The dynamics of methane emissions in Alaskan peatlands at different trophic levels
NASA Astrophysics Data System (ADS)
Zhang, L.; Liu, X.; Langford, L.; Chanton, J.; Hines, M. E.
2016-12-01
One major uncertainty in estimating methane (CH4) emission from wetlands is extrapolating from highly heterogeneous and inadequately studied local sites to larger scales. The heterogeneity of peatlands comes from contrasting surface vegetation compositions within short distances that are usually associated with different nutrient sources and trophic status. Different microbial communities and metabolic pathways occur at different trophic levels. Stable isotope C ratios (δ13C) have been used as a robust tool to distinguish methanogenic pathways, but different sources of parent compounds (acetate and CO2) with unique δ13C signatures, and unresolved fractionation factors associated with different methanogens, add complexity. To better understand the relationships between trophic status, surface vegetation compositions and methanogenic pathways, 28 peatland sites were studied in Fairbanks and Anchorage, Alaska in the summer of 2015. These sites were ordinated using multiple factor analysis into 3 clusters based on pH, temp, CH4 and volatile fatty acids production rates, δ13C values, and surface vegetation composition. In the low-pH trophic cluster (pH 4.2), Sphagnum fuscum was the dominant species with specific sedges (Ledum decumbens), and primary fermentation rates was slow with no CH4 detected. In the intermediate trophic level (pH 5.3), in which Sphagnum magellanicum was largely present, both hydrogenotrophic (HM) and acetoclastic methanogenesis (AM) were very active. Syntrophy was present at certain sites, which may provide CO2 and acetate with unique δ13C for CH4 production. At the highest pH trophic cluster examined in this study (pH 5.8), Carex tenuiflora, Carex aquatilis, and Sphagnum Squarrosum dominated. CH4 production rates were higher than those in the intermediate cluster and the apparent fractionation factor a was lower.
Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor
NASA Astrophysics Data System (ADS)
Intan Najla Syed Hashim, Syarifah; Hidayah Abu Talib, Siti; Salleh Abustan, Muhammad
2018-03-01
A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month) and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17) sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO), water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP) and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50).
Pettine, Maurizio; Casentini, Barbara; Fazi, Stefano; Giovanardi, Franco; Pagnotta, Romano
2007-09-01
The trophic status classification of coastal waters at the European scale requires the availability of harmonised indicators and procedures. The composite trophic status index (TRIX) provides useful metrics for the assessment of the trophic status of coastal waters. It was originally developed for Italian coastal waters and then applied in many European seas (Adriatic, Tyrrhenian, Baltic, Black and Northern seas). The TRIX index does not fulfil the classification procedure suggested by the WFD for two reasons: (a) it is based on an absolute trophic scale without any normalization to type-specific reference conditions; (b) it makes an ex ante aggregation of biological (Chl-a) and physico-chemical (oxygen, nutrients) quality elements, instead of an ex post integration of separate evaluations of biological and subsequent chemical quality elements. A revisitation of the TRIX index in the light of the European Water Framework Directive (WFD, 2000/60/EC) and new TRIX derived tools are presented in this paper. A number of Italian coastal sites were grouped into different types based on a thorough analysis of their hydro-morphological conditions, and type-specific reference sites were selected. Unscaled TRIX values (UNTRIX) for reference and impacted sites have been calculated and two alternative UNTRIX-based classification procedures are discussed. The proposed procedures, to be validated on a broader scale, provide users with simple tools that give an integrated view of nutrient enrichment and its effects on algal biomass (Chl-a) and on oxygen levels. This trophic evaluation along with phytoplankton indicator species and algal blooms contribute to the comprehensive assessment of phytoplankton, one of the biological quality elements in coastal waters.
da Costa Lobato, Tarcísio; Hauser-Davis, Rachel Ann; de Oliveira, Terezinha Ferreira; Maciel, Marinalva Cardoso; Tavares, Maria Regina Madruga; da Silveira, Antônio Morais; Saraiva, Augusto Cesar Fonseca
2015-02-15
The Amazon area has been increasingly suffering from anthropogenic impacts, especially due to the construction of hydroelectric power plant reservoirs. The analysis and categorization of the trophic status of these reservoirs are of interest to indicate man-made changes in the environment. In this context, the present study aimed to categorize the trophic status of a hydroelectric power plant reservoir located in the Brazilian Amazon by constructing a novel Water Quality Index (WQI) and Trophic State Index (TSI) for the reservoir using major ion concentrations and physico-chemical water parameters determined in the area and taking into account the sampling locations and the local hydrological regimes. After applying statistical analyses (factor analysis and cluster analysis) and establishing a rule base of a fuzzy system to these indicators, the results obtained by the proposed method were then compared to the generally applied Carlson and a modified Lamparelli trophic state index (TSI), specific for trophic regions. The categorization of the trophic status by the proposed fuzzy method was shown to be more reliable, since it takes into account the specificities of the study area, while the Carlson and Lamparelli TSI do not, and, thus, tend to over or underestimate the trophic status of these ecosystems. The statistical techniques proposed and applied in the present study, are, therefore, relevant in cases of environmental management and policy decision-making processes, aiding in the identification of the ecological status of water bodies. With this, it is possible to identify which factors should be further investigated and/or adjusted in order to attempt the recovery of degraded water bodies. Copyright © 2014 Elsevier B.V. All rights reserved.
Zooplankton seasonality across a latitudinal gradient in the Northeast Atlantic Shelves Province
NASA Astrophysics Data System (ADS)
Fanjul, Alvaro; Iriarte, Arantza; Villate, Fernando; Uriarte, Ibon; Atkinson, Angus; Cook, Kathryn
2018-05-01
Zooplankton seasonality and its environmental drivers were studied at four coastal sites within the Northeast Atlantic Shelves Province (Bilbao35 (B35) and Urdaibai35 (U35) in the Bay of Biscay, Plymouth L4 (L4) in the English Channel and Stonehaven (SH) in the North Sea) using time series spanning 1999-2013. Seasonal community patterns were extracted at the level of broad zooplankton groups and copepod and cladoceran genera using redundancy analysis. Temperature was generally the environmental factor that explained most of the taxa seasonal variations at the four sites. However, between-site differences related to latitude and trophic status (i.e. from oligotrophic to mesotrophic) were observed in the seasonality of zooplankton community, mainly in the pattern of taxa that peaked in spring-summer as opposed to late autumn-winter zooplankton, which were linked primarily to differences in the seasonal pattern of phytoplankton. The percentage of taxa variations explained by environmental factors increased with latitude and trophic status likely related to the increase in the co-variation of temperature and chlorophyll a, as well as in the increase in regularity of the seasonal patterns of both temperature and chlorophyll a from south to north, and of chlorophyll a with trophic status. Cladocerans and cirripede larvae at B35 and U35, echinoderm larvae at L4 and decapod larvae at SH made the highest contribution to shape the main mode of seasonal pattern of zooplankton community, which showed a seasonal delay with latitude, as well as with the increase in trophic status.
Fang, Longfa; Ge, Haitao; Huang, Xiahe; Liu, Ye; Lu, Min; Wang, Jinlong; Chen, Weiyang; Xu, Wu; Wang, Yingchun
2017-01-09
The photosynthetic model organism Synechocystis sp. PCC 6803 can grow in different trophic modes, depending on the availability of light and exogenous organic carbon source. However, how the protein profile changes to facilitate the cells differentially propagate in different modes has not been comprehensively investigated. Using isobaric labeling-based quantitative proteomics, we simultaneously identified and quantified 45% Synechocystis proteome across four different trophic modes, i.e., autotrophic, heterotrophic, photoheterotrophic, and mixotrophic modes. Among the 155 proteins that are differentially expressed across four trophic modes, proteins involved in nitrogen assimilation and light-independent chlorophyll synthesis are dramatically upregulated in the mixotrophic mode, concomitant with a dramatic increase of P II phosphorylation that senses carbon and nitrogen assimilation status. Moreover, functional study using a mutant defective in light-independent chlorophyll synthesis revealed that this pathway is important for chlorophyll accumulation under a cycled light/dark illumination regime, a condition mimicking day/night cycles in certain natural habitats. Collectively, these results provide the most comprehensive information on trophic mode-dependent protein expression in cyanobacterium, and reveal the functional significance of light-independent chlorophyll synthesis in trophic growth. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Olson, Robert J.; Popp, Brian N.; Graham, Brittany S.; López-Ibarra, Gladis A.; Galván-Magaña, Felipe; Lennert-Cody, Cleridy E.; Bocanegra-Castillo, Noemi; Wallsgrove, Natalie J.; Gier, Elizabeth; Alatorre-Ramírez, Vanessa; Ballance, Lisa T.; Fry, Brian
2010-07-01
Evaluating the impacts of climate and fishing on oceanic ecosystems requires an improved understanding of the trophodynamics of pelagic food webs. Our approach was to examine broad-scale spatial relationships among the stable N isotope values of copepods and yellowfin tuna ( Thunnus albacares), and to quantify yellowfin tuna trophic status in the food web based on stable-isotope and stomach-contents analyses. Using a generalized additive model fitted to abundance-weighted-average δ 15N values of several omnivorous copepod species, we examined isotopic spatial relationships among yellowfin tuna and copepods. We found a broad-scale, uniform gradient in δ 15N values of copepods increasing from south to north in a region encompassing the eastern Pacific warm pool and parts of several current systems. Over the same region, a similar trend was observed for the δ 15N values in the white muscle of yellowfin tuna caught by the purse-seine fishery, implying limited movement behavior. Assuming the omnivorous copepods represent a proxy for the δ 15N values at the base of the food web, the isotopic difference between these two taxa, “ ΔYFT-COP,” was interpreted as a trophic-position offset. Yellowfin tuna trophic-position estimates based on their bulk δ 15N values were not significantly different than independent estimates based on stomach contents, but are sensitive to errors in the trophic enrichment factor and the trophic position of copepods. An apparent inshore-offshore, east to west gradient in yellowfin tuna trophic position was corroborated using compound-specific isotope analysis of amino acids conducted on a subset of samples. The gradient was not explained by the distribution of yellowfin tuna of different sizes, by seasonal variability at the base of the food web, or by known ambit distances (i.e. movements). Yellowfin tuna stomach contents did not show a regular inshore-offshore gradient in trophic position during 2003-2005, but the trophic-position estimates based on both methods had similar scales of variability. We conclude that trophic status of yellowfin tuna increased significantly from east to west over the study area based on the spatial pattern of ΔYFT-COP values and the difference between the δ 15N values of glutamic acid and glycine, “trophic” and “source” amino acids, respectively. These results provide improved depictions of trophic links and biomass flows for food-web models, effective tools to evaluate climate and fishing effects on exploited ecosystems.
Measuring variability in trophic status in the Lake Waco/Bosque River Watershed
Rodriguez, Angela D; Matlock, Marty D
2008-01-01
Background Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. Methods We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. Results The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Conclusion Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential for use in nutrient gradient studies. PMID:18271947
Measuring variability in trophic status in the Lake Waco/Bosque River Watershed.
Rodriguez, Angela D; Matlock, Marty D
2008-01-11
Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential for use in nutrient gradient studies.
Trophic models: What do we learn about Celtic Sea and Bay of Biscay ecosystems?
NASA Astrophysics Data System (ADS)
Moullec, Fabien; Gascuel, Didier; Bentorcha, Karim; Guénette, Sylvie; Robert, Marianne
2017-08-01
Trophic models are key tools to go beyond the single-species approaches used in stock assessments to adopt a more holistic view and implement the Ecosystem Approach to Fisheries Management (EAFM). This study aims to: (i) analyse the trophic functioning of the Celtic Sea and the Bay of Biscay, (ii) investigate ecosystem changes over the 1980-2013 period and, (iii) explore the response to management measures at the food web scale. Ecopath models were built for each ecosystem for years 1980 and 2013, and Ecosim models were fitted to time series data of biomass and catches. EcoTroph diagnosis showed that in both ecosystems, fishing pressure focuses on high trophic levels (TLs) and, to a lesser extent, on intermediate TLs. However, the interplay between local environmental conditions, species composition and ecosystem functioning could explain the different responses to fisheries management observed between these two contiguous ecosystems. Indeed, over the study period, the ecosystem's exploitation status has improved in the Bay of Biscay but not in the Celtic Sea. This improvement does not seem to be sufficient to achieve the objectives of an EAFM, as high trophic levels were still overexploited in 2013 and simulations conducted with Ecosim in the Bay of Biscay indicate that at current fishing effort the biomass will not be rebuilt by 2030. The ecosystem's response to a reduction in fishing mortality depends on which trophic levels receive protection. Reducing fishing mortality on pelagic fish, instead of on demersal fish, appears more efficient at maximising catch and total biomass and at conserving both top-predator and intermediate TLs. Such advice-oriented trophic models should be used on a regular basis to monitor the health status of marine food webs and analyse the trade-offs between multiple objectives in an ecosystem-based fisheries management context.
Hayford, Barbara L.; Caires, Andrea M.; Chandra, Sudeep; Girdner, Scott F.
2015-01-01
Relative to their scarcity, large, deep lakes support a large proportion of the world’s freshwater species. This biodiversity is threatened by human development and is in need of conservation. Direct comparison of biodiversity is the basis of biological monitoring for conservation but is difficult to conduct between large, insular ecosystems. The objective of our study was to conduct such a comparison of benthic biodiversity between three of the world’s largest lakes: Lake Tahoe, USA; Lake Hövsgöl, Mongolia; and Crater Lake, USA. We examined biodiversity of common benthic organism, the non-biting midges (Chironomidae) and determined lake trophic status using chironomid-based lake typology, tested whether community structure was similar between the three lakes despite geographic distance; and tested whether chironomid diversity would show significant variation within and between lakes. Typology analysis indicated that Lake Hövsgöl was ultra-oligotrophic, Crater Lake was oligotrophic, and Lake Tahoe was borderline oligotrophic/mesotrophic. These results were similar to traditional pelagic measures of lake trophic status for Lake Hövsgöl and Crater Lake but differed for Lake Tahoe, which has been designated as ultra-oligotrophic by traditional pelagic measures such as transparency found in the literature. Analysis of similarity showed that Lake Tahoe and Lake Hövsgöl chironomid communities were more similar to each other than either was to Crater Lake communities. Diversity varied between the three lakes and spatially within each lake. This research shows that chironomid communities from these large lakes were sensitive to trophic conditions. Chironomid communities were similar between the deep environments of Lake Hövsgöl and Lake Tahoe, indicating that chironomid communities from these lakes may be useful in comparing trophic state changes in large lakes. Spatial variation in Lake Tahoe’s diversity is indicative of differential response of chironomid communities to nutrient enrichment which may be an indication of changes in trophic state within and across habitats. PMID:25594516
Assessing Lake Trophic Status: A Proportional Odds Logistic Regression Model
Lake trophic state classifications are good predictors of ecosystem condition and are indicative of both ecosystem services (e.g., recreation and aesthetics), and disservices (e.g., harmful algal blooms). Methods for classifying trophic state are based off the foundational work o...
Genetic diversity of small eukaryotes in lakes differing by their trophic status.
Lefranc, Marie; Thénot, Aurélie; Lepère, Cécile; Debroas, Didier
2005-10-01
Small eukaryotes, cells with a diameter of less than 5 mum, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem.
Characterization of Lake Michigan coastal lakes using zooplankton assemblages
Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.
2004-01-01
Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.
Mariani, Maria Antonietta; Padedda, Bachisio Mario; Kaštovský, Jan; Buscarinu, Paola; Sechi, Nicola; Virdis, Tomasa; Lugliè, Antonella
2015-01-01
The aim of our study was to evaluate the abundance of cyanobacteria and microcystins in four Sardinian reservoirs (Italy) characterised by different trophic status to define a reference picture for future changes. Increasing levels of eutrophication and the abundance of cyanobacteria are expected to occur due to climate change, especially in the southern Mediterranean. Consequently, an in-depth study of the occurrence of harmful cyanobacteria is important to develop appropriate management strategies for water resources at a local scale. Monthly samples were collected at one station in each reservoir over an 18-month period. The Analysis of similarity indicated that cyanobacterial abundance and species composition differed significantly among the reservoirs. The Redundancy analysis highlighted their relationship to trophic, hydrological and seasonal patterns. Spearman’s analysis indicated that there were significant correlations among the most important species (Planktothrix agardhii–rubescens group, Aphanizomenon flos-aquae and Dolichospermum planctonicum), nutrients and microcystins. We highlighted that the species composition during periods of maximum microcystin concentrations differed from those typically reported for other Mediterranean sites. We found new potential microcystin producers (Aphanizomenon klebahnii, Dolichospermum macrosporum and Dolichospermum viguieri), which emphasised the high diversity of cyanobacteria in the Mediterranean area and the need for detailed research at the local scale. PMID:26648532
Pallas, B; Loi, C; Christophe, A; Cournède, P H; Lecoeur, J
2011-04-01
There is increasing interest in the development of plant growth models representing the complex system of interactions between the different determinants of plant development. These approaches are particularly relevant for grapevine organogenesis, which is a highly plastic process dependent on temperature, solar radiation, soil water deficit and trophic competition. The extent to which three plant growth models were able to deal with the observed plasticity of axis organogenesis was assessed. In the first model, axis organogenesis was dependent solely on temperature, through thermal time. In the second model, axis organogenesis was modelled through functional relationships linking meristem activity and trophic competition. In the last model, the rate of phytomer appearence on each axis was modelled as a function of both the trophic status of the plant and the direct effect of soil water content on potential meristem activity. The model including relationships between trophic competition and meristem behaviour involved a decrease in the root mean squared error (RMSE) for the simulations of organogenesis by a factor nine compared with the thermal time-based model. Compared with the model in which axis organogenesis was driven only by trophic competition, the implementation of relationships between water deficit and meristem behaviour improved organogenesis simulation results, resulting in a three times divided RMSE. The resulting model can be seen as a first attempt to build a comprehensive complete plant growth model simulating the development of the whole plant in fluctuating conditions of temperature, solar radiation and soil water content. We propose a new hypothesis concerning the effects of the different determinants of axis organogenesis. The rate of phytomer appearance according to thermal time was strongly affected by the plant trophic status and soil water deficit. Furthermore, the decrease in meristem activity when soil water is depleted does not result from source/sink imbalances.
Variability of Lekanesphaera monodi metabolic rates with habitat trophic status
NASA Astrophysics Data System (ADS)
Vignes, Fabio; Fedele, Marialaura; Pinna, Maurizio; Mancinelli, Giorgio; Basset, Alberto
2012-05-01
Regulation of metabolism is a common strategy used by individuals to respond to a changing environment. The mechanisms underlying the variability of metabolic rates in macroinvertebrates are of primary importance in studying benthic-pelagic energy transfer in transitional water ecosystems. Lekanesphaera monodi is an isopod endemic to transitional water ecosystems that can modify its metabolic rate in response to environmental changes. Therefore it is a useful model in studying the influence of environmental factors on metabolism. This study focused on the interpopulation variability of standard metabolic rates (SMR) in L. monodi populations sampled in three transitional water ecosystems differing in their trophic status. The standard metabolic rates of L. monodi individuals across the same range of body size spectra were inferred from oxygen consumption measurements in a flow-through respirometer in the three populations and a body condition index was assessed for each population. Habitat trophic status was evaluated by monthly measurement of the basic physical-chemical parameters of the water column in the ecosystems for one year. Standard metabolic rates showed high variability, ranging from 0.27 to 10.14 J d-1. Body size accounted for more than 38% of total variability. In terms of trophic status, individuals from the eutrophic ecosystem had significantly higher standard metabolic rates than individuals from the other ecosystems (SMR = 2.3 J d-1 in Spunderati Sud vs. 1.36 J d-1 in Alimini and 0.69 J d-1 in Acquatina). The body conditions index was also higher in the population from the eutrophic ecosystem. Results show that standard metabolic rates and growth rates are directly related to habitat productivity in accordance with the expectations of the food habits hypothesis. A possible extension of this hypothesis to benthic invertebrates is proposed.
NASA Astrophysics Data System (ADS)
Poser, Kathrin; Peters, Steef; Hommersom, Annelies; Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Heege, Thomas; Philipson, Petra; Ruescas, Ana; Bottcher, Martin; Stelzer, Kerstin
2015-12-01
The GLaSS project develops a prototype infrastructure to ingest and process large amounts of Sentinel-2 and Sentinel-3 data for lakes and reservoirs. To demonstrate the value of satellite observations for the management of aquatic ecosystems, global case studies are performed addressing different types of lakes with their respective problems and management questions. One of these case studies is concentrating on deep clear lakes worldwide. The aim of this case study is to evaluate trends of chlorophyll-a concentrations (Chl-a) as a proxy of the trophic status based on the MERIS full resolution data archive. Some preliminary results of this case study are presented here.
Trophic status drives interannual variability in nesting numbers of marine turtles.
Broderick, A C; Godley, B J; Hays, G C
2001-07-22
Large annual fluctuations are seen in breeding numbers in many populations of non-annual breeders. We examined the interannual variation in nesting numbers of populations of green (Chelonia mydas) (n = 16 populations), loggerhead (Caretta caretta) (n = 10 populations), leatherback (Dermochelys coriacea) (n = 9 populations) and hawksbill turtles (Eretmochelys imbricata) (n = 10 populations). Interannual variation was greatest in the green turtle. When comparing green and loggerhead turtles nesting in Cyprus we found that green turtles were more likely to change the interval between laying seasons and showed greater variation in the number of clutches laid in a season. We suggest that these differences are driven by the varying trophic statuses of the different species. Green turtles are herbivorous, feeding on sea grasses and macro-algae, and this primary production will be more tightly coupled with prevailing environmental conditions than the carnivorous diet of the loggerhead turtle.
Kolosova, T A; Sadovnikova, I V; Belousova, T E
2015-01-01
The results of a survey of school children with chronic gastroduodenitis when applying at an early period the medical rehabilitation with method low-frequency light-magnetotherapy. During treatment of hospital was evaluated vegetative-trophic status with methods of cardiointervalography and thermovision functional tests. In normalizes clinical parameters was correction in dynamics of the vegetative status in children, it confirms the effectiveness of the therapy. It is proved, that the use of low-frequency light-magnetotherapy has a positive effect on the vegetative--trophic provision an organism and normalizes the vegetative dysfunction.
Genetic Diversity of Small Eukaryotes in Lakes Differing by Their Trophic Status
Lefranc, Marie; Thénot, Aurélie; Lepère, Cécile; Debroas, Didier
2005-01-01
Small eukaryotes, cells with a diameter of less than 5 μm, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem. PMID:16204507
Plankton crustaceans in bays with different trophic status in Llanquihue lake (41° S Chile).
Escalante, P De Los Ríos; Soto, D; Santander-Massa, R; Acevedo, P
2017-01-01
The Llanquihue lake is included in the called Araucanian or Nord Patagonian lakes located between 38-41° S. These lakes are characterized by their oligo-mesotrophic status due to human intervention which takes to the increase in nutrients inputs from industries and towns. Effects on zooplankton assemblages are observed with marked increase of daphnids abundance. The aim of the present study is to analyze the trophic status and zooplankton relative abundance in different bays of Llanquihue lake. It was found direct associations between chlorophyll a with daphnids percentage, total dissolved nitrogen with reactive soluble phosphorus nitrogen/phosphorus molar radio with cyclopoids percentage, and an inverse relation between daphnids and calanoids percentages. The occurrence of three kinds of microcrustacean assemblages and environmental conditions was evidenced: the first one with high calanoids percentage, low species number and low chlorophyll and nutrients concentration, a second with moderate chlorophyll and nutrients concentration and moderate daphnids percentage; high species number and a third site with high chlorophyll and nutrients concentration, high daphnids percentage and high species number. Daphnids increase under mesotrophic status, agree with similar results observed for southern Argentinean and New Zealand lakes.
Variation of mercury in fish from Massachusetts lakes based on ecoregion and lake trophic status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, J.; Hutcheson, M.; West, C.R.
1995-12-31
Twenty-four of the state`s least-impacted waterbodies were sampled for sediment, water, physical characteristics and 3 species of fish to determine the extent of, and patterns of variation in, mercury contamination. Sampling effort was apportioned among three different ecological subregions of the state, as defined by EPA, and among lakes of differing trophic status. The authors sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Mean fish mercury was 0.14 ppm wet weight in samples of 168 of the bottom feeding brown bullheads (Ameriurus nebulosus) (range = 0.01--0.79 ppm); 0.3more » ppm in 199 of the omnivorous yellow perch (Perca flavescens) (range = 0.01--0.75 ppm); and 0.4 ppm in samples of 152 of the predaceous largemouth bass (Micropterus salmoides) (range = 0.05--1.1 ppm). Multivariate statistics are employed to determine how mercury concentrations in fish correlate with sediment chemistry, water chemistry, fish trophic status, fish size and age, lake and watershed size, the presence and extent of wetlands in the watershed, and physical characteristics of the lake. The survey design complements ongoing efforts begun in 1983 to test fish in a variety of waters, from which emanated fish advisories for impacted rivers and lakes. The study defines a baseline for fish contamination in Massachusetts lakes and ponds that serves as a template for public health decisions regarding fish consumption.« less
Aquatic mesocosms were dosed with an environmentally relevant concentration of 17-a-ethinyl estradiol (EE2) to study the significance of trophic status (N, P levels) on the attenuation and bioavailability of synthetic estrogens in aquatic ecosystems. Estrogenic activity was asse...
Fish mercury distribution in Massachusetts, USA lakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, J.; Hutcheson, M.S.; West, C.R.
1999-07-01
The sediment, water, and three species of fish from 24 of Massachusetts' (relatively) least-impacted water bodies were sampled to determine the patterns of variation in edible tissue mercury concentrations and the relationships of these patterns to characteristics of the water, sediment, and water bodies (lake, wetland, and watershed areas). Sampling was apportioned among three different ecological subregions and among lakes of differing trophic status. The authors sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Average muscle mercury concentrations were 0.15 mg/kg wet weight in the bottom-feeding brown bullheadsmore » (Ameriurus nebulosus); 0.31 mg/kg in the omnivorous yellow perch (Perca flavescens); and 0.39 mg/kg in the predaceous largemouth bass (Micropterus salmoides). Statistically significant differences in fish mercury concentrations between ecological subregions in Massachusetts, USA, existed only in yellow perch. The productivity level of the lakes (as deduced from Carlson's Trophic Status Index) was not a strong predictor of tissue mercury concentrations in any species. pH was a highly (inversely) correlated environmental variable with yellow perch and brown bullhead tissue mercury. Largemouth bass tissue mercury concentrations were most highly correlated with the weight of the fish (+), lake size (+), and source area sizes (+). Properties of individual lakes appear more important for determining fish tissue mercury concentrations than do small-scale ecoregional differences. Species that show major mercury variation with size or trophic level may not be good choices for use in evaluating the importance of environmental variables.« less
Trophic state, eutrophication and nutrient criteria in streams.
Dodds, Walter K
2007-12-01
Trophic state is the property of energy availability to the food web and defines the foundation of community integrity and ecosystem function. Describing trophic state in streams requires a stoichiometric (nutrient ratio) approach because carbon input rates are linked to nitrogen and phosphorus supply rates. Light determines the source of carbon. Cross system analyses, small experiments and ecosystem level manipulations have recently advanced knowledge about these linkages, but not to the point of building complex predictive models that predict all effects of nutrient pollution. Species diversity could indicate the natural distribution of stream trophic status over evolutionary time scales. Delineation of factors that control trophic state and relationships with biological community properties allows determination of goals for management of stream biotic integrity.
Status of Lake Superior’s lower trophic levels
To meet the Fish Community Objectives set for Lake Superior by the Great Lakes Fishery Commission, a key factor is the condition of the lower food web that supports productivity of fisheries. To assess the condition of lower trophic levels and inform the Lake Superior Technical C...
Ju, Lihua; Yang, Jun; Liu, Lemian; Wilkinson, David M
2014-11-01
Freshwater microbial diversity is subject to multiple stressors in the Anthropocene epoch. However, the effects of climate changes and human activities on freshwater protozoa remain poorly understood. In this study, the diversity and distribution of testate amoebae from the surface sediments were investigated in 51 Chinese lakes and reservoirs along two gradients, latitude and trophic status. A total of 169 taxa belonging to 24 genera were identified, and the most diverse and dominant genera were Difflugia (78 taxa), Centropyxis (26 taxa) and Arcella (12 taxa). Our analysis revealed that biomass of testate amoebae decreased significantly along the latitudinal gradient, while Shannon-Wiener indices and species richness presented an opposite trend (P < 0.05). The relationship of diversity and latitude is, we suspect, an artifact of the altitudinal distribution of our sites. Furthermore, biomass-based Shannon-Wiener index and species richness of testate amoebae were significantly unimodally related to trophic status (P < 0.05). This is the first large-scale study showing the effects of latitude and trophic status on diversity and distribution of testate amoebae in China. Therefore, our results provide valuable baseline data on testate amoebae and contribute to lake management and our understanding of the large-scale global patterns in microorganism diversity.
Freire, Jean Carlos A; Hauser-Davis, Rachel Ann; da Costa Lobato, Tarcísio; de Morais, Jefferson M; de Oliveira, Terezinha F; F Saraiva, Augusto Cesar
2017-05-01
Dam constructions in the Amazon have increased exponentially in the last decades, causing several environmental impacts and serious anthropogenic impacts in certain hydroelectric power plant reservoirs in the region have been identified. The assessment of the trophic status of these reservoirs is of interest to indicate man-made changes in the environment, but must take into account the hydrological cycle of the area. This can be relevant for environmental management actions, aiding in the identification of the ecological status of water bodies. In this context, physico-chemical parameters and eutrophication indicators were determined in a hydroelectric power plant reservoir in the Brazilian Amazon to assess trophic variations during the regional hydrological regime phases on the reservoir, namely dry, filling, full and emptying stages. The local hydrological regimes were shown to significantly influence TSS and turbidity, as well as NH 4 , NO 3 , PO 4 , with higher values consistently observed during the filling stage of the reservoir. In addition, differences among the sampling stations regarding land use, population and anthropogenic activities were reflected in the PO 4 3- values during the different hydrological phases.
Trophic signatures of seabirds suggest shifts in oceanic ecosystems
Gagne, Tyler O.; Hyrenbach, K. David; Hagemann, Molly E.; Van Houtan, Kyle S.
2018-01-01
Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level–based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher–trophic level to lower–trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems. PMID:29457134
Trophic signatures of seabirds suggest shifts in oceanic ecosystems.
Gagne, Tyler O; Hyrenbach, K David; Hagemann, Molly E; Van Houtan, Kyle S
2018-02-01
Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level-based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher-trophic level to lower-trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems.
The trophic magnification factor (TMF) is considered to be a key metric for assessing the bioaccumulation potential of organic chemicals in food webs. Fugacity is an equilibrium criterion and thus reflects the relative thermodynamic status of a chemical in the environment and in ...
Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu
2016-01-01
Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Assessment of the trophic status of four coastal lagoons and one estuarine delta, eastern Brazil.
Cotovicz Junior, Luiz Carlos; Brandini, Nilva; Knoppers, Bastiaan Adriaan; Mizerkowski, Byanka Damian; Sterza, José Mauro; Ovalle, Alvaro Ramon Coelho; Medeiros, Paulo Ricardo Petter
2013-04-01
Anthropogenic eutrophication of aquatic ecosystems continues to be one of the major environmental issues worldwide and also of Brazil. Over the last five decades, several approaches have been proposed to discern the trophic state and the natural and cultural processes involved in eutrophication, including the multi-parameter Assessment of Estuarine Trophic Status (ASSETS) index model. This study applies ASSETS to four Brazilian lagoons (Mundaú, Manguaba, Guarapina, and Piratininga) and one estuarine delta (Paraíba do Sul River), set along the eastern Brazilian coast. The model combines three indices based on the pressure-state-response (PSR) approach to rank the trophic status and forecast the potential eutrophication of a system, to which a final ASSETS grade is established. The lagoons were classified as being eutrophic and highly susceptible to eutrophication, due primarily to their longer residence times but also their high nutrient input index. ASSETS classified the estuary of the Paraíba do Sul river with a low to moderate trophic state (e.g., largely mesotrophic) and low susceptibility to eutrophication. Its nutrient input index was high, but the natural high dilution and flushing potential driven by river flow mitigated the susceptibility to eutrophication. Eutrophication forecasting provided more favorable trends for the Mundaú and Manguaba lagoons and the Paraíba do Sul estuary, in view of the larger investments in wastewater treatment and remediation plans. The final ASSETS ranking system established the lagoons of Mundaú as "moderate," Manguaba as "bad," Guarapina as "poor," and Piratininga as "bad," whereas the Paraíba do Sul River Estuary was "good."
Dietary biomagnification of organochlorine contaminants in Alaskan polar bears
Bentzen, T.W.; Follmann, Erich H.; Amstrup, Steven C.; York, G.S.; Wooller, M.J.; Muir, D.C.G.; O'Hara, T. M.
2008-01-01
Concentrations of organochlorine contaminants in the adipose tissue of polar bears (Ursus maritimus Phipps, 1774) vary throughout the Arctic. The range in concentrations has not been explained fully by bear age, sex, condition, location, or reproductive status. Dietary pathways expose polar bears to a variety of contaminant profiles and concentrations. Prey range from lower trophic level bowhead whales (Balaena mysticetus L., 1758), one of the least contaminated marine mammals, to highly contaminated upper trophic level ringed seals (Phoca hispida (Schreber, 1775)). We used ??15N and ??13C signatures to estimate the trophic status of 42 polar bears sampled along Alaska's Beaufort Sea coast to determine the relationship between organochlorine concentration and trophic level. The ?? 15N values in the cellular portions of blood ranged from 18.2% to 20.7%. We found strong positive relationships between concentrations of the most recalcitrant polychlorinated biphenyls (PCBs) and ??15N values in models incorporating age, lipid content, and ??13C value. Specifically these models accounted for 67% and 76% of the variation in PCB153 and oxychlordane concentration in male polar bears and 85% and 93% in females, respectively. These results are strong indicators of variation in diet and biomagnification of organochlorines among polar bears related to their sex, age, and trophic position. ?? 2008 NRC.
Needham, Dale M; Dinglas, Victor D; Bienvenu, O Joseph; Colantuoni, Elizabeth; Wozniak, Amy W; Rice, Todd W; Hopkins, Ramona O
2013-03-19
To evaluate the effect of initial low energy permissive underfeeding ("trophic feeding") versus full energy enteral feeding ("full feeding") on physical function and secondary outcomes in patients with acute lung injury. Prospective longitudinal follow-up evaluation of the NHLBI ARDS Clinical Trials Network's EDEN trial 41hospitals in the United States. 525 patients with acute lung injury. Randomised assignment to trophic or full feeding for up to six days; thereafter, all patients still receiving mechanical ventilation received full feeding. Blinded assessment of the age and sex adjusted physical function domain of the SF-36 instrument at 12 months after acute lung injury. Secondary outcome measures included survival; physical, psychological, and cognitive functioning; quality of life; and employment status at six and 12 months. After acute lung injury, patients had substantial physical, psychological, and cognitive impairments, reduced quality of life, and impaired return to work. Initial trophic versus full feeding did not affect mean SF-36 physical function at 12 months (55 (SD 33) v 55 (31), P=0.54), survival to 12 months (65% v 63%, P=0.63), or nearly all of the secondary outcomes. In survivors of acute lung injury, there was no difference in physical function, survival, or multiple secondary outcomes at 6 and 12 month follow-up after initial trophic or full enteral feeding. NCT No 00719446.
Assessing the impact of nutrient enrichment in estuaries: susceptibility to eutrophication.
Painting, S J; Devlin, M J; Malcolm, S J; Parker, E R; Mills, D K; Mills, C; Tett, P; Wither, A; Burt, J; Jones, R; Winpenny, K
2007-01-01
The main aim of this study was to develop a generic tool for assessing risks and impacts of nutrient enrichment in estuaries. A simple model was developed to predict the magnitude of primary production by phytoplankton in different estuaries from nutrient input (total available nitrogen and/or phosphorus) and to determine likely trophic status. In the model, primary production is strongly influenced by water residence times and relative light regimes. The model indicates that estuaries with low and moderate light levels are the least likely to show a biological response to nutrient inputs. Estuaries with a good light regime are likely to be sensitive to nutrient enrichment, and to show similar responses, mediated only by site-specific geomorphological features. Nixon's scale was used to describe the relative trophic status of estuaries, and to set nutrient and chlorophyll thresholds for assessing trophic status. Estuaries identified as being eutrophic may not show any signs of eutrophication. Additional attributes need to be considered to assess negative impacts. Here, likely detriment to the oxygen regime was considered, but is most applicable to areas of restricted exchange. Factors which limit phytoplankton growth under high nutrient conditions (water residence times and/or light availability) may favour the growth of other primary producers, such as macrophytes, which may have a negative impact on other biological communities. The assessment tool was developed for estuaries in England and Wales, based on a simple 3-category typology determined by geomorphology and relative light levels. Nixon's scale needs to be validated for estuaries in England and Wales, once more data are available on light levels and primary production.
A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing.
Liu, Pi-Jen; Shao, Kwang-Tsao; Jan, Rong-Quen; Fan, Tung-Yung; Wong, Saou-Lien; Hwang, Jiang-Shiou; Chen, Jen-Ping; Chen, Chung-Chi; Lin, Hsing-Juh
2009-09-01
Several coral reefs of Nanwan Bay, Taiwan have recently undergone shifts to macroalgal or sea anemone dominance. Thus, a mass-balance trophic model was constructed to analyze the structure and functioning of the food web. The fringing reef model was comprised of 18 compartments, with the highest trophic level of 3.45 for piscivorous fish. Comparative analyses with other reef models demonstrated that Nanwan Bay was similar to reefs with high fishery catches. While coral biomass was not lower, fish biomass was lower than those of reefs with high catches. Consequently, the sums of consumption and respiratory flows and total system throughput were also decreased. The Nanwan Bay model potentially suggests an overfished status in which the mean trophic level of the catch, matter cycling, and trophic transfer efficiency are extremely reduced.
Molfese, Carlotta; Beare, Doug; Hall-Spencer, Jason M
2014-01-01
The worldwide depletion of major fish stocks through intensive industrial fishing is thought to have profoundly altered the trophic structure of marine ecosystems. Here we assess changes in the trophic structure of the English Channel marine ecosystem using a 90-year time-series (1920-2010) of commercial fishery landings. Our analysis was based on estimates of the mean trophic level (mTL) of annual landings and the Fishing-in-Balance index (FiB). Food webs of the Channel ecosystem have been altered, as shown by a significant decline in the mTL of fishery landings whilst increases in the FiB index suggest increased fishing effort and fishery expansion. Large, high trophic level species (e.g. spurdog, cod, ling) have been increasingly replaced by smaller, low trophic level fish (e.g. small spotted catsharks) and invertebrates (e.g. scallops, crabs and lobster). Declining trophic levels in fisheries catches have occurred worldwide, with fish catches progressively being replaced by invertebrates. We argue that a network of fisheries closures would help rebalance the trophic status of the Channel and allow regeneration of marine ecosystems.
Seasonal and spatial variations of water quality and trophic status in Daya Bay, South China Sea.
Wu, Mei-Lin; Wang, You-Shao; Wang, Yu-Tu; Sun, Fu-Lin; Sun, Cui-Ci; Cheng, Hao; Dong, Jun-De
2016-11-15
Coastal water quality and trophic status are subject to intensive environmental stress induced by human activities and climate change. Quarterly cruises were conducted to identify environmental characteristics in Daya Bay in 2013. Water quality is spatially and temporally dynamic in the bay. Cluster analysis (CA) groups 12 monitoring stations into two clusters. Cluster I consists of stations (S1, S2, S4-S7, S9, and S12) located in the central, eastern, and southern parts of the bay, representing less polluted regions. Cluster II includes stations (S3, S8, S10, and S11) located in the western and northern parts of the bay, indicating the highly polluted regions receiving a high amount of wastewater and freshwater discharge. Principal component analysis (PCA) identified that water quality experience seasonal change (summer, winter, and spring-autumn seasons) because of two monsoons in the study area. Eutrophication in the bay is graded as high by Assessment of Estuarine Trophic Status (ASSETS). Copyright © 2016 Elsevier Ltd. All rights reserved.
Boyle, Terence P.; Beeson, David R.
1991-01-01
A limited effort study was conducted in Lake Crescent, Olympic National Park to determine the trophic status and assess whether non-point nutrients were leaching into the lake and affecting biological resources. The concentration of chlorophyll a, total nitrogen concentration, and Secchi disk transparency used as parameters of the Trophic Status Index revealed that Lake Crescent in Olympic National Park was in the oligotrophic range. Evaluation of the nitrogen to phosphorous ration revealed that nitrogen was the nutrient limiting to overall lake productivity. Single species and community bioassays indicated that other nutrients, possibly iron, had some secondary control over community composition of the algal community. Assessment of six near-shore sites for the presence and effects of non-point nutrients revealed that La Poel Point which formerly was the site of a resort had slightly higher algal bioassay and periphyton response than the other sites. No conditions that would require immediate action by resource management of Olympic National Park were identified. The general recommendations for a long term lake monitoring plan are discussed.
Chouvelon, Tiphaine; Cresson, Pierre; Bouchoucha, Marc; Brach-Papa, Christophe; Bustamante, Paco; Crochet, Sylvette; Marco-Miralles, Françoise; Thomas, Bastien; Knoery, Joël
2018-02-01
Mercury (Hg) is a global contaminant of environmental concern. Numerous factors influencing its bioaccumulation in marine organisms have already been described at both individual and species levels (e.g., size or age, habitat, trophic level). However, few studies have compared the trophic characteristics of ecosystems to explain underlying mechanisms of differences in Hg bioaccumulation and biomagnification among food webs and systems. The present study aimed at investigating the potential primary role of the trophic status of systems on Hg bioaccumulation and biomagnification in temperate marine food webs, as shown by their medium-to high-trophic level consumers. It used data from samples collected at the shelf-edge (i.e. offshore organisms) in two contrasted ecosystems: the Bay of Biscay in the North-East Atlantic Ocean and the Gulf of Lion in the North-West Mediterranean Sea. Seven species including crustaceans, sharks and teleost fish, previously analysed for their total mercury (T-Hg) concentrations and their stable carbon and nitrogen isotope compositions, were considered for a meta-analysis. In addition, methylated mercury forms (or methyl-mercury, Me-Hg) were analysed. Mediterranean organisms presented systematically lower sizes than Atlantic ones, and lower δ 13 C and δ 15 N values, the latter values especially highlighting the more oligotrophic character of Mediterranean waters. Mediterranean individuals also showed significantly higher T-Hg and Me-Hg concentrations. Conversely, Me-Hg/T-Hg ratios were higher than 85% for all species, and quite similar between systems. Finally, the biomagnification power of Hg was different between systems when considering T-Hg, but not when considering Me-Hg, and was not different between the Hg forms within a given system. Overall, the different parameters showed the crucial role of the low primary productivity and its effects rippling through the compared ecosystems in the higher Hg bioaccumulation seen in organisms from oligotrophic Mediterranean waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of time series analysis for assessing reservoir trophic status
Paris Honglay Chen; Ka-Chu Leung
2000-01-01
This study is to develop and apply a practical procedure for the time series analysis of reservoir eutrophication conditions. A multiplicative decomposition method is used to determine the trophic variations including seasonal, circular, long-term and irregular changes. The results indicate that (1) there is a long high peak for seven months from April to October...
Stable isotope ratios as indicators of trophic status: Uncertainties imposed by geographic effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schell, D.M.
1995-12-31
Isotope ratios of carbon and nitrogen are often suggested as indicators to determine trophic status and carbon sources of marine organisms in explaining relative concentrations of pollutants. Whereas this technique is effective with organisms resident in ecosystems having homogeneous primary productivity regimes and uniform isotope ratios in the productivity base, it often is confounded by migratory movements by larger organisms across isotopic gradients. Tissues containing a temporal record such as baleen plates or whiskers show these effects clearly. Bowhead whales in Alaskan waters seasonally move across carbon isotope gradients of 5{per_thousand} in zooplankton and reflect these differences in the keratinmore » of baleen plates and in overall body composition. However, no significant differences in {delta}{sup 15}N are evident regionally in northern Alaskan zooplankton. In contrast, the Southern Ocean is characterized by extreme latitudinal gradients in both {delta}{sup 13}C and {delta}{sup 15}N with the most pronounced effects occurring at the subtropical convergence. Prey taken by marine mammals south of this zone are depleted in both {sup 15}N and {sup 13}C by up to 8{per_thousand}. Data on southern right whales (Eubalaena glacialis), Bryde`s whale (Balaenoptera edenl), pygmy right whales (Caperea marginate) and antarctic fur seal (Arctocephalos gazella) show the effects of migratory movements across the gradient in both carbon and nitrogen isotope ratios. Similar patterns in marine mammal tissues from Australia, South Africa and South America indicate that the observed patterns are circumpolar. Within a given region, trophic effects shift {delta}{sup 15}N values consistent with observed feeding habits.« less
Water-quality characteristics of Michigan's inland lakes, 2001-10
Fuller, L.M.; Taricska, C.K.
