regulation of the increase in C3 synthesis is pretranslational. C2 mRNA and factor B mRNA were increased approximately twofold. The availability of specific gene products in human mononuclear phagocytes that respond to LPS should permit understanding of the molecular regulation of more complex functions of these cells elicited by LPS in which multiple gene products are coordinately expressed. Images PMID:3900137

  14. BAY 41-2272, a soluble guanylate cyclase agonist, activates human mononuclear phagocytes

    PubMed Central

    Soeiro-Pereira, PV; Falcai, A; Kubo, CA; Oliveira-Júnior, EB; Marques, OC; Antunes, E; Condino-Neto, A

    2012-01-01

    BACKGROUND AND PURPOSE Phagocyte function is critical for host defense against infections. Defects in phagocytic function lead to several primary immunodeficiencies characterized by early onset of recurrent and severe infections. In this work, we further investigated the effects of BAY 41-2272, a soluble guanylate cyclase (sGC) agonist, on the activation of human peripheral blood monocytes (PBM) and THP-1 cells. EXPERIMENTAL APPROACH THP-1 cells and PBM viability was evaluated by methylthiazoletetrazolium assay; reactive oxygen species production by lucigenin chemiluminescence; gene and protein expression of NAPDH oxidase components by qRT-PCR and Western blot analysis, respectively; phagocytosis and microbicidal activity by co-incubation, respectively, with zymosan and Escherichia coli; and cytokine release by elisa. KEY RESULTS BAY 41-2272, compared with the untreated group, increased spreading of monocytes by at least 35%, superoxide production by at least 50%, and gp91PHOX and p67PHOX gene expression 20 to 40 times, in both PBM and THP-1 cells. BAY 41-2272 also augmented phagocytosis of zymosan particles threefold compared with control, doubled microbicidal activity against E. coli and enhanced the release of TNF-α and IL-12p70 by both PBM and THP-1 cells. Finally, by inhibiting sGC with ODQ, we showed that BAY 41-2272-induced superoxide production and phagocytosis is not dependent exclusively on sGC activation. CONCLUSIONS AND IMPLICATIONS In addition to its ability to induce vasorelaxation and its potential application for therapy of vascular diseases, BAY 41-2272 was shown to activate human mononuclear phagocytes. Hence, it is a novel pro-inflammatory drug that may be useful for controlling infections in the immunocompromised host. PMID:22044316

  15. Nature of the endogenous pyrogen (EP) induced by influenza viruses: lack of correlation between EP levels and content of the known pyrogenic cytokines, interleukin 1, interleukin 6 and tumour necrosis factor.

    PubMed

    Jakeman, K J; Bird, C R; Thorpe, R; Smith, H; Sweet, C

    1991-03-01

    Fever in influenza results from the release of endogenous pyrogen (EP) following virus-phagocyte interaction and its level correlates with the differing virulence of virus strains. However, the different levels of fever produced in ferrets by intracardial inoculation of EP obtained from the interaction of different virus strains with ferret of human phagocytes did not correlate with the levels of interleukin 1 (IL-1), IL-6 or tumour necrosis factor in the same samples as assayed by conventional in vitro methods. Hence, the EP produced by influenza virus appears to be different to these cytokines.

  16. Live-cell Video Microscopy of Fungal Pathogen Phagocytosis

    PubMed Central

    Lewis, Leanne E.; Bain, Judith M.; Okai, Blessing; Gow, Neil A.R.; Erwig, Lars Peter

    2013-01-01

    Phagocytic clearance of fungal pathogens, and microorganisms more generally, may be considered to consist of four distinct stages: (i) migration of phagocytes to the site where pathogens are located; (ii) recognition of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs); (iii) engulfment of microorganisms bound to the phagocyte cell membrane, and (iv) processing of engulfed cells within maturing phagosomes and digestion of the ingested particle. Studies that assess phagocytosis in its entirety are informative1, 2, 3, 4, 5 but are limited in that they do not normally break the process down into migration, engulfment and phagosome maturation, which may be affected differentially. Furthermore, such studies assess uptake as a single event, rather than as a continuous dynamic process. We have recently developed advanced live-cell imaging technologies, and have combined these with genetic functional analysis of both pathogen and host cells to create a cross-disciplinary platform for the analysis of innate immune cell function and fungal pathogenesis. These studies have revealed novel aspects of phagocytosis that could only be observed using systematic temporal analysis of the molecular and cellular interactions between human phagocytes and fungal pathogens and infectious microorganisms more generally. For example, we have begun to define the following: (a) the components of the cell surface required for each stage of the process of recognition, engulfment and killing of fungal cells1, 6, 7, 8; (b) how surface geometry influences the efficiency of macrophage uptake and killing of yeast and hyphal cells7; and (c) how engulfment leads to alteration of the cell cycle and behavior of macrophages 9, 10. In contrast to single time point snapshots, live-cell video microscopy enables a wide variety of host cells and pathogens to be studied as continuous sequences over lengthy time periods, providing spatial and temporal information on a broad range of dynamic processes, including cell migration, replication and vesicular trafficking. Here we describe in detail how to prepare host and fungal cells, and to conduct the video microscopy experiments. These methods can provide a user-guide for future studies with other phagocytes and microorganisms. PMID:23329139

  17. Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells.

    PubMed

    Tóth, Beáta; Garabuczi, Eva; Sarang, Zsolt; Vereb, György; Vámosi, György; Aeschlimann, Daniel; Blaskó, Bernadett; Bécsi, Bálint; Erdõdi, Ferenc; Lacy-Hulbert, Adam; Zhang, Ailiang; Falasca, Laura; Birge, Raymond B; Balajthy, Zoltán; Melino, Gerry; Fésüs, László; Szondy, Zsuzsa

    2009-02-15

    Transglutaminase 2 (TG2), a protein cross-linking enzyme with many additional biological functions, acts as coreceptor for integrin beta(3). We have previously shown that TG2(-/-) mice develop an age-dependent autoimmunity due to defective in vivo clearance of apoptotic cells. Here we report that TG2 on the cell surface and in guanine nucleotide-bound form promotes phagocytosis. Besides being a binding partner for integrin beta(3), a receptor known to mediate the uptake of apoptotic cells via activating Rac1, we also show that TG2 binds MFG-E8 (milk fat globulin EGF factor 8), a protein known to bridge integrin beta(3) to apoptotic cells. Finally, we report that in wild-type macrophages one or two engulfing portals are formed during phagocytosis of apoptotic cells that are characterized by accumulation of integrin beta(3) and Rac1. In the absence of TG2, integrin beta(3) cannot properly recognize the apoptotic cells, is not accumulated in the phagocytic cup, and its signaling is impaired. As a result, the formation of the engulfing portals, as well as the portals formed, is much less efficient. We propose that TG2 has a novel function to stabilize efficient phagocytic portals.

  18. BK channels in innate immune functions of neutrophils and macrophages

    PubMed Central

    Essin, Kirill; Gollasch, Maik; Rolle, Susanne; Weissgerber, Patrick; Sausbier, Matthias; Bohn, Erwin; Autenrieth, Ingo B.; Ruth, Peter; Luft, Friedrich C.; Kettritz, Ralph

    2009-01-01

    Oxygen-dependent antimicrobial activity of human polymorphonuclear leukocytes (PMNs) relies on the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate oxidants. As the oxidase transfers electrons from NADPH the membrane will depolarize and concomitantly terminate oxidase activity, unless there is charge translocation to compensate. Most experimental data implicate proton channels as the effectors of this charge compensation, although large-conductance Ca2+-activated K+ (BK) channels have been suggested to be essential for normal PMN antimicrobial activity. To test this latter notion, we directly assessed the role of BK channels in phagocyte function, including the NADPH oxidase. PMNs genetically lacking BK channels (BK−/−) had normal intracellular and extracellular NADPH oxidase activity in response to both receptor-independent and phagocytic challenges. Furthermore, NADPH oxidase activity of human PMNs and macrophages was normal after treatment with BK channel inhibitors. Although BK channel inhibitors suppressed endotoxin-mediated tumor necrosis factor-α secretion by bone marrow-derived macrophages (BMDMs), BMDMs of BK−/− and wild-type mice responded identically and exhibited the same ERK, PI3K/Akt, and nuclear factor-κB activation. Based on these data, we conclude that the BK channel is not required for NADPH oxidase activity in PMNs or macrophages or for endotoxin-triggered tumor necrosis factor-α release and signal transduction BMDMs. PMID:19074007

  19. Renal F4/80+CD11c+ Mononuclear Phagocytes Display Phenotypic and Functional Characteristics of Macrophages in Health and in Adriamycin Nephropathy

    PubMed Central

    Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W.S.; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I.; Harris, David C.H.

    2015-01-01

    Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80+CD11c+ cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80+CD11c+ cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80+CD11c+ cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80+CD11c+ cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80+CD11c+ cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80+CD11c+ cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. PMID:25012165

  20. Renal F4/80+ CD11c+ mononuclear phagocytes display phenotypic and functional characteristics of macrophages in health and in adriamycin nephropathy.

    PubMed

    Cao, Qi; Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W S; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I; Harris, David C H

    2015-02-01

    Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80(+)CD11c(+) cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80(+)CD11c(+) cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80(+)CD11c(+) cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80(+)CD11c(+) cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80(+)CD11c(+) cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80(+)CD11c(+) cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. Copyright © 2015 by the American Society of Nephrology.

  1. Ontogeny of tick hemocytes: a comparative analysis of Ixodes ricinus and Ornithodoros moubata.

    PubMed

    Borovicková, Barbara; Hypsa, Václav

    2005-01-01

    Hemocytes of two tick species, Ixodes ricinus and Ornithodoros moubata, were investigated with the aim to determine their ultrastructural characteristics and developmental relationships. Only a limited number of ultrastructural features was shown to be unequivocally homological across all hemocyte types. The two species, representing distant groups of ticks, differ in the composition of their circular cell populations. In I. ricinus, three groups of distinct morphological types of hemocytes could be determined according to well-defined ultrastructural features: a typical non-phagocytic granular cell with electron-dense granula and homogeneous cytoplasm (Gr II), and two different types of phagocytic hemocytes, namely plasmatocytes with a low number of granula and phagocytic granolocytes, designated as Gr I. In contrast, an additional cell type resembling insect spherulocytes was determined in O. moubata. This cell type does not seem to be homologous to any I. ricinus hemocyte and may represent a cell type typical of soft ticks only. Possible ontogenetic lineages of the hemocytes of both tick-species were inferred.

  2. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2

    PubMed Central

    Carbone, Federico; Teixeira, Priscila Camillo; Braunersreuther, Vincent; Mach, François; Vuilleumier, Nicolas

    2015-01-01

    Abstract Significance: Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. Recent Advances: Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. Critical Issues: NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. Future Directions: Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke. Antioxid. Redox Signal. 23, 460–489. PMID:24635113

  3. Effect of intravenous plasma transfusion on granulocyte and monocyte oxidative and phagocytic activity in dairy calves with failure of passive immunity.

    PubMed

    Yang, Victoria C; Rayburn, Maire C; Chigerwe, Munashe

    2017-12-01

    Plasma administration has been recommended in calves older than 48h with failure of passive immunity (FPI) to provide immunity consistent with adequate colostral ingestion. However, the protective serum immunoglobulin G (IgG) concentrations (≥1000mg/dL) of plasma derived IgG only lasts up to 12h. In addition to IgG, maternally derived colostral cells also confer immunity. The objective of the study was to determine the effect of intravenous plasma transfusion on granulocyte and monocyte oxidative and phagocytic activity in calves with FPI. Twenty-seven, one day-old, Jersey calves were assigned into 3 groups. The colostral (CL, N=9) group received 3L of colostrum once by oroesophageal tubing. Two other groups of calves received 1L of colostrum once by oroesophageal tubing and were assigned based on their health status (sick or non-sick) at 4days of age, as the sick-group (SG, N=7) or the non-sick (NG, N=11) groups. At 4days of age, the SG and NG groups were administered plasma intravenously at 30mL/kg. Granulocyte and monocyte oxidative and phagocytic activity was determined by flow cytometry. There was no significant difference in the granulocyte and monocyte oxidative or phagocytic activity among the 3 groups (P>0.05). Plasma administration had no significant effect on the oxidative or phagocytic activity of granulocytes or monocytes. In clinical practice, plasma administration for enhancing oxidative or phagocytic activity of granulocytes or monocytes, alone, might not be justified in calves with FPI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Recombinant Sea Urchin Immune Effector Protein, rSpTransformer-E1, Binds to Phosphatidic Acid and Deforms Membranes

    PubMed Central

    Lun, Cheng Man; Samuel, Robin L.; Gillmor, Susan D.; Boyd, Anthony; Smith, L. Courtney

    2017-01-01

    The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that functions without adaptive capabilities and responds to pathogens effectively by expressing the highly diverse SpTransformer gene family (formerly the Sp185/333 gene family). The swift gene expression response and the sequence diversity of SpTransformer cDNAs suggest that the encoded proteins have immune functions. Individual sea urchins can express up to 260 distinct SpTransformer proteins, and their diversity suggests that different versions may have different functions. Although the deduced proteins are diverse, they share an overall structure of a hydrophobic leader, a glycine-rich N-terminal region, a histidine-rich region, and a C-terminal region. Circular dichroism analysis of a recombinant SpTransformer protein, rSpTransformer-E1 (rSpTrf-E1) demonstrates that it is intrinsically disordered and transforms to α helical in the presence of buffer additives and binding targets. Although native SpTrf proteins are associated with the membranes of perinuclear vesicles in the phagocyte class of coelomocytes and are present on the surface of small phagocytes, they have no predicted transmembrane region or conserved site for glycophosphatidylinositol linkage. To determine whether native SpTrf proteins associate with phagocyte membranes through interactions with lipids, when rSpTrf-E1 is incubated with lipid-embedded nylon strips, it binds to phosphatidic acid (PA) through both the glycine-rich region and the histidine-rich region. Synthetic liposomes composed of PA and phosphatidylcholine show binding between rSpTrf-E1 and PA by fluorescence resonance energy transfer, which is associated with leakage of luminal contents suggesting changes in lipid organization and perhaps liposome lysis. Interactions with liposomes also change membrane curvature leading to liposome budding, fusion, and invagination, which is associated with PA clustering induced by rSpTrf-E1 binding. Longer incubations result in the extraction of PA from the liposomes, which form disorganized clusters. CD shows that when rSpTrf-E1 binds to PA, it changes its secondary structure from disordered to α helical. These results provide evidence for how SpTransformer proteins may associate with molecules that have exposed phosphates including PA on cell membranes and how the characteristic of protein multimerization may drive changes in the organization of membrane lipids. PMID:28553283

  5. Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome

    PubMed Central

    Leopold Wager, Chrissy M.; Hole, Camaron R.; Wozniak, Karen L.; Wormley, Floyd L.

    2016-01-01

    Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics. PMID:26903984

  6. Characterization of myosin light chain in shrimp hemocytic phagocytosis.

    PubMed

    Han, Fang; Wang, Zhiyong; Wang, Xiaoqing

    2010-11-01

    Myosin light chain, a well-known cytoskeleton gene, regulates multiple processes that are involved in material transport, muscle shrink and cell division. However, its function in phagocytosis against invading pathogens in crustacean remains unknown. In this investigation, a myosin light chain gene was obtained from Marsupenaeus japonicus shrimp. The full-length cDNA of this gene was of 766 bp and an open reading frame (ORF) of 462 bp encoding a polypeptide of 153 amino acids. The myosin light chain protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified GST fusion protein. As revealed by immuno-electron microscopy, the myosin light chain protein was only expressed in the dark bands of muscle. In the present study, the myosin light chain gene was up-regulated in the WSSV-resistant shrimp as revealed by real-time PCR and western blot. And the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were remarkably increased in the WSSV-resistant shrimp, suggesting that the myosin light chain protein was essential in hemocytic phagocytosis. On the other hand, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the myosin light chain gene was silenced by sequence-specific siRNA. These findings suggested that myosin light chain protein was involved in the regulation of hemocytic phagocytosis of shrimp. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present.

    PubMed

    Rudkin, Fiona M; Bain, Judith M; Walls, Catriona; Lewis, Leanne E; Gow, Neil A R; Erwig, Lars P

    2013-10-29

    An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. Extensive work investigating fungal cell phagocytosis by macrophages and PMNs of the innate immune system has been carried out. These studies have been informative but have examined this phenomenon only when one phagocyte subset is present. The current study employed live-cell video microscopy to break down C. albicans phagocytosis into its component parts and examine the effect of a single phagocyte subset, versus a mixed phagocyte population, on these individual stages. Through this approach, we identified that the rate of fungal cell engulfment and rate of phagocyte killing altered significantly when both macrophages and PMNs were incubated in coculture with C. albicans compared to the rate of either phagocyte subset incubated alone with the fungus. This research highlights the significance of studying pathogen-host cell interactions with a combination of phagocytes in order to gain a greater understanding of the interactions that occur between cells of the host immune system in response to fungal invasion.

  8. [Effect of general magnetotherapy on specific activity of blood phagocytes in patients with ischemic heart disease].

    PubMed

    Ishutin, I S; Klemenkov, S V; Lesovskaia, M I; Spiridonova, M S; Krotova, T K; Ishutin, E I; Tsyganova, O B

    2007-01-01

    In general magnetotherapy for patients with hyporeactive phagocytes (less than 67% from the level of normal chelicoluminescent response) the adequate level of magnetic induction is 1 mT, for patients with normoreactive phagocytes--0.5 mT and for patients with hyperreactive phagocytes (more than 133% from the level of normal chelicoluminescent response)--0.75 mT daily.

  9. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System

    PubMed Central

    Camilli, Giorgio; Tabouret, Guillaume; Quintin, Jessica

    2018-01-01

    β-glucan, the most abundant fungal cell wall polysaccharide, has gained much attention from the scientific community in the last few decades for its fascinating but not yet fully understood immunobiology. Study of this molecule has been motivated by its importance as a pathogen-associated molecular pattern upon fungal infection as well as by its promising clinical utility as biological response modifier for the treatment of cancer and infectious diseases. Its immune effect is attributed to the ability to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes, macrophages, neutrophils, and natural killer cells. The characteristics of the immune responses generated depend on the cell types and receptors involved. Size and biochemical composition of β-glucans isolated from different sources affect their immunomodulatory properties. The variety of studies using crude extracts of fungal cell wall rather than purified β-glucans renders data difficult to interpret. A better understanding of the mechanisms of purified fungal β-glucan recognition, downstream signaling pathways, and subsequent immune regulation activated, is, therefore, essential not only to develop new antifungal therapy but also to evaluate β-glucan as a putative anti-infective and antitumor mediator. Here, we briefly review the complexity of interactions between fungal β-glucans and mononuclear phagocytes during fungal infections. Furthermore, we discuss and present available studies suggesting how different fungal β-glucans exhibit antitumor and antimicrobial activities by modulating the biologic responses of mononuclear phagocytes, which make them potential candidates as therapeutic agents. PMID:29755450

  10. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System.

    PubMed

    Camilli, Giorgio; Tabouret, Guillaume; Quintin, Jessica

    2018-01-01

    β-glucan, the most abundant fungal cell wall polysaccharide, has gained much attention from the scientific community in the last few decades for its fascinating but not yet fully understood immunobiology. Study of this molecule has been motivated by its importance as a pathogen-associated molecular pattern upon fungal infection as well as by its promising clinical utility as biological response modifier for the treatment of cancer and infectious diseases. Its immune effect is attributed to the ability to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes, macrophages, neutrophils, and natural killer cells. The characteristics of the immune responses generated depend on the cell types and receptors involved. Size and biochemical composition of β-glucans isolated from different sources affect their immunomodulatory properties. The variety of studies using crude extracts of fungal cell wall rather than purified β-glucans renders data difficult to interpret. A better understanding of the mechanisms of purified fungal β-glucan recognition, downstream signaling pathways, and subsequent immune regulation activated, is, therefore, essential not only to develop new antifungal therapy but also to evaluate β-glucan as a putative anti-infective and antitumor mediator. Here, we briefly review the complexity of interactions between fungal β-glucans and mononuclear phagocytes during fungal infections. Furthermore, we discuss and present available studies suggesting how different fungal β-glucans exhibit antitumor and antimicrobial activities by modulating the biologic responses of mononuclear phagocytes, which make them potential candidates as therapeutic agents.

  11. Transcriptomic and Quantitative Proteomic Analyses Provide Insights Into the Phagocytic Killing of Hemocytes in the Oyster Crassostrea gigas

    PubMed Central

    Jiang, Shuai; Qiu, Limei; Wang, Lingling; Jia, Zhihao; Lv, Zhao; Wang, Mengqiang; Liu, Conghui; Xu, Jiachao; Song, Linsheng

    2018-01-01

    As invertebrates lack an adaptive immune system, they depend to a large extent on their innate immune system to recognize and clear invading pathogens. Although phagocytes play pivotal roles in invertebrate innate immunity, the molecular mechanisms underlying this killing remain unclear. Cells of this type from the Pacific oyster Crassostrea gigas were classified efficiently in this study via fluorescence-activated cell sorting (FACS) based on their phagocytosis of FITC-labeled latex beads. Transcriptomic and quantitative proteomic analyses revealed a series of differentially expressed genes (DEGs) and proteins present in phagocytes; of the 352 significantly high expressed proteins identified here within the phagocyte proteome, 262 corresponding genes were similarly high expressed in the transcriptome, while 140 of 205 significantly low expressed proteins within the proteome were transcriptionally low expressed. A pathway crosstalk network analysis of these significantly high expressed proteins revealed that phagocytes were highly activated in a number of antimicrobial-related biological processes, including oxidation–reduction and lysosomal proteolysis processes. A number of DEGs, including oxidase, lysosomal protease, and immune receptors, were also validated in this study using quantitative PCR, while seven lysosomal cysteine proteases, referred to as cathepsin Ls, were significantly high expressed in phagocytes. Results show that the expression level of cathepsin L protein in phagocytes [mean fluorescence intensity (MFI): 327 ± 51] was significantly higher (p < 0.01) than that in non-phagocytic hemocytes (MFI: 83 ± 26), while the cathepsin L protein was colocalized with the phagocytosed Vibrio splendidus in oyster hemocytes during this process. The results of this study collectively suggest that oyster phagocytes possess both potent oxidative killing and microbial disintegration capacities; these findings provide important insights into hemocyte phagocytic killing as a component of C. gigas innate immunity. PMID:29942306

  12. The Effect of Perioperative Immunonutrition on the Phagocytic Activity of Blood Platelets in Advanced Gastric Cancer Patients

    PubMed Central

    Kamocki, Zbigniew; Gryko, Mariusz; Kedra, Boguslaw; Kemona, Halina

    2013-01-01

    Background and Aims. Perioperative immunonutrition can influence the phagocytic activity of platelets in advanced gastric cancer. Methods. 51 patients with stage IV gastric cancer divided into four groups depending on the clinical status and 40 normal donors were analyzed. Patients of groups I and II underwent palliative gastrectomy. Patients of groups III and IV had exploratory laparotomy. Perioperative immunonutrition was administered as follows: group I—TPN, II—oral arginine, peripheral TPN, III—TPN preoperatively, and IV—without nutrition. The phagocytic activity of blood platelets was determined before and after nutritional therapy and was assessed by measuring the fraction of phagocytic thrombocytes (%phag) and the phagocytic index (Ixphag). Results. The percentage of phagocytizing platelets and the phagocytic index prior to and after the surgery amounted to the following: group I—1.136–1.237, P = NS, and 1.007–1.1, P = NS, respectively, II—1.111–1.25, P < 0.05, and 1.011–1.083, P < 0.05, III—1.112–1.186, P = NS, and 0.962–1.042, P = NS, and IV—1.085–0.96, P = NS, and 1.023–1.04, P = NS. Conclusions. The phagocytic activity of platelets in patients with advanced gastric cancer is significantly impaired. Perioperative immunonutrition with oral arginine-rich diet can partially improve the phagocytic activity of blood platelets. This trial is registred with Clinicaltrials.gov-NCT01704664. PMID:24363760

  13. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment.

    PubMed

    Lovewell, Rustin R; Hayes, Sandra M; O'Toole, George A; Berwin, Brent

    2014-04-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections.

  14. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment

    PubMed Central

    Lovewell, Rustin R.; Hayes, Sandra M.; O'Toole, George A.

    2014-01-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections. PMID:24487390

  15. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.

    PubMed

    Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David

    2016-05-01

    Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  16. B-1 phagocytes: the myeloid face of B-1 cells.

    PubMed

    Popi, Ana Flavia

    2015-12-01

    The relationship between malignant B cells and macrophages has long been established. Furthermore, evolutionary studies have demonstrated that B cells from early vertebrates have both phagocytic and antibody production capabilities. In addition to their lymphoid nature, B-1 cells retain several myeloid characteristics. Various reports have demonstrated that B-1 cells can differentiate into phagocytes. However, descriptions of B-1 cells as a novel phagocyte cell member are rarely found in the literature. This review aims to present the available data regarding B-1 cell-derived phagocytes and also discusses how their existence might be relevant to hematopoiesis and immune responses. © 2015 New York Academy of Sciences.

  17. Immunotherapy of Mild Cognitive Impairment by ω-3 Supplementation: Why Are Amyloid-β Antibodies and ω-3 Not Working in Clinical Trials?

    PubMed

    Fiala, Milan; Restrepo, Lucas; Pellegrini, Matteo

    2018-01-01

    This article reviews the basic tenets of a clinical approach to effective immunotherapy of Alzheimer's disease (AD) in patients with mild cognitive impairment (MCI). Although one randomized controlled study in early MCI patients by fish-derived omega-3 fatty acids (ω-3) showed slowing of disease progression, large clinical trials with different products have failed to show cognitive effects. Macrophages of healthy subjects phagocytize and degrade amyloid-β1 - 42 (Aβ) in the brain tissues, whereas macrophages of patients with AD and MCI are functionally defective. ω-3 and ω-3-derived specialized proresolving mediators (SPMs), such as resolvin D1, have powerful biochemical and immunological effects, which may repair the functions of MCI patients' macrophages in the brain's clearance of Aβ. Unfortunately, ω-3 products on the market have a variable quality. Nutritional supplementation with a combination drink called Smartfish with an emulsion of ω-3 and other fatty acids, antioxidants, 1,25-dihydroxy vitamin D3, and resveratrol improved the innate immune system of MCI patients by modulation of macrophage type to the pro-phagocytic M1-M2 type with an effective unfolded protein response against endoplasmic reticulum stress. Some MCI patients maintained their initial cognitive status for three years on Smartfish supplementation. Future randomized clinical trials should investigate the immune effects of ω-3, 1,25-dihydroxy vitamin D3, and SPMs on macrophage type, function, and biochemistry in parallel with cognitive effects.

  18. Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism.

    PubMed

    Silva, Manuel T

    2010-11-01

    Triggering of phagocyte apoptosis is a major virulence mechanism used by some successful bacterial pathogens. A central issue in the apoptotic death context is that fully developed apoptosis results in necrotic cell autolysis (secondary necrosis) with release of harmful cell components. In multicellular animals, this occurs when apoptosing cells are not removed by scavengers, mainly macrophages. Secondary necrotic lysis of neutrophils and macrophages may occur in infection when extensive phagocyte apoptosis is induced by bacterial cytotoxins and removal of apoptosing phagocytes is defective because the apoptotic process exceeds the available scavenging capacity or targets macrophages directly. Induction of phagocyte secondary necrosis is an important pathogenic mechanism, as it combines the pathogen evasion from phagocyte antimicrobial activities and the release of highly cytotoxic molecules, particularly of neutrophil origin, such as neutrophil elastase. This pathogenicity mechanism therefore promotes the unrestricted multiplication of the pathogen and contributes directly to the pathology of several necrotizing infections, where extensive apoptosis and necrosis of macrophages and neutrophils are present. Here, examples of necrotizing infectious diseases, where phagocyte secondary necrosis is implicated, are reviewed.

  19. Sex differences in the phagocytic and migratory activity of microglia and their impairment by palmitic acid.

    PubMed

    Yanguas-Casás, Natalia; Crespo-Castrillo, Andrea; de Ceballos, Maria L; Chowen, Julie A; Azcoitia, Iñigo; Arevalo, Maria Angeles; Garcia-Segura, Luis M

    2018-03-01

    Sex differences in the incidence, clinical manifestation, disease course, and prognosis of neurological diseases, such as autism spectrum disorders or Alzheimer's disease, have been reported. Obesity has been postulated as a risk factor for cognitive decline and Alzheimer's disease and, during pregnancy, increases the risk of autism spectrum disorders in the offspring. Obesity is associated with increased serum and brain levels of free fatty acids, such as palmitic acid, which activate microglial cells triggering a potent inflammatory cascade. In this study, we have determined the effect of palmitic acid in the inflammatory profile, motility, and phagocytosis of primary male and female microglia, both in basal conditions and in the presence of a pro-inflammatory stimulus (interferon-γ). Male microglia in vitro showed higher migration than female microglia under basal and stimulated conditions. In contrast, female microglia had higher basal and stimulated phagocytic activity than male microglia. Palmitic acid did not affect basal migration or phagocytosis, but abolished the migration and phagocytic activity of male and female microglia in response to interferon-γ. These findings extend previous observations of sex differences in microglia and suggest that palmitic acid impairs the protective responses of these cells. © 2017 Wiley Periodicals, Inc.

  20. Temporary microglia-depletion after cosmic radiation modifies phagocytic activity and prevents cognitive deficits.

    PubMed

    Krukowski, Karen; Feng, Xi; Paladini, Maria Serena; Chou, Austin; Sacramento, Kristen; Grue, Katherine; Riparip, Lara-Kirstie; Jones, Tamako; Campbell-Beachler, Mary; Nelson, Gregory; Rosi, Susanna

    2018-05-18

    Microglia are the main immune component in the brain that can regulate neuronal health and synapse function. Exposure to cosmic radiation can cause long-term cognitive impairments in rodent models thereby presenting potential obstacles for astronauts engaged in deep space travel. The mechanism/s for how cosmic radiation induces cognitive deficits are currently unknown. We find that temporary microglia depletion, one week after cosmic radiation, prevents the development of long-term memory deficits. Gene array profiling reveals that acute microglia depletion alters the late neuroinflammatory response to cosmic radiation. The repopulated microglia present a modified functional phenotype with reduced expression of scavenger receptors, lysosome membrane protein and complement receptor, all shown to be involved in microglia-synapses interaction. The lower phagocytic activity observed in the repopulated microglia is paralleled by improved synaptic protein expression. Our data provide mechanistic evidence for the role of microglia in the development of cognitive deficits after cosmic radiation exposure.

  1. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology.

    PubMed

    Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong

    2017-03-22

    This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.

  2. [Immunologic indexes, enzyme status of lymphocytes and functional activity of blood neutrophils in children with infectious mononucleosis caused by Epstein-Barr virus].

    PubMed

    Kurtasova, L M; Tolstikova, A E; Savchenko, A A

    2013-01-01

    Explore the immunological parameters, levels of activity of NAD(P)-dependent dehydrogenases lymphocytes, interferon status parameters, phagocytic activity and chemiluminescence response of neutrophils in the blood of children in the acute phase of infectious mononucleosis caused by the Epstein-Barr virus. 65 children at the age of 4-6 years old with infectious mononucleosis caused by EBV in acute phase were observed. Such indexes as cell-mediated, humoral and interferon immunity, NAD(P)-depended dehydrogenases activity in blood lymphocyte, phagocytes activity, levels of spontaneous and induced chemiluminescence ofperipheral blood neutrophils were studied. Children with EVB-infection have immunophenotype spectrum changes and changes of enzymes status of blood lymphocytes against the increasing in leucocytes and the useful increasing in lymphocytes. The useful increasing in IgA, IgM, IgG contenting in serum blood were found. The decreasing of spontaneous production of IFN alpha and the decreasing of induced production of IFNalpha, IFNgamma were determined. The breach of phagocytes activity and chemiluminescent response of blood neutrophils were found. The children in the acute phase of infectious mononucleosis caused by the Epstein-Barr virus, there are changes in the immune status, changes the activity of NAD(P)-dependent dehydrogenases in blood lymphocytes, marked changes in functional and metabolic state of peripheral blood neutrophils.

  3. Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease.

    PubMed

    Kim, Kwang Soo; Marcogliese, Paul C; Yang, Jungwoo; Callaghan, Steve M; Resende, Virginia; Abdel-Messih, Elizabeth; Marras, Connie; Visanji, Naomi P; Huang, Jana; Schlossmacher, Michael G; Trinkle-Mulcahy, Laura; Slack, Ruth S; Lang, Anthony E; Park, David S

    2018-05-14

    Leucine-rich repeat kinase 2 ( LRRK2 ) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2 - G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.

  4. Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease

    PubMed Central

    2013-01-01

    Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c+ dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets. PMID:20552278

  5. ACANTHAMOEBA SP.S-11 PHAGOCYTOTIC ACTIVITY ON MYCOBACTERIUM LEPRAE IN DIFFERENT NUTRIENT CONDITIONS.

    PubMed

    Paling, Sepling; Wahyuni, Ratna; Ni'matuzahroh; Winarni, Dwi; Iswahyudi; Astari, Linda; Adriaty, Dinar; Agusni, Indropo; Izumi, Shinzo

    2018-01-01

    Mycobacterium leprae ( M. leprae ) is a pathogenic bacterium that causes leprosy. The presence of M. leprae in the environment is supported by microorganisms that act as the new host for M. leprae . Acanthamoeba 's potential to be a host of M. leprae in the environment. Acanthamoeba sp. is Free Living Amoeba (FLA) that classified as holozoic, saprophytic, and saprozoic. The existence of nutrients in the environment influence Acanthamoeba ability to phagocytosis or pinocytosis. This study is aimed to determine Acanthamoeba sp.S-11 phagocytic activity to Mycobacterium leprae ( M. leprae ) which cultured in non-nutrient media and riched-nutrient media. This research conducted by culturing Acanthamoeba sp.S-11 and M. leprae on different nutrient media conditions. M. leprae intracellular DNA were isolated and amplified by M. leprae specific primers through Real Time PCR (Q-PCR). The results showed that Acanthamoeba co-cultured on non-nutrient media were more active to phagocyte M. leprae than on rich-nutrient media. The use of non-nutrient media is recommended to optimize Acanthamoeba sp. phagocytic activity to M. leprae .

  6. The bactericidal effects of anti-MRSA agents with rifampicin and sulfamethoxazole-trimethoprim against intracellular phagocytized MRSA.

    PubMed

    Yamaoka, Toshimori

    2007-06-01

    We experienced therapeutic failure with vancomycin in patients with serious methicillin-resistant Staphylococcus aureus (MRSA) infections, in some of whom the bacteria were found to be alive in the leukocytes. We therefore evaluated the antimicrobial activity of several anti-MRSA agents (vancomycin, linezolid, quinupristin/dalfopristin, arbekacin) and co-administered agents (rifampicin, sulfamethoxazole-trimethoprim) against clinically isolated MRSA in phagocytized human polymorphonuclear leukocytes. After allowing the leukocytes to phagocytize the bacteria, the mixture was separated into leukocytes and supernatant, to which MRSA agents were added, and incubated for 24 h. After incubation, the leukocytes were crushed and the intracellular MRSA was cultured quantitatively. Vancomycin resulted in a less than 1% survival ratio of extracellular MRSA, but it was one of the highest ratios of intracellular MRSA with 33.8% compared with other agents. The survival ratios of intracellular MRSA with vancomycin plus rifampicin and with vancomycin plus rifampicin plus sulfamethoxazole-trimethoprim were 0.78% and 1.02%, respectively, which is significantly lower than that of vancomycin. For linezolid, quinupristin/dalfopristin, and arbekacin, there were no significant differences in the survival ratios between monotherapy and combination therapy against either extracellular or intracellular MRSA. The results suggest that the concomitant use of rifampicin or rifampicin plus sulfamethoxazole/trimethoprim with vancomycin is effective for MRSA phagocytized in leukocytes when vancomycin monotherapy is not sufficiently effective. Combination therapy showed no difference in efficacy in the case of linezolid, quinupristin/dalfopristin, and arbekacin.

  7. [Characteristic and function of peripheral blood mononuclear cells-induced macrophages in patients with myelodysplastic syndrome].

    PubMed

    Han, Y; Wang, H Q; Fu, R; Qu, W; Ruan, E B; Wang, X M; Wang, G J; Wu, Y H; Liu, H; Song, J; Guan, J; Xing, L M; Li, L J; Jiang, H J; Liu, H; Wang, Y H; Liu, C Y; Zhang, W; Shao, Z H

    2017-08-14

    Objective: To explore characteristic and function of peripheral blood mononuclear cells (PBMNC) -induced macrophages in patients with myelodysplastic syndrome (MDS) to couple with its progression. Methods: A total of 24 MDS patients (11 low-risk patients and 13 high-risk group patients) referred to Department of Hematology of Tianjin Medical University General Hospital and normal controls were enrolled from September 2014 to December 2015. PBMNC was stimulated with GM-CSF to transform to macrophages. The morphology of macrophages was observed by microscope. The quantity of macrophages, CD206 and SIRPα on surface of macrophages were detected by flow cytometry. The phagocytic function of macrophages was analyzed by fluorescence microscopy and flow cytometry. Results: The morphology of macrophages from MDS patients was abnormal. The percentage of transformed macrophages was (5.17±3.47) % in patients with MDS, which was lower than that in controls significantly[ (66.18±13.43) %, t =3.529, P =0.001]. The expression of CD206 on macrophages from MDS patients was significantly lower than that of controls[ (9.73±2.59) % vs (51.15±10.82) %, t =4.551, P <0.001]. The SIRPα level of macrophages from MDS patients was significantly lower than that of controls [ (0.51±0.09) % vs (0.77±0.06) %, t =2.102, P =0.043]. The phagocytic index and the percentage of phagocytic of macrophages from MDS patients were significantly lower than those of macrophages from normal controls[0.45±0.08 vs 0.92±0.07, t =-6.253, P =0.008; (23.69±3.22) % vs (42.75±2.13) %, t =-6.982, P =0.006 respectively]by flow cytometry. The phagocytic index of MDS patients was significantly lower than that of controls (0.24±0.04 vs 0.48±0.96, t =3.464, P =0.001) by fluorescence microscopy. Conclusion: The quantity, recognization receptors and phagocytosis of PBMNC-induced macrophages decreased in MDS patients.

  8. Phagocytes in cell suspensions of human colon mucosa.

    PubMed Central

    Beeken, W; Northwood, I; Beliveau, C; Gump, D

    1987-01-01

    Because little is known of the phagocytes of the human colon we enumerated these cells in mucosal suspensions and studied their phagocytic activity. Phagocyte rich suspensions were made by EDTA collagenase dissociation followed by elutriation centrifugation. Phagocytosis was evaluated by measuring cellular radioactivity after incubation of phagocytes with 3H-adenine labelled E coli ON2 and checked microscopically. Dissociation of normal mucosa from colorectal neoplasms yielded means of 1.9 X 10(6) eosinophils, 1.4 X 10(6) macrophages and 2 X 10(5) neutrophils per gram of mucosa. Visually normal mucosa of inflammatory states yielded 2.2 X 10(6) eosinophils, 2.3 X 10(6) macrophages and 7 X 10(5) neutrophils per gram of mucosa. Phagocyte rich suspensions of normal mucosa from tumour patients phagocytosed 21.8% of a pool of opsonised tritiated E coli ON2 and by microscopy 100% of mucosal neutrophils ingested bacteria, 83% of eosinophils were phagocytic, and 53% of macrophages contained bacteria. These results suggest that in the human colonic mucosa, the eosinophil is more abundant than the macrophage and the per cent of those cells exhibiting phagocytosis is intermediate between that of the macrophage and the neutrophil. Thus these three types of cells are actively phagocytic and share the potential for a major role in host defence against invasive enteric bacteria. PMID:3666566

  9. Inhibitory Effect of the Ethanol Extract of a Rice Bran Mixture Comprising Angelica gigas, Cnidium officinale, Artemisia princeps, and Camellia sinensis on Brucella abortus Uptake by Professional and Nonprofessional Phagocytes.

    PubMed

    Hop, Huynh Tan; Arayan, Lauren Togonon; Reyes, Alisha Wehdnesday Bernardo; Huy, Tran Xuan Ngoc; Baek, Eun Jin; Min, WonGi; Lee, Hu Jang; Lee, Chun Hee; Rhee, Man Hee; Kim, Suk

    2017-10-28

    In this study, we evaluated the inhibitory effect of a rice bran mixture extract (RBE) on Brucella abortus pathogenesis in professional (RAW 264.7) and nonprofessional (HeLa) phagocytes. We fermented the rice bran mixture and then extracted it with 50% ethanol followed by gas chromatography-mass spectrometry to identify the components in RBE. Our results clearly showed that RBE caused a significant reduction in the adherence of B. abortus in both cell lines. Furthermore, analysis of phagocytic signaling proteins by western blot assay revealed that RBE pretreatment resulted in inhibition of phosphorylation of JNK, ERK, and p38, leading to decline of internalization compared with the controls. Additionally, the intensity of F-actin observed by fluorescence microscopy and FACS was remarkably reduced in RBE-pretreated cells compared with control cells. However, the intracellular replication of B. abortus within phagocytes was not affected by RBE. Taken together, these findings suggest that the phagocytic receptor blocking and suppressive effects of RBE on the MAPK-linked phagocytic signaling pathway could negatively affect the invasion of B. abortus into phagocytes.

  10. Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis.

    PubMed

    Fond, Aaron M; Ravichandran, Kodi S

    The efficient clearance of apoptotic cells is an evolutionarily conserved process crucial for homeostasis in multicellular organisms. The clearance involves a series of steps that ultimately facilitates the recognition of the apoptotic cell by the phagocytes and the subsequent uptake and processing of the corpse. These steps include the phagocyte sensing of "find-me" signals released by the apoptotic cell, recognizing "eat-me" signals displayed on the apoptotic cell surface, and then intracellular signaling within the phagocyte to mediate phagocytic cup formation around the corpse and corpse internalization, and the processing of the ingested contents. The engulfment of apoptotic cells by phagocytes not only eliminates debris from tissues but also produces an anti-inflammatory response that suppresses local tissue inflammation. Conversely, impaired corpse clearance can result in loss of immune tolerance and the development of various inflammation-associated disorders such as autoimmunity, atherosclerosis, and airway inflammation but can also affect cancer progression. Recent studies suggest that the clearance process can also influence antitumor immune responses. In this review, we will discuss how apoptotic cells interact with their engulfing phagocytes to generate important immune responses, and how modulation of such responses can influence pathology.

  11. Human Neutrophils Use Different Mechanisms To Kill Aspergillus fumigatus Conidia and Hyphae: Evidence from Phagocyte Defects.

    PubMed

    Gazendam, Roel P; van Hamme, John L; Tool, Anton T J; Hoogenboezem, Mark; van den Berg, J Merlijn; Prins, Jan M; Vitkov, Ljubomir; van de Veerdonk, Frank L; van den Berg, Timo K; Roos, Dirk; Kuijpers, Taco W

    2016-02-01

    Neutrophils are known to play a pivotal role in the host defense against Aspergillus infections. This is illustrated by the prevalence of Aspergillus infections in patients with neutropenia or phagocyte functional defects, such as chronic granulomatous disease. However, the mechanisms by which human neutrophils recognize and kill Aspergillus are poorly understood. In this work, we have studied in detail which neutrophil functions, including neutrophil extracellular trap (NET) formation, are involved in the killing of Aspergillus fumigatus conidia and hyphae, using neutrophils from patients with well-defined genetic immunodeficiencies. Recognition of conidia involves integrin CD11b/CD18 (and not dectin-1), which triggers a PI3K-dependent nonoxidative intracellular mechanism of killing. When the conidia escape from early killing and germinate, the extracellular destruction of the Aspergillus hyphae needs opsonization by Abs and involves predominantly recognition via Fcγ receptors, signaling via Syk, PI3K, and protein kinase C to trigger the production of toxic reactive oxygen metabolites by the NADPH oxidase and myeloperoxidase. A. fumigatus induces NET formation; however, NETs did not contribute to A. fumigatus killing. Thus, our findings reveal distinct killing mechanisms of Aspergillus conidia and hyphae by human neutrophils, leading to a comprehensive insight in the innate antifungal response. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Macrophage polarization at the crossroad between HIV-1 infection and cancer development.

    PubMed

    Alfano, Massimo; Graziano, Francesca; Genovese, Luca; Poli, Guido

    2013-06-01

    Mononuclear phagocytes play a fundamental role in the tissue homeostasis and innate defenses against viruses and other microbial pathogens. In addition, they are likely involved in several steps of cancer development. Circulating monocytes and tissue macrophages are target cells of viral infections, including human cytomegalovirus, human herpes virus 8, and the HIV, and alterations of their functional and phenotypic properties are likely involved in many tissue-degenerative diseases, including atherosclerosis and cancer. Different tissue microenvironments as well as their pathological alterations can profoundly affect the polarization state of macrophages toward the extreme phenotypes conventionally termed M1 and M2. Thus, targeting disease-associated macrophages is considered a potential approach particularly in the context of cancer-associated tumor-associated macrophages, supporting malignant cell growth and progression toward a metastatic phenotype. Of note is the fact that tumor-associated macrophages isolated from established tumors display phenotypic and functional features similar to those of in vitro-derived M2-polarized cells. Concerning HIV-1 infection, viral eradication strategies in the context of combination antiretroviral therapy should also consider the possibility to deplete, at least transiently, certain mononuclear phagocytes subsets, although the possibility of distinguishing those that are either infected or pathogenically altered remains a goal of future research. In the present review, we will focus on the recent literature concerning the role of human macrophage polarization in viral infections and cancer.

  13. Assessment of Neutrophil Function in Patients with Septic Shock: Comparison of Methods

    PubMed Central

    Wenisch, C.; Fladerer, P.; Patruta, S.; Krause, R.; Hörl, W.

    2001-01-01

    Patients with septic shock are shown to have decreased neutrophil phagocytic function by multiple assays, and their assessment by whole-blood assays (fluorescence-activated cell sorter analysis) correlates with assays requiring isolated neutrophils (microscopic and spectrophotometric assays). For patients with similar underlying conditions but without septic shock, this correlation does not occur. PMID:11139215

  14. Macrophage Biochemistry, Activation and Function

    DTIC Science & Technology

    1981-01-01

    vacuolar apparatus become more abundant. Functional capabilities, including phagocytic activity, protein synthesis and surface receptors, also increase...properties of cell components of other tissues has led to the following assignment of marker enzymes to specific macrophage components. This assessment is...subfractions. The surface area of each histogram bar then gives the frac- tional amount of constituent present within each normalized fraction. Distribution

  15. Mechanisms of mononuclear phagocyte recruitment in Alzheimer's disease.

    PubMed

    Hickman, Suzanne E; El Khoury, Joseph

    2010-04-01

    Alzheimer's disease (AD) is associated with a significant neuroinflammatory component. Mononuclear phagocytes including monocytes and microglia are the principal cells involved, and they accumulate at perivascular sites of beta-amyloid (Abeta) deposition and in senile plaques. Recent evidence suggests that mononuclear phagocyte accumulation in the AD brain is dependent on chemokines. CCL2, a major monocyte chemokine, is upregulated in the AD brain. Interaction of CCL2 with its receptor CCR2 regulates mononuclear phagocyte accumulation in a mouse model of AD. CCR2 deficiency leads to lower mononuclear phagocyte accumulation and is associated with higher brain Abeta levels, specifically around blood vessels, suggesting that monocytes accumulate at sites of Abeta deposition in an initial attempt to clear these deposits and stop or delay their neurotoxic effects. Indeed, enhancing mononuclear phagocyte accumulation delays progression of AD. Here we review the mechanisms of mononuclear phagocyte accumulation in AD and discuss the potential roles of additional chemokines and their receptors in this process. We also propose a multi-step model for recruitment of mononuclear phagocytes into the brain. The first step involves egress of monocyte/microglial precursors from the bone marrow into the blood. The second step is crossing the blood-brain barrier to the perivascular areas and into the brain parenchyma. The final step includes movement of monocytes/microglia from areas of the brain that lack any amyloid deposition to senile plaques. Understanding the mechanism of recruitment of mononuclear phagocytes to the AD brain is necessary to further understand the role of these cells in the pathogenesis of AD and to identify any potential therapeutic use of these cells for the treatment of this disease.

  16. Phagocytic response of astrocytes to damaged neighboring cells

    PubMed Central

    Cruz, Gladys Mae S.; Ro, Clarissa C.; Moncada, Emmanuel G.; Khatibzadeh, Nima; Flanagan, Lisa A.; Berns, Michael W.

    2018-01-01

    This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane). In addition to the presence (or lack) of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue. PMID:29708987

  17. Seasonal differences in the physiology of Carcinus maenas (Crustacea: Decapoda) from estuaries with varying levels of anthropogenic contamination

    NASA Astrophysics Data System (ADS)

    Dissanayake, Awantha; Galloway, Tamara S.; Jones, Malcolm B.

    2011-07-01

    This study reports the seasonal variability in aspects of the physiology of the shore crab Carcinus maenas from three estuaries in South-west England, each with varying anthropogenic inputs: Avon Estuary ('relatively low' impact), Yealm Estuary ('intermediate' impact) and Plym Estuary ('relatively high' impact). Crabs collected over 12 months from the Avon had a significantly 'lower' physiological condition in winter and spring compared to summer and autumn; in particular, haemocyte phagocytic capability (a general indicator of immune function) was significantly higher in winter and spring compared to summer and autumn, and total haemolymph antioxidant status (an indicator of oxidative stress) was significantly lower in winter compared to the remainder of the year. Potentially, shore crabs may be more susceptible to the effects of contaminant exposure, such as increased immunotoxicity (thus, reduction of immune function) and/or oxyradicals (or reactive oxygen species) exposure) especially in seasons of increased susceptibility i.e. summer/autumn (lower phagocytic capability) and winter (lowest antioxidant function). As the Avon was taken to represent the 'reference' site, this pattern is considered to reflect the 'normal' seasonal variability in shore crab physiology. Shore crab physiological condition from the 'relatively high' impact estuary (Plym) revealed increased cellular viability and antioxidant status in autumn and winter compared with that of the 'standard' pattern (Avon) However, crabs from the intermediate impact estuary (Yealm) only demonstrated significant physiological differences in summer as shown by a lower cellular viability. All crabs had been exposed to PAHs (confirmed by the presence of PAH metabolites in their urine) which may account for the observed differences in shore crab physiology. In conclusion, to aid understanding of the potential contaminant impacts on biota it is imperative that the 'normal' seasonal variability of physiological condition be established. Biological effects-based monitoring studies should therefore be employed seasonally to potentially highlight 'windows of sensitivity' to contaminant impact.

  18. Altered Dynamics of Candida albicans Phagocytosis by Macrophages and PMNs When Both Phagocyte Subsets Are Present

    PubMed Central

    Rudkin, Fiona M.; Bain, Judith M.; Walls, Catriona; Lewis, Leanne E.; Gow, Neil A. R.; Erwig, Lars P.

    2013-01-01

    ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. PMID:24169578

  19. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection.

    PubMed

    Rose, Sasha J; Bermudez, Luiz E

    2014-01-01

    Mycobacterium avium subsp. hominissuis is an opportunistic human pathogen that has been shown to form biofilm in vitro and in vivo. Biofilm formation in vivo appears to be associated with infections in the respiratory tract of the host. The reasoning behind how M. avium subsp. hominissuis biofilm is allowed to establish and persist without being cleared by the innate immune system is currently unknown. To identify the mechanism responsible for this, we developed an in vitro model using THP-1 human mononuclear phagocytes cocultured with established M. avium subsp. hominissuis biofilm and surveyed various aspects of the interaction, including phagocyte stimulation and response, bacterial killing, and apoptosis. M. avium subsp. hominissuis biofilm triggered robust tumor necrosis factor alpha (TNF-α) release from THP-1 cells as well as superoxide and nitric oxide production. Surprisingly, the hyperstimulated phagocytes did not effectively eliminate the cells of the biofilm, even when prestimulated with gamma interferon (IFN-γ) or TNF-α or cocultured with natural killer cells (which have been shown to induce anti-M. avium subsp. hominissuis activity when added to THP-1 cells infected with planktonic M. avium subsp. hominissuis). Time-lapse microscopy and the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay determined that contact with the M. avium subsp. hominissuis biofilm led to early, widespread onset of apoptosis, which is not seen until much later in planktonic M. avium subsp. hominissuis infection. Blocking TNF-α or TNF-R1 during interaction with the biofilm significantly reduced THP-1 apoptosis but did not lead to elimination of M. avium subsp. hominissuis. Our data collectively indicate that M. avium subsp. hominissuis biofilm induces TNF-α-driven hyperstimulation and apoptosis of surveilling phagocytes, which prevents clearance of the biofilm by cells of the innate immune system and allows the biofilm-associated infection to persist.

  20. Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi.

    PubMed

    Tokarski, Christian; Hummert, Sabine; Mech, Franziska; Figge, Marc Thilo; Germerodt, Sebastian; Schroeter, Anja; Schuster, Stefan

    2012-01-01

    Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.

  1. In vivo and in vitro phagocytosis of Leishmania (Leishmania) amazonensis promastigotes by B-1 cells.

    PubMed

    Geraldo, M M; Costa, C R; Barbosa, F M C; Vivanco, B C; Gonzaga, W F K M; Novaes E Brito, R R; Popi, A F; Lopes, J D; Xander, P

    2016-06-01

    Leishmaniasis is caused by Leishmania parasites that infect several cell types. The promastigote stage of Leishmania is internalized by phagocytic cells and transformed into the obligate intracellular amastigote form. B-1 cells are a subpopulation of B cells that are able to differentiate in vitro and in vivo into mononuclear phagocyte-like cells with phagocytic properties. B-1 cells use several receptors for phagocytosis, such as the mannose receptor and third complement receptor. Leishmania binds to the same receptors on macrophages. In this study, we demonstrated that phagocytes derived from B-1 cells (B-1 CDP) were able to internalize promastigotes of L. (L.) amazonensis in vitro. The internalized promastigotes differentiated into amastigotes. Our results showed that the phagocytic index was higher in B-1 CDP compared to peritoneal macrophages and bone marrow-derived macrophages. The in vivo phagocytic ability of B-1 cells was also demonstrated. Parasites were detected inside purified B-1 cells after intraperitoneal infection with L. (L.) amazonensis promastigotes. Intraperitoneal stimulation with the parasites led to an increase in both IL-10 and TNF-α. These results highlight the importance of studying B-1 CDP cells as phagocytic cells that can participate and contribute to immunity to parasites. © 2016 John Wiley & Sons Ltd.

  2. Roles of the Putative Type IV-like Secretion System Key Component VirD4 and PrsA in Pathogenesis of Streptococcus suis Type 2

    PubMed Central

    Jiang, Xiaowu; Yang, Yunkai; Zhou, Jingjing; Zhu, Lexin; Gu, Yuanxing; Zhang, Xiaoyan; Li, Xiaoliang; Fang, Weihuan

    2016-01-01

    Streptococcus suis type 2 (SS2) is a zoonotic pathogen causing septic infection, meningitis and pneumonia in pigs and humans. SS2 may cause streptococcal toxic shock syndrome (STSS) probably due to excessive release of inflammatory cytokines. A previous study indicated that the virD4 gene in the putative type IV-like secretion system (T4SS) within the 89K pathogenicity island specific for recent epidemic strains contributed to the development of STSS. However, the functional basis of VirD4 in STSS remains unclear. Here we show that deletion of virD4 led to reduced virulence as shown by about 65% higher LD50, lower bacterial load in liver and brain, and lower level of expression of inflammatory cytokines in mice and cell lines than its parent strain. The ΔVirD4 mutant was more easily phagocytosed, suggesting its role as an anti-phagocytic factor. Oxidative stress that mimic bacterial exposure to respiratory burst of phagocytes upregulated expression of virD4. Proteomic analysis identified 10 secreted proteins of significant differences between the parent and mutant strains under oxidative stress, including PrsA, a peptidyl-prolyl isomerase. The SS2 PrsA expressed in E. coli caused a dose-dependent cell death and increased expression of proinflammatory IL-1β, IL-6 and TNF-α in murine macrophage cells. Our data provide novel insights into the contribution of the VirD4 factor to STSS pathogenesis, possibly via its anti-phagocytic activity, upregulation of its expression upon oxidative stress and its involvement in increased secretion of PrsA as a cell death inducer and proinflammatory effector. PMID:27995095

  3. Δ6-fatty acid desaturase and fatty acid elongase mRNA expression, phagocytic activity and weight-to-length relationships in channel catfish (Ictalurus punctatus) fed alternative diets with soy oil and a probiotic.

    PubMed

    Santerre, A; Téllez-Bañuelos, M C; Casas-Solís, J; Castro-Félix, P; Huízar-López, M R; Zaitseva, G P; Horta-Fernández, J L; Trujillo-García, E A; de la Mora-Sherer, D; Palafox-Luna, J A; Juárez-Carrillo, E

    2015-09-22

    A time-course feeding trial was conducted for 120 days on juvenile channel catfish (Ictalurus punctatus) to study the effects of diets differing in oil source (fish oil or soy oil) and supplementation with a commercial probiotic. Relative levels of Δ6-fatty acid desaturase (Δ6-FAD) and fatty acid elongase (FAE) expression were assessed in brain and liver tissues. Both genes showed similar expression levels in all groups studied. Fish weight-to-length relationships were evaluated using polynomial regression analyses, which identified a burst in weight and length in the channel catfish on day 105 of treatment; this increase was related to an increase in gene expression. Mid-intestinal lactic acid bacterium (LAB) count was determined according to morphological and biochemical criteria using API strips. There was no indication that intestinal LAB count was affected by the modified diets. The Cunningham glass adherence method was applied to evaluate phagocytic cell activity in peripheral blood. Reactive oxygen species (ROS) generation was assessed through the respiratory burst activity of spleen macrophages by the NBT reduction test. Probiotic-supplemented diets provided a good substrate for innate immune system function; the phagocytic index was significantly enhanced in fish fed soy oil and the probiotic, and at the end of the experimental period, ROS production increased in fish fed soy oil. The substitution of fish oil by soy oil is recommended for food formulation and will contribute to promoting sustainable aquaculture. Probiotics are also recommended for channel catfish farming as they may act as immunonutrients.

  4. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor

    PubMed Central

    Rappleye, Chad A.; Eissenberg, Linda Groppe; Goldman, William E.

    2007-01-01

    Successful infection by fungal pathogens depends on subversion of host immune mechanisms that detect conserved cell wall components such as β-glucans. A less common polysaccharide, α-(1,3)-glucan, is a cell wall constituent of most fungal respiratory pathogens and has been correlated with pathogenicity or linked directly to virulence. However, the precise mechanism by which α-(1,3)-glucan promotes fungal virulence is unknown. Here, we show that α-(1,3)-glucan is present in the outermost layer of the Histoplasma capsulatum yeast cell wall and contributes to pathogenesis by concealing immunostimulatory β-glucans from detection by host phagocytic cells. Production of proinflammatory TNFα by phagocytes was suppressed either by the presence of the α-(1,3)-glucan layer on yeast cells or by RNA interference based depletion of the host β-glucan receptor dectin-1. Thus, we have functionally defined key molecular components influencing the initial host–pathogen interaction in histoplasmosis and have revealed an important mechanism by which H. capsulatum thwarts the host immune system. Furthermore, we propose that the degree of this evasion contributes to the difference in pathogenic potential between dimorphic fungal pathogens and opportunistic fungi. PMID:17227865

  5. 30 years of battling the cell wall.

    PubMed

    Latgé, J P

    2017-01-01

    In Aspergillus fumigatus, like in other pathogenic fungi, the cell wall is essential for fungal growth as well as for resisting environmental stresses such as phagocytic killing. Most of the chemical analyses undertaken on the cell wall of A. fumigatus are focused on the mycelial cell wall because it is the vegetative stage of the fungus. However, the cell walls of the mycelium and conidium (which is the infective propagule) are different especially at the level of the surface layer, which plays a significant role in the interaction between A. fumigatus conidia and phagocytic cells of the immune system. In spite of the essential function of the cell wall in fungal life, progresses have been extremely slow in the understanding of biosynthesis as well in the identification of the key host responses against the cell wall components. A major difficulty is the fact that the composition and structural organization of the cell wall is not immutably set and is constantly reshuffled depending on the environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Modulation of rat macrophage function by the Mangifera indica L. extracts Vimang and mangiferin.

    PubMed

    García, D; Delgado, R; Ubeira, F M; Leiro, J

    2002-05-01

    Vimang is an aqueous extract of Mangiferia indica L., traditionally used in Cuba as an anti-inflammatory, analgesic and antioxidant. In the present study, we investigated the effects of Vimang and of mangiferin (a C-glucosylxanthone present in the extract) on rat macrophage functions including phagocytic activity and the respiratory burst. Both Vimang and mangiferin showed inhibitory effects on macrophage activity: (a) intraperitoneal doses of only 50-250 mg/kg markedly reduced the number of macrophages in peritoneal exudate following intraperitoneal injection of thioglycollate 5 days previously (though there was no significant effect on the proportion of macrophages in the peritoneal-exudate cell population); (b) in vitro concentrations of 0.1-100 microg/ml reduced the phagocytosis of yeasts cells by resident peritoneal and thioglycollate-elicited macrophages; (c) in vitro concentrations of 1-50 microg/ml reduced nitric oxide (NO) production by thioglycollate-elicited macrophages stimulated in vitro with lipopolysaccharide (LPS) and IFNgamma; and (d) in vitro concentrations of 1-50 microg/ml reduced the extracellular production of reactive oxygen species (ROS) by resident and thioglycollate-elicited macrophages stimulated in vitro with phorbol myristate acetate (PMA). These results suggest that components of Vimang, including the polyphenol mangiferin, have depressor effects on the phagocytic and ROS production activities of rat macrophages and, thus, that they may be of value in the treatment of diseases of immunopathological origin characterized by the hyperactivation of phagocytic cells such as certain autoimmune disorders.

  7. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    NASA Technical Reports Server (NTRS)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  8. Phagocytosis: Hungry, Hungry Cells.

    PubMed

    Gray, Matthew; Botelho, Roberto J

    2017-01-01

    Phagocytosis is the cellular internalization and sequestration of particulate matter into a `phagosome, which then matures into a phagolysosome. The phagolysosome then offers a specialized acidic and hydrolytic milieu that ultimately degrades the engulfed particle. In multicellular organisms, phagocytosis and phagosome maturation play two key physiological roles. First, phagocytic cells have an important function in tissue remodeling and homeostasis by eliminating apoptotic bodies, senescent cells and cell fragments. Second, phagocytosis is a critical weapon of the immune system, whereby cells like macrophages and neutrophils hunt and engulf a variety of pathogens and foreign particles. Not surprisingly, pathogens have evolved mechanisms to either block or alter phagocytosis and phagosome maturation, ultimately usurping the cellular machinery for their own survival. Here, we review past and recent discoveries that highlight how phagocytes recognize target particles, key signals that emanate after phagocyte-particle engagement, and how these signals help modulate actin-dependent remodeling of the plasma membrane that culminates in the release of the phagosome. We then explore processes related to early and late stages of phagosome maturation, which requires fusion with endosomes and lysosomes. We end this review by acknowledging that little is known about phagosome fission and even less is known about how phagosomes are resolved after particle digestion.

  9. Effects of Mycotoxins on Mucosal Microbial Infection and Related Pathogenesis

    PubMed Central

    Park, Seong-Hwan; Kim, Dongwook; Kim, Juil; Moon, Yuseok

    2015-01-01

    Mycotoxins are fungal secondary metabolites detected in many agricultural commodities and water-damaged indoor environments. Susceptibility to mucosal infectious diseases is closely associated with immune dysfunction caused by mycotoxin exposure in humans and other animals. Many mycotoxins suppress immune function by decreasing the proliferation of activated lymphocytes, impairing phagocytic function of macrophages, and suppressing cytokine production, but some induce hypersensitive responses in different dose regimes. The present review describes various mycotoxin responses to infectious pathogens that trigger mucosa-associated diseases in the gastrointestinal and respiratory tracts of humans and other animals. In particular, it focuses on the effects of mycotoxin exposure on invasion, pathogen clearance, the production of cytokines and immunoglobulins, and the prognostic implications of interactions between infectious pathogens and mycotoxin exposure. PMID:26529017

  10. A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model

    PubMed Central

    Prajsnar, Tomasz K; Hamilton, Ruth; Garcia-Lara, Jorge; McVicker, Gareth; Williams, Alexander; Boots, Michael; Foster, Simon J; Renshaw, Stephen A

    2012-01-01

    The innate immune system is the primary defence against the versatile pathogen, Staphylococcus aureus. How this organism is able to avoid immune killing and cause infections is poorly understood. Using an established larval zebrafish infection model, we have shown that overwhelming infection is due to subversion of phagocytes by staphylococci, allowing bacteria to evade killing and found foci of disease. Larval zebrafish coinfected with two S. aureus strains carrying different fluorescent reporter gene fusions (but otherwise isogenic) had bacterial lesions, at the time of host death, containing predominantly one strain. Quantitative data using two marked strains revealed that the strain ratios, during overwhelming infection, were often skewed towards the extremes, with one strain predominating. Infection with passaged bacterial clones revealed the phenomenon not to bedue to adventitious mutations acquired by the pathogen. After infection of the host, all bacteria are internalized by phagocytes and the skewing of population ratios is absolutely dependent on the presence of phagocytes. Mathematical modelling of pathogen population dynamics revealed the data patterns are consistent with the hypothesis that a small number of infected phagocytes serve as an intracellular reservoir for S. aureus, which upon release leads to disseminated infection. Strategies to specifically alter neutrophil/macrophage numbers were used to map the potential subpopulation of phagocytes acting as a pathogen reservoir, revealing neutrophils as the likely ‘niche’. Subsequently in a murine sepsis model, S. aureus abscesses in kidneys were also found to be predominantly clonal, therefore likely founded by an individual cell, suggesting a potential mechanism analogous to the zebrafish model with few protected niches. These findings add credence to the argument that S. aureus control regimes should recognize both the intracellular as well as extracellular facets of the S. aureus life cycle. PMID:22694745

  11. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression.

    PubMed

    Amiel, Eyal; Lovewell, Rustin R; O'Toole, George A; Hogan, Deborah A; Berwin, Brent

    2010-07-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion.

  12. Human brucellosis is characterized by an intense Th1 profile associated with a defective monocyte function.

    PubMed

    Rodríguez-Zapata, Manuel; Matías, Marlene J; Prieto, Alfredo; Jonde, Marco A; Monserrat, Jorge; Sánchez, Lorenzo; Reyes, Eduardo; De la Hera, Antonio; Alvarez-Mon, Melchor

    2010-07-01

    In animal models, a defective Th1 response appears to be critical in the pathogenesis of brucellosis, but the Th1 response in human brucellosis patients remains partially undefined. Peripheral blood from 24 brucellosis patients was studied before and 45 days after antibiotherapy. Twenty-four sex- and age-matched healthy donors were analyzed in parallel. Significantly increased levels of interleukin 1beta (IL-1beta), IL-2, IL-4, IL-6, IL-12p40, gamma interferon (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha), but not of IL-10, in serum and/or significantly increased percentages of samples with detectable levels of these cytokines, measured by enzyme-linked immunosorbent assays (ELISA), were found for untreated brucellosis patients, but these levels were reduced and/or normalized after treatment. Flow cytometry studies showed that the intracytoplasmic expression of IFN-gamma, IL-2, and TNF-alpha, but not that of IL-4, by phorbol myristate-activated CD4(+) CD3(+) and CD8(+) CD3(+) T lymphocytes was significantly increased in untreated brucellosis patients and was also partially normalized after antibiotherapy. The percentage of phagocytic cells, the mean phagocytic activity per cell, and the phagocytic indices for monocytes at baseline were defective and had only partially reverted at follow-up. T lymphocytes from untreated brucellosis patients are activated in vivo and show Th1 cytokine production polarization, with strikingly high serum IFN-gamma levels. In spite of this Th1 environment, we found deficient effector phagocytic activity in peripheral blood monocytes.

  13. The dps gene of symbiotic "Candidatus Legionella jeonii" in Amoeba proteus responds to hydrogen peroxide and phagocytosis.

    PubMed

    Park, Miey; Yun, Seong Tae; Hwang, Sue-Yun; Chun, Choong-Ill; Ahn, Tae In

    2006-11-01

    To survive in host cells, intracellular pathogens or symbiotic bacteria require protective mechanisms to overcome the oxidative stress generated by phagocytic activities of the host. By genomic library tagging, we cloned a dps (stands for DNA-binding protein from starved cells) gene of the symbiotic "Candidatus Legionella jeonii" organism (called the X bacterium) (dps(X)) that grows in Amoeba proteus. The gene encodes a 17-kDa protein (pI 5.19) with 91% homology to Dps and DNA-binding ferritin-like proteins of other organisms. The cloned gene complemented the dps mutant of Escherichia coli and conferred resistance to hydrogen peroxide. Dps(X) proteins purified from E. coli transformed with the dps(X) gene were in oligomeric form, formed a complex with pBlueskript SKII DNA, and protected the DNA from DNase I digestion and H(2)O(2)-mediated damage. The expression of the dps(X) gene in "Candidatus Legionella jeonii" was enhanced when the host amoeba was treated with 2 mM H(2)O(2) and by phagocytic activities of the host cell. These results suggested that the Dps protein has a function protective of the bacterial DNA and that its gene expression responds to oxidative stress generated by phagocytic activities of the host cell. With regard to the fact that invasion of Legionella sp. into respiratory phagocytic cells causes pneumonia in mammals, further characterization of dps(X) expression in the Legionella sp. that multiplies in a protozoan host in the natural environment may provide valuable information toward understanding the protective mechanisms of intracellular pathogens.

  14. Aggregation of Sea Urchin Phagocytes Is Augmented In Vitro by Lipopolysaccharide

    PubMed Central

    Majeske, Audrey J.; Bayne, Christopher J.; Smith, L. Courtney

    2013-01-01

    Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ∼10% of the cells were positive for Sp185/333 proteins. At 24 hr, ∼90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the syncytia-like structures. PMID:23613847

  15. Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide.

    PubMed

    Majeske, Audrey J; Bayne, Christopher J; Smith, L Courtney

    2013-01-01

    Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ~10% of the cells were positive for Sp185/333 proteins. At 24 hr, ~90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the syncytia-like structures.

  16. Microbial and human heat shock proteins as 'danger signals' in sarcoidosis.

    PubMed

    Dubaniewicz, Anna

    2013-12-01

    In the light of the Matzinger's model of immune response, human heat shock proteins (HSPs) as main 'danger signals' (tissue damage-associated molecular patterns-DAMPs) or/and microbial HSPs as pathogen-associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRR), may induce sarcoid granuloma by both infectious and non-infectious factors in genetically different predisposed host. Regarding infectious causes of sarcoid models, low-virulence strains of, e.g. mycobacteria and propionibacteria recognized through changed PRR and persisting in altered host phagocytes, generate increased release of both human and microbial HSPs with their molecular and functional homology. High chronic spread of human and microbial HSPs altering cytokines, co-stimulatory molecules, and Tregs expression, apoptosis, oxidative stress, induces the autoimmunity, considered in sarcoidosis. Regarding non-infectious causes of sarcoidosis, human HSPs may be released at high levels during chronic low-grade exposure to misfolding amyloid precursor protein in stressed cells, phagocyted metal fumes, pigments with/without aluminum in tattoos, and due to heat shock in firefighters. Therefore, human HSPs as DAMPs and/or microbial HSPs as PAMPs produced as a result of non-infectious and infectious factors may induce different models of sarcoidosis, depending on the genetic background of the host. The number/expression of PRRs/ligands may influence the occurrence of sarcoidosis in particular organs. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  17. Alternative activation modifies macrophage resistance to Mycobacterium bovis.

    PubMed

    Castillo-Velázquez, Uziel; Aranday-Cortés, Elihú; Gutiérrez-Pabello, José A

    2011-07-05

    The aim of this study was to evaluate the influence of macrophage alternative activation in the intracellular pathogen natural disease resistance phenotype of the host. Macrophage monolayers from resistant (R) (3) or susceptible (S) (3) cattle donors were treated with 10 ng/ml of bovine recombinant IL-4 (rbIL-4), and infected with virulent and avirulent Mycobacterium bovis (MOI 10:1). Bactericidal assays were performed to assess the bacterial phagocytic index and intracellular survival. Total RNA was reverse transcribed and used to analyze the relative changes in gene expression of IL-10, IL-12, IL-18 IL-1β, TNF-α, MCP-1, MCP-2, IL-6, MIP-1, MIP-3, iNOS, ARGII and SLAM by real time PCR. Cell supernatants were collected and nitric oxide and arginase production was assessed. Apoptosis induction was measured by TUNEL. IL-4 treatment increased the phagocytic index in both R and S macrophages; however intracellular survival was augmented mainly in S macrophages. Alternative activation decreased gene expression of pro-inflammatory cytokines, nitric oxide production and DNA fragmentation mainly in R macrophages. On the other hand, arginase production was not different between R and S macrophages. Alternative activation modifies the macrophage response against M. bovis. IL-4 treatment minimized the functional differences that exist between R and S macrophages. Copyright © 2011. Published by Elsevier B.V.

  18. MACROPHAGE AGGREGATES AS BIOMARKERS OF EXPOSURE: FROM FERAL POPULATIONS TO LABORATORY MODELS

    EPA Science Inventory

    Macrophage aggregates (MAs) are structures within the spleen, kidney and sometimes liver of teleost fishes. They are believed to function much like primitive lymph nodes in that phagocytized material is transported to these areas by macrophages, for destruction, recycling or stor...

  19. Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis.

    PubMed

    Laopajon, Witida; Takheaw, Nuchjira; Kasinrerk, Watchara; Pata, Supansa

    2016-01-01

    The current available assays cannot differentiate the stages of phagocytosis. We, therefore, established methods for concurrent detection of antigen attachment and engulfment by phagocyte using latex beads coated with lipopolysaccharide, rabbit IgG, and carboxyfluorescein diacetate succinimidyl ester. The generated beads were incubated with whole blood at 37°C for 1 hr and stained with PE-Cy5.5 anti-rabbit IgG antibody. By flow cytometry, attachment and phagocytic processes could be detected, simultaneously. The established method is a valuable tool for diagnosis of phagocytic disorder and study of molecules involved in phagocytosis.

  20. Tetrahydrocannabinol-induced suppression of macrophage spreading and phagocytic activity in vitro.

    PubMed

    Lopez-Cepero, M; Friedman, M; Klein, T; Friedman, H

    1986-06-01

    The effects of tetrahydrocannabinol (THC) on several parameters of macrophage function in vitro were assessed. Delta 9 THC added to cultures of normal mouse peritoneal cells in vitro affected the ability of the cells to spread on glass surfaces and also had some effect on their ability to phagocytize yeast. These effects were dose related. A concentration of 20 micrograms of THC almost completely inhibited macrophage spreading, but it also decreased viability and the total number of these cells. Doses of 10 or 5 micrograms of THC also inhibited spreading but had little effect on cell viability or number. A dose of 1.0 microgram of THC had some inhibitory effect on spreading and the lowest dose affecting spreading appeared to be about 0.05 micrograms per culture. Higher doses of THC were necessary to inhibit phagocytosis of yeast particles as determined by direct microscopic examination or use of radiolabeled yeast as the test particles. These results indicate that several readily measured functions of macrophages may be suppressed by THC.

  1. A versatile assay to determine bacterial and host factors contributing to opsonophagocytotic killing in hirudin-anticoagulated whole blood.

    PubMed

    van der Maten, Erika; de Jonge, Marien I; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D

    2017-02-08

    Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood.

  2. A versatile assay to determine bacterial and host factors contributing to opsonophagocytotic killing in hirudin-anticoagulated whole blood

    PubMed Central

    van der Maten, Erika; de Jonge, Marien I.; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D.

    2017-01-01

    Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood. PMID:28176849

  3. Ultrastructures and classification of circulating hemocytes in 9 botryllid ascidians (chordata: ascidiacea).

    PubMed

    Hirose, Euichi; Shirae, Maki; Saito, Yasunori

    2003-05-01

    Ultrastructures of circulating hemocytes were studied in 9 botryllid ascidians. The hemocytes are classified into five types: hemoblasts, phagocytes, granulocytes, morula cells, and pigment cells. These five types are always found in the 9 species. They should represent the major hemocyte types of the circulating cells in the blood. Hemoblasts are small hemocytes having a high nucleus/cytoplasm ratio. There are few granular or vacuolar inclusions in the cytoplasm. Phagocytes have phagocytic activity and their shape is variable depending on the amount of engulfed materials. In granulocytes, shape and size of granules are different among the species. Morula cells are characterized by several vacuoles filled with electron dense materials. In pigment cells, the bulk of the cytoplasm is occupied by one or a few vacuoles containing pigment granules. We also described some other hemocyte types found in particular species. Furthermore, we encountered free oocytes circulating in the blood in two species, Botryllus primigenus and Botrylloides lentus.

  4. Illuminating Phagocyte Biology: The View from Zebrafish.

    PubMed

    Huang, Cong; Niethammer, Philipp

    2016-07-25

    Many phagocyte behaviors, including vascular rolling and adhesion, migration, and oxidative bursting, are better measured in seconds or minutes than hours or days. Zebrafish is ideally suited for imaging such rapid biology within the intact animal. We discuss how this model has revealed unique insights into various aspects of phagocyte physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Evolutionary Conservation of Divergent Pro-Inflammatory and Homeostatic Responses in Lamprey Phagocytes

    PubMed Central

    Havixbeck, Jeffrey J.; Rieger, Aja M.; Wong, Michael E.; Wilkie, Michael P.; Barreda, Daniel R.

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory mechanisms of inflammation to ensure continued maintenance of host integrity amidst increasing challenges from invading pathogens. PMID:24465992

  6. Evolutionary conservation of divergent pro-inflammatory and homeostatic responses in Lamprey phagocytes.

    PubMed

    Havixbeck, Jeffrey J; Rieger, Aja M; Wong, Michael E; Wilkie, Michael P; Barreda, Daniel R

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory mechanisms of inflammation to ensure continued maintenance of host integrity amidst increasing challenges from invading pathogens.

  7. Alarmins MRP8 and MRP14 induce stress tolerance in phagocytes under sterile inflammatory conditions.

    PubMed

    Austermann, Judith; Friesenhagen, Judith; Fassl, Selina Kathleen; Petersen, Beatrix; Ortkras, Theresa; Burgmann, Johanna; Barczyk-Kahlert, Katarzyna; Faist, Eugen; Zedler, Siegfried; Pirr, Sabine; Rohde, Christian; Müller-Tidow, Carsten; von Köckritz-Blickwede, Maren; von Kaisenberg, Constantin S; Flohé, Stefanie B; Ulas, Thomas; Schultze, Joachim L; Roth, Johannes; Vogl, Thomas; Viemann, Dorothee

    2014-12-24

    Hyporesponsiveness by phagocytes is a well-known phenomenon in sepsis that is frequently induced by low-dose endotoxin stimulation of Toll-like receptor 4 (TLR4) but can also be found under sterile inflammatory conditions. We now demonstrate that the endogenous alarmins MRP8 and MRP14 induce phagocyte hyporesponsiveness via chromatin modifications in a TLR4-dependent manner that results in enhanced survival to septic shock in mice. During sterile inflammation, polytrauma and burn trauma patients initially present with high serum concentrations of myeloid-related proteins (MRPs). Human neonatal phagocytes are primed for hyporesponsiveness by increased peripartal MRP concentrations, which was confirmed in murine neonatal endotoxinemia in wild-type and MRP14(-/-) mice. Our data therefore indicate that alarmin-triggered phagocyte tolerance represents a regulatory mechanism for the susceptibility of neonates during systemic infections and sterile inflammation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  9. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver.

    PubMed

    Masia, Ricard; Krause, Daniela S; Yellen, Gary

    2015-02-01

    Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner. Copyright © 2015 the American Physiological Society.

  10. Mature leaf concentrate of Sri Lankan wild type Carica papaya Linn. modulates nonfunctional and functional immune responses of rats.

    PubMed

    Jayasinghe, Chanika Dilumi; Gunasekera, Dinara S; De Silva, Nuwan; Jayawardena, Kithmini Kawya Mandakini; Udagama, Preethi Vidya

    2017-04-26

    The leaf concentrate of Carica papaya is a traditionally acclaimed immunomodulatory remedy against numerous diseases; nonetheless comprehensive scientific validation of this claim is limited. The present study thus investigated the immunomodulatory potential of Carica papaya mature leaf concentrate (MLCC) of the Sri Lankan wild type cultivar using nonfunctional and functional immunological assays. Wistar rats (N = 6/ group) were orally gavaged with 3 doses (0.18, 0.36 and 0.72 ml/100g body weight) of the MLCC once daily for 3 consecutive days. Selected nonfunctional (enumeration of immune cells and cytokine levels) and functional (cell proliferation and phagocytic activity) immunological parameters, and acute toxic effects were determined using standard methods. Effect of the MLCC (31.25, 62.5, 125, 250, 500 and 1000 μg/ml) on ex vivo proliferation of bone marrow cells (BMC) and splenocytes (SC), and in vitro phagocytic activity of peritoneal macrophages (PMs), and their corresponding cytokine responses were evaluated. The phytochemical profile of the MLCC was established using liquid chromatography-mass spectrometry (LS-MS) and Gas chromatography-mass spectrometry (GC-MS). Counts of rat platelets, total leukocytes, lymphocyte and monocyte sub populations, and BMCs were significantly augmented by oral gavage of the MLCC (p < 0.05). The highest MLCC dose tested herein significantly reduced pro inflammatory cytokines, Interleukin 6 (IL-6) and Tumor Necrosis Factor α (TNF α) levels of rats (p < 0.05). The in vivo phagocytic index of rat PMs significantly increased by oral gavage of all three doses of the MLCC (p < 0.05). In vitro phagocytic activity of rat PMs were enhanced by the MLCC and triggered a Th1 biased cytokine response. The MLCC at low concentrations elicited ex vivo proliferation of BMC (31.25 μg/ml) and SC (31.25 and 62.5 μg/ml) respectively. Conversely, high concentrations (500 and 1000 μg/ml) exhibited cytotoxicity of both BMC and SC with significant modulation of cytokines. Chemical profile of the MLCC revealed the presence of several immunomodulatory compounds. The oral gavage of the MLCC was found to be safe in terms of both hepatic and renal toxicities. The present study established that the mature leaf concentrate (MLCC) of Carica papaya Sri Lankan wild type cultivar is orally active, safe and effectively modulates nonfunctional and functional immunological parameters of rats that unequivocally corroborate the traditional medical claims.

  11. Reticuloendothelial clearance of blood-borne particulates: relevance to experimental lung microembolization and vascular injury.

    PubMed

    Niehaus, G D; Schumacker, P R; Saba, T M

    1980-04-01

    The rapid increase in sheep lung vascular permeability observed during Pseudomonas aeruginosa bacteremia may be due to embolization of the pulmonary microvasculature by bloodborne particulates. Since alterations in lung microvascular permeability during mild septicemia in sheep may reflect inefficient RES phagocytic clearance of bacteria as well as products of bacterial induced intravascular coagulation, the opsonic and phagocytic aspects of RES function in sheep (30-50 kg) were compared to other species. RES function was evaluated by both the clearance and relative organ uptake of gelatinized I(131) RE test lipid emulsion and gelatinized colloidal carbon. Immunoreactive opsonic a(2)SB glycoprotein levels were determined by electroimmunoassay. The phagocytic index for RES clearance of the gelatinized (500 mg/kg) test lipid in sheep was 0.019 +/- 0.002 corresponding to a half-time of 16.65 +/- 1.74 minutes. With colloidal carbon (64 mg/kg), the phagocytic index in sheep was 0.080 +/- 0.026, corresponding to a half-time of 6.16 +/- 1.99 minutes. The per cent of injected lipid emulsion (%ID) in major RE organs, on a total organ basis (TO), was: liver = 15.69 +/- 1.65%; spleen = 2.09 +/- 0.78%. Localization in the lung = 31.39 +/- 6.2%. The per cent of carbon localized in major RE organs (%ID/TO) was: liver = 21.37 +/- 1.9%; spleen = 1.95 +/- 0.55%. Localization in the lung = 32.70 +/- 4.55%. In contrast, clearance and organ distribution of the blood-borne test microparticles in rats and dogs at the same relative challenging dose revealed a much more intense and rapid liver and spleen RES uptake with minimal lung localization (1-2%). Immunoreactive opsonic protein concentrations varied greatly with species and directly correlated with efficiency of RES function. Levels observed were: dog = 1285 +/- 135 microg/ml; mouse = 1077 +/- 67 microg/ml; rat = 400 +/- 31 microg/ml; human = 297 +/- 10 microg/ml; and sheep = 184 +/- 13 microg/ml. After intravenous particulate challenge, circulating immunoreactive opsonic protein in the sheep was depleted (p < 0.05) rapidly with partial recovery at 24 hours and mild rebound hyperopsonemia at 48 hours. This pattern is in contrast to the rapid restoration seen in dog and rat within three to six hours postchallenge. Thus, in sheep, the extensive pulmonary localization of blood-borne microparticles appears related to inefficient RES clearance function mediated by a relative deficiency of circulating opsonic protein (plasma fibronectin).