2012-01-01
The U.S. Geological Survey and the Michigan Department of Environmental Quality (MDEQ) jointly monitored for selected water-quality constituents and properties of inland lakes during 2001–10 as part of Michigan's Lake Water-Quality Assessment program. During 2001–10, 866 lake basins from 729 inland lakes greater than 25 acres were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of the monitored lakes throughout the State; the data include vertical-profile measurements, nutrient measurements at three discrete depths, Secchi-disk transparency (SDT) measurements, and chlorophyll a measurements for the spring and summer, with major ions and other chemical indicators measured during the spring at mid-depth and color during the summer from near-surface samples. In about 75 percent of inland lake deep basins (index stations), trophic characteristics were associated with oligotrophic or mesotrophic conditions; 5 percent or less were categorized as hypereutrophic, and 80 percent of hypereutrophic lakes had a maximum depth of 30 feet or less. Comparison of spring and summer measurements shows that water clarity based on SDT measurements were clearer in the spring than in the summer for 63 percent of lakes. For near-surface measurements made in spring, 97 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited; for summer measurements, 96 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited. Spatial patterns of major ions, alkalinity, and hardness measured in the spring at mid-depth all showed lower values in the Upper Peninsula of Michigan and a southward increase toward the southern areas of the Lower Peninsula, though the location of increase varied by constituent. A spatial analysis of the data based on U.S. Environmental Protection Agency Level III Ecoregions separated potassium, sulfate, and chloride concentrations fairly well, with a pattern of lower values in northern ecoregions trending toward higher values in southern ecoregions; lower and higher concentrations of magnesium, hardness, calcium, and alkalinity were well separated, but middle-range concentrations in central Michigan ecoregions were mixed. The highest concentrations of chloride and sodium were in the southeastern area of the Lower Peninsula. Lakes with multiple basins showed few statistically significant differences in constituent concentrations at the 95-percent confidence level among combinations of depths between basins. The most statistically significant differences were found for water temperature, with significant differences in somewhat less than half the combinations in the spring and just a few combinations in the summer. The lack of significant differences between major basins of multibasin lakes indicates that monitoring of trophic characteristics in all major basins might not be necessary for the majority of constituents in future sampling programs. Trophic characteristics based on the 2001–10 dataset were compared to trophic characteristics resulting from other Michigan sampling programs, including the volunteer Cooperative Lakes Monitoring Program coordinated by the MDEQ (measurements on 250 lakes in 2011), trophic-state predictions produced by relating existing measurements to remotely sensed data (measurements for about 3,000 lakes), and the National Lakes Assessment (NLA) statistically valid, probability-designed lakes program (measurements for 50 lakes in Michigan and about 1,100 lakes nationally). A higher percentage of oligotrophic lakes resulted when using SDT from the volunteer data and the 2001–10 dataset than when using the predicted measurements from remotely sensed data or the NLA. Comparing trophic characteristics from differently designed programs provides multiple interpretations of lake water-quality status in Michigan lakes. No directional statistically significant difference was found at the 95-percent confidence level among historical nutrients and trophic characteristics when comparing 445 lakes with historical data for 1974–84 with the 2001–10 dataset, though SDT did show statistically significant differences at the 95-percent confidence level. Depending on the primary indicator, 50–66 percent of lakes did not change trophic-status class, 13–23 percent moved towards the oligotrophic end of the TSI scale, and 20–25 percent moved a class towards the eutrophic end of the TSI scale. Increasing percentages of urban-dominant land cover in the drainage areas of lakes had a more positive correlation with chloride concentration than did increased percentages of other land-cover classes; there was also a slight correlation of urban-dominant land cover and calcium concentration. Removing data for lakes in southeastern Lower Michigan, known from previous reports to be higher in chloride, still resulted in a positive relation even though the coefficient of determination (R2 value) decreased from 0.55 to 0.39. Dominant land-cover drainage areas were not strongly related to nutrients with respect to a linear relation, nor were lake drainage-area sizes.
Caro, Audrey; Chereau, Gaetan; Briant, Nicolas; Roques, Cécile; Freydier, Rémi; Delpoux, Sophie; Escalas, Arthur; Elbaz-Poulichet, Françoise
2015-02-01
The use of symbiotic bivalve species to assess the effect of anthropogenic metal pollution was rarely investigated whereas data on filter feeding bivalves are common. The aim of this study was the exposure of two bivalve species, Ruditapes decussatus and Loripes lacteus to polymetallic pollution gradient, originating from harbor activities (Port-Camargue, south of France). Both bivalves differ by their trophic status, filter and deposit feeder for Ruditapes and symbiotic for Loripes that underlies potential differences in metal sensibility. The bivalves were immerged in July (for Ruditapes during 2 and 8 days) and in August 2012 (for Loripes during 2, 6 and 8 days) in the water column of the harbor, at 3 stations according to pollution gradient. Metal concentrations (Cu, Mn, Zn) in the water column were quantified as dissolved metals (measured by ICP-MS) and as labile metals (measured by ICP-MS using DGT technique). For each exposure time, accumulation of metals in the soft tissue of bivalves ("bioaccumulation") was measured for both species. In addition, specific parameters, according to the trophic status of each bivalve, were investigated: filtering activity (specific clearance rate, SCR) for Ruditapes, and relative cell size (SSC) and genomic content (FL1) of bacterial symbionts hosted in the gills of Loripes. The SCR of Ruditapes drops from 100% (control) to 34.7% after 2 days of exposure in the less contaminated site (station 8). On the other hand, the relative cell size (SSC) and genomic content (FL1), measured by flow cytometry were not impacted by the pollution gradient. Bioaccumulation was compared for both species, showing a greater capability of Cu accumulation for Loripes without lethal effect. Mn, Fe and Zn were generally not accumulated by any of the species according to the pollution gradient. The trophic status of each species may greatly influence their respective responses to polymetallic pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
Fichez, R; Chifflet, S; Douillet, P; Gérard, P; Gutierrez, F; Jouon, A; Ouillon, S; Grenz, C
2010-01-01
Considering the growing concern about the impact of anthropogenic inputs on coral reefs and coral reef lagoons, surprisingly little attention has been given to the relationship between those inputs and the trophic status of lagoon waters. The present paper describes the distribution of biogeochemical parameters in the coral reef lagoon of New Caledonia where environmental conditions allegedly range from pristine oligotrophic to anthropogenically influenced. The study objectives were to: (i) identify terrigeneous and anthropogenic inputs and propose a typology of lagoon waters, (ii) determine temporal variability of water biogeochemical parameters at time-scales ranging from hours to seasons. Combined ACP-cluster analyses revealed that over the 2000 km(2) lagoon area around the city of Nouméa, "natural" terrigeneous versus oceanic influences affecting all stations only accounted for less than 20% of the spatial variability whereas 60% of that spatial variability could be attributed to significant eutrophication of a limited number of inshore stations. ACP analysis allowed to unambiguously discriminating between the natural trophic enrichment along the offshore-inshore gradient and anthropogenically induced eutrophication. High temporal variability in dissolved inorganic nutrients concentrations strongly hindered their use as indicators of environmental status. Due to longer turn over time, particulate organic material and more specifically chlorophyll a appeared as more reliable nonconservative tracer of trophic status. Results further provided evidence that ENSO occurrences might temporarily lower the trophic status of the New Caledonia lagoon. It is concluded that, due to such high frequency temporal variability, the use of biogeochemical parameters in environmental surveys require adapted sampling strategies, data management and environmental alert methods. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Molfese, Carlotta; Beare, Doug; Hall-Spencer, Jason M.
2014-01-01
The worldwide depletion of major fish stocks through intensive industrial fishing is thought to have profoundly altered the trophic structure of marine ecosystems. Here we assess changes in the trophic structure of the English Channel marine ecosystem using a 90-year time-series (1920–2010) of commercial fishery landings. Our analysis was based on estimates of the mean trophic level (mTL) of annual landings and the Fishing-in-Balance index (FiB). Food webs of the Channel ecosystem have been altered, as shown by a significant decline in the mTL of fishery landings whilst increases in the FiB index suggest increased fishing effort and fishery expansion. Large, high trophic level species (e.g. spurdog, cod, ling) have been increasingly replaced by smaller, low trophic level fish (e.g. small spotted catsharks) and invertebrates (e.g. scallops, crabs and lobster). Declining trophic levels in fisheries catches have occurred worldwide, with fish catches progressively being replaced by invertebrates. We argue that a network of fisheries closures would help rebalance the trophic status of the Channel and allow regeneration of marine ecosystems. PMID:25010196
Identification of Surface Water Quality along the Coast of Sanya, South China Sea
Wu, Zhen-Zhen; Che, Zhi-Wei; Wang, You-Shao; Dong, Jun-De; Wu, Mei-Lin
2015-01-01
Principal component analysis (PCA) and cluster analysis (CA) are utilized to identify the effects caused by human activities on water quality along the coast of Sanya, South China Sea. PCA and CA identify the seasonality of water quality (dry and wet seasons) and polluted status (polluted area). The seasonality of water quality is related to climate change and Southeast monsoons. Spatial pattern is mainly related to anthropogenic activities (especially land input of pollutions). PCA reveals the characteristics underlying the generation of coastal water quality. The temporal and spatial variation of the trophic status along the coast of Sanya is governed by hydrodynamics and human activities. The results provide a novel typological understanding of seasonal trophic status in a shallow, tropical, open marine bay. PMID:25894980
Högberg, Peter; Plamboeck, Agneta H.; Taylor, Andrew F. S.; Fransson, Petra M. A.
1999-01-01
Fungi play crucial roles in the biogeochemistry of terrestrial ecosystems, most notably as saprophytes decomposing organic matter and as mycorrhizal fungi enhancing plant nutrient uptake. However, a recurrent problem in fungal ecology is to establish the trophic status of species in the field. Our interpretations and conclusions are too often based on extrapolations from laboratory microcosm experiments or on anecdotal field evidence. Here, we used natural variations in stable carbon isotope ratios (δ13C) as an approach to distinguish between fungal decomposers and symbiotic mycorrhizal fungal species in the rich sporocarp flora (our sample contains 135 species) of temperate forests. We also demonstrated that host-specific mycorrhizal fungi that receive C from overstorey or understorey tree species differ in their δ13C. The many promiscuous mycorrhizal fungi, associated with and connecting several tree hosts, were calculated to receive 57–100% of their C from overstorey trees. Thus, overstorey trees also support, partly or wholly, the nutrient-absorbing mycelia of their alleged competitors, the understorey trees. PMID:10411910
NASA Astrophysics Data System (ADS)
Napiórkowska-Krzebietke, Agnieszka; Dunalska, Julita A.; Zębek, Elżbieta
2017-05-01
Phytoplankton (including plant-like, animal-like algae and Cyanobacteria) blooms have recently become a serious global threat to the sustenance of ecosystems, to human and animal health and to economy. This study focused on the composition and stability of blooms as well as their taxa-specific ecological sensitivity to the main causal factors (especially phosphorus and nitrogen) in degraded urban lakes. The analyzed lakes were assessed with respect to the trophic state as well as ecological status. Total phytoplankton biomass (ranging from 1.5 to 181.3 mg dm-3) was typical of blooms of different intensity, which can appear during a whole growing season but are the most severe in early or late summer. Our results suggested that steady-state and non-steady-state bloom assemblages including mono-, bi- and multi-species or heterogeneous blooms may occur in urban lakes. The most intense blooms were formed by the genera of Cyanobacteria: Microcystis, Limnothrix, Pseudanabaena, Planktothrix, Bacillariophyta: Cyclotella and Dinophyta mainly Ceratium and Peridinium. Considering the sensitivity of phytoplankton assemblages, a new eco-sensitivity factor was proposed (E-SF), based on the concept of Phytoplankton Trophic Index composed of trophic scores of phytoplankton taxa along the eutrophication gradient. The E-SF values of 0.5, 1.3, 6.7 and 15.1 were recognized in lakes having a high, good, moderate or poor ecological status, respectively. For lake restoration, each type of bloom should be considered separately because of different sensitivities of taxa and relationships with environmental variables. Proper recognition of the taxa-specific response to abiotic (especially to N and P enrichment) and biotic factors could have significant implications for further water protection and management.
Determination of Trophic State Changes with Diel Dissolved Oxygen: A Case Study in a Shallow Lake.
Xu, Zhen; Xu, Y Jun
2015-11-01
Current trophic state indices (TSI) have been reported to have limitations in assessing changes in eutrophication status of shallow waters. This study aimed to use intensive measurements on dissolved oxygen (DO) to improve the determination of tropic state changes. The authors deployed an environment monitoring buoy in a eutrophic shallow lake and recorded water temperature, DO, and chlorophyll-a concentrations at 15-minute intervals for two 1-year periods: from August 2008 to July 2009 and from August 2013 to July 2014. In addition, they recorded water levels over the same periods and collected water samples for nutrient analysis. The authors analyzed the high-time resolution DO records, compared the diel DO trends between the two 1-year periods, and proposed a new TSI using DO. They found that analyzing the change in diel DO ranges can improve commonly used methods for classifying trophic states and assessing the change of eutrophication status of waterbodies.
NASA Astrophysics Data System (ADS)
Šolić, Mladen; Grbec, Branka; Matić, Frano; Šantić, Danijela; Šestanović, Stefanija; Ninčević Gladan, Živana; Bojanić, Natalia; Ordulj, Marin; Jozić, Slaven; Vrdoljak, Ana
2018-02-01
Global and atmospheric climate change is altering the thermal conditions in the Adriatic Sea and, consequently, the marine ecosystem. Along the eastern Adriatic coast sea surface temperature (SST) increased by an average of 1.03 °C during the period from 1979 to 2015, while in the recent period, starting from 2008, a strong upward almost linear trend of 0.013 °C/month was noted. Being mainly oligotrophic, the middle Adriatic Sea is characterized by the important role played by the microbial food web in the production and transfer of biomass and energy towards higher trophic levels. It is very important to understand the effect of warming on microbial communities, since small temperature increases in surface seawater can greatly modify the microbial role in the global carbon cycle. In this study, the Self-Organizing Map (SOM) procedure was used to analyse the time series of a number of microbial parameters at two stations with different trophic status in the central Adriatic Sea. The results show that responses of the microbial food web (MFW) structure to temperature changes are reproducible in time. Furthermore, qualitatively similar changes in the structure of the MFW occurred regardless of the trophic status. The rise in temperature was associated with: (1) the increasing importance of microbial heterotrophic activities (increase bacterial growth and bacterial predator abundance, particularly heterotrophic nanoflagellates) and (2) the increasing importance of autotrophic picoplankton (APP) in the MFW.
Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping
2017-11-01
Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Guangjian; Yang, Eun Jin; Xu, Henglong
2017-08-15
Trophic-functional groupings are an important biological trait to summarize community structure in functional space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental drivers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle. The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure may reflect water quality status in coastal ecosystems. Copyright © 2017. Published by Elsevier Ltd.
Balci, Muharrem; Balkis, Neslihan
2017-02-15
Phytoplankton assemblages related to environmental factors and ecological status of the Gemlik Gulf were investigated between June 2010 and May 2011. A total 155 phytoplankton species were detected and 6 taxa (Amphisolenia laticincta, Archaeperidinium minutum, Cochlodinium sp., Gynogonadinium aequatoriale, Heterocapsa rotundata and Metaphalacroma sp.) were new records for the Turkish Seas. The lowest and highest total phytoplankton abundance among the sampling units (depths) was recorded in April 2011 (7.4×10 3 cellsL -1 ) and July 2010 (251.8×10 3 cellsL -1 ). Local small patches of visible red tide events were detected especially in the gulf, although a phytoplankton bloom was not observed. The water column was well stratified in the early autumn and well mixed in the early spring according to stratification index values. Surface nutrient concentrations increased especially at stations located inside of the gulf. The limiting effect of silicate was observed in early, mid-summer and early winter periods while the nitrogen was the limiting nutrient in the gulf during the whole sampling period. In the Gulf, low water quality-high mesotrophic and bad water quality-eutrophic status, high quality and low trophic level were generally detected according to Chl a, dissolved oxygen and trophic index. However, indices developed to determine the trophic level and water quality of the Mediterranean Sea can give unexpected results about the current environmental quality status when it is applied to the Marmara Sea which has limited photic zone by the halocline-pycnocline and thermocline. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hou, Dekun; He, Jiang; Lü, Changwei; Sun, Ying; Zhang, Fujin; Otgonbayar, Khureldavaa
2013-01-01
Surface sediment and water samples were collected from Daihai Lake to study the biogeochemical characteristics of nitrogen and phosphorus, to estimate the loads of these nutrients, and to assess their effects on water quality. The contents and spatial distributions of total phosphorus (TP), total nitrogen (TN), and different nitrogen forms in sediments were analyzed. The results showed that concentrations of TN and TP in surface sediments ranged from 0.27 to 1.78 g/kg and from 558.31 to 891.29 mg/kg, respectively. Ratios of C : N ranged between 8.2 and 12.1, which indicated that nitrogen accumulated came mainly from terrestrial source. Ratios of N : P in all sampling sites were below 10, which indicated that N was the limiting nutrient for algal growth in this lake. Effects of environment factors on the release of nitrogen and phosphorus in lake sediments were also determined; high pH values could encourage the release of nitrogen and phosphorus. Modified Carlson's trophic state index (TSIM) and comprehensive trophic state index (TSIC) were applied to ascertain the trophic classification of the studied lake, and the values of TSIM and TSIC ranged from 53.72 to 70.61 and from 47.73 to 53.67, respectively, which indicated that the Daihai Lake was in the stage of hypereutropher. PMID:24023535
The use of ERTS imagery for lake classification. [turbidity due to phytoplankton
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Wade, R. E.; Fisher, L. T.
1975-01-01
The feasibility of using photographic representations of the ERTS imagery to classify lakes in the State of Wisconsin as to their trophic level was studied. Densitometric readings in band 5 of ERTS 70 mm imagery were taken for all the lakes in Wisconsin greater than 100 acres (approximately 1000 lakes). An algorithm has been developed from ground truth measurements to predict from satellite imagery an indicator of trophic status.
NASA Astrophysics Data System (ADS)
Venturini, Natalia; Pita, Ana Laura; Brugnoli, Ernesto; García-Rodríguez, Felipe; Burone, Leticia; Kandratavicius, Noelia; Hutton, Marisa; Muniz, Pablo
2012-10-01
We evaluated the benthic trophic status of the Montevideo coastal zone-Rio de la Plata estuary using the quantity and the biochemical composition of sedimentary organic matter as synthetic descriptors. The spatio-temporal patterns in the biochemical composition of sedimentary organic matter were related to the presence of some natural and human pressures. Biochemical features were analyzed correlatively with the type and proximity of certain impacts to investigate the usefulness of this biochemical approach for assessing the levels of natural and anthropogenic perturbations. Chlorophyll-a, phaeopigment and the biopolymeric carbon concentrations were similar to those reported in very productive, eutrophic and anthropised estuarine areas. Total proteins (PRT) and lipids (LIP) showed the highest concentrations in the inner portion of Montevideo Bay, decreasing towards the nearby coastal areas of Punta Carretas and Punta Yeguas. Total carbohydrates (CHO) presented the lowest values in the outer stations of Montevideo Bay, but similar and higher concentrations were recorded in the inner stations of the bay and the adjacent coastal zones. PRT:CHO ratios >1 were always observed for the inner stations of Montevideo Bay thus suggesting intense detritus mineralization and an increment in their protein content due to bacterial activity. The biopolymeric carbon showed the same spatial trend observed for PRT, LPD and the PRT: CHO ratios with highest concentrations in the inner bay than in Pta. Carretas and Pta. Yeguas. Elevated contributions of PRT and LIP in the inner Montevideo Bay may be associated with anthropogenic inputs of organic matter such as sewage, food industry and petroleum hydrocarbons. Conversely, high CHO contributions in the nearby coastal areas of Pta. Carretas and Pta. Yeguas seemed to be related to autochthonous primary production and CHO temporal variability with natural oscillations in the productivity of the system. Biochemical composition of organic matter indicates hypertrophic conditions and poor environmental quality in the sediments of the inner stations of Montevideo Bay due to strongest human impact. However, biochemical descriptors showed a relative improvement of the benthic trophic status in the external coastal areas subjected to moderate levels of anthropogenic pressure. This study confirmed the utility of this biochemical approach to establish zones with distinct benthic trophic status associated to different degrees of natural and human pressures. Nevertheless, our results suggest that threshold levels for PRT, BPC and the algal contribution to the BPC that properly reflect hypertrophic conditions should be further investigated.
El-Serehy, Hamed A; Abdallah, Hala S; Al-Misned, Fahad A; Irshad, Rizwan; Al-Farraj, Saleh A; Almalki, Esam S
2018-02-01
The Bitter Lakes are the most significant water bodies of the Suez Canal, comprising 85% of the water volume, but spreading over only 24% of the length of the canal. The present study aims at investigation of the trophic status of the Bitter Lakes employing various trophic state indices, biotic and abiotic parameters, thus reporting the health of the Lake ecosystem according to the internationally accepted classification criteria's. The composition and abundance of phytoplankton with a dominance of diatoms and a decreased population density of 4315-7376 ind. l -1 reflect the oligotrophic nature of this water body. The intense growth of diatoms in the Bitter Lakes depends on silicate availability, in addition to nitrate and phosphate. If the trophic state index (TSI) is applied to the lakes under study it records that the Bitter Lakes have an index under 40. Moreover, in the total chlorophyll- a measurements of 0.35-0.96 µg l -1 there are more indicative of little algal biomass and lower biological productivity. At 0.76-2.3 µg l -1 , meanwhile, the low quantity of Phosphorus is a further measure of low biological productivity. In the Bitter Lakes, TN/TP ratios are high and recorded 147.4, and 184.7 for minimum and maximum ratios, respectively. These values indicate that in Bitter lakes, the limiting nutrient is phosphorus and confirm the oligotrophic status of the Bitter Lakes. The latter conclusion is supported by Secchi disc water clarity measurements, showing that light can penetrate, and thus algae can photosynthesize, as deep as >13 m. This study, therefore, showed that the Bitter Lakes of the Suez Canal exhibit oligotrophic conditions with clear water, low productivity and with no algal blooming.
NASA Astrophysics Data System (ADS)
Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke
2017-09-01
Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.
Moring, James Bruce
2002-01-01
Five study sites, and a sampling reach within each site, were established on the Rio Grande in and near Big Bend National Park in 1999 to provide the National Park Service with data and information on the status of stream habitat, fish communities, and benthic macroinvertebrates. Differences in stream-habitat conditions and riparian vegetation reflect differences in surface geology among the five sampling reaches. In the most upstream reach, Colorado Canyon, where igneous rock predominates, streambed material is larger; and riparian vegetation is less diverse and not as dense as in the four other, mostly limestone reaches. Eighteen species of fish and a total of 474 individuals were collected among the five reaches; 348 of the 474 were minnows. The most fish species (15) were collected at the Santa Elena reach and the fewest species (9) at the Colorado Canyon and Johnson Ranch reaches. The fish community at Colorado Canyon was least like the fish communities at the four other reaches. Fish trophic structure reflected fish-community structure among the five reaches. Invertivores made up at least 60 percent of the trophic structure at all reaches except Colorado Canyon. Piscivores dominated the trophic structure at Colorado Canyon. At the four other reaches, piscivores were the smallest trophic group. Eighty percent of the benthic macroinvertebrate taxa collected were aquatic insects. Two species of blackfly were the most frequently collected invertebrate taxon. Net-spinning caddisflies were common at all reaches except Santa Elena. The aquatic-insect community at the Boquillas reach was least similar to the aquatic-insect community at the other reaches.
NASA Astrophysics Data System (ADS)
Kim, Minsu; Or, Dani
2017-12-01
Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.
Aranguren-Riaño, Nelson J; Guisande, Cástor; Shurin, Jonathan B; Jones, Natalie T; Barreiro, Aldo; Duque, Santiago R
2018-07-01
Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.
NASA Astrophysics Data System (ADS)
Mateo-Ramírez, Á.; Urra, J.; Rueda, J. L.; Marina, P.; García Raso, J. E.
2018-05-01
Decapod assemblages associated with algal fronds and the underlying substratum in two different photophilous macroalgal beds dominated by the brown algae Halopteris scoparia were studied in the northwestern Alboran Sea, between July 2007 and April 2008. A total of 35 decapod species were found in the macroalgal beds, most of them inhabiting both strata and with Hippolyte leptocerus, Pilumnus hirtellus, Sirpus zariquieyi, Acanthonyx lunulatus, Athanas nitescens and Achaeus gracilis as the dominant species. Assemblages on algal fronds and sediment displayed significant variations mainly due to differences in the abundance values of some dominant species (e.g. H. leptocerus) and/or the presence of certain species exclusively in one strata (e.g. Pisa nodipes in algal fronds, Atelecyclus rotundatus and Sicyonia carinata on the sediment stratum). Higher abundance, species richness and Shannon-Wiener diversity index values were registered in the sediment stratum, with a higher contribution of adults-large individuals than of juvenile-small individuals. The temporal variability of the studied assemblages showed maximum abundance values in November, when algal development is minimal. This decoupling between temporal patterns of decapod assemblages and macroalgal dynamic could be related to the lifestyles (recruitment events, movements of species between adjacent habitats and microhabitats) and trophic guilds of dominant species, fish predation pressure and the structural complexity of the habitat. A similar trophic structure was observed for both strata, however there was a predominance of grazers in the algae stratum and of predators and scavengers in the sediment stratum. The high diversity and abundance of predator decapods, the relatively balanced distribution of most trophic groups, and the overall high values of species richness and evenness, could indicate a healthy status of at least two of the eleven "Good Environmental Status" indicators (biodiversity and food webs) during the study period, according to the Marine Strategy Framework Directive.
[Lake eutrophication modeling in considering climatic factors change: a review].
Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng
2012-11-01
Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.
NASA Astrophysics Data System (ADS)
Celussi, Mauro; Malfatti, Francesca; Annalisa, Franzo; Gazeau, Frédéric; Giannakourou, Antonia; Pitta, Paraskevi; Tsiola, Anastasia; Del Negro, Paola
2017-02-01
Notwithstanding the increasing amount of researches on the effect of ocean acidification (OA) on marine ecosystems, no consent has emerged on its consequences on many prokaryote-mediated processes. Two mesocosm experiments were performed in coastal Mediterranean areas with different trophic status: the summer oligotrophic Bay of Calvi (BC, Corsica, France) and the winter mesotrophic Bay of Villefranche (BV, France). During these experiments, nine enclosures (∼54 m3) were deployed: 3 unamended controls and 6 elevated CO2, following a gradient up to 1250 μatm. We present results involving free-living viral and prokaryotic standing stocks, bacterial carbon production, abundance of highly active cells (CTC+), and degradation processes (beta-glucosidase, chitinase, leucine-aminopeptidase, lipase and alkaline phosphatase activities). The experiments revealed clear differences in the response of the two prokaryotic communities to CO2 manipulation. Only abundances of heterotrophic prokaryotes, viruses and lipase activity were not affected by CO2 manipulation at both locations. On the contrary, the percent of CTC+ was positively correlated to CO2 only in BC, concomitantly to a bulk reduction of [3H]-leucine uptake. The other tested parameters showed a different response at the two sites suggesting that the trophic regime of the systems plays a fundamental role on the effect of OA on prokaryotes through indirect modifications of the available substrate. Modified degradation rates may affect considerably the export of organic matter to the seafloor and thus ecosystem functioning within the water column. Our results highlight the need to further analyse the consequences of OA in oligotrophic ecosystems with particular focus on dissolved organic matter.
Use of mesocosm data to predict effects in aquatic ecosystems: Limits to interpretation: Chapter 16
La Point, Thomas W.; Fairchild, James F.; Graney, Robert L.; Kennedy, James H.; Rodgers, John H.
1993-01-01
Aquatic mesocosm studies are being used to refute a presumption of risk derived from laboratory toxicity tests conducted under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). Mesocosm studies incorporate many biological, chemical and physical characteristics of natural ecosystems. Hence, they serve as realistic surrogates of natural ecosystems and allow tests of pesticide effect at the population, community, and ecosystem level. We discuss two factors, ecosystem trophic status and organism life history, which influence the results derived from aquatic mesocosm studies. Trophic status influences the fat and effects of chemicals which strongly sorb or biologically degrade, yet may not be as important in the fate and effects of more water soluble chemicals. Life history traits of organisms and the intensity, frequency, and duration of the pesticide disturbance also determine the mesocosm response pattern.
Jayasinghe, R P Prabath K; Amarasinghe, Upali S; Newton, Alice
2015-12-01
European marine waters include four regional seas that provide valuable ecosystem services to humans, including fish and other seafood. However, these marine environments are threatened by pressures from multiple anthropogenic activities and climate change. The European Marine Strategy Framework Directive (MSFD) was adopted in 2008 to achieve good environmental status (GEnS) in European Seas by year 2020, using an Ecosystem Approach. GEnS is to be assessed using 11 descriptors and up to 56 indicators. In the present analysis two descriptors namely "commercially exploited fish and shellfish populations" and "food webs" were used to evaluate the status of subareas of FAO 27 area. Data on life history parameters, trophic levels and fisheries related data of cod, haddock, saithe, herring, plaice, whiting, hake and sprat were obtained from the FishBase online database and advisory reports of International Council for the Exploration of the Sea (ICES). Subareas inhabited by r and K strategists were identified using interrelationships of life history parameters of commercially important fish stocks. Mean trophic level (MTL) of fish community each subarea was calculated and subareas with species of high and low trophic level were identified. The Fish in Balance (FiB) index was computed for each subarea and recent trends of FiB indices were analysed. The overall environmental status of each subarea was evaluated considering life history trends, MTL and FiB Index. The analysis showed that subareas I, II, V, VIII and IX were assessed as "good" whereas subareas III, IV, VI and VII were assessed as "poor". The subareas assessed as "good" were subject to lower environmental pressures, (less fishing pressure, less eutrophication and more water circulation), while the areas with "poor" environment experienced excessive fishing pressure, eutrophication and disturbed seabed. The evaluation was based on two qualitative descriptors ("commercially exploited fish and shellfish populations" and "food webs") is therefore more robust. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
O'Gorman, Robert; Lantry, Brian F.; Schneider, Clifford P.
2004-01-01
The population of alewives Alosa pseudoharengus in Lake Ontario is of great concern to fishery managers because alewives are the principal prey of introduced salmonines and because alewives negatively influence many endemic fishes. We used spring bottom trawl catches of alewives to investigate the roles of stock size, climate, predation, and lake trophic status on recruitment of alewives to age 2 in Lake Ontario during 1978–2000. Climate was indexed from the temperature of water entering a south-shore municipal treatment plant, lake trophic status was indexed by the mean concentration of total phosphorus (TP) in surface water in spring, and predation was indexed by the product of the number of salmonines stocked and relative, first-year survival of Chinook salmonOncorhynchus tshawytscha. A Ricker-type parent–progeny model suggested that peak production of age-1 alewives could occur over a broad range of spawning stock sizes, and the fit of the model was improved most by the addition of terms for spring water temperature and winter duration. With the addition of the two climate terms, the Ricker model indicated that when water was relatively warm in spring and the winter was relatively short, peak potential production of young was nine times higher than when water temperature and winters were average, and 73 times higher than when water was cold in spring and winters were long. Relative survival from age 1 to recruitment at age 2 was best described by a multiple linear regression with terms for adult abundance, TP, and predation. Mean recruitment of age-2 fish in the 1978–1998 year-classes predicted by using the two models in sequence was only about 20% greater than the observed mean recruitment. Model estimates fit the measured data exceptionally well for all but the largest four year-classes, which suggests that the models will facilitate improvement in estimates of trophic transfer due to alewives.
Trophic niche partitioning of littoral fish species from the rocky intertidal of Helgoland, Germany
NASA Astrophysics Data System (ADS)
Hielscher, N. N.; Malzahn, A. M.; Diekmann, R.; Aberle, N.
2015-12-01
During a 3-year field study, interspecific and interannual differences in the trophic ecology of littoral fish species were investigated in the rocky intertidal of Helgoland island (North Sea). We investigated trophic niche partitioning of common coexisting littoral fish species based on a multi-tracer approach using stable isotope and fatty acids in order to show differences and similarities in resource use and feeding modes. The results of the dual-tracer approach showed clear trophic niche partitioning of the five target fish species, the goldsinny wrasse Ctenolabrus rupestris, the sand goby Pomatoschistus minutus, the painted goby Pomatoschistus pictus, the short-spined sea scorpion Myoxocephalus scorpius and the long-spined sea scorpion Taurulus bubalis. Both stable isotopes and fatty acids showed distinct differences in the trophic ecology of the studied fish species. However, the combined use of the two techniques added an additional resolution on the interannual scale. The sand goby P. minutus showed the largest trophic plasticity with a pronounced variability between years. The present data analysis provides valuable information on trophic niche partitioning of fish species in the littoral zones of Helgoland and on complex benthic food webs in general.
Trace elements in organisms of different trophic groups in the White Sea
NASA Astrophysics Data System (ADS)
Budko, D. F.; Demina, L. L.; Martynova, D. M.; Gorshkova, O. M.
2015-09-01
Concentrations of trace elements (Fe, Mn, Cu, Pb, Ni, Cr, Cd, As, Co, and Se) have been studied in different trophic groups of organisms: primary producers (seston, presented mostly by phytoplankton), primary consumers (mesozooplankton, macrozooplankton, and bivalves), secondary consumers (predatory macrozooplankton and starfish), and consumers of higher trophic levels (fish species), inhabiting the coastal zone of Kandalaksha Bay and the White Sea (Cape Kartesh). The concentrations of elements differ significantly for the size groups of Sagitta elegans (zooplankton) and blue mussel Mytilus edulis, as well as for the bone and muscle tissues of studied fish species, Atlantic cod Gadus morhua marisalbi and Atlantic wolffish Anarhichas lupus. The concentrations of all the studied elements were lower among the primary consumers and producers, but increased again at higher trophic levels, from secondary consumers to tertiary consumers ("mesozooplankton → macrozooplankton Sagitta elegans" and "mussels → starfish"). Ni and Pb tended to decline through the food chains seston→…→cod and mesozooplankton→…→stickleback. Only the concentrations of Fe increased in all the trophic chains along with the increase of the trophic level.
Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs.
Au, Sarah Y; Lee, Cindy M; Weinstein, John E; van den Hurk, Peter; Klaine, Stephen J
2017-05-01
To evaluate the process of trophic transfer of microplastics, it is important to consider various abiotic and biotic factors involved in their ingestion, egestion, bioaccumulation, and biomagnification. Toward this end, a review of the literature on microplastics has been conducted to identify factors influencing their uptake and absorption; their residence times in organisms and bioaccumulation; the physical effects of their aggregation in gastrointestinal tracts; and their potential to act as vectors for the transfer of other contaminants. Limited field evidence from higher trophic level organisms in a variety of habitats suggests that trophic transfer of microplastics may be a common phenomenon and occurs concurrently with direct ingestion. Critical research needs include standardizing methods of field characterization of microplastics, quantifying uptake and depuration rates in organisms at different trophic levels, quantifying the influence that microplastics have on the uptake and/or depuration of environmental contaminants among different trophic levels, and investigating the potential for biomagnification of microplastic-associated chemicals. More integrated approaches involving computational modeling are required to fully assess trophic transfer of microplastics. Integr Environ Assess Manag 2017;13:505-509. © 2017 SETAC. © 2017 SETAC.
Bottom-up control of macrobenthic communities in a guanotrophic coastal system.
Signa, Geraldina; Mazzola, Antonio; Costa, Valentina; Vizzini, Salvatrice
2015-01-01
Soft bottom macrobenthic communities were studied seasonally in three coastal ponds (Marinello ponds, Italy) at increasing distances from a gull (Larus michahellis) colony to investigate the effect of seabird-induced eutrophication (i.e. guanotrophication) on macrobenthic fauna. We hypothesized that enhanced nutrient concentration and organic load caused by guano input significantly alter the trophic and sedimentological condition of ponds, affecting benthic fauna through a bottom-up control. The influence of a set of environmental features on macrobenthic assemblages was also tested. Overall, the lowest macrobenthic abundances and functional group diversity were found in deeper sites, especially in the pond characterised by severe guanotrophication, where the higher disturbance resulted in a decline in suspension feeders and carnivores in favour of deposit feeders. An increase in opportunistic/tolerant taxa (e.g. chironomid larvae and paraonids) and totally azoic sediments were also found as an effect of the harshest environmental conditions, resulting in a very poor ecological status. We conclude that macrobenthic assemblages of the Marinello coastal system display high spatial variability due to a synergistic effect of trophic status and the geomorphological features of the ponds. The macrobenthic response to guanotrophication, which was a clear decrease in abundance, diversity and trophic functional groups, was associated with the typical response to severe eutrophication, magnified by the geomorphological features.
Bottom-Up Control of Macrobenthic Communities in a Guanotrophic Coastal System
Signa, Geraldina; Mazzola, Antonio; Costa, Valentina; Vizzini, Salvatrice
2015-01-01
Soft bottom macrobenthic communities were studied seasonally in three coastal ponds (Marinello ponds, Italy) at increasing distances from a gull (Larus michahellis) colony to investigate the effect of seabird-induced eutrophication (i.e. guanotrophication) on macrobenthic fauna. We hypothesized that enhanced nutrient concentration and organic load caused by guano input significantly alter the trophic and sedimentological condition of ponds, affecting benthic fauna through a bottom-up control. The influence of a set of environmental features on macrobenthic assemblages was also tested. Overall, the lowest macrobenthic abundances and functional group diversity were found in deeper sites, especially in the pond characterised by severe guanotrophication, where the higher disturbance resulted in a decline in suspension feeders and carnivores in favour of deposit feeders. An increase in opportunistic/tolerant taxa (e.g. chironomid larvae and paraonids) and totally azoic sediments were also found as an effect of the harshest environmental conditions, resulting in a very poor ecological status. We conclude that macrobenthic assemblages of the Marinello coastal system display high spatial variability due to a synergistic effect of trophic status and the geomorphological features of the ponds. The macrobenthic response to guanotrophication, which was a clear decrease in abundance, diversity and trophic functional groups, was associated with the typical response to severe eutrophication, magnified by the geomorphological features. PMID:25679400
Status and ecological effects of the world's largest carnivores.
Ripple, William J; Estes, James A; Beschta, Robert L; Wilmers, Christopher C; Ritchie, Euan G; Hebblewhite, Mark; Berger, Joel; Elmhagen, Bodil; Letnic, Mike; Nelson, Michael P; Schmitz, Oswald J; Smith, Douglas W; Wallach, Arian D; Wirsing, Aaron J
2014-01-10
Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.
Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur
McCutchan, J.H.; Lewis, W.M.; Kendall, C.; McGrath, C.C.
2003-01-01
Use of stable isotope ratios to trace pathways of organic matter among consumers requires knowledge of the isotopic shift between diet and consumer. Variation in trophic shift among consumers can be substantial. For data from the published literature and supplementary original data (excluding fluid-feeding consumers), the mean isotopic shift for C was +0.5 ?? 0.13??? rather than 0.0???, as commonly assumed. The shift for C was higher for consumers analyzed as muscle (+1.3 ?? 0.30???) than for consumers analyzed whole (+0.3 ?? 0.14???). Among consumers analyzed whole, the trophic shift for C was lower for consumers acidified prior to analysis (-0.2 ?? 0.21???) than for unacidified samples (+0.5 ?? 0.17???). For N, trophic shift was lower for consumers raised on invertebrate diets (+1.4 ?? 0.21???) than for consumers raised on other high-protein diets (+3.3 ?? 0.26???) and was intermediate for consumers raised on plant and algal diets (+2.2 ?? 0.30???). The trophic shift for S differed between high-protein (+2.0 ?? 0.65???) and low-protein diets (-0.5 ?? 0.56???). Thus, methods of analysis and dietary differences can affect trophic shift for consumers; the utility of stable isotope methods can be improved if this information is incorporated into studies of trophic relationships. Although few studies of stable isotope ratios have considered variation in the trophic shift, such variation is important because small errors in estimates of trophic shift can result in large errors in estimates of the contribution of sources to consumers or in estimates of trophic position.
Trophic niche of squids: Insights from isotopic data in marine systems worldwide
NASA Astrophysics Data System (ADS)
Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.
2013-10-01
Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.
Compte-Port, Sergi; Subirats, Jèssica; Fillol, Mireia; Sànchez-Melsió, Alexandre; Marcé, Rafael; Rivas-Ruiz, Pedro; Rosell-Melé, Antoni; Borrego, Carles M
2017-11-01
Archaea inhabiting marine and freshwater sediments have a relevant role in organic carbon mineralization, affecting carbon fluxes at a global scale. Despite current evidences suggesting that freshwater sediments largely contribute to this process, few large-scale surveys have been addressed to uncover archaeal diversity and abundance in freshwater sedimentary habitats. In this work, we quantified and high-throughput sequenced the archaeal 16S rRNA gene from surficial sediments collected in 21 inland waterbodies across the Iberian Peninsula differing in typology and trophic status. Whereas methanogenic groups were dominant in most of the studied systems, especially in organic-rich sediments, archaea affiliated to widespread marine lineages (the Bathyarchaeota and the Thermoplasmata) were also ubiquitous and particularly abundant in euxinic sediments. In these systems, Bathyarchaeota communities were dominated by subgroups Bathyarchaeota-6 (87.95 ± 12.71%) and Bathyarchaeota-15 (8.17 ± 9.2%) whereas communities of Thermoplasmata were mainly composed of members of the order Thermoplasmatales. Our results also indicate that Archaea accounted for a minor fraction of sedimentary prokaryotes despite remarkable exceptions in reservoirs and some stratified lakes. Copy numbers of archaeal and bathyarchaeotal 16S rRNA genes were significantly different when compared according to system type (i.e., lakes, ponds, and reservoirs), but no differences were obtained when compared according to their trophic status (from oligotrophy to eutrophy). Interestingly, we obtained significant correlations between the abundance of reads (Spearman r = 0.5, p = 0.021) and OTU richness (Spearman r = 0.677, p < 0.001) of Bathyarchaeota and Thermoplasmata across systems, reinforcing the hypothesis of a potential syntrophic interaction between members of both lineages.
Figueiredo, G G A A; Pessanha, A L M
2016-07-01
A comparison of three tidal creeks assessed the effects of the hydrological regime on trophic organization in juvenile fish assemblages of 21 species in a tropical estuary in north-eastern Brazil. There were seven trophic guilds represented spatially. Zooplanktivore and zoobenthivore guilds dominated the lower estuary, whereas omnivores and detritivores dominated the upper estuary. In the rainy season, the zooplanktivore and omnivore guilds were more common throughout the estuary, but in the dry season, zoobenthivores and piscivores occurred throughout. The trophic organization results show that (1) there was a higher complexity in tidal creeks in the upper estuary compared with the first tidal creek in the lower region and (2) trophic linkages increased in the upper estuary, principally the number of omnivore and detritivore species. Spatial variation in trophic structure was primarily associated with differences in the location of the tidal creeks along the estuary, and this variability was partly attributed to fish species richness; the number of species increased towards the upper estuary, and additional species occupied different trophic levels or used additional resources. © 2015 The Fisheries Society of the British Isles.
Fuller, L.M.; Minnerick, R.J.
2008-01-01
The U.S. Geological Survey and the Michigan Department of Environmental Quality are jointly monitoring selected water-quality constituents of inland lakes through 2015 as part of Michigan’s Lake Water Quality Assessment program. During 2001–2005, 433 lake basins from 364 inland lakes were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of those monitored lake basins throughout the State. Regional variation of water quality in lake basins was examined by grouping on the basis of the five Omernik level III ecoregions within Michigan. Concentrations of most constituents measured were significantly different between ecoregions. Less regional variation of phosphorus concentrations was noted between Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions during summer possibly because water samples were collected when lake productivity was high; hence the utilization of the limited amount of phosphorus by algae and macrophytes may have resulted in the more uniform concentrations between these two ecoregions. Concentrations of common ions (calcium, magnesium, potassium, sodium, chloride, and sulfate) measured in the spring typically were higher in the Michigan southern Lower Peninsula in the Eastern Corn Belt Plains (55), Southern Michigan/Northern Indiana Drift Plains (56), and Huron/Erie Lake Plains (57) ecoregions. Most ions whose concentrations were less than the minimum reporting levels or were nondetectable were from lakes in the Michigan northern Lower Peninsula and the Upper Peninsula in the Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions. Chlorophyll a concentrations followed a similar distribution pattern. Measured properties such as pH and specific conductance (indicative of dissolved solids) also showed a regional relation. The lakes with the lowest pH and specific conductance were generally in the western Upper Peninsula (Northern Lakes and Forests (50) ecoregion). The Michigan Department of Environmental Quality classifies Michigan lakes on the basis of their primary biological productivity or trophic characteristics using the Carlson Trophic State Index. Trophic evaluations based on data collected from 2001 through 2005 indicate 17 percent of the lakes are oligotrophic, 53 percent are mesotrophic, 22 percent are eutrophic, 4 percent are hypereutrophic, and less than 5 percent are classified into transition classes between each major class. Although the distribution of lakes throughout Michigan or between Omernik level III ecoregions is not uniform, about 85 percent of the lakes classified as oligotrophic are in the Northern Lakes and Forests (50) or North Central Hardwoods (51) ecoregions. Nearly 28 percent of all the lakes in each of these two ecoregions were classified as oligotrophic. Historical trophic-state classes were compared to the current (2001 through 2005) trophic-state classes. Approximately 72 percent of lakes remained in the same trophic-state class, 11 percent moved up a partial or full class (indicating a decrease in water clarity) and 18 percent moved down a partial or full class (indicating an increase in water clarity).
Foraging ecology of the endangered wood stork recorded in the stable isotope signature of feathers.