  12. Macrophage Efferocytosis and Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2015-10-01

    prostate cancer bone metastasis through the phagocytosis of apoptotic tumor cells (efferocytosis). Specific Aims: 1. To identify the phagocytic ...2: To identify the phagocytic /efferocytic macrophage population in the tumor microenvironment of prostate bone metastases and determine its ability...preparation for Cancer Research. We obtained an array of prostate cancer tissue including bone metastasis (N=72) and stained the tissue for the phagocytic

  13. SIRPα controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox).

    PubMed

    van Beek, Ellen M; Zarate, Julian Alvarez; van Bruggen, Robin; Schornagel, Karin; Tool, Anton T J; Matozaki, Takashi; Kraal, Georg; Roos, Dirk; van den Berg, Timo K

    2012-10-25

    The phagocyte NADPH oxidase mediates oxidative microbial killing in granulocytes and macrophages. However, because the reactive oxygen species produced by the NADPH oxidase can also be toxic to the host, it is essential to control its activity. Little is known about the endogenous mechanism(s) that limits NADPH oxidase activity. Here, we demonstrate that the myeloid-inhibitory receptor SIRPα acts as a negative regulator of the phagocyte NADPH oxidase. Phagocytes isolated from SIRPα mutant mice were shown to have an enhanced respiratory burst. Furthermore, overexpression of SIRPα in human myeloid cells prevented respiratory burst activation. The inhibitory effect required interactions between SIRPα and its natural ligand, CD47, as well as signaling through the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Suppression of the respiratory burst by SIRPα was caused by a selective repression of gp91(phox) expression, the catalytic component of the phagocyte NADPH oxidase complex. Thus, SIRPα can limit gp91(phox) expression during myeloid development, thereby controlling the magnitude of the respiratory burst in phagocytes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Regulation of mononuclear phagocyte development by IRF8.

    PubMed

    Tamura, Tomohiko

    2017-01-01

    Mononuclear phagocytes, such as monocytes and dendritic cells (DCs), are essential for tissue homeostasis and immunity. In adults, these cells develop from hematopoietic stem cells via a common progenitor population. We have been investigating the mechanism underlying the development of mononuclear phagocytes from the viewpoint of gene expression control by transcription factors. Particularly, IRF8, the loss of which causes immunodeficiency and chronic myeloid leukemia-like neutrophilia in mice and humans, promotes the development of monocytes and DCs, while it limits neutrophil differentiation. IRF8 cooperates with the myeloid master transcription factor, PU.1, in mononuclear phagocyte progenitors. KLF4 and BATF3 serve as critical transcription factors downstream of IRF8 to induce the differentiation of monocytes and DCs, respectively. Conversely, IRF8 blocks the activity of the transcription factor C/EBPα to suppress the neutrophil differentiation program. Indeed, Irf8 -/- mononuclear phagocyte progenitors do not efficiently generate monocytes and DCs and, instead, aberrantly give rise to a large number of neutrophils. Our recent data have begun to uncover the vital role of IRF8 in the establishment of distal enhancers in mononuclear phagocyte progenitors. These results place IRF8 as a central regulator of the development of monocytes and DCs.

  15. Multi-parametric analysis of phagocyte antimicrobial responses using imaging flow cytometry.

    PubMed

    Havixbeck, Jeffrey J; Wong, Michael E; More Bayona, Juan A; Barreda, Daniel R

    2015-08-01

    We feature a multi-parametric approach based on an imaging flow cytometry platform for examining phagocyte antimicrobial responses against the gram-negative bacterium Aeromonas veronii. This pathogen is known to induce strong inflammatory responses across a broad range of animal species, including humans. We examined the contribution of A. veronii to the induction of early phagocyte inflammatory processes in RAW 264.7 murine macrophages in vitro. We found that A. veronii, both in live or heat-killed forms, induced similar levels of macrophage activation based on NF-κB translocation. Although these macrophages maintained high levels of viability following heat-killed or live challenges with A. veronii, we identified inhibition of macrophage proliferation as early as 1h post in vitro challenge. The characterization of phagocytic responses showed a time-dependent increase in phagocytosis upon A. veronii challenge, which was paired with a robust induction of intracellular respiratory burst responses. Interestingly, despite the overall increase in the production of reactive oxygen species (ROS) among RAW 264.7 macrophages, we found a significant reduction in the production of ROS among the macrophage subset that had bound A. veronii. Phagocytic uptake of the pathogen further decreased ROS production levels, even beyond those of unstimulated controls. Overall, this multi-parametric imaging flow cytometry-based approach allowed for segregation of unique phagocyte sub-populations and examination of their downstream antimicrobial responses, and should contribute to improved understanding of phagocyte responses against Aeromonas and other pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Differential sensitivity to cadmium of immunomarkers measured in hemocyte subpopulations of zebra mussel Dreissena polymorpha.

    PubMed

    Evariste, Lauris; Rioult, Damien; Brousseau, Pauline; Geffard, Alain; David, Elise; Auffret, Michel; Fournier, Michel; Betoulle, Stéphane

    2017-03-01

    Increasing discharge of industrial wastes into the environment results in pollution transfer towards hydrosystems. These activities release heavy metals such as cadmium, known as persistent pollutant that is accumulated by molluscs and exercise immunotoxicological effects. Among molluscs, the zebra mussel, Dreissena polymorpha constitutes a suitable support for freshwater ecotoxicological studies. In molluscs, homeostasis maintain is ensured in part by hemocytes that are composed of several cell populations involved in multiple physiological processes such as cell-mediated immune response or metal metabolism. Thus, hemocytes constitute a target of concern to study adverse effects of heavy metals. The objectives of this work were to determine whether immune-related endpoints assessed were of different sensitivity to cadmium and whether hemocyte functionalities were differentially affected depending on hemocyte subpopulation considered. Hemocytes were exposed ex vivo to concentrations of cadmium ranging from 10 -6 M to 10 -3 M for 21h prior flow cytometric analysis of cellular markers. Measured parameters (viability, phagocytosis, oxidative activity, lysosomal content) decreased in a dose-dependent manner with sensitivity differences depending on endpoint and cell type considered. Our results indicated that phagocytosis related endpoints were the most sensitive studied mechanisms to cadmium compared to other markers with EC 50 of 3.71±0.53×10 -4 M for phagocytic activity and 2.79±0.19×10 -4 M considering mean number of beads per phagocytic cell. Lysosomal content of granulocytes was less affected compared to other cell types, indicating lower sensitivity to cadmium. This suggests that granulocyte population is greatly involved in metal metabolism. Mitochondrial activity was reduced only in blast-like hemocytes that are considered to be cell precursors. Impairment of these cell functionalities may potentially compromise functions ensured by differentiated cells. We concluded that analysis of hemocyte activities should be performed at sub-population scale for more accurate results in ecotoxicological studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole-animal model system will contribute greatly to the study of molecular mechanisms involved in the interaction of the host innate immune system with fungal spores during mucormycosis. © 2015. Published by The Company of Biologists Ltd.

  18. Evaluation of Agaricus blazei in vivo for antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities.

    PubMed

    Ishii, Priscila Lumi; Prado, Carolina Kato; Mauro, Mariana de Oliveira; Carreira, Clísia Mara; Mantovani, Mário Sérgio; Ribeiro, Lúcia Regina; Dichi, Jane Bandeira; Oliveira, Rodrigo Juliano

    2011-04-01

    The development of various types of cancer results from the interaction among endogenous, environmental and hormonal factors, where the most notable of these factors is diet. The aim of the present study was to determine the antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities of Agaricus blazei. The test antigenotoxicity (Comet Assay) and anticarcinogenic (Test of Aberrant Crypt Foci) assess changes in DNA and/or intestinal mucosa that correlate to cancer development. Tests of phagocytosis in the spleen and differential count in blood cells allow the inference of modulation of the immune system as well as to propose a way of eliminating cells with DNA damage. Supplementation with the mushroom was carried out under pre-treatment, simultaneous treatment, post-treatment and pre-treatment+continuous conditions. Statistical analysis demonstrated that the mushroom did not have genotoxic activity but showed antigenotoxic activity. Supplementation caused an increase in the number of monocytes and in phagocytic activity, suggesting that supplementation increases a proliferation of monocytes, consequently increasing phagocytic capacity especially in the groups pre-treatment, simultaneous and pre-treatment+continuous. The data suggest that A. blazei could act as a functional food capable of promoting immunomodulation which can account for the destruction of cells with DNA alterations that correlate with the development of cancer, since this mushroom was demonstrated to have a preventive effect against pre-neoplastic colorectal lesions evaluated by the aberrant crypt foci assay. According to these results and the literature, it is believed that supplementation with A. blazei can be an efficient method for the prevention of cancer as well as possibly being an important coadjuvant treatment in chemotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Pivotal Advance: Peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells

    PubMed Central

    Parra, David; Rieger, Aja M.; Li, Jun; Zhang, Yong-An; Randall, Louise M.; Hunter, Christopher A.; Barreda, Daniel R.; Sunyer, J. Oriol

    2012-01-01

    Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4+ T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4+ T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages. PMID:22058420

  20. Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells.

    PubMed

    Parra, David; Rieger, Aja M; Li, Jun; Zhang, Yong-An; Randall, Louise M; Hunter, Christopher A; Barreda, Daniel R; Sunyer, J Oriol

    2012-04-01

    Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4(+) T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4(+) T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages.

  1. Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression▿ †

    PubMed Central

    Amiel, Eyal; Lovewell, Rustin R.; O'Toole, George A.; Hogan, Deborah A.; Berwin, Brent

    2010-01-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion. PMID:20457788

  2. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans

    PubMed Central

    Zdolsek, Johann; Eaton, John W; Tang, Liping

    2007-01-01

    Background Medical implants often fail as a result of so-called foreign body reactions during which inflammatory cells are recruited to implant surfaces. Despite the clinical importance of this phenomenon, the mechanisms involved in these reactions to biomedical implants in humans are not well understood. The results from animal studies suggest that both fibrinogen adsorption to the implant surface and histamine release by local mast cells are involved in biomaterial-mediated acute inflammatory responses. The purpose of this study was to test this hypothesis in humans. Methods Thirteen male medical student volunteers (Caucasian, 21–30 years of age) were employed for this study. To assess the importance of fibrinogen adsorption, six volunteers were implanted with polyethylene teraphthalate disks pre-coated with their own (fibrinogen-containing) plasma or (fibrinogen-free) serum. To evaluate the importance of histamine, seven volunteers were implanted with uncoated disks with or without prior oral administration of histamine receptor antagonists. The acute inflammatory response was estimated 24 hours later by measuring the activities of implant-associated phagocyte-specific enzymes. Results Plasma coated implants accumulated significantly more phagocytes than did serum coated implants and the recruited cells were predominantly macrophage/monocytes. Administration of both H1 and H2 histamine receptor antagonists greatly reduced the recruitment of macrophages/monocytes and neutrophils on implant surfaces. Conclusion In humans – as in rodents – biomaterial-mediated inflammatory responses involve at least two crucial events: histamine-mediated phagocyte recruitment and phagocyte accumulation on implant surfaces engendered by spontaneously adsorbed host fibrinogen. Based on these results, we conclude that reducing fibrinogen:surface interactions should enhance biocompatibility and that administration of histamine receptor antagonists prior to, and shortly after, medical device implantation should improve the functionality and longevity of medical implants. PMID:17603911

  3. The dps Gene of Symbiotic “Candidatus Legionella jeonii” in Amoeba proteus Responds to Hydrogen Peroxide and Phagocytosis▿

    PubMed Central

    Park, Miey; Yun, Seong Tae; Hwang, Sue-Yun; Chun, Choong-Ill; Ahn, Tae In

    2006-01-01

    To survive in host cells, intracellular pathogens or symbiotic bacteria require protective mechanisms to overcome the oxidative stress generated by phagocytic activities of the host. By genomic library tagging, we cloned a dps (stands for DNA-binding protein from starved cells) gene of the symbiotic “Candidatus Legionella jeonii” organism (called the X bacterium) (dpsX) that grows in Amoeba proteus. The gene encodes a 17-kDa protein (pI 5.19) with 91% homology to Dps and DNA-binding ferritin-like proteins of other organisms. The cloned gene complemented the dps mutant of Escherichia coli and conferred resistance to hydrogen peroxide. DpsX proteins purified from E. coli transformed with the dpsX gene were in oligomeric form, formed a complex with pBlueskript SKII DNA, and protected the DNA from DNase I digestion and H2O2-mediated damage. The expression of the dpsX gene in “Candidatus Legionella jeonii” was enhanced when the host amoeba was treated with 2 mM H2O2 and by phagocytic activities of the host cell. These results suggested that the Dps protein has a function protective of the bacterial DNA and that its gene expression responds to oxidative stress generated by phagocytic activities of the host cell. With regard to the fact that invasion of Legionella sp. into respiratory phagocytic cells causes pneumonia in mammals, further characterization of dpsX expression in the Legionella sp. that multiplies in a protozoan host in the natural environment may provide valuable information toward understanding the protective mechanisms of intracellular pathogens. PMID:16950918

  4. Effects of ration level on immune functions in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Alcorn, S.W.; Pascho, R.J.; Murray, A.L.; Shearer, K.D.

    2003-01-01

    The relationship between nutritional status and disease resistance in cultured salmonids can be affected by dietary manipulations. Careful attention to feeding levels may be important to avoid imbalances in nutrient levels that could ultimately impair a fish's ability to resist infectious microorganisms. In the current study, fish in three feed-level groups were fed an experimental diet either to satiation, 64% of satiation or 40% of satiation. A fourth group of fish were fed a commercial diet at the 64% of satiation level and served as controls. To evaluate certain indices of disease resistance in the test and control fish, a panel of assays was employed to measure humoral and cellular immune functions 30, 39 and 54 weeks after starting the dietary treatments. The panel included measures of blood hematocrit and leucocrit levels, plasma protein concentration and serum lysozyme and complement activity. Cellular analyses included differential blood leucocyte counts, NBT reduction and phagocytosis by pronephros macrophages and myeloperoxidase activity of pronephros neutrophils. No differences were observed in those indices between fish tested from the control-diet group (commercial diet fed at the 64% rate) and fish tested from the 64% feed-level group, except that fish fed the commercial diet had a greater concentration of plasma protein. Leucocrit values and plasma protein concentrations tended to increase among the experimental feed groups as the ration increased from 40% to satiation. More importantly, phagocytic activity by anterior kidney leucocytes was found to be inversely proportional to the feed level. Whereas the results of this study provide evidence that the salmonid immune system may be fairly robust with regard to available metabolic energy, the significant changes observed in phagocytic cell activity suggest that some cellular immune functions may be affected by the feed level.

  5. Physics of phagocytosis of foreign versus self-tolerance

    NASA Astrophysics Data System (ADS)

    Tsai, Richard; Rodriguez, Pia; Discher, Dennis

    2009-03-01

    The first cells to `attack' an implanted or injected foreign material or microbe are phagocytic cells of the innate immune system. These cells actively and rapidly phagocytose foreign cells, surfaces, or particles, but the process that is inefficient when faced with ``self'' cells. We have examined the biochemistry and some of the physics of this decision to eat or not eat. One particular protein on all animal cell membranes, called CD47, seems to engage phagocytic cell couter-receptors, and deactivate the force-generating myosin machinery that otherwise makes phagocytosis efficient. We will map the phagocytic synapse between phagocytes and particles or cells and describe the physicochemical dynamics that mediate this key decision in compatability.

  6. Diffusion Barriers, Mechanical Forces, and the Biophysics of Phagocytosis.

    PubMed

    Ostrowski, Philip P; Grinstein, Sergio; Freeman, Spencer A

    2016-07-25

    Phagocytes recognize and eliminate pathogens, alert other tissues of impending threats, and provide a link between innate and adaptive immunity. They also maintain tissue homeostasis, consuming dead cells without causing alarm. The receptor engagement, signal transduction, and cytoskeletal rearrangements underlying phagocytosis are paradigmatic of other immune responses and bear similarities to macropinocytosis and cell migration. We discuss how the glycocalyx restricts access to phagocytic receptors, the processes that enable receptor engagement and clustering, and the remodeling of the actin cytoskeleton that controls the mobility of membrane proteins and lipids and provides the mechanical force propelling the phagocyte membrane toward and around the phagocytic prey. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Activation of Rho GTPases by Cytotoxic Necrotizing Factor 1 Induces Macropinocytosis and Scavenging Activity in Epithelial Cells

    PubMed Central

    Fiorentini, Carla; Falzano, Loredana; Fabbri, Alessia; Stringaro, Annarita; Logozzi, Mariaantonia; Travaglione, Sara; Contamin, Stéphanette; Arancia, Giuseppe; Malorni, Walter; Fais, Stefano

    2001-01-01

    Macropinocytosis, a ruffling-driven process that allows the capture of large material, is an essential aspect of normal cell function. It can be either constitutive, as in professional phagocytes where it ends with the digestion of captured material, or induced, as in epithelial cells stimulated by growth factors. In this case, the internalized material recycles back to the cell surface. We herein show that activation of Rho GTPases by a bacterial protein toxin, the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), allowed epithelial cells to engulf and digest apoptotic cells in a manner similar to that of professional phagocytes. In particular, we have demonstrated that 1) the activation of all Rho, Rac, and Cdc42 by CNF1 was essential for the capture and internalization of apoptotic cells; and 2) such activation allowed the discharge of macropinosomal content into Rab7 and lysosomal associated membrane protein-1 acidic lysosomal vesicles where the ingested particles underwent degradation. Taken together, these findings indicate that CNF1-induced “switching on” of Rho GTPases may induce in epithelial cells a scavenging activity, comparable to that exerted by professional phagocytes. The activation of such activity in epithelial cells may be relevant, in mucosal tissues, in supporting or integrating the scavenging activity of resident macrophages. PMID:11452003

  8. Nocardia species: host-parasite relationships.

    PubMed Central

    Beaman, B L; Beaman, L

    1994-01-01

    The nocardiae are bacteria belonging to the aerobic actinomycetes. They are an important part of the normal soil microflora worldwide. The type species, Nocardia asteroides, and N. brasiliensis, N. farcinica, N. otitidiscaviarum, N. nova, and N. transvalensis cause a variety of diseases in both normal and immunocompromised humans and animals. The mechanisms of pathogenesis are complex, not fully understood, and include the capacity to evade or neutralize the myriad microbicidal activities of the host. The relative virulence of N. asteroides correlates with the ability to inhibit phagosome-lysosome fusion in phagocytes; to neutralize phagosomal acidification; to detoxify the microbicidal products of oxidative metabolism; to modify phagocyte function; to grow within phagocytic cells; and to attach to, penetrate, and grow within host cells. Both activated macrophages and immunologically specific T lymphocytes constitute the major mechanisms for host resistance to nocardial infection, whereas B lymphocytes and humoral immunity do not appear to be as important in protecting the host. Thus, the nocardiae are facultative intracellular pathogens that can persist within the host, probably in a cryptic form (L-form), for life. Silent invasion of brain cells by some Nocardia strains can induce neurodegeneration in experimental animals; however, the role of nocardiae in neurodegenerative diseases in humans needs to be investigated. Images PMID:8055469

  9. Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner.

    PubMed

    Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui

    2015-09-23

    The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.

  10. The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes

    PubMed Central

    Jończyk-Matysiak, Ewa; Łusiak-Szelachowska, Marzanna; Kłak, Marlena; Bubak, Barbara; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Żaczek, Maciej; Fortuna, Wojciech; Rogóż, Paweł; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Górski, Andrzej

    2015-01-01

    Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired). Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients' peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients' phagocytes' ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy. PMID:26783541

  11. Microbiota of the Small Intestine Is Selectively Engulfed by Phagocytes of the Lamina Propria and Peyer’s Patches

    PubMed Central

    Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi

    2016-01-01

    Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer’s patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa. PMID:27701454

  12. Microbiota of the Small Intestine Is Selectively Engulfed by Phagocytes of the Lamina Propria and Peyer's Patches.

    PubMed

    Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi

    2016-01-01

    Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer's patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa.

  13. High content analysis of phagocytic activity and cell morphology with PuntoMorph.

    PubMed

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta

    2017-11-01

    Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Defective cholesterol clearance limits remyelination in the aged central nervous system.

    PubMed

    Cantuti-Castelvetri, Ludovico; Fitzner, Dirk; Bosch-Queralt, Mar; Weil, Marie-Theres; Su, Minhui; Sen, Paromita; Ruhwedel, Torben; Mitkovski, Miso; Trendelenburg, George; Lütjohann, Dieter; Möbius, Wiebke; Simons, Mikael

    2018-02-09

    Age-associated decline in regeneration capacity limits the restoration of nervous system functionality after injury. In a model for demyelination, we found that old mice fail to resolve the inflammatory response initiated after myelin damage. Aged phagocytes accumulated excessive amounts of myelin debris, which triggered cholesterol crystal formation and phagolysosomal membrane rupture and stimulated inflammasomes. Myelin debris clearance required cholesterol transporters, including apolipoprotein E. Stimulation of reverse cholesterol transport was sufficient to restore the capacity of old mice to remyelinate lesioned tissue. Thus, cholesterol-rich myelin debris can overwhelm the efflux capacity of phagocytes, resulting in a phase transition of cholesterol into crystals and thereby inducing a maladaptive immune response that impedes tissue regeneration. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Molecular diagnosis of chronic granulomatous disease.

    PubMed

    Roos, D; de Boer, M

    2014-02-01

    Patients with chronic granulomatous disease (CGD) suffer from recurrent, life-threatening bacterial and fungal infections of the skin, the airways, the lymph nodes, liver, brain and bones. Frequently found pathogens are Staphylococcus aureus, Aspergillus species, Klebsiella species, Burkholderia cepacia and Salmonella species. CGD is a rare (∼1:250 000 births) disease caused by mutations in any one of the five components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in phagocytes. This enzyme generates superoxide and is essential for intracellular killing of pathogens by phagocytes. Molecular diagnosis of CGD involves measuring NADPH oxidase activity in phagocytes, measuring protein expression of NADPH oxidase components and mutation analysis of genes encoding these components. Residual oxidase activity is important to know for estimation of the clinical course and the chance of survival of the patient. Mutation analysis is mandatory for genetic counselling and prenatal diagnosis. This review summarizes the different assays available for the diagnosis of CGD, the precautions to be taken for correct measurements, the flow diagram to be followed, the assays for confirmation of the diagnosis and the determinations for carrier detection and prenatal diagnosis. © 2013 British Society for Immunology.

  16. Effects of traditional medical herbs "minor bupleurum decoction" on the non-specific immune responses of white shrimp (Litopenaeus vannamei).

    PubMed

    Wu, Yu-Sheng; Lee, Meng-Chou; Huang, Cheng-Ting; Kung, Tzu-Chi; Huang, Chih-Yang; Nan, Fan-Hua

    2017-05-01

    This study is investigating the effect of minor bupleurum decoction (Xiao-Chai-Hu decoction) on the non-specific immune response of white shrimp (Litopenaeus vannamei). To determine prophenoloxidase activity (proPO), reactive oxygen species production (ROS), superoxide anion production (O 2 - ), nitric oxide production (NO), phagocytic rate (PR), phagocytic index (PI), superoxide dismutase activity (SOD), total haemocyte count (THC) and differential haemocyte count (DHC). In this experiment, treating with different dosages (0, 0.25, 0.5 and, 1%) of minor bupleurum decoction to detect immune parameters on day 0, 1, 2, 4, 7, 14, 21 and 28. Result is shown that 0.25% treatment significantly enhanced the superoxide dismutase (SOD) activity and, 0.25 and 1% treatment significantly increased the ROS production, nitric oxide (NO) production and phagocytic rate (PR) moreover, 0.5 and 1% treatment induced the proPO activity and superoxide anion (O 2 - ) production. Evidence exactly indicated that minor bupleurum decoction is able to enhance the non-specific immunity responses of white shrimp via in vivo examination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Immunobiological blood parameters in rabbits after addition to the diet suspensions of chlorella, sodium sulfate, citrate and chromium chloride].

    PubMed

    Lesyk, Ia V; Fedoruk, R S; Dolaĭchuk, O P

    2013-01-01

    We studied the content of glycoproteins and their individual carbohydrate components, the phagocyte activity of neutrophils, phagocyte index, phagocyte number lizotsym and bactericidal activity of the serum concentration of circulating immune complexes and middle mass molecules in the blood of rabbits following administration into the diet chlorella suspension, sodium sulfate, chromium citrate and chromium chloride. The studies were conducted on rabbits weighing 3.7-3.9 kg with altered diet from the first day of life to 118 days old. Rabbits were divided into five groups: the control one and four experimental groups. We found that in the blood of rabbits of experimental groups recieved sodium sulphate, chromium chloride and chromium citrate, the content of glycoprotein's and their carbohydrate components was significantly higher during the 118 days of the study compared with the control group. Feeding rabbits with mineral supplements likely reflected the differences compared with the control parameters of nonspecific resistance in the blood for the study period, which was more pronounced in the first two months of life.

  18. CD77 levels over enzyme replacement treatment in Fabry Disease Family (V269M).

    PubMed

    Pereira, Ester Miranda; Silva, Adalberto Socorro da; Silva, Raimundo Nonato da; Monte Neto, José Tiburcio; Nascimento, Fernando F do; Sousa, Jackeline L M; Costa Filho, Henrique César Saraiva de Arêa Leão; Sales Filho, Herton Luiz Alves; Labilloy, Anatalia; Monte, Semiramis Jamil Hadad do

    2018-06-04

    Fabry disease (FD) is a disorder caused by mutations in the gene encoding for lysosomal enzyme α-galactosidase A (α-GAL). Reduced α-GAL activity leads to progressive accumulation of globotriaosylceramide (Gb3), also known as CD77. The recent report of increased expression of CD77 in blood cells of patients with FD indicated that this molecule can be used as a potential marker for monitoring enzyme replacement therapy (ERT). The purpose of this study was to evaluate the CD77 levels throughout ERT in FD patients (V269M mutation). We evaluated the fluctuations in PBMC (peripheral blood mononuclear cell) membrane CD77 expression in FD patients undergoing ERT and correlated these levels with those observed in different cell types. A greater CD77 expression was found in phagocytes of patients compared to controls at baseline. Interestingly, the variability in CD77 levels is larger in patients at baseline (340 - 1619 MIF) and after 12 months of ERT (240 - 530 MIF) compared with the control group (131 - 331 MFI). Furthermore, by analyzing the levels of CD77 in phagocytes from patients throughout ERT, we found a constant decrease in CD77 levels. The increased CD77 levels in the phagocytes of Fabry carriers together with the decrease in CD77 levels throughout ERT suggest that measuring CD77 levels in phagocytes is a promising tool for monitoring the response to ERT in FD.

  19. Microemulsion of babassu oil as a natural product to improve human immune system function.

    PubMed

    Pessoa, Rafael Souza; França, Eduardo Luzia; Ribeiro, Elton Brito; Lanes, Patrícia Kelly Dias; Chaud, Natalina Galdeano Abud; Moraes, Lucélia Campelo Albuquerque; Honorio-França, Adenilda Cristina

    2015-01-01

    The aim of this study was to develop and characterize a babassu oil microemulsion system and determine the effect of this microemulsion on the functional activity of phagocytes. The microemulsion was formulated using distilled water, babassu as the oil phase component, Sorbitan monooleate-Span 80(®) (SP), Polysorbate 80-Tween 80(®) (TW), and 1-butanol (BT). Pseudoternary diagrams were prepared, and microemulsion diagram regions were preselected. Rheological characterization and preliminary and accelerated stability tests were performed. The effect of the microemulsion on the interactions between leukocytes and bacteria was determined by superoxide release, phagocytosis, and microbicidal activity. The developed formulation SP/TW/BT (4.2/4.8/1.0) was classified as oil/water, showed a Newtonian profile, and had linear viscosity. When we assessed the interaction of the microemulsion or babassu oil with phagocytes, we observed an increase in superoxide, phagocytosis, and microbicidal activity. The babassu oil microemulsion system is an option for future applications, including for vaccine delivery systems. Babassu oil is a natural product, so is an alternative for future immunotherapy strategies, in particular for infectious diseases.

  20. Probiotic Bacillus amyloliquefaciens mediate M1 macrophage polarization in mouse bone marrow-derived macrophages.

    PubMed

    Ji, Jian; Hu, Sheng-Lan; Cui, Zhi-Wen; Li, Wei-Fen

    2013-05-01

    Depending on the microenvironment, macrophages can acquire distinct functional phenotypes, referred to as classically activated M1 and M2. M1 macrophages are considered potent effector cells that kill intracellular pathogens, and M2 macrophages promote the resolution of wound healing. In this study, we are interested to know whether probiotic Bacillus amyloliquefaciens (Ba) can induce macrophages polarization. Real-time fluorescence PCR analysis demonstrated that the expression of IL-1β, iNOS, TNF-α and IL-6 genes for M1 macrophages was significantly increased at 1.5 h after probiotic Ba treatment compared to the probiotic Ba-free treatment (P < 0.01), whereas the expression of M2 macrophage marker genes (Arg1, Fizz1, MR, Ym1) was decreased (P < 0.05). Furthermore, the phagocytic activity was dramatically increased in the Ba-treated BMDMs using a FITC-dextran endocytosis assay. Together, these findings indicated that probiotic Ba facilitated polarization of M1 macrophages and enhanced its phagocytic capacity. The results expanded our knowledge about probiotic function-involved macrophage polarization.

  1. Impairment of innate immune responses in cirrhotic patients and treatment by branched-chain amino acids

    PubMed Central

    Nakamura, Ikuo

    2014-01-01

    It has been reported that host defense responses, such as phagocytic function of neutrophils and natural killer (NK) cell activity of lymphocytes, are impaired in cirrhotic patients. This review will concentrate on the impairment of innate immune responses in decompensated cirrhotic patients and the effect of the treatment by branched-chain amino acids (BCAA) on innate immune responses. We already reported that phagocytic function of neutrophils was significantly improved by 3-mo BCAA supplementation. In addition, the changes of NK activity were also significant at 3 mo of supplementation compared with before supplementation. Also, Fisher’s ratios were reported to be significantly increased at 3 mo of BCAA supplementation compared with those before oral supplementation. Therefore, administration of BCAA could reduce the risk of bacterial and viral infection in patients with decompensated cirrhosis by restoring impaired innate immune responses of the host. In addition, it was also revealed that BCAA oral supplementation could reduce the risk of development of hepatocellular carcinoma in cirrhotic patients. The mechanisms of the effects will also be discussed in this review article. PMID:24966600

  2. Effect of moderate exercise on peritoneal neutrophils from juvenile rats.

    PubMed

    Braz, Glauber Ruda; Ferreira, Diorginis Soares; Pedroza, Anderson Apolonio; da Silva, Aline Isabel; Sousa, Shirley Maria; Pithon-Curi, Tania Cristina; Lagranha, Claudia

    2015-09-01

    Previous studies showed that moderate exercise in adult rats enhances neutrophil function, although no studies were performed in juvenile rats. We evaluated the effects of moderate exercise on the neutrophil function in juvenile rats. Viability and neutrophils function were evaluated. Moderate exercise did not impair the viability and mitochondrial transmembrane potential of neutrophils, whereas there was greater reactive oxygen species production (164%; p < 0.001) and phagocytic capacity (29%; p < 0.05). Our results suggest that moderate exercise in juvenile rats improves neutrophil function, similar to adults.

  3. Phagocytosis in pup and adult harbour, grey and harp seals.

    PubMed

    Frouin, Héloïse; Lebeuf, Michel; Hammill, Mike; Fournier, Michel

    2010-04-15

    Knowledge on pinniped immunology is still in its infancy. For instance, age-related and developmental aspects of the immune system in pinnipeds need to be better described. The present study examined the phagocytic activity and efficiency of harbour, grey and harp seal leukocytes. In the first part of the study, peripheral blood was collected from captive female harbour seals of various ages. Data showed an age-related decrease in phagocytosis in female harbour seals from sub-adult to adulthood. In the second part of the study, changes in phagocytosis were quantified during lactation in wild newborn harbour, grey and harp seals and in their mothers (harp and grey seals). In newborns of the same age, leukocytes of harbour and harp seals phagocytosed less than those of grey seal pups. The phagocytic activity and efficiency increased significantly from early to mid-lactation in newborn harbour seals, and from early to late lactation in newborn grey seals, which could suggest that the transfer of phagocytosis-promoting factor(s) in colostrum is an important feature of temporary protection for pups. In contrast, no changes in phagocytic activity and efficiency were observed in lactating females of the two seal species, harp and grey, examined. At late lactation, phagocytic activity in both grey and harp seal pups and phagocytic efficiency in grey seal pups were significantly higher than in their mothers. These results could reflect either the capacity of phagocytes of the newborn harp and grey seals to respond to pathogens. Results from this study suggest that the phagocytosis of the seal species examined is not fully developed at birth as it generally increases in pups during lactation. Thereafter, the phagocytic activity of seals appears to decrease throughout adulthood. Copyright 2009 Elsevier B.V. All rights reserved.

  4. CD47-ligation induced cell death in T-acute lymphoblastic leukemia.

    PubMed

    Leclair, Pascal; Liu, Chi-Chao; Monajemi, Mahdis; Reid, Gregor S; Sly, Laura M; Lim, Chinten James

    2018-05-10

    CD47 is a cell-surface marker well recognized for its anti-phagocytic functions. As such, an emerging avenue for targeted cancer therapies involves neutralizing the anti-phagocytic function using monoclonal antibodies (mAbs) to enhance tumour cell immunogenicity. A lesser known consequence of CD47 receptor ligation is the direct induction of tumour cell death. While several mAbs and their derivatives with this property have been studied, the best characterized is the commercially available mAb B6H12, which requires immobilization for induction of cell death. Here, we describe a commercially available mAb, CC2C6, which induces T-cell acute lymphoblastic leukemia (ALL) cell death in soluble form. Soluble CC2C6 induces CD47-dependent cell death in a manner consistent with immobilized B6H12, which is characterized by mitochondrial deficiencies but is independent of caspase activation. Titration studies indicated that CC2C6 shares a common CD47-epitope with B6H12. Importantly, CC2C6 retains the anti-phagocytic neutralizing function, thus possessing dual anti-tumour properties. Although CD47-ligation induced cell death occurs in a caspase-independent manner, CC2C6 was found to stimulate increases in Mcl-1 and NOXA levels, two Bcl-2 family proteins that govern the intrinsic apoptosis pathway. Further analysis revealed that the ratio of Mcl-1:NOXA were minimally altered for cells treated with CC2C6, in comparison to cells treated with agents that induced caspase-dependent apoptosis which alter this ratio in favour of NOXA. Finally, we found that CC2C6 can synergize with low dose chemotherapeutic agents that induce classical apoptosis, giving rise to the possibility of an effective combination treatment with reduced long-term sequelae associated with high-dose chemotherapies in childhood ALL.

  5. Translational Advancement of Somatostatin Gene Delivery for Disease Modification and Cognitive Sparing in Intractable Epilepsy

    DTIC Science & Technology

    2015-09-01

    morphological analysis revealed significantly more activated (p < 0.001) and highly activated ( phagocytic ; p < 0.05) microglia in the dentate gyri of...process with small cell bodies (Figure 10A). Activated microglia exhibit less ramified processes and larger nuclei (Figure 10B) and phagocytic microglia...significantly increases in the dentate gyri of kindled rats along with the total number of highly activated or phagocytic microglia. We are currently

  6. Flow microfluorometric analysis of phagocyte degranulation in bacteria-infected whole human blood cell cultures

    NASA Astrophysics Data System (ADS)

    Kravtsov, Alexander L.; Bobyleva, Elena V.; Grebenyukova, Tatyana P.; Kuznetsov, Oleg S.; Kulyash, Youri V.

    2002-07-01

    A quantitative flow microfluorometric method was used to study the intensity of human blood phagocyte degranulation in response to viable staphylococcus aureus or Yersinia pestis cells. Microorganisms were added directly to defibrinated whole blood. Uninfected and infected blood samples were incubated at 37 degrees C to 8 h. The results were recorded in dynamics after the staining of whole blood with acridine orange solution. Lymphocytes with a low azurophilic granule per cell content were discriminated from phagocytes by the measurement of single cell red cytoplasmic granule fluorescence. 30,000 cells in each sample were examined. S. aureus cells caused a dose-dependent decrease in the number of phagocytes having a high red cytoplasmic fluorescence intensity and a corresponding increase in the weakly fluorescence cell population. In the presence of an initial S. aureus-to-phagocyte ratio more than 1:1, degranulation was measured after 3 h of incubation and to 8 h the percentage of degranulated phagocytes was at least 100 percent Y. pestis cells grown for 48 h at 28 degrees C caused at same condition as the degranulation only about 50 percent of cells. Y.pestis EV cells preincubated in broth for 12 h at 37 degrees C did no stimulate the phahocyte degranulation. The results of these studies suggest that analysis of cell populations via flow microfluorimeter technology may be a powerful tool in analysis bacterial infection.

  7. Surface properties of Entamoeba: increased rates of human erythrocyte phagocytosis in pathogenic strains

    PubMed Central

    1978-01-01

    The assertion that ingestion of human erythrocytes is restricted to invasive strains of Entamoeba histolytica has not been evaluated previously by comparative studies. In this report we describe the in vitro ingestion of human erythrocytes by pathogenic and nonpathogenic Entamoeba. Microscopic evaluation of erythrophagocytosis by eight different Entamoeba grown in culture revealed that strains of E. histolytica isolated from cases of human dysentery show a much higher rate of erythrocyte ingestion than nonpathogenic strains. However, all strains are able to phagocytize erythrocytes. The extremely high rate of phagocytic activity shown by pathogenic E. histolytica could be one of the properties related to the pathogenicity of this parasitic protozoan. PMID:722237

  8. Depletion of Phagocytic Cells during Nonlethal Plasmodium yoelii Infection Causes Severe Malaria Characterized by Acute Renal Failure in Mice

    PubMed Central

    Terkawi, Mohamad Alaa; Nishimura, Maki; Furuoka, Hidefumi

    2016-01-01

    In the current study, we examined the effects of depletion of phagocytes on the progression of Plasmodium yoelii 17XNL infection in mice. Strikingly, the depletion of phagocytic cells, including macrophages, with clodronate in the acute phase of infection significantly reduced peripheral parasitemia but increased mortality. Moribund mice displayed severe pathological damage, including coagulative necrosis in liver and thrombi in the glomeruli, fibrin deposition, and tubular necrosis in kidney. The severity of infection was coincident with the increased sequestration of parasitized erythrocytes, the systematic upregulation of inflammation and coagulation, and the disruption of endothelial integrity in the liver and kidney. Aspirin was administered to the mice to minimize the risk of excessive activation of the coagulation response and fibrin deposition in the renal tissue. Interestingly, treatment with aspirin reduced the parasite burden and pathological lesions in the renal tissue and improved survival of phagocyte-depleted mice. Our data imply that the depletion of phagocytic cells, including macrophages, in the acute phase of infection increases the severity of malarial infection, typified by multiorgan failure and high mortality. PMID:26755155

  9. Effects of whole flaxseed, raw soybeans, and calcium salts of fatty acids on measures of cellular immune function of transition dairy cows.

    PubMed

    Gandra, J R; Barletta, R V; Mingoti, R D; Verdurico, L C; Freitas, J E; Oliveira, L J; Takiya, C S; Kfoury, J R; Wiltbank, M C; Renno, F P

    2016-06-01

    The objective of the current study was to evaluate the effects of supplemental n-3 and n-6 fatty acid (FA) sources on cellular immune function of transition dairy cows. Animals were randomly assigned to receive 1 of 4 diets: control (n=11); whole flaxseed (n-3 FA source; n=11), 60 and 80g/kg of whole flaxseed [diet dry matter (DM) basis] during pre- and postpartum, respectively; whole raw soybeans (n-6 FA source; n=10), 120 and 160g/kg of whole raw soybeans (diet DM basis) during pre- and postpartum, respectively; and calcium salts of unsaturated FA (Megalac-E, n-6 FA source; n=10), 24 and 32g/kg of calcium salts of unsaturated FA (diet DM basis) during pre- and postpartum, respectively. Supplemental FA did not alter DM intake and milk yield but increased energy balance during the postpartum period. Diets containing n-3 and n-6 FA sources increased phagocytosis capacity of leukocytes and monocytes and phagocytosis activity of monocytes. Furthermore, n-3 FA source increased phagocytic capacity of leukocytes and neutrophils and increased phagocytic activity in monocytes and neutrophils when compared with n-6 FA sources. Supplemental FA effects on adaptive immune system included increased percentage of T-helper cells, T-cytotoxic cells, cells that expressed IL-2 receptors, and CD62 adhesion molecules. The results of this study suggest that unsaturated FA can modulate innate and adaptive cellular immunity and trigger a proinflammatory response. The n-3 FA seems to have a greater effect on phagocytic capacity and activity of leukocytes when compared with n-6 FA. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Host Immune Response to Histophilus somni.

    PubMed

    Corbeil, Lynette B

    2016-01-01

    Histophilus somni is known to cause several overlapping syndromes or to be found in genital or upper respiratory carrier states in ruminants. Vaccines have been used for decades, yet efficacy is controversial and mechanisms of protective immunity are not well understood. Since H. somni survives phagocytosis, it has sometimes been considered to be a facultative intercellular parasite, implying that cell-mediated immunity would be critical in protection. However, H. somni not only inhibits phagocyte function, but also is cytotoxic for macrophages. Therefore, it does not live for long periods in healthy phagocytes. Protection of calves against H. somni pneumonia by passive immunization is also evidence that H. somni is more like an extracellular pathogen than an intracellular pathogen. Several studies showed that bovine IgG2 antibodies are more protective than IgG1 antibodies. Even the IgG2 allotypes tend to vary in protection. Of course, antigenic specificity also determines protection. So far, there is most evidence for protection by a 40 K outer membrane protein and by Immunoglobulin binding protein A fibrils. Serology and immunohistochemistry have both been used for immunodiagnosis. Many evasive mechanisms by H. somni have been defined, including decreased phagocyte function, antibodies bound by shed antigens, decreased immune stimulation, and antigenic variation. Interaction of H. somni with other bovine respiratory disease organisms is another layer of pathogenesis. Studies of bovine respiratory syncytial virus (BRSV) and H. somni in calfhood pneumonia revealed an increase in IgE antibodies to H. somni, which were associated with more severe disease of longer duration than with either agent alone. Innate immune mechanisms at the epithelial cell level are also affected by dual infection by BRSV and H. somni as compared to either pathogen alone. Although much more work needs to be done, the complex mechanisms of H. somni immunity are becoming clearer.

  11. The complement factor 5a receptor 1 has a pathogenic role in chronic inflammation and renal fibrosis in a murine model of chronic pyelonephritis.

    PubMed

    Choudhry, Naheed; Li, Ke; Zhang, Ting; Wu, Kun-Yi; Song, Yun; Farrar, Conrad A; Wang, Na; Liu, Cheng-Fei; Peng, Qi; Wu, Weiju; Sacks, Steven H; Zhou, Wuding

    2016-09-01

    Complement factor 5a (C5a) interaction with its receptor (C5aR1) contributes to the pathogenesis of inflammatory diseases, including acute kidney injury. However, its role in chronic inflammation, particularly in pathogen-associated disorders, is largely unknown. Here we tested whether the development of chronic inflammation and renal fibrosis is dependent on C5aR1 in a murine model of chronic pyelonephritis. C5aR1-deficient (C5aR1-/-) mice showed a significant reduction in bacterial load, tubule injury and tubulointerstitial fibrosis in the kidneys following infection, compared with C5aR1-sufficient mice. This was associated with reduced renal leukocyte infiltration specifically for the population of Ly6Chi proinflammatory monocytes/macrophages and reduced intrarenal gene expression of key proinflammatory and profibrogenic factors in C5aR1-/- mice following infection. Antagonizing C5aR1 decreased renal bacterial load, tissue inflammation and tubulointerstitial fibrosis. Ex vivo and in vitro studies showed that under infection conditions, C5a/C5aR1 interaction upregulated the production of proinflammatory and profibrogenic factors by renal tubular epithelial cells and monocytes/macrophages, whereas the phagocytic function of monocytes/macrophages was down-regulated. Thus, C5aR1-dependent bacterial colonization of the tubular epithelium, C5a/C5aR1-mediated upregulation of local inflammatory responses to uropathogenic E. coli and impairment of phagocytic function of phagocytes contribute to persistent bacterial colonization of the kidney, chronic renal inflammation and subsequent tubulointerstitial fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase.

    PubMed

    Baillet, Athan; Hograindleur, Marc-André; El Benna, Jamel; Grichine, Alexei; Berthier, Sylvie; Morel, Françoise; Paclet, Marie-Hélène

    2017-02-01

    The phagocyte NADPH oxidase 2 (Nox2) is an enzymatic complex that is involved in innate immunity, notably via its capacity to produce toxic reactive oxygen species. Recently, a proteomic analysis of the constitutively active Nox2 complex, isolated from neutrophil fractions, highlighted the presence of 6-phosphofructo-2-kinase (PFK-2). The purpose of this work was to study the relationship between PFK-2 and NADPH oxidase in neutrophils. Data have underlined a specific association of the active phosphorylated form of PFK-2 with Nox2 complex in stimulated neutrophils. In its active form, PFK-2 catalyzes the production of fructose-2,6-bisphosphate, which is the main allosteric activator of phosphofructo-1-kinase, the limiting enzyme in glycolysis. Pharmacologic inhibition of PFK-2 phosphorylation and cell depletion in PFK-2 by a small interfering RNA strategy led to a decrease in the glycolysis rate and a reduction in NADPH oxidase activity in stimulated cells. Surprisingly, alteration of Nox2 activity impacted the glycolysis rate, which indicated that Nox2 in neutrophils was not only required for reactive oxygen species production but was also involved in supporting the energetic metabolism increase that was induced by inflammatory conditions. PFK-2 seems to be a strategic element that links NADPH oxidase activation and glycolysis modulation, and, as such, is proposed as a potential therapeutic target in inflammatory diseases.-Baillet, A., Hograindleur, M.-A., El Benna, J., Grichine, A., Berthier, S., Morel, F., Paclet, M.-H. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase. © FASEB.

  13. Effects of β-glucans from Coriolus versicolor on macrophage phagocytosis are related to the Akt and CK2/Ikaros.

    PubMed

    Kang, Se Chan; Koo, Hyun Jung; Park, Sulkyung; Lim, Jung Dae; Kim, Ye-Jin; Kim, Taeseong; Namkoong, Seung; Jang, Ki-Hyo; Pyo, Suhkneung; Jang, Seon-A; Sohn, Eun-Hwa

    2013-06-01

    Coriolus versicolor has been known to be an immune stimulator effects. For further understanding of the phagocytic activity and the intracellular mechanisms of β-glucan from C. versicolor (CVG), we examined the phagocytic activity, phosphorylation of Akt and CK2, nucleus translocation of p65 and Ikaros activity in β-glucan-treated macrophages using RT-PCR, western blotting, and IP assay. The role of Ikaros in regulating phagocytic effects of CVG was also determined using Ikaros dominant negative isoform cells. This study suggests that CK2/Ikaros are positive regulators and novel signaling pathway involved in phagocytosis and contributes to elucidating the mechanism underlying phagocytic activity induced by β-glucan. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Membrane and functional characterization of lymphoid and macrophage populations of Peyer's patches from adult and aged mice.

    PubMed Central

    Vĕtvicka, V; Tlaskalová-Hogenová, H; Fornůsek, L; Ríhová, B; Holán, V

    1987-01-01

    Properties of macrophages isolated from Peyer's patches were compared with properties of peritoneal macrophages. We found a very low expression of all types of Fc receptors as well as a low expression of Ia antigens on Peyer's patch macrophages. No substantial changes in the levels of FcR and Ia antigen expression were found during the process of ageing. The investigation of phagocytic activity showed the activated state of Peyer's patch macrophages. Comparing the surface markers of lymphocytes obtained from Peyer's patches of mice of different ages, we found no differences in the numbers of sIg+, Thy-+ or L3T4+ lymphocytes. The numbers of FcR+ and Lyt 2.2+ lymphocytes decreased markedly with age. PMID:3477526

  15. Genetics Home Reference: chronic granulomatous disease

    MedlinePlus

    ... is primarily active in immune system cells called phagocytes. These cells catch and destroy foreign invaders such as bacteria and fungi. Within phagocytes, NADPH oxidase is involved in the production of ...

  16. Targeting the Immune System’s Natural Response to Cell Death to Improve Therapeutic Response in Breast Cancers

    DTIC Science & Technology

    2015-07-01

    epithelial cells (MECs) are cleared from the mammary gland through efferocytosis, a process by which macrophages and other phagocytes recognize, bind to...chronic inflammatory lung disease. Chest. 2006;129(6):1673–1682. 48. deCathelineau AM, Henson PM. The final step in programmed cell death: phagocytes ...carry apoptotic cells to the grave. Essays Biochem. 2003;39:105–117. 49. Erwig LP, Henson PM. Clearance of apop- totic cells by phagocytes . Cell Death

  17. Current Concepts of Hyperinflammation in Chronic Granulomatous Disease

    PubMed Central

    Rieber, Nikolaus; Hector, Andreas; Kuijpers, Taco; Roos, Dirk; Hartl, Dominik

    2012-01-01

    Chronic granulomatous disease (CGD) is the most common inherited disorder of phagocytic functions, caused by genetic defects in the leukocyte nicotinamide dinucleotide phosphate (NADPH) oxidase. Consequently, CGD phagocytes are impaired in destroying phagocytosed microorganisms, rendering the patients susceptible to bacterial and fungal infections. Besides this immunodeficiency, CGD patients suffer from various autoinflammatory symptoms, such as granuloma formation in the skin or urinary tract and Crohn-like colitis. Owing to improved antimicrobial treatment strategies, the majority of CGD patients reaches adulthood, yet the autoinflammatory manifestations become more prominent by lack of causative treatment options. The underlying pathomechanisms driving hyperinflammatory reactions in CGD are poorly understood, but recent studies implicate reduced neutrophil apoptosis and efferocytosis, dysbalanced innate immune receptors, altered T-cell surface redox levels, induction of Th17 cells, the enzyme indolamine-2,3-dioxygenase (IDO), impaired Nrf2 activity, and inflammasome activation. Here we discuss immunological mechanisms of hyperinflammation and their potential therapeutic implications in CGD. PMID:21808651

  18. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease

    PubMed Central

    Bustamante, Jacinta; Arias, Andres A; Vogt, Guillaume; Picard, Capucine; Galicia, Lizbeth Blancas; Prando, Carolina; Grant, Audrey V; Marchal, Christophe C; Hubeau, Marjorie; Chapgier, Ariane; de Beaucoudrey, Ludovic; Puel, Anne; Feinberg, Jacqueline; Valinetz, Ethan; Jannière, Lucile; Besse, Céline; Boland, Anne; Brisseau, Jean-Marie; Blanche, Stéphane; Lortholary, Olivier; Fieschi, Claire; Emile, Jean-François; Boisson-Dupuis, Stéphanie; Al-Muhsen, Saleh; Woda, Bruce; Newburger, Peter E; Condino-Neto, Antonio; Dinauer, Mary C; Abel, Laurent; Casanova, Jean-Laurent

    2011-01-01

    Germline mutations in CYBB, the human gene encoding the gp91phox subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This ‘experiment of nature’ indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria. PMID:21278736

  19. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient

    NASA Technical Reports Server (NTRS)

    Sun, E.; Gao, Y.; Chen, J.; Roberts, A. I.; Wang, X.; Chen, Z.; Shi, Y.

    2004-01-01

    Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.

  20. Prepartum concentrate supplementation of a diet based on medium-quality grass silage: Effects on performance, health, fertility, metabolic function, and immune function of low body condition score cows.

    PubMed

    Little, M W; O'Connell, N E; Welsh, M D; Barley, J; Meade, K G; Ferris, C P

    2016-09-01

    When cows with a "higher" body condition score (BCS) are oversupplied with energy during the dry period, postpartum energy balance is normally reduced, which can have a detrimental effect on immune competence and increase the infectious disease risk. However, within grassland-based systems higher yielding cows frequently have a low BCS at drying off. The effects on performance, health, and metabolic and immune functions of providing additional energy to cows with low BCS during the dry period is less certain. To address this uncertainty, 53 multiparous Holstein-Friesian cows (mean BCS of 2.5; 1-5 scale) were allocated to 1 of 2 treatments at dry-off: silage only or silage plus concentrates. Cows on the silage-only treatment were offered ad libitum access to medium-quality grass silage. Cows on the silage-plus-concentrate treatment were offered ad libitum access to a mixed ration comprising the same grass silage plus concentrates [in a 75:25 dry matter (DM) ratio], which provided a mean concentrate DM intake of 3.0kg/cow per day. Postpartum, cows were offered a common mixed ration comprising grass silage and concentrates (in a 40:60 DM ratio) for a 70-d period. Offering concentrates during the dry period increased DM intake, tended to increase energy balance, and increased body weight (BW) and BCS gain prepartum. Offering concentrates during the dry period increased BW and BCS loss postpartum and tended to increase milk fat percentage and serum nonesterified fatty acid concentration, but it did not affect postpartum DM intake, energy balance, and milk yield. Although the percentage of phagocytosis-positive neutrophils did not differ, neutrophils from cows on the silage-plus-concentrate treatment had higher phagocytic fluorescence intensity at 1 and 2 wk postpartum and higher phagocytic index at 1 wk postpartum. Serum haptoglobin concentrations and IFN-γ production by pokeweed mitogen stimulated whole blood culture were unaffected by treatment, although haptoglobin concentrations increased and IFN-γ production decreased peripartum. Offering concentrates during the dry period increased the incidence of lameness postpartum, although other health and fertility parameters were unaffected. In conclusion, supplementing low BCS cows with concentrates during the dry period had no effect on performance and fertility and resulted in a higher neutrophil phagocytic index at 1 wk postpartum and an increased incidence of lameness compared with offering cows a grass silage-only diet prepartum. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. The influence of blood glucose on neutrophil function in individuals without diabetes.

    PubMed

    Saito, Yuriko; Takahashi, Ippei; Iwane, Kaori; Okubo, Noriyuki; Nishimura, Miya; Matsuzaka, Masashi; Wada, Naoko; Miwa, Takashi; Umeda, Takashi; Nakaji, Shigeyuki

    2013-01-01

    We assessed the association of neutrophil function with glycated hemoglobin (HbA1c) levels in a Japanese general population. Participants were 809 males and females who were over 20 years old living in the Iwaki region in Aomori Prefecture located in northern Japan. Lifestyle parameters (smoking, alcohol consumption, and exercise habits), HbA1c and neutrophil function such as reactive oxygen species (ROS) production capability and phagocytic activity (PA) were measured. ROS production capability was measured before and after phagocytic stimulus to obtain basal ROS production and stimulated ROS production. Level of HbA1c had a positive correlation with basal ROS production (p=0.053), a negative correlation with stimulated ROS production (p=0.072) and PA (p=0.059) only in post-menopausal groups, and not in pre-menopausal groups. However, there were no correlations between levels of HbA1c and neutrophil functions in male. In conclusion, in the present study, despite the presence of diabetes, chronic hyperglycemia was found to cause an increase in daily basal ROS production of neutrophils, and increased susceptibility to infection caused by reduced neutrophilic reaction in females in their menopause. Therefore, from the oxidative point of view, strict glycemic control is necessary to prevent post-menopausal females from developing diabetic complications in spite of the presence of diabetes. Copyright © 2013 John Wiley & Sons, Ltd.

  2. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I Interferons*

    PubMed Central

    Denny, Michael F.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Thacker, Seth G.; Anderson, Marc; Sandy, Ashley R.; McCune, W. Joseph; Kaplan, Mariana J.

    2010-01-01

    Neutrophil-specific genes are abundant in PBMC microarrays from lupus patients due to presence of low density granulocytes (LDGs) in mononuclear cell fractions. The functionality and pathogenicity of these LDGs have not been characterized. We developed a technique to purify LDGs from lupus PBMCs and assessed their phenotype, function and potential role in disease pathogenesis. LDGs, their autologous lupus neutrophils and healthy control neutrophils were compared in their microbicidal and phagocytic capacities, generation of reactive oxygen species, activation status, inflammatory cytokine profile and type I IFN expression and signatures. The capacity of LDGs to kill endothelial cells and their antiangiogenic potential were also assessed. LDGs display an activated phenotype, secrete increased levels of type I IFNs, TNF-α and IFN-γ, but show impaired phagocytic potential. LDGs induce significant endothelial cell cytotoxicity and synthesize sufficient levels of type I IFNs to disrupt the capacity of endothelial progenitor cells to differentiate into mature endothelial cells. Further, LDG depletion restores the functional capacity of endothelial progenitor cells. We conclude that lupus LDGs are proinflammatory and display pathogenic features, including the capacity to synthesize type I IFNs. They may play an important dual role in premature cardiovascular disease development in SLE by simultaneously mediating enhanced vascular damage while inhibiting vascular repair. PMID:20164424

  3. Mechanisms underlying the redistribution of particles among the lung's alveolar macrophages during alveolar phase clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, B.E.; Oritz, J.B.; Steinkamp, J.A.

    1991-01-01

    In order to obtain information about the particle redistribution phenomenon following the deposition of inhaled particles, as well as to obtain information about some of the mechanisms that may be operable in the redistribution of particles, lavaged lung free cell analyses and transmission electron microscopic (TEM) analyses of lung tissue and were performed using lungs from rats after they were subchronically exposed to aerosolized dioxide (TiO{sub 2}). TEM analyses indicated that the in situ autolysis of particle-containing Alveolar Macropages (AM) is one important mechanism involved in the redistribution of particles. Evidence was also obtained that indicated that the engulfment ofmore » one particle-containing phagocyte by another phagocyte also occurs. Another prominent mechanism of the particle redistribution phenomenon may be the in situ proliferation of particle-laden AM. We used the macrophage cell line J774A.1 as a surrogate for AM to investigate how different particulate loads in macrophages may affect their abilities to proliferate. These in vitro investigations indicated that the normal rate of proliferation of macrophages is essentially unaffected by the containment of relatively high particulate burdens. Overall, the results of our investigations suggest that in situ autolysis of particle-containing AM and the rephagocytosis of freed particles by other phagocytes, the phagocytosis of effete and disintegrating particle-containing phagocytes by other AM, and the in situ division of particle-containing AM are likely mechanisms that underlie the post-depositional redistribution of particles among the lung's AM during alveolar phase clearance. 19 refs., 8 figs., 2 tabs.« less

  4. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    PubMed

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  5. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease

    PubMed Central

    Gomez‐Arboledas, Angela; Davila, Jose C.; Sanchez‐Mejias, Elisabeth; Navarro, Victoria; Nuñez‐Diaz, Cristina; Sanchez‐Varo, Raquel; Sanchez‐Mico, Maria Virtudes; Trujillo‐Estrada, Laura; Fernandez‐Valenzuela, Juan Jose; Vizuete, Marisa; Comella, Joan X.; Galea, Elena

    2017-01-01

    Abstract Reactive astrogliosis, a complex process characterized by cell hypertrophy and upregulation of components of intermediate filaments, is a common feature in brains of Alzheimer's patients. Reactive astrocytes are found in close association with neuritic plaques; however, the precise role of these glial cells in disease pathogenesis is unknown. In this study, using immunohistochemical techniques and light and electron microscopy, we report that plaque‐associated reactive astrocytes enwrap, engulf and may digest presynaptic dystrophies in the hippocampus of amyloid precursor protein/presenilin‐1 (APP/PS1) mice. Microglia, the brain phagocytic population, was apparently not engaged in this clearance. Phagocytic reactive astrocytes were present in 35% and 67% of amyloid plaques at 6 and 12 months of age, respectively. The proportion of engulfed dystrophic neurites was low, around 7% of total dystrophies around plaques at both ages. This fact, along with the accumulation of dystrophic neurites during disease course, suggests that the efficiency of the astrocyte phagocytic process might be limited or impaired. Reactive astrocytes surrounding and engulfing dystrophic neurites were also detected in the hippocampus of Alzheimer's patients by confocal and ultrastructural analysis. We posit that the phagocytic activity of reactive astrocytes might contribute to clear dysfunctional synapses or synaptic debris, thereby restoring impaired neural circuits and reducing the inflammatory impact of damaged neuronal parts and/or limiting the amyloid pathology. Therefore, potentiation of the phagocytic properties of reactive astrocytes may represent a potential therapy in Alzheimer's disease. PMID:29178139

  6. Characterization of kidney CD45intCD11bintF4/80+MHCII+CX3CR1+Ly6C- "intermediate mononuclear phagocytic cells".

    PubMed

    Lee, Sul A; Noel, Sanjeev; Sadasivam, Mohanraj; Allaf, Mohamad E; Pierorazio, Phillip M; Hamad, Abdel R A; Rabb, Hamid

    2018-01-01

    Kidney immune cells play important roles in pathogenesis of many diseases, including ischemia-reperfusion injury (IRI) and transplant rejection. While studying murine kidney T cells, we serendipitously identified a kidney mononuclear phagocytic cell (MPC) subset characterized by intermediate surface expression of CD45 and CD11b. These CD45intCD11bint MPCs were further identified as F4/80+MHCII+CX3CR1+Ly6C- cells, comprising ~17% of total CD45+ cells in normal mouse kidney (P < 0.01) and virtually absent from all other organs examined except the heart. Systemic clodronate treatment had more significant depletive effect on the CD45intCD11bint population (77.3%±5.9%, P = 0.03) than on CD45highCD11b+ population (14.8%±16.6%, P = 0.49). In addition, CD45intCD11bint MPCs had higher phagocytic function in the normal kidney (35.6%±3.3% vs. 24.1%±2.2%, P = 0.04), but lower phagocytic capacity in post-ischemic kidney (54.9%±1.0% vs. 67.8%±1.9%, P < 0.01) compared to the CD45highCD11b+ population. Moreover, the CD45intCD11bint population had higher intracellular production of the pro-inflammatory tumor necrosis factor (TNF)-α (58.4%±5.2% vs. 27.3%±0.9%, P < 0.001) after lipopolysaccharide (LPS) stimulation and lower production of the anti-inflammatory interleukin (IL)-10 (7.2%±1.3% vs. 14.9%±2.2%, P = 0.02) following kidney IRI, suggesting a functional role under inflammatory conditions. The CD45intCD11bint cells increased early after IRI, and then abruptly decreased 48h later, whereas CD45highCD11b+ cells steadily increased after IRI before declining at 72h (P = 0.03). We also identified the CD45intCD11bint MPC subtype in human kidney. We conclude that CD45intCD11bint F4/80+MHCII+CX3CR1+Ly6C-population represent a unique subset of MPCs found in both mouse and human kidneys. Future studies will further characterize their role in kidney health and disease.

  7. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?

    PubMed Central

    Mao, Xiao Wen; Bellinger, Denise L.; Jonscher, Karen R.; Stodieck, Louis S.; Ferguson, Virginia L.; Bateman, Ted A.; Mohney, Robert P.; Gridley, Daila S.

    2017-01-01

    The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA’s Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function. PMID:28542224

  8. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?

    PubMed

    Pecaut, Michael J; Mao, Xiao Wen; Bellinger, Denise L; Jonscher, Karen R; Stodieck, Louis S; Ferguson, Virginia L; Bateman, Ted A; Mohney, Robert P; Gridley, Daila S

    2017-01-01

    The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA's Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function.

  9. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa

    PubMed Central

    Lovewell, Rustin R.; Patankar, Yash R.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity. PMID:24464809

  10. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

    PubMed

    Lovewell, Rustin R; Patankar, Yash R; Berwin, Brent

    2014-04-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.

  11. Molecular cloning of rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha and its effect on the respiratory burst activity of phagocytes.

    PubMed

    Kim, Min Sun; Hwang, Yoon Jung; Yoon, Ki Joon; Zenke, Kosuke; Nam, Yoon Kwon; Kim, Sung Koo; Kim, Ki Hong

    2009-11-01

    Rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha (rbTNF-alpha) gene was cloned, recombinantly produced, and the effect of the recombinant rbTNF-alpha on the respiratory burst activity of rock bream phagocytes was analyzed. Structurally, genomic DNA of rbTNF-alpha was comprised with four exons and three introns, and deduced amino acid sequence of its cDNA possessed the TNF family signature, a transmembrane domain, a protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF-alpha gene in mammals and fish. The chemiluminescent (CL) response of rock bream phagocytes was significantly enhanced by pre-incubation with recombinant rbTNF-alpha, when opsonized zymosan was used as a stimulant of the respiratory burst. However, CL enhancing effect of the recombinant rbTNF-alpha was very weak when the respiratory burst activity of phagocytes was triggered with phorbol-12-myristate-13-acetate (PMA) instead of zymosan. These results suggest that rock bream TNF-alpha might have an ability to prime the respiratory burst activity of phagocytes against receptor-mediated phagocytosis inducing stimulants, such as zymosan, but have little ability against stimulants not accompanying receptor-mediated phagocytosis.

  12. Gastropod-derived haemocyte extracellular traps entrap metastrongyloid larval stages of Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior.

    PubMed

    Lange, Malin K; Penagos-Tabares, Felipe; Muñoz-Caro, Tamara; Gärtner, Ulrich; Mejer, Helena; Schaper, Roland; Hermosilla, Carlos; Taubert, Anja

    2017-01-31

    Phagocyte-derived extracellular traps (ETs) were recently demonstrated mainly in vertebrate hosts as an important effector mechanism against invading parasites. In the present study we aimed to characterize gastropod-derived invertebrate extracellular phagocyte trap (InEPT) formation in response to larval stages of important canine and feline metastrongyloid lungworms. Gastropod haemocytes were isolated from the slug species Arion lusitanicus and Limax maximus, and the snail Achatina fulica, and exposed to larval stages of Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior and investigated for gastropod-derived InEPT formation. Phase contrast as well as scanning electron microscopy (SEM) analyses of lungworm larvae-exposed haemocytes revealed ET-like structures to be extruded by haemocytes thereby contacting and ensnaring the parasites. Co-localization studies of haemocyte-derived extracellular DNA with histones and myeloperoxidase in larvae-entrapping structures confirmed classical characteristics of ETs. In vivo exposure of slugs to A. vasorum larvae resulted in InEPTs being extruded from haemocytes in the slug mucous extrapallial space emphasizing the pivotal role of this effector mechanism against invasive larvae. Functional larval entrapment assays demonstrated that almost half of the haemocyte-exposed larvae were contacted or even immobilized by released InEPTs. Overall, as reported for mammalian-derived ETs, different types of InEPTs were here observed, i.e. aggregated, spread and diffused InEPTs. To our knowledge, this study represents the first report on metastrongyloid lungworm-triggered ETosis in gastropods thereby providing evidence of early mollusc host innate immune reactions against invading larvae. These findings will contribute to the better understanding on complex parasite-intermediate host interactions since different gastropod species bear different transmitting capacities for metastrongyloid infections.

  13. Macrophage Efferocytosis and Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2016-10-01

    mediator of prostate cancer tumor growth. Specifically, phagocytic macrophages and efferocytosis were found to be upregulated in the blood of...patients with metastatic prostate cancer. Moreover, inhibiting phagocytic macrophages with the chemotherapeutic trabectedin reduced efferocytosis and

  14. Supraependymal cells of hypothalamic third ventricle: identification as resident phagocytes of the brain.

    PubMed

    Bleier, R; Albrecht, R; Cruce, J A

    1975-07-25

    Cells lying on the ventricular surface of the hypothalamic ependyma of the tegu lizard exhibit the pseudopodial and flaplike processes characteristic of macrophages found elsewhere. Since they ingest latex beads, they may be considered a resident phagocytic system of the brain. The importance of ependyma and ventricular phagocytes as a first line of defense against viral invasion of the brain, as well as their role in the pathogenesis of certain virus-related diseases, is suggested by a number of experimental and clinical observations.

  15. Mycobacteria employ two different mechanisms to cross the blood-brain barrier.

    PubMed

    van Leeuwen, Lisanne M; Boot, Maikel; Kuijl, Coen; Picavet, Daisy I; van Stempvoort, Gunny; van der Pol, Susanne M A; de Vries, Helga E; van der Wel, Nicole N; van der Kuip, Martijn; van Furth, A Marceline; van der Sar, Astrid M; Bitter, Wilbert

    2018-05-10

    Central nervous system (CNS) infection by Mycobacterium tuberculosis is one of the most devastating complications of tuberculosis, in particular in early childhood. In order to induce CNS infection, M. tuberculosis needs to cross specialised barriers protecting the brain. How M. tuberculosis crosses the blood-brain barrier (BBB) and enters the CNS is not well understood. Here, we use transparent zebrafish larvae and the closely related pathogen Mycobacterium marinum to answer this question. We show that in the early stages of development, mycobacteria rapidly infect brain tissue, either as free mycobacteria or within circulating macrophages. After the formation of a functionally intact BBB, the infiltration of brain tissue by infected macrophages is delayed, but not blocked, suggesting that crossing the BBB via phagocytic cells is one of the mechanisms used by mycobacteria to invade the CNS. Interestingly, depletion of phagocytic cells did not prevent M. marinum from infecting the brain tissue, indicating that free mycobacteria can independently cause brain infection. Detailed analysis showed that mycobacteria are able to cause vasculitis by extracellular outgrowth in the smaller blood vessels and by infecting endothelial cells. Importantly, we could show that this second mechanism is an active process that depends on an intact ESX-1 secretion system, which extends the role of ESX-1 secretion beyond the macrophage infection cycle. © 2018 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  16. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia

    PubMed Central

    Hieke, Cathleen; Kriebel, Katja; Engelmann, Robby; Müller-Hilke, Brigitte; Lang, Hermann; Kreikemeyer, Bernd

    2016-01-01

    Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens. PMID:27974831

  17. Differential effects of LPS, IFN-gamma and TNF alpha on the secretion of lysozyme by individual human mononuclear phagocytes: relationship to cell maturity.

    PubMed Central

    Lewis, C E; McCarthy, S P; Lorenzen, J; McGee, J O

    1990-01-01

    Human mononuclear phagocytes can be activated to perform a variety of complex functions by exposure to the immunomodulators, lipopolysaccharide (LPS), interferon-gamma (IFN-gamma) and tumour necrosis factor alpha (TNF alpha). Although such activation often involves the release of various cytokines by monocytes and macrophages, little is known of the effects of such signals on their secretion of lysozyme (LZM). In this study, a reverse haemolytic plaque assay for LZM secretion is coupled with immunocytochemistry for the pan macrophage (CD68) marker, EBM/11. This enabled the direct effects of LPS, IFN-gamma and TNF alpha on the secretion of LZM by individual, immunoidentified human mononuclear phagocytes to be investigated. The overall secretion of this peptide by populations of freshly isolated or 3-day cultured monocytes was augmented by exposure for 6 hr to bacterial LPS, recombinant human IFN-gamma or recombinant human TNF alpha. Extension of the culture period for monocytes from 3 to 7 days prior to use in the assay resulted in higher levels of LZM secretion, which could be further increased by TNF alpha but not by LPS or IFN-gamma. Individual peritoneal macrophages activated by inflammation in vivo were uniform in their augmented LZM responses to TNF alpha, but a small subpopulation of human peritoneal macrophages, which may represent younger 'inflammatory' exudate macrophages, was seen to be preferentially responsive to the LZM-stimulating effects of LPS and IFN-gamma. These studies suggest that (i) secretion of LZM by human mononuclear phagocytes can be regulated by LPS and IFN-gamma, although the effects of these agents may be dependent upon the state of maturation and/or differentiation of the cells, and (ii) TNF alpha is a potent stimulant of LZM secretion by monocytes and macrophages irrespective of cell maturity. Images Figure 1 Figure 1 PMID:2107146

  18. Could a B-1 cell derived phagocyte "be one" of the peritoneal macrophages during LPS-driven inflammation?

    PubMed

    Popi, Ana Flavia; Osugui, Lika; Perez, Katia Regina; Longo-Maugéri, Ieda Maria; Mariano, Mario

    2012-01-01

    The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP), and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/-)) mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11) that is often found in B-1 cells. These results strongly suggest that op/op((-/-)) peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of the LPS-elicited peritoneal macrophage population.

  19. Integrins and small GTPases as modulators of phagocytosis.

    PubMed

    Sayedyahossein, Samar; Dagnino, Lina

    2013-01-01

    Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benach, J.L.; Fleit, H.B.; Habicht, G.S.

    1984-10-01

    The phagocytic capacity of murine and human mononuclear and polymorphonuclear phagocytes (including peripheral blood monocytes and neutrophils), rabbit and murine peritoneal exudate cells, and the murine macrophage cell line P388D1 against the Lyme disease spirochete was studied. All of these cells were capable of phagocytosing the spirochete; phagocytosis was measured by the uptake of radiolabeled spirochetes, the appearance of immunofluorescent bodies in phagocytic cells, and electron microscopy. Both opsonized and nonopsonized organisms were phagocytosed. The uptake of opsonized organisms by neutrophils was blocked by a monoclonal antibody specific for the Fc receptor and by immune complexes; these findings suggested thatmore » most phagocytosis is mediated by the Fc receptor. Similarly, the uptake of opsonized organisms by human monocytes was inhibited by human monomeric IgG1 and by immune complexes. These results illustrate the role of immune phagocytosis of spirochetes in host defense against Lyme disease.« less

  1. The Role of Phagocytes and NETs in Dermatophytosis.

    PubMed

    Yoshikawa, Fábio Seiti Yamada; De Almeida, Sandro Rogério

    2017-02-01

    Innate immunity is the host first line of defense against pathogens. However, only in recent years, we are beginning to better understand the ways it operates. A key player is this branch of the immune response that are the phagocytes, as macrophages, dendritic cells and neutrophils. These cells act as sentinels, employing specialized receptors in the sensing of invaders and host injury, and readily responding to them by production of inflammatory mediators. They afford protection not only by ingesting and destroying pathogens, but also by providing a suitable biochemical environment that shapes the adaptive response. In this review, we aim to present a broad perspective about the role of phagocytes in dermatophytosis, focusing on the mechanisms possibly involved in protective and non-protective responses. A full understanding of how phagocytes fit in the pathogenesis of these infections may open the venue for the development of new and more effective therapeutic approaches.

  2. Avian macrophage: effector functions in health and disease.

    PubMed

    Qureshi, M A; Heggen, C L; Hussain, I

    2000-01-01

    Monocytes-macrophages, cells belonging to the mononuclear phagocytic system, are considered as the first line of immunological defense. Being mobile scavenger cells, macrophages participate in innate immunity by serving as phagocytic cells. These cells arise in the bone marrow and subsequently enter the blood circulation as blood monocytes. Upon migration to various tissues, monocytes mature and differentiate into tissue macrophages. Macrophages then initiate the 'acquired' immune response in their capacity as antigen processing and presenting cells. While responding to their tissue microenvironment or exogenous antigenic challenge, macrophages may secrete several immunoregulatory cytokines or metabolites. Being the first line of immunological defense, macrophages therefore represent an important step during interaction with infectious agents. The outcome of the macrophage-pathogen interaction depends upon several factors including the stage of macrophage activation, the nature of the infectious agent, the level of genetic control on macrophage function as well as environmental and nutritional factors that may modulate macrophage activation and functions. Research in avian macrophages has lagged behind that in mammals. This has been largely due to the lack of harvestable resident macrophages from the chicken peritoneal cavity. However, the development of elicitation protocols to harvest inflammatory abdominal macrophages and the availability of transformed chicken macrophage cell lines, has enabled researchers to address several questions related to chicken macrophage biology and function in health and disease. In this manuscript the basic profiles of several macrophage effector functions are described. In addition, the interaction of macrophages with various pathogens as well as the effect of genetic and environmental factors on macrophage functional modulation is described.

  3. Marek's disease virus infection of phagocytes: a de novo in vitro infection model.

    PubMed

    Chakraborty, Pankaj; Vervelde, Lonneke; Dalziel, Robert G; Wasson, Peter S; Nair, Venugopal; Dutia, Bernadette M; Kaiser, Pete

    2017-05-01

    Marek's disease virus (MDV) is an alphaherpesvirus that induces T-cell lymphomas in chickens. Natural infections in vivo are caused by the inhalation of infected poultry house dust and it is presumed that MDV infection is initiated in the macrophages from where the infection is passed to B cells and activated T cells. Virus can be detected in B and T cells and macrophages in vivo, and both B and T cells can be infected in vitro. However, attempts to infect macrophages in vitro have not been successful. The aim of this study was to develop a model for infecting phagocytes [macrophages and dendritic cells (DCs)] with MDV in vitro and to characterize the infected cells. Chicken bone marrow cells were cultured with chicken CSF-1 or chicken IL-4 and chicken CSF-2 for 4 days to produce macrophages and DCs, respectively, and then co-cultured with FACS-sorted chicken embryo fibroblasts (CEFs) infected with recombinant MDV expressing EGFP. Infected phagocytes were identified and sorted by FACS using EGFP expression and phagocyte-specific mAbs. Detection of MDV-specific transcripts of ICP4 (immediate early), pp38 (early), gB (late) and Meq by RT-PCR provided evidence for MDV replication in the infected phagocytes. Time-lapse confocal microscopy was also used to demonstrate MDV spread in these cells. Subsequent co-culture of infected macrophages with CEFs suggests that productive virus infection may occur in these cell types. This is the first report of in vitro infection of phagocytic cells by MDV.

  4. Hematological shift in goat kids naturally devoid of prion protein.

    PubMed

    Reiten, Malin R; Bakkebø, Maren K; Brun-Hansen, Hege; Lewandowska-Sabat, Anna M; Olsaker, Ingrid; Tranulis, Michael A; Espenes, Arild; Boysen, Preben

    2015-01-01

    The physiological role of the cellular prion protein (PrP(C)) is incompletely understood. The expression of PrP(C) in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrP(C) knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrP(C). Here we report hematological and immunological analyses of homozygous goat kids lacking PrP(C) (PRNP(Ter/Ter) ) compared to heterozygous (PRNP (+/Ter)) and normal (PRNP (+/+)) kids. Levels of cell surface PrP(C) and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNP (Ter/Ter), intermediate in PRNP (+/Ter) and high in PRNP (+/+) kids. The PRNP (Ter/Ter) animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrP(C) has a role in bone marrow physiology and warrant further studies of PrP(C) in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrP(C)-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrP(C).

  5. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy.

    PubMed

    Silva, Mariana; Videira, Paula A; Sackstein, Robert

    2017-01-01

    The mononuclear phagocyte system comprises a network of circulating monocytes and dendritic cells (DCs), and "histiocytes" (tissue-resident macrophages and DCs) that are derived in part from blood-borne monocytes and DCs. The capacity of circulating monocytes and DCs to function as the body's first-line defense against offending pathogens greatly depends on their ability to egress the bloodstream and infiltrate inflammatory sites. Extravasation involves a sequence of coordinated molecular events and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is crucial in facilitating an effective immune response, but also fuels the immunopathology of several inflammatory disorders. Thus, insights into the structural and functional properties of the E-selectin ligands expressed by different monocyte and DC populations is key to understanding the biology of protective immunity and the pathobiology of several acute and chronic inflammatory diseases. This review will address the role of E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue injury/inflammation, the structural biology of the E-selectin ligands expressed by these cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which can be used to boost host defense or, conversely, to dampen pathological inflammatory conditions, will also be discussed.

  6. Bacterial Phenotype Variants in Group B Streptococcal Toxic Shock Syndrome1

    PubMed Central

    Johansson, Linda; Dahesh, Samira; Van Sorge, Nina M.; Darenberg, Jessica; Norgren, Mari; Sjölin, Jan; Nizet, Victor; Norrby-Teglund, Anna

    2009-01-01

    We conducted genetic and functional analyses of isolates from a patient with group B streptococcal (GBS) necrotizing fasciitis and toxic shock syndrome. Tissue cultures simultaneously showed colonies with high hemolysis (HH) and low hemolysis (LH). Conversely, the HH and LH variants exhibited low capsule (LC) and high capsule (HC) expression, respectively. Molecular analysis demonstrated that the 2 GBS variants were of the same clonal origin. Genetic analysis found a 3-bp deletion in the covR gene of the HH/LC variant. Functionally, this isolate was associated with an increased growth rate in vitro and with higher interleukin-8 induction. However, in whole blood, opsonophagocytic and intracellular killing assays, the LH/HC phenotype demonstrated higher resistance to host phagocytic killing. In a murine model, LH/HC resulted in higher levels of bacteremia and increased host mortality rate. These findings demonstrate differences in GBS isolates of the same clonal origin but varying phenotypes. PMID:19193266

  7. Bacterial phenotype variants in group B streptococcal toxic shock syndrome.

    PubMed

    Sendi, Parham; Johansson, Linda; Dahesh, Samira; Van-Sorge, Nina M; Darenberg, Jessica; Norgren, Mari; Sjölin, Jan; Nizet, Victor; Norrby-Teglund, Anna

    2009-02-01

    We conducted genetic and functional analyses of isolates from a patient with group B streptococcal (GBS) necrotizing fasciitis and toxic shock syndrome. Tissue cultures simultaneously showed colonies with high hemolysis (HH) and low hemolysis (LH). Conversely, the HH and LH variants exhibited low capsule (LC) and high capsule (HC) expression, respectively. Molecular analysis demonstrated that the 2 GBS variants were of the same clonal origin. Genetic analysis found a 3-bp deletion in the covR gene of the HH/LC variant. Functionally, this isolate was associated with an increased growth rate in vitro and with higher interleukin-8 induction. However, in whole blood, opsonophagocytic and intracellular killing assays, the LH/HC phenotype demonstrated higher resistance to host phagocytic killing. In a murine model, LH/HC resulted in higher levels of bacteremia and increased host mortality rate. These findings demonstrate differences in GBS isolates of the same clonal origin but varying phenotypes.

  8. Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing

    PubMed Central

    Meehan, Tracy L.; Joudi, Tony F.; Timmons, Allison K.; Taylor, Jeffrey D.; Habib, Corey S.; Peterson, Jeanne S.; Emmanuel, Shanan; Franc, Nathalie C.; McCall, Kimberly

    2016-01-01

    Billions of cells die in our bodies on a daily basis and are engulfed by phagocytes. Engulfment, or phagocytosis, can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification. In this study, we focus on the last two steps, which can collectively be considered corpse processing, in which the engulfed material is degraded. We use the Drosophila ovarian follicle cells as a model for engulfment of apoptotic cells by epithelial cells. We show that engulfed material is processed using the canonical corpse processing pathway involving the small GTPases Rab5 and Rab7. The phagocytic receptor Draper is present on the phagocytic cup and on nascent, phosphatidylinositol 3-phosphate (PI(3)P)- and Rab7-positive phagosomes, whereas integrins are maintained on the cell surface during engulfment. Due to the difference in subcellular localization, we investigated the role of Draper, integrins, and downstream signaling components in corpse processing. We found that some proteins were required for internalization only, while others had defects in corpse processing as well. This suggests that several of the core engulfment proteins are required for distinct steps of engulfment. We also performed double mutant analysis and found that combined loss of draper and αPS3 still resulted in a small number of engulfed vesicles. Therefore, we investigated another known engulfment receptor, Crq. We found that loss of all three receptors did not inhibit engulfment any further, suggesting that Crq does not play a role in engulfment by the follicle cells. A more complete understanding of how the engulfment and corpse processing machinery interact may enable better understanding and treatment of diseases associated with defects in engulfment by epithelial cells. PMID:27347682

  9. Inflammatory Role of Macrophage Xanthine Oxidoreductase in Pulmonary Hypertension: Implications for Novel Therapeutic Approaches

    DTIC Science & Technology

    2015-10-01

    Lung Inflammation, Uric Acid, Chronic Obstructive Pulmonary Disease, Mononuclear Phagocyte , Monosodium Urate, XOR WT, XOR KO, Wistar Kyoto, Pulmonary...0451 Annual Report (Year 1) 4 Mononuclear Phagocyte XOR Activity and Superoxide Generation Were Reduced by

  10. Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis.