Romanek, C S; Gaines, K F; Bryan, A L; Brisbin, I L
2000-12-01
Down feathers and regurgitant were collected from nestling wood storks (Mycteria americana) from two inland and two coastal breeding colonies in Georgia. The stable isotopic ratios of carbon ( 13 C/ 12 C) and nitrogen ( 15 N/ 14 N) in these materials were analyzed to gain insights into the natal origins of juvenile storks and the foraging activities of adults. Down feathers differed in δ 13 C between inland and coastal colonies, having average isotopic values that reflected the sources of carbon fixed in biomass at the base of the food web. Feathers from the inland colonies differed between colonies in δ 15 N, while those from the coastal colonies did not. These patterns primarily reflected the foraging activities of parent storks, with individuals capturing differing percentages of prey of distinct trophic status at each colony. Collectively, the carbon and nitrogen isotopic signatures of feather keratin were used to distinguish nestlings from each colony, except for instances where storks from different colonies foraged in common wetlands. The stable isotopic composition of food items in regurgitant was used to reconstruct the trophic structure of the ecosystems in which wood storks foraged. Predicted foraging activities based on the isotopic composition of keratin were generally consistent with the percentage of prey types (freshwater vs. saltwater and lower trophic level vs. upper trophic level consumer) observed in regurgitant, except for the coastal colony at St. Simons Island, where the δ 13 C of feathers strongly suggested that freshwater prey were a significant component of the diet. This inconsistency was resolved by aerial tracking of adults during foraging excursions using a fixed-wing aircraft. Observed foraging activities supported interpretations based on the stable isotope content of feathers, suggesting that the latter provided a better record of overall foraging activity than regurgitant analysis alone. Observed foraging patterns were compared to the predictions of a statistical model that determined habitat utilization based on habitat availability using a geographic information system (GIS) database. Observed foraging activities and those predicted from feathers both suggested that some adult storks preferred to feed their young freshwater prey, even when saltwater resources were more accessible in the local environment. This conclusion supports the contention that wood stork populations are sensitive to changes in the distribution of freshwater habitats along the southeastern coastal plain of the United States.
Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas
Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.
2015-01-01
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104
2013-01-01
Background Given the serious threats posed to terrestrial ecosystems by industrial contamination, environmental monitoring is a standard procedure used for assessing the current status of an environment or trends in environmental parameters. Measurement of metal concentrations at different trophic levels followed by their statistical analysis using exploratory multivariate methods can provide meaningful information on the status of environmental quality. In this context, the present paper proposes a novel chemometric approach to standard statistical methods by combining the Block clustering with Partial least square (PLS) analysis to investigate the accumulation patterns of metals in anthropized terrestrial ecosystems. The present study focused on copper, zinc, manganese, iron, cobalt, cadmium, nickel, and lead transfer along a soil-plant-snai food chain, and the hepatopancreas of the Roman snail (Helix pomatia) was used as a biological end-point of metal accumulation. Results Block clustering deliniates between the areas exposed to industrial and vehicular contamination. The toxic metals have similar distributions in the nettle leaves and snail hepatopancreas. PLS analysis showed that (1) zinc and copper concentrations at the lower trophic levels are the most important latent factors that contribute to metal accumulation in land snails; (2) cadmium and lead are the main determinants of pollution pattern in areas exposed to industrial contamination; (3) at the sites located near roads lead is the most threatfull metal for terrestrial ecosystems. Conclusion There were three major benefits by applying block clustering with PLS for processing the obtained data: firstly, it helped in grouping sites depending on the type of contamination. Secondly, it was valuable for identifying the latent factors that contribute the most to metal accumulation in land snails. Finally, it optimized the number and type of data that are best for monitoring the status of metallic contamination in terrestrial ecosystems exposed to different kinds of anthropic polution. PMID:23987502
Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin
2016-04-13
Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity.
Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin
2016-01-01
Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity. PMID:27072196
Woodcock, Paul; Edwards, David P.; Newton, Rob J.; Vun Khen, Chey; Bottrell, Simon H.; Hamer, Keith C.
2013-01-01
Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging. These food webs appear able to bend without breaking in the face of some forms of anthropogenic disturbance. PMID:23593302
Woodcock, Paul; Edwards, David P; Newton, Rob J; Vun Khen, Chey; Bottrell, Simon H; Hamer, Keith C
2013-01-01
Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging. These food webs appear able to bend without breaking in the face of some forms of anthropogenic disturbance.
Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals
Tucker, Marlee A.; Rogers, Tracey L.
2014-01-01
Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. PMID:25377460
Dubey, Vineet Kumar; Sarkar, Uttam Kumar; Pandey, Ajay; Lakra, Wazir Singh
2013-09-01
In India, freshwater aquatic resources are suffering from increasing human population, urbanization and shortage of all kind of natural resources like water. To mitigate this, all the major rivers have been planned for a river-interlinking through an interlinking canal system under a huge scheme; yet, the baseline information on ecological conditions of those tropical rivers and their fish communities is lacking at present. In view of that, the present study was undertaken to assess the ecological condition by comparing the trophic metrics of the fish community, conservation status and water chemistry of the two tropical rivers of the Ganga basin, from October 2007 to November 2009. The analysis of trophic niches of the available fish species indicated dominancy of carnivorous (19 species) in river Ken and omnivorous (23 species) in Betwa. The trophic level score of carnivorous species was recorded similar (33.33%) in both rivers, whereas omnivorous species were mostly found in Betwa (36.51%) than Ken (28.07%). Relatively undisturbed sites of Betwa (B1, B2 and B3) and Ken (K2, K3 and K5) were characterized by diverse fish fauna and high richness of threatened species. The higher mean trophic level scores were recorded at B4 of Betwa and K4 of Ken. The Bray-Curtis index for trophic level identified the carnivorous species (> 0.32) as an indicator species for pollution. Anthropogenic exposure, reflected in water quality as well as in fish community structure, was found higher especially in the lower stretches of both rivers. Our results suggest the importance of trophic metrics on fish community, for ecological conditions evaluation, which enables predictions on the effect of future morphodynamic changes (in the post-interlinking phases), and provide a framework and reference condition to support restoration efforts of relatively altered fish habitats in tropical rivers of India.
Relationship between Trophic Status and Methanogenic Pathways in Alaskan Peatlands
NASA Astrophysics Data System (ADS)
Zhang, L.; Liu, X.; Sidelinger, W.; Wang, Y.; Hines, M. E.; Langford, L.; Chanton, J.
2015-12-01
To improve predictions of naturally emitted CH4 from northern wetlands, it is necessary to further examine the methanogenic pathways in these wetlands. Stable isotope C ratios (δ13C) have been used as a robust tool to distinguish different pathways, but different sources of parent compounds (acetate and CO2) with unique δ13C may add complexity to previously established criteria. Large portions of peatlands accommodate a mixture of different sphagna and sedges. Plant species may look very similar and belong to the same genus but are different morphologically and physiologically. To better understand the relationships between surface vegetation patterns and methanogenic pathways, 26 peatland sites were studied in Fairbanks and Anchorage, Alaska in summers of 2014 and 2015. These sites were ordinated using multiple factor analysis into 3 clusters based on pH, temp, CH4 and volatile fatty acids production rates, δ13C values, and surface vegetation species/pattern. In the low-pH trophic cluster (pH~3.5), non-vascular/vascular plant ratios (NV/V) were ~ 0.87 and dominated by diverse Sphagnum species and specific sedges (Eriophorum vaginatum), and fermentation was the dominant end-point in decomposition with no CH4 detected. Although NV/V is about the same in the intermediate cluster (0.74) (pH~4.5), and Sphagnum squarrosum was largely present, both hydrogenotrophic (HM) and acetoclastic methanogenesis (AM) were very active. Syntrophy was present at certain sites, which may provide CO2 with unique δ13C for CH4 production. At the highest pH trophic cluster examined in this study (pH~5), non-vascular plants were almost not existent and Carex aquatilis dominated. CH4 production rates (mainly HM) were slower than those in the intermediate cluster and the apparent fractionation factor a was lower than in the sites with syntrophy, which warrants further investigation of the position and compound specific δ13C analysis of volatile fatty acids.
Maizel, Andrew C; Li, Jing; Remucal, Christina K
2017-09-05
The North Temperate Lakes Long-Term Ecological Research site includes seven lakes in northern Wisconsin that vary in hydrology, trophic status, and landscape position. We examine the molecular composition of dissolved organic matter (DOM) within these lakes using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) and quantify DOM photochemical activity using probe compounds. Correlations between the relative intensity of individual molecular formulas and reactive species production demonstrate the influence of DOM composition on photochemistry. For example, highly aromatic, tannin-like formulas correlate positively with triplet formation rates, but negatively with triplet quantum yields, as waters enriched in highly aromatic formulas exhibit much higher rates of light absorption, but only slightly higher rates of triplet production. While commonly utilized optical properties also correlate with DOM composition, the ability of FT-ICR MS to characterize DOM subpopulations provides unique insight into the mechanisms through which DOM source and environmental processing determine composition and photochemical activity.
The Mediterranean and Black Sea Fisheries at Risk from Overexploitation
Tsikliras, Athanassios C.; Dinouli, Anny; Tsiros, Vasileios-Zikos; Tsalkou, Eleni
2015-01-01
The status of the Mediterranean and Black Sea fisheries was evaluated for the period 1970-2010 on a subarea basis, using various indicators including the temporal variability of total landings, the number of recorded stocks, the mean trophic level of the catch, the fishing-in-balance index and the catch-based method of stock classification. All indicators confirmed that the fisheries resources of the Mediterranean and Black Sea are at risk from overexploitation. The pattern of exploitation and the state of stocks differed among the western (W), central (C) and eastern (E) Mediterranean subareas and the Black Sea (BS), with the E Mediterranean and BS fisheries being in a worst shape. Indeed, in the E Mediterranean and the BS, total landings, mean trophic level of the catch and fishing-in-balance index were declining, the cumulative percentage of overexploited and collapsed stocks was higher, and the percentage of developing stocks was lower, compared to the W and C Mediterranean. Our results confirm the need for detailed and extensive stock assessments across species that will eventually lead to stocks recovering through conservation and management measures. PMID:25793975
Taylor, David L.; Kutil, Nicholas J.; Malek, Anna J.; Collie, Jeremy S.
2014-01-01
This study examined total mercury (Hg) concentrations in cartilaginous fishes from Southern New England coastal waters, including smooth dogfish (Mustelus canis), spiny dogfish (Squalus acanthias), little skate (Leucoraja erinacea), and winter skate (L. ocellata). Total Hg in dogfish and skates were positively related to their respective body size and age, indicating Hg bioaccumulation in muscle tissue. There were also significant inter-species differences in Hg levels (mean ± 1 SD, mg Hg/kg dry weight, ppm): smooth dogfish (3.3 ± 2.1 ppm; n = 54) > spiny dogfish (1.1 ± 0.7 ppm; n = 124) > little skate (0.4 ± 0.3 ppm; n = 173) ~ winter skate (0.3 ± 0.2 ppm; n = 148). The increased Hg content of smooth dogfish was attributed to its upper trophic level status, determined by stable nitrogen (δ15N) isotope analysis (mean δ15N = 13.2 ± 0.7‰), and the consumption of high Hg prey, most notably cancer crabs (0.10 ppm). Spiny dogfish had depleted δ15N signatures (11.6 ± 0.8‰), yet demonstrated a moderate level of contamination by foraging on pelagic prey with a range of Hg concentrations, e.g., in order of dietary importance, butterfish (Hg = 0.06 ppm), longfin squid (0.17 ppm), and scup (0.11 ppm). Skates were low trophic level consumers (δ15N = 11.9-12.0‰) and fed mainly on amphipods, small decapods, and polychaetes with low Hg concentrations (0.05-0.09 ppm). Intra-specific Hg concentrations were directly related to δ15N and carbon (δ13C) isotope signatures, suggesting that Hg biomagnifies across successive trophic levels and foraging in the benthic trophic pathway increases Hg exposure. From a human health perspective, 87% of smooth dogfish, 32% of spiny dogfish, and < 2% of skates had Hg concentrations exceeding the US Environmental Protection Agency threshold level (0.3 ppm wet weight). These results indicate that frequent consumption of smooth dogfish and spiny dogfish may adversely affect human health, whereas skates present minimal risk. PMID:25081850
Biomass, size, and trophic status of top predators in the Pacific Ocean.
Sibert, John; Hampton, John; Kleiber, Pierre; Maunder, Mark
2006-12-15
Fisheries have removed at least 50 million tons of tuna and other top-level predators from the Pacific Ocean pelagic ecosystem since 1950, leading to concerns about a catastrophic reduction in population biomass and the collapse of oceanic food chains. We analyzed all available data from Pacific tuna fisheries for 1950-2004 to provide comprehensive estimates of fishery impacts on population biomass and size structure. Current biomass ranges among species from 36 to 91% of the biomass predicted in the absence of fishing, a level consistent with or higher than standard fisheries management targets. Fish larger than 175 centimeters fork length have decreased from 5% to approximately 1% of the total population. The trophic level of the catch has decreased slightly, but there is no detectable decrease in the trophic level of the population. These results indicate substantial, though not catastrophic, impacts of fisheries on these top-level predators and minor impacts on the ecosystem in the Pacific Ocean.
Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, U.S.A.) kettle ponds
Roman, C.T.; Barrett, N.E.; Portnoy, J.W.
2001-01-01
The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.
Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, USA) kettle ponds
Roman, C.T.; Barrett, N.E.; Portnoy, J.W.
2001-01-01
The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.
Nutrients, phytoplankton, zooplankton, and macrobenthos
Rudstam, Lars G.; Holeck, Kristen T.; Watkins, James M.; Hotaling, Christopher; Lantry, Jana R.; Bowen, Kelly L.; Munawar, Mohi; Weidel, Brian C.; Barbiero, Richard; Luckey, Frederick J.; Dove, Alice; Johnson, Timothy B.; Biesinger, Zy
2017-01-01
Lower trophic levels support the prey fish on which most sport fish depend. Therefore, understanding the production potential of lower trophic levels is integral to the management of Lake Ontario’s fishery resources. Lower trophic-level productivity differs among offshore and nearshore waters. In the offshore, there is concern about the ability of the lake to support Alewife (Table 1) production due to a perceived decline in productivity of phytoplankton and zooplankton whereas, in the nearshore, there is a concern about excessive attached algal production (e.g., Cladophora) associated with higher nutrient concentrations—the oligotrophication of the offshore and the eutrophication of the nearshore (Mills et al. 2003; Holeck et al. 2008; Dove 2009; Koops et al. 2015; Stewart et al. 2016). Even though the collapse of the Alewife population in Lake Huron in 2003 (and the associated decline in the Chinook Salmon fishery) may have been precipitated by a cold winter (Dunlop and Riley 2013), Alewife had not returned to high abundances in Lake Huron as of 2014 (Roseman et al. 2015). Failure of the Alewife population to recover from collapse has been attributed to declines in lower trophic-level production (Barbiero et al. 2011; Bunnell et al. 2014; but see He et al. 2015). In Lake Michigan, concerns of a similar Alewife collapse led to a decrease in the number of Chinook Salmon stocked. If lower trophic-level production declines in Lake Ontario, a similar management action could be considered. On the other hand, in Lake Erie, which supplies most of the water in Lake Ontario, eutrophication is increasing and so are harmful algal blooms. Thus, there is also a concern that nutrient levels and algal blooms could increase in Lake Ontario, especially in the nearshore. Solutions to the two processes of concern—eutrophication in the nearshore and oligotrophication in the offshore—may be mutually exclusive. In either circumstance, fisheries management needs information on the productivity of lower trophic levels in Lake Ontario. In this chapter, we review the status of lower trophic levels in Lake Ontario with special attention to the current (2008-2013) and previous (2003-2007) reporting periods. During the two reporting periods, three whole-lake surveys of lower trophic levels were conducted: the Lower Trophic Level Assessment (LOLA) in 2003 and 2008 (Makarewicz and Howell 2012; Munawar et al. 2015b) and the Cooperative Science and Management Initiative (CSMI) in 2013. Analyses of the CSMI data are ongoing. In addition to the three one-year sources of information on lower trophic levels, several multi-year sources of information are available, including data from the surveillance program conducted since 1965 by Environment Canada (EC) (Dove 2009), monitoring conducted since 1980 by the U.S. Environmental Protection Agency’s (EPA) Great Lakes National Program Office (GLNPO) (Barbiero et al. 2014; Reavie et al. 2014), sampling for a Bioindex Program at two stations, one offshore and one in the Eastern Basin, assessments of Mysis diluviana (formerly Mysis relicta) conducted since 1980 by Fisheries and Oceans Canada (Johannsson et al. 1998, 2011) and the Ontario Ministry of Natural Resources and Forestry (OMNRF), and monitoring conducted since 1995 by the Biomonitoring Program (BMP) on the New York side of the lake (Holeck et al. 2015b). The BMP is a collaboration of the New York State Department of Environmental Conservation (DEC), U.S. Fish and Wildlife Service, U.S. Geological Survey (USGS), and Cornell University.
Svanbäck, Richard; Quevedo, Mario; Olsson, Jens; Eklöv, Peter
2015-05-01
Among-individual diet variation is common in natural populations and may occur at any trophic level within a food web. Yet, little is known about its variation among trophic levels and how such variation could affect phenotypic divergence within populations. In this study we investigate the relationships between trophic position (the population's range and average) and among-individual diet variation. We test for diet variation among individuals and across size classes of Eurasian perch (Perca fluviatilis), a widespread predatory freshwater fish that undergoes ontogenetic niche shifts. Second, we investigate among-individual diet variation within fish and invertebrate populations in two different lake communities using stable isotopes. Third, we test potential evolutionary implications of population trophic position by assessing the relationship between the proportion of piscivorous perch (populations of higher trophic position) and the degree of phenotypic divergence between littoral and pelagic perch sub-populations. We show that among-individual diet variation is highest at intermediate trophic positions, and that this high degree of among-individual variation likely causes an increase in the range of trophic positions among individuals. We also found that phenotypic divergence was negatively related to trophic position in a population. This study thus shows that trophic position is related to and may be important for among-individual diet variation as well as to phenotypic divergence within populations.
Blasina, Gabriela; Molina, Juan; Lopez Cazorla, Andrea; Díaz de Astarloa, Juan
This study explores the relationship between ecomorphology and trophic segregation in four closely related sympatric fish species (Teleostei, Sciaenidae) that are known to differ in their trophic habits. Only adult specimens were analyzed: 103 Cynoscion guatucupa, 77 Pogonias cromis, 61 Micropogonias furnieri, and 48 Menticirrhus americanus. The four species presented divergent ecomorphological traits related to swimming agility, prey spotting and capture, and the potential size of prey they were able to swallow. Results suggest that these sciaenid species can partition the food resources, even though they completely overlap in space. Differences in their ecomorphological traits appear to correlate closely with the diet and consequently could explain the trophic differentiation observed. Arguably, these ecomorphological differences play a significant role in the coexistence of the adults of these sympatric fish species. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Relating trophic resources to community structure: a predictive index of food availability
Edgar, Graham J.
2017-01-01
The abundance and the distribution of trophic resources available for consumers influence the productivity and the diversity of natural communities. Nevertheless, assessment of the actual abundance of food items available for individual trophic groups has been constrained by differences in methods and metrics used by various authors. Here we develop an index of food abundance, the framework of which can be adapted for different ecosystems. The relative available food index (RAFI) is computed by considering standard resource conditions of a habitat and the influence of various generalized anthropogenic and natural factors. RAFI was developed using published literature on food abundance and validated by comparison of predictions versus observed trophic resources across various marine sites. RAFI tables here proposed can be applied to a range of marine ecosystems for predictions of the potential abundance of food available for each trophic group, hence permitting exploration of ecological theories by focusing on the deviation from the observed to the expected. PMID:28386417
Tucker, Marlee A; Rogers, Tracey L
2014-12-22
Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Bhushan Kumar; Khan, Shaikhul Islam; Sharma, Sumita
2018-03-01
The study aims to ascertain the hypothesis on the rich rotifer biodiversity of the floodplain lakes (beels) of the Brahmaputra river basin and to use these metazoans to assess trophic status or to characterize habitat variations of wetlands. The plankton samples collected from four beels of lower Assam revealed 160 Rotifera species belonging to 35 genera and 19 families. The richness is of biodiversity value as 38.0% and 57.0% of the rotifer species known till date from India and northeast India (NEI), respectively. One species each is new to the Oriental region and NEI, and three species are new to Assam; 23 species merit global biogeography interest and several exhibit distribution values in the Indian sub-region. The diverse Lecanidae > Brachionidae > Lepadellidae > Trichocercidae and speciose littoral-periphytic Lecane > Lepadella > Trichocerca, and richness of Brachionus spp. following removal of aquatic macrophytes are noteworthy. Overall rotifer composition showed homogeneity amongst beels while lower monthly richness and community similarities affirmed heterogeneity within individual beels. We propose L/B quotient based on Lecane: Brachionus species ratios to characterize habitat variations of the sampled wetlands. Sládeček's B/T quotient based on Brachionus: Trichocerca species ratios affirmed general' meso-trophic' status of different beels. Our results provided little insight on the influence of individual abiotic factors but the canonical correspondence analyses asserted higher cumulative influence of ten abiotic parameters on Rotifera richness in each beel.
Rubino, F; Cibic, T; Belmonte, M; Rogelja, M
2016-07-01
This study aimed to assess the benthic ecosystem trophic status in a heavily polluted marine area and the response of the microbenthic community to multiple and diffuse anthropogenic impacts, integrating information coming from the active and resting (plankton's cysts) components of microbenthos. Two sampling campaigns were carried out in the period 2013-2014 and four sampling sites at different levels of industrial contamination were chosen within the first and second inlet of the Mar Piccolo of Taranto. The chemical contamination affected to a higher extent the active microbenthos than the resting one. In the central part of the first inlet, characterised by more marine features, thrives a very rich and biodiverse microbenthic community. In contrast, at the polluted site near the military navy arsenal, extremely low densities (9576 ± 1732 cells cm(-3)) were observed for active microbenthos, but not for the resting community. Here, the high level of contamination selected for tychopelagic diatom species, i.e., thriving just above the surface sediments, while the other life forms died or moved away. Following the adoption of a 10 μm mesh, for the first time, resting spores produced by small diatoms of the genus Chaetoceros were found. Our results further indicate that although the Mar Piccolo is very shallow, the benthic system is scarcely productive, likely as a consequence of the accumulated contaminants in the surface sediments that probably interfere with the proper functioning of the benthic ecosystem.
Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio
2016-06-01
Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.
Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos
2016-01-01
It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches. PMID:26934113
Calado, Ricardo; Leal, Miguel Costa
2015-01-01
The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. © 2015 Elsevier Ltd. All rights reserved.
Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos
2016-01-01
It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches.
Aircraft remote sensing of freshwater ecosystems offers federal and state monitoring agencies an ability to meet their assessment requirements by rapidly acquiring information on ecosystem responses to environmental change for water bodies that are below the resolution of space...
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism par...
'Trophic' and 'source' amino acids in trophic estimation: a likely metabolic explanation.
O'Connell, T C
2017-06-01
Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual's 'trophic' and 'source' amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in 'trophic' and 'source' amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the 'trophic'/'source' groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. 'Trophic' amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and 'source' amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of 'trophic' amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of 'source' amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for 'trophic discrimination factors' is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.
Wu, Pan; Qin, Boqiang; Yu, Ge
2016-03-01
The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (<6.43 %) and Nash-Sutcliffe coefficients (0.67-0.75). The results showed that the predicted TP concentrations largely increased with hydraulic residence time, especially in extreme drought years, with a generally rising trend in trophic status. The simulated trophic state index showed that lakes Taihu and Poyang became eutrophic in the 1990s, whereas Lake Chao became eutrophic in the 1980s; lakes Taihu and Chao ultimately became hypereutrophic in the 2000s. The analysis suggested that the tropic status of the shallow lakes was affected by both the hydroclimate and geological sedimentation of the Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states.
ASSESSING OF HERBIVOROUS AND BENEFICIAL INSECTS ON SWITCHGRASS IN UKRAINE.
Stefanovska, T; Kucherovska, S; Pisdlisnyuk, V
2014-01-01
A perennial switchgrass, (Panicum virgatum L.), (C4) that is native to North America has good potential for biomass production because of its wide geographic distribution and adaptability to diverse environmental conditions. Insects can significantly impact the yield and quality of biofuel crops. If switchgrass are to be grown on marginally arable land or in monoculture, it are likely to be plagued with herbivore pests and plant diseases at a rate that exceeds what would be expected if the plants were not stressed in this manner. This biofuel crop has been under evaluation for commercial growing in Ukraine for eight years. However, insect diversity and the potential impact of pests on biomass production of this feedstock have not been accessed yet. The objective of our study, started in 2011, is a survey of switch grass insects by trophic groups and determine species that have pest status at two sites in the Central part of Ukraine (Kiev and Poltava regions). In Poltava site we investigated the effect of nine varieties of switchgrass (lowland and upland) to insects' diversity. We assessed changes over time in the densities of major insects' trophic groups, identifying potential pests and natural enemies. Obtained results indicates that different life stages of herbivorous insects from Hymenoptera, Homoptera, Diptera and Coleoptera orders were present on switchgrass during the growing season. Our study results suggests that choice of variety has an impact on trophic groups' structure and number of insects from different orders on swicthgrass. Herbivores and beneficial insects were the only groups that showed significant differences across sampling dates. The highest population of herbivores insects we recorded on 'Alamo' variety for studied years, although herbivore diversity tended to increase on 'Shelter', 'Alamo' and 'Cave-in-Rock' during 2012 and 2013. 'Dacotah', 'Nebraska', 'Sunburst', 'Forestburg' and 'Carthage' showed the highest level of beneficial insects during our study.
Christensen, Victoria G.; Payne, G.A.; Kallemeyn, Larry W.
2004-01-01
Implementation of an order by the International Joint Commission in January 2000 has changed operating procedures for dams that regulate two large reservoirs in Voyageurs National Park in northern Minnesota. These new procedures were expected to restore a more natural water regime and affect water levels, water quality, and trophic status. Results of laboratory analyses and field measurements of chemical and physical properties from May 2001 through September 2003 were compared to similar data collected prior to the change in operating procedures. Rank sum tests showed significant decreases in chlorophyll-a concentrations and trophic state indices for Kabetogama Lake (p=0.021) and Black Bay (p=0.007). There were no significant decreases in total phosphorus concentration, however, perhaps due to internal cycling of phosphorus. No sites had significant trends in seasonal total phosphorus concentrations, with the exception of May samples from Sand Point Lake, which had a significant decreasing trend (tau=-0.056, probability=0.03). May chlorophyll-a concentrations for Kabetogama Lake showed a significant decreasing trend (tau=-0.42, probability=0.05). Based on mean chlorophyll trophic-state indices (2001-03), Sand Point, Namakan, and Rainy Lakes would be classified oligotrophic to mesotrophic, and Kabetogama Lake and Rainy Lake at Black Bay would be classified as mesotrophic. The classification of Sand Point, Namakan, and Rainy Lakes remain the same for data collected prior to the change in operating procedures. In contrast, the trophic classification of Kabetogama Lake and Rainy Lake at Black Bay has changed from eutrophic to mesotrophic.
Páez-Rosas, Diego; Rodríguez-Pérez, Mónica; Riofrío-Lazo, Marjorie
2014-12-15
The feeding success of predators is associated with the competition level for resources, and, thus, sympatric species are exposed to a potential trophic overlap. Isotopic Bayesian mixing models should provide a better understanding of the contribution of preys to the diet of predators and the feeding behavior of a species over time. The carbon and nitrogen isotopic signatures from pup hair samples of 93 Galapagos sea lions and 48 Galapagos fur seals collected between 2003 and 2009 in different regions (east and west) of the archipelago were analyzed. A PDZ Europa ANCA-GSL elemental analyzer interfaced with a PDZ Europa 20-20 continuous flow gas source mass spectrometer was employed. Bayesian models, SIAR and SIBER, were used to estimate the contribution of prey to the diet of predators, the niche breadth, and the trophic overlap level between the populations. Statistical differences in the isotopic values of both predators were observed over the time. The mixing model determined that Galapagos fur seals had a primarily teutophagous diet, whereas the Galapagos sea lions fed exclusively on fish in both regions of the archipelago. The SIBER analysis showed differences in the trophic niche between the two sea lion populations, with the western rookery of the Galapagos sea lion being the population with the largest trophic niche area. A trophic niche partitioning between Galapagos fur seals and Galapagos sea lions in the west of the archipelago is suggested by our results. At intraspecific level, the western population of the Galapagos sea lion (ZwW) showed higher trophic breadth than the eastern population, a strategy adopted by the ZwW to decrease the interspecific competition levels in the western region. Copyright © 2014 John Wiley & Sons, Ltd.
Spider foraging strategy affects trophic cascades under natural and drought conditions.
Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong
2015-07-23
Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.
Spider foraging strategy affects trophic cascades under natural and drought conditions
Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong
2015-01-01
Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370
Wang, Jianzhu; Chapman, Duane C.; Xu, Jun; Wang, Yang; Gu, Binhe
2018-01-01
Stable carbon and nitrogen isotope values (δ13C and δ15N) were used to evaluate trophic niche overlap between two filter-feeding fishes (known together as bigheaded carp) native to China, silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), and three native filter-feeding fish including bigmouth buffalo (Ictiobus cyprinellus), gizzard shad (Dorosoma cepedianum) and paddlefish (Polyodon spathula) in the lower Missouri River, USA, using the Bayesian Stable Isotope in R statistics. Results indicate that except for bigmouth buffalo, all species displayed similar trophic niche size and trophic diversity. Bigmouth buffalo occupied a small trophic niche and had the greatest trophic overlap with silver carp (93.6%) and bighead carp (94.1%) followed by gizzard shad (91.0%). Paddlefish had a trophic niche which relied on some resources different from those used by other species, and therefore had the lowest trophic overlap with bigheaded carp and other two native fish. The trophic overlap by bigheaded carp onto native fish was typically stronger than the reverse effects from native fish. Average niche overlap between silver carp and native species was as high as 71%, greater than niche overlap between bighead carp and native fish (64%). Our findings indicate that bigheaded carps are a potential threat to a diverse and stable native fish community.
Infectious Agents Trigger Trophic Cascades.
Buck, Julia C; Ripple, William J
2017-09-01
Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively. Unlike most predators, however, infectious agents are not fully and immediately lethal to their victims, so their consumptive effects can also trigger trait-mediated indirect effects. We find that the frequency of trophic cascades reported for different consumer types scales with consumer lethality. Furthermore, we emphasize the value of uniting predator-prey and parasite-host theory under a general consumer-resource framework. Copyright © 2017 Elsevier Ltd. All rights reserved.
Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.
2012-01-01
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ∼2.9) largely align with expectations from stomach content studies (TP ∼3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ∼3.2) were lower than TPs derived from stomach content studies (TP∼4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure. PMID:23209656
Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.
2012-01-01
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ~2.9) largely align with expectations from stomach content studies (TP ~3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ~3.2) were lower than TPs derived from stomach content studies (TP~4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.
Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan
2012-01-01
Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP. PMID:22470515
Fleming, Nicholas E C; Harrod, Chris; Newton, Jason; Houghton, Jonathan D R
2015-01-01
Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ (13)C and δ (15)N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ (15)N (trophic position) were evident between all three species, with size-based and temporal shifts in δ (15)N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that jellyfish require more robust inclusion in marine fisheries or ecosystem models.
Fleming, Nicholas E.C.; Newton, Jason; Houghton, Jonathan D.R.
2015-01-01
Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ13C and δ15N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ15N (trophic position) were evident between all three species, with size-based and temporal shifts in δ15N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that jellyfish require more robust inclusion in marine fisheries or ecosystem models. PMID:26244116
Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex
NASA Astrophysics Data System (ADS)
Bubier, Jill L.; Crill, Patrick M.; Moore, Tim R.; Savage, Kathleen; Varner, Ruth K.
1998-12-01
We measured seasonal patterns of net ecosystem exchange (NEE) of CO2 in a diverse peatland complex underlain by discontinuous permafrost in northern Manitoba, Canada, as part of the Boreal Ecosystems Atmosphere Study (BOREAS). Study sites spanned the full range of peatland trophic and moisture gradients found in boreal environments from bog (pH 3.9) to rich fen (pH 7.2). During midseason (July-August, 1996), highest rates of NEE and respiration followed the trophic sequence of bog (5.4 to -3.9 μmol CO2 m-2 s-1) < poor fen (6.3 to -6.5 μmol CO2 m-2 s-1) < intermediate fen (10.5 to -7.8 μmol CO2 m-2 s-1) < rich fen (14.9 to -8.7 μmol CO2m-2 s-1). The sequence changed during spring (May-June) and fall (September-October) when ericaceous shrub (e.g., Chamaedaphne calyculata) bogs and sedge (Carex spp.) communities in poor to intermediate fens had higher maximum CO2 fixation rates than deciduous shrub-dominated (Salix spp. and Betula spp.) rich fens. Timing of snowmelt and differential rates of peat surface thaw in microtopographic hummocks and hollows controlled the onset of carbon uptake in spring. Maximum photosynthesis and respiration were closely correlated throughout the growing season with a ratio of approximately 1/3 ecosystem respiration to maximum carbon uptake at all sites across the trophic gradient. Soil temperatures above the water table and timing of surface thaw and freeze-up in the spring and fall were more important to net CO2 exchange than deep soil warming. This close coupling of maximum CO2 uptake and respiration to easily measurable variables, such as trophic status, peat temperature, and water table, will improve models of wetland carbon exchange. Although trophic status, aboveground net primary productivity, and surface temperatures were more important than water level in predicting respiration on a daily basis, the mean position of the water table was a good predictor (r2 = 0.63) of mean respiration rates across the range of plant community and moisture gradients. Q10 values ranged from 3.0 to 4.1 from bog to rich fen, but when normalized by above ground vascular plant biomass, the Q10 for all sites was 3.3.
Beveridge, Oliver S; Humphries, Stuart; Petchey, Owen L
2010-05-01
1. While much is known about the independent effects of trophic structure and temperature on density and ecosystem processes, less is known about the interaction(s) between the two. 2. We manipulated the temperature of laboratory-based bacteria-protist communities that contained communities with one, two, or three trophic levels, and recorded species' densities and bacterial decomposition. 3. Temperature, food chain length and their interaction produced significant responses in microbial density and bacterial decomposition. Prey and resource density expressed different patterns of temperature dependency during different phases of population dynamics. The addition of a predator altered the temperature-density relationship of prey, from a unimodal trend to a negative one. Bacterial decomposition was greatest in the presence of consumers at higher temperatures. 4. These results are qualitatively consistent with a recent model of direct and indirect temperature effects on resource-consumer population dynamics. Results highlight and reinforce the importance of indirect effects of temperature mediated through trophic interactions. Understanding and predicting the consequences of environmental change will require that indirect effects, trophic structure, and individual species' tolerances be incorporated into theory and models.
Stagličić, Nika; Šegvić-Bubić, Tanja; Ugarković, Pero; Talijančić, Igor; Žužul, Iva; Tičina, Vjekoslav; Grubišić, Leon
2017-12-01
The ecological effects of tuna fish farms are largely undocumented. This study confirmed their high capacity to attract surrounding wild fish. The aggregation effect persisted year round, without detectable seasonal differences. Farm impact was restricted to close proximity of the sea cages, and was more prominent over the bottom than in the water column strata. Tuna fish farms proved to be high energy trophic resources, as indicated by the enhanced fitness status of two focal species, bogue and seabream. Under abundant food supply, seabream appear to allocate the majority of energy reserves to gonad development. Farm associated bogue had greater parasite loads, with no detrimental effect on fitness status. Overall, tuna fish farms can be regarded as population sources for aggregated wild fish, and under the no fishing conditions within the leasehold areas, can serve as functional marine protected areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Research progress on food sources and food web structure of wetlands based on stable isotopes].
Chen, Zhan Yan; Wu, Hai Tao; Wang, Yun Biao; Lyu, Xian Guo
2017-07-18
The trophic dynamics of wetland organisms is the basis of assessing wetland structure and function. Stable isotopes of carbon and nitrogen have been widely applied to identify trophic relationships in food source, food composition and food web transport in wetland ecosystem studies. This paper provided an overall review about the current methodology of isotope mixing model and trophic level in wetland ecosystems, and discussed the standards of trophic fractionation and baseline. Moreover, we characterized the typical food sources and isotopic compositions of wetland ecosystems, summarized the food sources in different trophic levels of herbivores, omnivores and carnivores based on stable isotopic analyses. We also discussed the limitations of stable isotopes in tra-cing food sources and in constructing food webs. Based on the current results, development trends and upcoming requirements, future studies should focus on sample treatment, conservation and trophic enrichment measurement in the wetland food web, as well as on combing a variety of methodologies including traditional stomach stuffing, molecular markers, and multiple isotopes.
Chironomidae larvae (Diptera) of Neotropical floodplain: overlap niche in different habitats.
Butakka, C M M; Ragonha, F H; Takeda, A M
2014-05-01
The niche overlap between trophic groups of Chironomidae larvae in different habitats was observed between trophic groups and between different environments in Neotropical floodplain. For the evaluation we used the index of niche overlap (CXY) and analysis of trophic networks, both from the types and amount of food items identified in the larval alimentary canal. In all environments, the larvae fed on mainly organic matter such as plants fragments and algae, but there were many omnivore larvae. Species that have high values of food items occurred in diverse environments as generalists with great overlap niche and those with a low amount of food items with less overlap niche were classified as specialists. The largest number of trophic niche overlap was observed among collector-gatherers in connected floodplain lakes. The lower values of index niche overlap were predators. The similarity in the diet of different taxa in the same niche does not necessarily imply competition between them, but coexistence when the food resource is not scarce in the environment even in partially overlapping niches.
NASA Astrophysics Data System (ADS)
Signa, Geraldina; Mazzola, Antonio; Vizzini, Salvatrice
2012-10-01
Colonies of seabirds have been shown to influence nutrient cycling and primary production of coastal areas, but knowledge is still limited above all for smaller colonies. This study evaluates the influence of a small resident seagull colony (Larus michahellis Naumann, 1840) on a Mediterranean coastal system (Marinello ponds, Sicily, Italy). The presence of ornithogenic organic matter from seagull guano was first assessed at increasing distances from the colony using δ15N to indicate the effects of guano on the trophic status and primary production. The pond directly affected by guano deposition showed an anomalous water and sediment chemistry, especially regarding physico-chemical variables (pH), nitrogen isotopic signature, nutrient balance and phytoplankton biomass. These effects were not observed in the adjacent ponds, highlighting pronounced, small spatial-scale variability. Given the worldwide presence of seabird colonies and the scarcity of research on their effect on coastal marine areas, the study shows that seabird-mediated input may be important in influencing ecosystem dynamics of coastal areas, even where both the system in question and the colony are small.
Detecting Potential Water Quality Issues by Mapping Trophic Status Using Google Earth Engine
NASA Astrophysics Data System (ADS)
Nguy-Robertson, A. L.; Harvey, K.; Huening, V.; Robinson, H.
2017-12-01
The identification, timing, and spatial distribution of recurrent algal blooms and aquatic vegetation can help water managers and policy makers make better water resource decisions. In many parts of the world there is little monitoring or reporting of water quality due to the required costs and effort to collect and process water samples. We propose to use Google Earth Engine to quickly identify the recurrence of trophic states in global inland water systems. Utilizing Landsat and Sentinel multispectral imagery, inland water quality parameters (i.e. chlorophyll a concentration) can be estimated and waters can be classified by trophic state; oligotrophic, mesotrophic, eutrophic, and hypereutrophic. The recurrence of eutrophic and hypereutrophic observations can highlight potentially problematic locations where algal blooms or aquatic vegetation occur routinely. Eutrophic and hypereutrophic waters commonly include many harmful algal blooms and waters prone to fish die-offs from hypoxia. While these maps may be limited by the accuracy of the algorithms utilized to estimate chlorophyll a; relative comparisons at a local scale can help water managers to focus limited resources.
Population-Scale Foraging Segregation in an Apex Predator of the North Atlantic
Paiva, Vitor H.; Fagundes, Ana I.; Romão, Vera; Gouveia, Cátia; Ramos, Jaime A.
2016-01-01
In this work we investigated the between-colony spatial, behavioural and trophic segregation of two sub-populations of the elusive Macaronesian shearwaters Puffinus baroli breeding only ~340 km apart in Cima Islet (Porto Santo Island) and Selvagem Grande Island. Global location sensing (gls) loggers were used in combination with the trophic ecology of tracked individuals, inferred from the isotopic signatures of wing feathers. Results suggest that these two Macaronesian shearwater sub-populations do segregate during the non-breeding period in some ‘sub-population-specific’ regions, by responding to different oceanographic characteristics (habitat modelling). Within these disparate areas, both sub-populations behave differently (at-sea activity) and prey on disparate trophic niches (stable isotope analysis). One hypothesis would be that each sub-population have evolved and adapted to feed on particular and ‘sub-population-specific’ resources, and the segregation observed at the three different levels (spatial, behavioural and trophic) might be in fact a result of such adaptation, from the emergence of ‘cultural foraging patterns’. Finally, when comparing to the results of former studies reporting on the spatial, behavioural and trophic choices of Macaronesian shearwater populations breeding on Azores and Canary Islands, we realized the high ecological plasticity of this species inhabiting and foraging over the North-East Atlantic Ocean. PMID:27003687
Eutrophication exacerbates the impact of climate warming on lake methane emission.
Sepulveda-Jauregui, Armando; Hoyos-Santillan, Jorge; Martinez-Cruz, Karla; Walter Anthony, Katey M; Casper, Peter; Belmonte-Izquierdo, Yadira; Thalasso, Frédéric
2018-04-27
Net methane (CH 4 ) emission from lakes depends on two antagonistic processes: CH 4 production (methanogenesis) and CH 4 oxidation (methanotrophy). It is unclear how climate warming will affect the balance between these processes, particularly among lakes of different trophic status. Here we show that methanogenesis is more sensitive to temperature than methanotrophy, and that eutrophication magnifies this temperature sensitivity. Using laboratory incubations of water and sediment from ten tropical, temperate and subarctic lakes with contrasting trophic states, ranging from oligotrophic to hypereutrophic, we explored the temperature sensitivity of methanogenesis and methanotrophy. We found that both processes presented a higher temperature sensitivity in tropical lakes, followed by temperate, and subarctic lakes; but more importantly, we found that eutrophication triggered a higher temperature sensitivity. A model fed by our empirical data revealed that increasing lake water temperature by 2 °C leads to a net increase in CH 4 emissions by 101-183% in hypereutrophic lakes and 47-56% in oligotrophic lakes. We conclude that climate warming will tilt the CH 4 balance towards higher lake emission and that this impact will be exacerbated by the eutrophication of the lakes. Copyright © 2018 Elsevier B.V. All rights reserved.
Fabricius, Katharina E.; Cséke, Szilvia; Humphrey, Craig; De’ath, Glenn
2013-01-01
Global warming, and nutrient and sediment runoff from coastal development, both exert increasing pressures on coastal coral reefs. The objective of this study was to resolve the question of whether coastal eutrophication may protect corals from thermal stress by improving their nutritional status, or rather diminish their thermal tolerance through the synergy of dual stressors. A review of previous studies on the topic of combined trophic status and heat exposure on the thermal tolerance of corals reveals a broad range of outcomes, including synergistic, additive and antagonistic effects. We conducted a 90-day long experiment exposing corals to realistic levels of elevated nutrients and sediments, and heat stress. Colonies of two common scleractinian corals (Acropora millepora and Montipora tuberculosa) were kept in coastal seawater, or coastal seawater that was further organically and nutrient enriched (OE), and/or enriched with nitrate. Batches of OE were created daily, facilitating nutrient uptake, plankton succession and organic enrichment as observed in coastal waters. After 10 days of acclimation, 67% of the colonies had their temperature gradually increased from 27° to 31.2°C. After 3–7 weeks of heat stress, colonies of both species had significantly greater reductions in fluorescence yields and lower survival in OE than without addition of OE. Furthermore, photophysiological recovery was incomplete 31–38 days after ending the heat stress only in the OE treatments. Nitrate alone had no measurable effect on survival, bleaching and recovery in either species. Skeletal growth rates were reduced by 45% in heat-stressed A. millepora and by 24% in OE-exposed M. tuberculosa. We propose a conceptual trophic framework that resolves some of the apparently contradictory outcomes revealed by the review. Our study shows that management actions to reduce coastal eutrophication can improve the resistance and resilience of vulnerable coastal coral reefs to warming temperatures. PMID:23349876
Li, Yun Kai; Gao, Xiao di; Wang, Lin Yu; Fang, Lin
2018-01-01
As the apex predators of the open ocean ecosystems, pelagic sharks play important roles in stabilizing the marine food web through top-down control. Stable isotope analysis is a powerful tool to investigate the feeding ecology. The carbon and nitrogen isotope ratios can be used to trace food source and evaluate the trophic position of marine organisms. In this study, the isotope values of 130 pelagic sharks from 8 species in Central Eastern Pacific were analyzed and their trophic position and niche were calculated to compare the intra/inter-specific resource partitioning in the Central Eastern Pacific ecosystem. The results exhibited significant differences in both carbon and nitrogen isotope values among the shark species. The trophic levels ranged from 4.3 to 5.4 in the Central Eastern Pacific shark community. The trophic niche of blue sharks and shortfin mako sharks showed no overlap with the other shark species, exhibiting unique ecological roles in the open ocean food web. These data highlighted the diverse roles among pelagic sharks, supporting previous findings that this species is not trophically redundant and the trophic niche of pelagic sharks can not be simply replaced by those of other top predator species.
NASA Technical Reports Server (NTRS)
Vandemark, Doug; Salisbury, Joe; Hunt, Chris; McGillis, Wade R.
2004-01-01
We have recently developed the ability to rapidly assess Surface inherent optical properties (IOP), oxygen concentration and pCO2 in estuarine-plume systems using flow-through instrumentation. During the summer of 2004, several estuarine-plume systems were surveyed which include the Pleasant (ME), Penobscot (ME), Kennebec-Androscoggin (ME), Merrimack (NH-MA) and Hudson (NY). Continuous measurements of surface chlorophyll and colored dissolved organic carbon (CDOM) fluorescence, beam attenuation, temperature, salinity, oxygen and pC02 were taken at each system along a salinity gradient from fresh water to near oceanic endmembers. CTD and IOP profiles were also taken at predetermined surface salinity intervals. These were accompanied by discrete determinations of chlorophyll (HPLC and fluorometric), total suspended solids (TSS), dissolved organic carbon (DOC) and alkalinity. IOP data were calibrated using chlorophyll, DOC and TSS data to enable the retrieval of these constituents from IOP data. Considerable differences in the data sets were observed between systems. These ranged from the DOC-enriched, strongly heterotrophic Pleasant River System to the high-chlorophyll autotrophic Merrimack River System. Using pCO2 and oxygen saturation measurements as proxies for water column metabolism, distinct relationships were found between trophic status and inherent optical properties. The nature of these relationships varies between systems and is likely a function of watershed and estuarine attributes including carbon and nutrient loading, in-situ production and related autochthonous inputs of DOC and alkalinity. Our results suggest that IOP data may contain significant information about the trophic status of estuarine and plume systems.