    PubMed

    Chen, Xu; Li, Shi-Jun; Ojcius, David M; Sun, Ai-Hua; Hu, Wei-Lin; Lin, Xu'ai; Yan, Jie

    2017-01-01

    To identify the major infiltrating phagocytes during leptospirosis and examine the killing mechanism used by the host to eliminate Leptospira interrogans. Major infiltrating phagocytes in Leptospira-infected C3H/HeJ mice were detected by immunohistochemistry. Chemokines and vascular endothelial cell adhesion molecules (VECAMs) of Leptospira-infected mice and leptospirosis patients were detected by microarray and immunohistochemistry. Leptospira-phagocytosing and -killing abilities of human or mouse macrophages and neutrophils, and the roles of intracellular ROS, NO and [Ca2+]i in Leptospira-killing process were evaluated by confocal microscopy and spectrofluorimetry. Peripheral blood mononuclear-macrophages rather than neutrophils were the main infiltrating phagocytes in the lungs, liver and kidneys of infected mice. Levels of macrophage- but not neutrophil-specific chemokines and VECAMs were significantly increased in the samples from infected mice and patients. All macrophages tested had a higher ability than neutrophils to phagocytose and kill leptospires. Higher ROS and NO levels and [Ca2+]i in the macrophages were involved in killing leptospires. Human macrophages displayed more phagolysosome formation and a stronger leptospire-killing ability to than mouse macrophages. Mononuclear-macrophages but not neutrophils represent the main infiltrating and anti-leptospiral phagocytes during leptospirosis. A lower level of phagosome-lysosome fusion may be responsible for the lower Leptospira-killing ability of human macrophages.

  11. Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis.

    PubMed

    Hergott, Christopher B; Roche, Aoife M; Tamashiro, Edwin; Clarke, Thomas B; Bailey, Aubrey G; Laughlin, Alice; Bushman, Frederic D; Weiser, Jeffrey N

    2016-05-19

    Maintenance of myeloid cell homeostasis requires continuous turnover of phagocytes from the bloodstream, yet whether environmental signals influence phagocyte longevity in the absence of inflammation remains unknown. Here, we show that the gut microbiota regulates the steady-state cellular lifespan of neutrophils and inflammatory monocytes, the 2 most abundant circulating myeloid cells and key contributors to inflammatory responses. Treatment of mice with broad-spectrum antibiotics, or with the gut-restricted aminoglycoside neomycin alone, accelerated phagocyte turnover and increased the rates of their spontaneous apoptosis. Metagenomic analyses revealed that neomycin altered the abundance of intestinal bacteria bearing γ-d-glutamyl-meso-diaminopimelic acid, a ligand for the intracellular peptidoglycan sensor Nod1. Accordingly, signaling through Nod1 was both necessary and sufficient to mediate the stimulatory influence of the flora on myeloid cell longevity. Stimulation of Nod1 signaling increased the frequency of lymphocytes in the murine intestine producing the proinflammatory cytokine interleukin 17A (IL-17A), and liberation of IL-17A was required for transmission of Nod1-dependent signals to circulating phagocytes. Together, these results define a mechanism through which intestinal microbes govern a central component of myeloid homeostasis and suggest perturbations of commensal communities can influence steady-state regulation of cell fate. © 2016 by The American Society of Hematology.

  12. Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis

    PubMed Central

    Hergott, Christopher B.; Roche, Aoife M.; Tamashiro, Edwin; Clarke, Thomas B.; Bailey, Aubrey G.; Laughlin, Alice; Bushman, Frederic D.

    2016-01-01

    Maintenance of myeloid cell homeostasis requires continuous turnover of phagocytes from the bloodstream, yet whether environmental signals influence phagocyte longevity in the absence of inflammation remains unknown. Here, we show that the gut microbiota regulates the steady-state cellular lifespan of neutrophils and inflammatory monocytes, the 2 most abundant circulating myeloid cells and key contributors to inflammatory responses. Treatment of mice with broad-spectrum antibiotics, or with the gut-restricted aminoglycoside neomycin alone, accelerated phagocyte turnover and increased the rates of their spontaneous apoptosis. Metagenomic analyses revealed that neomycin altered the abundance of intestinal bacteria bearing γ-d-glutamyl-meso-diaminopimelic acid, a ligand for the intracellular peptidoglycan sensor Nod1. Accordingly, signaling through Nod1 was both necessary and sufficient to mediate the stimulatory influence of the flora on myeloid cell longevity. Stimulation of Nod1 signaling increased the frequency of lymphocytes in the murine intestine producing the proinflammatory cytokine interleukin 17A (IL-17A), and liberation of IL-17A was required for transmission of Nod1-dependent signals to circulating phagocytes. Together, these results define a mechanism through which intestinal microbes govern a central component of myeloid homeostasis and suggest perturbations of commensal communities can influence steady-state regulation of cell fate. PMID:26989200

  13. Developmental origin of lung macrophage diversity

    PubMed Central

    Tan, Serena Y. S.; Krasnow, Mark A.

    2016-01-01

    Macrophages are specialized phagocytic cells, present in all tissues, which engulf and digest pathogens, infected and dying cells, and debris, and can recruit and regulate other immune cells and the inflammatory response and aid in tissue repair. Macrophage subpopulations play distinct roles in these processes and in disease, and are typically recognized by differences in marker expression, immune function, or tissue of residency. Although macrophage subpopulations in the brain have been found to have distinct developmental origins, the extent to which development contributes to macrophage diversity between tissues and within tissues is not well understood. Here, we investigate the development and maintenance of mouse lung macrophages by marker expression patterns, genetic lineage tracing and parabiosis. We show that macrophages populate the lung in three developmental waves, each giving rise to a distinct lineage. These lineages express different markers, reside in different locations, renew in different ways, and show little or no interconversion. Thus, development contributes significantly to lung macrophage diversity and targets each lineage to a different anatomical domain. PMID:26952982

  14. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils

    PubMed Central

    Bae, Hong-Beom; Zmijewski, Jaroslaw W.; Deshane, Jessy S.; Tadie, Jean-Marc; Chaplin, David D.; Takashima, Seiji; Abraham, Edward

    2011-01-01

    Although AMPK plays well-established roles in the modulation of energy balance, recent studies have shown that AMPK activation has potent anti-inflammatory effects. In the present experiments, we examined the role of AMPK in phagocytosis. We found that ingestion of Escherichia coli or apoptotic cells by macrophages increased AMPK activity. AMPK activation increased the ability of neutrophils or macrophages to ingest bacteria (by 46±7.8 or 85±26%, respectively, compared to control, P<0.05) and the ability of macrophages to ingest apoptotic cells (by 21±1.4%, P<0.05 compared to control). AMPK activation resulted in cytoskeletal reorganization, including enhanced formation of actin and microtubule networks. Activation of PAK1/2 and WAVE2, which are downstream effectors of Rac1, accompanied AMPK activation. AMPK activation also induced phosphorylation of CLIP-170, a protein that participates in microtubule synthesis. The increase in phagocytosis was reversible by the specific AMPK inhibitor compound C, siRNA to AMPKα1, Rac1 inhibitors, or agents that disrupt actin or microtubule networks. In vivo, AMPK activation resulted in enhanced phagocytosis of bacteria in the lungs by 75 ± 5% vs. control (P<0.05). These results demonstrate a novel function for AMPK in enhancing the phagocytic activity of neutrophils and macrophages.—Bae, H. -B., Zmijewski, J. W., Deshane, J. S., Tadie, J. -M., Chaplin, D. D., Takashima, S., Abraham, E. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. PMID:21885655

  15. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    PubMed

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo.

  16. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses

    PubMed Central

    McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T.; Dennison, S. Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S. Munir; Haynes, Barton F.; Tomaras, Georgia D.

    2016-01-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo. PMID:27579713

  17. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells

    PubMed Central

    Flynn, Rowan; Grundmann, Alexander; Renz, Peter; Hänseler, Walther; James, William S.; Cowley, Sally A.; Moore, Michael D.

    2015-01-01

    Chronic granulomatous disease (CGD) is a rare genetic disease characterized by severe and persistent childhood infections. It is caused by the lack of an antipathogen oxidative burst, normally performed by phagocytic cells to contain and clear bacterial and fungal growth. Restoration of immune function can be achieved with heterologous bone marrow transplantation; however, autologous bone marrow transplantation would be a preferable option. Thus, a method is required to recapitulate the function of the diseased gene within the patient's own cells. Gene therapy approaches for CGD have employed randomly integrating viruses with concomitant issues of insertional mutagenesis, inaccurate gene dosage, and gene silencing. Here, we explore the potential of the recently described clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 site-specific nuclease system to encourage repair of the endogenous gene by enhancing the levels of homologous recombination. Using induced pluripotent stem cells derived from a CGD patient containing a single intronic mutation in the CYBB gene, we show that footprintless gene editing is a viable option to correct disease mutations. Gene correction results in restoration of oxidative burst function in iPS-derived phagocytes by reintroduction of a previously skipped exon in the cytochrome b-245 heavy chain (CYBB) protein. This study provides proof-of-principle for a gene therapy approach to CGD treatment using CRISPR-Cas9. PMID:26101162

  18. Surface code—biophysical signals for apoptotic cell clearance

    NASA Astrophysics Data System (ADS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

    2013-12-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

  19. Liver injury in hypervitaminosis A: Evidence for activation of Kupffer cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sim, W.L.W.

    1988-01-01

    The most important and novel finding of this work was enhanced liver Kupffer cell phagocytic and metabolic function by hypervitaminosis A. An animal model of hypervitaminosis A was developed in male Sprague-Dawley rats gavaged with 250,000 I.U. retinol/kg body weight/day for 3 weeks. Presence of hypervitaminosis A was indicated by characteristic changes in the fur coat, presence of brittle bones and spontaneous fractures and a significant increase in plasma and liver concentrations of retinyl palmitate while retinol levels remained the same as in controls. Hypervitaminosis A did not cause severe liver abnormalities as reflected by normal plasma glutamate pyruvate transaminasemore » activity and bilirubin. The main change was a marked increase in size of the fat or Vitamin A storing cells. Measurement of clearance from blood of indocyanine green and {sup 99m}Tc-disofenin indicated this hepatocyte function was normal. Kupffer cell phagocytic function was enhanced in hypervitaminosis A as determined by clearance from blood of {sup 99m}Tc-sulfur colloid. In vitro, there was also evidence that treatment with high doses of Vitamin A activated or enhanced Kupffer cell function. Kupffer cells from control and Vitamin A treated rats were isolated by enzymatic dispersion, purified by centrifugal elutriation, and placed in culture. Activation was indicated by (1) increased phagocytosis of {sup 51}Cr-labeled opsonized sheep red blood cells (2) enhanced release of superoxide anion and (3) enhanced production of tumor cytolytic factor by Kupffer cells from Vitamin A treated rats.« less

  20. Vibrio parahaemolyticus strengthens their virulence through modulation of cellular reactive oxygen species in vitro

    PubMed Central

    El-Malah, Shimaa S.; Yang, Zhenquan; Hu, Maozhi; Li, Qiuchun; Pan, Zhiming; Jiao, Xinan

    2014-01-01

    Vibrio parahaemolyticus (Vp) is one of the emergent food-borne pathogens that are commensally associated with various shellfish species throughout the world. It is strictly environmental and many strains are pathogenic to humans. The virulent strains cause distinct diseases, including wound infections, septicemia, and most commonly, acute gastroenteritis, which is acquired through the consumption of raw or undercooked seafood, especially shellfish. Vp has two type three secretion systems (T3SSs), which triggering its cytotoxicity and enterotoxicity via their effectors. To better understand the pathogenesis of Vp, we established a cell infection model in vitro using a non-phagocytic cell line. Caco-2 cells were infected with different strains of Vp (pandemic and non-pandemic strains) and several parameters of cytotoxicity were measured together with adhesion and invasion indices, which reflect the pathogen's virulence. Our results show that Vp adheres to cell monolayers and can invade non-phagocytic cells. It also survives and persists in non-phagocytic cells by modulating reactive oxygen species (ROS), allowing its replication, and resulting in complete cellular destruction. We conclude that the pathogenicity of Vp is based on its capacities for adhesion and invasion. Surprisingly's; enhanced of ROS resistance period could promote the survival of Vp inside the intestinal tract, facilitating tissue infection by repressing the host's oxidative stress response. PMID:25566508

  1. RES hyperphagocytosis by rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Cornell, R P

    1981-03-01

    In contrast to previous studies of neutrophils from diabetic animals and humans in vitro and of macrophages from diabetic humans in vivo, which reported phagocytic depression, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon was observed in rats at 14 and 28 days after diabetes induction with streptozotocin (STZ). Carbon clearance half times were significantly enhanced to 6.3 +/- 0.79 and 8.1 +/- 1.04 min at 14 and 28 days post-STZ, respectively, compared with the nondiabetic value (12.7 +/- 0.98 min). The severity of uncontrolled STZ-induced diabetes in rats was confirmed by significant hypoinsulinemia, hyperglucagonemia, hyperglycemia, and hyperlipidemia. Although body weights of STZ-diabetic animals declined progressively, liver weights as a percent of body weight increased above the control value at 14 and 28 days post-STZ. In fact, expression of carbon phagocytosis as the corrected phagocytic index, which accounts for changes in liver and spleen weights relative to body weight, eliminated the significant difference between STZ-diabetic and nondiabetic animals. Antibiotic treatment of diabetic rats failed to alter the hyperphagocytosis, implying that a chronic bacterial infection was not the cause of phagocytic stimulation. Daily insulin replacements, but not a single large insulin dose to 14-day post-STZ rats, reversed the enhanced phagocytosis of colloidal carbon.

  2. Lysosomal Degradation Is Required for Sustained Phagocytosis of Bacteria by Macrophages.

    PubMed

    Wong, Ching-On; Gregory, Steven; Hu, Hongxiang; Chao, Yufang; Sepúlveda, Victoria E; He, Yuchun; Li-Kroeger, David; Goldman, William E; Bellen, Hugo J; Venkatachalam, Kartik

    2017-06-14

    Clearance of bacteria by macrophages involves internalization of the microorganisms into phagosomes, which are then delivered to endolysosomes for enzymatic degradation. These spatiotemporally segregated processes are not known to be functionally coupled. Here, we show that lysosomal degradation of bacteria sustains phagocytic uptake. In Drosophila and mammalian macrophages, lysosomal dysfunction due to loss of the endolysosomal Cl - transporter ClC-b/CLCN7 delayed degradation of internalized bacteria. Unexpectedly, defective lysosomal degradation of bacteria also attenuated further phagocytosis, resulting in elevated bacterial load. Exogenous application of bacterial peptidoglycans restored phagocytic uptake in the lysosomal degradation-defective mutants via a pathway requiring cytosolic pattern recognition receptors and NF-κB. Mammalian macrophages that are unable to degrade internalized bacteria also exhibit compromised NF-κB activation. Our findings reveal a role for phagolysosomal degradation in activating an evolutionarily conserved signaling cascade, which ensures that continuous uptake of bacteria is preceded by lysosomal degradation of microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity.

    PubMed

    Sterkel, Alana K; Lorenzini, Jenna L; Fites, J Scott; Subramanian Vignesh, Kavitha; Sullivan, Thomas D; Wuthrich, Marcel; Brandhorst, Tristan; Hernandez-Santos, Nydiaris; Deepe, George S; Klein, Bruce S

    2016-03-09

    Systemic fungal infections trigger marked immune-regulatory disturbances, but the mechanisms are poorly understood. We report that the pathogenic yeast of Blastomyces dermatitidis elaborates dipeptidyl-peptidase IVA (DppIVA), a close mimic of the mammalian ectopeptidase CD26, which modulates critical aspects of hematopoiesis. We show that, like the mammalian enzyme, fungal DppIVA cleaved C-C chemokines and GM-CSF. Yeast producing DppIVA crippled the recruitment and differentiation of monocytes and prevented phagocyte activation and ROS production. Silencing fungal DppIVA gene expression curtailed virulence and restored recruitment of CCR2(+) monocytes, generation of TipDC, and phagocyte killing of yeast. Pharmacological blockade of DppIVA restored leukocyte effector functions and stemmed infection, while addition of recombinant DppIVA to gene-silenced yeast enabled them to evade leukocyte defense. Thus, fungal DppIVA mediates immune-regulatory disturbances that underlie invasive fungal disease. These findings reveal a form of molecular piracy by a broadly conserved aminopeptidase during disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Activation of cathepsins B and L in mouse lymphosarcoma tissue under the effect of cyclophosphamide is associated with apoptosis induction and infiltration by mononuclear phagocytes.

    PubMed

    Zhanaeva, S Ya; Mel'nikova, E V; Trufakin, V A; Korolenko, T A

    2013-11-01

    We analyzed activities of lysosomal cystein cathepsins B and L in mouse LS lymphosarcoma and its drug-resistant RLS 40 strain and their correlations with the dynamics of the percentage of cells with fragmented DNA and CD14 (+) phagocytes over 3 days after cyclophosphamide injection. LS regression and inhibition of RLS 40 growth after cyclophosphamide injection were paralleled by an increase in cathepsins B and L activities in tumor tissues. The antitumor effect of cyclophosphamide associated with apoptosis intensity and protease activities were significantly higher in LS. Positive correlations between activities of cathepsins B and L and the LS tissue content of cells with fragmented DNA and CD14 (+) phagocytes and negative correlations thereof with tumor weight were detected. It seems that the increase in cathepsins B and L activities in LS tissues was caused by cyclophosphamide induction of apoptosis and depended on the level of tumor cell infiltration with mononuclear phagocytes.

  5. Intracellular survival of Staphylococcus aureus during persistent infection in the insect Tenebrio molitor.

    PubMed

    McGonigle, John E; Purves, Joanne; Rolff, Jens

    2016-06-01

    Survival of bacteria within host cells and tissues presents a challenge to the immune systems of higher organisms. Escape from phagocytic immune cells compounds this issue, as immune cells become potential vehicles for pathogen dissemination. However, the duration of persistence within phagocytes and its contribution to pathogen load has yet to be determined. We investigate the immunological significance of intracellular persistence within the insect model Tenebrio molitor, assessing the extent, duration and location of bacterial recovery during a persistent infection. Relative abundance of Staphylococcus aureus in both intracellular and extracellular fractions was determined over 21 days, and live S. aureus were successfully recovered from both the hemolymph and within phagocytic immune cells across the entire time course. The proportion of bacteria recovered from within phagocytes also increased over time. Our results show that to accurately estimate pathogen load it is vital to account for bacteria persisting within immune cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo.

    PubMed

    Silva, Liliana M R; Muñoz-Caro, Tamara; Burgos, Rafael A; Hidalgo, Maria A; Taubert, Anja; Hermosilla, Carlos

    2016-01-01

    Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN), monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs) by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.

  7. A HISTOLOGICAL STUDY OF TYPHOID FEVER

    PubMed Central

    Mallory, F. B.

    1898-01-01

    The typhoid bacillus produces a mild diffusible toxine, partly within the intestinal tract, partly within the blood and organs of the body. This toxine produces proliferation of endothelial cells which acquire for a certain length of time malignant properties. The new-formed cells are epithelioid in character, have irregular, lightly staining, eccentrically situated nuclei, abundant, sharply defined, acidophilic protoplasm, and are characterized by marked phagocytic properties. These phagocytic cells are produced most abundantly along the line of absorption from the intestinal tract, both in the lymphatic apparatus and in the blood-vessels. They are also produced by distribution of the toxine through the general circulation, in greatest numbers where the circulation is slowest. Finally, they are produced all over the body in the lymphatic spaces and vessels by absorption of the toxine eliminated from the blood-vessels. The swelling of the intestinal lymphoid tissue of the mesenteric lymph nodes, and of the spleen is due almost entirely to the formation of phagocytic cells. The necrosis of the intestinal lymphoid tissue is accidental in nature and is caused through occlusion of the veins and capillaries by fibrinous thrombi, which owe their origin to degeneration of phagocytic cells beneath the lining endothelium of the vessels. Two varieties of focal lesions occur in the liver: one consists of the formation of phagocytic cells in the lymph spaces and vessels around the portal vessels under the action of the toxine absorbed by the lymphatics; the other is due to obstruction of liver capillaries by phagocytic cells derived in small part from the lining endothelium of the liver capillaries, but chiefly by embolism through the portal circulation of cells originating from the endothelium of the blood-vessels of the intestine and spleen. The liver cells lying between the occluded capillaries undergo necrosis and disappear. Later the foci of cells degenerate and fibrin forms between them. Invasion with polymorphonuclear leucocytes is rare. Many of the phagocytic cells pass through the liver and lungs, and get into the general circulation. A few come from the abdominal lymphatics through the thoracic duct. PMID:19866884

  8. NADPH oxidase inhibitors: a patent review.

    PubMed

    Kim, Jung-Ae; Neupane, Ganesh Prasad; Lee, Eung Seok; Jeong, Byeong-Seon; Park, Byung Chul; Thapa, Pritam

    2011-08-01

    NADPH oxidases, a family of multi-subunit enzyme complexes, catalyze the production of reactive oxygen species (ROS), which may contribute to the pathogenesis of a variety of diseases. In addition to the first NADPH oxidase found in phagocytes, four non-phagocytic NADPH oxidase isoforms have been identified, which all differ in their catalytic subunit (Nox1-5) and tissue distribution. This paper provides a comprehensive review of the patent literature on NADPH oxidase inhibitors, small molecule Nox inhibitors, peptides and siRNAs. Since each member of the NADPH oxidase family has great potential as a therapeutic target, several different compounds have been registered as NADPH oxidase inhibitors in the patent literature. As yet, none have gone through clinical trials, and some have not completed preclinical trials, including safety and specificity evaluation. Recently, small molecule pyrazolopyridine and triazolopyrimidine derivatives have been submitted as potent NADPH oxidase inhibitors and reported as first-in-class inhibitors for idiopathic pulmonary fibrosis and acute stroke, respectively. Further clinical efficacy and safety data are warranted to prove their actual clinical utility.

  9. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases

    PubMed Central

    2012-01-01

    Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2) low-level laser therapy (LLLT), a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS). For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT. Results Our results showed that LLLT (20 J/cm2) could attenuate toll-like receptor (TLR)-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO) production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308) phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway. Conclusions The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT treatment. Our research may provide a feasible therapeutic approach to control the progression of neurodegenerative diseases. PMID:22989325

  10. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury

    PubMed Central

    Kruger, Philipp; Saffarzadeh, Mona; Weber, Alexander N. R.; Rieber, Nikolaus; Radsak, Markus; von Bernuth, Horst; Benarafa, Charaf; Roos, Dirk; Skokowa, Julia; Hartl, Dominik

    2015-01-01

    Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage. PMID:25764063

  11. Intracellular microlasers

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Hyun Yun, Seok

    2015-09-01

    Optical microresonators, which confine light within a small cavity, are widely exploited for various applications ranging from the realization of lasers and nonlinear devices to biochemical and optomechanical sensing. Here we use microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explore two distinct types of microresonator—soft and hard—that support whispering-gallery modes. Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (˜500 pN μm-2) and its dynamic fluctuations at a sensitivity of 20 pN μm-2 (20 Pa). In a second form, whispering-gallery modes within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.

  12. Assessment of different protocols for the isolation and purification of gut associated lymphoid cells from the gilthead seabream (Sparus aurata L.)

    PubMed Central

    2007-01-01

    Teleost gut associated lymphoid tissue (GALT) consists of leucocyte populations located both intraepithelially and in the lamina propria with no structural organization. The present study aims to assess different protocols for the isolation of GALT cells from an important fish species in the Mediterranean aquaculture, the gilthead seabream. Mechanical, chemical and enzymatic treatments were assayed. Nylon wool columns and continuous density gradients were used for further separation of cell subpopulations. Light microscopy and flow cytometry showed that the highest density band (HD) consisted of a homogeneous lymphocytic population, whereas the intermediate density band (ID) corresponded to epithelial and secretory cells and some lymphocytes. Respiratory burst activity of total cell suspensions revealed very low numbers of potential phagocytic cells, reflecting results from light microscopy and reports in other teleost species. The present data set up the basis for future functional characterization of GALT in seabream. PMID:18213363

  13. Development of a Novel Targeted RNAi Delivery Technology in Therapies for Metabolic Diseases

    DTIC Science & Technology

    2016-10-01

    Kupffer cells and macrophages as demonstrated in our earlier studies, for targeted delivery of the sdRNA to these phagocytes in liver as originally...conjugation to glucan shell while preserving targeting specificity to phagocytic cells observed with our existing GeRP formulations. Small

  14. Structure and function of the digestive system of solen grandis dunker

    NASA Astrophysics Data System (ADS)

    Sheng, Xiuzhen; Zhan, Wenbin; Ren, Sulian

    2003-10-01

    Structure and function of the digestive system of a bivalve mollusc, Solen grandis, were studied using light microscopy and histochemical methods. The wall of digestive tube consists of four layers: the mucosal epithelium, connective tissue, muscular and fibrosa or serosa (only in the portion of rectum) from the inner to the outer. The ciliated columnar epithelial cells, dispersed by cup-shaped mucous cells, rest on a thin base membrane. There are abundant blood spaces in connective tissue layer. The digestive diverticula are composed of multi-branched duct and digestive tubules. The digestive tubules are lined with digestive and basophilic secretory cells, and surrounded by a layer of smooth muscle fibers and connective tissues. Activities of acid and alkaline phosphatases, esterase and lipase are detected in the digestive cells, and the epithelia of stomach and intestine, suggesting that these cells are capable of intracellular digesting of food materials and absorbing. Besides, acid phosphatase and esterase activities are present in the posterior portion of esophagus. Phagocytes are abundant in blood spaces and the lumens of stomach and intestine, containing brown granules derived from the engulfed food materials. The present work indicates that phagocytes play important roles in ingestion and digestion of food materials, which is supported as well by the activities of acid phosphatase, esterase and lipase detected in blood spaces.

  15. Relationship of aging and nutritional status to innate immunity in tube-fed bedridden patients.

    PubMed

    Takeuchi, Yoshiaki; Tashiro, Tomoe; Yamamura, Takuya; Takahashi, Seiichiro; Katayose, Kozo; Kohga, Shin; Takase, Mitsunori; Imawari, Michio

    2017-01-01

    Aging and malnutrition are known to influence immune functions. The aim of this study was to investigate the relationship of aging and malnutrition to innate immune functions in tube-fed bedridden patients. A cross-sectional survey was performed in 71 tube-fed bedridden patients aged 50-95 years (mean age±SD, 80.2±8.5 years) with serum albumin concentrations between 2.5 and 3.5 g/dL. We evaluated associations of age and nutritional variables with natural-killer cell activity, neutrophilphagocytic activity, and neutrophil-sterilizing activity. Nutritional variables included body mass index, weightadjusted energy intake, total lymphocyte count, and serum concentrations of albumin, transferrin, prealbumin, total cholesterol, C-reactive protein, and zinc. Natural-killer cell activity, neutrophil-phagocytic activity, and neutrophil-sterilizing activity were normal or increased in 67 (94%), 63 (89%), and 69 (97%) patients, respectively. Multiple linear regression analysis with a backward elimination method showed that natural-killer cell activity correlated negatively with aging and lymphocyte counts (p<0.01 for both) but positively with body mass index and transferrin (p<0.01 for both). Neutrophil-phagocytic and neutrophil-sterilizing activities were not associated with any variables. In tube-fed bedridden patients with hypo-albuminemia, natural-killer cell activity may be associated with aging, body mass index, transferrin, and lymphocyte counts.

  16. "Omics" of Food-Borne Gastroenteritis: Global Proteomic and Mutagenic Analysis of Salmonella enterica Serovar Enteritidis.

    PubMed

    Arunima, Aryashree; Yelamanchi, Soujanya D; Padhi, Chandrashekhar; Jaiswal, Sangeeta; Ryan, Daniel; Gupta, Bhawna; Sathe, Gajanan; Advani, Jayshree; Gowda, Harsha; Prasad, T S Keshava; Suar, Mrutyunjay

    2017-10-01

    Salmonella Enteritidis causes food-borne gastroenteritis by the two type three secretion systems (TTSS). TTSS-1 mediates invasion through intestinal lining, and TTSS-2 facilitates phagocytic survival. The pathogens' ability to infect effectively under TTSS-1-deficient background in host's phagocytes is poorly understood. Therefore, pathobiological understanding of TTSS-1-defective nontyphoidal Salmonellosis is highly important. We performed a comparative global proteomic analysis of the isogenic TTSS-1 mutant of Salmonella Enteritidis (M1511) and its wild-type isolate P125109. Our results showed 43 proteins were differentially expressed. Functional annotation further revealed that differentially expressed proteins belong to pathogenesis, tRNA and ncRNA metabolic processes. Three proteins, tryptophan subunit alpha chain, citrate lyase subunit alpha, and hypothetical protein 3202, were selected for in vitro analysis based on their functional annotations. Deletion mutants generated for the above proteins in the M1511 strain showed reduced intracellular survival inside macrophages in vitro. In sum, this study provides mass spectrometry-based evidence for seven hypothetical proteins, which will be subject of future investigations. Our study identifies proteins influencing virulence of Salmonella in the host. The study complements and further strengthens previously published research on proteins involved in enteropathogenesis of Salmonella and extends their role in noninvasive Salmonellosis.

  17. The granulocytes are the main immunocompetent hemocytes in Crassostrea gigas.

    PubMed

    Wang, Weilin; Li, Meijia; Wang, Lingling; Chen, Hao; Liu, Zhaoqun; Jia, Zhihao; Qiu, Limei; Song, Linsheng

    2017-02-01

    Hemocytes comprise diverse cell types with morphological and functional heterogeneity and play indispensable roles in immunological homeostasis of invertebrates. The morphological classification of different hemocytes in mollusk has been studied since the 1970's, yet the involvement of the different sub-populations in immune functions is far from clear. In the present study, three types of hemocytes were morphologically identified and separated as agranulocytes, semi-granulocytes and granulocytes by flow cytometry and Percoll ® density gradient centrifugation. The granulocytes were characterized functionally as the main phagocytic and encapsulating population, while semi-granulocytes and agranulocytes exhibited low or no such capacities, respectively. Meanwhile, the lysosome activity and the productions of ROS and NO were all mainly concentrated in granulocytes under both normal and immune-activated situations. Further, the mRNA transcripts of some immune related genes, including CgTLR, CgClathrin, CgATPeV, CgLysozyme, CgDefensin and CgIL-17, were mainly expressed in granulocytes, lower in semi-granulocytes and agranulocytes. These results collectively suggested that the granulocytes were the main immunocompetent hemocytes in oyster C. gigas, and a differentiation relationship among these three sub-population hemocytes was inferred based on the gradual changes in morphological, functional and molecular features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens

    PubMed Central

    Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric

    2015-01-01

    Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336

  19. Enhancement in ex vivo phagocytic capacity of peritoneal leukocytes in mice by oral delivery of various lactic-acid-producing bacteria.

    PubMed

    Lee, Yeonhee; Lee, Taik-Soo

    2005-01-01

    Lactic-acid-producing bacteria (LABs) are known to have immunomodulating activity. In the current study, various LABs were tested for their immunity-enhancing activity, especially the phagocytic activity of leukocytes. Viable but not heat-killed cells of Weissella kimchii strain PL9001, Lactobacillus fermentum strain PL9005, and L. plantarum strain PL9011 significantly increased the ex vivo phagocytic capacity of mouse peritoneal leukocytes to ingest fluorescein isothiocyanate (FITC)-labeled Escherichia coli in a strain-dependent manner. Results of this and previous studies suggest these LABs as candidates for new probiotics. This is the first report of the enhancement of peritoneal leukocyte activity of these species.

  20. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance.

    PubMed

    Elliott, Michael R; Chekeni, Faraaz B; Trampont, Paul C; Lazarowski, Eduardo R; Kadl, Alexandra; Walk, Scott F; Park, Daeho; Woodson, Robin I; Ostankovich, Marina; Sharma, Poonam; Lysiak, Jeffrey J; Harden, T Kendall; Leitinger, Norbert; Ravichandran, Kodi S

    2009-09-10

    Phagocytic removal of apoptotic cells occurs efficiently in vivo such that even in tissues with significant apoptosis, very few apoptotic cells are detectable. This is thought to be due to the release of 'find-me' signals by apoptotic cells that recruit motile phagocytes such as monocytes, macrophages and dendritic cells, leading to the prompt clearance of the dying cells. However, the identity and in vivo relevance of such find-me signals are not well understood. Here, through several lines of evidence, we identify extracellular nucleotides as a critical apoptotic cell find-me signal. We demonstrate the caspase-dependent release of ATP and UTP (in equimolar quantities) during the early stages of apoptosis by primary thymocytes and cell lines. Purified nucleotides at these concentrations were sufficient to induce monocyte recruitment comparable to that of apoptotic cell supernatants. Enzymatic removal of ATP and UTP (by apyrase or the expression of ectopic CD39) abrogated the ability of apoptotic cell supernatants to recruit monocytes in vitro and in vivo. We then identified the ATP/UTP receptor P2Y(2) as a critical sensor of nucleotides released by apoptotic cells using RNA interference-mediated depletion studies in monocytes, and macrophages from P2Y(2)-null mice. The relevance of nucleotides in apoptotic cell clearance in vivo was revealed by two approaches. First, in a murine air-pouch model, apoptotic cell supernatants induced a threefold greater recruitment of monocytes and macrophages than supernatants from healthy cells did; this recruitment was abolished by depletion of nucleotides and was significantly decreased in P2Y(2)(-/-) (also known as P2ry2(-/-)) mice. Second, clearance of apoptotic thymocytes was significantly impaired by either depletion of nucleotides or interference with P2Y receptor function (by pharmacological inhibition or in P2Y(2)(-/-) mice). These results identify nucleotides as a critical find-me cue released by apoptotic cells to promote P2Y(2)-dependent recruitment of phagocytes, and provide evidence for a clear relationship between a find-me signal and efficient corpse clearance in vivo.

  1. Hypoglycemic depression of RES function.

    PubMed

    Buchanan, B J; Filkins, J P

    1976-07-01

    The intravascular removal rates of colloidal carbon and of biologically active endotoxin by the reticuloendothelial system (RES) were evaluated as a function of blood-glucose levels. There was a significant negative correlation of carbon clearance half time on blood glucose in both saline-treated and insulin-treated rats. Insulin hypoglycemia depressed RES carbon clearance with the maximal effect occurring at blood glucose values below 30 mg/dl. Insulin hypoglycemia also severely impaired the intravascular removal of endotoxin as evaluated by lethality bioassay in lead-sensitized rats. It is concluded that blood glucose may modulate RES phagocytic function and that the hypoglycemia of endotoxin shock may augment the shock state due to impairment of RES host defense clearance functions.

  2. Changes in Monocyte Functions of Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, I.; Simons, E.; Castro, V.; Ott, C. Mark; Pierson, Duane L.

    2004-01-01

    Monocyte cell numbers and functions, including phagocytosis, oxidative burst capacity, and degranulation and expression of related surface molecules, were studied in blood specimens from 25 astronauts and 9 healthy control subjects. Blood samples were obtained 10 days before a space flight, 3 hours after landing and 3 days after landing. The number of monocytes in astronauts did not change significantly among the three sample collection periods. Following space flight, the monocytes ability to phagocytize Escherichia coli, to exhibit an oxidative burst, and to degranulate was reduced as compared to monocytes from control subjects. These alterations in monocyte functions after space flight correlated with alterations in the expression of CD32 and CD64.

  3. Interaction between the macrophage system and IgA immune complexes in IgA nephropathy.

    PubMed

    Roccatello, D; Coppo, R; Basolo, B; Martina, G; Rollino, C; Cordonnier, D; Busquet, G; Picciotto, G; Sena, L M; Piccoli, G

    1983-01-01

    In nine patients with IgA nephropathy, the function of the mononuclear phagocyte system was assessed by measuring in vivo clearance of anti-D coated red blood cells (RBC) and in vitro phagocytosis of sensitised RBC by monocytes. A strict correlation was found between in vivo macrophage function and in vitro monocyte phagocytosis. Statistical correlations were also found between in vivo clearance values and IgAIC and C3d values. A defective macrophage and monocyte function affects patients with major signs of clinical activity, highest IgAIC values, signs of complement activation and the most unfavourable clinical course.

  4. Rotenone Activates Phagocyte NADPH Oxidase through Binding to Its Membrane Subunit gp91phox

    PubMed Central

    Zhou, Hui; Zhang, Feng; Chen, Shih-heng; Zhang, Dan; Wilson, Belinda; Hong, Jau-shyong; Gao, Hui-Ming

    2011-01-01

    Rotenone, a widely used pesticide, reproduces Parkinsonism in rodents and associates with increased risk for Parkinson’s disease. We previously reported rotenone increased superoxide production through stimulating microglial phagocyte NADPH oxidase (PHOX). The present study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91phox, the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91phox. Functional studies showed both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91phox/p22phox) and cytosolic subunits (p67phox and p47phox). Rotenone-elicited extracellular superoxide release in p47phox-deficient macrophages suggested rotenone enabled to activate PHOX through a p47phox-independent mechanism. Increased membrane translocation of p67phox, elevated binding of p67phox to rotenone-treated membrane fractions, and co-immunoprecipitation of p67phox and gp91phox in rotenone-treated wild-type and p47phox-deficient macrophages indicated p67phox played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91phox. Rac1, a Rho-like small GTPase, enhanced p67phox-gp91phox interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91phox; such an interaction triggered membrane translocation of p67phox, leading to PHOX activation and superoxide production. PMID:22094225

  5. The Zebrafish as a New Model for the In Vivo Study of Shigella flexneri Interaction with Phagocytes and Bacterial Autophagy

    PubMed Central

    Mostowy, Serge; Boucontet, Laurent; Mazon Moya, Maria J.; Sirianni, Andrea; Boudinot, Pierre; Hollinshead, Michael; Cossart, Pascale; Herbomel, Philippe; Levraud, Jean-Pierre; Colucci-Guyon, Emma

    2013-01-01

    Autophagy, an ancient and highly conserved intracellular degradation process, is viewed as a critical component of innate immunity because of its ability to deliver cytosolic bacteria to the lysosome. However, the role of bacterial autophagy in vivo remains poorly understood. The zebrafish (Danio rerio) has emerged as a vertebrate model for the study of infections because it is optically accessible at the larval stages when the innate immune system is already functional. Here, we have characterized the susceptibility of zebrafish larvae to Shigella flexneri, a paradigm for bacterial autophagy, and have used this model to study Shigella-phagocyte interactions in vivo. Depending on the dose, S. flexneri injected in zebrafish larvae were either cleared in a few days or resulted in a progressive and ultimately fatal infection. Using high resolution live imaging, we found that S. flexneri were rapidly engulfed by macrophages and neutrophils; moreover we discovered a scavenger role for neutrophils in eliminating infected dead macrophages and non-immune cell types that failed to control Shigella infection. We observed that intracellular S. flexneri could escape to the cytosol, induce septin caging and be targeted to autophagy in vivo. Depletion of p62 (sequestosome 1 or SQSTM1), an adaptor protein critical for bacterial autophagy in vitro, significantly increased bacterial burden and host susceptibility to infection. These results show the zebrafish larva as a new model for the study of S. flexneri interaction with phagocytes, and the manipulation of autophagy for anti-bacterial therapy in vivo. PMID:24039575

  6. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation.

    PubMed

    Bergsbaken, Tessa; Cookson, Brad T

    2009-11-01

    Yersinia pestis, the etiological agent of plague, is one of the most deadly pathogens on our planet. This organism shares important attributes with its ancestral progenitor, Yersinia pseudotuberculosis, including a 70-kb virulence plasmid, lymphotropism during growth in the mammalian host, and killing of host macrophages. Infections with both organisms are biphasic, where bacterial replication occurs initially with little inflammation, followed by phagocyte influx, inflammatory cytokine production, and tissue necrosis. During infection, plasmid-encoded attributes facilitate bacterial-induced macrophage death, which results from two distinct processes and corresponds to the inflammatory crescendo observed in vivo: Naïve cells die by apoptosis (noninflammatory), and later in infection, activated macrophages die by pyroptosis (inflammatory). The significance of this redirected cell death for the host is underscored by the importance of phagocyte activation for immunity to Yersinia and the protective role of pyroptosis during host responses to anthrax lethal toxin and infections with Francisella, Legionella, Pseudomonas, and Salmonella. The similarities of Y. pestis and Y. pseudotuberculosis, including conserved, plasmid-encoded functions inducing at least two distinct mechanisms of cell death, indicate that comparative studies are revealing about their critical pathogenic mechanism(s) and host innate immune responses during infection. Validation of this idea and evidence of similar interactions with the host immune system are provided by Y. pseudotuberculosis-priming, cross-protective immunity against Y. pestis. Despite these insights, additional studies indicate much remains to be understood concerning effective host responses against Yersinia, including chromosomally encoded attributes that also contribute to bacterial evasion and modulation of innate and adaptive immune responses.

  7. DIFFERENCES IN ARACHIDONIC ACID METABOLISM BY HUMAN MYELOMONCYTIC CELL LINES

    EPA Science Inventory

    The production of arachidonic acid metabolites by the HL60, ML3, and U937 human phagocyte cell lines were determined after incubation with interferongamma (IFNg; 500 U/ml) or vehicle for 4 days. ells were prelabeled with tritiated arachidonic acid for 4 hours, and media supernata...

  8. Evaluation of immune functions in captive immature loggerhead sea turtles (Caretta caretta).

    PubMed

    Rousselet, Estelle; Levin, Milton; Gebhard, Erika; Higgins, Benjamin M; DeGuise, Sylvain; Godard-Codding, Céline A J

    2013-11-15

    Sea turtles face numerous environmental challenges, such as exposure to chemical pollution and biotoxins, which may contribute to immune system impairment, resulting in increased disease susceptibility. Therefore, a more thorough assessment of the host's immune response and its susceptibility is needed for these threatened and endangered animals. In this study, the innate and acquired immune functions of sixty-five clinically healthy, immature, captive loggerhead sea turtles (Caretta caretta) were assayed using non-lethal blood sample collection. Functional immune assays were developed and/or optimized for this species, including mitogen-induced lymphocyte proliferation, natural killer (NK) cell activity, phagocytosis, and respiratory burst. Peripheral blood mononuclear cells (PBMC) and phagocytes were isolated by density gradient centrifugation on Ficoll-Paque and discontinuous Percoll gradients, respectively. The T lymphocyte mitogens ConA significantly induced lymphocyte proliferation at 1 and 2 μg/mL while PHA significantly induced lymphocyte proliferation at 5 and 10 μg/mL. The B lymphocyte mitogen LPS significantly induced proliferation at 1 μg/mL. Monocytes demonstrated higher phagocytic activity than eosinophils. In addition, monocytes exhibited respiratory burst. Natural killer cell activity was higher against YAC-1 than K-562 target cells. These optimized assays may help to evaluate the integrity of loggerhead sea turtle's immune system upon exposure to environmental contaminants, as well as part of a comprehensive health assessment and monitoring program. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells.

    PubMed

    Flynn, Rowan; Grundmann, Alexander; Renz, Peter; Hänseler, Walther; James, William S; Cowley, Sally A; Moore, Michael D

    2015-10-01

    Chronic granulomatous disease (CGD) is a rare genetic disease characterized by severe and persistent childhood infections. It is caused by the lack of an antipathogen oxidative burst, normally performed by phagocytic cells to contain and clear bacterial and fungal growth. Restoration of immune function can be achieved with heterologous bone marrow transplantation; however, autologous bone marrow transplantation would be a preferable option. Thus, a method is required to recapitulate the function of the diseased gene within the patient's own cells. Gene therapy approaches for CGD have employed randomly integrating viruses with concomitant issues of insertional mutagenesis, inaccurate gene dosage, and gene silencing. Here, we explore the potential of the recently described clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 site-specific nuclease system to encourage repair of the endogenous gene by enhancing the levels of homologous recombination. Using induced pluripotent stem cells derived from a CGD patient containing a single intronic mutation in the CYBB gene, we show that footprintless gene editing is a viable option to correct disease mutations. Gene correction results in restoration of oxidative burst function in iPS-derived phagocytes by reintroduction of a previously skipped exon in the cytochrome b-245 heavy chain (CYBB) protein. This study provides proof-of-principle for a gene therapy approach to CGD treatment using CRISPR-Cas9. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  10. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification

    PubMed Central

    Harianto, J.; McClintock, J. B.; Byrne, M.

    2016-01-01

    Climate-induced ocean warming and acidification may render marine organisms more vulnerable to infectious diseases. We investigated the effects of warming and acidification on the immune response of the sea urchin Heliocidaris erythrogramma. Sea urchins were gradually introduced to four combinations of temperature and pHNIST (17°C/pH 8.15, 17°C/pH 7.6, 23°C/pH 8.15 and 23°C/pH 7.6) and then held in temperature–pH treatments for 1, 15 or 30 days to determine if the immune response would adjust to stressors over time. Coelomocyte concentration and type, phagocytic capacity and bactericidal activity were measured on day 1, 15 and 30 with different sea urchins used each time. At each time point, the coelomic fluid of individuals exposed to increased temperature and acidification had the lowest coelomocyte concentrations, exhibited lower phagocytic capacities and was least effective at inhibiting bacterial growth of the pathogen Vibrio anguillarum. Over time, increased temperature alleviated the negative effects of acidification on phagocytic activity. Our results demonstrate the importance of incorporating acclimation time to multiple stressors when assessing potential responses to future ocean conditions and indicate that the immune response of H. erythrogramma may be compromised under near-future ocean warming and acidification. PMID:27559066

  11. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification.

    PubMed

    Brothers, C J; Harianto, J; McClintock, J B; Byrne, M

    2016-08-31

    Climate-induced ocean warming and acidification may render marine organisms more vulnerable to infectious diseases. We investigated the effects of warming and acidification on the immune response of the sea urchin Heliocidaris erythrogramma Sea urchins were gradually introduced to four combinations of temperature and pHNIST (17°C/pH 8.15, 17°C/pH 7.6, 23°C/pH 8.15 and 23°C/pH 7.6) and then held in temperature-pH treatments for 1, 15 or 30 days to determine if the immune response would adjust to stressors over time. Coelomocyte concentration and type, phagocytic capacity and bactericidal activity were measured on day 1, 15 and 30 with different sea urchins used each time. At each time point, the coelomic fluid of individuals exposed to increased temperature and acidification had the lowest coelomocyte concentrations, exhibited lower phagocytic capacities and was least effective at inhibiting bacterial growth of the pathogen Vibrio anguillarum Over time, increased temperature alleviated the negative effects of acidification on phagocytic activity. Our results demonstrate the importance of incorporating acclimation time to multiple stressors when assessing potential responses to future ocean conditions and indicate that the immune response of H. erythrogramma may be compromised under near-future ocean warming and acidification. © 2016 The Author(s).

  12. Cellular pharmacodynamics of the novel biaryloxazolidinone radezolid: studies with infected phagocytic and nonphagocytic cells, using Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, and Legionella pneumophila.

    PubMed

    Lemaire, Sandrine; Kosowska-Shick, Klaudia; Appelbaum, Peter C; Verween, Gunther; Tulkens, Paul M; Van Bambeke, Françoise

    2010-06-01

    Radezolid is a novel biaryloxazolidinone in clinical development which shows improved activity, including against linezolid-resistant strains. In a companion paper (29), we showed that radezolid accumulates about 11-fold in phagocytic cells, with approximately 60% of the drug localized in the cytosol and approximately 40% in the lysosomes of the cells. The present study examines its activity against (i) bacteria infecting human THP-1 macrophages and located in different subcellular compartments (Listeria monocytogenes, cytosol; Legionella pneumophila, vacuoles; Staphylococcus aureus and Staphylococcus epidermidis, mainly phagolysosomal), (ii) strains of S. aureus with clinically relevant mechanisms of resistance, and (iii) isogenic linezolid-susceptible and -resistant S. aureus strains infecting a series of phagocytic and nonphagocytic cells. Radezolid accumulated to similar levels ( approximately 10-fold) in all cell types (human keratinocytes, endothelial cells, bronchial epithelial cells, osteoblasts, macrophages, and rat embryo fibroblasts). At equivalent weight concentrations, radezolid proved consistently 10-fold more potent than linezolid in all these models, irrespective of the bacterial species and resistance phenotype or of the cell type infected. This results from its higher intrinsic activity and higher cellular accumulation. Time kill curves showed that radezolid's activity was more rapid than that of linezolid both in broth and in infected macrophages. These data suggest the potential interest of radezolid for recurrent or persistent infections where intracellular foci play a determinant role.

  13. Human Platelets Exhibit Chemotaxis using Functional N-Formyl Peptide Receptors

    DTIC Science & Technology

    2005-01-01

    activated phagocytes. Therefore, we examined the chemotactic migration of platelets qualita- tively by videomicroscopy . Platelets in medium were al- lowed...significantly decreased M. Czapiga et al. /Experimental Hematology 33 (2005) 73–84 79Figure 3. Videomicroscopy of human platelets in response to formyl...selected platelets during videomicroscopy from the time of the addition of fMLF (104 M in 1 µL) or PBS. Movement between markers represents 10 frames

  14. [Effectiveness of bemitil in recurrent erysipelas].

    PubMed

    Ratnikova, L I

    1991-07-01

    The trial entered 66 patients with recurrent erysipelas treated conventionally with addition of either immunostimulator bemitil (0.25-0.5 g/day orally for 5-7 days) or placebo. The bemitil group was free of intoxication symptoms and local manifestations, discharged from hospital sooner than the controls. Therapeutic efficacy of bemitil is due to its promotion of mononuclear phagocytes function which acts as an essential mechanism of antibacterial defence activation in patients with recurrent erysipelas.

  15. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of encapsulated heat shock protein HSP70 on the basic functional properties of blood phagocytes.

    PubMed

    Kochetkova, O Yu; Yurinskaya, M M; Evgen'ev, M B; Zatsepina, O G; Shabarchina, L I; Suslikov, A V; Tikhonenko, S A; Vinokurov, M G

    2015-11-01

    Microencapsulated heat shock proteins HSP 70 were studied in terms of their effects on neutrophil apoptosis, production of reactive oxygen species, and secretion of TNF-α by human neurtrophils and monocytes. Encapsulated HSP70 inhibited neutrophil apoptosis by 65% as compared to the effect of nonencapsulated HSP70; TNF-α production by the promonocytic THP-1 cells was similarly inhibited by the non-encapsulated and encapsulated HSP70. Thus, the polyelectrolyte micromolecules can be used as containers for effective delivery of HSP70 up to neutrophils and monocytes to correct the innate immunity functions.

  17. Csf1r-mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System.

    PubMed

    Hawley, Catherine A; Rojo, Rocio; Raper, Anna; Sauter, Kristin A; Lisowski, Zofia M; Grabert, Kathleen; Bain, Calum C; Davis, Gemma M; Louwe, Pieter A; Ostrowski, Michael C; Hume, David A; Pridans, Clare; Jenkins, Stephen J

    2018-03-15

    CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r -mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Δ Csf1- enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r- driven reporter lines, Csf1r -mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Δ Csf1r -ECFP- Csf1r -mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r- mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines. Copyright © 2018 The Authors.

  18. Effects of ascorbate on leucocytes: Part II. Effects of ascorbic acid and calcium and sodium ascorbate on neutrophil phagocytosis and post-phagocytic metabolic activity.

    PubMed

    Anderson, R

    1979-09-01

    The effects of ascorbic acid and calcium and sodium ascorbate at a concentration range of 10(-6)M - 10(-1)M on polymorphonuclear leucocyte (PMN) phagocytosis of Candida albicans and post-phagocytic nitroblue tetrazolium (NBT) reduction, hexose monophosphate shunt (HMS) activity and myeloperoxidase-mediated iodination of ingested protein were investigated. Phagocytosis of C. albicans was unaffected by ascorbate concentrations of 10(-6)M - 10(-2)M; however, progressive inhibition was observed at concentrations of 10(-2)M upwards. Enhancement of resting and stimulated HMS activity and NBT reduction was evident at ascorbate concentrations of 10(-5) M - 10(-2)M. The stimulations of HMS activity and NBT reduction was independent of myeloperoxidase iodination of ingested protein and this latter function was strongly inhibited by ascorbate. Concentrations of ascorbic acid and calcium and sodium ascorbate which caused inhibition of phagocytosis and HMS activity were the same as those which mediated stimulation of cell motility, indicating that independent cellular mechanisms may govern motility and phagocytosis.

  19. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway

    PubMed Central

    Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401

  20. Elimination of soluble sup 123 I-labeled aggregates of IgG in patients with systemic lupus erythematosus. Effect of serum IgG and numbers of erythrocyte complement receptor type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halma, C.; Breedveld, F.C.; Daha, M.R.

    1991-04-01

    Using soluble {sup 123}I-labeled aggregates of human IgG ({sup 123}I-AHIgG) as a probe, we examined the function of the mononuclear phagocyte system in 22 patients with systemic lupus erythematosus (SLE) and 12 healthy controls. In SLE patients, a decreased number of erythrocyte complement receptor type 1 was associated with less binding of {sup 123}I-AHIgG to erythrocytes and a faster initial rate of elimination of {sup 123}I-AHIgG (mean +/- SEM half-maximal clearance time 5.23 +/- 0.2 minutes, versus 6.58 +/- 0.2 minutes in the controls), with possible spillover of the material outside the mononuclear phagocyte system of the liver and spleen.more » However, multiple regression analysis showed that serum concentrations of IgG were the most important factor predicting the rate of {sup 123}I-AHIgG elimination. IgG concentration may thus reflect immune complex clearance, which in turn, would influence the inflammatory reaction, in SLE.« less

  1. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion

    PubMed Central

    Horsthemke, Markus; Bachg, Anne C.; Groll, Katharina; Moyzio, Sven; Müther, Barbara; Hemkemeyer, Sandra A.; Wedlich-Söldner, Roland; Sixt, Michael; Tacke, Sebastian; Bähler, Martin; Hanley, Peter J.

    2017-01-01

    Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading. PMID:28289096

  2. Effect of the Gc-derived macrophage-activating factor precursor (preGcMAF) on phagocytic activation of mouse peritoneal macrophages.

    PubMed

    Uto, Yoshihiro; Yamamoto, Syota; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Nakata, Eiji; Hori, Hitoshi

    2011-07-01

    The 1f1f subtype of the Gc protein (Gc(1f1f) protein) was converted into Gc-derived macrophage-activating factor (GcMAF) by enzymatic processing in the presence of β-galactosidase of an activated B-cell and sialidase of a T-cell. We hypothesized that preGc(1f1f)MAF, the only Gc(1f1f) protein lacking galactose, can be converted to GcMAF in vivo because sialic acid is cleaved by residual sialidase. Hence, we investigated the effect of preGc(1f1f)MAF on the phagocytic activation of mouse peritoneal macrophages. We examined the sugar moiety of preGc(1f1f)MAF with a Western blot using peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA) lectin. We also found that preGc(1f1f)MAF significantly enhanced phagocytic activity in mouse peritoneal macrophages but only in the presence of the mouse peritoneal fluid; the level of phagocytic activity was the same as that observed for GcMAF. PreGc(1f1f)MAF can be used as an effective macrophage activator in vivo.

  3. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2016-09-01

    The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species.

    PubMed

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-18

    The successful treatment of bacterial infections is the achievement of a synergy between the host's immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host's immune defences and antibiotic interactions in microbial infections.

  5. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species

    PubMed Central

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-01

    The successful treatment of bacterial infections is the achievement of a synergy between the host’s immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host’s immune defences and antibiotic interactions in microbial infections. PMID:26778774

  6. [EFFECT OF LACTOBACILLI EXOPOLYSACCHARIDES ON PHAGOCYTE AND CYTOKINE ACTIVITY IN VITRO AND IN ANIMAL ORGANISM DURING INFECTIOUS PROCESS MODELING].

    PubMed

    Gorelnikova, E A; Karpunina, L V

    2015-01-01

    Study the effect of lactobacilli exopolysaccharides (EPS)on cytokine and phagocyte activity in vitro and in mice organism during modelling of an infectious process. Lactobacillus delbrueckii subsp. delbrueckii B-1596 (laksaran 1596), L. delbrueckii B-1936 (laksaran 1936) and L. delbrueckii ssp. bulgaricus (laksaran Z) were used in the study. EPS were administered into white mice 1 hour after the Staphylococcus aureus 209-P infection. Index of phagocyte completion and index of killing activation (IKA) were calculated during phagocyte activity study. IL-1α, TNF-α, IFN-γ and IL-4 cytokine content was determined in blood sera and macrophage supernatants. Laksaran 1596, 1936 and Z had ambiguous effect on cytokine production. Laksaran: Z and 1936, 6 hours after mice infection increased IL-1 content in blood sera. Laksaran Z had the most pronounced effect on macrophages, resulting in an increase of active macrophages, facilitating increased digestion of S. aureus 209-P and IKA increase, stimulated cytokine production. The results obtained allow to speak about a possibility of using laksaran Z as a prophylaxis immune modulating preparation for correction of animal cytokine status.

  7. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines.

    PubMed

    Jafari, Alireza; Mosavari, Nader; Movahedzadeh, Farahnaz; Nodooshan, Saeedeh Jafari; Safarkar, Roya; Moro, Rossella; Kamalzadeh, Morteza; Majidpour, Ali; Boustanshenas, Mina; Mosavi, Tahereh

    2017-09-01

    The purpose of this research project was to infection of human macrophages (THP-1) cell lines by H 37 Rv strain of Mycobacterium tuberculosis (H 37 RvMTB) and find out the ratio/dilution of mixture silver (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) whose ability to eliminate phagocytized bacteria compared to rifampicin. The colloidal Ag NPs and ZnO NPs were synthesized and their characteristics were evaluated. The THP-1 cell lines were infected with different concentration of H 37 RvMTB. Next, the infected cells were treated with different ratios/dilutions of Ag NPs, ZnO NPs and rifampicin. The THP-1 were lysed and were cultured in Lowenstein-Jensen agar medium, for eight weeks. The TEM and AFM images of NPs and H 37 RvMTB were supplied. It is observed that Ag NPs, 2 Ag :8 ZnO and 8 Ag :2 ZnO did not have any anti-tubercular effects on phagocytized H 37 RvMTB. Conversely, ZnO NPs somehow eliminated 18.7 × 10 4  CFU ml -1 of H 37 RvMTB in concentration of ∼ 0.468 ppm. To compare with 40 ppm of rifampicin, ∼ 0.663 ppm of 5 Ag :5 ZnO had the ability to kill of H 37 RvMTB, too. Based on previous research, ZnO NPs had strong anti-tubercular impact against H 37 RvMTB to in-vitro condition, but it was toxic in concentration of ∼ 0.468 ppm to both of THP-1 and normal lung (MRC-5) cell lines. It also seems that 5 Ag :5 ZnO is justified because in concentration of ∼ 0.663 ppm of 5 Ag :5 ZnO , phagocytized H 37 RvMTB into the THP-1 had died without any toxicity effects against THP-1 and also MRC-5 cell lines. It is obvious that the mixture of colloidal silver and zinc oxide NPs with ratio of 5 Ag :5 ZnO would be trustworthy options as anti-tubercular nano-drugs in future researches. Copyright © 2017. Published by Elsevier Ltd.

  8. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways

    PubMed Central

    Ravichandran, Kodi S.

    2011-01-01

    Prompt and efficient clearance of apoptotic cells is necessary to prevent secondary necrosis of dying cells, and to avoid immune responses to autoantigens. Recent studies have shed light on how apoptotic cells through soluble ‘find-me signals’ advertise their presence to phagocytes at the earliest stages of cell death. Phagocytes sense the find-me signal gradient, and in turn the presence of dying cells, and migrate to their vicinity. The apoptotic cells also expose specific eat-me signals on their surface that are recognized by phagocytes through specific engulfment receptors. This review covers the recent progress in the areas of find-me and eat-me signals, and how these relate to prompt and immunologically silent clearance of apoptotic cells. PMID:22035837

  9. The Malnutrition-Related Increase in Early Visceralization of Leishmania donovani Is Associated with a Reduced Number of Lymph Node Phagocytes and Altered Conduit System Flow

    PubMed Central

    Ibrahim, Marwa K.; Barnes, Jeffrey L.; Anstead, Gregory M.; Jimenez, Fabio; Travi, Bruno L.; Peniche, Alex G.; Osorio, E. Yaneth; Ahuja, Seema S.; Melby, Peter C.

    2013-01-01

    In a murine model of moderate childhood malnutrition we found that polynutrient deficiency led to a 4–5-fold increase in early visceralization of L. donovani (3 days post-infection) following cutaneous infection and a 16-fold decrease in lymph node barrier function (p<0.04 for all). To begin to understand the mechanistic basis for this malnutrition-related parasite dissemination we analyzed the cellularity, architecture, and function of the skin-draining lymph node. There was no difference in the localization of multiple cell populations in the lymph node of polynutrient deficient (PND) mice, but there was reduced cellularity with fewer CD11c+dendritic cells (DCs), fibroblastic reticular cells (FRCs), MOMA-2+ macrophages, and CD169+ subcapsular sinus macrophage (p<0.05 for all) compared to the well-nourished (WN) mice. The parasites were equally co-localized with DCs associated with the lymph node conduit network in the WN and PND mice, and were found in the high endothelial venule into which the conduits drain. When a fluorescent low molecular weight (10 kD) dextran was delivered in the skin, there was greater efflux of the marker from the lymph node conduit system to the spleens of PND mice (p<0.04), indicating that flow through the conduit system was altered. There was no evidence of disruption of the conduit or subcapsular sinus architecture, indicating that the movement of parasites into the subcortical conduit region was due to an active process and not from passive movement through a leaking barrier. These results indicate that the impaired capacity of the lymph node to act as a barrier to dissemination of L. donovani infection is associated with a reduced number of lymph node phagocytes, which most likely leads to reduced capture of parasites as they transit through the sinuses and conduit system. PMID:23967356

  10. Macrolide Antibiotics Improve Phagocytic Capacity and Reduce Inflammation In Sulfur Mustard-Exposed Monocytes

    DTIC Science & Technology

    2008-12-01

    phagocytotic function and on inflammatory cytokines/mediators production in vitro using SM-exposed monocyte THP - 1 cells. Using flow cytometry we found...in vitro using SM-exposed monocyte THP - 1 cells. 2. MATERIALS AND METHODS 2.1 Reagents Sulfur mustard (2,2’-dichlorodiethyl sulfide; 4 mM) was...monocyte THP - 1 cells were obtained from ATCC (Manassas, VA). Cells were grown as suspension in the optimized media as formulated by the manufacturer and

  11. GSL-enriched membrane microdomains in innate immune responses.

    PubMed

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  12. Investigation of Functional Activity of Cells in Granulomatous Inflammatory Lesions from Mice with Latent Tuberculous Infection in the New Ex Vivo Model

    PubMed Central

    2013-01-01

    The new ex vivo model system measuring functional input of individual granuloma cells to formation of granulomatous inflammatory lesions in mice with latent tuberculous infection has been developed and described in the current study. Monolayer cultures of cells that migrated from individual granulomas were established in the proposed culture settings for mouse spleen and lung granulomas induced by in vivo exposure to BCG vaccine. The cellular composition of individual granulomas was analyzed. The expression of the leukocyte surface markers such as phagocytic receptors CD11b, CD11c, CD14, and CD16/CD32 and the expression of the costimulatory molecules CD80, CD83, and CD86 were tested as well as the production of proinflammatory cytokines (IFNγ and IL-1α) and growth factors (GM-CSF and FGFb) for cells of individual granulomas. The colocalization of the phagocytic receptors and costimulatory molecules in the surface microdomains of granuloma cells (with and without acid-fast BCG-mycobacteria) has also been detected. It was found that some part of cytokine macrophage producers have carried acid-fast mycobacteria. Detected modulation in dynamics of production of pro-inflammatory cytokines, growth factors, and leukocyte surface markers by granuloma cells has indicated continued processes of activation and deactivation of granuloma inflammation cells during the latent tuberculous infection progress in mice. PMID:24198843

  13. TEMPORAL CHANGES IN PH WITHIN THE PHAGOCYTIC VACUOLE OF THE POLYMORPHONUCLEAR NEUTROPHILIC LEUKOCYTE

    PubMed Central

    Jensen, Michael S.; Bainton, Dorothy F.

    1973-01-01

    Although previous workers have established that the pH of the phagocytic vacuole of the polymorphonuclear (PMN) leukocyte changes from neutral to acid, the time course of conversion has not been investigated. The present experiments were initiated to study pH changes immediately after phagocytosis. Peritoneal exudates were induced in rats; 4 h later, yeast stained with pH indicators was injected intraperitoneally, and the exudate was retrieved at 30-s intervals and examined by light microscopy. Results revealed that (a) within 3 min, pH dropped to ∼6.5, as indicated by the change in color of neutral red-stained yeast; (b) within 7–15 min, pH dropped progressively to ∼4.0, as indicated by color change in bromcresol green-stained yeast; (c) pH did not fall below 4, since no color change was observed up to 24 h when bromphenol blue-stained yeast was used. The finding that intravacuolar acidity increases rapidly after phagocytosis is undoubtedly important with respect to PMN leukocyte function in killing and digesting microorganisms, for many PMN leukocyte granule enzymes (i.e., peroxidase and lysosomal enzymes) are activated at acid pH (∼4.5). It follows that temporal changes in pH and maximal pH depression should be considered in studies of intraleukocytic microbicidal mechanisms, since a defect in these factors could result in impaired PMN leukocyte function. PMID:4118890

  14. Effects of high-fat diet on somatic growth, metabolic parameters and function of peritoneal macrophages of young rats submitted to a maternal low-protein diet.

    PubMed

    Alheiros-Lira, Maria Cláudia; Jurema-Santos, Gabriela Carvalho; da-Silva, Helyson Tomaz; da-Silva, Amanda Cabral; Moreno Senna, Sueli; Ferreira E Silva, Wylla Tatiana; Ferraz, José Candido; Leandro, Carol Góis

    2017-03-01

    This study evaluated the effects of a post-weaning high-fat (HF) diet on somatic growth, food consumption, metabolic parameters, phagocytic rate and nitric oxide (NO) production of peritoneal macrophages in young rats submitted to a maternal low-protein (LP) diet. Male Wistar rats (aged 60 d) were divided in two groups (n 22/each) according to their maternal diet during gestation and lactation: control (C, dams fed 17 % casein) and LP (dams fed 8 % casein). At weaning, half of the groups were fed HF diet and two more groups were formed (HF and low protein-high fat (LP-HF)). Somatic growth, food and energy intake, fat depots, serum glucose, cholesterol and leptin concentrations were evaluated. Phagocytic rate and NO production were analysed in peritoneal macrophages under stimulation of zymosan and lipopolysaccharide (LPS)+interferon γ (IFN-γ), respectively. The maternal LP diet altered the somatic parameters of growth and development of pups. LP and LP-HF pups showed a higher body weight gain and food intake than C pups. HF and LP-HF pups showed increased retroperitoneal and epididymal fat depots, serum level of TAG and total cholesterol compared with C and LP pups. After LPS+IFN-γ stimulation, LP and LP-HF pups showed reduced NO production when compared with their pairs. Increased phagocytic activity and NO production were seen in LP but not LP-HF peritoneal macrophages. However, peritoneal macrophages of LP pups were hyporesponsive to LPS+IFN-γ induced NO release, even after a post-weaning HF diet. Our data demonstrated that there was an immunomodulation related to dietary fatty acids after the maternal LP diet-induced metabolic programming.

  15. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation.

    PubMed

    Grabiec, Aleksander M; Hussell, Tracy

    2016-07-01

    Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called 'efferocytosis'. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released 'damage associated molecular patterns' (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections.

  16. The effect of feed supplementation with zinc chelate and zinc sulphate on selected humoral and cell-mediated immune parameters and cytokine concentration in broiler chickens.

    PubMed

    Jarosz, Łukasz; Marek, Agnieszka; Grądzki, Zbigniew; Kwiecień, Małgorzata; Kalinowski, Marcin

    2017-06-01

    The ability of poultry to withstand infectious disease caused by bacteria, viruses or protozoa depends upon the integrity of the immune system. Zinc is important for proper functioning of heterophils, mononuclear phagocytes and T lymphocytes. Numerous data indicate that the demand for zinc in poultry is not met in Poland due to its low content in feeds of vegetable origin. The aim of the study was to determine the effect of supplementation of inorganic (ZnSO 4 and ZnSO 4 + phytase enzyme), and organic forms of zinc (Zn with glycine and Zn with glycine and phytase enzyme) on selected parameters of the cellular and humoral immune response in broiler chickens by evaluating the percentage of CD3 + CD4 + , CD3 + CD8 + , CD25 + , MHC Class II, and BU-1 + lymphocytes, the phagocytic activity of monocytes and heterophils, and the concentration of IL-2, IL-10 and TNF-α in the peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. Phagocytic activity in whole blood was performed using the commercial Phagotest kit (ORPEGEN-Pharma, Immuniq, Poland). The results showed that supplementation with zinc chelates causes activation of the cellular and humoral immune response in poultry, helping to maintain the balance between the Th1 and Th2 response and enhancing resistance to infections. In contrast with chelates, the use of zinc in the form of sulphates has no immunomodulatory effect and may contribute to the development of local inflammatory processes in the digestive tract, increasing susceptibility to infection. Copyright © 2016. Published by Elsevier Ltd.

  17. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response.

    PubMed

    Carreto-Binaghi, Laura Elena; Aliouat, El Moukhtar; Taylor, Maria Lucia

    2016-06-01

    Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D) with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs' surface tension function and for the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary collectins, have an important function in the host's lung immune response; they act as opsonins for different pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune cells for the clearance of these pathogens and the role of surfactant proteins' regulation during respiratory fungal infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those respiratory mycoses where the fungal infective propagules reach the lungs by the airways.

  18. Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function During Nanoparticle-Induced Oxidative Stress

    DOE PAGES

    Duan, Jicheng; Kodali, Vamsi K.; Gaffrey, Matthew J.; ...

    2015-12-23

    Engineered nanoparticles (ENPs) are emerging functional materials increasingly utilized for commercial and medical applications. Due to the potential hazard effects of ENPs to human health, it is significant to assess and understand the underlying mechanisms of nanotoxicity. Here, we investigate protein S-glutathionylation (SSG) as an underlying regulatory mechanism for ENP-induced oxidative stress in macrophages by applying a recently developed quantitative redox proteomics approach for site-specific measurements of SSG. Three high-volume production ENPs (SiO 2, Fe 3O 4 and CoO) were selected as representative ENPs with low, moderate, and high reactive oxygen species (ROS) activity, respectively. Among these nanoparticles, we observemore » that CoO led to the most significant dose-dependent oxidative stress and increase of protein SSG modifications in macrophages. Our site-specific SSG changes highlighted a broad set of redox sensitive proteins and their specific Cys residues potentially implicated in stress response. Functional analysis revealed that the most significantly enriched functional categories for SSG-modified proteins were stress response, cellular structure change, and cell death or survival. Moreover, ENPs-induce oxidative stress levels (CoO > Fe 3O 4 > SiO 2) were found to correlate well with the levels of impairment of macrophage phagocytic activity and the overall degrees of increases in SSG. RNA silencing knockdown experiment of glutaredoxin 1 (Grx1) also led to a decreased phagocytic activity in macrophages, which suggested a regulatory role of SSG in phagocytosis. Together, the results provided valuable insights of protein SSG as a potential regulatory mechanism in response to nanomaterial-induced oxidative stress and immunity dysfunction.« less

  19. Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function During Nanoparticle-Induced Oxidative Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Jicheng; Kodali, Vamsi K.; Gaffrey, Matthew J.

    Engineered nanoparticles (ENPs) are emerging functional materials increasingly utilized for commercial and medical applications. Due to the potential hazard effects of ENPs to human health, it is significant to assess and understand the underlying mechanisms of nanotoxicity. Here, we investigate protein S-glutathionylation (SSG) as an underlying regulatory mechanism for ENP-induced oxidative stress in macrophages by applying a recently developed quantitative redox proteomics approach for site-specific measurements of SSG. Three high-volume production ENPs (SiO 2, Fe 3O 4 and CoO) were selected as representative ENPs with low, moderate, and high reactive oxygen species (ROS) activity, respectively. Among these nanoparticles, we observemore » that CoO led to the most significant dose-dependent oxidative stress and increase of protein SSG modifications in macrophages. Our site-specific SSG changes highlighted a broad set of redox sensitive proteins and their specific Cys residues potentially implicated in stress response. Functional analysis revealed that the most significantly enriched functional categories for SSG-modified proteins were stress response, cellular structure change, and cell death or survival. Moreover, ENPs-induce oxidative stress levels (CoO > Fe 3O 4 > SiO 2) were found to correlate well with the levels of impairment of macrophage phagocytic activity and the overall degrees of increases in SSG. RNA silencing knockdown experiment of glutaredoxin 1 (Grx1) also led to a decreased phagocytic activity in macrophages, which suggested a regulatory role of SSG in phagocytosis. Together, the results provided valuable insights of protein SSG as a potential regulatory mechanism in response to nanomaterial-induced oxidative stress and immunity dysfunction.« less

  20. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.

    PubMed

    Souabni, Hajer; Ezzine, Aymen; Bizouarn, Tania; Baciou, Laura

    2017-01-01

    Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558 ), constituted by the tight association of the gp91 phox (also named Nox2) and p22 phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47 phox , p67 phox , p40 phox , Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.

  1. Immunoreactive serum opsonic alpha 2 sb glycoprotein as a noninvasive index of RES systemic defense after trauma.

    PubMed

    Kaplan, J E; Saba, T M

    1979-01-01

    Reticuloendothelial system (RES) depression has been correlated with diminished resistance to trauma, shock, and sepsis in man and animals. Previous studies have related the depression of RES hepatic Kupffer cell phagocytic function after trauma to diminished bioassayable opsonic activity. The present study determined if the loss of biological activity and RES alteration correlated with immunoreactive serum opsonic alpha 2 SB glycoprotein levels after trauma. Serum opsonic activity was measured by liver slice bioassay, and immunoreactive opsonic protein was measured by rocket electroimmunoassay. RE function was determined by colloid clearance over a 24-hour post-trauma period. Anesthetized rats (250-300 gm) subjected to sublethal or severe (greater than LD50) whole-body NCD trauma were the shock models investigated. Immunoreactive levels in 63 rats prior to injury were 518 +/- 24 microgram/ml. Neither biological nor immunoreactive levels were altered over 24 hours in anesthetized sham-traumatized controls. Temporal alteration in the initial decrease and recovery pattern of biologically active and immunoreactive opsonic protein levels significantly correlated following both sublethal and severe injury. Moreover, the patterns of immunoreactive levels of the opsonic protein correlated with the functional phagocytic activity of the RES as determined by vascular clearance of a test dose of blood-borne radiolabeled particulates. This glycoprotein falls after trauma, and the magnitude and duration of the decline increases with severity of injury. Immunoreactive opsonic alpha 2 SB glycoprotein appears to be an accurate measurement of circulating opsonic activity and RE Kupffer cell function after trauma, especially with respect to clearance. Thus, immunoreactive opsonic protein warrants clinical consideration as a noninvasive measure of reticuloendothelial systemic defense in patients after trauma and burn.

  2. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model

    PubMed Central

    Schimunek, Lukas; Serve, Rafael; Teuben, Michel P. J.; Störmann, Philipp; Auner, Birgit; Woschek, Mathias; Pfeifer, Roman; Horst, Klemens; Simon, Tim-P.; Kalbitz, Miriam; Sturm, Ramona; Pape, Hans-C.; Hildebrand, Frank; Marzi, Ingo

    2017-01-01

    In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased immediately and remained lower during the first 3.5 h after trauma, but increased after 24 h. Antagonizing TLR2 significantly decreased the phagocytizing activity of monocytes. Both, decreased percentage of activated as well as TLR2 expressing monocytes persisted as long as the reduced phagocytosis was observed. Moreover, neutralizing TLR2 led to a reduced capability of phagocytosis as well. Therefore, we assume that reduced TLR2 expression may be responsible for the decreased phagocytizing capacity of circulating monocytes in the early post-traumatic phase. PMID:29125848

  3. RpoS contributes to phagocyte oxidase-mediated stress resistance during urinary tract infection by Escherichia coli CFT073.

    PubMed

    Hryckowian, Andrew J; Welch, Rodney A

    2013-02-12

    Uropathogenic Escherichia coli (UPEC) is the most common causative agent of community-acquired urinary tract infection (UTI). In order to cause UTI, UPEC must endure stresses ranging from nutrient limitation to host immune components. RpoS (σ(S)), the general stress response sigma factor, directs gene expression under a variety of inhibitory conditions. Our study of rpoS in UPEC strain CFT073 began after we discovered an rpoS-frameshift mutation in one of our laboratory stocks of "wild-type" CFT073. We demonstrate that an rpoS-deletion mutation in CFT073 leads to a colonization defect during UTI of CBA/J mice at 48 hours postinfection (hpi). There is no difference between the growth rates of CFT073 and CFT073 rpoS in urine. This indicates that rpoS is needed for replication and survival in the host rather than being needed to address limitations imposed by urine nutrients. Consistent with previous observations in E. coli K-12, CFT073 rpoS is more sensitive to oxidative stress than the wild type. We demonstrate that peroxide levels are elevated in voided urine from CFT073-infected mice compared to urine from mock-infected mice, which supports the notion that oxidative stress is generated by the host in response to UPEC. In mice that lack phagocyte oxidase, the enzyme complex expressed by phagocytes that produces superoxide, the competitive defect of CFT073 rpoS in bladder colonization is lost. These results demonstrate that σ(S) is important for UPEC survival under conditions of phagocyte oxidase-generated stress during UTI. Though σ(S) affects the pathogenesis of other bacterial species, this is the first work that directly implicates σ(S) as important for UPEC pathogenesis. UPEC must cope with a variety of stressful conditions in the urinary tract during infection. RpoS (σ(S)), the general stress response sigma factor, is known to direct the expression of many genes under a variety of stressful conditions in laboratory-adapted E. coli K-12. Here, we show that σ(S) is needed by the model UPEC strain CFT073 to cope with oxidative stress provided by phagocytes during infection. These findings represent the first report that implicates σ(S) in the fitness of UPEC during infection and support the idea of the need for a better understanding of the effects of this global regulator of gene expression during UTI.

  4. Adjuvant Effect of Killed Propionibacterium acnes on Mouse Peritoneal B-1 Lymphocytes and Their Early Phagocyte Differentiation

    PubMed Central

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses. PMID:22448280

  5. Adjuvant effect of killed Propionibacterium acnes on mouse peritoneal B-1 lymphocytes and their early phagocyte differentiation.

    PubMed

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses.

  6. Soy lecithin supplementation alters macrophage phagocytosis and lymphocyte response to concanavalin A: a study in alloxan-induced diabetic rats.

    PubMed

    Miranda, Dalva T S Z; Batista, Vanessa G; Grando, Fernanda C C; Paula, Fernanda M; Felício, Caroline A; Rubbo, Gabriella F S; Fernandes, Luiz C; Curi, Rui; Nishiyama, Anita

    2008-12-01

    Dietary soy lecithin supplementation decreases hyperlipidemia and influences lipid metabolism. Although this product is used by diabetic patients, there are no data about the effect of soy lecithin supplementation on the immune system. The addition of phosphatidylcholine, the main component of lecithin, to a culture of lymphocytes has been reported to alter their function. If phosphatidylcholine changes lymphocyte functions in vitro as previously shown, then it could also affect immune cells in vivo. In the present study, the effect of dietary soy lecithin on macrophage phagocytic capacity and on lymphocyte number in response to concanavalin A (ConA) stimulation was investigated in non-diabetic and alloxan-induced diabetic rats. Supplementation was carried out daily with 2 g kg(-1) b.w. lecithin during 7 days. After that, blood was drawn from fasting rats and peritoneal macrophages and mesenteric lymph node lymphocytes were collected to determine the phospholipid content. Plasma triacylglycerol (TAG), total and HDL cholesterol and glucose levels were also determined. Lymphocytes were stimulated by ConA. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye reduction method and flow cytometry were employed to evaluate lymphocyte metabolism and cell number, respectively. Soy lecithin supplementation significantly increased both macrophage phagocytic capacity (+29%) in non-diabetic rats and the lymphocyte number in diabetic rats (+92%). It is unlikely that plasma lipid levels indirectly affect immune cells, since plasma cholesterol, TAG, or phospholipid content was not modified by lecithin supplementation. In conclusion, lymphocyte and macrophage function were altered by lecithin supplementation, indicating an immunomodulatory effect of phosphatidylcholine.

  7. Impaired clearance of early apoptotic cells mediated by inhibitory IgG antibodies in patients with primary Sjögren's syndrome.

    PubMed

    Manoussakis, Menelaos N; Fragoulis, George E; Vakrakou, Aigli G; Moutsopoulos, Haralampos M

    2014-01-01

    Deficient efferocytosis (i.e. phagocytic clearance of apoptotic cells) has been frequently reported in systemic lupus erythematosus (SLE). Todate, patients with primary Sjögren's syndrome (SS) have not been assessed for phagocytosis of apoptotic cells (ApoCell-phagocytosis) and of particulate targets (microbeads, MB-phagocytosis). ApoCell-phagocytosis and MB-phagocytosis were comparatively assessed by flow cytometry in peripheral blood specimens and monocyte-derived macrophage (MDM) preparations from healthy blood donors (HBD) and consecutive SS, SLE and rheumatoid arthritis (RA) patients. Cross-admixture ApoCell-phagocytosis experiments were also performed using phagocytes from HBD or patients, and apoptotic cells pretreated with whole sera or purified serum IgG derived from patients or HBD. Compared to HBD, approximately half of SS and SLE patients studied (but not RA) manifested significantly reduced ApoCell-phagocytosis (p<0.001) and MB-phagocytosis (p<0.003) by blood-borne phagocytes that correlated inversely with disease activity (p≤0.004). In cross-admixture assays, healthy monocytes showed significantly reduced ApoCell-phagocytosis when fed with apoptotic cells that were pretreated with sera or purified serum IgG preparations from SS and SLE patients (p<0.0001, compared to those from HBD or RA). Such aberrant effect of the SS and SLE sera and IgG preparations correlated linearly with their content of IgG antibodies against apoptotic cells (p≤0.0001). Phagocytic dysfunction maybe also present in certain SS and SLE patients, as supported by deficient capacity of MDM for ApoCell-phagocytosis and MB-phagocytosis under patients' serum-free conditions. Similarly to SLE, efferocytosis is frequently impaired in SS and is primarily due to the presence of inhibitory IgG anti-ApoCell antibodies and secondarily to phagocytes' dysfunction.