Trophodynamics of some PFCs and BFRs in a western Canadian Arctic marine food web.
Tomy, Gregg T; Pleskach, Kerri; Ferguson, Steve H; Hare, Jonathon; Stern, Gary; Macinnis, Gordia; Marvin, Chris H; Loseto, Lisa
2009-06-01
The trophodynamics of per- and polyfluorinated compounds and bromine-based flame retardants were examined in components of a marine food web from the western Canadian Arctic. The animals studied and their relative trophic status in the food web, established using stable isotopes of nitrogen (delta15N), were beluga (Delphinapterus leucas) > ringed seal (Phoca hispida) > Arctic cod (Boreogadus saida) > Pacific herring (Clupea pallasi) approximately equal to Arctic cisco (Coregonus autumnalis) > pelagic amphipod (Themisto libellula) > Arctic copepod (Calanus hyperboreus). For the brominated diphenyl ethers, the lipid adjusted concentrations of the seven congeners analyzed (Sigma7BDEs: -47, -85, -99, -100, -153, -154, and -209) ranged from 205.4 +/- 52.7 ng/g in Arctic cod to 2.6 +/- 0.4 ng/g in ringed seals. Mean Sigma7BDEs concentrations in Arctic copepods, 16.4 ng/g (n = 2, composite sample), were greater than those in the top trophic level (TL) marine mammals and suggests that (i) Arctic copepods are an important dietary component that delivers BDEs to the food web and (ii) because these compounds are bioaccumulative, metabolism and depletion of BDE congeners in top TL mammals is an important biological process. There were differences in the concentration profiles of the isomers of hexabromocyclododecane (HBCD) in the food web. The most notable difference was observed for beluga, where the alpha-isomer was enriched (accounting for approximately 90% of the SigmaHBCD body burden), relative to its primary prey species, Arctic cod, where the alpha-isomer accounted for only 20% of the SigmaHBCD body burden (beta: 4% and gamma: 78%). For the C8-C11 perfluorinated carboxylic acids, the trophic magnification factors (TMFs) were all greater than unity and increased with increasing carbon chain length. PFOS and its neutral precursor, PFOSA, also had TMF values greater than one. There were also pronounced differences in the PFOSA to PFOS ratio in ringed seal (0.04) and in beluga (1.4) and suggests that, in part, there are differences in the efficacy of biotransforming PFOSA by whale and seal top predators that both preferentially feed on Arctic cod.
NASA Astrophysics Data System (ADS)
López, Nieves; Navarro, Joan; Barría, Claudio; Albo-Puigserver, Marta; Coll, Marta; Palomera, Isabel
2016-06-01
The study of the feeding ecology of marine organisms is crucial to understanding their ecological roles and advancing our knowledge of marine ecosystem functioning. The aim of this study was to analyse the trophic ecology of two demersal predator species, black anglerfish (Lophius budegassa) and white anglerfish (L. piscatorius), in the northwestern Mediterranean Sea. Both species are important in the study area due to their high abundance and economic value, but information about their feeding behaviour is scarce. Here, we described the diet composition and ecological role of these two species, investigating whether trophic segregation exists between them and amongst fish of different sizes. In addition, by using experimental survey data we described the spatial distribution of both species to help us interpret trophic behaviour patterns. We gathered samples of two different sizes (small individuals of a total length <30 cm and large individuals ≥30 cm) of both species and combined stomach content analyses (SCA) and stable isotope analyses (SIA) of nitrogen and carbon with isotopic mixing models. Our results revealed that both anglerfish species are opportunistic predators, showing a diet composed mainly of fishes and, to a lesser extent, of crustaceans, with a small proportion of cephalopods, gastropods, bivalves and echinoderms. We found trophic segregation between the two species and the two sizes, indicating that they feed on different prey, in line with differences in their spatial distribution within the study area. This partial partition of food resources could also be explained by the differences in rhythms of activity that were reported in previous studies. In addition, although both species occupied a high position within the food web, our results showed that white anglerfish individuals and the large-sized fish of both species held higher trophic positions. This study demonstrates the usefulness of complementary approaches for trophic studies and confirms that both anglerfish species play an important role as predators in the northwestern Mediterranean Sea food web.
Potapov, Anton M; Tiunov, Alexei V; Scheu, Stefan
2018-06-19
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13 C as compared to plant litter. This 'detrital shift' likely reflects preferential uptake of 13 C-enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15 N and 13 C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15 N resulting in overlap in isotope ratios between soil-dwelling detritivores and litter-dwelling predators. By contrast, 13 C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non-vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high-rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low-rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high-rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above- and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil-dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs. © 2018 Cambridge Philosophical Society.
Pałasz, Ewelina; Bąk, Agnieszka; Gąsiorowska, Anna; Niewiadomska, Grażyna
2017-01-04
Glial cells and neurotrophins play an important role in maintaining homeostasis of the CNS. Disturbances of their function can lead to a number of nervous system diseases, including Parkinson's disease (PD). Current clinical studies provide evidence that moderate physical activity adapted to the health status of PD patients can support pharmacological treatment, slow down the onset of motor impairments, and extend the patients period of independence. Physical activity, by stimulating the production and release of endogenous trophic factors, prevents the neurodegeneration of dopaminergic neurons via inhibition of inflammatory processes and the reduction of oxidative stress. The aim of this study is to present the current state of knowledge for the anti-inflammatory and neuroprotective properties of physical activity as a supportive therapy in Parkinson's disease.
Salas-Lopez, Alex; Mickal, Houadria; Menzel, Florian; Orivel, Jérôme
2017-01-01
The diversity and functional identity of organisms are known to be relevant to the maintenance of ecosystem processes but can be variable in different environments. Particularly, it is uncertain whether ecosystem processes are driven by complementary effects or by dominant groups of species. We investigated how community structure (i.e., the diversity and relative abundance of biological entities) explains the community-level contribution of Neotropical ant communities to different ecosystem processes in different environments. Ants were attracted with food resources representing six ant-mediated ecosystem processes in four environments: ground and vegetation strata in cropland and forest habitats. The exploitation frequencies of the baits were used to calculate the taxonomic and trophic structures of ant communities and their contribution to ecosystem processes considered individually or in combination (i.e., multifunctionality). We then investigated whether community structure variables could predict ecosystem processes and whether such relationships were affected by the environment. We found that forests presented a greater biodiversity and trophic complementarity and lower dominance than croplands, but this did not affect ecosystem processes. In contrast, trophic complementarity was greater on the ground than on vegetation and was followed by greater resource exploitation levels. Although ant participation in ecosystem processes can be predicted by means of trophic-based indices, we found that variations in community structure and performance in ecosystem processes were best explained by environment. We conclude that determining the extent to which the dominance and complementarity of communities affect ecosystem processes in different environments requires a better understanding of resource availability to different species.
NASA Astrophysics Data System (ADS)
Lassalle, G.; Chouvelon, T.; Bustamante, P.; Niquil, N.
2014-01-01
Comparing outputs of ecosystem models with estimates derived from experimental and observational approaches is important in creating valuable feedback for model construction, analyses and validation. Stable isotopes and mass-balanced trophic models are well-known and widely used as approximations to describe the structure of food webs, but their consistency has not been properly established as attempts to compare these methods remain scarce. Model construction is a data-consuming step, meaning independent sets for validation are rare. Trophic linkages in the French continental shelf of the Bay of Biscay food webs were recently investigated using both methodologies. Trophic levels for mono-specific compartments representing small pelagic fish and marine mammals and multi-species functional groups corresponding to demersal fish and cephalopods, derived from modelling, were compared with trophic levels calculated from independent carbon and nitrogen isotope ratios. Estimates of the trophic niche width of those species, or groups of species, were compared between these two approaches as well. A significant and close-to-one positive (rSpearman2 = 0.72 , n = 16, p < 0.0001) correlation was found between trophic levels estimated by Ecopath modelling and those derived from isotopic signatures. Differences between estimates were particularly low for mono-specific compartments. No clear relationship existed between indices of trophic niche width derived from both methods. Given the wide recognition of trophic levels as a useful concept in ecosystem-based fisheries management, propositions were made to further combine these two approaches.
Herbivory drives large-scale spatial variation in reef fish trophic interactions
Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R
2014-01-01
Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large-scale pattern; however, it affected the contribution of some groups on a local scale (e.g., large-bodied parrotfish) highlighting the need to incorporate critical functions into conservation strategies. PMID:25512851
Ontogenetic, spatial and temporal variation in trophic level and diet of Chukchi Sea fishes
NASA Astrophysics Data System (ADS)
Marsh, Jennifer M.; Mueter, Franz J.; Iken, Katrin; Danielson, Seth
2017-01-01
Climate warming and increasing development are expected to alter the ecosystem of the Chukchi Sea, including its fish communities. As a component of the Arctic Ecosystem Integrated Survey, we assessed the ontogenetic, spatial and temporal variability of the trophic level and diet of key fish species in the Chukchi Sea using N and C stable isotopes. During August and September of 2012 and 2013, 16 common fish species and two primary, invertebrate consumers were collected from surface, midwater and bottom trawls within the eastern Chukchi Sea. Linear mixed-effects models were used to detect possible variation in the relationship between body length and either δ13C or δ15N values among water masses and years for 13 fish species with an emphasis on Arctic cod (Boreogadus saida). We also examined the fish community isotopic niche space, trophic redundancy, and trophic separation within each water mass as measures of resiliency of the fish food web. Ontogenetic shifts in trophic level and diet were observed for most species and these changes tended to vary by water mass. As they increased in length, most fish species relied more on benthic prey with the exception of three forage fish species (walleye pollock, Gadus chalcogrammus, capelin, Mallotus villosus, and Pacific sandlance, Ammodytes hexapterus). Species that exhibited interannual differences in diet and trophic level were feeding at lower trophic levels and consumed a more pelagic diet in 2012 when zooplankton densities were higher. Fish communities occupied different isotopic niche spaces depending on water mass association. In more northerly Arctic waters, the fish community occupied the smallest isotopic niche space and relied heavily on a limited range of intermediate δ13C prey, whereas in warmer, nutrient-rich Bering Chukchi Summer Water, pelagic prey was important. In the warmest, Pacific-derived coastal water, fish consumed both benthic and pelagic prey. Examining how spatial gradients in trophic position are linked to environmental drivers can provide insight into potential fish community shifts with a changing climate.
Lowery, Erin D.; Beauchamp, David A.
2015-01-01
Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.
Ricca, Mark A.; Miles, A. Keith; Anthony, Robert G.
2008-01-01
Persistent organochlorine compounds and mercury (Hg) have been detected in numerous coastal organisms of the Aleutian archipelago of Alaska, yet sources of these contaminants are unclear. We collected glaucous-winged gulls, northern fulmars, and tufted puffins along a natural longitudinal gradient across the western and central Aleutian Islands (Buldir, Kiska, Amchitka, Adak), and an additional 8 seabird species representing different foraging and migratory guilds from Buldir Island to evaluate: 1) point source input from former military installations, 2) westward increases in contaminant concentrations suggestive of distant source input, and 3) effects of trophic status (δ15N) and carbon source (δ13C) on contaminant accumulation. Concentrations of Σ polychlorinated biphenyls (PCBs) and most chlorinated pesticides in glaucous-winged gulls consistently exhibited a ‘U’-shaped pattern of high levels at Buldir and the east side of Adak and low levels at Kiska and Amchitka. In contrast, concentrations of Σ PCBs and chlorinated pesticides in northern fulmars and tufted puffins did not differ among islands. Hg concentrations increased westward in glaucous-winged gulls and were highest in northern fulmars from Buldir. Among species collected only at Buldir, Hg was notably elevated in pelagic cormorants, and relatively high Σ PCBs were detected in black-legged kittiwakes. Concentrations of Σ PCBs, dichlorodiphenyldichloroethylene (p,p′ DDE), and Hg were positively correlated with δ15N across all seabird species, indicating biomagnification across trophic levels. The east side of Adak Island (a former military installation) was a likely point source of Σ PCBs and p,p′ DDE, particularly in glaucous-winged gulls. In contrast, elevated levels of these contaminants and Hg, along with PCB congener and chlorinated pesticide compositional patterns detected at Buldir Island indicated exposure from distant sources influenced by a combination of atmospheric–oceanic processes and the migratory movements of seabirds.
Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation
Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.
2009-01-01
Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.
Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems
Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise
2015-01-01
In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.
Ornelas-García, Claudia Patricia; Córdova-Tapia, Fernando; Zambrano, Luis; Bermúdez-González, María Pamela; Mercado-Silva, Norman; Mendoza-Garfias, Berenit; Bautista, Amando
2018-05-01
The association of morphological divergence with ecological segregation among closely related species could be considered as a signal of divergent selection in ecological speciation processes. Environmental signals such as diet can trigger phenotypic evolution, making polymorphic species valuable systems for studying the evolution of trophic-related traits. The main goal of this study was to analyze the association between morphological differences in trophic-related traits and ecological divergence in two sympatric species, Astyanax aeneus and A. caballeroi, inhabiting Lake Catemaco, Mexico. The trophic differences of a total of 70 individuals (35 A. aeneus and 35 A. caballeroi ) were examined using stable isotopes and gut content analysis; a subset of the sample was used to characterize six trophic and six ecomorphological variables. In our results, we recovered significant differences between both species in the values of stable isotopes, with higher values of δ 15 N for A. caballeroi than for A. aeneus . Gut content results were consistent with the stable isotope data, with a higher proportion of invertebrates in A. caballeroi (a consumption of invertebrates ten times higher than that of A. aeneus , which in turn consumed three times more vegetal material than A. caballeroi ). Finally, we found significant relationship between ecomorphology and stable isotopes ( r = .24, p < .01), hence, head length, preorbital length, eye diameter, and δ 15 N were all positively correlated; these characteristics correspond to A. caballeroi . While longer gut and gill rakers, deeper bodies, and vegetal material consumption were positively correlated and corresponded to A. aeneus . Our results are consistent with the hypothesis that morphological divergence in trophic-related traits could be associated with niche partitioning, allowing the coexistence of closely related species and reducing interspecific competition.
Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage
Pearman, Peter B; Lavergne, Sébastien; Roquet, Cristina; Wüest, Rafael; Zimmermann, Niklaus E; Thuiller, Wilfried
2014-01-01
Aim The origins of ecological diversity in continental species assemblages have long intrigued biogeographers. We apply phylogenetic comparative analyses to disentangle the evolutionary patterns of ecological niches in an assemblage of European birds. We compare phylogenetic patterns in trophic, habitat and climatic niche components. Location Europe. Methods From polygon range maps and handbook data we inferred the realized climatic, habitat and trophic niches of 405 species of breeding birds in Europe. We fitted Pagel's lambda and kappa statistics, and conducted analyses of disparity through time to compare temporal patterns of ecological diversification on all niche axes together. All observed patterns were compared with expectations based on neutral (Brownian) models of niche divergence. Results In this assemblage, patterns of phylogenetic signal (lambda) suggest that related species resemble each other less in regard to their climatic and habitat niches than they do in their trophic niche. Kappa estimates show that ecological divergence does not gradually increase with divergence time, and that this punctualism is stronger in climatic niches than in habitat and trophic niches. Observed niche disparity markedly exceeds levels expected from a Brownian model of ecological diversification, thus providing no evidence for past phylogenetic niche conservatism in these multivariate niches. Levels of multivariate disparity are greatest for the climatic niche, followed by disparity of the habitat and the trophic niches. Main conclusions Phylogenetic patterns in the three niche components differ within this avian assemblage. Variation in evolutionary rates (degree of gradualism, constancy through the tree) and/or non-random macroecological sampling probably lead here to differences in the phylogenetic structure of niche components. Testing hypotheses on the origin of these patterns requires more complete phylogenetic trees of the birds, and extended ecological data on different niche components for all bird species. PMID:24790525
NASA Astrophysics Data System (ADS)
Henschke, Natasha; Everett, Jason D.; Suthers, Iain M.; Smith, James A.; Hunt, Brian P. V.; Doblin, Martina A.; Taylor, Matthew D.
2015-10-01
The trophic relationships of 21 species from an oceanic zooplankton community were studied using stable isotopes of carbon and nitrogen. Zooplankton and suspended particulate organic matter (POM) were sampled in three different water types in the western Tasman Sea: inner shelf (IS), a cold core eddy (CCE) and a warm core eddy (WCE). δ15N values ranged from 3.9‰ for the parasitic copepod Sapphirina augusta to 10.2‰ for the euphausiid, Euphausia spinifera. δ13C varied from -22.6 to -19.4‰ as a result of the copepod Euchirella curticauda and E. spinifera. The isotopic composition of POM varied significantly among water types; as did the trophic enrichment of zooplankton over POM, with the lowest enrichment in the recently upwelled IS water type (0.5‰) compared to the warm core eddy (1.6‰) and cold core eddy (2.7‰). The WCE was an oligotrophic environment and was associated with an increased trophic level for omnivorous zooplankton (copepods and euphausiids) to a similar level as carnivorous zooplankton (chaetognaths). Therefore carnivory in zooplankton can increase in response to lower abundance and reduced diversity in their phytoplankton and protozoan prey. Trophic niche width comparisons across three zooplankton species: the salp Thalia democratica, the copepod Eucalanus elongatus and the euphausiid Thysanoessa gregaria, indicated that both niche partitioning and competition can occur within the zooplankton community. We have shown that trophic relationships among the zooplankton are dynamic and respond to different water types. The changes to the zooplankton isotopic niche, however, were still highly variable as result of oceanographic variation within water types.
NASA Astrophysics Data System (ADS)
Travers, M.; Watermeyer, K.; Shannon, L. J.; Shin, Y.-J.
2010-01-01
Ecosystem models provide a platform allowing exploration into the possible responses of marine food webs to fishing pressure and various potential management decisions. In this study we investigate the particular effects of overfishing on the structure and function of the southern Benguela food web, using two models with different underlying assumptions: the spatialized, size-based individual-based model, OSMOSE, and the trophic mass-balance model, Ecopath with Ecosim (EwE). Starting from the same reference state of the southern Benguela upwelling ecosystem during the 1990s, we compare the response of the food web to scenarios of overfishing using these two modelling approaches. A scenario of increased fishing mortality is applied to two distinct functional groups: i) two species of Cape hake, representing important target predatory fish, and ii) the forage species anchovy, sardine and redeye. In these simulations, fishing mortality on the selected functional groups is doubled for 10 years, followed by 10 years at the initial fishing mortality. We compare the food web states before the increase of fishing mortality, after 10 years of overfishing and after a further 10 years during which fishing was returned to initial levels. In order to compare the simulated food web structures with the reference state, and between the two modelling approaches, we use a set of trophic indicators: the mean trophic level of the community and in catches, the trophic pyramid (biomass per discrete trophic level), and the predatory/forage fish biomass ratio. OSMOSE and EwE present globally similar results for the trophic functioning of the ecosystem under fishing pressure: the biomass of targeted species decreases whereas that of their potential competitors increases. The reaction of distant species is more diverse, depending on the feeding links between the compartments. The mean trophic level of the community does not vary enough to be used for assessing ecosystem impacts of fishing, and the mean trophic level in the catch displays a surprising increase due to the short period of overfishing. The trophic pyramids behave in an unexpected way compared to trophic control theory, because at least two food chains with different dynamics are intertwined within the food web. We emphasize the importance of biomass information at the species level for interpreting dynamics in aggregated indicators, and we highlight the importance of competitive groups when looking at ecosystem functioning under fishing disturbance. Finally, we discuss the results within the scope of differences between models, in terms of the way they are formulated, spatial dimensions, predation formulations and the representation of fish life cycles.
Phenological sensitivity to climate across taxa and trophic levels.
Thackeray, Stephen J; Henrys, Peter A; Hemming, Deborah; Bell, James R; Botham, Marc S; Burthe, Sarah; Helaouet, Pierre; Johns, David G; Jones, Ian D; Leech, David I; Mackay, Eleanor B; Massimino, Dario; Atkinson, Sian; Bacon, Philip J; Brereton, Tom M; Carvalho, Laurence; Clutton-Brock, Tim H; Duck, Callan; Edwards, Martin; Elliott, J Malcolm; Hall, Stephen J G; Harrington, Richard; Pearce-Higgins, James W; Høye, Toke T; Kruuk, Loeske E B; Pemberton, Josephine M; Sparks, Tim H; Thompson, Paul M; White, Ian; Winfield, Ian J; Wanless, Sarah
2016-07-14
Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).
Petermann, Jana S; Farjalla, Vinicius F; Jocque, Merlijn; Kratina, Pavel; MacDonald, A Andrew M; Marino, Nicholas A C; De Omena, Paula M; Piccoli, Gustavo C O; Richardson, Barbara A; Richardson, Michael J; Romero, Gustavo Q; Videla, Martin; Srivastava, Diane S
2015-02-01
Local habitat size has been shown to influence colonization and extinction processes of species in patchy environments. However, species differ in body size, mobility, and trophic level, and may not respond in the same way to habitat size. Thus far, we have a limited understanding of how habitat size influences the structure of multitrophic communities and to what extent the effects may be generalizable over a broad geographic range. Here, we used water-filled bromeliads of different sizes as a natural model system to examine the effects of habitat size on the trophic structure of their inhabiting invertebrate communities. We collected composition and biomass data from 651 bromeliad communities from eight sites across Central and South America differing in environmental conditions, species pools, and the presence of large-bodied odonate predators. We found that trophic structure in the communities changed dramatically with changes in habitat (bromeliad) size. Detritivore : resource ratios showed a consistent negative relationship with habitat size across sites. In contrast, changes in predator: detritivore (prey) ratios depended on the presence of odonates as dominant predators in the regional pool. At sites without odonates, predator: detritivore biomass ratios decreased with increasing habitat size. At sites with odonates, we found odonates to be more frequently present in large than in small bromeliads, and predator: detritivore biomass ratios increased with increasing habitat size to the point where some trophic pyramids became inverted. Our results show that the distribution of biomass amongst food-web levels depends strongly on habitat size, largely irrespective of geographic differences in environmental conditions or detritivore species compositions. However, the presence of large-bodied predators in the regional species pool may fundamentally alter this relationship between habitat size and trophic structure. We conclude that taking into account the response and multitrophic effects of dominant, mobile species may be critical when predicting changes in community structure along a habitat-size gradient.
NASA Astrophysics Data System (ADS)
Careddu, Giulio; Calizza, Edoardo; Costantini, Maria Letizia; Rossi, Loreto
2017-05-01
Knowledge of the trophic ecology of predators is key to understanding how they affect food web structure and ecosystem functioning. The harbour crab Liocarcinus depurator (L.) (Brachyura: Portunidae) is one of the most abundant decapod species in soft-bottom areas of the Mediterranean Sea and northeast Atlantic Ocean. It is both a common prey and predator of commercial and non-commercial marine species and its predation pressure appears to have little effect on the subtidal community assemblage. However, there are few studies of its diet and little is known about its role in mediating energy flows in marine ecosystems. In this study, carbon (δ13C) and nitrogen (δ15N) stable isotope analysis (SIA) and Bayesian analytical tools were used to characterise the trophic niche of L. depurator and to quantify the most important prey supporting this species under various environmental conditions. Specimens of L. depurator, their potential prey and basal resources were collected from two different subtidal areas of the Gulf of Gaeta, one affected by human activities (north side) and the other seasonally influenced by freshwater inputs originating from the River Garigliano (south side). While there were differences between the two sampling areas in terms of the abundance and δ15N and δ13C values of the macrobenthic prey community, no differences in the δ15N values and trophic position of L. depurator were observed. Specifically, Bayesian mixing models showed Polychaeta Errantia as the main source of crab diets in both areas. The observed differences in the δ13C values and the analysis of trophic pathways also indicate that the terrestrial organic matter originating from the discharge of the River Garigliano was integrated along the food web up to L. depurator. Although this species is usually considered an opportunistic feeder, it appears to be highly selective and its trophic habits did not influence food web topology, which in contrast was found to be strongly influenced by River Garigliano discharge.
Zheng, Guomao; Wan, Yi; Shi, Sainan; Zhao, Haoqi; Gao, Shixiong; Zhang, Shiyi; An, Lihui; Zhang, Zhaobin
2018-04-17
Despite the increasing use and discharge of novel brominated flame retardants, little information is available about their trophodynamics in the aquatic food web, and their subsequent relationships to compound metabolism. In this study, concentrations of 2,4,6-tribromophenyl allyl ether (ATE), 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromo- o-chlorotoluene (TBCT), pentabromobenzyl acrylate (PBBA), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH), and decabromodiphenyl ethane (DBDPE) were measured in 17 species, including plankton, invertebrates, and fish from Lake Taihu, South China. Trophodynamics of the compounds were assessed, and metabolic rates were measured in the liver microsomes of crucian (trophic level [TL]: 2.93), catfish (TL: 3.86), and yellow-head catfish (TL: 4.3). Significantly positive relationships were found between trophic levels and lipid-normalized concentrations of ATE, BTBPE, and TBPH; their trophic magnification factors (TMFs) were 2.85, 2.83, and 2.42, respectively. Consistently, the three chemicals were resistant to metabolism in all fish microsomes. No significant relationship was observed for βTBECH ( p = 0.116), and DBDPE underwent trophic dilution in the food web (TMFs = 0.37, p = 0.021). Moreover, these two chemicals showed steady metabolism with incubation time in all fish microsomes. TBCT and PBBA exhibited significant trophic magnifications in the food web (TMF = 4.56, 2.01). Though different metabolic rates were observed for the two compounds among the tested fish species, TBCT and PBBA both showed metabolic resistance in high-trophic-level fish. These results indicated that metabolism of organisms at high trophic levels plays an important role in the assessment of trophic magnification potentials of these flame retardant chemicals.
Evans, Heather M.; Bryant, Grady L.
2016-01-01
The cell wall β-glucans of Pneumocystis cysts have been shown to stimulate immune responses in lung epithelial cells, dendritic cells, and alveolar macrophages. Little is known about how the trophic life forms, which do not have a fungal cell wall, interact with these innate immune cells. Here we report differences in the responses of both neonatal and adult mice to the trophic and cystic life cycle stages of Pneumocystis murina. The adult and neonatal immune responses to infection with Pneumocystis murina trophic forms were less robust than the responses to infection with a physiologically normal mixture of cysts and trophic forms. Cysts promoted the recruitment of nonresident innate immune cells and T and B cells into the lungs. Cysts, but not trophic forms, stimulated increased concentrations of the cytokine gamma interferon (IFN-γ) in the alveolar spaces and an increase in the percentage of CD4+ T cells that produce IFN-γ. In vitro, bone marrow-derived dendritic cells (BMDCs) stimulated with cysts produced the proinflammatory cytokines interleukin 1β (IL-1β) and IL-6. In contrast, trophic forms suppressed antigen presentation to CD4+ T cells, as well as the β-glucan-, lipoteichoic acid (LTA)-, and lipopolysaccharide (LPS)-induced production of interleukin 1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) by BMDCs. The negative effects of trophic forms were not due to ligation of mannose receptor. Our results indicate that optimal innate and adaptive immune responses to Pneumocystis species are dependent on stimulation with the cyst life cycle stage. Conversely, trophic forms suppress β-glucan-induced proinflammatory responses in vitro, suggesting that the trophic forms dampen cyst-induced inflammation in vivo. PMID:27572330
The U.S. Geological Survey Great Lakes Science Center has developed a plan to implement revision of its annual fish community survey of Lake Superior. The primary objective of the revision is improvement of the sampling design to be more representative of the Lake Superior fish c...
Are all temperate lakes eutrophying in a warmer world?
NASA Astrophysics Data System (ADS)
Paltsev, A.; Creed, I. F.
2017-12-01
Freshwater lakes are at risk of eutrophication due to climate change and intensification of human activities on the planet. In relatively undisturbed areas of the temperate forest biome, lakes are "sentinels" of the effects of rising temperatures. We hypothesise that rising temperatures are driving a shift from nutrient-poor oligotrophic states to nutrient-rich eutrophic states. To test this hypothesis, we examined a time series of satellite based chlorophyll-a (a proxy of algal biomass) of 12,000+ lakes over 30 years in the Canadian portion of the Laurentian Great Lakes basin. From the time series, non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals was used as an indicator of lake stability. Four classes of lake stability were identified: (1) stable (SD is consistently low); (2) destabilizing (SD increases over time); (3) unstable (SD is consistently high); and (4) stabilizing lakes (SD decreases over time). Stable lakes were either oligotrophic or eutrophic indicating the presence of two stable states in the region. Destabilizing lakes were shifting from oligotrophic to lakes with a higher trophic status (indicating eutrophication), unstable lakes were mostly mesotrophic, and stabilizing lakes were shifting from eutrophic to the lakes with lower trophic status (indicating oligotrophication). In contrast to common expectations, while many lakes (2142) were shifting from oligotrophic to eutrophic states, more lakes (3199) were showing the opposite trend and shifting from eutrophic to oligotrophic states. This finding reveals a complexity of lake responses to rising temperatures and the need to improve understanding of why some lakes shift while others do not. Future work is focused on exploring the interactive effects of global, regional, and local drivers of lake trophic states.
NASA Astrophysics Data System (ADS)
Zagars, Matiss; Ikejima, Kou; Kasai, Akihide; Arai, Nobuaki; Tongnunui, Prasert
2013-03-01
Mangrove production has been found to make a major contribution to the nutrition of a fish community in the Sikao Creek mangrove estuary, Southwest Thailand. Gut content analysis and carbon and nitrogen stable isotope analysis were used to assess fish feeding behavior and trophic reliance on different primary producers (mangrove leaves, phytoplankton, microphytobenthos) focusing on 19 dominant fish species, and 4 potential fish food items. Cluster analysis identified 5 trophic groups and the IsoSource model indicated the importance of primary food sources in trophically supporting different fish species. Most analyzed fish species had carbon isotopic signatures that were more depleted than those reported in previous studies, and the IsoSource model indicated that mangrove leaves were an important primary food source. This may be a specific characteristic of our study site, which is not well connected to other productive coastal habitats that provide alternative primary food sources. Thus we suggest that food chains in trophically isolated mangrove estuaries of southwest Thailand are more dependent on mangrove tree production. We also assessed the relationship of individuality in fish feeding habits and variability of δ13C values and showed that several mangrove fish species have significant intraspecies variability in feeding habits, possibly due to high intraspecific competition.
Magalhães, Catarina; Stevens, Mark I; Cary, S Craig; Ball, Becky A; Storey, Bryan C; Wall, Diana H; Türk, Roman; Ruprecht, Ulrike
2012-01-01
Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the geological morphology and soil geochemistry in the remote Transantarctic Mountains (Darwin Mountains, 80°S). We examined the distribution and diversity of biota (bacteria, cyanobacteria, lichens, algae, invertebrates) with respect to elevation, age of glacial drift sheets, and soil physicochemistry. Results showed an abiotic spatial gradient with respect to the diversity of the organisms across different trophic levels. More complex communities, in terms of trophic level diversity, were related to the weakly developed younger drifts (Hatherton and Britannia) with higher soil C/N ratio and lower total soluble salts content (thus lower conductivity). Our results indicate that an increase of ion concentration from younger to older drift regions drives a succession of complex to more simple communities, in terms of number of trophic levels and diversity within each group of organisms analysed. This study revealed that integrating diversity across multi-trophic levels of biotic communities with abiotic spatial heterogeneity and geological history is fundamental to understand environmental constraints influencing biological distribution in Antarctic soil ecosystems.
DMS emissions from Sphagnum-dominated wetlands
NASA Technical Reports Server (NTRS)
Hines, Mark E.; Demello, William Zamboni; Bayley, Suzanne E.
1992-01-01
The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S was investigated by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in trophic status. Experiments were conducted in wetlands in New Hampshire (NH), and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods, and GC with flame photometric detection. Emissions of DMS dominated fluxes. In NH, DMS fluxes were greater than 1.6 micromol/m(sup -2)d(sup -1) in early summer, 1989 when temperatures were warm and the water table was approximately 5 cm below the surface. These rates are several-fold faster than average oceanic rates of DMS emission. A rapid drop in the water table resulted in a 6-fold decrease in DMS emissions in late July. In 1990, a new beaver dam kept water levels above the surface and S emissions were much lower than during 1989. The elimination of the beaver and a drop in the water table in August produced a rapid increase in S gas emissions. Emissions of DMS were highest in the most oligotrophic areas. Mire 239 (ELA) was irrigated with sulfuric and nitric acids to simulate acid rain. S emissions were determined before and after an acidification event in control and experimental areas in both minerotrophic and oligotrophic regions. Emissions of DMS were higher in the acidified areas compared to unacidified controls. Emissions were also much higher in the oligotrophic regions compared to the minerotrophic ones. Despite the wide differences in S gas fluxes (20-fold), it was difficult to determine whether acidification or variations in trophic status was not responsible for differences in S gas emissions. DMS emitted into the atmosphere was not derived from the water table but originated in peat in the unsaturated zone.
Varela, José L; Rojo-Nieto, Elisa; Sorell, Joan M; Medina, Antonio
2018-08-01
Stable isotope analysis (δ 13 C and δ 15 N from liver and muscle) was used to assess trophic relationships between Atlantic bluefin tuna (ABFT) (Thunnus thynnus) and striped dolphin (SC) (Stenella coeruleoalba) in the Strait of Gibraltar (SoG). δ 15 N values from ABFT muscle and liver tissues were significantly different from those of dolphin samples, but no for δ 13 C values. Diet estimation by MixSIAR models from muscle and liver revealed that ABFT fed mainly on squids (Todaropsis eblanae and Illex coindetii). The shrimp Pasiphaea sp. was estimated to be the most important prey-species in the diet of SC. Trophic positions estimated from muscle and liver isotopic data suggested that ABFT occupy a higher trophic level than SC. Estimations of isotopic niche, as measured by the standard ellipse area, indicated that ABFT show a broader trophic niche than SC; furthermore, SEAc did not show trophic overlap between both predators. The results of this study suggest that resource partitioning occurs between ABFT and SC in the SoG ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McCarthy, Matthew D.; Benner, Ronald; Lee, Cindy; Fogel, Marilyn L.
2007-10-01
Bulk nitrogen (N) isotope signatures have long been used to investigate organic N source and food web structure in aquatic ecosystems. This paper explores the use of compound-specific δ 15N patterns of amino acids (δ 15N-AA) as a new tool to examine source and processing history in non-living marine organic matter. We measured δ 15N-AA distributions in plankton tows, sinking particulate organic matter (POM), and ultrafiltered dissolved organic matter (UDOM) in the central Pacific Ocean. δ 15N-AA patterns in eukaryotic algae and mixed plankton tows closely resemble those previously reported in culture. δ 15N differences between individual amino acids (AA) strongly suggest that the sharply divergent δ 15N enrichment for different AA with trophic transfer, as first reported by [McClelland, J.W. and Montoya, J.P. (2002) Trophic relationships and the nitrogen isotopic composition of amino acids. Ecology83, 2173-2180], is a general phenomenon. In addition, differences in δ 15N of individual AA indicative of trophic transfers are clearly preserved in sinking POM, along with additional changes that may indicate subsequent microbial reworking after incorporation into particles. We propose two internally normalized δ 15N proxies that track heterotrophic processes in detrital organic matter. Both are based on isotopic signatures in multiple AA, chosen to minimize potential problems associated with any single compound in degraded materials. A trophic level indicator (ΔTr) is derived from the δ 15N difference between selected groups of AA based on their relative enrichment with trophic transfer. We propose that a corresponding measure of the variance within a sub-group of AA (designated Σ V) may indicate total AA resynthesis, and be strongly tied to heterotrophic microbial reworking in detrital materials. Together, we hypothesize that ΔTr and Σ V define a two dimensional trophic "space", which may simultaneously express relative extent of eukaryotic and bacterial heterotrophic processing. In the equatorial Pacific, ΔTr indicates an average of 1.5-2 trophic transfers between phytoplankton and sinking POM at all depths and locations. The Σ V parameter suggests that substantial variation may exist in bacterial heterotrophic processing between differing regions and time periods. In dissolved material δ 15N-AA patterns appear unrelated to those in POM. In contrast to POM, δ 15N-AA signatures in UDOM show no clear changes with depth, and suggest that dissolved AA preserved throughout the oceanic water column have undergone few, if any, trophic transfers. Together these data suggest a sharp divide between processing histories, and possibly sources, of particulate vs. dissolved AA.
Schauer, Michael; Kamenik, Christian; Hahn, Martin W
2005-10-01
Members of the monophyletic SOL cluster are large filamentous bacteria inhabiting the pelagic zone of many freshwater habitats. The abundances of SOL bacteria and compositions of SOL communities in samples from 115 freshwater ecosystems around the globe were determined by fluorescence in situ hybridization with cluster- and subcluster-specific oligonucleotide probes. The vast majority (73%) of sampled ecosystems harbored SOL bacteria, and all three previously described SOL subclusters (LD2, HAL, and GKS2-217) were detected. The morphometric and chemicophysical parameters and trophic statuses of ecosystems were related to the occurrence and subcluster-specific composition of SOL bacteria by multivariate statistical methods. SOL bacteria did not occur in acidic lakes (pH < 6), and their abundance was negatively related to high trophy and pH. The subcluster-specific variation in the compositions of SOL communities could be related to the pH, electrical conductivity, altitude, and trophic status of ecosystems. All three known SOL subclusters differed in respect to their tolerated ranges of pH and conductivity. Complete niche separation was observed between the vicarious subclusters GKS2-217 and LD2; the former occurred in soft-water lakes, whereas the latter was found in a broad range of hard-water habitats. The third subgroup (HAL) showed a wide environmental tolerance and was usually found sympatrically with the LD2 or GKS2-217 subcluster. Ecological differentiation of SOL bacteria at the subcluster level was most probably driven by differential adaptation to water chemistry. The distribution of the two vicarious taxa seems to be predominantly controlled by the geological backgrounds of the catchment areas of the habitats.
Villaescusa, Juan A; Casamayor, Emilio O; Rochera, Carlos; Velázquez, David; Chicote, Alvaro; Quesada, Antonio; Camacho, Antonio
2010-06-01
Seven maritime Antarctic lakes located on Byers Peninsula (Livingston Island, South Shetland Islands) were surveyed to determine the relationship between planktonic bacterial community composition and environmental features. Specifically, the extent to which factors other than low temperature determine the composition of bacterioplankton assemblages of maritime Antarctic lakes was evaluated. Both deep and shallow lakes in the central plateau of the Peninsula, as well as a coastal lake, were studied in order to fully account for the environmental heterogeneity of the Peninsula's lakes. The results showed that shallow coastal lakes display eutrophic conditions, mainly due to the influence of marine animals, whereas plateau lakes are generally deeper and most are oligotrophic, with very limited inputs of nutrients and organic matter. Meso-eutrophic shallow lakes are also present on the Peninsula; they contain microbial mats and a higher trophic status because of the biologically mediated active nutrient release from the sediments. Diversity studies of the lakes' planktonic bacterial communities using molecular techniques showed that bacterial diversity is lower in eutrophic than in oligotrophic lakes. The former also differed in community composition with respect to dominant taxa. Multivariate statistical analyses of environmental data yielded the same clustering of lakes as obtained based on the DGGE band pattern after DNA extraction and amplification of 16S rRNA gene fragments. Thus, even in extremely cold lakes, the bacterial community composition parallels other environmental factors, such as those related to trophic status. This correspondence is not only mediated by the influence of marine fauna but also by processes including sediment and ice melting dynamics. The bacterial community can therefore be considered to be equally representative as environmental abiotic variables in demonstrating the environmental heterogeneity among maritime Antarctic lakes.
Morales, Jenny; García-Alzate, Carlos A
2016-06-01
Ecological studies of species, such as the stomach content analysis, allow us to recognize different trophic groups, the importance of trophic levels and the interrelationships among species and other members of the community. In this investigation, we studied food habits, feeding variation and trophic relationships of the fishes present in streams of the Corral de San Luis drainage, Tubará, Atlántico Department, a part of the lower Magdalena River Basin in Colombian Caribbean. Fish samples of Awaous banana, Agonostomus monticola, Andinoacara latifrons, Hyphessobrycon proteus, Poecilia gillii, Gobiomorus dormitor and Synbranchus marmoratus were obtained using a seine (2x5 m, mesh 0.5 cm), from November 2012 to October 2013. To analyze their stomach contents, we used numeric (% N), volumetric (% V) and frequency of occurrence (% FO) methods, an emptiness coefficient (C.V), index of food item importance (I.A). Besides, physical and chemical habitat parameters were recorded on site. Information obtained was processed using multivariate statistical analysis, ecological indices, and null models: canonical correspondence analysis (CCA), principal component analysis (PCA), trophic niche amplitude (Shannon-Weaver H´) and trophic overlap (Morisita-Horn). We observed significant differences on food resources consumption (K-W= 20.86; p<0.05) among the studied species. They were classified according to their food habits as omnivores with a tendency towards insectivory (A. monticola H´0.60; A. latifrons H´0.43), herbivores with a tendency towards the consumption of algae (A. banana H´0.50; P. gillii H´0.54) and carnivores with a tendency towards insectivory (H. proteus H´0.23); benthic invertebrates and microalgae were found the most important food sources. A total of 65 food items were identified in this study: 21 for A. banana (2 unique, 19 shared), 40 for A. monticola (21 unique, 19 shared), 19 for A. latifrons (5 unique, 14 shared), 6 for H. proteus (1 unique, 5 shared) and P. gillii with 28 (4 unique, 24 shared). The canonical correspondence analysis showed that water conductivity, salinity and pH were the variables that directly influenced fish community structure at the sampled sites. The null model analyses showed that the group of fishes was significantly segregated (p= 0.001) along the trophic axis, with respect to shared food items, and that the segregation was not influenced or generated by competition. The Morisita-Horn index showed false trophic overlap (similarity of about 80 %) between A. banana and P. gillii. The first component of the PCA analysis was explained mainly by phytoplankton, and component two was correlated with items of animal origin. The fishes associated with PC1 were P. gillii and A. banana, with high ingestion values of microalgae. PC2 was explained by A. monticola with high numbers of food items of animal origin. The group of fishes studied behaved as an assemblage; given that the trophic interrelationships showed false trophic overlap, and that they did not exclude one another from the ecosystems, but instead, used different food resources and different physical spaces within their habitat.
NASA Astrophysics Data System (ADS)
Decima, M.; Landry, M. R.; Bradley, C. J.; Fogel, M. L.
2016-02-01
Food-web studies within marine environments are increasingly reliant upon results from compound-specific isotope analysis of amino acids (CSIA-AA). The approach is advantageous because it allows consumer trophic positions to be estimated without sampling the dynamic primary producers. The baseline signal in the source AA phenylalanine is preserved, and a constant enrichment in glutamic acid at each trophic step is assumed, regardless of consumer type or diet. However, a number of recent studies challenge the assumption of universal and invariant isotopic fractionation of glutamic acid for all trophic levels, as well as its specific applicability to the main grazers in the ocean: the protistan microzooplankton. We present results from both laboratory and field studies that further explore this issue. Experiments include six 2-stage chemostats, using two different microzooplankton-phytoplankton pairs and one copepod-phytoplankton pair, and one 3-stage experiment using a copepod-microzooplankton-phytoplankton chain. We confirm previous observations of negligible fractionation of glutamic acid in protistan consumers when nutrients are limiting. In contrast, a consistent trophic enrichment effect was observed for alanine, with increasing δ15N values by trophic level for both metazoan and protistan consumers. A re-analysis of published CSIA-AA data of zooplankton species show that an index using alanine and phenylalanine gives trophic level estimates closer to expected given current understanding of the linkages within microbial food webs. Our results examine the details of isotopic fractionation of alanine within defined food chains and generally support its potential use as a trophic level indicator that includes the protistan contribution to mesozooplankton diet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laegreid, M.; Alstad, J.; Klaveness, D.
The alga Selenastrum capricornutum Printz is used to investigate the potential of natural lake water to reduce cadmium toxicity. The two lakes involved differ in trophic status and in concentration and composition of dissolved organic matter, one being a typical dystrophic bog lake, the other a less humus influenced, eutrophic lake. In the dystrophic lake, the toxic effect is determined mainly by the free cadmium activity. In the eutrophic, less humus influenced lake, however, the toxic effect shows considerable seasonal variations with a toxicity far exceeding what would be expected according to the estimated free ion activity during summer. Itmore » is hypothesized that qualitative changes in the composition of the dissolved organic matter during the production period are responsible for this effect.« less
Sánchez, Regina; Ochoa, Abigahil; Mendoza, Angélica
2013-06-01
D Menidia humboldtiana, a native species of Mexico, is a common inhabitant of local reservoirs. It represents a highly appreciated fish of economic importance in the central part of the country because of its delicate flavor. Trophic behavior of this species is important to understand the relationships with other fish species in reservoirs. With the aim to study this specific topic, the trophic spectrum, selectivity coefficient and overlap, were determined among different sizes of the Silverside M humboldtiana. For this, both zooplankton and fish samples were taken during four different seasons of 1995. Zooplankton samples were taken through a mesh (125 micron), and all organisms were identified to generic level. Fish were captured and grouped into standard length intervals per season, and the stomach contents were obtained and analyzed. Trophic interactions included the stomach contents analysis (Laevastu method), the coefficient of selection (Chesson) and the trophic overlap (Morisita index modified by Horn) between sizes. A total of 14 zooplankton genera were identified, of which Bosmina was the most abundant (29 625 ind./10 L) followed by Cyclops (9496 ind./10 L), during the spring. Small size fishes (1-4.9cm) consumed high percentages of Cyclops in the spring (61.24%) and winter (69.82%). Ceriodaphnia was consumed by fish sizes of 3-10.9cm (72.41%) and 13-14.9cm (95.5%) during the summer; while in autumn, small sizes (1-4.9cm) ingested Mastigodiaptomus and Ceriodaphnia; Daphnia and Bosmina were consumed by fishes of 5-8.9cm and the biggest sizes (9-14.9 cm) feed on Ceriodaphnia. M. humboldtiana makes a selective predation by the genera Ceriodaphnia, Daphnia, Mastigodiaptomus, Bosmina and Cyclops, depending on the size length interval. The trophic overlap was very marked among all sizes on spring, autumn and winter, unlike in summer fish of 1-2.9 and 11-12.9 cm did not show overlap with other length intervals. M humboldtiana is a zooplanktivore species, which performs a selective predation and a marked trophic overlap between the different fish sizes.