  8. Diversity of Human and Macaque Airway Immune Cells at Baseline and during Tuberculosis Infection

    PubMed Central

    Myers, Amy J.; Jarvela, Jessica; Flynn, JoAnne; Rutledge, Tara; Bonfield, Tracey

    2016-01-01

    Immune cells of the distal airways serve as “first responders” of host immunity to the airborne pathogen Mycobacterium tuberculosis (Mtb). Mtb infection of cynomolgus macaques recapitulates the range of human outcomes from clinically silent latent tuberculosis infection (LTBI) to active tuberculosis of various degrees of severity. To further advance the application of this model to human studies, we compared profiles of bronchoalveolar lavage (BAL) cells of humans and cynomolgus macaques before and after Mtb infection. A simple gating strategy effectively defined BAL T-cell and phagocyte populations in both species. BAL from Mtb-naive humans and macaques showed similar differential cell counts. BAL T cells of macaques were composed of fewer CD4+cells but more CD8+ and CD4+CD8+ double-positive cells than were BAL T cells of humans. The most common mononuclear phagocyte population in BAL of both species displayed coexpression of HLA-DR, CD206, CD11b, and CD11c; however, multiple phagocyte subsets displaying only some of these markers were observed as well. Macaques with LTBI displayed a marked BAL lymphocytosis that was not observed in humans with LTBI. In macaques, the prevalence of specific mononuclear phagocyte subsets in baseline BAL correlated with ultimate outcomes of Mtb infection (i.e., LTBI versus active disease). Overall, these findings demonstrate the comparability of studies of pulmonary immunity to Mtb in humans and macaques. They also indicate a previously undescribed complexity of airway mononuclear phagocyte populations that suggests further lines of investigation relevant to understanding the mechanisms of both protection from and susceptibility to the development of active tuberculosis within the lung. PMID:27509488

  9. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    PubMed

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [Advances in the research of effects of glutamine on immune function of burn patients].

    PubMed

    Liu, Y H; Guo, P F; Chen, G Y; Bo, Y C; Ma, Y; Cui, Z J

    2018-04-20

    Glutamine is the most abundant amino acid found in plasma and cells. It is the preferred fuel for enterocytes in the small intestine, macrophages, and lymphocytes. After serious burn, increased requirement of glutamine by the gastrointestinal tract, kidney and lymphocytes, and relatively insufficient self synthesis likely contribute to the rapid decline of glutamine in circulation and cells. Glutamine supplementation can not only protect intestinal mucosa, maintain normal intestinal barrier function, reduce bacterial translocation, and enhance the intestinal immune function, but also increase the number of lymphocytes, enhance the phagocytic function of macrophage, promote the synthesis of immunoglobulin, and reduce the body's inflammatory response, so as to enhance the immune function. Therefore, glutamine supplementation can improve and enhance the immune function, reduce complications and promote the prognosis of severely burned patients.

  11. In vitro modification of Candida albicans invasiveness.

    PubMed

    Fontenla de Petrino, S E; de Jorrat, M E; Sirena, A; Valdez, J C; Mesón, O

    1986-05-01

    Candida albicans produces germ-tubes (GT) when it is incubated in animal or human serum. This dimorphism is responsible for its invasive ability. The purpose of the present paper is (1) to evaluate the ability of rat peritoneal macrophages to inhibit GT production of ingested Candida albicans, obtained from immunized rats and then activated in vitro with Candida-induced lymphokines; (2) to determinate any possible alteration of phagocytic and candidacidal activities. The phagocytes were obtained from rats immunized with viable C. albicans. Some of them were exposed to Candida-induced lymphokines in order to activate the macrophages in vitro. The monolayers of activated, immune and normal macrophages were infected with a C. albicans suspension during 4 hr. Activated macrophages presented not only the highest phagocytic and candidacidal activities but a noticeable inhibition of GT formation and incremented candidacidal activity.

  12. Staphylococcus aureus synthesizes adenosine to escape host immune responses

    PubMed Central

    Thammavongsa, Vilasack; Kern, Justin W.; Missiakas, Dominique M.

    2009-01-01

    Staphylococcus aureus infects hospitalized or healthy individuals and represents the most frequent cause of bacteremia, treatment of which is complicated by the emergence of methicillin-resistant S. aureus. We examined the ability of S. aureus to escape phagocytic clearance in blood and identified adenosine synthase A (AdsA), a cell wall–anchored enzyme that converts adenosine monophosphate to adenosine, as a critical virulence factor. Staphylococcal synthesis of adenosine in blood, escape from phagocytic clearance, and subsequent formation of organ abscesses were all dependent on adsA and could be rescued by an exogenous supply of adenosine. An AdsA homologue was identified in the anthrax pathogen, and adenosine synthesis also enabled escape of Bacillus anthracis from phagocytic clearance. Collectively, these results suggest that staphylococci and other bacterial pathogens exploit the immunomodulatory attributes of adenosine to escape host immune responses. PMID:19808256

  13. Effect of glutamine supplementation on neutrophil function in male judoists.

    PubMed

    Sasaki, Eiji; Umeda, Takashi; Takahashi, Ippei; Arata, Kojima; Yamamoto, Yousuke; Tanabe, Masaru; Oyamada, Kazuyuki; Hashizume, Erika; Nakaji, Shigeyuki

    2013-01-01

    Glutamine is an important amino acid for immune function. Though high intensity and prolonged exercise decreases plasma glutamine concentration and causes immune suppression, the relationship between neutrophil functions and glutamine has not yet been found. The purpose of this study was to investigate the impacts of glutamine supplementation on neutrophil function. Twenty-six male university judoists were recruited. Subjects were classified into glutamine and control groups. The glutamine group ingested 3000 mg of glutamine per day and the control group ingested placebo for 2 weeks. Examinations were performed at the start of preunified loading exercise (pre-ULE), then 1 and 2 weeks after ULE (post-ULE). Reactive oxygen species (ROS) production, phagocytic activity, serum opsonic activity and serum myogenic enzymes were measured. Differences between the levels obtained in pre-ULE and post-ULE for the two groups were compared. In the glutamine group, ROS production activity increased 1 week after ULE, whereas it was not observed in the control group (P < 0.001). Though myogenic enzymes increased significantly after ULE (P < 0.001), the glutamine group remained unchanged by supplementation during ULE. Glutamine supplementation has prevented excessive muscle damage and suppression of neutrophil function, especially in ROS production activity, even during an intensive training period. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Magnetic Nanoparticle-Based Imaging of RNA Transcripts in Breast Cancer Cells

    DTIC Science & Technology

    2008-06-30

    control (Months 33 – 36). These studies have not yet commenced. KEY RESEARCH ACCOMPLISHMENTS: - Synthesized dextran-coated iron oxide NPs with...Size, charge, and concentration dependent uptake of iron oxide nanoparticles by non-phagocytic cells: a comparative study of USPIO, SSPIO, and MPIO...A. (2008) Size, charge, and concentration dependent uptake of iron oxide nanoparticles by non-phagocytic cells: a comparative study of USPIO, SSPIO

  15. The role of neutrophils and monocytic cells in controlling the initiation of Clostridium perfringens gas gangrene.

    PubMed

    O'Brien, David K; Therit, Blair H; Woodman, Michael E; Melville, Stephen B

    2007-06-01

    Clostridium perfringens is a common cause of the fatal disease gas gangrene (myonecrosis). Established gas gangrene is notable for a profound absence of neutrophils and monocytic cells (phagocytes), and it has been suggested that the bactericidal activities of these cells play an insignificant role in controlling the progression of the infection. However, large inocula of bacteria are needed to establish an infection in experimental animals, suggesting phagocytes may play a role in inhibiting the initiation of gangrene. Examination of tissue sections of mice infected with a lethal (1 x 10(9)) or sublethal (1 x 10(6)) inoculum of C. perfringens revealed that phagocyte infiltration in the first 3 h postinfection was inhibited with a lethal dose but not with a sublethal dose, indicating that exclusion of phagocytes begins very early in the infection cycle. Experiments in which mice were depleted of either circulating monocytes or neutrophils before infection with C. perfringens showed that monocytes play a role in inhibiting the onset of gas gangrene at intermediate inocula but, although neutrophils can slow the onset of the infection, they are not protective. These results suggest that treatments designed to increase monocyte infiltration and activate macrophages may lead to increased resistance to the initiation of gas gangrene.

  16. Beta-1,3-1,6-glucan modulate the non-specific immune response to enhance the survival in the Vibrio alginolyticus infection of Taiwan abalone (Haliotis diversicolor supertexta).

    PubMed

    Wu, Yu-Sheng; Tseng, Tzu-Yu; Nan, Fan-Hua

    2016-07-01

    This research aims to investigate the non-specific immune response of Taiwan abalone (Haliotis diversicolor supertexta) which was treated with the beta-1,3-1,6-glucan to be observed in the survival impact after the Vibrio alginolyticus infection. The non-specific immune and physiological response of superoxide anion radical (O2(-)), phenoloxidase (PO), phagocytic index (PI), phagocytic rate (PR) and lucigenin-chemiluminescence for reactive oxygen intermediates (ROIs) were enhanced via in-vitro experiment. In the in-vivo experiment, the observed data presented that the haemolymph lysate supernatant (HLS), superoxide dismutase (SOD), glutamate oxalacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) were not significant enhanced, but the total haemocyte count (THC), O2(-), PO, phagocytic index (PI), phagocytic ratio (PR) and other parameters of immune were significantly promoted after treated with beta-1,3-1,6-glucan. In the challenge experiment, the survival rates of abalone in the 40 and 80 μl/ml groups of beta-1,3-1,6-glucan were observed from 6.67% up to 33.33% and 36.67% after injection with Vibrio alginolyticus, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa.

    PubMed

    Patankar, Yash R; Lovewell, Rustin R; Poynter, Matthew E; Jyot, Jeevan; Kazmierczak, Barbara I; Berwin, Brent

    2013-06-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.

  18. Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa

    PubMed Central

    Patankar, Yash R.; Lovewell, Rustin R.; Poynter, Matthew E.; Jyot, Jeevan; Kazmierczak, Barbara I.

    2013-01-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system. PMID:23529619

  19. Comprehensive analysis of mouse retinal mononuclear phagocytes.

    PubMed

    Lückoff, Anika; Scholz, Rebecca; Sennlaub, Florian; Xu, Heping; Langmann, Thomas

    2017-06-01

    The innate immune system is activated in a number of degenerative and inflammatory retinal disorders such as age-related macular degeneration (AMD). Retinal microglia, choroidal macrophages, and recruited monocytes, collectively termed 'retinal mononuclear phagocytes', are critical determinants of ocular disease outcome. Many publications have described the presence of these cells in mouse models for retinal disease; however, only limited aspects of their behavior have been uncovered, and these have only been uncovered using a single detection method. The workflow presented here describes a comprehensive analysis strategy that allows characterization of retinal mononuclear phagocytes in vivo and in situ. We present standardized working steps for scanning laser ophthalmoscopy of microglia from MacGreen reporter mice (mice expressing the macrophage colony-stimulating factor receptor GFP transgene throughout the mononuclear phagocyte system), quantitative analysis of Iba1-stained retinal sections and flat mounts, CD11b-based retinal flow cytometry, and qRT-PCR analysis of key microglia markers. The protocol can be completed within 3 d, and we present data from retinas treated with laser-induced choroidal neovascularization (CNV), bright white-light exposure, and Fam161a-associated inherited retinal degeneration. The assays can be applied to any of the existing mouse models for retinal disorders and may be valuable for documenting immune responses in studies for immunomodulatory therapies.

  20. Hemocytes and hemocytopoiesis in Silkworms.

    PubMed

    Beaulaton, J

    1979-01-01

    A brief review is presented of the current state of ultrastructure, cytochemistry, and physiology of the hemocytes and meso- and metathoracic peri-imaginal-wing organs in silkworms. According to the accepted morphological classification, five circulating types of hemocytes are recognized in Bombyx mori as well as in Antheraea pernyi. They are prophemocytes or stem cells, plasmatocytes or pre-differentiated cells and three specialized cells, granulocytes, spherule cells and oenocytoids. During post-embryonic development the last four types are the most common in the circulating hemolymph. Plasmatocytes are considered to be pluripotent cells from which granulocytes, spherule cells and oenocytoids are derived. Contrary to the situation in most insects the plasmatocytes are not phagocytic in Antheraea. The granulocytes are efficient phagocytes. Both plasmatocytes and granulocytes are involved in pinocytosis. Another possible function of the granulocytes is hemolymph coagulation. The function of the spherule cells which contain a paracrystalline material (muco- or glycoproteins) is by no means clear. The phenoloxidase activity found within the cytosol of oenocytoids appears effective against the natural monophenol and diphenol substrates. The involvement of oenocytoids in the complex metabolism of phenols and particularly in the production of plasma phenolases has been reported. The mitotic division of five circulating hemocyte types is well known and was long regarded as the only mechanism of postembryonic hemocyte production. We present for silkworms, experimental evidence of the hemocytopoietic function of the meso- and metathoracic organs surrounding the imaginal wing discs. Ablation experiments demonstrate that the mitotic activity of free hemocytes is unable to maintain the normal hemocytogram in the absence of the two paris of organs. These organs are typically divided into cell islets ensheathed by a connective tissue membrane. Two types of islets may be classified by the disposition of the cells : the compact islets or aggregations of stem cells and the reticulate islets which are mainly composed of hemocytes at different steps of differentiation. The relative number of prohemocytes in the total hemocyte population ranges from 84 to 97 p. cent in organs of Antheraea pernyi. This well-defined cell type appears to be the major hemocyte type in hemocytopoietic organs. In Antheraea, the mitotic index (the relative number of mitotic hemocytes in the total cell population) varies from 0.5 to about 3 p. cent. Finally, our data direct attention to cyclic functional changes such as mitotic divisions and hemocyte differentiation which run parallel to the molting cycle.

  1. NADPH Oxidase Deficiency: A Multisystem Approach

    PubMed Central

    Cicalese, Maria Pia; Delmonte, Ottavia; Migliavacca, Maddalena; Cirillo, Emilia; Violi, Francesco

    2017-01-01

    The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis. PMID:29430280

  2. Acute dermal abscesses caused by Serratia marcescens.

    PubMed

    Soria, Xavier; Bielsa, Isabel; Ribera, Miquel; Herrero, María José; Domingo, Helena; Carrascosa, José Manuel; Ferrándiz, Carlos

    2008-05-01

    Primary acute cutaneous infections caused by Serratia marcescens are extremely unusual. Nevertheless, Serratia infections are especially frequent in chronic granulomatous disease, which is a primary immunodeficiency that affects phagocytic cells of the innate immune system. We report a young man without history of infections, who developed multiple dermal abscesses on a leg with chronic lymphoedema attributed to S marcescens. Laboratory investigations showed a delayed partial neutrophilic oxidative function. It is remarkable that the patient did not have any other infections during childhood, when most of the innate immune deficiencies are diagnosed, and he had no history of granulomatous lesions. We hypothesize that the delayed neutrophilic oxidative function could be explained by a partial neutrophilic oxidative function, which could be enough to maintain the patient asymptomatic until this infection.

  3. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter.

    PubMed

    Leite Figueiredo, Débora Alvares; Branco, Paola Cristina; Dos Santos, Douglas Amaral; Emerenciano, Andrews Krupinski; Iunes, Renata Stecca; Shimada Borges, João Carlos; Machado Cunha da Silva, José Roberto

    2016-11-01

    The rising concentration of atmospheric CO 2 by anthropogenic activities is changing the chemistry of the oceans, resulting in a decreased pH. Several studies have shown that the decrease in pH can affect calcification rates and reproduction of marine invertebrates, but little attention has been drawn to their immune response. Thus this study evaluated in two adult tropical sea urchin species, Lytechinus variegatus and Echinometra lucunter, the effects of ocean acidification over a period of 24h and 5days, on parameters of the immune response, the extracellular acid base balance, and the ability to recover these parameters. For this reason, the phagocytic capacity (PC), the phagocytic index (PI), the capacity of cell adhesion, cell spreading, cell spreading area of phagocytic amebocytes in vitro, and the coelomic fluid pH were analyzed in animals exposed to a pH of 8.0 (control group), 7.6 and 7.3. Experimental pH's were predicted by IPCC for the future of the two species. Furthermore, a recovery test was conducted to verify whether animals have the ability to restore these physiological parameters after being re-exposed to control conditions. Both species presented a significant decrease in PC, in the pH of coelomic fluid and in the cell spreading area. Besides that, Echinometra lucunter showed a significant decrease in cell spreading and significant differences in coelomocyte proportions. The recovery test showed that the PC of both species increased, also being below the control values. Even so, they were still significantly higher than those exposed to acidified seawater, indicating that with the re-establishment of the pH value the phagocytic capacity of cells tends to restore control conditions. These results demonstrate that the immune system and the coelomic fluid pH of these animals can be affected by ocean acidification. However, the effects of a short-term exposure can be reversible if the natural values ​​are re-established. Thus, the effects of ocean acidification could lead to consequences for pathogen resistance and survival of these sea urchin species. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The effect of charge on the renal distribution of ferritin.

    PubMed

    Cohen, S; Vernier, R L; Michael, A F

    1983-02-01

    The effect of charge on the tissue distribution of ferritin was evaluated in rats following intravenous administration of 3 monomeric species preparatively separated by molecular sieve chromatography from aggregated ferritin and having the same molecular weight but differing only in electrostatic charge: native ferritin, with a isoelectric point (pI) of 4.5 (NF); cationized ferritin, with a pI of 6.4-7.4 (CF 7.0); and cationized ferritin, with a pI of 8.25-8.75 (CF 8.5). At varying time intervals (30 minutes to 72 hours) after the administration of these ferritins in a dose of 10 mg/100 g, the levels in the blood were determined, the tissue (kidney, liver, spleen) distribution semiquantitatively evaluated by immunofluorescence (IF), and electron microscopic examination (EM) of the kidney carried out. The following results were obtained: 1) The plasma levels of CF (8.5) and CF (7.0) were significantly higher than NF after 6 hours. NF was not detected after 24 hours, whereas CF continued to circulate at 72 hours. 2) There was a striking decrease in the uptake of CF (7.0) and CF (8.5), when compared with NF, by Kupffer cells and splenic phagocytes in the red pulp at all time periods. 3) In the glomerulus, NF was found primarily in the mesangium and gradually disappeared over a period of 72 hours, whereas CF was present in greater amounts and persisted for longer periods of time in the mesangium and in the peripheral capillary wall. By electron microscopy, CF (8.5) could be seen in th lamina rara and within the mesangium in small aggregates aligned parallel to mesangial cell processes, whereas NF and CF (7.0) were distributed homogeneously throughout the mesangial matrix. 4) NF, but not CF, was also observed surrounding blood vessels and in interstitial phagocytes. These in vivo studies demonstrate that the electrostatic charge of ferritin affects its uptake in vivo by components of the mononuclear phagocytic system (MPS). The persistence and distribution of CF in glomeruli is a consequence of higher blood levels associated with impaired phagocytic uptake as well as charge-related binding to sites within the glomeruli.

  5. [Ilya Ilich Metchnikov and Paul Ehrlich: 1908 Nobel Prize winners for their research on immunity].

    PubMed

    Lokaj, J; John, C

    2008-11-01

    The Nobel Prize in Physiology or Medicine in 1908 was awarded to Ilya I. Mechnikov and Paul Ehrlich for recognition of their work on immunity. Mechnikov have discovered phagocytes and phagocytosis as the basis of natural cellular immunity. His ,,phagocytic theory" is the principle of immunological concept "self and not self" as the prerequisition of physiological inflammation, and selfmaintaining of organism. Ehrlich developed the methods for standardization of antibody activity in immune sera, described neutralizing and complement-depending effect of antibodies and enunciated the ,"ide-chain" theory of the formation of antibodies. Their concept of the key-stone of immunity was different, but they expressed the basic paradigma of immunology: immunity imply the protection of identity and guarantee the integrity of organism. Both are the founders of immunology as the scientific discipline. Discoveries and conceptions of I. Mechnikov and P. Ehrlich exceedingly influenced development of immunology and are also applicable, instructive and suggestive in contemporary immunology and microbiology.

  6. Improvement of hepatic microhemodynamics by N-acetylcysteine after warm ischemia.

    PubMed

    Koeppel, T A; Thies, J C; Lehmann, T; Gebhard, M M; Herfarth, C; Otto, G; Post, S

    1996-01-01

    In this study we investigated the influence of N-acetylcysteine (NAC) on the hepatic microcirculation after warm ischemia by intravital fluorescence microscopy. Clamping of the left liver lobe was performed in 20 male Wistar rats for 70 min. The treatment group (n = 10) received 400 mg NAC/kg body weight 20 min prior to clamping. After reperfusion, acinar and sinusoidal perfusions were observed as well as the leukocyte-endothelium interaction. Phagocytic activity was assessed after application of latex beads. NAC reduced the number of nonperfused sinusoids in all acinar zones. A reduction in zone 1 (portal) was achieved from 15.5 to 7.1% (p < 0.0001), in zone 2 (midzonal) from 14.6 to 6.1% (p < 0.0001) and in zone 3 (central) from 11.9 to 2.9% (p < 0.0001). There were no significant differences in leukocyte adherence as well as in phagocytic activity detectable. We conclude that NAC improves hepatic microcirculation after warm ischemia by increasing sinusoidal blood flow.

  7. Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes

    PubMed Central

    Fröhlich, Eleonore; Meindl, Claudia; Höfler, Anita; Leitinger, Gerd; Roblegg, Eva

    2012-01-01

    The use of carbon nanotubes (CNTs) could improve medical diagnosis and treatment provided they show no adverse effects in the organism. In this study, short CNTs with different diameters with and without carboxyl surface functionalisation were assessed. After physicochemical characterisation, cytotoxicity in phagocytic and non-phagocytic cells was determined. The role of oxidative stress was evaluated according to the intracellular glutathione levels and protection by N-acetyl cysteine (NAC). In addition to this, the mode of cell death was also investigated. CNTs <8 nm acted more cytotoxic than CNTs ≥20 nm and carboxylated CNTs more than pristine CNTs. Protection by NAC was maximal for large diameter pristine CNTs and minimal for small diameter carboxylated CNTs. Thin (<8 nm) CNTs acted mainly by disruption of membrane integrity and CNTs with larger diameter induced mainly apoptotic changes. It is concluded that cytotoxicity of small carboxylated CNTs occurs by necrosis and cannot be prevented by antioxidants. PMID:22963691

  8. Down-regulated PAR-2 is associated in part with interrupted melanosome transfer in pigmented basal cell epithelioma.

    PubMed

    Sakuraba, Kazuko; Hayashi, Nobukazu; Kawashima, Makoto; Imokawa, Genji

    2004-08-01

    In pigmented basal cell epithelioma (BCE), there seems to be an abnormal transfer of melanized melanosomes from proliferating melanocytes to basaloid tumor cells. In this study, the interruption of that melanosome transfer was studied with special respect to the altered function of a phagocytic receptor, protease-activated receptor (PAR)-2 in the basaloid tumor cells. We used electron microscopy to clarify the disrupted transfer at the ultrastructural level and then performed immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to examine the regulation of a phagocytic receptor, PAR-2, expressed on basaloid tumor cells. Electron microscopic analysis revealed that basaloid tumor cells of pigmented BCE have a significantly lower population of melanosomes ( approximately 16.4%) than do normal keratinocytes located in the perilesional normal epidermis ( approximately 91.0%). In contrast, in pigmented seborrheic keratosis (SK), a similarly pigmented epidermal tumor, the distribution of melanin granules does not differ between the lesional ( approximately 93.9%) and the perilesional normal epidermis ( approximately 92.2 %), indicating that interrupted melanosome transfer occurs in BCE but not in all pigmented epithelial tumors. RT-PCR analysis demonstrated that the expression of PAR-2 mRNA transcripts in basaloid cells is significantly decreased in pigmented BCE compared with the perilesional normal epidermis. In contrast, in pigmented SK, where melanosome transfer to basaloid tumor cells is not interrupted, the expression of PAR-2 mRNA transcripts is comparable between the basaloid tumor cells and the perilesional normal epidermis. Immunohistochemistry demonstrated that basaloid cells in pigmented BCE have less immunostaining for PAR-2 than do keratinocytes in the perilesional normal epidermis whereas in pigmented SK, there is no difference in immunostaining for PAR-2 between the basaloid tumor and the perilesional normal epidermis. These findings suggest that the decreased expression of PAR-2 in the basaloid cells is associated in part with the observed interruption of melanosome transfer in pigmented BCE.

  9. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages

    PubMed Central

    2010-01-01

    Background Investigations on pulmonary macrophages (MΦ) mostly focus on alveolar MΦ (AM) as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM), are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue. Methods Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR) expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay. Results IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG). Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6. Conclusion AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response. PMID:20843333

  10. The stimulation of superoxide anion production in guinea-pig peritoneal macrophages and neutrophils by phorbol myristate acetate, opsonized zymosan and IgG2-containing soluble immune complexes.

    PubMed Central

    Baxter, M A; Leslie, R G; Reeves, W G

    1983-01-01

    The kinetics of superoxide anion production in guinea-pig peritoneal macrophages and neutrophils were determined following in vitro stimulation with phorbol myristate acetate (PMA), opsonized zymosan (OZ) and soluble immune complexes of guinea-pig IgG2 (SIC). Superoxide production was recorded as chemiluminescence (CL) arising from the reductive cleavage of lucigenin. With PMA, both macrophages and neutrophils displayed a two-phase response consisting of a rapid initial burst of CL, which preceded ligand ingestion, followed by a plateau in the CL response which persisted for more than 30 min. By contrast, OZ induced a slow progressive increase in CL in both phagocytes which was consistent with the development of an oxidative burst concomitant with ingestion. The phagocytes differed in their responses to SIC, the macrophages displaying CL kinetics similar to those observed with PMA, whereas the neutrophils responded in the manner observed with OZ. The relationship between disparity in the patterns of macrophage and neutrophil CL responses to SIC and differences in their expression of Fc receptors for IgG2 (Coupland & Leslie, 1983) is discussed. PMID:6299935

  11. [Regulation of cellular-mediated immunity by Chenopodi boni henrici herba polysaccharides in hens].

    PubMed

    Hanganu, Daniela; Dorhoi, Anca; Pintea, Adela; Olah, Neli; Sevastre, B

    2010-01-01

    The immunomodulatory effect of polysaccharides from Chenopodium bonus-henricus herba was tested on adult hens. Blood samples were harvested aseptically by punction of brachial vein; ability of circulating phagocytes was assessed by the carbon particles phagocytosis test in vitro; while reactivity of peripheral lymphocytes was evaluated by lymphocytes transformation assay in vitro. Polysaharides were dissolved in saline solution and filtered throughout Millipore. Phagocytic indexes (at 15 and 39 minutes) are variable according to polysaharides concentration; phagocytosis increased at 15 minutes for 40 microg/mL and 60 microg/mL, while for 30 minutes the phagocytic index decreased. In lymphocytes transformation assay, Chenopodium bonus-henricus polysaharides, alone, shown no stimulatory effect, and together to the classic mitogen, their influence was variable, but not statistical significant results were seen. Polysaccharides have inconstant effect on phagocytosis, and mainly inhibitory role on lymphocytes proliferation.

  12. Brazilian Propolis: A Natural Product That Improved the Fungicidal Activity by Blood Phagocytes

    PubMed Central

    Possamai, Muryllo Mendes; Honorio-França, Adenilda Cristina; Reinaque, Ana Paula Barcelos; França, Eduardo Luzia; Souto, Paula Cristina de Souza

    2013-01-01

    Natural product incorporation into microcarriers increases the bioavailability of these compounds, consequently improving their therapeutic properties. Natural products, particularly those from bees such as propolis, are widely used in popular medicine. Propolis is a powerful treatment for several diseases. In this context, the present study evaluated the effect of propolis Scaptotrigona sp. and its fractions, alone or adsorbed to polyethylene glycol (PEG) microspheres, on the activity of human phagocytes against Candida albicans. The results show that propolis exerts a stimulatory effect on these cells to assist in combating the fungus, especially as the crude extract is compared with the fractions. However, when incorporated into microspheres, these properties were significantly potentiated. These results suggest that propolis adsorbed onto PEG microspheres has immunostimulatory effects on phagocytes in human blood. Therefore, propolis may potentially be an additional natural product that can be used for a variety of therapies. PMID:23509737

  13. The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases.

    PubMed

    Cuda, Carla M; Pope, Richard M; Perlman, Harris

    2016-08-23

    Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including, but not limited to, Toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this Review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis and other rheumatic diseases. Elevated levels of signalling mediators of both extrinsic and intrinsic apoptosis, as well as the autophagy, are observed in the joints of patients with rheumatoid arthritis. Furthermore, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these pathways has made considerable progress, this Review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapies for rheumatoid arthritis and other rheumatic diseases.

  14. CRISPR/Cas9-generated p47phox-deficient cell line for Chronic Granulomatous Disease gene therapy vector development.

    PubMed

    Wrona, Dominik; Siler, Ulrich; Reichenbach, Janine

    2017-03-13

    Development of gene therapy vectors requires cellular models reflecting the genetic background of a disease thus allowing for robust preclinical vector testing. For human p47 phox -deficient chronic granulomatous disease (CGD) vector testing we generated a cellular model using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to introduce a GT-dinucleotide deletion (ΔGT) mutation in p47 phox encoding NCF1 gene in the human acute myeloid leukemia PLB-985 cell line. CGD is a group of hereditary immunodeficiencies characterized by impaired respiratory burst activity in phagocytes due to a defective phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In Western countries autosomal-recessive p47 phox -subunit deficiency represents the second largest CGD patient cohort with unique genetics, as the vast majority of p47 phox CGD patients carries ΔGT deletion in exon two of the NCF1 gene. The established PLB-985 NCF1 ΔGT cell line reflects the most frequent form of p47 phox -deficient CGD genetically and functionally. It can be differentiated to granulocytes efficiently, what creates an attractive alternative to currently used iPSC models for rapid testing of novel gene therapy approaches.

  15. Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis.

    PubMed

    Kyrmizi, Irene; Ferreira, Helena; Carvalho, Agostinho; Figueroa, Julio Alberto Landero; Zarmpas, Pavlos; Cunha, Cristina; Akoumianaki, Tonia; Stylianou, Kostas; Deepe, George S; Samonis, George; Lacerda, João F; Campos, António; Kontoyiannis, Dimitrios P; Mihalopoulos, Nikolaos; Kwon-Chung, Kyung J; El-Benna, Jamel; Valsecchi, Isabel; Beauvais, Anne; Brakhage, Axel A; Neves, Nuno M; Latge, Jean-Paul; Chamilos, Georgios

    2018-05-30

    LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca 2+ signalling pathway that depends on intracellular Ca 2+ sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca 2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca 2+ -CaM signalling in aspergillosis. Finally, we demonstrate that Ca 2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca 2+ -CaM signalling to inhibit LAP. These findings reveal the important role of Ca 2+ -CaM signalling in antifungal immunity and identify an immunological function of Ca 2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.

  16. Effect of low power laser irradiation on macrophage phagocytic capacity

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Song, Sheng; Tang, Yu; Zhou, Feifan

    2011-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with immunological functions. However, the effects of laser on the immune response have not been extensively characterized. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages by using flow cytometry (FCM). After irradiating at fluence of 0, 1, 2 J/cm2 with He-Ne laser (632.8 nm, 3mw), the cells were incubated with microsphere and then subjected to FACS analysis. The results showed that Low-power laser irradiation (LPLI) leads to an increase in phagocytosis on both mouse peritoneal macrophages and the murine macrophage-like cell line RAW264.7. In addition, we demonstrated that LPLI increased phagocytosis of microsphere in a dose-dependent manner, reaching a maximum at fluence of 2 J/cm2. Taken together, our results indicated that Low-power laser irradiation with appropriate dosage can enhance the phagocytosis of macrophage, and provided a theoretical base for the clinical use of the He-Ne laser.

  17. Extraction optimization of polysaccharides from Chinese rice wine from the Shaoxing region and evaluation of its immunity activities.

    PubMed

    Shen, Chi; Mao, Jian; Chen, Yongquan; Meng, Xiangyong; Ji, Zhongwei

    2015-08-15

    Chinese rice wine is well known for its unique flavor and high nutritional value. It is of interest to investigate the functional components of Chinese rice wine and their health benefits. Response surface design of three factors - pH, ethanol concentration and precipitation time - at three levels was utilized to optimize the extraction of Chinese rice wine polysaccharide (CRWP). The results indicated that the CRWP yield was 77.287% at the optimal levels for pH 8.4, ethanol concentration 88% and precipitation time 23 h. In addition, immune activity of CRWP was investigated by measuring body weight, spleen index and thymus index. Furthermore, immunity activity of CRWP was investigated by measuring lymphocyte proliferation, phagocytic index and phagocytic percentage of immunosuppressed mice. Compared with the control mice and model mice, it was found that CRWP has beneficial immune activities in vivo. These findings indicate that CRWP has immune activities in vivo by modulating the immune response, and implies full development and utilization of the nutritional value of Chinese rice wine. However, further work will be conducted in the future to elucidate the structure-bioactivity relationship for CRWP. © 2014 Society of Chemical Industry.

  18. Cells resembling intraventricular macrophages are present in the subretinal space of human foetal eyes.

    PubMed

    McMenamin, P G; Loeffler, K U

    1990-06-01

    The subretinal spaces (SRS) in 17 human foetal eyes were investigated by light microscopy and scanning and transmission electron microscopy. A hitherto undocumented group of pleomorphic cells was detected on the apical surface of the retinal pigment epithelium (RPE) and on the undersurface of the neural retina. These cells formed a regularly spaced array in the peripheral SRS, particularly in the most anterior portion nearest the ciliary body anlage. The morphology of the SRS cells ranged from a small round or ovoid form with a few short basal pseudopodia to an extremely flattened dendritic form. Ultrastructural features, such as large melanophagolysosomes, consistent with a phagocytic function, were observed in some cells. These SRS cells bore remarkable resemblance to epiplexus and supraependymal cells, considered to be the resident population of macrophages on the ventricular surfaces of the brain. This morphological parallelism, together with the anatomically homologous location, is strong evidence that SRS cells represent a normal population of macrophages in the developing human eye. No features consistent with an RPE or neuronal origin were observed. The possible role of these cells as transient phagocytes in the SRS with a possible destiny as retinal microglia is discussed.

  19. Erythrocyte and blood antibacterial defense

    PubMed Central

    2014-01-01

    It is an axiom that blood cellular immunity is provided by leukocytes. As to erythrocytes, it is generally accepted that their main function is respiration. Our research provides objective video and photo evidence regarding erythrocyte bactericidal function. Phase-contrast immersion vital microscopy of the blood of patients with bacteremia was performed, and the process of bacteria entrapping and killing by erythrocytes was shot by means of video camera. Video evidence demonstrates that human erythrocytes take active part in blood bactericidal action and can repeatedly engulf and kill bacteria of different species and size. Erythrocytes are extremely important integral part of human blood cellular immunity. Compared with phagocytic leukocytes, the erythrocytes: a) are more numerous; b) are able to entrap and kill microorganisms repeatedly without being injured; c) are more resistant to infection and better withstand the attacks of pathogens; d) have longer life span and are produced faster; e) are inauspicious media for proliferation of microbes and do not support replication of chlamidiae, mycoplasmas, rickettsiae, viruses, etc.; and f) are more effective and uncompromised bacterial killers. Blood cellular immunity theory and traditional view regarding the function of erythrocytes in human blood should be revised. PMID:24883200

  20. Suppression of host resistance against Listeria monocytogenes infection by 15-deoxyspergualin in mice.

    PubMed Central

    Nakane, A; Numata, A; Minagawa, T

    1990-01-01

    The effects of 15-deoxyspergualin (DSG), an immunosuppressive agent, on host resistance against Listeria monocytogenes were studied in mice. Administration of DSG in the early phase of infection resulted in fatal listeriosis by preventing acquired anti-listerial resistance, even though the infectious dose was sublethal for the untreated controls. In contrast, DSG treatment started after development of the acquired immunity was ineffective. Endogenous production of interferon-gamma (IFN-gamma) and tumour necrosis factor (TNF) in the bloodstreams induced by the infection was normal in DSG-treated mice. Nevertheless, augmentation of macrophage functions such as expression of major histocompatibility complex (MHC) class II antigens, phagocytic activity and listericidal activity induced by the infection was abrogated by DSG treatment. These results suggest that the inhibitory effect of DSG on anti-listerial resistance might be different from cyclosporine A (CsA). PMID:2126253

  1. Loss of Proliferation and Antigen Presentation Activity following Internalization of Polydispersed Carbon Nanotubes by Primary Lung Epithelial Cells

    PubMed Central

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K.

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells. PMID:22384094

  2. The function of TLR2 during staphylococcal diseases

    PubMed Central

    Fournier, Bénédicte

    2012-01-01

    Staphylococcus aureus is a versatile pathogen causing a wide range of infections. It has been a major threat both in hospitals and in the community for decades. S. aureus is a pyogenic bacterium that elicits recruitment of polymorphonuclear leukocytes (neutrophils) to the site of infection. Neutrophils are among the first immune cells to migrate to an infection site attracted by chemoattractant gradients, usually initiated in response to inflammation. Neutrophil recruitment to an inflammation and/or infection site is a sophisticated process involving their interaction with endothelial and epithelial cells through adhesion molecules. Phagocytes have various receptors to detect pathogens, and they include Toll-like receptors (TLRs). TLRs have been extensively studied over the last 10 years and it is now established that they are critical during bacterial infections. However, the function of TLRs, and more particularly TLR2, during staphylococcal infections is still debated. In this review we will consider recent findings concerning the staphylococcal ligands sensed by TLR2 and more specifically the role of staphylococcal lipoproteins in TLR2 recognition. A new concept to emerge in recent years is that staphylococcal components must be phagocytosed and digested in the phagosome to be efficiently detected by the TLR2 of professional phagocytes. Neutrophils are an essential part of the immune response to staphylococcal infections, and in the second part of this review we will therefore describe the role of TLR2 in PMN recruitment in response to staphylococcal infections. PMID:23316483

  3. [Immune granulomatous inflammation as the body's adaptive response].

    PubMed

    Paukov, V S; Kogan, E A

    2014-01-01

    Based on their studies and literature analysis, the authors offer a hypothesis for the adaptive pattern of chronic immune granulomatous inflammation occurring in infectious diseases that are characterized by the development of non-sterile immunity. The authors' proposed hypothesis holds that not every chronic inflammation is a manifestation of failing defenses of the body exposed to a damaging factor. By using tuberculosis and leprosy as an example, the authors show the insolvency of a number of existing notions of the pathogenesis and morphogenesis of epithelioid-cell and leprous granulomas. Thus, the authors consider that resident macrophages in tuberculosis maintain their function to kill mycobacteria; thereby the immune system obtains information on the antigenic determinants of the causative agents. At the same time, by consuming all hydrolases to kill mycobacteria, the macrophage fails to elaborate new lysosomes for the capacity of the pathogens to prevent them from forming. As a result, the lysosome-depleted macrophage transforms into an epithelioid cell that, maintaining phagocytic functions, loses its ability to kill the causative agents. It is this epithelioid cell where endocytobiosis takes place. These microorganisms destroy the epithelioid cell and fall out in the area of caseating granuloma necrosis at regular intervals. Some of them phagocytize epithelioid cells to maintain non-sterile immunity; the others are killed by inflammatory macrophages. The pathogenesis and morphogenesis of leprous granuloma, its tuberculous type in particular, proceed in a fundamentally similar way. Thus, non-sterile immunity required for tuberculosis, leprosy, and, possibly, other mycobacterioses is maintained.

  4. Characterization of inflammatory markers associated with systemic lupus erythematosus patients undergoing treatment.

    PubMed

    Timóteo, Rodolfo Pessato; Micheli, Douglas Cobo; Teodoro, Reginaldo Botelho; Freire, Marlene; Bertoncello, Dernival; Murta, Eddie Fernando Candido; Tavares-Murta, Beatriz Martins

    To characterize the inflammatory profiles of patients with systemic lupus erythematosus receiving standard treatment compared to healthy controls. Peripheral venous blood was collected from systemic lupus erythematosus patients (n=14) and controls (n=18) at enrollment. Blood samples were used for quantification, by flow cytometry, of CD11b (integrin) and Chemokine receptor CXCR2 expression surface antigen in neutrophils and lymphocytes, while cytokines were assayed in serum samples. Purified neutrophils were assayed by their ability to phagocytize human plasma-opsonized zymosan. Patients had a median (interquartile range) disease activity index of 1.0 (0-2.0) characteristic of patients in remission. Interleukin-6 and interleukin-10 serum concentrations were significantly higher in the patient group compared to controls and the phagocytic index of circulating neutrophils was significantly reduced in patients compared to controls. The levels of interleukin-2, interleukin-5, interleukin-8 and tumor necrosis factor alpha did not significantly differ between patients and controls. Flow cytometric analysis revealed that the integrin expression levels were reduced in lymphocytes (but not in neutrophils) obtained from systemic lupus erythematosus patients, while surface expression of the chemokine receptor 2 was similar in both neutrophils and lymphocytes. Systemic lupus erythematosus patients receiving standard treatment presented with elevated systemic levels of interleukin-6 and interleukin-10, reduced neutrophil phagocytic capacity, and reduced lymphocyte expression of integrin even when symptoms were in remission. These alterations to innate immune components may put these individuals at a greater risk for acquiring infections. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  5. Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity*

    PubMed Central

    Smith, Ryan C.; King, Jonas G.; Tao, Dingyin; Zeleznik, Oana A.; Brando, Clara; Thallinger, Gerhard G.; Dinglasan, Rhoel R.

    2016-01-01

    The innate immune response is highly conserved across all eukaryotes and has been studied in great detail in several model organisms. Hemocytes, the primary immune cell population in mosquitoes, are important components of the mosquito innate immune response, yet critical aspects of their biology have remained uncharacterized. Using a novel method of enrichment, we isolated phagocytic granulocytes and quantified their proteomes by mass spectrometry. The data demonstrate that phagocytosis, blood-feeding, and Plasmodium falciparum infection promote dramatic shifts in the proteomic profiles of An. gambiae granulocyte populations. Of interest, large numbers of immune proteins were induced in response to blood feeding alone, suggesting that granulocytes have an integral role in priming the mosquito immune system for pathogen challenge. In addition, we identify several granulocyte proteins with putative roles as membrane receptors, cell signaling, or immune components that when silenced, have either positive or negative effects on malaria parasite survival. Integrating existing hemocyte transcriptional profiles, we also compare differences in hemocyte transcript and protein expression to provide new insight into hemocyte gene regulation and discuss the potential that post-transcriptional regulation may be an important component of hemocyte gene expression. These data represent a significant advancement in mosquito hemocyte biology, providing the first comprehensive proteomic profiling of mosquito phagocytic granulocytes during homeostasis blood-feeding, and pathogen challenge. Together, these findings extend current knowledge to further illustrate the importance of hemocytes in shaping mosquito innate immunity and their principal role in defining malaria parasite survival in the mosquito host. PMID:27624304

  6. GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family

    PubMed Central

    Lutz, Manfred B.; Strobl, Herbert; Schuler, Gerold; Romani, Nikolaus

    2017-01-01

    Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function. PMID:29109731

  7. Bruton's Tyrosine Kinase (BTK) and Vav1 Contribute to Dectin1-Dependent Phagocytosis of Candida albicans in Macrophages

    PubMed Central

    Strijbis, Karin; Tafesse, Fikadu G.; Fairn, Gregory D.; Witte, Martin D.; Dougan, Stephanie K.; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K.; Fink, Gerald R.; Grinstein, Sergio; Ploegh, Hidde L.