Ecosystem structure and resilience—A comparison between the Norwegian and the Barents Sea
NASA Astrophysics Data System (ADS)
Yaragina, Natalia A.; Dolgov, Andrey V.
2009-10-01
Abundance and biomass of the most important fish species inhabited the Barents and Norwegian Sea ecosystems have shown considerable fluctuations over the last decades. These fluctuations connected with fishing pressure resulted in the trophic structure alterations of the ecosystems. Resilience and other theoretical concepts (top-down, wasp-waste and bottom-up control, trophic cascades) were viewed to examine different response of the Norwegian and Barents Sea ecosystems on disturbing forces. Differences in the trophic structure and functioning of Barents and Norwegian Sea ecosystems as well as factors that might influence the resilience of the marine ecosystems, including climatic fluctuation, variations in prey and predator species abundance, alterations in their regular migrations, and fishing exploitation were also considered. The trophic chain lengths in the deep Norwegian Sea are shorter, and energy transfer occurs mainly through the pelagic fish/invertebrates communities. The shallow Barents Sea is characterized by longer trophic chains, providing more energy flow into their benthic assemblages. The trophic mechanisms observed in the Norwegian Sea food webs dominated by the top-down control, i.e. the past removal of Norwegian Spring spawning followed by zooplankton development and intrusion of blue whiting and mackerel into the area. The wasp-waist response is shown to be the most pronounced effect in the Barents Sea, related to the position of capelin in the ecosystem; large fluctuations in the capelin abundance have been strengthened by intensive fishery. Closer links between ecological and fisheries sciences are needed to elaborate and test various food webs and multispecies models available.
Beaudry, Marina C; Hussey, Nigel E; McMeans, Bailey C; McLeod, Anne M; Wintner, Sabine P; Cliff, Geremy; Dudley, Sheldon F J; Fisk, Aaron T
2015-09-01
Trophic position and body mass are traits commonly used to predict organochlorine burdens. Sharks, however, have a variety of feeding and life history strategies and metabolize lipid uniquely. Because of this diversity, and the lipid-association of organochlorines, the dynamics of organochlorine accumulation in sharks may be predicted ineffectively by stable isotope-derived trophic position and body mass, as is typical for other taxa. The present study compared ontogenetic organochlorine profiles in the dusky shark (Carcharhinus obscurus) and white shark (Carcharodon carcharias), which differ in metabolic thermoregulation and trophic position throughout their ontogeny. Although greater organochlorine concentrations were observed in the larger bodied and higher trophic position white shark (e.g., p,p'-dichlorodiphenyldichloroethylene: 20.2 ± 2.7 ng/g vs 9.3 ± 2.2 ng/g in the dusky shark), slopes of growth-dilution corrected concentrations with age were equal to those of the dusky shark. Similar ontogenetic trophic position increases in both species, less frequent white shark seal predation than previously assumed, or inaccurate species-specific growth parameters are possible explanations. Inshore habitat use (indicated by δ(13)C values) and mass were important predictors in white and dusky sharks, respectively, of both overall compound profiles and select organochlorine concentrations. The present study clarified understanding of trophic position and body mass as reliable predictors of interspecific organochlorine accumulation in sharks, whereas regional endothermy and diet shifting were shown to have less impact on overall rates of accumulation. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Ros, Macarena; Tierno de Figueroa, José Manuel; Guerra-García, José Manuel; Navarro-Barranco, Carlos; Lacerda, Mariana Baptista; Vázquez-Luis, Maite; Masunari, Setuko
2014-02-01
The trophic ecology of non-native species is a key aspect to understand their invasion success and the community effects. Despite the important role of caprellid amphipods as trophic intermediates between primary producers and higher levels of marine food webs, there is very little information on their feeding habits. This is the first comprehensive study on the trophic strategies of two co-occurring introduced caprellids in the Spanish coasts: Caprella scaura and Paracaprella pusilla. The diet of 446 specimens of C. scaura and 230 of P. pusilla was analyzed to investigate whether there were differences in the feeding habits in relation to habitat characteristics (natural vs artificial hard substrata), type of host substrata (bryozoans and hydroids) and native vs introduced distribution ranges (Brazil vs Spain). Results revealed differences in diet preferences of the two species that have important implications for their trophic behaviour and showed a limited food overlap, which may favour their coexistence in introduced areas. In general terms, P. pusilla is a predator species, showing preference by crustacean prey in all of its life stages, while C. scaura feeds mainly on detritus. Although no sex-related diet shifts were observed in either of the species, evidence of ontogenetic variation in diet of C. scaura was found, with juveniles feeding on more amount of prey than adults. No diet differences were found between native and introduced populations within the same habitat type. However, P. pusilla exhibited a shift in its diet when different habitats were compared in the same distribution area, and C. scaura showed a flexible feeding behaviour between different host substrata in the same habitat type. This study shows that habitat characteristics at different scales can have greater influence on the feeding ecology of exotic species than different distribution ranges, and support the hypothesis that a switch between feeding strategies depending on habitat characteristics could favour invasion success.
Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Qin, Boqiang; Yao, Xiaolong; Zhang, Yibo
2017-12-26
Chromophoric dissolved organic matter (CDOM) is an important optically active substance in aquatic environments and plays a key role in light attenuation and in the carbon, nitrogen and phosphorus biogeochemical cycles. Although the optical properties, abundance, sources, cycles, compositions and remote sensing estimations of CDOM have been widely reported in different aquatic environments, little is known about the optical properties and composition changes in CDOM along trophic gradients. Therefore, we collected 821 samples from 22 lakes along a trophic gradient (oligotrophic to eutrophic) in China from 2004 to 2015 and determined the CDOM spectral absorption and nutrient concentrations. The total nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chla) concentrations and the Secchi disk depth (SDD) ranged from 0.02 to 24.75 mg/L, 0.002-3.471 mg/L, 0.03-882.66 μg/L, and 0.05-17.30 m, respectively. The trophic state index (TSI) ranged from 1.55 to 98.91 and covered different trophic states, from oligotrophic to hyper-eutrophic. The CDOM absorption coefficient at 254 nm (a(254)) ranged from 1.68 to 92.65 m -1 . Additionally, the CDOM sources and composition parameters, including the spectral slope and relative molecular size value, exhibited a substantial variability from the oligotrophic level to other trophic levels. The natural logarithm value of the CDOM absorption, lna(254), is highly linearly correlated with the TSI (r 2 = 0.92, p < .001, n = 821). Oligotrophic lakes are distinguished by a(254)<4 m -1 , and mesotrophic and eutrophic lakes are classified as 4 ≤ a(254)≤10 and a(254)>10 m -1 , respectively. The results suggested that the CDOM absorption coefficient a(254) might be a more sensitive single indicator of the trophic state than TN, TP, Chla and SDD. Therefore, we proposed a CDOM absorption coefficient and determined the threshold for defining the trophic state of a lake. Several advantages of measuring and estimating CDOM, including rapid experimental measurements, potential in situ optical sensor measurements and large-spatial-scale remote sensing estimations, make it superior to traditional TSI techniques for the rapid monitoring and assessment of lake trophic states. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sabater, Sergi; Elosegi, Arturo; Acuña, Vicenç; Basaguren, Ana; Muñoz, Isabel; Pozo, Jesús
2008-02-15
Climate affects many aspects of stream ecosystems, although the presence of riparian forests can buffer differences between streams in different climatic settings. In an attempt to measure the importance of climate, we compared the seasonal patterns of hydrology, input and storage of allochthonous organic matter, and the trophic structure (abundance of algae and macroinvertebrates) in two temperate forested streams, one Mediterranean, the other Atlantic. Hydrology played a leading role in shaping the trophic structure of both streams. Frequency and timing of floods and droughts determined benthic detritus storage. Inputs and retention of allochthonous organic matter were higher in the Atlantic stream, whereas chlorophyll concentration was lower because of stronger light limitation. Instead, light availability and scour of particulate organic matter during late winter favoured higher chlorophyll concentration in the Mediterranean stream. As a result, in the Mediterranean stream grazers were more prevalent and consumers showed a higher dependence on autotrophic materials. On the other hand, the Atlantic stream depended on allochthonous materials throughout the whole study period. The overall trophic structure showed much stronger seasonality in the Mediterranean than in the Atlantic stream, this being the most distinctive difference between these two types of temperate streams. The different patterns observed in the two streams are an indication that climatic differences should be incorporated in proper measurements of ecosystem health.
Consequences of omnivory for trophic interactions on a salt marsh shrub.
Ho, Chuan-Kai; Pennings, Steven C
2008-06-01
Although omnivory is common in nature, its impact on trophic interactions is variable. Predicting the food web consequences of omnivory is complicated because omnivores can simultaneously produce conflicting direct and indirect effects on the same species or trophic level. We conducted field and laboratory experiments testing the top-down impacts of an omnivorous salt marsh crab, Armases cinereum, on the shrub Iva frutescens and its herbivorous and predatory arthropod fauna. Armases is a "true omnivore," consuming both Iva and arthropods living on Iva. We hypothesized that Armases would benefit Iva through a top-down trophic cascade, and that this benefit would be stronger than the direct negative effect of Armases on Iva. A field experiment on Sapelo Island, Georgia (USA), supported this hypothesis. Although Armases suppressed predators (spiders), it also suppressed herbivores (aphids), and benefited Iva, increasing leaf number, and reducing the proportion of dead shoots. A one-month laboratory experiment, focusing on the most common species in the food web, also supported this hypothesis. Armases strongly suppressed aphids and consumed fewer Iva leaves if aphids were available as an alternate diet. Armases gained more body mass if they could feed on aphids as well as on Iva. Although Armases had a negative effect on Iva when aphids were not present, Armases benefited Iva if aphids were present, because Armases controlled aphid populations, releasing Iva from herbivory. Although Armases is an omnivore, it produced strong top-down forces and a trophic cascade because it fed preferentially on herbivores rather than plants when both were available. At the same time, the ability of Armases to subsist on a plant diet allows it to persist in the food web when animal food is not available. Because omnivores feed on multiple trophic levels, their effects on food webs may differ from those predicted by standard trophic models that assume that each species feeds only on a single trophic level. To better understand the complexity of real food webs, the variable feeding habits and feeding preferences of different omnivorous species must be taken into consideration.
Landsat analysis of lake quality
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Fisher, L. T.; Holmquist, K. W.
1979-01-01
The trophic status of a number of inland lakes in Wisconsin has been assessed. The feasibility of using both photographic and digital representations of Landsat imagery was investigated during the lake classification project. The result of the investigation has been a semi-automatic data acquisition and handling system which, in conjunction with an analytical categorization scheme, can be used to classify all the significant lakes in the state.
Acosta-Pachón, Tatiana A; Ortega-García, Sofia; Graham, Brittany
2015-09-30
Billfishes, such as marlin, are top pelagic predators that play an important role in maintaining the stability of marine food webs. Notwithstanding the importance of these species, there remain gaps in our knowledge on their movements, foraging, and trophic status in the early stage of life. We measured the δ(13)C and δ(15)N values in each annual growth band deposited in the dorsal spine from striped marlin caught off Cabo San Lucas, Mexico, to produce retrospective isotopic profiles that would enable us to detect any significant isotopic changes across development. The samples were analyzed using an elemental analyzer coupled to an isotope ratio mass spectrometer. There was no relationship between the size of striped marlin and the δ(15) N values. Differences in δ(15)N mean values across different age classes were not significant and the variation in δ(15)N values through the marlins' life cycle was less than 2‰. However, the mean δ(15)N values between individuals varied by up to 6‰. The δ(13)C values increased as a function of age, and the mean δ(13)C values varied significantly between age classes. Fin spines can be used to construct retrospective isotopic histories for the investigation of trophic dynamics and migratory histories in billfishes, for which population dynamics are often poorly known. Copyright © 2015 John Wiley & Sons, Ltd.
Correlated Biogeographic Variation of Magnesium across Trophic Levels in a Terrestrial Food Chain
Sun, Xiao; Kay, Adam D.; Kang, Hongzhang; Small, Gaston E.; Liu, Guofang; Zhou, Xuan; Yin, Shan; Liu, Chunjiang
2013-01-01
Using samples from eastern China (c. 25 – 41° N and 99 – 123° E) and from a common garden experiment, we investigate how Mg concentration varies with climate across multiple trophic levels. In soils, plant tissue (Oriental oak leaves and acorns), and a specialist acorn predator (the weevil Curculio davidi), Mg concentration increased significantly with different slopes from south to north, and generally decreased with both mean annual temperature (MAT) and precipitation (MAP). In addition, soil, leaf, acorn and weevil Mg showed different strengths of association and sensitivity with climatic factors, suggesting that distinct mechanisms may drive patterns of Mg variation at different trophic levels. Our findings provide a first step toward determining whether anticipated changes in temperature and precipitation due to climate change will have important consequences for the bioavailability and distribution of Mg in food chain. PMID:24223807
Change in N and P Concentrations in Antarctic Streams as a Response to Change in Penguin Populations
NASA Astrophysics Data System (ADS)
Nędzarek, Arkadiusz
2010-01-01
This study presents changes in the concentrations of nitrogen and phosphorus in two streams in Western Antarctica (Admiralty Bay, King George Island, South Shetlands) that differ in trophic status. The results suggest a decline in concentrations of the determined forms of N and P between 2001 and 2005. The decrease ranged from 9.3% for reactive phosphorus to 73.2% for ammonium-nitrogen. Such inferred declines in N and P concentrations are considered to reflect reduced deposition on land of organic matter brought in from the seas by the penguins nesting in the area. The ultimate cause of this is in turn the steady decline in abundance that is being noted for these penguins.
NASA Astrophysics Data System (ADS)
Williams, Rebecca L.; Wakeham, Stuart; McKinney, Rick; Wishner, Karen F.
2014-08-01
The unique physical and biogeochemical characteristics of oxygen minimum zones (OMZs) influence plankton ecology, including zooplankton trophic webs. Using carbon and nitrogen stable isotopes, this study examined zooplankton trophic webs in the Eastern Tropical North Pacific (ETNP) OMZ. δ13C values were used to indicate zooplankton food sources, and δ15N values were used to indicate zooplankton trophic position and nitrogen cycle pathways. Vertically stratified MOCNESS net tows collected zooplankton from 0 to 1000 m at two stations along a north-south transect in the ETNP during 2007 and 2008, the Tehuantepec Bowl and the Costa Rica Dome. Zooplankton samples were separated into four size fractions for stable isotope analyses. Particulate organic matter (POM), assumed to represent a primary food source for zooplankton, was collected with McLane large volume in situ pumps. The isotopic composition and trophic ecology of the ETNP zooplankton community had distinct spatial and vertical patterns influenced by OMZ structure. The most pronounced vertical isotope gradients occurred near the upper and lower OMZ oxyclines. Material with lower δ13C values was apparently produced in the upper oxycline, possibly by chemoautotrophic microbes, and was subsequently consumed by zooplankton. Between-station differences in δ15N values suggested that different nitrogen cycle processes were dominant at the two locations, which influenced the isotopic characteristics of the zooplankton community. A strong depth gradient in zooplankton δ15N values in the lower oxycline suggested an increase in trophic cycling just below the core of the OMZ. Shallow POM (0-110 m) was likely the most important food source for mixed layer, upper oxycline, and OMZ core zooplankton, while deep POM was an important food source for most lower oxycline zooplankton (except for samples dominated by the seasonally migrating copepod Eucalanus inermis). There was no consistent isotopic progression among the four zooplankton size classes for these bulk mixed assemblage samples, implying overlapping trophic webs within the total size range considered.
Zhao, Tian; Villéger, Sébastien; Lek, Sovan; Cucherousset, Julien
2014-01-01
Investigations on the functional niche of organisms have primarily focused on differences among species and tended to neglect the potential effects of intraspecific variability despite the fact that its potential ecological and evolutionary importance is now widely recognized. In this study, we measured the distribution of functional traits in an entire population of largemouth bass (Micropterus salmoides) to quantify the magnitude of intraspecific variability in functional traits and niche (size, position, and overlap) between age classes. Stable isotope analyses (δ13C and δ15N) were also used to determine the association between individual trophic ecology and intraspecific functional trait variability. We observed that functional traits were highly variable within the population (mean coefficient variation: 15.62% ± 1.78% SE) and predominantly different between age classes. In addition, functional and trophic niche overlap between age classes was extremely low. Differences in functional niche between age classes were associated with strong changes in trophic niche occurring during ontogeny while, within age classes, differences among individuals were likely driven by trophic specialization. Each age class filled only a small portion of the total functional niche of the population and age classes occupied distinct portions in the functional space, indicating the existence of ontogenetic specialists with different functional roles within the population. The high amplitude of intraspecific variability in functional traits and differences in functional niche position among individuals reported here supports the recent claims for an individual-based approach in functional ecology. PMID:25558359
Monson, Daniel H.; Bowen, Lizabeth
2015-01-01
Overall, a variety of indices used to measure population status throughout the sea otter’s range have provided insights for understanding the mechanisms driving the trajectory of various sea otter populations, which a single index could not, and we suggest using multiple methods to measure a population’s status at multiple spatial and temporal scales. The work described here also illustrates the usefulness of long-term data sets and/or approaches that can be used to assess population status retrospectively, providing information otherwise not available. While not all systems will be as amenable to using all the approaches presented here, we expect innovative researchers could adapt analogous multi-scale methods to a broad range of habitats and species including apex predators occupying the top trophic levels, which are often of conservation concern.
Magalhães, Catarina; Stevens, Mark I.; Cary, S. Craig; Ball, Becky A.; Storey, Bryan C.; Wall, Diana H.; Türk, Roman; Ruprecht, Ulrike
2012-01-01
Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the geological morphology and soil geochemistry in the remote Transantarctic Mountains (Darwin Mountains, 80°S). We examined the distribution and diversity of biota (bacteria, cyanobacteria, lichens, algae, invertebrates) with respect to elevation, age of glacial drift sheets, and soil physicochemistry. Results showed an abiotic spatial gradient with respect to the diversity of the organisms across different trophic levels. More complex communities, in terms of trophic level diversity, were related to the weakly developed younger drifts (Hatherton and Britannia) with higher soil C/N ratio and lower total soluble salts content (thus lower conductivity). Our results indicate that an increase of ion concentration from younger to older drift regions drives a succession of complex to more simple communities, in terms of number of trophic levels and diversity within each group of organisms analysed. This study revealed that integrating diversity across multi-trophic levels of biotic communities with abiotic spatial heterogeneity and geological history is fundamental to understand environmental constraints influencing biological distribution in Antarctic soil ecosystems. PMID:23028563
Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B; Zimmermann, Niklaus E; Salamin, Nicolas
2012-09-22
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.
Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B.; Zimmermann, Niklaus E.; Salamin, Nicolas
2012-01-01
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs. PMID:22719034
Lakeman-Fraser, Poppy; Ewers, Robert M.
2014-01-01
Gaining insight into the impact of anthropogenic change on ecosystems requires investigation into interdependencies between multiple drivers of ecological change and multiple biotic responses. Global environmental change drivers can act simultaneously to impact the abundance and diversity of biota, but few studies have also measured the impact across trophic levels. We firstly investigated whether climate (using temperature differences across a latitudinal gradient as a surrogate) interacts with habitat fragmentation (measured according to fragment area and distance to habitat edges) to impact a New Zealand tri-trophic food chain (plant, herbivore and natural enemy). Secondly, we examined how these interactions might differentially impact both the density and biotic processes of species at each of the three trophic levels. We found evidence to suggest that these drivers act non-additively across trophic levels. The nature of these interactions however varied: location synergistically interacted with fragmentation measures to exacerbate the detrimental effects on consumer density; and antagonistically interacted to ameliorate the impact on plant density and on the interactions between trophic levels (herbivory and parasitoid attack rate). Our findings indicate that the ecological consequences of multiple global change drivers are strongly interactive and vary according to the trophic level studied and whether density or ecological processes are investigated. PMID:24898374
Diversity has stronger top-down than bottom-up effects on decomposition.
Srivastava, Diane S; Cardinale, Bradley J; Downing, Amy L; Duffy, J Emmett; Jouseau, Claire; Sankaran, Mahesh; Wright, Justin P
2009-04-01
The flow of energy and nutrients between trophic levels is affected by both the trophic structure of food webs and the diversity of species within trophic levels. However, the combined effects of trophic structure and diversity on trophic transfer remain largely unknown. Here we ask whether changes in consumer diversity have the same effect as changes in resource diversity on rates of resource consumption. We address this question by focusing on consumer-resource dynamics for the ecologically important process of decomposition. This study compares the top-down effect of consumer (detritivore) diversity on the consumption of dead organic matter (decomposition) with the bottom-up effect of resource (detrital) diversity, based on a compilation of 90 observations reported in 28 studies. We did not detect effects of either detrital or consumer diversity on measures of detrital standing stock, and effects on consumer standing stock were equivocal. However, our meta-analysis indicates that reductions in detritivore diversity result in significant reductions in the rate of decomposition. Detrital diversity has both positive and negative effects on decomposition, with no overall trend. This difference between top-down and bottom-up effects of diversity is robust to different effect size metrics and could not be explained by differences in experimental systems or designs between detritivore and detrital manipulations. Our finding that resource diversity has no net effect on consumption in "brown" (detritus-consumer) food webs contrasts with previous findings from "green" (plant-herbivore) food webs and suggests that effects of plant diversity on consumption may fundamentally change after plant death.
Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade.
Ford, Adam T; Goheen, Jacob R; Augustine, David J; Kinnaird, Margaret F; O'Brien, Timothy G; Palmer, Todd M; Pringle, Robert M; Woodroffe, Rosie
2015-10-01
Increasingly, the restoration of large carnivores is proposed as a means through which to restore community structure and ecosystem function via trophic cascades. After a decades-long absence, African wild dogs (Lycaon pictus) recolonized the Laikipia Plateau in central Kenya, which we hypothesized would trigger a trophic cascade via suppression of their primary prey (dik-dik, Madoqua guentheri) and the subsequent relaxation of browsing pressure on trees. We tested the trophic-cascade hypothesis using (1) a 14-year time series of wild dog abundance; (2) surveys of dik-dik population densities conducted before and after wild dog recovery; and (3) two separate, replicated, herbivore-exclusion experiments initiated before and after wild dog recovery. The dik-dik population declined by 33% following wild dog recovery, which is best explained by wild dog predation. Dik-dik browsing suppressed tree abundance, but the strength of suppression did not differ between before and after wild dog recovery. Despite strong, top-down limitation between adjacent trophic levels (carnivore-herbivore and herbivore-plant), a trophic cascade did not occur, possibly because of a time lag in indirect effects, variation in rainfall, and foraging by herbivores other than dik-dik. Our ability to reject the trophic-cascade hypothesis required two important approaches: (1) temporally replicated herbivore exclusions, separately established before and after wild dog recovery; and (2) evaluating multiple drivers of variation in the abundance of dik-dik and trees. While the restoration of large carnivores is often a conservation priority, our results suggest that indirect effects are mediated by ecological context, and that trophic cascades are not a foregone conclusion of such recoveries.
Ecosystem regime shifts disrupt trophic structure.
Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K
2018-01-01
Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability. © 2017 by the Ecological Society of America.
Törnroos, Anna; Nordström, Marie C; Bonsdorff, Erik
2013-01-01
Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.
NASA Astrophysics Data System (ADS)
Winkler, G.; Cabrol, J.; Sage, R.; Nozais, C.; Tremblay, R.; Starr, M.
2016-02-01
The lower St. Lawrence estuary (LSLE) is influenced by river discharge and saltwater inflow. Together with arctic water inflow and ice cover in winter a strong stratification occurs resulting in a cold intermediate layer (CIL) from spring to autumn. This stratification provides thermal habitats. Here, we focus on two krill species Thysanoessa raschii and Meganyctiphanes norvegica that aggregate in the CIL and the warmer deep water layer, respectively. Both species are known to migrate into the surface layer to feed and thus transfering energy through the food web by linking lower with higher trophic levels. However, their specific feeding biology and trophic interactions are poorly understood. We tested the following hypotheses: (1) the diets vary throughout the season depending on food availability, (2) similar to thermal habitat separation, trophic niche separation between T. raschii and M. norvegica occurs, characterized by herbivory in T. raschii and carnivory in M. norvegica. Trophic position and feeding behavior of theses krill populations were monitored throughout one year 2014-2015 using a stable isotope approach. The two species showed a seasonal shift in their trophic position being on a higher trophic level in summer than in spring and autumn, which did not correspond to phytoplankton or zooplankton availability. Within the trophic space of carbon and nitrogen stable isotopes M. norvegica showed a relatively stable position, whereas T. raschii covered a much larger space throughout the year. M. norvegica was always positioned at a higher trophic level than T. raschii. Results of a stable isotope mixing model (SIAR) revealed 50% phytoplankton and 50% copepods in the diet of M. norvegica, while T. raschii showed a higher proportion of ca. 70% phytoplankton in its diet. Both species exploited several trophic levels, but in different proportions, thereby minimizing diet overlap, suggesting a further mechanism to enhance stable co-existence of these krill species in the highly stratified LSLE.
Amino Acid Isotope Incorporation and Enrichment Factors in Pacific Bluefin Tuna, Thunnus orientalis
Bradley, Christina J.; Madigan, Daniel J.; Block, Barbara A.; Popp, Brian N.
2014-01-01
Compound specific isotopic analysis (CSIA) of amino acids has received increasing attention in ecological studies in recent years due to its ability to evaluate trophic positions and elucidate baseline nutrient sources. However, the incorporation rates of individual amino acids into protein and specific trophic discrimination factors (TDFs) are largely unknown, limiting the application of CSIA to trophic studies. We determined nitrogen turnover rates of individual amino acids from a long-term (up to 1054 days) laboratory experiment using captive Pacific bluefin tuna, Thunnus orientalis (PBFT), a large endothermic pelagic fish fed a controlled diet. Small PBFT (white muscle δ15N∼11.5‰) were collected in San Diego, CA and transported to the Tuna Research and Conservation Center (TRCC) where they were fed a controlled diet with high δ15N values relative to PBFT white muscle (diet δ15N∼13.9‰). Half-lives of trophic and source amino acids ranged from 28.6 to 305.4 days and 67.5 to 136.2 days, respectively. The TDF for the weighted mean values of amino acids was 3.0 ‰, ranging from 2.2 to 15.8 ‰ for individual combinations of 6 trophic and 5 source amino acids. Changes in the δ15N values of amino acids across trophic levels are the underlying drivers of the trophic 15N enrichment. Nearly all amino acid δ15N values in this experiment changed exponentially and could be described by a single compartment model. Significant differences in the rate of 15N incorporation were found for source and trophic amino acids both within and between these groups. Varying half-lives of individual amino acids can be applied to migratory organisms as isotopic clocks, determining the length of time an individual has spent in a new environment. These results greatly enhance the ability to interpret compound specific isotope analyses in trophic studies. PMID:24465724
NASA Technical Reports Server (NTRS)
Meinert, D. L.; Malone, D. L.; Voss, A. W. (Principal Investigator); Scarpace, F. L.
1980-01-01
LANDSAT MSS data from four different dates were extracted from computer tapes using a semiautomated digital data handling and analysis system. Reservoirs were extracted from the surrounding land matrix by using a Band 7 density level slice of 3; and descriptive statistics to include mean, variance, and ratio between bands for each of the four bands were calculated. Significant correlations ( 0.80) were identified between the MSS statistics and many trophic indicators from ground truth water quality data collected at 35 reservoirs in the greater Tennessee Valley region. Regression models were developed which gave significant estimates of each reservoir's trophic state as defined by its trophic state index and explained in all four LANDSAT frames at least 85 percent of the variability in the data. To illustrate the spatial variations within reservoirs as well as the relative variations between reservoirs, a table look up elliptical classification was used in conjunction with each reservoir's trophic state index to classify each reservoir on a pixel by pixel basis and produce color coded thematic representations.
NASA Technical Reports Server (NTRS)
Rogers, R. H.; Smith, V. E.; Scherz, J. P.; Woelkerling, W. J.; Adams, M. S.; Gannon, J. E. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A step-by-step procedure for establishing and monitoring the trophic status of inland lakes with the use of LANDSAT data, surface sampling, laboratory analysis, and aerial observations were demonstrated. The biomass was related to chlorophyll-a concentrations, water clarity, and trophic state. A procedure was developed for using surface sampling, LANDSAT data, and linear regression equations to produce a color-coded image of large lakes showing the distribution and concentrations of water quality parameters, causing eutrophication as well as parameters which indicate its effects. Cover categories readily derived from LANDSAT were those for which loading rates were available and were known to have major effects on the quality and quantity of runoff and lake eutrophication. Urban, barren land, cropland, grassland, forest, wetlands, and water were included.
Cutting, Kyle A.; Cross, Wyatt F.; Anderson, Michelle L.; Reese, Elizabeth G.
2016-01-01
Introduction of non-native species is a leading threat to global aquatic biodiversity. Competition between native and non-native species is often influenced by changes in suitable habitat or food availability. We investigated diet breadth and degree of trophic niche overlap for a fish assemblage of native and non-native species inhabiting a shallow, high elevation lake system. This assemblage includes one of the last remaining post-glacial endemic populations of adfluvial Arctic grayling (Thymallus arcticus) in the contiguous United States. We examined gut contents and stable isotope values of fish taxa in fall and spring to assess both short- (days) and long-term (few months) changes in trophic niches. We incorporate these short-term (gut contents) data into a secondary isotope analysis using a Bayesian statistical framework to estimate long-term trophic niche. Our data suggest that in this system, Arctic grayling share both a short- and long-term common food base with non-native trout of cutthroat x rainbow hybrid species (Oncorhynchus clarkia bouvieri x Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). In addition, trophic niche overlap among Arctic grayling, hybrid trout, and brook trout appeared to be stronger during spring than fall. In contrast, the native species of Arctic grayling, burbot (Lota lota), and suckers (Catostomus spp.) largely consumed different prey items. Our results suggest strong seasonal differences in trophic niche overlap among Arctic grayling and non-native trout, with a potential for greatest competition for food during spring. We suggest that conservation of endemic Arctic grayling in high-elevation lakes will require recognition of the potential for coexisting non-native taxa to impede well-intentioned recovery efforts. PMID:27205901
NASA Astrophysics Data System (ADS)
Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd
2017-12-01
Specific mechanisms, driving trophic interactions within the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure of zooplankton and micronekton above and around Ampère and Senghor, two shallow seamounts in the subtropical and tropical Eastern Atlantic, and over the adjacent abyssal plains. For the identification of food sources and trophic positions stable isotope ratios (δ13C and δ15N) were used. δ13C ranged from -24.7‰ to -15.0‰ and δ15N covered a total range of 0.9-15.9‰. Based on epipelagic particulate organic matter, zooplankton and micronekton usually occupied the 1st-3rd trophic level, including herbivorous, omnivorous and carnivorous taxa. δ13C and δ15N values were generally lower in zooplankton and micronekton of the subtropical waters as compared to the tropical region, due to the differing nutrient availability and phytoplankton communities. Correlations between δ13C and δ15N values of particulate organic matter, zooplankton, micronekton and benthopelagic fishes suggest a linear food chain based on a single energy source from primary production for Ampère Seamount, but no evidence was found for an autochthonus seamount production as compared to the open ocean reference site. Between Senghor Seamount and the open ocean δ13C signatures indicate that hydrodynamic effects at seamounts may modify the energy supply at times, but evidence for a seamount effect on the trophic structure of the pelagic communities was weak, which supports the assumption that seamount communities rely to a large extent on advected food sources.
Subcellular controls of mercury trophic transfer to a marine fish.
Dang, Fei; Wang, Wen-Xiong
2010-09-15
Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies. 2010 Elsevier B.V. All rights reserved.
Justus, B.G.
2005-01-01
Little Rock Air Force Base is the largest C-130 base in the Air Force and is the only C-130 training base in the Department of Defense. Little Rock Air Force Base is located in central Arkansas near the eastern edge of the Ouachita Mountains, near the Mississippi Alluvial Plain, and within the Arkansas Valley Ecoregion. Habitats include upland pine forests, upland deciduous forest, broad-leaved deciduous swamps, and two small freshwater lakes?Big Base Lake and Little Base Lake. Big Base and Little Base Lakes are used primarily for recreational fishing by base personnel and the civilian public. Under normal (rainfall) conditions, Big Base Lake has a surface area of approximately 39 acres while surface area of Little Base Lake is approximately 1 acre. Little Rock Air Force Base personnel are responsible for managing the fishery in these two lakes and since 1999 have started a nutrient enhancement program that involves sporadically adding fertilizer to Big Base Lake. As a means of determining the relations between water quality and primary production, Little Rock Air Force Base personnel have a need for biological (phytoplankton density), chemical (dissolved-oxygen and nutrient concentrations), and physical (water temperature and light transparency) data. To address these monitoring needs, the U.S. Geological Survey in cooperation with Little Rock Air Force Base, conducted a study to collect and analyze biological, chemical, and physical data. The U.S. Geological Survey sampled water quality in Big Base Lake and Little Base Lake on nine occasions from July 2003 through June 2004. Because of the difference in size, two sampling sites were established on Big Base Lake, while only one site was established on Little Base Lake. Lake profile data for Big Base Lake indicate that low dissolved- oxygen concentrations in the hypolimnion probably constrain most fish species to the upper 5-6 feet of depth during the summer stratification period. Dissolved-oxygen concentrations in Big Base Lake below a depth of 6 feet generally were less than 3 milligrams per liter for summer months that were sampled in 2003 and 2004. Some evidence indicates that phosphorus was limiting primary production during the sampling period. Dissolved nitrogen constituents frequently were detected in water samples (indicating availability) but dissolved phosphorus constituents-orthophosphorus and dissolved phosphorus-were not detected in any samples collected at the two lakes. The absence of dissolved phosphorus constituents and presence of total phosphorus indicates that all phosphorus was bound to suspended material (sediment particles and living organisms). Nitrogen:phosphorus ratios on most sampling occasions tended to be slightly higher than 16:1, which can be interpreted as further indication that phosphorus could be limiting primary production to some extent. An alkalinity of 20 milligrams per liter of calcium carbonate or higher is recommended to optimize nutrient availability and buffering capacity in recreational fishing lakes and ponds. Median values for water samples collected at the three sites ranged from 12-13 milligrams per liter of calcium carbonate. Alkalinities ranged from 9-60 milligrams per liter of calcium carbonate, but 13 of 17 samples collected at the deepest site had alkalinities less than 20 milligrams per liter of calcium carbonate. Results of three trophic-state indices, and a general trophic classification, as well as abundant green algae and large growths of blue-green algae indicate that Big Base Lake may be eutrophic. Trophic-state index values calculated using total phosphorus, chlorophyll a, and Secchi disc measurements from both lakes generally exceeded criteria at which lakes are considered to be eutrophic. A second method of determining lake trophic status-the general trophic classification-categorized the three sampling sites as mesotrophic or eutrophic. Green algae were found to be in abundance throughout mos
Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier
2008-01-01
The diversity of small eukaryotes (0.2 to 5 μm) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types. PMID:18359836
Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier
2008-05-01
The diversity of small eukaryotes (0.2 to 5 mum) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types.
Inferring species roles in metacommunity structure from species co-occurrence networks
Borthagaray, Ana I.; Arim, Matías; Marquet, Pablo A.
2014-01-01
A long-standing question in community ecology is what determines the identity of species that coexist across local communities or metacommunity assembly. To shed light upon this question, we used a network approach to analyse the drivers of species co-occurrence patterns. In particular, we focus on the potential roles of body size and trophic status as determinants of metacommunity cohesion because of their link to resource use and dispersal ability. Small-sized individuals at low-trophic levels, and with limited dispersal potential, are expected to form highly linked subgroups, whereas large-size individuals at higher trophic positions, and with good dispersal potential, will foster the spatial coupling of subgroups and the cohesion of the whole metacommunity. By using modularity analysis, we identified six modules of species with similar responses to ecological conditions and high co-occurrence across local communities. Most species either co-occur with species from a single module or are connectors of the whole network. Among the latter are carnivorous species of intermediate body size, which by virtue of their high incidence provide connectivity to otherwise isolated communities playing the role of spatial couplers. Our study also demonstrates that the incorporation of network tools to the analysis of metacommunity ecology can help unveil the mechanisms underlying patterns and processes in metacommunity assembly. PMID:25143039
Trophic classification of selected Colorado lakes
NASA Technical Reports Server (NTRS)
Blackwell, R. J.; Boland, D. H. P.
1979-01-01
Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators. Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state.
Predator personality structures prey communities and trophic cascades.
Start, Denon; Gilbert, Benjamin
2017-03-01
Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades. © 2017 John Wiley & Sons Ltd/CNRS.
The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals
NASA Astrophysics Data System (ADS)
Casey, Michelle M.; Post, David M.
2011-05-01
Stable isotope methods are powerful, frequently used tools which allow diet and trophic position reconstruction of organisms and the tracking of energy sources through ecosystems. The majority of ecosystems have multiple food sources which have distinct carbon and nitrogen isotopic signatures despite occupying a single trophic level. This difference in the starting isotopic composition of primary producers sets up an isotopic baseline that needs to be accounted for when calculating diet or trophic position using stable isotopic methods. This is particularly important when comparing animals from different regions or different times. Failure to do so can cause erroneous estimations of diet or trophic level, especially for organisms with mixed diets. The isotopic baseline is known to vary seasonally and in concert with a host of physical and chemical variables such as mean annual rainfall, soil maturity, and soil pH in terrestrial settings and lake size, depth, and distance from shore in aquatic settings. In the fossil record, the presence of shallowing upward suites of rock, or parasequences, will have a considerable impact on the isotopic baseline as basin size, depth and distance from shore change simultaneously with stratigraphic depth. For this reason, each stratigraphic level is likely to need an independent estimation of baseline even within a single outcrop. Very little is known about the scope of millennial or decadal variation in isotopic baseline. Without multi-year data on the nature of isotopic baseline variation, the impacts of time averaging on our ability to resolve trophic relationships in the fossil record will remain unclear. The use of a time averaged baseline will increase the amount of error surrounding diet and trophic position reconstructions. Where signal to noise ratios are low, due to low end member disparity (e.g., aquatic systems), or where the observed isotopic shift is small (≤ 1‰) the error introduced by time averaging may severely inhibit the scope of one's interpretations and limit the types of questions one can reliably answer. In situations with strong signal strength, resulting from high amounts of end member disparity (e.g., terrestrial settings), this additional error maybe surmountable. Baseline variation that is adequately characterized can be dealt with by applying multiple end-member mixing models.
NASA Astrophysics Data System (ADS)
Materatski, Patrick; Vafeiadou, Anna-Maria; Ribeiro, Rui; Moens, Tom; Adão, Helena
2015-12-01
Benthic nematodes are widely regarded as very suitable organisms to monitor potential ecological effects of natural and anthropogenic disturbances in aquatic ecosystems. During 2008, the seagrass beds of Zostera noltii located in the Mira estuary (SW Portugal) disappeared completely. However, during 2009, slight symptoms of natural recovery were observed, a process which has since evolved intermittently. This study aims to investigate changes in patterns of nematode density, diversity, and trophic composition between two distinct habitat conditions: "before" the collapse of seagrass beds, and during the early recovery "after" the seagrass habitat loss, through the analysis of: i) temporal and spatial distribution patterns of nematode communities, and ii) the most important environmental variables influencing the nematode assemblages. The following hypotheses were tested: i) there would be differences in nematode assemblage density, biodiversity and trophic composition during both ecological conditions, "before" and "after"; and ii) there would be differences in nematode assemblage density, biodiversity and trophic composition at different sampling occasions during both ecological conditions. Nematode density and diversity were significantly different between the two ecological situations. A higher density was recorded before, but a higher diversity was evident after the collapse of Z. noltii. In spite of the disturbance caused by the seagrass habitat loss in the Mira estuary, the nematode trophic composition did not significantly differ between the before and after seagrass collapse situations. Despite the significant differences found among sampling occasions, a consistent temporal pattern was not evident. The response of nematode communities following this extreme event exhibited considerable resistance and resilience to the new environmental conditions.
From neurons to epidemics: How trophic coherence affects spreading processes.
Klaise, Janis; Johnson, Samuel
2016-06-01
Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models-one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network-and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.
Li, Cheng-Cheng; Dang, Fei; Cang, Long; Zhou, Dong-Mei; Peijnenburg, Willie J G M
2015-09-01
The mechanisms underlying Cd trophic transfer along the soil-lettuce-snail food chain were investigated. The fate of Cd within cells, revealed by assessment of Cd chemical forms and of subcellular partitioning, differed between the two examined lettuce species that we examined (L. longifolia and L. crispa). The species-specific internal Cd fate not only influenced Cd burdens in lettuce, with higher Cd levels in L. crispa, but also affected Cd transfer efficiency to the consumer snail (Achatina fulica). Especially, the incorporation of Cd chemical forms (Cd in the inorganic, water-soluble and pectates and protein-integrated forms) in lettuce could best explain Cd trophic transfer, when compared to dietary Cd levels alone and/or subcellular Cd partitioning. Trophically available metal on the subcellular partitioning base failed to shed light on Cd transfer in this study. After 28-d of exposure, most Cd was trapped in the viscera of Achatina fulica, and cadmium bio-magnification was noted in the snails, as the transfer factor of lettuce-to-snail soft tissue was larger than one. This study provides a first step to apply a chemical speciation approach to dictate the trophic bioavailability of Cd through the soil-plant-snail system, which might be an important pre-requisite for mechanistic understanding of metal trophic transfer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Trophic discrimination factors of stable carbon and nitrogen isotopes in hair of corn fed wild boar.
Holá, Michaela; Ježek, Miloš; Kušta, Tomáš; Košatová, Michaela
2015-01-01
Stable isotope measurements are increasingly being used to gain insights into the nutritional ecology of many wildlife species and their role in ecosystem structure and function. Such studies require estimations of trophic discrimination factors (i.e. differences in the isotopic ratio between the consumer and its diet). Although trophic discrimination factors are tissue- and species-specific, researchers often rely on generalized, and fixed trophic discrimination factors that have not been experimentally derived. In this experimental study, captive wild boar (Sus scrofa) were fed a controlled diet of corn (Zea mays), a popular and increasingly dominant food source for wild boar in the Czech Republic and elsewhere in Europe, and trophic discrimination factors for stable carbon (Δ13C) and nitrogen (Δ15N) isotopes were determined from hair samples. The mean Δ13C and Δ15N in wild boar hair were -2.3‰ and +3.5‰, respectively. Also, in order to facilitate future derivations of isotopic measurements along wild boar hair, we calculated the average hair growth rate to be 1.1 mm d(-1). Our results serve as a baseline for interpreting isotopic patterns of free-ranging wild boar in current European agricultural landscapes. However, future research is needed in order to provide a broader understanding of the processes underlying the variation in trophic discrimination factors of carbon and nitrogen across of variety of diet types.
From neurons to epidemics: How trophic coherence affects spreading processes
NASA Astrophysics Data System (ADS)
Klaise, Janis; Johnson, Samuel
2016-06-01
Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.
Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake.
Xie, Zhengxin; Lu, Guanghua; Yan, Zhenhua; Liu, Jianchao; Wang, Peifang; Wang, Yonghua
2017-03-01
Pharmaceuticals are increasingly detected in environmental matrices, but information on their trophic transfer in aquatic food webs is insufficient. This study investigated the bioaccumulation and trophic transfer of 23 pharmaceuticals in Taihu Lake, China. Pharmaceutical concentrations were analyzed in surface water, sediments and 14 aquatic species, including plankton, invertebrates and fish collected from the lake. The median concentrations of the detected pharmaceuticals ranged from not detected (ND) to 49 ng/L in water, ND to 49 ng/g dry weight (dw) in sediments, and from ND to 130 ng/g dw in biota. Higher concentrations of pharmaceuticals were found in zoobenthos relative to plankton, shrimp and fish muscle. In fish tissues, the observed pharmaceutical contents in the liver and brain were generally higher than those in the gills and muscle. Both bioaccumulation factors (median BAFs: 19-2008 L/kg) and biota-sediment accumulation factors (median BSAFs: 0.0010-0.037) indicated a low bioaccumulation potential for the target pharmaceuticals. For eight of the most frequently detected pharmaceuticals in food webs, the trophic magnification factors (TMFs) were analyzed from two different regions of Taihu Lake. The TMFs for roxithromycin, propranolol, diclofenac, ibuprofen, ofloxacin, norfloxacin, ciprofloxacin and tetracycline in the two food webs ranged from 0.28 to 1.25, suggesting that none of these pharmaceuticals experienced trophic magnification. In addition, the pharmaceutical TMFs did not differ significantly between the two regions in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaal, Gauthier; Riera, Pascal; Leroux, Cédric
2009-12-01
This study aimed at establishing the trophic significance of the kelp Laminaria digitata for consumers inhabiting two rocky shores of Northern Brittany (France), displaying contrasted ecological conditions. The general trophic structure did not vary between these two sites, with a wide diversity of filter-feeders and predators, and only 14% of the species sampled belonging to the grazers' trophic group. The diversity of food sources fueling the food web appeared also similar. The food webs comprised four trophic levels and the prevalence of omnivory appeared relatively low compared to previous studies in the same area. Conversely, to the food web structure, which did not differ, the biochemical composition of L. digitata differed between the two sites, and was correlated to a larger diversity of grazers feeding on this kelp in sheltered conditions. This indicated that the spatial variability occurring in the nutritive value of L. digitata is likely to deeply affect the functioning of kelp-associated food webs. The contribution of L. digitata-derived organic matter to the diet of filter-feeders inhabiting these two environments was assessed using the mixing model Isosource, which showed the higher contribution of kelp matter in sheltered conditions. These results highlight the spatial variability that may occur in the functioning of kelp-associated food webs. Moreover, this suggests that hydrodynamics is likely to control the availability of kelp-derived organic matter to local filter-feeders, probably through an increase of detritus export in exposed areas.
Malca, Estrella; Quintanilla, José María; Muhling, Barbara A.; Alemany, Francisco; Privoznik, Sarah L.; Shiroza, Akihiro; Lamkin, John T.; García, Alberto
2015-01-01
The present study uses stable isotopes of nitrogen and carbon (δ15Nandδ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6–10 mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest δ15N signatures, implying an elevated trophic position above the underlying microzooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages.These low δ15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for δ15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton—zooplankton—larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvae. PMID:26225849
McCary, Matthew A; Mores, Robin; Farfan, Monica A; Wise, David H
2016-03-01
Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta-analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure. © 2016 John Wiley & Sons Ltd/CNRS.
Application of the Red-List Index at a national level for multiple species groups.
Juslén, Aino; Hyvärinen, Esko; Virtanen, Laura K
2013-04-01
The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is recognized as one of the key indicators of trends in the status of species. The red-list assessment done by Finnish authorities of species in Finland is taxonomically one of the most extensive national assessments. We used the Finnish Red Lists from 2000 and 2010 to calculate for the first time the national RLIs for 11 taxonomic groups at different trophic levels and with different life cycles. The red-list index is calculated on the basis of changes in red-list categories and indicates trends in the status of biological diversity of sets of species. The RLI value ranges from 0 to 1. The lower the value the faster the set of species is heading toward extinction. If the value is 1, all species in the set are least concern and if the value is 0, all species are (regionally) extinct. The overall RLI of Finnish species decreased. This means that, in Finland, these taxonomic groups were heading toward extinction faster in 2010 than in 2000. Of the analyzed groups of organisms, RLIs of 5 decreased and RLIs of 6 increased. At the national level, the RLIs and status trends varied markedly between species groups. Thus, we concluded that generalizations on the basis of RLIs of a few taxa only may yield a biased view of ongoing trends in the status of biological diversity at the species level. In addition, one overall RLI that includes many different species groups may also be misleading if variation in RLI among species groups is not considered and if RLI values are not presented separately for each group. © 2013 Society for Conservation Biology.
Trophic Status Controls Mercury Methylation Pathways in Northern Peats
NASA Astrophysics Data System (ADS)
Hines, M. E.; Zhang, L.; Barkay, T.; Krabbenhoft, D. P.; Schaefer, J.; Hu, H.; Sidelinger, W.; Liu, X.; Wang, Y.
2015-12-01
Methyl mercury (MeHg) can be produced by a variety of microbes including syntrophs, methanogens, acetogens, and fermenters, besides sulfate (SO42-, SRB) and iron- reducing bacteria. Many freshwater wetlands are deficient in electron acceptors that support the traditional respiratory pathways of methylation, yet they accumulate high levels of MeHg. To investigate methylation in these wetlands and to connect these pathways with vegetation and microbial communities, incubation experiments were conducted using peats from 26 sites in Alaska. The sites were clustered using multiple factor analysis based on pH, temp, CH4 and volatile fatty acids production rates, and surface vegetation composition. Three clusters were generated and corresponded to three trophic levels that were manifested by three pH levels (3.5, 4.5, and 5). Hg methylation activity in laboratory incubations was determined using the short-lived radioisotope 197Hg. In the low pH, Sphagnum-dominated cluster, methylation rates were less than 1% day-1 and likely conducted by primary fermenters. Conversely, the high pH trophic cluster dominated by Carex aquatilis and active syntrophy exhibited Hg methylation rates as high as 12% day-1. In intermediate sites, rich in Sphagnum magellanicum with less Carex, a gradient in syntrophy and Hg methylation paths was observed. Amendments with process-stimulators and inhibitors revealed no evidence of SO42- reduction, but suggested that SRB, metabolizing either syntrophically with methanogens and/or by fermentation, likely methylated Hg. While on going metatranscriptomics studies are required to verify the role of syntrophs, fermenters, and methanogens as methylators, these results revealed that Hg methylation pathways change greatly along trophic gradients with a dominance of respiratory pathways in mineral-rich sites, syntrophy dominance in intermediate sites, and fermentation dominance in nutrient-poor sites.
High-resolution food webs based on nitrogen isotopic composition of amino acids
Chikaraishi, Yoshito; Steffan, Shawn A; Ogawa, Nanako O; Ishikawa, Naoto F; Sasaki, Yoko; Tsuchiya, Masashi; Ohkouchi, Naohiko
2014-01-01
Food webs are known to have myriad trophic links between resource and consumer species. While herbivores have well-understood trophic tendencies, the difficulties associated with characterizing the trophic positions of higher-order consumers have remained a major problem in food web ecology. To better understand trophic linkages in food webs, analysis of the stable nitrogen isotopic composition of amino acids has been introduced as a potential means of providing accurate trophic position estimates. In the present study, we employ this method to estimate the trophic positions of 200 free-roaming organisms, representing 39 species in coastal marine (a stony shore) and 38 species in terrestrial (a fruit farm) environments. Based on the trophic positions from the isotopic composition of amino acids, we are able to resolve the trophic structure of these complex food webs. Our approach reveals a high degree of trophic omnivory (i.e., noninteger trophic positions) among carnivorous species such as marine fish and terrestrial hornets.This information not only clarifies the trophic tendencies of species within their respective communities, but also suggests that trophic omnivory may be common in these webs. PMID:25360278
Łopata, Michał; Popielarczyk, Dariusz; Templin, Tomasz; Dunalska, Julita; Wiśniewski, Grzegorz; Bigaj, Izabela; Szymański, Daniel
2014-01-01
We investigated changes in the spatial distribution of phosphorus (P) and nitrogen (N) in the deep, mesotrophic Lake Hańcza. The raw data collection, supported by global navigation satellite system (GNSS) positioning, was conducted on 79 sampling points. A geostatistical method (kriging) was applied in spatial interpolation. Despite the relatively small area of the lake (3.04 km(2)), compact shape (shore development index of 2.04) and low horizontal exchange of water (retention time 11.4 years), chemical gradients in the surface waters were found. The largest variation concerns the main biogenic element - phosphorus. The average value was 0.032 at the extreme values of 0.019 to 0.265 mg L(-1) (coefficient of variation 87%). Smaller differences are related to nitrogen compounds (0.452-1.424 mg L(-1) with an average value of 0.583 mg L(-1), the coefficient of variation 20%). The parts of the lake which are fed with tributaries are the richest in phosphorus. The water quality of the oligo-mesotrophic Lake Hańcza has been deteriorating in recent years. Our results indicate that inferences about trends in the evolution of examined lake trophic status should be based on an analysis of the data, taking into account the local variation in water chemistry.
Atwood, Trisha; Richardson, John S.
2012-01-01
Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition), and may also “bulldoze” insect larvae from the surfaces of stones (interference competition). Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems. PMID:26466536
Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake
NASA Astrophysics Data System (ADS)
Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella
2017-04-01
Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi-parametric probe. Water temperature is modelled with a unidimensional model. The validation of the model is verified by comparing recorded with simulated data. The results show a good fit of the modelled water temperature, with a mean error of 0.11 °C and a root mean square error of 1.31 °C. The largest of the mean error values is recorded in the bottom layers (0.71 °C), while in central (thermocline) and surface layers the average error is negligible. Total phosphorus values confirmed the eutrophic state of the lake (>35 mg P m-3). On the contrary, chlorophyll a and Secchi disk data indicated a more probable mesotrophic state. This frame highlights the necessity of further investigations on the responses of the lake's biological community to the different hydrological regimes in the different years.
Cherel, Yves; Hobson, Keith A
2005-08-07
Cephalopods play a key role in the marine environment but knowledge of their feeding habits is limited by lack of data. Here, we have developed a new tool to investigate their feeding ecology by combining the use of their predators as biological samplers together with measurements of the stable isotopic signature of their beaks. Cephalopod beaks are chitinous hard structures that resist digestion and the stable isotope ratios of carbon (delta13C) and nitrogen (delta15N) are indicators of the foraging areas and trophic levels of consumers, respectively. First, a comparison of delta13C and delta15N values of different tissues from the same individuals showed that beaks were slightly enriched in 13C but highly impoverished in 15N compared with lipid-free muscle tissues. Second, beaks from the same species showed a progressive increase in their delta15N values with increasing size, which is in agreement with a dietary shift from lower to higher trophic levels during cephalopod growth. In the same way, there was an increase in the delta15N signature of various parts of the same lower beaks in the order rostrum, lateral walls and wings, which reflects the progressive growth and chitinization of the beaks in parallel with dietary changes. Third, we investigated the trophic structure of a cephalopod community for the first time. Values of delta15N indicate that cephalopods living in slope waters of the subantarctic Kerguelen Islands (n=18 species) encompass almost three distinct trophic levels, with a continuum of two levels between crustacean- and fish-eaters and a distinct higher trophic level occupied by the colossal squid Mesonychoteuthis hamiltoni. delta13C values demonstrated that cephalopods grow in three different marine ecosystems, with 16 species living and developing in Kerguelen waters and two species migrating from either Antarctica (Slosarczykovia circumantarctica) or the subtropics (the giant squid Architeuthis dux). The stable isotopic signature of beaks accumulated in predators' stomachs therefore revealed new trophic relationships and migration patterns and is a powerful tool to investigate the role of the poorly known cephalopods in the marine environment.
Wootton, J Timothy
1987-07-01
I examined age at first reproduction of 547 mammalian species to determine the influence of diet and habitat on the evolution of life-history traits. Body mass correlated positively with age at first reproduction, explaining 56% of the variance. Habitat and trophic groups deviated significantly from the allometric curve in a pattern generally consistent with predictions from r/K selection theory and its modifications. However, mammalian orders also deviated significantly from the allometric curve, and different habitat and diet groups contained different ratios of mammalian orders. When the effects of orders were removed, residual deviations did not differ among ecological groups. Adjusting for ecological differences did not eliminate the differences between orders. These results suggest that body mass (or some correlated factor) and phylogeny strongly constrain age at first reproduction. Ecological factors appear to have little effect on the evolution of age at first reproduction. Apparent differences in weight-specific ages at first reproduction within habitats and trophic groups may be the result of ecological selection of order composition in the present, rather than ecologically driven evolution of life history in the past. © 1987 The Society for the Study of Evolution.
The operational use of Landsat for lake quality assessment
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Fisher, L. T.
1980-01-01
A cooperative program between the Wisconsin Department of Natural Resources and the University of Wisconsin for the assessment, with Landsat data, of the trophic status of all the significant inland lakes in Wisconsin is described. The analysis technique is a semiautomatic data acquisition and handling system which, in conjunction with an analytical categorization scheme, can be used for classifying inland lakes into one of seven categories of eutrophication and one of four problem types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-03-01
A compilation of seven final reports dealing with seal/sea lion and walrus surveys of the Navarin Basin; potential impacts of man-made noise on ringed seals; modern populations, migrations, demography, trophics, and historical status of the Pacific Walrus; distribution of marine mammals in the coastal zone of the eastern Chukchi Sea during summer and autumn; and early spring distribution, density and abundance of the Pacific Walrus in 1976.
Drinkwater, K. F.; Grant, S. M.; Heymans, J. J.; Hofmann, E. E.; Hunt, G. L.; Johnston, N. M.
2016-01-01
The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs. PMID:27928038
Murphy, E J; Cavanagh, R D; Drinkwater, K F; Grant, S M; Heymans, J J; Hofmann, E E; Hunt, G L; Johnston, N M
2016-12-14
The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs. © 2016 The Authors.
Quantifying Trophic Interactions and Carbon Flow in Louisiana Salt Marshes Using Multiple Biomarkers
NASA Astrophysics Data System (ADS)
Polito, M. J.; Lopez-Duarte, P. C.; Olin, J.; Johnson, J. J.; Able, K.; Martin, C. W.; Fodrie, J.; Hooper-Bui, L. M.; Taylor, S.; Stouffer, P.; Roberts, B. J.; Rabalais, N. N.; Jensen, O.
2017-12-01
Salt marshes are critical habitats for many species in the northern Gulf of Mexico. However, given their complex nature, quantifying trophic linkages and the flow of carbon through salt marsh food webs is challenging. This gap in our understanding of food web structure and function limits our ability to evaluate the impacts of natural and anthropogenic stressors on salt marsh ecosystems. For example, 2010 Deepwater Horizon (DWH) oil spill had the potential to alter trophic and energy pathways. Even so, our ability to evaluate its effects on Louisiana salt marsh food webs was limited by a poor basis for comparison of the pre-spill baseline food web. To be better equipped to measure significant alterations in salt marsh ecosystems in the future, we quantified trophic interactions at two marsh sites in Barataria Bay, LA in May and October of 2015. Trophic structure and carbon flow across 52 species of saltmarsh primary producers and consumers were examined through a combination of three approaches: bulk tissue stable isotope analysis (δ13C, δ15N, δ34S), dietary fatty acid analysis (FAA), and compound-specific stable isotope analysis of essential amino acids (δ13C EAA). Bulk stable isotope analysis indicated similar trophic diversity between sites and seasons with the use of aquatic resources increasing concomitantly with trophic level. FAA and δ13C EAA biomarkers revealed that marsh organisms were largely divided into two groups: those that primarily derive carbon from terrestrial C4 grasses, and those that predominately derive carbon from a combination of phytoplankton and benthic microalgal sources. Differences in trophic structure and carbon flow were minimal between seasons and sites that were variably impacted by the DWH spill. These data on salt marsh ecosystem structure will be useful to inform future injury assessments and restoration initiatives.
Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model
Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.
2013-01-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. PMID:22749872
Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.
Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H
2012-11-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. Copyright © 2012 Elsevier Inc. All rights reserved.
Sato, Takuya; Watanabe, Katsutoshi
2014-07-01
Resource subsidies often weaken trophic cascades in recipient communities via consumers' functional response to the subsidies. Consumer populations are commonly stage-structured and may respond to the subsidies differently among the stages yet less is known about how this might impact the subsidy effects on the strength of trophic cascades in recipient systems. We show here, using a large-scale field experiment, that the stage structure of a recipient consumer would dampen the effects of terrestrial invertebrate subsidies on the strength of trophic cascade in streams. When a high input rate of the terrestrial invertebrates was available, both large and small fish stages switched their diet to the terrestrial subsidy, which weakened the trophic cascade in streams. However, when the input rate of the terrestrial invertebrates was at a moderate level, the terrestrial subsidy did not weaken the trophic cascade. This discrepancy was likely due to small fish stages being competitively excluded from feeding on the subsidy by larger stages of fish and primarily foraging on benthic invertebrates under the moderate input level. Although previous studies using single fish stages have clearly demonstrated that the terrestrial invertebrate input equivalent to our moderate input rate weakened the trophic cascade in streams, this subsidy effect might be overestimated given small fish stage may not switch their diet to the subsidy under competition with large fish stage. Given the ubiquity of consumer stage structure and interaction among consumer stages, the effects we saw might be widespread in nature, requiring future studies that explicitly involve consumer's stage structure into community ecology. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
The Influence of Terrestrial Matter in Marine Food Webs of the Beaufort Sea Shelf and Slope
NASA Astrophysics Data System (ADS)
Bell, L.; Iken, K.; Bluhm, B.
2016-02-01
Forecasted increases in terrestrial organic matter (OMterr) inputs to the Beaufort Sea necessitate a better understanding of the contribution of this organic matter food source to the trophic structure of marine communities. This study investigated the relative ecological importance of OMterr across the Beaufort Sea shelf and slope by examining differences in community trophic structure concurrent with variation in terrestrial versus marine organic matter influence. Interannual variability in organism trophic level was assessed to confirm the persistent impact of these large-scale patterns in food source distribution on marine consumers. Oxygen stable isotope ratios (δ18O) of surface water confirmed the widespread influence of Canada's Mackenzie River plume across the Beaufort Sea. Carbon stable isotope ratios (δ13C values) of pelagic particulate organic matter (pPOM) and marine consumers from locations ranging from 20 to 1000 m bottom depth revealed a strong isotopic imprint of OMterr in the eastern Beaufort Sea, which decreased westward from the Mackenzie River. Food web length, based on the nitrogen stable isotope ratios (δ15N values) of marine consumers, was greater closer to the Mackenzie River outflow both in shelf and slope locations due to relatively higher δ15N values of pelagic and benthic primary consumers. Strong microbial processing of OMterr in the eastern regions of the Beaufort Sea is inferred based on a trophic gap between sources and lower trophic consumers. A large proportion of epifaunal biomass occupying higher trophic levels suggests that OMterr as a basal food source can provide substantial energetic support for higher marine trophic levels. These findings support the concept that terrestrial matter is an important source in the Arctic marine food web, and compel a more specific understanding of energy transfer through the OMterr-associated microbial loop.
NASA Astrophysics Data System (ADS)
Fox-Dobbs, K.; Wheatley, P. V.; Koch, P. L.
2006-12-01
Stable isotope analyses of modern and fossil biogenic tissues are routinely used to reconstruct present and past vertebrate foodwebs. Accurate isotopic dietary reconstructions require a consumer and tissue specific understanding of how isotopes are sorted, or fractionated, between trophic levels. In this project we address the need for carnivore specific isotope variables derived from populations that are ecologically well- characterized. Specifically, we investigate the trophic difference in carbon isotope values between mammalian carnivore (wolf) bone bioapatite and herbivore (prey) bone bioapatite. We also compare bone bioapatite and collagen carbon isotope values collected from the same individuals. We analyzed bone specimens from two modern North American grey wolf (Canis lupus) populations (Isle Royale National Park, Michigan and Yellowstone National Park, Wyoming), and the ungulate herbivores that are their primary prey (moose and elk, respectively). Because the diets of both wolf populations are essentially restricted to a single prey species, there were no confounding effects due to carnivore diet variability. We measured a trophic difference of approximately -1.3 permil between carnivore (lower value) and herbivore (higher value) bone bioapatite carbon isotope values, and an average inter-tissue difference of 5.1 permil between carnivore bone collagen (lower value) and bioapatite (higher value) carbon isotope values. Both of these isotopic differences differ from previous estimates derived from a suite of African carnivores; our carnivore-herbivore bone bioapatite carbon isotope spacing is smaller (-1.3 vs. -4.0 permil), and our carnivore collagen-bioapatite carbon difference is larger (5.1 vs. 3.0 permil). These discrepancies likely result from comparing values measured from a single hypercarnivore (wolf) to average values calculated from several carnivore species, some of which are insectivorous or partly omnivorous. The trophic and inter-tissue differences we measured for wolves are applicable to future isotopic studies of consumers with purely carnivorous diets. For example, we collected bone bioapatite and collagen carbon isotope data from late Pleistocene grey wolf fossils from eastern Beringia (Fairbanks, Alaska), and used the modern inter-tissue difference presented here to verify bioapatite preservation. We then compared the wolves to herbivores (horse and caribou) from the same locality, and found the difference in their bone bioapatite carbon isotope values corresponded to the modern carnivore-herbivore trophic spacing given above. We therefore were able to conclude that horse and caribou were part of Beringian wolf diet.
Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador
Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge
2016-01-01
Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation. PMID:26839748
Food Web Topology in High Mountain Lakes
Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne
2015-01-01
Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235
NASA Astrophysics Data System (ADS)
Hayes, M.; Herbert, G.; Ellis, G.
2017-12-01
The diets of apex predators such as sharks are expected to change in response to overfishing of their mesopredator prey, but pre-anthropogenic baselines necessary to test for such changes are lacking. Stable isotope analysis (SIA) of soft tissues is commonly used to study diets in animals based on the bioaccumulation of heavier isotopes of carbon and nitrogen with increasing trophic level. In specimens representing pre-anthropogenic baselines, however, a modified SIA approach is needed to deal with taphonomic challenges, such as loss of soft tissues or selective loss of less stable amino acids (AAs) in other sources of organic compounds (e.g., teeth or bone) which can alter bulk isotope values. These challenges can be overcome with a compound-specific isotope analysis of individual AAs (AA-CSIA), but this first requires a thorough understanding of trophic enrichment factors for individual AAs within biomineralized tissues. In this study, we compare dental and muscle proteins of individual sharks via AA-CSIA to determine how trophic position is recorded within teeth and whether that information differs from that obtained from soft tissues. If skeletal organics reliably record information about shark ecology, then archaeological and perhaps paleontological specimens can be used to investigate pre-anthropogenic ecosystems. Preliminary experiments show that the commonly used glutamic acid/phenylalanine AA pairing may not be useful for establishing trophic position from dental proteins, but that estimated trophic position determined from alternate AA pairs are comparable to those from muscle tissue within the same species.
Trophic Discrimination Factors of Stable Carbon and Nitrogen Isotopes in Hair of Corn Fed Wild Boar
Holá, Michaela; Ježek, Miloš; Kušta, Tomáš; Košatová, Michaela
2015-01-01
Stable isotope measurements are increasingly being used to gain insights into the nutritional ecology of many wildlife species and their role in ecosystem structure and function. Such studies require estimations of trophic discrimination factors (i.e. differences in the isotopic ratio between the consumer and its diet). Although trophic discrimination factors are tissue- and species- specific, researchers often rely on generalized, and fixed trophic discrimination factors that have not been experimentally derived. In this experimental study, captive wild boar (Sus scrofa) were fed a controlled diet of corn (Zea mays), a popular and increasingly dominant food source for wild boar in the Czech Republic and elsewhere in Europe, and trophic discrimination factors for stable carbon (Δ13C) and nitrogen (Δ15N) isotopes were determined from hair samples. The mean Δ13C and Δ15N in wild boar hair were –2.3 ‰ and +3.5 ‰, respectively. Also, in order to facilitate future derivations of isotopic measurements along wild boar hair, we calculated the average hair growth rate to be 1.1 mm d-1. Our results serve as a baseline for interpreting isotopic patterns of free-ranging wild boar in current European agricultural landscapes. However, future research is needed in order to provide a broader understanding of the processes underlying the variation in trophic discrimination factors of carbon and nitrogen across of variety of diet types. PMID:25915400
Food Web Topology in High Mountain Lakes.
Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne
2015-01-01
Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.
NASA Astrophysics Data System (ADS)
Ayala, G.; Martínez-López, A.; Escobedo-Urías, D. C.
2007-05-01
Topolobampo-Santa Maria-Ohuira Lagoon Complex in the Gulf of California presents intense anthropogenic activities, such as agricultural with the drainage of nutrient enriched waters into the system, which affects on its health and integrity have been not evaluated before. Monthly data of physical-chemical variables and phytoplankton from November 2004 to February 2006 were used to define the actual trophic state of the lagoons by means of a trophic index (TRIX), and its imprint on the Morphological Phytoplankton Groups. From the analysis of data distinctive responses were observed for each lagoon. Trophic state and phytoplankton dynamic apparently were determinate by differences in hydrodynamics in each lagoon. Santa Maria lagoon showed higher trophic index values followed by Ohuira and Topolobampo. The phytoplankton community dominated for nannophytoplankton was regulated by nitrogen along the year in the entire lagoon system. However, the relationship between phytoplankton and physical-chemical variables examined by multivariate analysis indicated that in Santa Maria, nutrients from the runoff of fertilizers at the beginning of the fall/winter agriculture cycle influenced the occurrence of diatoms Harmful Algae Blooms (HABs), while in Ohuira higher water residence times have major regulatory effects on a large number of HABs of cyanobacteria and dinoflagellates and a lower Trophic state. A minor grade of affectation in Topolobampo lagoon is suggested by a dominance of the seasonality, a lower water residence times, and non HABs incidence during the period of this study.
Instability of Water Quality of a Shallow, Polymictic, Flow-Through Lake.
Ferencz, Beata; Dawidek, Jarosław; Toporowska, Magdalena
2018-01-01
This paper describes catchment processes that favor the trophic instability of a shallow polymictic lake, in which a shift from eutrophy to hypertrophy occurs rapidly. In the lake, in 2007, the winter discharge maximum and an intensive precipitation (monthly sums exceeded 60 mm) in a vegetation season were observed. In 2007, the cyanobacterial blooms disappeared and the water trophy decreased. Total phosphorus (TP) was the main factor determining the high trophic status of the lake. The TP retention resulted from a quick flow of two inflows: QI1 (r = 0.64) and QI2 (0.56), and the base flow of tributary 1 (0.62). A significant negative correlation between TP and precipitation ( r = - 0.54) was observed. Both the surface and the groundwater inflow of I4 showed a positive correlation with the retention of PO 4 ( r = 0.67 and r = 0.60, respectively), whereas the outlet discharge determined RNO 3 ( r = 0.57). The trophy of Lake Syczyńskie was determined by the relationship between nutrient input and export, expressed as the ionic retention, Carlson's trophic state index (TSI), and phytoplankton abundance. The results showed that many factors influence the stability of water quality in small, polymictic lakes. However, in the studied lake, intense precipitation and winter discharge maxima (particularly base flow) prevented summer cyanobacterial blooms.
Rodríguez-Preciado, José A; Amezcua, Felipe; Bellgraph, Brian; Madrid-Vera, Juan
2014-01-01
The Panama grunt is an abundant and commercially important species in the southeastern Gulf of California, but the research undertaken on this species is scarce despite its ecological and economic importance. We studied the feeding habits of Panama grunt through stomach content analyses as a first step towards understanding the biology of this species in the study area. Our results indicate that the Panama grunt is a benthic predator throughout its life cycle and feeds mainly on infaunal crustaceans. Diet differences among grunt were not found according to size, diet, or season. Shannon diversity index results indicate that Panama grunt has a limited trophic niche breadth with a diet dominated by a limited number of taxa as crustaceans. The estimated trophic level of this species is 3.59. Overall, the Panama grunt is a carnivorous fish occupying the intermediate levels of the trophic pyramid.
Tempo of trophic evolution and its impact on mammalian diversification
Price, Samantha A.; Hopkins, Samantha S. B.; Smith, Kathleen K.; Roth, V. Louise
2012-01-01
Mammals are characterized by the complex adaptations of their dentition, which are an indication that diet has played a critical role in their evolutionary history. Although much attention has focused on diet and the adaptations of specific taxa, the role of diet in large-scale diversification patterns remains unresolved. Contradictory hypotheses have been proposed, making prediction of the expected relationship difficult. We show that net diversification rate (the cumulative effect of speciation and extinction), differs significantly among living mammals, depending upon trophic strategy. Herbivores diversify fastest, carnivores are intermediate, and omnivores are slowest. The tempo of transitions between the trophic strategies is also highly biased: the fastest rates occur into omnivory from herbivory and carnivory and the lowest transition rates are between herbivory and carnivory. Extant herbivore and carnivore diversity arose primarily through diversification within lineages, whereas omnivore diversity evolved by transitions into the strategy. The ability to specialize and subdivide the trophic niche allowed herbivores and carnivores to evolve greater diversity than omnivores. PMID:22509033
Tempo of trophic evolution and its impact on mammalian diversification.
Price, Samantha A; Hopkins, Samantha S B; Smith, Kathleen K; Roth, V Louise
2012-05-01
Mammals are characterized by the complex adaptations of their dentition, which are an indication that diet has played a critical role in their evolutionary history. Although much attention has focused on diet and the adaptations of specific taxa, the role of diet in large-scale diversification patterns remains unresolved. Contradictory hypotheses have been proposed, making prediction of the expected relationship difficult. We show that net diversification rate (the cumulative effect of speciation and extinction), differs significantly among living mammals, depending upon trophic strategy. Herbivores diversify fastest, carnivores are intermediate, and omnivores are slowest. The tempo of transitions between the trophic strategies is also highly biased: the fastest rates occur into omnivory from herbivory and carnivory and the lowest transition rates are between herbivory and carnivory. Extant herbivore and carnivore diversity arose primarily through diversification within lineages, whereas omnivore diversity evolved by transitions into the strategy. The ability to specialize and subdivide the trophic niche allowed herbivores and carnivores to evolve greater diversity than omnivores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Preciado, Jose A.; Amezcua-Martinez, Felipe; Bellgraph, Brian J.
The Panama grunt is an abundant and commercially important species in the SE Gulf of California, but the research undertaken on this species is scarce despite its ecological and economic importance. We studied the feeding habits of Panama grunt through stomach content analyses as a first step towards understanding the biology of this species in the study area. Our results show that the Panama grunt is a benthic predator throughout its life cycle and feeds mainly on infaunal crustaceans. Diet differences were not found according to size, diet or season. Shannon diversity index results indicate that Panama grunt have amore » limited trophic niche breadth with a diet dominated by a limited number of taxa. The estimated trophic level of this species is 3.59. Overall, the Panama grunt is a carnivorous fish occupying the intermediate levels of the trophic pyramid.« less
Guano-Derived Nutrient Subsidies Drive Food Web Structure in Coastal Ponds.
Vizzini, Salvatrice; Signa, Geraldina; Mazzola, Antonio
2016-01-01
A stable isotope study was carried out seasonally in three coastal ponds (Marinello system, Italy) affected by different gull guano input to investigate the effect of nutrient subsidies on food web structure and dynamics. A marked 15N enrichment occurred in the pond receiving the highest guano input, indicating that gull-derived fertilization (guanotrophication) had a strong localised effect and flowed across trophic levels. The main food web response to guanotrophication was an overall erosion of the benthic pathway in favour of the planktonic. Subsidized primary consumers, mostly deposit feeders, switched their diet according to organic matter source availability. Secondary consumers and, in particular, fish from the guanotrophic pond, acted as couplers of planktonic and benthic pathways and showed an omnivorous trophic behaviour. Food web structure showed substantial variability among ponds and a marked seasonality in the subsidized one: an overall simplification was evident only in summer when guano input maximises its trophic effects, while higher trophic diversity and complexity resulted when guano input was low to moderate.
Guano-Derived Nutrient Subsidies Drive Food Web Structure in Coastal Ponds
Vizzini, Salvatrice; Signa, Geraldina; Mazzola, Antonio
2016-01-01
A stable isotope study was carried out seasonally in three coastal ponds (Marinello system, Italy) affected by different gull guano input to investigate the effect of nutrient subsidies on food web structure and dynamics. A marked 15N enrichment occurred in the pond receiving the highest guano input, indicating that gull-derived fertilization (guanotrophication) had a strong localised effect and flowed across trophic levels. The main food web response to guanotrophication was an overall erosion of the benthic pathway in favour of the planktonic. Subsidized primary consumers, mostly deposit feeders, switched their diet according to organic matter source availability. Secondary consumers and, in particular, fish from the guanotrophic pond, acted as couplers of planktonic and benthic pathways and showed an omnivorous trophic behaviour. Food web structure showed substantial variability among ponds and a marked seasonality in the subsidized one: an overall simplification was evident only in summer when guano input maximises its trophic effects, while higher trophic diversity and complexity resulted when guano input was low to moderate. PMID:26953794
Kong, Weibao; Wang, Yang; Yang, Hong; Xi, Yuqin; Han, Rui; Niu, Shiquan
2015-03-04
We studied the effects of trophic modes related to glucose and light (photoautotrophy, mixotrophy and heterotrophy) on growth, cellular components and carbon metabolic pathway of Chlorella vulgaris. The parameters about growth of algal cells were investigated by using spectroscopy and chromatography techniques. When trophic mode changed from photoautotrophy to mixotrophy and to heterotrophy successively, the concentrations of soluble sugar, lipid and saturated C16/C18 fatty acids in C. vulgaris increased, whereas the concentrations of unsaturated C16, C18 fatty acids, proteins, photosynthetic pigments and 18 relative amino acids decreased. Light and glucose affect the growth, metabolism and the biochemical components biosynthesis of C. vulgaris. Addition of glucose can promote algal biomass accumulation, stimulate the synthesis of carbonaceous components, but inhibit nitrogenous components. Under illumination cultivation, concentration and consumption level of glucose decided the main trophic modes of C. vulgaris. Mixotrophic and heterotrophic cultivation could promote the growth of algal cells.
NASA Astrophysics Data System (ADS)
Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd
2017-12-01
Specific mechanisms, driving trophic interactions between seamount associated fishes and the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure and the main prey of benthopelagic fishes from the summit and slope regions of Ampère and Senghor, two shallow seamounts in the subtropical and tropical NE Atlantic, and the adjacent deep-sea plains. For the identification of food sources and nutritional links to the pelagic realm a combination of stomach content and stable isotope ratio (δ13C and δ15N) analyses was used. δ13C ranged from -22.2‰ to -15.4‰ and δ15N covered a total range of 8.0-15.9‰. Feeding types of fish species comprised mainly zooplanktivores and mixed feeders, but also benthivores, piscivores, and predator-scavengers. Based on epipelagic particulate organic matter, they occupied trophic positions between the 2nd and 4th trophic level. Differences in stomach contents and stable isotope signatures indicate a resource partitioning among the benthopelagic fish fauna through distinct habitat choice, vertical feeding positions and prey selection. Topographic trapping of vertically migrating zooplankton on the summit seemed to be of minor importance for food supply of the resident near-bottom fishes, rather horizontal current-driven advection of the planktonic prey was assumed as major factor. Vertically migrating micronekton and mesopelagic fishes show up as key players within the food webs at Ampère and Senghor Seamounts and the adjacent deep-sea plains.
Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M
2016-07-01
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control.
Sotton, Benoît; Guillard, Jean; Anneville, Orlane; Maréchal, Marjorie; Savichtcheva, Olga; Domaizon, Isabelle
2014-01-01
An in situ study was performed to investigate the role of zooplankton as a vector of microcystins (MCs) from Planktothrix rubescens filaments to fish during a metalimnic bloom of P. rubescens in Lake Hallwil (Switzerland). The concentrations of MCs in P. rubescens and various zooplanktonic taxa (filter-feeders and predators) were assessed in different water strata (epi-, meta- and hypolimnion) using replicated sampling over a 24-hour survey. The presence of P. rubescens in the gut content of various zooplanktonic taxa (Daphnia, Bosmina and Chaoborus) was verified by targeting the cyanobacterial nucleic acids (DNA). These results highlighted that cyanobacterial cells constitute a part of food resource for herbivorous zooplanktonic taxa during metalimnic bloom periods. Furthermore, presence of MCs in Chaoborus larvae highlighted the trophic transfer of MCs between herbivorous zooplankton and their invertebrate predators. Our results suggest that zooplanktonic herbivores by diel vertical migration (DVM) act as vectors of MCs by encapsulating grazed cyanobacteria. As a consequence, they largely contribute to the contamination of zooplanktonic predators, and in fine of zooplanktivorous whitefish. Indeed, we estimated the relative contribution of three preys of the whitefish (i.e. Daphnia, Bosmina and Chaoborus) to diet contamination. We showed that Chaoborus and Daphnia were the highest contributor as MC vectors in the whitefish diet (74.6 and 20.5% of MC-LR equivalent concentrations, respectively). The transfer of MCs across the different trophic compartments follows complex trophic pathways involving various trophic levels whose relative importance in fish contamination might vary at daily and seasonal scale. © 2013.
The trophic responses of two different rodent–vector–plague systems to climate change
Xu, Lei; Schmid, Boris V.; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr.; Zhang, Zhibin
2015-01-01
Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change. PMID:25540277
Trophic Structure and Mercury Biomagnification in Tropical Fish Assemblages, Iténez River, Bolivia
Pouilly, Marc; Rejas, Danny; Pérez, Tamara; Duprey, Jean-Louis; Molina, Carlos I.; Hubas, Cédric; Guimarães, Jean-Remy D.
2013-01-01
We examined mercury concentrations in three fish assemblages to estimate biomagnification rates in the Iténez main river, affected by anthropogenic activities, and two unperturbed rivers from the Iténez basin, Bolivian Amazon. Rivers presented low to moderate water mercury concentrations (from 1.25 ng L−1 to 2.96 ng L−1) and natural differences in terms of sediment load. Mercury biomagnification rates were confronted to trophic structure depicted by carbon and nitrogen stable isotopes composition (δ15N; δ13C) of primary trophic sources, invertebrates and fishes. Results showed a slight fish contamination in the Iténez River compared to the unperturbed rivers, with higher mercury concentrations in piscivore species (0.15 µg g−1 vs. 0.11 µg g−1 in the unperturbed rivers) and a higher biomagnification rate. Trophic structure analysis showed that the higher biomagnification rate in the Iténez River could not be attributed to a longer food chain. Nevertheless, it revealed for the Iténez River a higher contribution of periphyton to the diet of the primary consumers fish species; and more negative δ13C values for primary trophic sources, invertebrates and fishes that could indicate a higher contribution of methanotrophic bacteria. These two factors may enhance methylation and methyl mercury transfer in the food web and thus, alternatively or complementarily to the impact of the anthropogenic activities, may explain mercury differences observed in fishes from the Iténez River in comparison to the two other rivers. PMID:23741452
Locke, Sean A; Marcogliese, David J; Valtonen, E Tellervo
2014-01-01
Recent studies of aquatic food webs show that parasite diversity is concentrated in nodes that likely favour transmission. Various aspects of parasite diversity have been observed to be correlated with the trophic level, size, diet breadth, and vulnerability to predation of hosts. However, no study has attempted to distinguish among all four correlates, which may have differential importance for trophically transmitted parasites occurring as larvae or adults. We searched for factors that best predict the diversity of larval and adult endoparasites in 4105 fish in 25 species studied over a three-year period in the Bothnian Bay, Finland. Local predator-prey relationships were determined from stomach contents, parasites, and published data in 8,229 fish in 31 species and in seals and piscivorous birds. Fish that consumed more species of prey had more diverse trophically transmitted adult parasites. Larval parasite diversity increased with the diversity of both prey and predators, but increases in predator diversity had a greater effect. Prey diversity was more strongly associated with the diversity of adult parasites than with that of larvae. The proportion of parasite species present as larvae in a host species was correlated with the diversity of its predators. There was a notable lack of association with the diversity of any parasite guild and fish length, trophic level, or trophic category. Thus, diversity is associated with different nodal properties in larval and adult parasites, and association strengths also differ, strongly reflecting the life cycles of parasites and the food chains they follow to complete transmission.
Sanders, Dirk; Vogel, Esther; Knop, Eva
2015-01-01
The function of a predator within a community is greatly based on its trophic niche, that is the number and the strength of feeding links. In generalist predators, which feed on a wide range of prey, the size and position of the trophic niche is likely determined by traits such as hunting mode, the stratum they occur in, their body size and age. We used stable isotope analyses ((13)C and (15)N) to measure the trophic niche size of nine spider species within a forest hedge community and tested for species traits and individual traits that influence stable isotope enrichment, niche size and resource use. The spiders Enoplognatha, Philodromus, Floronia, and Heliophanus had large isotopic niches, which correspond to a more generalistic feeding behaviour. In contrast, Araneus, Metellina and Agelena, as top predators in the system, had rather narrow niches. We found a negative correlation between trophic position and niche size. Differences in trophic position in spiders were explained by body size, hunting modes and stratum, while niche size was influenced by hunting mode. In Philodromus, the size of the trophic niche increased significantly with age. Fitting spiders to functional groups according to their mean body size, hunting mode and their habitat domain resulted in largely separated niches, which indicates that these traits are meaningful for separating functional entities in spiders. Functional groups based on habitat domain (stratum) caught the essential functional differences between the species with species higher up in the vegetation feeding on flying insects and herb and ground species also preying on forest floor decomposers. Interestingly, we found a gradient from large species using a higher habitat domain and having a smaller niche to smaller species foraging closer to the ground and having a larger niche. This shows that even within generalist predators, such as spiders, there is a gradient of specialism that can be predicted by functional traits. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Trophic flexibility and the persistence of understory birds in intensively logged rainforest.
Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C
2013-10-01
Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. © 2013 Society for Conservation Biology.
Willacker, James J.; Von Hippel, Frank A.; Ackerly, Kerri L.; O’Hara, Todd M.
2013-01-01
Mercury (Hg) is a widespread environmental contaminant known for the neurotoxicity of its methylated forms, especially monomethylmercury, which bioaccumulates and biomagnifies in aquatic food webs. Mercury bioaccumulation and biomagnification rates are known to vary among species utilizing different food webs (benthic vs limnetic) within and between systems. The authors assessed whether carbon and nitrogen stable isotope values and total Hg (THg) concentrations differed between sympatric benthic and limnetic ecotypes and sexes of threespine stickleback fish (Gasterosteus aculeatus) from Benka Lake, Alaska, USA. The mean THg concentration in the limnetic ecotype was significantly higher (26 mg/kg dry wt, 16.1%) than that of the benthic ecotype. Trophic position and benthic carbon percentage utilized were both important determinants of THg concentration; however, the 2 variables were of approximately equal importance in females, whereas trophic position clearly explained more of the variance than benthic carbon percentage in males. Additionally, strong sex effects (45 mg/kg dry wt, 29.4%) were observed in both ecotypes, with female fish having lower THg concentrations than males. These results indicate that trophic ecology and sex are both important determinants of Hg contamination even within a single species and lake and likely play a role in governing Hg concentrations in higher trophic levels. PMID:23456641
Ecological-network models link diversity, structure and function in the plankton food-web
NASA Astrophysics Data System (ADS)
D'Alelio, Domenico; Libralato, Simone; Wyatt, Timothy; Ribera D'Alcalà, Maurizio
2016-02-01
A planktonic food-web model including sixty-three functional nodes (representing auto- mixo- and heterotrophs) was developed to integrate most trophic diversity present in the plankton. The model was implemented in two variants - which we named ‘green’ and ‘blue’ - characterized by opposite amounts of phytoplankton biomass and representing, respectively, bloom and non-bloom states of the system. Taxonomically disaggregated food-webs described herein allowed to shed light on how components of the plankton community changed their trophic behavior in the two different conditions, and modified the overall functioning of the plankton food web. The green and blue food-webs showed distinct organizations in terms of trophic roles of the nodes and carbon fluxes between them. Such re-organization stemmed from switches in selective grazing by both metazoan and protozoan consumers. Switches in food-web structure resulted in relatively small differences in the efficiency of material transfer towards higher trophic levels. For instance, from green to blue states, a seven-fold decrease in phytoplankton biomass translated into only a two-fold decrease in potential planktivorous fish biomass. By linking diversity, structure and function in the plankton food-web, we discuss the role of internal mechanisms, relying on species-specific functionalities, in driving the ‘adaptive’ responses of plankton communities to perturbations.
O'Gorman, Robert; Stewart, Thomas J.; Taylor, William W.; Ferreri, C. Paola
1999-01-01
This article chronicles the ascent, dominance, and decline of the alewife (Alosa pseudoharengus) in the Great Lakes and tracks the gradual accumulation of knowledge on the fish's effect on the aquatic community. Changes in management strategies for alewife are followed, and the current management dilemma is framed in light of the alewife's effect on inidigenous fishes and the changing biota and trophic status of the Great Lakes.
NASA Astrophysics Data System (ADS)
Kong, Xianyu; Liu, Yanfang; Jian, Huimin; Su, Rongguo; Yao, Qingzhen; Shi, Xiaoyong
2017-10-01
To realize potential cost savings in coastal monitoring programs and provide timely advice for marine management, there is an urgent need for efficient evaluation tools based on easily measured variables for the rapid and timely assessment of estuarine and offshore eutrophication. In this study, using parallel factor analysis (PARAFAC), principal component analysis (PCA), and discriminant function analysis (DFA) with the trophic index (TRIX) for reference, we developed an approach for rapidly assessing the eutrophication status of coastal waters using easy-to-measure parameters, including chromophoric dissolved organic matter (CDOM), fluorescence excitation-emission matrices, CDOM UV-Vis absorbance, and other water-quality parameters (turbidity, chlorophyll a, and dissolved oxygen). First, we decomposed CDOM excitation-emission matrices (EEMs) by PARAFAC to identify three components. Then, we applied PCA to simplify the complexity of the relationships between the water-quality parameters. Finally, we used the PCA score values as independent variables in DFA to develop a eutrophication assessment model. The developed model yielded classification accuracy rates of 97.1%, 80.5%, 90.3%, and 89.1% for good, moderate, and poor water qualities, and for the overall data sets, respectively. Our results suggest that these easy-to-measure parameters could be used to develop a simple approach for rapid in-situ assessment and monitoring of the eutrophication of estuarine and offshore areas.
NASA Astrophysics Data System (ADS)
Saputra, A. N.; Danoedoro, P.; Kamal, M.
2017-12-01
Remote sensing has a potential for observing, mapping and monitoring the quality of lake water. Riam Kanan is a reservoir which has a water resource from Riam Kanan River with the area width of its watershed about 1043 km2. The accumulation of nutrient in this reservoir simultaneously deteriorates the condition of waters, which can cause an increasingly growth of harm micro algae or Harmful Algal Blooms (HABs). This research applied Carlson’s trophic status index (CTSI) at Riam Kanan Reservoir using Landsat-8 OLI satellite image. The Landsat 8 OLI image was recorded on 14 August 2016 and was used in this research based on its surface reflectance values. The result of correlation test shows that band 3 of the image as coefficient of chlorophyll-a parameter, channel 2 as coefficient of phosphate, and band ratio of SDT as coefficient of SDT. Based on the result of modelling using CTSI, the majority scale of CTSI score at Riam Kanan Reservoir is between 60 to70 in medium eutrophic class. The class of medium eutrophic at Riam Kanan Reservoir potentially emerges the threat both of the improvement of water fertility and the reduction of water quality. Improvement of the fertility is apprehensive since it can trigger an explosion of micro algae which will endanger the ecological condition at the area of Riam Kanan Reservoir.