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans. PMID:23825946

  8. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages.

    PubMed

    Strijbis, Karin; Tafesse, Fikadu G; Fairn, Gregory D; Witte, Martin D; Dougan, Stephanie K; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K; Fink, Gerald R; Grinstein, Sergio; Ploegh, Hidde L

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.

  9. Fibrin(ogen) mediates acute inflammatory responses to biomaterials

    PubMed Central

    1993-01-01

    Although "biocompatible" polymeric elastomers are generally nontoxic, nonimmunogenic, and chemically inert, implants made of these materials may trigger acute and chronic inflammatory responses. Early interactions between implants and inflammatory cells are probably mediated by a layer of host proteins on the material surface. To evaluate the importance of this protein layer, we studied acute inflammatory responses of mice to samples of polyester terephthalate film (PET) that were implanted intraperitoneally for short periods. Material preincubated with albumin is "passivated," accumulating very few adherent neutrophils or macrophages, whereas uncoated or plasma- coated PET attracts large numbers of phagocytes. Neither IgG adsorption nor surface complement activation is necessary for this acute inflammation; phagocyte accumulation on uncoated implants is normal in hypogammaglobulinemic mice and in severely hypocomplementemic mice. Rather, spontaneous adsorption of fibrinogen appears to be critical: (a) PET coated with serum or hypofibrinogenemic plasma attracts as few phagocytes as does albumin-coated material; (b) in contrast, PET preincubated with serum or hypofibrinogenemic plasma containing physiologic amounts of fibrinogen elicits "normal" phagocyte recruitment; (c) most importantly, hypofibrinogenemic mice do not mount an inflammatory response to implanted PET unless the material is coated with fibrinogen or the animals are injected with fibrinogen before implantation. Thus, spontaneous adsorption of fibrinogen appears to initiate the acute inflammatory response to an implanted polymer, suggesting an interesting nexus between two major iatrogenic effects of biomaterials: clotting and inflammation. PMID:8245787

  10. Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium.

    PubMed

    Laurent, Virgine; Sengupta, Anamika; Sánchez-Bretaño, Aída; Hicks, David; Tosini, Gianluca

    2017-12-01

    Earlier studies in Xenopus have indicated a role for melatonin in the regulation of retinal disk shedding, but the role of melatonin in the regulation of daily rhythm in mammalian disk shedding and phagocytosis is still unclear. We recently produced a series of transgenic mice lacking melatonin receptor type 1 (MT 1 ) or type 2 (MT 2 ) in a melatonin-proficient background and have shown that removal of MT 1 and MT 2 receptors induces significant effects on daily and circadian regulation of the electroretinogram as well as on the viability of photoreceptor cells during aging. In this study we investigated the daily rhythm of phagocytic activity by the retinal pigment epithelium in MT 1 and MT 2 knock-out mice. Our data indicate that in MT 1 and MT 2 knock-out mice the peak of phagocytosis is advanced by 3 h with respect to wild-type mice and occurred in dark rather than after the onset of light, albeit the mean phagocytic activity over the 24-h period did not change among the three genotypes. Nevertheless, this small change in the profile of daily phagocytic rhythms may produce a significant effect on retinal health since MT 1 and MT 2 knock-out mice showed a significant increase in lipofuscin accumulation in the retinal pigment epithelium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Insight into phagocytosis of mature sexual (gametocyte) stages of Plasmodium falciparum using a human monocyte cell line.

    PubMed

    Bansal, Geetha P; Weinstein, Corey S; Kumar, Nirbhay

    2016-05-01

    During natural infection malaria parasites are injected into the bloodstream of a human host by the bite of an infected female Anopheles mosquito. Both asexual and mature sexual stages of Plasmodium circulate in the blood. Asexual forms are responsible for clinical malaria while sexual stages are responsible for continued transmission via the mosquitoes. Immune responses generated against various life cycle stages of the parasite have important roles in resistance to malaria and in reducing malaria transmission. Phagocytosis of free merozoites and erythrocytic asexual stages has been well studied, but very little is known about similar phagocytic clearance of mature sexual stages, which are critical for transmission. We evaluated phagocytic uptake of mature sexual (gametocyte) stage parasites by a human monocyte cell line in the absence of immune sera. We found that intact mature stages do not undergo phagocytosis, unless they are either killed or freed from erythrocytes. In view of this observation, we propose that the inability of mature gametocytes to be phagocytized may actually result in malaria transmission advantage. On the other hand, mature gametocytes that are not transmitted to mosquitoes during infection will eventually die and undergo phagocytosis, initiating immune responses that may have transmission blocking potential. A better understanding of early phagocytic clearance and immune responses to gametocytes may identify additional targets for transmission blocking strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes.

    PubMed

    Lunov, Oleg; Syrovets, Tatiana; Röcker, Carlheinz; Tron, Kyrylo; Nienhaus, G Ulrich; Rasche, Volker; Mailänder, Volker; Landfester, Katharina; Simmet, Thomas

    2010-12-01

    Contrast agents based on dextran-coated superparamagnetic iron oxide nanoparticles (SPIO) are internalized by professional phagocytes such as hepatic Kupffer cells, yet their role in phagocyte biology remains largely unknown. Here we investigated the effects of the SPIO ferucarbotran on murine Kupffer cells and human macrophages. Intravenous injection of ferucarbotran into mice led to rapid accumulation of the particles in phagocytes and to long-lasting increased iron deposition in liver and kidneys. Macrophages incorporate ferucarbotran in lysosomal vesicles containing α-glucosidase, which is capable of degrading the carboxydextran shell of the ferucarbotran particles. Intravenous injection of ferucarbotran into mice followed by incorporation of the nanoparticles into Kupffer cells triggered apoptosis and the subsequent depletion of Kupffer cells. In macrophages, the proinflammatory cytokine TNF-α increased the apoptosis rate, the reactive oxygen species production and the activation of c-Jun N-terminal kinase elicited by ferucarbotran, which might be mediated by the induction of cytoplasmic phospholipase A2 by TNF-α. Notably, the nanoparticle-induced apoptosis of murine Kupffer cells could be prevented by treatment of the mice with the radical scavenger edaravone. Thus, nanosized carboxydextran-coated SPIO-based contrast agents are retained for extended time periods by liver macrophages, where they elicit delayed cell death, which can be antagonized by a therapeutic radical scavenger. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages.

    PubMed

    Ween, Miranda P; Whittall, Jonathan J; Hamon, Rhys; Reynolds, Paul N; Hodge, Sandra J

    2017-08-01

    E-cigarettes are perceived as harmless; however, evidence of their safety is lacking. New data suggests E-cigarettes discharge a range of compounds capable of physiological damage to users. We previously established that cigarette smoke caused defective alveolar macrophage phagocytosis. The present study compared the effect E-cigarette of components; E-liquid flavors, nicotine, vegetable glycerine, and propylene glycol on phagocytosis, proinflammatory cytokine secretion, and phagocytic recognition molecule expression using differentiated THP-1 macrophages. Similar to CSE, phagocytosis of NTHi bacteria was significantly decreased by E-liquid flavoring (11.65-15.75%) versus control (27.01%). Nicotine also decreased phagocytosis (15.26%). E-liquid, nicotine, and E-liquid+ nicotine reduced phagocytic recognition molecules; SR-A1 and TLR-2. IL-8 secretion increased with flavor and nicotine, while TNF α , IL-1 β , IL-6, MIP-1 α , MIP-1 β , and MCP-1 decreased after exposure to most flavors and nicotine. PG, VG, or PG:VG mix also induced a decrease in MIP-1 α and MIP-1 β We conclude that E-cigarettes can cause macrophage phagocytic dysfunction, expression of phagocytic recognition receptors and cytokine secretion pathways. As such, E-cigarettes should be treated with caution by users, especially those who are nonsmokers. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina.

    PubMed

    Karlstetter, Marcus; Kopatz, Jens; Aslanidis, Alexander; Shahraz, Anahita; Caramoy, Albert; Linnartz-Gerlach, Bettina; Lin, Yuchen; Lückoff, Anika; Fauser, Sascha; Düker, Katharina; Claude, Janine; Wang, Yiner; Ackermann, Johannes; Schmidt, Tobias; Hornung, Veit; Skerka, Christine; Langmann, Thomas; Neumann, Harald

    2017-02-01

    Age-related macular degeneration (AMD) is a major cause of blindness in the elderly population. Its pathophysiology is linked to reactive oxygen species (ROS) and activation of the complement system. Sialic acid polymers prevent ROS production of human mononuclear phagocytes via the inhibitory sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC11) receptor. Here, we show that low-dose intravitreal injection of low molecular weight polysialic acid with average degree of polymerization 20 (polySia avDP20) in humanized transgenic mice expressing SIGLEC11 on mononuclear phagocytes reduced their reactivity and vascular leakage induced by laser coagulation. Furthermore, polySia avDP20 prevented deposition of the membrane attack complex in both SIGLEC11 transgenic and wild-type animals. In vitro, polySia avDP20 showed two independent, but synergistic effects on the innate immune system. First, polySia avDP20 prevented tumor necrosis factor-α, vascular endothelial growth factor A, and superoxide production by SIGLEC11-positive phagocytes. Second, polySia avDP20 directly interfered with complement activation. Our data provide evidence that polySia avDP20 ameliorates laser-induced damage in the retina and thus is a promising candidate to prevent AMD-related inflammation and angiogenesis. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Effect of in vitro and in vivo organotin exposures on the immune functions of murray cod (Maccullochella peelii peelii).

    PubMed

    Harford, Andrew J; O'Halloran, Kathryn; Wright, Paul E A

    2007-08-01

    Murray cod (Maccullochella peelii peelii) is an iconic native Australian freshwater fish and an ideal species for ecotoxicological testing of environmental pollutants. The species is indigenous to the Murray-Darling basin, which is the largest river system in Australia but also the ultimate sink for many environmental pollutants. The organotins tributyltin (TBT) and dibutyltin (DBT) are common pollutants of both freshwater and marine environments and are also known for their immunotoxicity in both mammals and aquatic organisms. In this study, TBT and DBT were used as exemplar immunotoxins to assess the efficiency of immune function assays (i.e., mitogen-stimulated lymphoproliferation, phagocytosis in head kidney tissue, and serum lysozyme activity) and to compare the sensitivity of Murray cod to other fish species. The organotins were lethal to Murray cod at concentrations previously reported as sublethal in rainbow trout (i.e., intraperitoneal [i.p.] lethal dose to 75% of the Murray cod [LD75] = 2.5 mg/kg DBT and i.p. lethal dose to 100% of the Murray cod [LD100] = 12.5 mg/kg TBT and DBT). In vivo TBT exposure at 0.1 and 0.5 mg/kg stimulated the phagocytic function of Murray cod (F = 6.89, df = 18, p = 0.004), while the highest concentration of 2.5 mg/kg TBT decreased lymphocyte numbers (F = 7.92, df = 18, p = 0.02) and mitogenesis (F = 3.66, df = 18, p = 0.035). Dibutyltin was the more potent immunosuppressant in Murray cod, causing significant reductions in phagocytic activity (F = 5.34, df = 16, p = 0.013) and lymphocyte numbers (F = 10.63, df = 16, p = 0.001).

  16. Exposure of Monocytes to Lipoarabinomannan Promotes Their Differentiation into Functionally and Phenotypically Immature Macrophages

    PubMed Central

    Chávez-Galán, Leslie; Ocaña-Guzmán, Ranferi; Torre-Bouscoulet, Luis; García-de-Alba, Carolina; Sada-Ovalle, Isabel

    2015-01-01

    Lipoarabinomannan (LAM) is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients). Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours) and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses. PMID:26347897

  17. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells.

    PubMed

    Curto, Pedro; Simões, Isaura; Riley, Sean P; Martinez, Juan J

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated with disease in mammals.

  18. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells

    PubMed Central

    Curto, Pedro; Simões, Isaura; Riley, Sean P.; Martinez, Juan J.

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated with disease in mammals. PMID:27525249

  19. In vivo activation of equine eosinophils and neutrophils by experimental Strongylus vulgaris infections.

    PubMed

    Dennis, V A; Klei, T R; Chapman, M R; Jeffers, G W

    1988-12-01

    Eosinophils and neutrophils from ponies with Strongylus vulgaris-induced eosinophilia (eosinophilic ponies; activated eosinophils and neutrophils) were assayed in vitro for chemotactic and chemokinetic responses to zymosan-activated serum (ZAS) using the filter system in Boyden chambers, for Fc and complement (C) receptors using the EA and EAC-rosette assays, respectively, and for phagocytic and bactericidal activities using opsonized Escherichia coli and the acridine orange method. The responses of activated eosinophils and neutrophils in the above assays were compared with those of eosinophils and neutrophils from S. vulgaris-naive ponies without eosinophilia (noneosinophilic ponies; nonactivated eosinophils and neutrophils). Differences in cell density following centrifugation in a continuous Percoll gradient were used to further characterize the heterogeneity of activated eosinophils and neutrophils. Activated and nonactivated eosinophils demonstrated similar chemotactic responses to ZAS while activated and nonactivated neutrophils demonstrated similar chemokinetic responses to ZAS. A higher percentage of activated eosinophils and neutrophils expressed Fc and C receptors compared with nonactivated cells (P less than 0.05). Generally, higher percentages of eosinophils and neutrophils expressed C than Fc receptors. However, the percentage of neutrophils with both receptors was higher than that of eosinophils. Phagocytosis and killing of E. coli by either type of eosinophil were not consistently observed. Both activated and nonactivated neutrophils phagocytized E. coli and significant differences between the two cell types were not observed. The bacterial activity, however, of activated neutrophils was significantly greater than that obtained using nonactivated neutrophils (P less than 0.05). Activated eosinophils and neutrophils were both separated into two distinct fractions based on differences in cell densities. A higher percentage of band 2 eosinophils (density of 1.106) expressed C receptors than did band 1 eosinophils (density of 1.049) (P less than 0.05). A higher percentage of band 1 neutrophils (density of 1.072) expressed both Fc and C receptors and these neutrophils were more phagocytic and bactericidal than were band 2 neutrophils (density of 1.082) (P less than 0.05). These data suggest that equine eosinophils and neutrophils are activated by chronic S. vulgaris infections.

  20. Microglial Dynamics and Role in the Healthy and Diseased Brain

    PubMed Central

    Perry, V. Hugh

    2015-01-01

    The study of the dynamics and functions of microglia in the healthy and diseased brain is a matter of intense scientific activity. The application of new techniques and new experimental approaches has allowed the identification of novel microglial functions and the redefinition of classic ones. In this review, we propose the study of microglial functions, rather than their molecular profiles, to better understand and define the roles of these cells in the brain. We review current knowledge on the role of surveillant microglia, proliferating microglia, pruning/neuromodulatory microglia, phagocytic microglia, and inflammatory microglia and the molecular profiles that are associated with these functions. In the remodeling scenario of microglial biology, the analysis of microglial functional states will inform about the roles in health and disease and will guide us to a more precise understanding of the multifaceted roles of this never-resting cells. PMID:24722525

  1. Coho salmon Oncorhynchus kisutch strain differences in disease resistance and non-specific immunity, following immersion challenges with Vibrio anguillarum

    USGS Publications Warehouse

    Balfry, Shannon K.; Maule, Alec G.; Iwama, George K.

    2001-01-01

    Two strains of freshwater-reared coho salmon Oncorhynchus kisutch were compared for differences in the activity of selected non-specific immune factors before and after lethal and non-lethal immersion challenges with the marine bacterial pathogen Vibrio anguillarum (Vang). Two disease challenge experiments were performed. The first experimental challenge resulted in no mortality; however, significant strain and challenge treatment effects were detected at Day 16 post-challenge. Strain differences in plasma lysozyme activity were found in pre-challenge samples. The second challenge experiment compared the same strains of coho salmon following immersion challenges in different doses of Vang. The fish were sampled at Days 0, 2, 7, and 18 post-challenge and mortality, plasma lysozyme, and anterior kidney phagocyte respiratory burst activity were compared. There were significant strain differences in mortality in the high dose group. The more disease-resistant strain was found to have higher levels of plasma lysozyme and anterior kidney phagocyte respiratory burst activity. These strain differences were detected at various times in the lethal (high dose) and non-lethal challenge groups. There was a clear relationship between the enhanced survival of the more disease-resistant strain and a more sustained, elevated non-specific immune response following the experimental disease challenges. The results of this study suggest that the basis for strain differences in innate disease resistance is related to the ability of the fish to respond quickly to the initial infection and to maintain the response until the infection is quelled.

  2. Steroid Sulfates from Ophiuroids (Brittle Stars): Action on Some Factors of Innate and Adaptive Immunity.

    PubMed

    Gazha, Anna K; Ivanushko, Lyudmila A; Levina, Eleonora V; Fedorov, Sergey N; Zaporozets, Tatyana S; Stonik, Valentin A; Besednova, Nataliya N

    2016-06-01

    The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen.

  3. Microbial Copper-binding Siderophores at the Host-Pathogen Interface*

    PubMed Central

    Koh, Eun-Ik; Henderson, Jeffrey P.

    2015-01-01

    Numerous pathogenic microorganisms secrete small molecule chelators called siderophores defined by their ability to bind extracellular ferric iron, making it bioavailable to microbes. Recently, a siderophore produced by uropathogenic Escherichia coli, yersiniabactin, was found to also bind copper ions during human infections. The ability of yersiniabactin to protect E. coli from copper toxicity and redox-based phagocyte defenses distinguishes it from other E. coli siderophores. Here we compare yersiniabactin to other extracellular copper-binding molecules and review how copper-binding siderophores may confer virulence-associated gains of function during infection pathogenesis. PMID:26055720

  4. [Update views on the theory of phagocytosis].

    PubMed

    Freĭdlin, I S

    2008-01-01

    Developer of the phagocytosis theory I.I Mechnikov forecasted the most fruitful directions of its development. Macrophages express on the plasma membranes broad spectrum of receptors, which mediate their interaction with altered organism's own components as well as with exogenous agents, including various microorganisms. Recognition leads to changes of expression of surface molecules, enhancement of phagocytic activity as well as production and secretion of cytokines, presentation functions, signaling and genes expression. This reflected on maintenance of homeostasis, as well as on host defense effectiveness, including mechanisms of innate and adaptive immunity.

  5. Coxiella burnetii Infection With Severe Hyperferritinemia in an Asplenic Patient

    PubMed Central

    Paine, Allison; Miya, Tadashi; Webb, Brandon J.

    2015-01-01

    Q fever is an uncommon but likely underreported zoonotic infection. Severe hyperferritinemia has been associated with hemophagocytic lymphohistiocytosis and other infectious diseases. In this study, we report a case of Coxiella burnetii infection in an asplenic patient complicated by severe hyperferritinemia and bone marrow infiltration. In this case, the marked ferritin elevation may have been an indicator of profound systemic macrophage activation due to preferential intracellular infection of this cell type by C burnetii, perhaps exacerbated by altered mononuclear phagocyte system function in the setting of asplenia. PMID:26430699

  6. Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement.

    PubMed

    Strewe, C; Muckenthaler, F; Feuerecker, M; Yi, B; Rykova, M; Kaufmann, I; Nichiporuk, I; Vassilieva, G; Hörl, M; Matzel, S; Schelling, G; Thiel, M; Morukov, B; Choukèr, A

    2015-05-01

    The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ~500 m(3) mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research. Copyright © 2015 the American Physiological Society.

  7. Evolution and function of eukaryotic-like proteins from sponge symbionts.

    PubMed

    Reynolds, David; Thomas, Torsten

    2016-10-01

    Sponges (Porifera) are ancient metazoans that harbour diverse microorganisms, whose symbiotic interactions are essential for the host's health and function. Although symbiosis between bacteria and sponges are ubiquitous, the molecular mechanisms that control these associations are largely unknown. Recent (meta-) genomic analyses discovered an abundance of genes encoding for eukaryotic-like proteins (ELPs) in bacterial symbionts from different sponge species. ELPs belonging to the ankyrin repeat (AR) class from a bacterial symbiont of the sponge Cymbastela concentrica were subsequently found to modulate amoebal phagocytosis. This might be a molecular mechanism, by which symbionts can control their interaction with the sponge. In this study, we investigated the evolution and function of ELPs from other classes and from symbionts found in other sponges to better understand the importance of ELPs for bacteria-eukaryote interactions. Phylogenetic analyses showed that all of the nine ELPs investigated were most closely related to proteins found either in eukaryotes or in bacteria that can live in association with eukaryotes. ELPs were then recombinantly expressed in Escherichia coli and exposed to the amoeba Acanthamoeba castellanii, which is functionally analogous to phagocytic cells in sponges. Phagocytosis assays with E. coli containing three ELP classes (AR, TPR-SEL1 and NHL) showed a significantly higher percentage of amoeba containing bacteria and average number of intracellular bacteria per amoeba when compared to negative controls. The result that various classes of ELPs found in symbionts of different sponges can modulate phagocytosis indicates that they have a broader function in mediating bacteria-sponge interactions. © 2016 John Wiley & Sons Ltd.

  8. Flowers of Clerodendrum volubile exacerbate immunomodulation by suppressing phagocytic oxidative burst and modulation of COX-2 activity.

    PubMed

    Erukainure, Ochuko L; Mesaik, Ahmed M; Muhammad, Aliyu; Chukwuma, Chika I; Manhas, Neha; Singh, Parvesh; Aremu, Oluwole S; Islam, Md Shahidul

    2016-10-01

    The immunomodulatory potentials of the crude methanolic extract and fractions [n-hexane (Hex), n-dichloromethane (DCM), ethyl acetate (EtOAc) and n-butanol (BuOH)] of Clerodendrum volubile flowers were investigated on whole blood phagocytic oxidative burst using luminol-amplified chemiluminescence technique. They were also investigated for their free radicals scavenging activities. The DCM fraction showed significant (p<0.05) anti-oxidative burst and free radical scavenging activities indicating high immunomodulatory and antioxidant potencies respectively. Cytotoxicity assay of the DCM fraction revealed a cytotoxic effect on CC-1 normal cell line. GCMS analysis revealed the presence of triacetin; 3,6-dimethyl-3-octanol; 2R - Acetoxymethyl-1,3,3-trimethtyl - 4t - (3-methyl-2-buten-1-yl) - 1c - cyclohexanol and Stigmastan - 3,5-diene in DCM fraction. These compounds were docked with the active sites of cyclooxygenase-2 (COX-2). Triacetin, 3,6-dimethyl-3-Octanol, and 2R-Acetoxymethyl-1,3,3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclohexanol docked comfortably with COX-2 with good scoring function (-CDocker energy) indicating their inhibitory potency against COX-2. 3,6-dimethyl-3-Octanol, displayed the lowest predicted free energy of binding (-21.4kcalmol -1 ) suggesting its stronger interaction with COX-2, this was followed by 2R - Acetoxymethyl-1, 3, 3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclhexanol (BE=-20.5kcalmol -1 ), and triacetin (BE=-10.9kcalmol -1 ). Stigmastan - 3,5-diene failed to dock with COX-2. The observed suppressive effect of the DCM fraction of C. volubile flower methanolic extract on phagocytic oxidative burst indicates an immunomodulatory potential. This is further reflected in its free scavenging activities and synergetic modulation of COX-2 activities by its identified compounds in silico. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. The phagocyte respiratory burst: Historical perspectives and recent advances.

    PubMed

    Thomas, David C

    2017-12-01

    When exposed to certain stimuli, phagocytes (including neutrophils, macrophages and eosinophils) undergo marked changes in the way they handle oxygen. Firstly, their rate of oxygen uptake increases greatly. This is accompanied by (i) the production of large amounts of superoxide and hydrogen peroxide and (ii) the metabolism of large quantities of glucose through the hexose monophosphate shunt. We now know that the oxygen used is not for respiration but for the production of powerful microbiocidal agents downstream of the initial production of superoxide. Concomitantly, glucose is oxidised through the hexose monophosphate shunt to re-generate the NADPH that has been consumed through the reduction of molecular oxygen to generate superoxide. This phagocyte respiratory burst is generated by an NADPH oxidase multi-protein complex that has a catalytic core consisting of membrane-bound gp91phox (CYBB) and p22phox (CYBA) sub-units and cytosolic components p47phox (NCF1), p67phox (NCF2) and p40phox (NCF4). Finally, another cytosolic component, the small G-protein Rac (Rac2 in neutrophils and Rac1 in macrophages) is also required for full activation. The importance of the complex in host defence is underlined by chronic granulomatous disease, a severe life-limiting immunodeficiency caused by mutations in the genes encoding the individual subunits. In this review, I will discuss the experimental evidence that underlies our knowledge of the respiratory burst, outlining how elegant biochemical analysis, coupled with study of patients deficient in the various subunits has helped elucidate the function of this essential part of innate immunity. I will also discuss some exciting recent studies that shed new light on how the abundance of the various components is controlled. Finally, I will explore the emerging role of reactive oxygen species such as superoxide and hydrogen peroxide in the pathogenesis of major human diseases including auto-inflammatory diseases. Copyright © 2017. Published by Elsevier B.V.

  10. A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use.

    PubMed

    Gregoret, V; Perezlindo, M J; Vinderola, G; Reinheimer, J; Binetti, A

    2013-05-01

    Specific strains should only be regarded as probiotics if they fulfill certain safety, technological and functional criteria. The aim of this work was to study, from a comprehensive point of view (in vitro and in vivo tests), three Lactobacillus strains (Lactobacillus paracasei JP1, Lactobacillus rhamnosus 64 and Lactobacillus gasseri 37) isolated from feces of local newborns, determining some parameters of technological, biological and functional relevance. All strains were able to adequately grow in different economic culture media (cheese whey, buttermilk and milk), which were also suitable as cryoprotectants. As selective media, LP-MRS was more effective than B-MRS for the enumeration of all strains. The strains were resistant to different technological (frozen storage, high salt content) and biological (simulated gastrointestinal digestion after refrigerated storage in acidified milk, bile exposure) challenges. L. rhamnosus 64 and L. gasseri 37, in particular, were sensible to chloramphenicol, erythromycin, streptomycin, tetracycline and vancomycin, increased the phagocytic activity of peritoneal macrophage and induced the proliferation of IgA producing cells in small intestine when administered to mice. Even when clinical trails are still needed, both strains fulfilled the main criteria proposed by FAO/WHO to consider them as potential probiotics for the formulation of new foods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. NADPH oxidases: novel therapeutic targets for neurodegenerative diseases.

    PubMed

    Gao, Hui-Ming; Zhou, Hui; Hong, Jau-Shyong

    2012-06-01

    Oxidative stress is a key pathologic factor in neurodegenerative diseases such as Alzheimer and Parkinson diseases (AD, PD). The failure of free-radical-scavenging antioxidants in clinical trials pinpoints an urgent need to identify and to block major sources of oxidative stress in neurodegenerative diseases. As a major superoxide-producing enzyme complex in activated phagocytes, phagocyte NADPH oxidase (PHOX) is essential for host defense. However, recent preclinical evidence has underscored a pivotal role of overactivated PHOX in chronic neuroinflammation and progressive neurodegeneration. Deficiency in PHOX subunits mitigates neuronal damage induced by diverse insults/stresses relevant to neurodegenerative diseases. More importantly, suppression of PHOX activity correlates with reduced neuronal impairment in models of neurodegenerative diseases. The discovery of PHOX and non-phagocyte NADPH oxidases in astroglia and neurons further reinforces the crucial role of NADPH oxidases in oxidative stress-mediated chronic neurodegeneration. Thus, proper modulation of NADPH oxidase activity might hold therapeutic potential for currently incurable neurodegenerative diseases. Published by Elsevier Ltd.

  12. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer with respect to macrophage activity.

    PubMed

    Braga, Julia Mourão; Oliveira, Ricardo Reis; de Castro Martins, Renata; Vieira, Leda Quercia; Sobrinho, Antonio Paulino Ribeiro

    2015-10-01

    To assess the influence of co-culture with mineral trioxide aggregate (MTA) and MTA Fillapex (FLPX) on the viability, adherence, and phagocytosis activity of peritoneal macrophages from two mouse strains. Cellular viability, adherence, and phagocytosis of Saccharomyces boulardii were assayed in the presence of capillaries containing MTA and MTA Fillapex. The data were analyzed using parametric (Student's t) and non-parametric (Mann-Whitney) tests. FLPX was severely cytotoxic and decreased cell viability, adherence, and phagocytic activity of both macrophage subtypes. Cells that were treated with MTA Fillapex remained viable (>80%) for only 4 h after stimulation. Macrophages from C57BL/6 mice presented higher adherence and higher phagocytic activity compared with macrophages from BALB/c mice. Comparison of MTA and FLPX effects upon macrophages indicates that FLPX may impair macrophage activity and viability, while MTA seems to increase phagocytic activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Staphylococcus aureus leukocidin ED contributes to systemic infection by targeting neutrophils and promoting bacterial growth in vivo

    PubMed Central

    Alonzo, Francis; Benson, Meredith A.; Chen, John; Novick, Richard P.; Shopsin, Bo; Torres, Victor J.

    2011-01-01

    SUMMARY Bloodstream infection with Staphylococcus aureus is common and can be fatal. However, virulence factors that contribute to lethality in S. aureus bloodstream infection are poorly defined. We discovered that LukED, a commonly overlooked leukotoxin, is critical for S. aureus bloodstream infection in mice. We also determined that LukED promotes S. aureus replication in vivo by directly killing phagocytes recruited to sites of hematogenously-seeded tissue. Furthermore, we established that murine neutrophils are the primary target of LukED, as the greater virulence of wild type S. aureus compared to a lukED mutant was abrogated by depleting neutrophils. The in vivo toxicity of LukED toward murine phagocytes is unique among S. aureus leukotoxins, implying its crucial role in pathogenesis. Moreover, the tropism of LukED for murine phagocytes highlights the utility of murine models to study LukED pathobiology, including development and testing of strategies to inhibit toxin activity and control bacterial infection. PMID:22142035

  14. Nanoblinker: Brownian Motion Powered Bio-Nanomachine for FRET Detection of Phagocytic Phase of Apoptosis

    PubMed Central

    Minchew, Candace L.; Didenko, Vladimir V.

    2014-01-01

    We describe a new type of bio-nanomachine which runs on thermal noise. The machine is solely powered by the random motion of water molecules in its environment and does not ever require re-fuelling. The construct, which is made of DNA and vaccinia virus topoisomerase protein, can detect DNA damage by employing fluorescence. It uses Brownian motion as a cyclic motor to continually separate and bring together two types of fluorescent hairpins participating in FRET. This bio-molecular oscillator is a fast and specific sensor of 5′OH double-strand DNA breaks present in phagocytic phase of apoptosis. The detection takes 30 s in solution and 3 min in cell suspensions. The phagocytic phase is critical for the effective execution of apoptosis as it ensures complete degradation of the dying cells’ DNA, preventing release of pathological, viral and tumor DNA and self-immunization. The construct can be used as a smart FRET probe in studies of cell death and phagocytosis. PMID:25268504

  15. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity

    PubMed Central

    Thomas, David C.; Clare, Simon; Sowerby, John M.; Juss, Jatinder K.; Goulding, David A.; van der Weyden, Louise; Prakash, Ananth; Harcourt, Katherine; Mukhopadhyay, Subhankar; Antrobus, Robin; Bateman, Alex

    2017-01-01

    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox. Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense. PMID:28351984

  16. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate.

    PubMed

    Yang, Ping; Huang, Shengfeng; Yan, Xinyu; Huang, Guangrui; Dong, Xiangru; Zheng, Tingting; Yuan, Dongjuan; Wang, Ruihua; Li, Rui; Tan, Ying; Xu, Anlong

    2014-05-01

    The vertebrate phagocytic respiratory burst (PRB) is a highly specific and efficient mechanism for reactive oxygen species (ROS) production. This mechanism is mediated by NADPH oxidase 2 (NOX2) and used by vertebrate phagocytic leukocytes to destroy internalized microbes. Here we demonstrate the presence of the PRB in a basal chordate, the amphioxus Branchiostoma belcheri tsingtauense (bbt). We show that using the antioxidant NAC to scavenge the production of ROS significantly decreased the survival rates of infected amphioxus, indicating that ROS are indispensable for efficient antibacterial responses. Amphioxus NOX enzymes and cytosolic factors were found to colocalize in the epithelial cells of the gill, intestine, and hepatic cecum and could be upregulated after exposure to microbial pathogens. The ROS production in epithelial cell lysates could be reconstructed by supplementing recombinant cytosolic factors, including bbt-p47phox, bbt-p67phox, bbt-p47phox, and bbt-Rac; the restored ROS production could be inhibited by anti-bbt-NOX2 and anti-bbt-p67phox antibodies. We also reveal that the gut epithelial lining cells of the amphioxus are competent at bacterial phagocytosis, and there is evidence that the PRB machinery could participate in the initiation of this phagocytic process. In conclusion, we report the presence of the classical PRB machinery in nonvertebrates and provide the first evidence for the possible role of PRB in epithelial cell immunity and phagocytosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effect of tilmicosin on chemotactic, phagocytic, and bactericidal activities of bovine and porcine alveolar macrophages.

    PubMed

    Brumbaugh, Gordon W; Herman, James D; Clancy, Julianne S; Burden, Kyland I; Barry, Tracie; Simpson, R B; López, Hector Sumano

    2002-01-01

    To evaluate chemotactic, phagocytic, and bactericidal activities of bovine and porcine alveolar macrophages (AM) exposed to tilmicosin. 12 healthy calves and 12 healthy pigs. Lungs were obtained immediately after euthanasia; AM were collected by means of bronchoalveolar lavage and density gradient centrifugation. Chemotactic activity was evaluated by exposing AM to lipopolysaccharide or macrophage inhibitory peptide during incubation with tilmicosin. Phagocytic activity was evaluated by incubating AM with tilmicosin for 24 hours and then with tilmicosin-resistant Salmonella serotype Typhimurium. Bactericidal activity was evaluated by incubating AM with tilmicosin (0, 10, or 20 microg/ml for bovine AM; 0 or 10 microg/ml or 10 microg/ml but washed free of tilmicosin for porcine AM) and then with Mannheimia haemolytica (bovine AM) or with Actinobacillus pleuropneumoniae or Pasteurella multocida (porcine AM). Tilmicosin had no significant effects on chemotactic or phagocytic activities of bovine or porcine AM. The time-course of bactericidal activity was best described by polynomial equations. Time to cessation of bacterial growth and area under the time versus bacterial number curve were significantly affected by incubation of AM with tilmicosin. Results show that bactericidal activity of bovine and porcine AM was enhanced by tilmicosin, but not in proportion to the reported ability of AM to concentrate tilmicosin intracellularly. With or without exposure to tilmicosin, the time-course of bactericidal activity of bovine AM against M haemolytica and of porcine AM against A pleuropneumoniae or P multocida was too complex to be reduced to a simple linear equation.

  18. The immunomodulatory effect of Zingiber cassumunar ethanolic extract on phagocytic activity, nitrit oxide and reaxtive oxygen intermediate secretions of macrophage in mice

    NASA Astrophysics Data System (ADS)

    Nurkhasanah; Santoso, R. D.; Fauziah, R.

    2017-11-01

    Immunomodulators could protect the body from a variety of infectious agents and boost immunity. Zingiber cassumunar rhizome or bangle potentially showed as an immunomodulator through increasing of macrophage activity in vitro. The objective of the study was to determine the effect of Z. cassumunar rhizome ethanolic extract on phagocytic activity, nitrite oxide (NO) and reactive oxygen intermediate (ROI) secretions in macrophages in vivo. A total of 200 g of Z. cassumunar rhizome was powdered, macerated in 96% ethanol and evaporated to get concentrated extract. Mice were divided into 5 groups as follow: the normal group was given by water only, the negative control group was given by a 0.94% CMC-Na suspension, the treatment groups were given by 250, 500 and 1000 mg/kgBW, respectively, of Z. cassumunar ethanolic extract. The extract was administered orally for 7 days. On the 8th day the mice were injected intraperitoneally 0.7 mg/kg BW of lipopolysaccharide. Four hours later macrophage was isolated. Furthermore, the determination of the phagocytic activity, NO and ROI secretions levels of macrophage were performed. The treatments of 250, 500 and 1000 mg/kg BW of Z. cassumunar ethanolic extract significantly increase the ROI and NO secretions levels (p<0.05), but did not increase the phagocytic activity (p>0.05) of macrophage. Z. cassumunar ethanolic extract have immunomodulatory effect in vivo.

  19. Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs. phagocytic macrophages.

    PubMed

    Lee, SeungHwan; Zhang, Ji

    2012-08-01

    Macrophages are important immune effector cells in both innate and adaptive immune responses. Injury to peripheral nerves triggers activation of resident macrophages and infiltration of haematogenous macrophages, which they play critical roles in Wallerian degeneration and neuropathic pain. As macrophages are able to change their phenotypes in response to environment cues, we attempt to identify distinct phenotypes of macrophages in injured nerves and to understand the potential contribution of each macrophage subpopulation to the genesis of neuropathic pain associated with nerve injury. Rat mental nerves (terminal branches of trigeminal nerve) were loosely ligated. Sensitivity to mechanical stimuli at the lower lip area was monitored using calibrated von Frey Hairs. We examined the expression pattern of Iba-1, MAC1 and ED1 which allow us to reveal the immunophenotypes of macrophages at different time points post-injury. Functional status of each macrophage subpopulation was further investigated by colocalization with cytokines/chemokines, myelin basic protein and MHC II antigen, which reflect respectively secretory, phagocytic and antigen presentation properties of activated macrophages. Following nerve injury, a burst of Iba-1(+) macrophages was found in injured mental nerves. Among them, we detected two major immunophenotypes: MAC1(+) cytokines/chemokines secreting macrophages and ED1(+) phagocytic macrophages. Small, round shaped MAC1(+) macrophages were distributed essentially around the lesion site and existed only at early time points. Large, irregular and foamy ED1(+) macrophages were found among damaged nerve fibers and they persisted for at least 3 months post-injury. Although ED1(+) macrophages did not secrete inflammatory mediators, they were able to express neurotransmitter CGRP and MHC II at later time points. In parallel, we observed that mechanical allodynia developed after the nerve ligation was at its lowest level within 1 month. Although slightly increased afterwards, the head escape threshold maintained significantly lower than before injury until 3 months. We suggest that MAC1(+) macrophages contribute to the initiation of neuropathic pain by releasing cytokines/chemokines, and ED1(+) macrophages may contribute in maintaining the hypersensitivity under other mechanisms. Our results highlighted the heterogeneity and the plasticity of macrophages in response to the injury and provided further information on their potential involvement in neuropathic pain. Exploring the full spectrum of macrophage phenotypes in injured nerve is necessary. Individual macrophage population may be selectively targeted by cell-specific intervention for an effective treatment of neuropathic pain. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Exercise intensity-dependent changes in the inflammatory response in sedentary women: role of neuroendocrine parameters in the neutrophil phagocytic process and the pro-/anti-inflammatory cytokine balance.

    PubMed

    Giraldo, E; Garcia, J J; Hinchado, M D; Ortega, E

    2009-01-01

    It is still not really known what is the optimal level of exercise that improves, but does not impair or overstimulate the innate immune function. This is especially the case in women, who have higher basal levels of 'inflammatory markers' than men. The aim of this work was to evaluate differences in the magnitude of the stimulation of the innate/inflammatory response following a single bout of moderate or intense exercise in sedentary women, all of them in the follicular phase of their menstrual cycle. Changes in stress and sexual hormones were also evaluated. Changes induced by exercise (45 min at 55% VO(2) max vs. 1 h at 70% VO(2) max on a cycle ergometer) in the phagocytic process (chemotaxis, phagocytosis, and microbicide capacity against Candida albicans) and in serum concentrations of IL-1beta, IL-2, IFN-gamma, IL-12, IL-6, and IL-4 (ELISA) were evaluated. Parallel determinations were also made of serum or plasma concentrations of catecholamines (HPLC) and cortisol, oestradiol, and progesterone (electrochemiluminescence immunoassay). Both exercise intensities increased chemotaxis, phagocytosis, and microbicide capacity of the neutrophils. However, the increase in chemotaxis was greater after moderate exercise. All the cytokines assayed were affected by exercise intensity. IFN-gamma increased significantly only immediately after the intense exercise; IL-1beta increased following both exercise intensities, although at 24 h it only remained elevated after the intense exercise; IL-12 only increased 24 h after the intense exercise, and IL-2 only showed a significant decrease following the moderate exercise. IL-6 increased immediately after both exercise intensities, but more so after moderate exercise. While IL-4 (an anti-inflammatory cytokine) increased following the moderate exercise, it decreased after the intense exercise. Both moderate and intense exercise increased norepinephrine and decreased cortisol, both of which returned to basal levels after 24 h. Only the intense exercise affected the epinephrine, oestradiol, and progesterone concentrations, with increases in epinephrine and oestradiol immediately after exercise, and a decrease in progesterone after 24 h. Both moderate and intense exercise stimulate the phagocytic process of neutrophils in sedentary women, but the profile of pro-/anti-inflammatory cytokine release seems to be better following the moderate exercise. The possible participation of stress (catecholamines and cortisol) and sex (oestradiol and progesterone) hormones in these intensity-dependent immune changes is discussed. Copyright 2009 S. Karger AG, Basel.

Top