NASA Astrophysics Data System (ADS)
Chen, Mianrun; Kim, Dongyoung; Liu, Hongbin; Kang, Chang-Keun
2018-04-01
Trophic preference (i.e., food resources and trophic levels) of different copepod groups was assessed along a salinity gradient in the temperate estuarine Gwangyang Bay of Korea, based on seasonal investigation of taxonomic results in 2015 and stable isotope analysis incorporating multiple linear regression models. The δ13C and δ15N values of copepods in the bay displayed significant spatial heterogeneity as well as seasonal variations, which were indicated by their significant relationships with salinity and temperature, respectively. Both spatial and temporal variations reflected those in isotopic values of food sources. The major calanoid groups (marine calanoids and brackish water calanoids) had a mean trophic level of 2.2 relative to nanoplankton as the basal food source, similar to the bulk copepod assemblage; however, they had dissimilar food sources based on the different δ13C values. Calanoid isotopic values indicated a mixture of different genera including species with high δ15N values (e.g., Labidocera, Sinocalanus, and Tortanus), moderate values (Calanus sinicus, Centropages, Paracalanus, and Acartia), and relatively low δ15N values (Eurytemora pacifica and Pseudodiaptomus). Feeding preferences of different copepods probably explain these seasonal and spatial patterns of the community trophic niche. Bayesian mixing model calculations based on source materials of two size fractions of particulate organic matter (nanoplankton at < 20 µm vs. microplankton at 20-200 µm) indicated that Acartia and Centropages preferred large particles; Paracalanus, Calanus, Eurytemora, and Pseudodiaptomus apparently preferred small particles. Tortanus was typically carnivorous with low selectivity on different copepods. Labidocera preferred marine calanoids Acartia, Centropages, and harpacticoids; on the other hand, Sinocalanus and Corycaeus preferred brackish calanoids Paracalanus and Pseudodiaptomus. Overall, our results depict a simple energy flow of the planktonic food web of Gwangyang Bay: from primary producers (nanoplankton) and a mixture of primary producers and herbivores (microplankton) through omnivores (Acartia, Calanus, Centropages, and Paracalanus) and detritivores (Pseudodiaptomus, Eurytemora, and harpacticoids) to carnivores (Corycaeus, Tortanus, Labidocera, and Sinocalanus).
NASA Technical Reports Server (NTRS)
Blackwell, R. J.
1982-01-01
Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.
The role of multispectral scanners as data sources for EPA hydrologic models
NASA Technical Reports Server (NTRS)
Slack, R.; Hill, D.
1982-01-01
An estimated cost savings of 30% to 50% was realized from using LANDSAT-derived data as input into a program which simulates hydrologic and water quality processes in natural and man-made water systems. Data from the satellite were used in conjunction with EPA's 11-channel multispectral scanner to obtain maps for characterizing the distribution of turbidity plumes in Flathead Lake and to predict the effect of increasing urbanization in Montana's Flathead River Basin on the lake's trophic state. Multispectral data are also being studied as a possible source of the parameters needed to model the buffering capability of lakes in an effort to evaluate the effect of acid rain in the Adirondacks. Water quality in Lake Champlain, Vermont is being classified using data from the LANDSAT and the EPA MSS. Both contact-sensed and MSS data are being used with multivariate statistical analysis to classify the trophic status of 145 lakes in Illinois and to identify water sampling sites in Appalachicola Bay where contaminants threaten Florida's shellfish.
Water Quality and Trophic Status Study in Sembrong Reservoir during Monsoon Season
NASA Astrophysics Data System (ADS)
Hashim, S. I. N. S.; Talib, S. H. A.; Abustan, M. S.; Tajuddin, S. A. M.
2018-04-01
Sembrong is one of the reservoirs in Johor that supplies raw water to consumer for daily activities usage. Cleanliness and quality of water must be maintained to ensure that contamination is not applicable. This study is to determine the effects of sedimentation on water quality due to the deposition of sediment in the reservoir and to identify the rate of ammonia based on the location of the study area. There are several parameters required to obtain the data and reading for this study namely the temperature, dissolved oxygen, pH value, ammonia nitrogen and trophic status parameter that are consisting of Chlorophyll, total phosphorus and secchi depth. Seventeen (17) locations along Sembrong reservoir had been identified for sampling activities. From the result obtained, the reading of temperature and pH value has less significant differences between the locations involved. However, for dissolved oxygen, the highest readings were taken at location 6 and 7 which are 9.12 mg/L and 9.05 mg/L respectively compared to other location with the average reading of 8 mg/L. For ammonia nitrogen, the highest reading was at location 1 which is 2.24 mg/L, while the lowest reading at location 13 and 14 with 0.29 mg/L. Chlorophyll readings showed the highest reading of 92.33 μg/L at location 2 which is near to the inlet area while the lowest reading were taken at location 14 with 55.97 μg/L. For total phosphorus, location 1 has the highest reading of 19.50 μg/L compared to location 15 with 9.15 μg/L. The overall result indicates that the reading is high near the inlet and decreasing at the next location. So roughly, the river that connects to the Sembrong reservoir was carrying contaminants.
França, Susana; Vasconcelos, Rita P; Tanner, Susanne; Máguas, Cristina; Costa, Maria José; Cabral, Henrique N
2011-10-01
Stable carbon and nitrogen isotopes (δ¹³C, δ¹⁵N) were used to analyse food web dynamics of two of the main estuaries of the Portuguese coast: Tejo and Mira. The ultimate sources of organic matter supporting production of some of the most abundant and commercially important fish species were determined; and seasonal, inter- and intra- estuarine differences in the trophic relations among producers and consumers were identified. Stable isotope analysis was performed in different producers, primary consumers (main prey items for fish) and fish species (Solea solea, Solea senegalensis, Pomatoschistus microps, Dicentrarchus labrax, Liza ramada, Diplodus vulgaris and Atherina presbyter) of two areas in each estuary, in July and October 2009. Model calculations showed that the main prey for the fish species in the Tejo estuary used mostly salt marsh-derived organic matter as nutritional sources, with no marked differences between the sampled months. Trophic levels of fish species from the same estuary differed at multiple scales: inter-species, seasonally and spatially (both between and within estuaries). Significant differences in isotopic composition of fish species were more pronounced spatially (between the two sampled areas in the estuary) than seasonally (between sampled months). Trophic relationships in both estuaries demonstrated that organic matter is transferred to higher trophic positions mainly through benthic pathways. This shows the flexibility of these species to share resources and to exploit temporary peaks in prey populations. The present results showed that extensive disturbance in intertidal habitats from both estuaries may potentially change the balance of organic matter in the base of these complex food webs. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morissette, Lyne; Pedersen, Torstein; Nilsen, Marianne
2009-04-01
The Sørfjord, Norway, and the Gulf of St. Lawrence, Canada, are two sub-arctic ecosystems with similar trophic structure. However, in the Gulf of St. Lawrence, severe exploitation of groundfish stocks has lead to important shifts in the trophic structure. In the Sørfjord, the situation is different: fishing pressure is much lighter. Our hypothesis is that overexploitation leads to changes in the trophic structure and severely alters the resilience of ecosystems. Based on the same modelling approach ( Ecopath with Ecosim) the food web structure was compared, using different ecosystem indicators. Patterns of food web structure and trophodynamics were contrasted. Cod was the keystone species in both ecosystems, and forage fish were also important. Even after similar environmental changes in both ecosystems, and after a reduction of fishing pressure in the Gulf of St. Lawrence, there is no recovery of cod stocks in this ecosystem. In the Sørfjord, after different perturbations (but not from the fishery), the ecosystem seems to return to its equilibrium.
Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using δ15N and δ13C
NASA Astrophysics Data System (ADS)
Greenwood, N. D. W.; Sweeting, C. J.; Polunin, N. V. C.
2010-09-01
Size-related diet shifts are important characteristics of fish trophodynamics. Here, body size-related changes in muscle δ15N and δ13C of four coral reef fishes, Acanthurus nigrofuscus (herbivore), Chaetodon lunulatus (corallivore) , Chromis xanthura (planktivore) and Plectropomus leopardus (piscivore) were investigated at two locations in the Solomon Islands. All four species occupied distinct isotopic niches and the concurrent δ13C' values of C. xanthura and P. leopardus suggested a common planktonic production source. Size-related shifts in δ15N, and thus trophic level, were observed in C. xanthura, C. lunulatus and P. leopardus, and these trends varied between location, indicating spatial differences in trophic ecology. A literature review of tropical fishes revealed that positive δ15N-size trends are common while negative δ15N-size trends are rare. Size-δ15N trends fall into approximately equal groups representing size-based feeding within a food chain, and that associated with a basal resource shift and occurs in conjunction with changes in production source, indicated by δ13C. The review also revealed large scale differences in isotope-size trends and this, combined with small scale location differences noted earlier, highlights a high degree of plasticity in the reef fishes studied. This suggests that trophic size analysis of reef fishes would provide a productive avenue to identify species potentially vulnerable to reef impacts as a result of constrained trophic behaviour.
NASA Astrophysics Data System (ADS)
Gaichas, Sarah; Skaret, Georg; Falk-Petersen, Jannike; Link, Jason S.; Overholtz, William; Megrey, Bernard A.; Gjøsæter, Harald; Stockhausen, William T.; Dommasnes, Are; Friedland, Kevin D.; Aydin, Kerim
2009-04-01
Energy budget models for five marine ecosystems were compared to identify differences and similarities in trophic and community structure. We examined the Gulf of Maine and Georges Bank in the northwest Atlantic Ocean, the combined Norwegian/Barents Seas in the northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the northeast Pacific Ocean. Comparable energy budgets were constructed for each ecosystem by aggregating information for similar species groups into consistent functional groups. Several ecosystem indices (e.g., functional group production, consumption and biomass ratios, cumulative biomass, food web macrodescriptors, and network metrics) were compared for each ecosystem. The comparative approach clearly identified data gaps for each ecosystem, an important outcome of this work. Commonalities across the ecosystems included overall high primary production and energy flow at low trophic levels, high production and consumption by carnivorous zooplankton, and similar proportions of apex predator to lower trophic level biomass. Major differences included distinct biomass ratios of pelagic to demersal fish, ranging from highest in the combined Norwegian/Barents ecosystem to lowest in the Alaskan systems, and notable differences in primary production per unit area, highest in the Alaskan and Georges Bank/Gulf of Maine ecosystems, and lowest in the Norwegian ecosystems. While comparing a disparate group of organisms across a wide range of marine ecosystems is challenging, this work demonstrates that standardized metrics both elucidate properties common to marine ecosystems and identify key distinctions useful for fisheries management.
NASA Astrophysics Data System (ADS)
Lopez-Duarte, P. C.; Able, K.; Fodrie, J.; McCann, M. J.; Melara, S.; Noji, C.; Olin, J.; Pincin, J.; Plank, K.; Polito, M. J.; Jensen, O.
2016-02-01
Multiple studies conducted over five years since the 2010 Macondo oil spill in the Gulf of Mexico indicate that oil impacts vary widely among taxonomic groups. For instance, fishes inhabiting the marsh surface show no clear differences in either community composition or population characteristics between oiled and unoiled sites, despite clear evidence of physiological impacts on individual fish. In contrast, marsh insects and spiders are sensitive to the effects of hydrocarbons. Both insects and spiders are components of the marsh food web and represent an important trophic link between marsh plants and higher trophic levels. Because differences in oil impacts throughout the marsh food web have the potential to significantly alter food webs and energy flow pathways and reduce food web resilience, our goal is to quantify differences in marsh food webs between oiled and unoiled sites to test the hypothesis that oiling has resulted in simpler and less resilient food webs. Diets and food web connections were quantified through a combination of stomach content, stable isotope, and fatty acid analysis. The combination of these three techniques provides a more robust approach to quantifying trophic relationships than any of these methods alone. Stomach content analysis provides a detailed snapshot of diets, while fatty acid and stable isotopes reflect diets averaged over weeks to months. Initial results focus on samples collected in May 2015 from a range of terrestrial and aquatic consumer species, including insects, mollusks, crustaceans, and piscivorous fishes.
Peiman, Kathryn S; Birnie-Gauvin, Kim; Larsen, Martin H; Colborne, Scott F; Gilmour, Kathleen M; Aarestrup, Kim; Willmore, William G; Cooke, Steven J
2017-08-01
The causes and consequences of trait relationships within and among the categories of physiology, morphology, and life-history remain poorly studied. Few studies cross the boundaries of these categories, and recent reviews have pointed out not only the dearth of evidence for among-category correlations but that trait relationships may change depending on the ecological conditions a population faces. We examined changes in mean values and correlations between traits in a partially migrant population of brown trout when migrant sea-run and resident stream forms were breeding sympatrically. Within each sex and life-history strategy group, we used carbon and nitrogen stable isotopes to assess trophic level and habitat use; assessed morphology which reflects swimming and foraging ability; measured circulating cortisol as it is released in response to stressors and is involved in the transition from salt to freshwater; and determined oxidative status by measuring oxidative stress and antioxidants. We found that sea-run trout were larger and had higher values of stable isotopes, cortisol and oxidative stress compared to residents. Most groups showed some correlations between morphology and diet, indicating individual resource specialization was occurring, and we found consistent correlations between morphology and cortisol. Additionally, relationships differed between the sexes (cortisol and oxidative status were related in females but not males) and between life-history strategies (habitat use was related to oxidative status in male sea-run trout but not in either sex of residents). The differing patterns of covariation between the two life-history strategies and between the sexes suggest that the relationships among phenotypic traits are subjected to different selection pressures, illustrating the importance of integrating multiple phenotypic measures across different trait categories and contrasting life-history strategies. Copyright © 2017 Elsevier GmbH. All rights reserved.
Trophic position of soil nematodes in boreal forests as indicated by stable isotope analysis
NASA Astrophysics Data System (ADS)
Kudrin, Alexey; Tsurikov, Sergey
2016-04-01
Despite the well-developed trophic classification of soil nematodes, their position in soil food webs is still little understood. Observed deviations from the typical feeding strategy indicate that a simplified trophic classification probably does not fully reflect actual trophic interactions. Furthermore, the extent and functional significance of nematodes as prey for other soil animals remains unknown. Stable isotope analysis (SIA) is powerful tool for investigating the structure of soil food webs, but its application to the study of soil nematodes has been limited to only a few studies. We used stable isotope analysis to gain a better understanding of trophic links of several groups of soil nematodes in two boreal forests on albeluvisol. We investigated four taxonomic groups of nematodes: Mononchida, Dorylaimida, Plectidae and Tylenchidae (mostly from the genus Filenchus), that according to the conventional trophic classification represent predators, omnivores, bacterivores and root-fungal feeders, respectively. To assess the trophic position of nematodes, we used a comparison against a set of reference species including herbivorous, saprophagous and predatory macro-invertebrates, oribatid and mesostigmatid mites, and collembolans. Our results suggest that trophic position of the investigated groups of soil nematodes generally corresponds to the conventional classification. All nematodes were enriched in 13C relative to Picea abies roots and litter, and mycorrhizal fungal mycelium. Root-fungal feeders Tylenchidae had δ15N values similar to those of earthworms, enchytraeids and Entomobrya collembolans, but slightly lower δ13C values. Bacterivorous Plectidae were either equal or enriched in 15N compared with saprophagous macroinvertebrates and most mesofauna species. Omnivorous Dorylaimida and predatory Mononchida were further enriched in 15N and their isotopic signature was similar to that of predatory arthropods. These data confirm a clear separation of nematodes into saprophagous/microbial feeders (Tylenchidae and Plectidae) and predators (Mononchida and Dorylaimida). Furthermore, they suggest that Mononchida and Dorylaimida use different sources of carbon, though exact trophic links remain unclear. As a rule, nematodes were either equal or higher in δ15N values relative to most microbivorous microarthropods, contradicting an emerging view that soil nematodes can be an important prey for a wide range of oribatid mites and collembolans. Patterns of the isotopic signatures suggest that soil nematodes and the bulk of soil animals depend on resources derived from a dominating upper-canopy tree (Picea abies) via the detrital, rather than mycorrhizal pathway.
Intermediate-consumer identity and resources alter a food web with omnivory.
Kneitel, Jamie M
2007-07-01
1. Omnivory is an important interaction that has been the centre of numerous theoretical and empirical studies in recent years. Most of these studies examine the conditions necessary for coexistence between an omnivore and an intermediate consumer. Trait variation in ecological interactions (competition and predator tolerance) among intermediate consumers has not been considered in previous empirical studies despite the evidence that variation in species-specific traits can have important community-level effects. 2. I conducted a multifactorial microcosm experiment using species from the Sarracenia purpurea phytotelmata community, organisms that inhabit the water collected within its modified leaves. The basal trophic level consisted of bacterial decomposers, the second trophic level (intermediate consumers) consisted of protozoa and rotifers, and the third trophic level (omnivore) were larvae of the pitcher plant mosquito Wyeomyia smithii. Trophic level number (1, 2 and 3), resources (low and high), omnivore density (low and high) and intermediate consumer (monoculture of five protozoa and rotifers) identity were manipulated. Abundance of the basal trophic level, intermediate consumers, and growth of the omnivore were measured, as well as time to extinction (intermediate consumers) and time to pupation (mosquito larvae). 3. The presence of different intermediate consumers affected both bacteria abundance and omnivore growth. At high resource levels, Poteriochromonas, Colpidium and Habrotrocha rosa reduced bacteria densities greater than omnivore reduction of bacteria. Mosquito larvae did not pupate at low resource levels except when Poteriochromonas and Colopoda were present as intermediate consumers. Communities with H. rosa were the only ones consistent with the prediction that omnivores should exclude intermediate consumers at high resources. 4. These results had mixed support for predictions from omnivory food web theory. Intermediate consumers responded and affected this community differently under different community structures and resource levels. Consequently, variation in species-specific traits can have important population- and community-level effects and needs to be considered in food webs with omnivory.
Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann
2015-01-01
The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased connectedness and resource recycling.
Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann
2015-01-01
The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased connectedness and resource recycling. PMID:26559062
Lumpkin, Will; Hurtado, Paul J.; Dyer, Lee A.
2018-01-01
Most of earth’s biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly; thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models. The results presented here will help develop realistic predictions of the relationships between consumer diet breadth, interaction diversity, and species diversity within multi-trophic communities, which is critical for the conservation of biodiversity in this period of accelerated global change. PMID:29579077
Pardikes, Nicholas A; Lumpkin, Will; Hurtado, Paul J; Dyer, Lee A
2018-01-01
Most of earth's biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly; thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models. The results presented here will help develop realistic predictions of the relationships between consumer diet breadth, interaction diversity, and species diversity within multi-trophic communities, which is critical for the conservation of biodiversity in this period of accelerated global change.
Powell, David E; Suganuma, Noriyuki; Kobayashi, Keiji; Nakamura, Tsutomu; Ninomiya, Kouzo; Matsumura, Kozaburo; Omura, Naoki; Ushioka, Satoshi
2017-02-01
Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS), specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were evaluated in the pelagic marine food web of Tokyo Bay, Japan. Polychlorinated biphenyl (PCB) congeners that are "legacy" chemicals known to bioaccumulate in aquatic organisms and biomagnify across aquatic food webs were used as a benchmark chemical (CB-180) to calibrate the sampled food web and as a reference chemical (CB-153) to validate the results. Trophic magnification factors (TMFs) were calculated from slopes of ordinary least-squares (OLS) regression models and slopes of bootstrap regression models, which were used as robust alternatives to the OLS models. Various regression models were developed that incorporated benchmarking to control bias associated with experimental design, food web dynamics, and trophic level structure. There was no evidence from any of the regression models to suggest biomagnification of cVMS in Tokyo Bay. Rather, the regression models indicated that trophic dilution of cVMS, not trophic magnification, occurred across the sampled food web. Comparison of results for Tokyo Bay to results from other studies indicated that bioaccumulation of cVMS was not related to type of food web (pelagic vs demersal), environment (marine vs freshwater), species composition, or location. Rather, results suggested that differences between study areas was likely related to food web dynamics and variable conditions of exposure resulting from non-uniform patterns of organism movement across spatial concentration gradients. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lorrain, Anne; Graham, Brittany S.; Popp, Brian N.; Allain, Valérie; Olson, Robert J.; Hunt, Brian P. V.; Potier, Michel; Fry, Brian; Galván-Magaña, Felipe; Menkes, Christophe E. R.; Kaehler, Sven; Ménard, Frédéric
2015-03-01
Assessment of isotopic compositions at the base of food webs is a prerequisite for using stable isotope analysis to assess foraging locations and trophic positions of marine organisms. Our study represents a unique application of stable-isotope analyses across multiple trophic levels (primary producer, primary consumer and tertiary consumer) and over a large spatial scale in two pelagic marine ecosystems. We found that δ15N values of particulate organic matter (POM), barnacles and phenylalanine from the muscle tissue of yellowfin tuna all showed similar spatial patterns. This consistency suggests that isotopic analysis of any of these can provide a reasonable proxy for isotopic variability at the base of the food web. Secondly, variations in the δ15N values of yellowfin tuna bulk-muscle tissues paralleled the spatial trends observed in all of these isotopic baseline proxies. Variation in isotopic composition at the base of the food web, rather than differences in tuna diet, explained the 11‰ variability observed in the bulk-tissue δ15N values of yellowfin tuna. Evaluating the trophic position of yellowfin tuna using amino-acid isotopic compositions across the western Indian and equatorial Pacific Oceans strongly suggests these tuna occupy similar trophic positions, albeit absolute trophic positions estimated by this method were lower than expected. This study reinforces the importance of considering isotopic baseline variability for diet studies, and provides new insights into methods that can be applied to generate nitrogen isoscapes for worldwide comparisons of top predators in marine ecosystems.
Direct and indirect trophic effects of predator depletion on basal trophic levels.
Chen, Huili; Hagerty, Steven; Crotty, Sinead M; Bertness, Mark D
2016-02-01
Human population growth and development have heavily degraded coastal ecosystems with cascading impacts across multiple trophic levels. Understanding both the direct and indirect trophic effects of human activities is important for coastal conservation. In New England, recreational overfishing has triggered a regional trophic cascade. Predator depletion releases the herbivorous purple marsh crab from consumer control and leads to overgrazing of marsh cordgrass and salt marsh die-off. The direct and indirect trophic effects of predator depletion on basal trophic levels, however, are not understood. Using observational and experimental data, we examined the hypotheses that (1) direct trophic effects of predator depletion decrease meiofaunal abundance by releasing deposit feeding fiddler crabs from consumer control, and/or (2) indirect trophic effects of predator depletion increase meiofaunal abundance by releasing blue carbon via the erosion of centuries of accreted marsh peat. Experimental deposit feeder removal led to 23% higher meiofaunal density at die-off than at healthy sites, while reciprocally transplanting sediment from die-off and healthy sites revealed that carbon-rich die-off sediment increased meiofauna density by over 164%: six times stronger than direct trophic effects. Recovering sites had both carbon-rich sediment and reduced deposit feeding leading to higher meiofauna densities than both die-off and healthy sites. This suggests that consequences of the trophic downgrading of coastal habitats can be driven by both direct and indirect trophic mechanisms that may vary in direction and magnitude, making their elucidation dependent on experimental manipulations.
Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng
2016-10-01
The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na 2 CO 3 amendment or NaHCO 3 amendment. However, Na 2 CO 3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L -1 Na 2 CO 3 amendment and 15 g L -1 sea salt, respectively.
Decoupled diversity dynamics in green and brown webs during primary succession in a saltmarsh.
Schrama, Maarten; van der Plas, Fons; Berg, Matty P; Olff, Han
2017-01-01
Terrestrial ecosystems are characterized by a strong functional connection between the green (plant-herbivore-based) and brown (detritus-detritivore-based) parts of the food web, which both develop over successional time. However, the interlinked changes in green and brown food web diversity patterns in relation to key ecosystem processes are rarely studied. Here, we demonstrate changes in species richness, diversity and evenness over a wide range of invertebrate green and brown trophic groups during 100 years of primary succession in a saltmarsh ecosystem, using a well-calibrated chronosequence. We contrast two hypotheses on the relationship between green and brown food web diversity across succession: (i) 'coupled diversity hypothesis', which predicts that all trophic groups covary similarly with the main drivers of successional ecosystem assembly vs. (ii) the 'decoupled diversity hypothesis', where green and brown trophic groups diversity respond to different drivers during succession. We found that, while species richness for plants and invertebrate herbivores (green web groups) both peaked at intermediate productivity and successional age, the diversity of macrodetritivores, microarthropod microbivores and secondary consumers (brown web groups) continuously increased towards the latest successional stages. These results suggest that green web trophic groups are mainly driven by vegetation parameters, such as the amount of bare soil, vegetation biomass production and vegetation height, while brown web trophic groups are mostly driven by the production and standing stock of dead organic material and soil development. Our results show that plant diversity cannot simply be used as a proxy for the diversity of all other species groups that drive ecosystem functioning, as brown and green diversity components in our ecosystem responded differently to successional gradients. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem.
Amundrud, Sarah L; Srivastava, Diane S
2015-07-01
Species and trophic richness often increase with habitat size. Although many ecological processes have been evoked to explain both patterns, the environmental stress associated with small habitats has rarely been considered. We propose that larger habitats may be species rich simply because their environmental conditions are within the fundamental niche of more species; larger habitats may also have more trophic levels if traits of predators render them vulnerable to environmental stress. We test this hypothesis using the aquatic insect larvae in water-filled bromeliads. In bromeliads, the probability of desiccation is greatest in small plants. For the 10 most common bromeliad insect taxa, we ask whether differences in drought tolerance and regional abundances between taxa predict community and trophic composition over a gradient of bromeliad size. First, we used bromeliad survey data to calculate the mean habitat size of occurrence of each taxon. Comparing the observed mean habitat size of occurrence to that expected from random species assembly based on differences in their regional abundances allowed us to obtain habitat size sensitivity indices (as Z scores) for the various insect taxa. Second, we obtained drought sensitivity indices by subjecting individual insects to drought and measuring the effects on relative growth rates in a mesocosm experiment. We found that drought sensitivity strongly, predicts habitat size sensitivity in bromeliad insects. However, an increase in trophic richness with habitat size could not be explained by an increased sensitivity of predators to drought, but rather by sampling effects, as predators were rare compared to lower trophic levels. This finding suggests that physiological tolerance to environmental stress can be relevant in explaining the universal increase in species with habitat size.
The trophic responses of two different rodent-vector-plague systems to climate change.
Xu, Lei; Schmid, Boris V; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr; Zhang, Zhibin
2015-02-07
Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Bhuvaneshwari, M; Thiagarajan, Vignesh; Nemade, Prateek; Chandrasekaran, N; Mukherjee, Amitava
2018-01-01
The recent increase in nanoparticle (P25 TiO 2 NPs) usage has led to concerns regarding their potential implications on environment and human health. The food chain is the central pathway for nanoparticle transfer from lower to high trophic level organisms. The current study relies on the investigation of toxicity and trophic transfer potential of TiO 2 NPs from marine algae Dunaliella salina to marine crustacean Artemia salina. Toxicity was measured in two different modes of exposure such as waterborne (exposure of TiO 2 NPs to Artemia) and dietary exposure (NP-accumulated algal cells are used to feed the Artemia). The toxicity and accumulation of TiO 2 NPs in marine algae D. salina were also studied. Artemia was found to be more sensitive to TiO 2 NPs (48h LC 50 of 4.21mgL -1 ) as compared to marine algae, D. salina (48h LC 50 of 11.35mgL -1 ). The toxicity, uptake, and accumulation of TiO 2 NPs were observed to be more in waterborne exposure as compared to dietary exposure. Waterborne exposure seemed to cause higher ROS production and antioxidant enzyme (SOD and CAT) activity as compared to dietary exposure of TiO 2 NPs in Artemia. There were no observed biomagnification (BMF) and trophic transfer from algae to Artemia through dietary exposure. Histopathological studies confirmed the morphological and internal damages in Artemia. This study reiterates the possible effects of the different modes of exposure on trophic transfer potential of TiO 2 NPs and eventually the consequences on aquatic environment. Copyright © 2017 Elsevier Inc. All rights reserved.
Divergent trophic levels in two cryptic sibling bat species.
Siemers, Björn M; Greif, Stefan; Borissov, Ivailo; Voigt-Heucke, Silke L; Voigt, Christian C
2011-05-01
Changes in dietary preferences in animal species play a pivotal role in niche specialization. Here, we investigate how divergence of foraging behaviour affects the trophic position of animals and thereby their role for ecosystem processes. As a model, we used two closely related bat species, Myotis myotis and M. blythii oxygnathus, that are morphologically very similar and share the same roosts, but show clear behavioural divergence in habitat selection and foraging. Based on previous dietary studies on synanthropic populations in Central Europe, we hypothesised that M. myotis would mainly prey on predatory arthropods (i.e., secondary consumers) while M. blythii oxygnathus would eat herbivorous insects (i.e., primary consumers). We thus expected that the sibling bats would be at different trophic levels. We first conducted a validation experiment with captive bats in the laboratory and measured isotopic discrimination, i.e., the stepwise enrichment of heavy in relation to light isotopes between consumer and diet, in insectivorous bats for the first time. We then tested our trophic level hypothesis in the field at an ancient site of natural coexistence for the two species (Bulgaria, south-eastern Europe) using stable isotope analyses. As predicted, secondary consumer arthropods (carabid beetles; Coleoptera) were more enriched in (15)N than primary consumer arthropods (tettigoniids; Orthoptera), and accordingly wing tissue of M. myotis was more enriched in (15)N than tissue of M. blythii oxygnathus. According to a Bayesian mixing model, M. blythii oxygnathus indeed fed almost exclusively on primary consumers (98%), while M. myotis ate a mix of secondary (50%), but also, and to a considerable extent, primary consumers (50%). Our study highlights that morphologically almost identical, sympatric sibling species may forage at divergent trophic levels, and, thus may have different effects on ecosystem processes.
Puerta, Patricia; Hunsicker, Mary E.; Quetglas, Antoni; Álvarez-Berastegui, Diego; Esteban, Antonio; González, María; Hidalgo, Manuel
2015-01-01
Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla) and sea surface temperature (SST), and trophic (prey density) conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid) across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents a valuable approach for understanding the spatially variant ecology of cephalopod populations, which is important for fisheries and ecosystem management. PMID:26201075
Evans, Heather M.; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J.; Pickett, Carol L.
2017-01-01
ABSTRACT The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. PMID:28694293
NASA Technical Reports Server (NTRS)
MorenoMadrinan, Max J.; Allhamdan, Mohammad; Rickman, Douglas L.; Estes, Maury
2010-01-01
This slide presentation reviews the use of remote sensing to monitor the relationships between the urban development and water quality in Tampa Bay and the tributaries. It examines the changes in land cover/land use (LU/LC) and the affects that this change has on the water quality of Tampa Bay, Lake Thonotosassa and the tributaries, and that shows the ways that these changes can be estimated with remote sensing.
Yang, Ying; Cao, Jin-Xiang; Pei, Guo-Feng; Liu, Guo-Xing
2015-11-01
Benthic diatom assemblages on the natural substrata were investigated at 21 sites of the Ganhe River watershed (China) once per season and in addition, early spring in 2013. A total of 487 diatom taxa from 36 genera were identified during five investigations. The assemblages were dominated by Achnanthidium minutissimum (Kützing) Czarnecki and Cocconeis placentula in the rural reach, whereas Navicula, Nitzschia, and Gomphonema species were characteristic of urbanized sites. Our results suggest that biodiversity was positively related to high nutrient levels and strongly negatively related to diatom-based indices. The periphyton biomass (expressed as chlorophyll a and ash-free dry mass) was not related to water quality. Canonical correspondence analysis (CCA) showed that the nutrient concentration gradient was the most important factor that affected the diatom assemblage composition and species distribution. The diatom-based indices (specific pollution sensitivity index (IPS), biological diatom index (IBD), and trophic diatom index (TDI)) were significantly positively correlated with water quality and are adequate for use in China. Slight changes in the biodiversity and diatom-based indices followed a temporal pattern. The species composition was less related to the season or hydrological characteristics of the river but more strongly related to differences in the trophic status. In this region, urbanization masked the impact of rural land use on benthic diatoms. The research will expand the understanding of using benthic diatom assemblages for water quality monitoring in urban streams and improve watershed-scale management and conservation efforts in the Ganhe River, China.
Paredes, E; Perez, S; Rodil, R; Quintana, J B; Beiras, R
2014-06-01
Due to the concern about the negative effects of exposure to sunlight, combinations of UV filters like 4-Methylbenzylidene-camphor (4-MBC), Benzophenone-3 (BP-3), Benzophenone-4 (BP-4) and 2-Ethylhexyl-4-methoxycinnamate (EHMC) are being introduced in all kind of cosmetic formulas. These chemicals are acquiring a concerning status due to their increasingly common use and the potential risk for the environment. The aim of this study is to assess the behaviour of these compounds in seawater, the toxicity to marine organisms from three trophic levels including autotrophs (Isochrysis galbana), herbivores (Mytilus galloprovincialis and Paracentrotus lividus) and carnivores (Siriella armata), and set a preliminary assessment of potential ecological risk of UV filters in coastal ecosystems. In general, EC50 results show that both EHMC and 4-MBC are the most toxic for our test species, followed by BP-3 and finally BP-4. The most affected species by the presence of these UV filters are the microalgae I. galbana, which showed toxicity thresholds in the range of μg L(-1) units, followed by S. armata>P. Lividus>M. galloprovincialis. The UV filter concentrations measured in the sampled beach water were in the range of tens or even hundreds of ng L(-1). The resulting risk quotients showed appreciable environmental risk in coastal environments for BP-3 and 4-MBC. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Almeida, Mariana; Frutos, Inmaculada; Tecchio, Samuele; Lampadariou, Nikolaos; Company, Joan B.; Ramirez-Llodra, Eva; Cunha, Marina R.
2017-03-01
Crustacean suprabenthic abundance, community structure, α-diversity (both taxonomic and trophic) and β-diversity were studied along a West-East gradient of oligotrophy in the deep Mediterranean Sea. The assemblages were sampled with a suprabenthic sledge in three regions (western, central and eastern basins) at three water depths (1200, 2000 and 3000 m) in May-June 2009. Environmental data were obtained at each sampling location including sediment properties, oceanographic variables near the seafloor and in the water column, and proxies of epipelagic productivity at the surface. Our results, concerning the crustacean component of the suprabenthos, showed complex trends in community structure and biodiversity across different spatial scales (longitudinal, bathymetric, and near-bottom distribution). A decrease in the number of species and abundance, accompanied by changes in the trophic structure of the assemblages were observed from West to East. In the eastern region the assemblages were impoverished in number of trophic guilds and trophic diversity. The West-East oligotrophic gradient was identified as the main driver in community structure as shown by the significant correlation with trophic environmental variables. Differences in community structure across regions were more marked at greater depths, while at the shallower sites assemblages were more similar. Within each basin, abundance, number of species and number of trophic groups decreased with depth, showing high turnover rates between 1200 and 2000 m depths. The small-scale (0-150 cm) vertical distribution of the suprabenthos was interpreted in relation to the species' functional traits (e.g. swimming activity, migratory behaviour, bottom dependence, feeding habits). Bottom-dependent and more mobile components of the suprabenthos were apparently responding differently to the various environmental challenges imposed by the large-scale longitudinal and bathymetric gradients. We propose that the bathyal suprabenthos in the Mediterranean Sea may be essentially modulated by environmental sorting, but while the more mobile faunal component has more efficient dispersal mechanisms, the bottom-dependent component may be affected by limited dispersal. However, this empirical interpretation has still to be proved given the important caveats of our study (e.g. typically low densities of the Mediterranean bathyal suprabenthos; limited number of samples; difficulties in standardization inherent to suprabenthic sampling operations in the deep sea).
Rice, Todd W; Wheeler, Arthur P; Thompson, B Taylor; Steingrub, Jay; Hite, R Duncan; Moss, Marc; Morris, Alan; Dong, Ning; Rock, Peter
2012-02-22
The amount of enteral nutrition patients with acute lung injury need is unknown. To determine if initial lower-volume trophic enteral feeding would increase ventilator-free days and decrease gastrointestinal intolerances compared with initial full enteral feeding. The EDEN study, a randomized, open-label, multicenter trial conducted from January 2, 2008, through April 12, 2011. Participants were 1000 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Participants were randomized to receive either trophic or full enteral feeding for the first 6 days. After day 6, the care of all patients who were still receiving mechanical ventilation was managed according to the full feeding protocol. Ventilator-free days to study day 28. Baseline characteristics were similar between the trophic-feeding (n = 508) and full-feeding (n = 492) groups. The full-feeding group received more enteral calories for the first 6 days, about 1300 kcal/d compared with 400 kcal/d (P < .001). Initial trophic feeding did not increase the number of ventilator-free days (14.9 [95% CI, 13.9 to 15.8] vs 15.0 [95% CI, 14.1 to 15.9]; difference, -0.1 [95% CI, -1.4 to 1.2]; P = .89) or reduce 60-day mortality (23.2% [95% CI, 19.6% to 26.9%] vs 22.2% [95% CI, 18.5% to 25.8%]; difference, 1.0% [95% CI, -4.1% to 6.3%]; P = .77) compared with full feeding. There were no differences in infectious complications between the groups. Despite receiving more prokinetic agents, the full-feeding group experienced more vomiting (2.2% vs 1.7% of patient feeding days; P = .05), elevated gastric residual volumes (4.9% vs 2.2% of feeding days; P < .001), and constipation (3.1% vs 2.1% of feeding days; P = .003). Mean plasma glucose values and average hourly insulin administration were both higher in the full-feeding group over the first 6 days. In patients with acute lung injury, compared with full enteral feeding, a strategy of initial trophic enteral feeding for up to 6 days did not improve ventilator-free days, 60-day mortality, or infectious complications but was associated with less gastrointestinal intolerance. clinicaltrials.gov Identifiers: NCT00609180 and NCT00883948.
Sanz-Lázaro, Carlos; Belando, María Dolores; Marín-Guirao, Lázaro; Navarrete-Mier, Francisco; Marín, Arnaldo
2011-02-01
The aim of this work was to study the dispersion of particulate wastes derived from marine fish farming and correlate the data with the impact on the seabed. Carbon and nutrients were correlated with the physico-chemical parameters of the sediment and the benthic community structure. The sedimentation rates in the benthic system were 1.09, 0.09 and 0.13 g m⁻² day⁻¹ for particulate organic carbon (POC), particulate organic nitrogen (PON) and total phosphorus (TP), respectively. TP was a reliable parameter for establishing the spatial extent of the fish farm particulate wastes. Fish farming was seen to influence not only physico-chemical and biological parameters but also the functioning of the ecosystem from a trophic point of view, particularly affecting the grazers and the balance among the trophic groups. POC, PON and TP sedimentation dynamics reflected the physico-chemical status of the sediment along the distance gradient studied, while their impact on the benthic community extended further. Therefore, the level of fish farm impact on the benthic community might be underestimated if it is assessed by merely taking into account data obtained from waste dispersion rates. The benthic habitat beneath the fish farm, Maërl bed, was seen to be very sensitive to aquaculture impact compared with other unvegetated benthic habitats, with an estimated POC-carrying capacity to maintain current diversity of 0.087 g C m⁻² day⁻¹ (only 36% greater than the basal POC input). Environmental protection agencies should define different aquaculture waste load thresholds for different benthic communities affected by finfish farming, according to their particular degree of sensitivity, in order to maintain natural ecosystem functions. © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zalota, A. K.; Kolyuchkina, G. A.; Tiunov, A. V.; Biriukova, S. V.; Spiridonov, V. A.
2017-03-01
This work concerns the trophic web positioning of the alien crab Rhithropanopeus harrisii and other common marine invertebrate species and fishes in the benthic ecosystem of the shallows of Taman Bay, Sea of Azov. The base of the trophic web in this system is composed of phytoplankton, macrophytes (algae and marine grasses), and reeds that use atmospheric carbon for photosynthesis. Analysis of the isotopic composition of nitrogen and carbon has shown that although marine grasses are dominating primary producers in the shallows of the bay, primary consumers (such as Cerastoderma glaucum, Porifera gen. sp., Gammarus aequicauda, Deshayesorchestia deshayesii and Idotea balthica) only partially use this organic source; instead, they use a combination of different sources of primary production. It has been shown that the food source of the alien crab is primarily of animal origin. In Taman Bay, R. harrisii is on the same trophic level as other carnivores/scavengers: benthic fishes Syngnathus nigrolineatus, Gobius spp. and native crab Pilumnus hirtellus and shrimp Palaemon adspersus.
Brasso, Rebecka L; Chiaradia, André; Polito, Michael J; Raya Rey, Andrea; Emslie, Steven D
2015-08-15
The wide geographic distribution of penguins (Order Sphenisciformes) throughout the Southern Hemisphere provided a unique opportunity to use a single taxonomic group as biomonitors of mercury among geographically distinct marine ecosystems. Mercury concentrations were compared among ten species of penguins representing 26 geographically distinct breeding populations. Mercury concentrations were relatively low (⩽2.00ppm) in feathers from 18/26 populations considered. Population-level differences in trophic level explained variation in mercury concentrations among Little, King, and Gentoo penguin populations. However, Southern Rockhopper and Magellanic penguins breeding on Staten Island, Tierra del Fuego, had the highest mercury concentrations relative to their conspecifics despite foraging at a lower trophic level. The concurrent use of stable isotope and mercury data allowed us to document penguin populations at the greatest risk of exposure to harmful concentrations of mercury as a result of foraging at a high trophic level or in geographic 'hot spots' of mercury availability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Trophic links and nutritional condition of fish early life stages in a temperate estuary.
Primo, Ana Lígia; Correia, Catarina; Marques, Sónia Cotrim; Martinho, Filipe; Leandro, Sérgio; Pardal, Miguel
2018-02-01
The physiological and nutritional condition of fish larvae affect their survival and thus, the success of estuaries as nursery areas. Fatty acid composition has been useful to determine fish nutritional condition, as well as trophic relationships in marine organisms. The present study analyses the fatty acid (FA) composition of fish larvae during spring and summer in the Mondego estuary, Portugal. FA composition, trophic markers (FATM) and fish nutritional condition was analysed for Gobiidae and Sardina pilchardus larvae and the relationships with the local environment evaluated. Results showed that both taxa differed mainly in the stearic acid (C18:0) and eicosapentaenoic acid (EPA) content, with important amounts in Gobiidae and S. pilchardus, respectively. Gobiidae larvae presenting high nutritional condition and omnivore FATM. Fatty acid composition seems to be related with their natural habitat selection and food availability, while fish larvae nutritional condition also showed a strong link with the water temperature and presence of potential predators. This study suggests that FA composition can be a useful tool in assessing planktonic trophic relationships and in identifying species natural habitat. Copyright © 2017. Published by Elsevier Ltd.
Dimensionality of consumer search space drives trophic interaction strengths.
Pawar, Samraat; Dell, Anthony I; Savage, Van M
2012-06-28
Trophic interactions govern biomass fluxes in ecosystems, and stability in food webs. Knowledge of how trophic interaction strengths are affected by differences among habitats is crucial for understanding variation in ecological systems. Here we show how substantial variation in consumption-rate data, and hence trophic interaction strengths, arises because consumers tend to encounter resources more frequently in three dimensions (3D) (for example, arboreal and pelagic zones) than two dimensions (2D) (for example, terrestrial and benthic zones). By combining new theory with extensive data (376 species, with body masses ranging from 5.24 × 10(-14) kg to 800 kg), we find that consumption rates scale sublinearly with consumer body mass (exponent of approximately 0.85) for 2D interactions, but superlinearly (exponent of approximately 1.06) for 3D interactions. These results contradict the currently widespread assumption of a single exponent (of approximately 0.75) in consumer-resource and food-web research. Further analysis of 2,929 consumer-resource interactions shows that dimensionality of consumer search space is probably a major driver of species coexistence, and the stability and abundance of populations.
Lyons, Kady; Carlisle, Aaron; Preti, Antonella; Mull, Christopher; Blasius, Mary; O'Sullivan, John; Winkler, Chuck; Lowe, Christopher G
2013-09-01
Organic contaminant and total mercury concentrations were compared in four species of lamniform sharks over several age classes to examine bioaccumulation patterns and gain insights into trophic ecology. Contaminants found in young of the year (YOY) sharks were assumed to be derived from maternal sources and used as a proxy to investigate factors that influence maternal offloading processes. YOY white (Carcharodon carcharias) and mako (Isurus oxyrinchus) sharks had comparable and significantly higher concentrations of PCBs, DDTs, pesticides, and mercury than YOY thresher (Alopias vulpinus) or salmon (Lamna ditropis) sharks. A significant positive relationship was found between YOY contaminant loads and maternal trophic position, suggesting that trophic ecology is one factor that plays an important role in maternal offloading. Differences in organic contaminant signatures and contaminant concentration magnitudes among species corroborated what is known about species habitat use and may be used to provide insights into the feeding ecology of these animals. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research.
Svenning, Jens-Christian; Pedersen, Pil B M; Donlan, C Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M; Sandel, Brody; Sandom, Christopher J; Terborgh, John W; Vera, Frans W M
2016-01-26
Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human-wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology.
Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research
Svenning, Jens-Christian; Pedersen, Pil B. M.; Donlan, C. Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M.; Sandel, Brody; Sandom, Christopher J.; Terborgh, John W.; Vera, Frans W. M.
2016-01-01
Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human–wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology. PMID:26504218
Jardillier, Ludwig; Boucher, Delphine; Personnic, Sébastien; Jacquet, Stéphan; Thénot, Aurélie; Sargos, Denis; Amblard, Christian; Debroas, Didier
2005-08-01
The effect of nutrient resources (N and P enrichment) and of different grazing communities on the prokaryotic community composition (PCC) was investigated in two freshwater ecosystems: Sep reservoir (oligomesotrophic) and lake Aydat (eutrophic). An experimental approach using microcosms was chosen, that allowed control of both predation levels, by size fractionation of predators, and resources, by nutrient amendments. Changes in PCC were monitored by fluorescent in situ hybridization (FISH) and terminal-restriction fragment length polymorphism (T-RFLP). The main mortality agents were (i) heterotrophic nanoflagellates and virus-like particles in Aydat and (ii) cladocerans in Sep. All the nutritional elements assayed (N-NO3, P-PO4 and N-NH4) together with prokaryotic production (PP) always accounted for a significant part of the variations in PCC. Overall, prokaryotic diversity was mainly explained by resources in Sep, by a comparable contribution of resources and mortality factors in lake Aydat and, to a lesser extent, by the combined action of both.
Schlecht, Martin Thomas; Säumel, Ina
2015-09-01
Health effects by consuming urban garden products are discussed controversially due to high urban pollution loads. We sampled wild edible mushrooms of different habitats and commercial mushroom cultivars exposed to high traffic areas within Berlin, Germany. We determined the content of cadmium and lead in the fruiting bodies and analysed how the local setting shaped the concentration patterns. EU standards for cultivated mushrooms were exceeded by 86% of the wild mushroom samples for lead and by 54% for cadmium but not by mushroom cultures. We revealed significant differences in trace metal content depending on species, trophic status, habitat and local traffic burden. Higher overall traffic burden increased trace metal content in the biomass of wild mushrooms, whereas cultivated mushrooms exposed to inner city high traffic areas had significantly lower trace metal contents. Based on these we discuss the consequences for the consumption of mushrooms originating from urban areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Boyle, M D; Ebert, D A; Cailliet, G M
2012-04-01
In this study, fishes and invertebrates collected from the continental slope (1000 m) of the eastern North Pacific Ocean were analysed using stable-isotope analysis (SIA). Resulting trophic positions (T(P) ) were compared to known diets and habitats from the literature. Dual isotope plots indicated that most species groups (invertebrates and fishes) sorted as expected along the carbon and nitrogen axes, with less intraspecific variability than interspecific variability. Results also indicated an isotopically distinct benthic and pelagic food web, as the benthic food web was more enriched in both nitrogen and carbon isotopes. Trophic positions from SIA supported this finding, resulting in the assignment of fishes to different trophic positions from those expected based on published dietary information. These differences can be explained largely by the habitat of the prey and the percentage of the diet that was scavenged. A mixing model estimated dietary contributions of prey similar to those of the known diet of Bathyraja trachura from stomach-content analysis (SCA). Linear regressions indicated that trophic positions calculated from SIA and SCA, when plotted against B. trachura total length for 32 individuals, exhibited similar variation and patterns. Only the T(P) from SCA yielded significant results (stomach content: P < 0·05, stable isotope: P > 0·05). © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Trophic dynamics of deep-sea megabenthos are mediated by surface productivity.
Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva
2013-01-01
Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ(13)C and δ(15)N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation.
Trophic Dynamics of Deep-Sea Megabenthos Are Mediated by Surface Productivity
Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva
2013-01-01
Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ13C and δ15N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation. PMID:23691098
Zhang, Wei; Guo, Zhiqiang; Zhou, Yanyan; Chen, Lizhao; Zhang, Li
2016-10-01
Marine fish can accumulate high arsenic (As) concentrations, with arsenobetaine (AsB) as the major species in the body. However, whether the high AsB accumulation in fish occurs mainly through trophic transfer from diet or biotransformation in the fish body remains unclear. This study investigated the trophic transfer and biotransformation of As in two marine fish (seabream Acanthopagrus schlegeli and grunt Terapon jarbua) fed artificial and clam diets for 28 d. The different diets contained different proportions of inorganic [As(III) and As(V)] and organic [methylarsenate (MMA), dimethylarsenate (DMA), and AsB] As compounds. Positive correlations were observed between the accumulated As concentrations and AsB concentrations in both fish, suggesting that AsB contributed to the accumulation of total As in marine fish. Based on the calculated total input of AsB and detected AsB concentrations in the muscle of the seabream and grunt, the ingested amounts of AsB accounted for 0.1-0.3%, 8.1-14.4% of detected AsB concentrations, respectively, in the muscle of seabream and grunt fish species, suggesting that AsB was mainly biotransformed versus trophically transferred in these marine fish. In summary, this study demonstrates that marine fish prefer to biotransform inorganic As forms into AsB, resulting in high bioaccumulation of total As. Copyright © 2016 Elsevier B.V. All rights reserved.
Fish trophic level and the similarity of non-specific larval parasite assemblages.
Timi, J T; Rossin, M A; Alarcos, A J; Braicovich, P E; Cantatore, D M P; Lanfranchi, A L
2011-03-01
Whereas the effect of parasites on food webs is increasingly recognised and has been extensively measured and modelled, the effect of food webs on the structure of parasite assemblages has not been quantified in a similar way. Here, we apply the concept of decay in community similarity with increasing distance, previously used for parasites in geographical, phylogenetic and ontogenetic contexts, to differences in the trophic level (TL) based on diet composition of fishes. It is proposed as an accurate quantitative method to measure rates of assemblage change as a function of host feeding habits and is applied, to our knowledge for the first time, across host species in marine waters. We focused on a suite of 15 species of trophically-transmitted and non-specific larval helminths across 16 fish species (1783 specimens, six orders, 14 families) with different sizes and TLs, gathered from the same ecosystem. Not all host species harboured the same number and types of parasites, reflecting the differences in their ecological characteristics. Using differences in TL and body length as measurements of size and trophic distances, we found that similarity at both infracommunity and component community levels showed a very clear decay pattern, based on parasite abundance and relative abundance, with increasing distance in TL, but was not related to changes in fish size, with TL thus emerging as the main explanatory factor for similarity of parasite assemblages. Furthermore, the relationships between host TL and assemblage similarity allowed identification of fishes for which the TL was under- or over-estimated and prediction of the TL of host species based on parasite data alone. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Antiqueira, Pablo Augusto P; Petchey, Owen L; Dos Santos, Viviane Piccin; de Oliveira, Valéria Maia; Romero, Gustavo Quevedo
2018-05-17
Global biodiversity is eroding due to anthropogenic causes such as climate change, habitat loss, and trophic simplification of biological communities. Most studies address only isolated causes within a single group of organisms; however, biological groups of different trophic levels may respond in particular ways to different environmental impacts. Our study used natural microcosms to investigate the predicted individual and interactive effects of warming, changes in top predator diversity, and habitat size on the alpha and beta diversity of macrofauna, microfauna and bacteria. Alpha diversity (i.e., richness within each bromeliad) generally explained a larger proportion of the gamma diversity (partitioned in alpha and beta diversity). Overall, dissimilarity between communities occurred due to species turnover and not species loss (nestedness). Nevertheless, the three biological groups responded differently to each environmental stressor. Microfauna were the most sensitive group, with alpha and beta diversity being affected by environmental changes (warming and habitat size) and trophic structure (diversity of top predators). Macrofauna alpha and beta diversity was sensitive to changes in predator diversity and habitat size, but not warming. In contrast, the bacterial community was not influenced by the treatments. The community of each biological group was not mutually concordant with the environmental and trophic changes. Our results demonstrate that distinct anthropogenic impacts differentially affect the components of macro and microorganism diversity through direct and indirect effects (i.e., bottom-up and top-down effects). Therefore, a multitrophic and multispecies approach is necessary to assess the effects of different anthropogenic impacts on biodiversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Lake whitefish and Diporeia spp. in the Great lakes: an overview
Nalepa, Thomas F.; Mohr, Lloyd C.; Henderson, Bryan A.; Madenjian, Charles P.; Schneeberger, Philip J.
2005-01-01
Because of growing concern in the Great Lakes over declines in abundance and growth of lake whitefish (Coregonus clupeaformis) and declines in abundance of the benthic amphipod Diporeia spp., a workshop was held to examine past and current trends, to explore trophic links, and to discuss the latest research results and needs. The workshop was divided into sessions on the status of populations in each of the lakes, bioenergetics and trophic dynamics, and exploitation and management. Abundance, growth, and condition of whitefish populations in Lakes Superior and Erie are stable and within the range of historical means, but these variables are declining in Lakes Michigan and Ontario and parts of Lake Huron. The loss of Diporeia spp., a major food item of whitefish, has been a factor in observed declines, particularly in Lake Ontario, but density-dependent factors also likely played a role in Lakes Michigan and Huron. The loss of Diporeia spp. is temporally linked to the introduction and proliferation of dreissenid mussels, but a direct cause for the negative response of Diporeia spp. has not been established. Given changes in whitefish populations, age-structured models need to be re-evaluated. Other whitefish research needs to include a better understanding of what environmental conditions lead to strong year-classes, improved aging techniques, and better information on individual population (stock) structure. Further collaborations between assessment biologists and researchers studying the lower food web would enhance an understanding of links between trophic levels.
Tiede, Julia; Wemheuer, Bernd; Traugott, Michael; Daniel, Rolf; Tscharntke, Teja; Ebeling, Anne; Scherber, Christoph
2016-01-01
Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research. PMID:26859146
Everatt, Kristoffer T.; Andresen, Leah; Somers, Michael J.
2014-01-01
The African lion (Panthera Leo) has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent's remaining populations. It is possible to estimate lion abundance using a trophic scaling approach. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems experiencing top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. The direct density estimate was less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km2 vs. 3.05 lions/100 km2). The proportion of area occupied by lions was Ψ = 0.439 (SE = 0.121), or approximately 44% of a 2 400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with settlements. Finally, our empirical abundance estimate is approximately 1/3 of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population held below resource-based carrying capacity by anthropogenic factors and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first empirical quantification of a population that future change can be measured against. PMID:24914934
Everatt, Kristoffer T; Andresen, Leah; Somers, Michael J
2014-01-01
The African lion (Panthera Leo) has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent's remaining populations. It is possible to estimate lion abundance using a trophic scaling approach. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems experiencing top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. The direct density estimate was less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km² vs. 3.05 lions/100 km²). The proportion of area occupied by lions was Ψ = 0.439 (SE = 0.121), or approximately 44% of a 2,400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with settlements. Finally, our empirical abundance estimate is approximately 1/3 of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population held below resource-based carrying capacity by anthropogenic factors and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first empirical quantification of a population that future change can be measured against.
Modeling lake trophic state: a random forest approach
Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...
Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory
USDA-ARS?s Scientific Manuscript database
Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (= ‘brown’) food-webs has remained impenetrable. Measurement of detritivore trophic position is complicated by the fact that detritu...
Limnological characteristics and trophic state of a newly created site: the Pareja Limno-reservoir
NASA Astrophysics Data System (ADS)
Molina-Navarro, E.; Martínez-Pérez, S.; Sastre-Merlín, A.
2012-04-01
The creation of dams in the riverine zone of large reservoirs is an innovative action whose primary goal is to generate water bodies that ensure a stable level of water there. We have termed these bodies of water "limno-reservoirs" because their water level becomes constant and independent of the fluctuations occurring in the main reservoir. In addition, limno-reservoirs represent environmental initiatives with corrective and/or compensatory effects. Pareja Limno-reservoir, located near the left side of Entrepeñas Reservoir (Guadalajara province, central Spain), is one of the first initiatives of this type in Spain. We are investigating the hydrology, limnology, microbiology, siltation risk and other aspects of this site. This research has a special interest since the building of limno-reservoirs is rising in Spain. To acquire knowledge about their behavior may be helpful for further constructions. In fact, every new reservoir building project usually includes a limno-reservoir. Moreover, there are many initiatives related with the construction of this kind of hydraulic infrastructures in the reservoirs under exploitation. This work focuses on the limnological study of the Pareja Limno-reservoir. To conduct this research, twelve seasonal sample collections at two sampling points (the dam and inflow zones) have been made in Pareja Limno-reservoir, from spring 2008 to winter 2011. The primary goal of this study is to describe the limnological characteristics of the limno-reservoir. Special interest is placed in the study of the trophic state through different indicators (nutrients, transparency, phytoplankton and zooplankton populations), as the European Water Framework Directive objective is to achieve a "good ecological status" in every aquatic ecosystem by 2015. The results of the study show that the Pareja Limno-reservoir follows a warm monomictic water stratification pattern. Water was slightly alkaline and conductivity values were mostly over 1000 μS cm-1 due to the high SO4= concentrations. The highest N and P levels were found in the winter, whereas the highest chlorophyll aand phytoplankton biomass values were found in the summer and autumn. The total zooplankton species richness was high, especially in the inflow zone. Globally, the results obtained suggest that the Pareja Limno-reservoir is oligo-mesotrophic, so it may be under the WFD requirements, although some differences were found using a variety of trophic state criteria.
Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.
2006-01-01
The chemical form of accumulated trace metal in prey is important in controlling the bioavailataility of dietary metal to a predator. This study investigated the trophic transfer of radiolabelled Ag, Cd and Zn from the polychaete worm Nereis diversicolor to the decapod crustacean Palaemonetes varians. We used 2 populations of worms with different proportions of accumulated metals in different subcellular fractions as prey, and loaded the worms with radiolabelled metals either from sediment or from solution. Accumulated radiolabelled metals were fractionated into 5 components : metal-rich granules (MRG), cellular debris, organelles, metallothionein-like proteins (MTLP), and other (heat-sensitive) proteins (HSP). Assimilation efficiencies (AE) of the metals by P. varians were measured from the 4 categories of prey (i.e. 2 populations, radiolabelled from sediment or solution). There were significant differences for each metal between the AEs from the different prey categories, confirming that origin of prey and route of uptake of accumulated trace metal will cause intraspecific differences in subsequent metal assimilation. Correlations were sought between AEs and selected fractions or combinations of fractions of metals in the prey-MRG, Trophically Available Metal (TAM = MTLP + HSP + organelles) and total protein (MTLP + HSP). TAM explained 28% of the variance in AEs for Ag, but no consistent relationships emerged between AEs and TAM or total protein when the metals were considered separately. AEs did, however, show significant positive regressions with both TAM and total protein when the 3 metals were considered together, explaining only about 21 % of the variance in each case. A significant negative relationship was observed between MRG and AE for all metals combined. The predator (P. varians) can assimilate dietary metal from a range of the fractions binding metals in the prey (N. diversicolor), with different assimilation efficiencies summated across these fractions. TAM and/or total protein may represent an approximate minimum for trophic availability but neither of these alone is a fully accurate predictor. ?? Inter-Research 2006.
NASA Astrophysics Data System (ADS)
Kousteni, Vasiliki; Karachle, Paraskevi K.; Megalofonou, Persefoni
2017-06-01
Knowledge of the diet and trophic level of marine predators is essential to develop an understanding of their ecological role in ecosystems. Research conducted on the trophic ecology of the deep-sea sharks is rather limited. The purpose of this study was to examine the diet of the longnose spurdog Squalus blainville, a deep-sea shark categorized as "data deficient" within its distribution range, with respect to sex, maturity, age, season and sampling location. The stomach contents of 211 specimens, captured in the Aegean (off Skyros and the Cyclades Islands) and Cretan Seas, using commercial bottom-trawlers from 2005 to 2012, were analysed. The cumulative prey curve showed that the sample size was adequate to describe the species' diet. The identified prey items belonged to five major groups: Teleostei, Crustacea, Cephalopoda, Annelida and Phanerogams. Higher diet diversity was observed in females compared to males, in immature individuals compared to mature ones, regardless of sex, and in spring and winter compared to other seasons. Age and sampling location seemed to influence both the diet diversity and trophic spectrum of the species. Feeding intensity based on the vacuity index was not significantly influenced by any of the factors examined, while the stomach filling degree was significantly influenced by all factors, except sex, showing significantly higher values in mature females compared to immature ones, in older individuals, in autumn compared to winter, and a significantly lower value in the Cyclades Islands compared to other locations. Females showed a significant larger mouth length compared to males of the same length, while no between-sex differences were found in gut morphometrics. The estimated fractional trophic level (TROPH=4.41) classified the species as carnivore with a preference for Teleostei and Cephalopoda, confirming its high trophic position.
Courtney, D L; Foy, R
2012-04-01
Stable-isotope ratios of nitrogen (δ¹⁵N) and lipid-normalized carbon (δ¹³C') were used to examine geographic and ontogenetic variability in the trophic ecology of a high latitude benthopelagic elasmobranch, the Pacific sleeper shark Somniosus pacificus. Mean muscle tissue δ¹³C' values of S. pacificus differed significantly among geographic regions of the eastern North Pacific Ocean. Linear models identified significant ontogenetic and geographic variability in muscle tissue δ¹⁵N values of S. pacificus. The trophic position of S. pacificus in the eastern North Pacific Ocean estimated here from previously published stomach-content data (4·3) was within the range of S. pacificus trophic position predicted from a linear model of S. pacificus muscle tissue δ¹⁵N (3·3-5·7) for fish of the same mean total length (L(T) ; 201·5 cm), but uncertainty in predicted trophic position was very high (95% prediction intervals ranged from 2·9 to 6·4). The relative trophic position of S. pacificus determined here from a literature review of δ¹⁵N by taxa in the eastern North Pacific Ocean was also lower than would be expected based on stomach-content data alone when compared to fishes, squid and filter feeding whales. Stable-isotope analysis revealed wider variability in the feeding ecology of S. pacificus in the eastern North Pacific Ocean than shown by diet data alone, and expanded previous conclusions drawn from analyses of stomach-content data to regional and temporal scales meaningful for fisheries management. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Gladyshev, Michail I; Sushchik, Nadezhda N; Anishchenko, Olesia V; Makhutova, Olesia N; Kolmakov, Vladimir I; Kalachova, Galina S; Kolmakova, Anzhelika A; Dubovskaya, Olga P
2011-02-01
One of the central paradigms of ecology is that only about 10% of organic carbon production of one trophic level is incorporated into new biomass of organisms of the next trophic level. Many of energy-yielding compounds of carbon are designated as 'essential', because they cannot be synthesized de novo by consumers and must be obtained with food, while they play important structural and regulatory functions. The question arises: are the essential compounds transferred through trophic chains with the same efficiency as bulk carbon? To answer this question, we measured gross primary production of phytoplankton and secondary production of zooplankton and content of organic carbon and essential polyunsaturated fatty acids of ω-3 family with 18-22 carbon atoms (PUFA) in the biomass of phytoplankton and zooplankton in a small eutrophic reservoir during two summers. Transfer efficiency between the two trophic levels, phytoplankton (producers) and zooplankton (consumers), was calculated as ratio of the primary production versus the secondary (zooplankton) production for both carbon and PUFA. We found that the essential PUFA were transferred from the producers to the primary consumers with about twice higher efficiency than bulk carbon. In contrast, polyunsaturated fatty acids with 16 carbon atoms, which are synthesized exclusively by phytoplankton, but are not essential for animals, had significantly lower transfer efficiency than both bulk carbon, and essential PUFA. Thus, the trophic pyramid concept, which implicitly implies that all the energy-yielding compounds of carbon are transferred from one trophic level to the next with the same efficiency of about on average 10%, should be specified for different carbon compounds.
How does predation affect the bioaccumulation of hydrophobic organic compounds in aquatic organisms?
Xia, Xinghui; Li, Husheng; Yang, Zhifeng; Zhang, Xiaotian; Wang, Haotian
2015-04-21
It is well-known that the body burden of hydrophobic organic compounds (HOCs) increases with the trophic level of aquatic organisms. However, the mechanism of HOC biomagnification is not fully understood. To fill this gap, this study investigated the effect of predation on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), one type of HOC, in low-to-high aquatic trophic levels under constant freely dissolved PAH concentrations (1, 5, or 10 μg L(-1)) maintained by passive dosing systems. The tested PAHs included phenanthrene, anthracene, fluoranthene, and pyrene. The test organisms included zebrafish, which prey on Daphnia magna, and cichlids, which prey on zebrafish. The results revealed that for both zebrafish and cichlids, predation elevated the uptake and elimination rates of PAHs. The increase of uptake rate constant ranged from 20.8% to 39.4% in zebrafish with the amount of predation of 5 daphnids per fish per day, and the PAH uptake rate constant increased with the amount of predation. However, predation did not change the final bioaccumulation equilibrium; the equilibrium concentrations of PAHs in fish only depended on the freely dissolved concentration in water. Furthermore, the lipid-normalized water-based bioaccumulation factor of each PAH was constant for fish at different trophic levels. These findings infer that the final bioaccumulation equilibrium of PAHs is related to a partition between water and lipids in aquatic organisms, and predation between trophic levels does not change bioaccumulation equilibrium but bioaccumulation kinetics at stable freely dissolved PAH concentrations. This study suggests that if HOCs have not reached bioaccumulation equilibrium, biomagnification occurs due to enhanced uptake rates caused by predation in addition to higher lipid contents in higher trophic organisms. Otherwise, it is only due to the higher lipid contents in higher trophic organisms.
Most theoretical and empirical studies of productivity–species richness relationships fail to consider linkages among trophic levels. We quantified productivity–richness relationships in detritus-based, water-filled tree-hole communities for two trophic levels: invertebrate consu...
Integrating microbes into food-chains: Insect trophic identity reflects rampant microbivory
USDA-ARS?s Scientific Manuscript database
Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (= ‘brown’) food-webs has remained relatively impenetrable. Measurement of detritivore trophic position is complicated by the fact t...
Finger, John W; Hamilton, Matthew T; Kelley, Meghan D; Zhang, Yufeng; Kavazis, Andreas N; Glenn, Travis C; Tuberville, Tracey D
2018-07-01
Selenium (Se) is an essential nutrient which in excess causes toxicity. The disposal of incompletely combusted coal, which often is rich in Se, into aquatic settling basins is increasing the risk of Se exposure worldwide. However, very few studies have looked at the physiological effects of Se exposure on long-lived, top trophic vertebrates, such as the American alligator (Alligator mississippiensis). During a 7-week period, alligators were fed one of three dietary treatments: mice injected with deionized water or mice injected with water containing 1000 or 2000 ppm selenomethionine (SeMet). One week after the last feeding alligators were bled within 3 min of capture for plasma corticosterone (CORT). A few days later, all alligators were euthanized and whole blood and tail tissue were harvested to measure oxidative damage, an antioxidant-associated transcription factor, and antioxidant enzymes [glutathione peroxidase-1 (GPX1), superoxide dismutase-1 (SOD1), and SOD2] by Western blotting. There was a dose-dependent increase in baseline CORT levels in alligators administered SeMet. Except for blood SOD2 levels, SeMet treatment had no effect (p > 0.05 for all) on oxidative status: oxidative damage, GPX1, SOD1, and muscle SOD2 levels were similar among treatments. Our results illustrate that high levels of Se may act as a stressor to crocodilians. Future studies should investigate further the physiological effects of Se accumulation in long-lived, top-trophic vertebrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broman, D.; Axelman, J.; Bergqvist, P.A.
Ratios of naturally occurring stable isotopes of nitrogen ({delta}{sup 15}N) can be used to numerically classify trophic levels of organisms in food chains. By combining analyses results of various HOCs (e.g. PCDD/Fs, PCBs, DDTs, HCHs and some other pesticides) the biomagnification of these substances can be quantitatively estimated. In this paper different pelagic and benthic northern Baltic food chains were studied. The {delta}{sup 15}N-data gave food chain descriptions qualitatively consistent with previous conceptions of trophic arrangements in the food chains. The different HOCs concentrations were plotted versus the {delta}{sup 15}N-values for the different trophic levels and an exponential model ofmore » the form e{sup (A+B*{delta}N)} was fitted to the data. The estimates of the constant B in the model allows for an estimation of a biomagnification power (B) of different singular, or groups of, contaminants. A B-value around zero indicates that a substance is flowing through the food chain without being magnified, whereas a value > 0 indicates that a substance is biomagnified. Negative B-values indicate that a substance is not taken up or is metabolized. The A-term of the expression is only a scaling factor depending on the background level of the contaminant.« less
Are red-tailed hawks and great horned owls diurnal-nocturnal dietary counterparts?
Marti, C.D.; Kochert, Michael N.
1995-01-01
Red-tailed Hawks (Buteo jamaicensis) and Great Homed Owls (Bubo virginianus)are common in North America where they occupy a wide range of habitats, often sympatrically. The two species are similar in size and have been portrayed as ecological counterparts, eating the same prey by day and night. We tested the trophic similarity of the two species by comparing published dietary data from across the United States. Both species ate primarily mammals and birds, and mean proportions of those two prey types did not differ significantly between diets of the two raptors. Red-tailed Hawks ate significantly more reptiles, and Great Homed Owls significantly more invertebrates. Dietary diversity was not significantly different at the level of prey taxonomic class, and diet overlap between the two species averaged 91%. At the prey species level, dietary overlap averaged only 50%, and at that level Red-tailed Hawk dietary diversity was significantly greater than that of Great Horned Owls. Mean prey mass of Red-tailed Hawks was significantly greater than that of Great Homed Owls. Populations of the two species in the western United States differed trophically more than did eastern populations. We conclude that, although the two species are generalist predators, they take largely different prey species in the same localities resulting in distinctive trophic characteristics.
Reciprocal Trophic Interactions and Transmission of Blood Parasites between Mosquitoes and Frogs
Ferguson, Laura V.; Smith, Todd G.
2012-01-01
The relationship between mosquitoes and their amphibian hosts is a unique, reciprocal trophic interaction. Instead of a one-way, predator-prey relationship, there is a cyclical dance of avoidance and attraction. This has prompted spatial and temporal synchrony between organisms, reflected in emergence time of mosquitoes in the spring and choice of habitat for oviposition. Frog-feeding mosquitoes also possess different sensory apparatuses than do their mammal-feeding counterparts. The reciprocal nature of this relationship is exploited by various blood parasites that use mechanical, salivary or trophic transmission to pass from mosquitoes to frogs. It is important to investigate the involvement of mosquitoes, frogs and parasites in this interaction in order to understand the consequences of anthropogenic actions, such as implementing biocontrol efforts against mosquitoes, and to determine potential causes of the global decline of amphibian species. PMID:26466534
Colombet, J; Robin, A; Lavie, L; Bettarel, Y; Cauchie, H M; Sime-Ngando, T
2007-12-01
We have described the use of Polyethylene glycol (PEG) for the precipitation of natural communities of aquatic viruses, and its comparison with the usual concentration method based on ultracentrifugation. Experimental samples were obtained from different freshwater ecosystems whose trophic status varied. Based on transmission electron microscope observations and counting of phage-shaped particles, our results showed that the greatest recovery efficiency for all ecosystems was obtained when we used the PEG protocol. On average, this protocol allowed the recovery of >2-fold more viruses, compared to ultracentrifugation. In addition, the diversity of virioplankton, based on genomic size profiling using pulsed field gel electrophoresis, was higher and better discriminated when we used the PEG method. We conclude that pegylation offers a valid, simple and cheaper alternative method to ultracentrifugation, for the concentration and the purification of pelagic viruses.
Nematode Community Composition under Various Irrigation Schemes in a Citrus Soil Ecosystem.
Porazinska, D L; McSorley, R; Duncan, L W; Graham, J H; Wheaton, T A; Parsons, L R
1998-06-01
Interest in the sustainability of farming practices has increased in response to environmental problems associated with conventional agricultural management often adopted for the production of herbaceous crops, ornamentals, and fruit crops. Availability of measures of the status of the soil ecosystem is of immediate importance, particularly for environmental assessment and monitoring programs. This study investigated the effects of various irrigation regimes (an example of an agricultural management practice) on the structure of the nematode fauna in a citrus orchard in the sandy ridge area of Central Florida. Ecological measures such as community structure indices, diversity indices, and maturity indices were assessed and related to irrigation intensity. Maturity index was an effective measure in distinguishing differences between irrigation regimes, whereas other indices of community structure were not. Of various nematode genera and trophic groups, only omnivores and the omnivore genera. Aporcelaimellus and Eudorylaimus responded to irrigation treatments.
Antunes, Jorge T.; Leão, Pedro N.; Vasconcelos, Vítor M.
2015-01-01
Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms. PMID:26042108
Antunes, Jorge T; Leão, Pedro N; Vasconcelos, Vítor M
2015-01-01
Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms.
Azevedo-Silva, Claudio Eduardo; Almeida, Ronaldo; Carvalho, Dario P; Ometto, Jean P H B; de Camargo, Plínio B; Dorneles, Paulo R; Azeredo, Antonio; Bastos, Wanderley R; Malm, Olaf; Torres, João P M
2016-11-01
The present study assesses mercury biomagnification and the trophic structure of the ichthyofauna from the Puruzinho Lake, Brazilian Amazon. In addition to mercury determination, the investigation comprised the calculation of Trophic Magnification Factor (TMF) and Trophic Magnification Slope (TMS), through the measurements of stable isotopes of carbon (δ 13 C) and nitrogen (δ 15 N) in fish samples. These assessments were executed in two different scenarios, i.e., considering (1) all fish species or (2) only the resident fish (excluding the migratory species). Bottom litter, superficial sediment and seston were the sources used for generating the trophic position (TP) data used in the calculation of the TMF. Samples from 84 fish were analysed, comprising 13 species, which were categorized into four trophic guilds: iliophagous, planktivorous, omnivorous and piscivorous fish. The δ 13 C values pointed to the separation of the ichthyofauna into two groups. One group comprised iliophagous and planktivorous species, which are linked to the food chains of phytoplankton and detritus. The other group was composed by omnivorous and piscivorous fish, which are associated to the trophic webs of phytoplankton, bottom litter, detritus, periphyton, as well as to food chains of igapó (blackwater-flooded Amazonian forests). The TP values suggest that the ichthyofauna from the Puruzinho Lake is part of a short food web, with three well-characterized trophic levels. Mercury concentrations and δ 13 C values point to multiple sources for Hg input and transfer. The similarity in Hg levels and TP values between piscivorous and planktivorous fish suggests a comparable efficiency for the transfer of this metal through pelagic and littoral food chains. Regarding the two abovementioned scenarios, i.e., considering (1) the entire ichthyofauna and (2) only the resident species, the TMF values were 5.25 and 4.49, as well as the TMS values were 0.21 and 0.19, respectively. These findings confirm that Hg biomagnifies through the food web of Puruzinho Lake ichthyofauna. The migratory species did not significantly change mercury biomagnification rate in Puruzinho Lake; however, they may play a relevant role in Hg transport. The biomagnification rate (TMS value) in Puruzinho Lake was higher than the average values for its latitude, being comparable to TMS values of temperate and polar systems (marine and freshwater environments). Copyright © 2016 Elsevier Inc. All rights reserved.
Spooner, D.E.; Vaughn, C.C.; Galbraith, H.S.
2012-01-01
Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments. ?? 2011 Springer-Verlag.
Emergence of evolutionary cycles in size-structured food webs.
Ritterskamp, Daniel; Bearup, Daniel; Blasius, Bernd
2016-11-07
The interplay of population dynamics and evolution within ecological communities has been of long-standing interest for ecologists and can give rise to evolutionary cycles, e.g. taxon cycles. Evolutionary cycling was intensely studied in small communities with asymmetric competition; the latter drives the evolutionary processes. Here we demonstrate that evolutionary cycling arises naturally in larger communities if trophic interactions are present, since these are intrinsically asymmetric. To investigate the evolutionary dynamics of a trophic community, we use an allometric food web model. We find that evolutionary cycles emerge naturally for a large parameter ranges. The origin of the evolutionary dynamics is an intrinsic asymmetry in the feeding kernel which creates an evolutionary ratchet, driving species towards larger bodysize. We reveal different kinds of cycles: single morph cycles, and coevolutionary and mixed cycling of complete food webs. The latter refers to the case where each trophic level can have different evolutionary dynamics. We discuss the generality of our findings and conclude that ongoing evolution in food webs may be more frequent than commonly believed. Copyright © 2016 Elsevier Ltd. All rights reserved.
The parasite connection in ecosystems and macroevolution
NASA Astrophysics Data System (ADS)
Seilacher, Adolf; Reif, Wolf-Ernst; Wenk, Peter
2007-03-01
In addition to their obvious negative effects (“pathogens”), endoparasites of various kinds play an important role in shaping and maintaining modern animal communities. In the long-term, parasites including pathogens are indispensable entities of any ecosystem. To understand this, it is essential that one changes the viewpoint from the host’s interests to that of the parasite. Together with geographic isolation, trophic arms race, symbiosis, and niche partitioning, all parasites (including balance strategists, i.e. seemingly non-pathogenic ones) modulate their hosts’ population densities. In addition, heteroxenic parasites control the balance between predator and prey species, particularly if final and intermediate hosts are vertebrates. Thereby, such parasites enhance the bonds in ecosystems and help maintain the status quo. As the links between eukaryotic parasites and their hosts are less flexible than trophic connections, parasite networks probably contributed to the observed stasis and incumbency of ecosystems over geologic time, in spite of continuous Darwinian innovation. Because heteroxenic parasites target taxonomic levels above that of the species (e.g. families), these taxa may have also become units of selection in global catastrophies. Macroevolutionary extrapolations, however, are difficult to verify because endoparasites cannot fossilize.
Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes
Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, Howard E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.
2010-01-01
Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.
NASA Astrophysics Data System (ADS)
Yunlong, Song; Zhang, Jinsong; Zhu, Jia; Li, Wang; Chang, Aimin; Yi, Tao
2017-12-01
Controlling of water quality pollution and eutrophication of reservoirs has become a very important research topic in urban drinking water field. Xili reservoir is an important water source of drinking water in Shenzhen. And its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Xili reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. Xili reservoir was seriously polluted by nitrogen. Judged by TN most of the samples were no better than grade VI. Other water quality factor including WT, SD, pH, DO, COD, TOC, TP, Fe, silicate, turbidity, chlorophyll-a were pretty good. One-way ANOVA showed that significant difference was found in water quality factors on month (p<0.005). The spatial heterogeneity of water quality was obvious (p<0.05). The successions of water quality factors y were similar and the mainly pattern was Pre-rainy period > Latter rainy period > High temperature and rain free period > Temperature jump period > Winter drought period. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession.TLI (Σ) were about 35~52, suggesting Xili reservoir was in mycotrophic trophic states. As a result of runoff pollution, water quality at sampling sites 1 and 10 was poor. In the rainy season, near sampling sites 1 and 10, water appeared to be Light-eutrophic. The phytoplankton biomass of Xili reservoir was low. Water temperature was the main driving factor of phytoplankton succession.The 14 water quality factors were divided into five groups by factor analysis. The total interpretation rate was about 70.82%. F1 represents the climatic change represented by water temperature and organic pollution. F2 represents the concentration of nitrogen. F3 represents the phytoplankton biomass. F4 represents the sensory indexes of water body, such as turbidity, transparency.
How habitat-modifying organisms structure the food web of two coastal ecosystems
van der Zee, Els M.; Angelini, Christine; Govers, Laura L.; Christianen, Marjolijn J. A.; Altieri, Andrew H.; van der Reijden, Karin J.; Silliman, Brian R.; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A.; van der Veer, Henk W.; Piersma, Theunis; de Ruiter, Peter C.; Olff, Han; van der Heide, Tjisse
2016-01-01
The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity. PMID:26962135
How habitat-modifying organisms structure the food web of two coastal ecosystems.
van der Zee, Els M; Angelini, Christine; Govers, Laura L; Christianen, Marjolijn J A; Altieri, Andrew H; van der Reijden, Karin J; Silliman, Brian R; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A; van der Veer, Henk W; Piersma, Theunis; de Ruiter, Peter C; Olff, Han; van der Heide, Tjisse
2016-03-16
The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity. © 2016 The Author(s).
Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession.
Schrama, Maarten; Berg, Matty P; Olff, Han
2012-11-01
Current theories about vegetation succession and food web assembly are poorly compatible, as food webs are generally viewed to be static, and succession is usually analyzed without the inclusion of higher trophic levels. In this study we present results from a detailed analysis of ecosystem assembly rules over a chronosequence of 100 years of salt marsh succession. First, using 13 yearlong observations on vegetation and soil parameters in different successional stages, we show that the space-for-time substitution is valid for this chronosequence. We then quantify biomass changes for all dominant invertebrate and vertebrate species across all main trophic groups of plants and animals. All invertebrate and vertebrate species were assigned to a trophic group according to feeding preference, and changes in trophic group abundance were quantified for seven different successional stages of the ecosystem. We found changes from a marine-fueled, decomposer-based (brown) food web in early stages to a more terrestrial, plant-based, herbivore-driven (green) food web in intermediate succession stages, and finally to a decomposer-based, terrestrial-driven food web in the latest stages. These changes were accompanied not only by an increase in live plant biomass and a leveling toward late succession but also by a constant increase in the amount of dead plant biomass over succession. Our results show that the structure and dynamics of salt marsh food webs cannot be understood except in light of vegetation succession, and vice versa.
Powell, David E; Schøyen, Merete; Øxnevad, Sigurd; Gerhards, Reinhard; Böhmer, Thomas; Koerner, Martin; Durham, Jeremy; Huff, Darren W
2018-05-01
The trophic transfer of cyclic methylsiloxanes (cVMS) in aquatic ecosystems is an important criterion for assessing bioaccumulation and ecological risk. Bioaccumulation and trophic transfer of cVMS, specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were evaluated for the marine food webs of the Inner and Outer Oslofjord, Norway. The sampled food webs included zooplankton, benthic macroinvertebrates, shellfish, and finfish species. Zooplankton, benthic macroinvertebrates, and shellfish occupied the lowest trophic levels (TL ≈2 to 3); northern shrimp (Pandalus borealis) and Atlantic herring (Clupea harengus) occupied the middle trophic levels (TL ≈3 to 4), and Atlantic cod (Gadus morhua) occupied the highest tropic level (TL>4.0). Trophic dynamics in the Oslofjord were best described as a compressed food web defined by demersal and pelagic components that were confounded by a diversity in prey organisms and feeding relationships. Lipid-normalized concentrations of D4, D5, and D6 were greatest in the lowest trophic levels and significantly decreased up the food web, with the lowest concentrations being observed in the highest trophic level species. Trophic magnification factors (TMF) for D4, D5, and D6 were <1.0 (range 0.3 to 0.9) and were consistent between the Inner and Outer Oslofjord, indicating that exposure did not impact TMF across the marine food web. There was no evidence to suggest biomagnification of cVMS in the Oslofjord. Rather, results indicated that trophic dilution of cVMS, not trophic magnification, occurred across the sampled food webs. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Seemann, J; Sawall, Y; Auel, H; Richter, C
2013-03-01
Following up on previous investigations on the stress resistance of corals, this study assessed the trophic plasticity of the coral Stylophora subseriata in the Spermonde Archipelago (Indonesia) along an eutrophication gradient. Trophic plasticity was assessed in terms of lipid content and fatty acid composition in the holobiont relative to its plankton (50-300 μm) food as well as the zooxanthellae density, lipid, FA and chlorophyll a content. A cross-transplantation experiment was carried out for 1.5 months in order to assess the trophic potential of corals. Corals, which live in the eutrophied nearshore area showed higher zooxanthellae and chlorophyll a values and higher amounts of the dinoflagellate biomarker FA 18:4n-3. Their lipid contents were maintained at similar to levels from specimens further away from the anthropogenic impact source going up to 14.9 ± 0.9 %. A similarity percentage analysis of the groups holobiont, zooxanthellae and plankton >55 μm found that differences between the FA composition of the holobiont and zooxanthellae symbionts were more distinct in the site closer to the shore, thus heterotrophic feeding became more important. Transplanted corals attained very similar zooxanthellae, chlorophyll a and lipid values at all sites as the specimens originating from those sites, which indicates a high potential for trophic plasticity in the case of a change in food sources, which makes this species competitive and resistant to eutrophication.
Total mercury levels in commercial fish species from Italian fishery and aquaculture.
Di Lena, Gabriella; Casini, Irene; Caproni, Roberto; Fusari, Andrea; Orban, Elena
2017-06-01
Total mercury levels were measured in 42 commercial fish species caught off the Central Adriatic and Tyrrhenian coasts of Italy and in 6 aquaculture species. The study on wild fish covered species differing in living habitat and trophic level. The study on farmed fish covered marine and freshwater species from intensive and extensive aquaculture and their feed. Mercury levels were analysed by thermal decomposition-amalgamation-atomic absorption spectrophotometry. Total mercury concentrations in the muscle of wild fish showed a high variability among species (0.025-2.20 mg kg -1 wet weight). The lowest levels were detected in low trophic-level demersal and pelagic-neritic fish and in young individuals of high trophic-level species. Levels exceeding the European Commission limits were found in large-size specimens of high trophic-level pelagic and demersal species. Fish from intensive farming showed low levels of total mercury (0.008-0.251 mg kg -1 ). Fish from extensive rearing showed variable contamination levels, depending on the area of provenience. An estimation of the human intake of mercury associated to the consumption of the studied fish and its comparison with the tolerable weekly intake is provided.
Stephansen, Diana A; Svendsen, Tore C; Vorkamp, Katrin; Frier, Jens-Ole
2012-02-01
The concentrations and patterns of persistent halogenated compounds (PHCs), including polychlorinated biphenyls (PCBs), DDT, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB) and polybrominated diphenyl ethers (PBDEs) were examined in a pelagic food web from the southern Baltic Sea consisting of sediment, zooplankton, sprat, Atlantic salmon and anadromous brown trout. Lipid-normalized concentrations generally increased from low trophic levels to high trophic levels, with the exception of HCHs. Due to high concentrations of PBDEs in some zooplankton samples, biomagnification of BDE-47 was only observed for salmon/sprat and trout/sprat. Sprat collected individually and from salmon stomach had significantly different lipid-normalized concentrations and varied in their PHC pattern as well, possibly indicating a large natural variation within the Baltic Sea. The highest lipid-normalized concentrations were found in brown trout. Salmon and brown trout were similar in their PHC pattern suggesting similar food sources. Variation in PHC patterns among trophic levels was not smaller than that among geographically distinct locations, confirming the importance of comparable trophic levels for the assessment of PHC patterns, e.g. for tracing migratory fish. Copyright © 2011 Elsevier Ltd. All rights reserved.
Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems
NASA Astrophysics Data System (ADS)
Travers, M.; Shin, Y.-J.; Jennings, S.; Cury, P.
2007-12-01
End-to-end models that represent ecosystem components from primary producers to top predators, linked through trophic interactions and affected by the abiotic environment, are expected to provide valuable tools for assessing the effects of climate change and fishing on ecosystem dynamics. Here, we review the main process-based approaches used for marine ecosystem modelling, focusing on the extent of the food web modelled, the forcing factors considered, the trophic processes represented, as well as the potential use and further development of the models. We consider models of a subset of the food web, models which represent the first attempts to couple low and high trophic levels, integrated models of the whole ecosystem, and size spectrum models. Comparisons within and among these groups of models highlight the preferential use of functional groups at low trophic levels and species at higher trophic levels and the different ways in which the models account for abiotic processes. The model comparisons also highlight the importance of choosing an appropriate spatial dimension for representing organism dynamics. Many of the reviewed models could be extended by adding components and by ensuring that the full life cycles of species components are represented, but end-to-end models should provide full coverage of ecosystem components, the integration of physical and biological processes at different scales and two-way interactions between ecosystem components. We suggest that this is best achieved by coupling models, but there are very few existing cases where the coupling supports true two-way interaction. The advantages of coupling models are that the extent of discretization and representation can be targeted to the part of the food web being considered, making their development time- and cost-effective. Processes such as predation can be coupled to allow the propagation of forcing factors effects up and down the food web. However, there needs to be a stronger focus on enabling two-way interaction, carefully selecting the key functional groups and species, reconciling different time and space scales and the methods of converting between energy, nutrients and mass.
Pekár, Stano; Michalko, Radek; Korenko, Stanislav; Sedo, Ondřej; Líznarová, Eva; Sentenská, Lenka; Zdráhal, Zbyněk
2013-02-01
Several hypotheses have been put forward to explain the evolution of prey specificity (stenophagy). Yet little light has so far been shed on the process of evolution of stenophagy in carnivorous predators. We performed a detailed analysis of a variety of trophic adaptations in one species. Our aim was to determine whether a specific form of stenophagy, myrmecophagy, has evolved from euryphagy via parallel changes in several traits from pre-existing characters. For that purpose, we studied the trophic niche and morphological, behavioural, venomic and physiological adaptations in a euryphagous spider, Selamia reticulata. It is a species that is branching off earlier in phylogeny than stenophagous ant-eating spiders of the genus Zodarion (both Zodariidae). The natural diet was wide and included ants. Laboratory feeding trials revealed versatile prey capture strategies that are effective on ants and other prey types. The performance of spiders on two different diets - ants only and mixed insects - failed to reveal differences in most fitness components (survival and developmental rate). However, the weight increase was significantly higher in spiders on the mixed diet. As a result, females on a mixed diet had higher fecundity and oviposited earlier. No differences were found in incubation period, hatching success or spiderling size. S. reticulata possesses a more diverse venom composition than Zodarion. Its venom is more effective for the immobilisation of beetle larvae than of ants. Comparative analysis of morphological traits related to myrmecophagy in the family Zodariidae revealed that their apomorphic states appeared gradually along the phylogeny to derived prey-specialised genera. Our results suggest that myrmecophagy has evolved gradually from the ancestral euryphagous strategy by integrating a series of trophic traits. Copyright © 2012 Elsevier GmbH. All rights reserved.
Nachev, Milen; Jochmann, Maik A; Walter, Friederike; Wolbert, J Benjamin; Schulte, S Marcel; Schmidt, Torsten C; Sures, Bernd
2017-02-17
Stable isotope analysis of carbon and nitrogen can deliver insights into trophic interactions between organisms. While many studies on free-living organisms are available, the number of those focusing on trophic interactions between hosts and their associated parasites still remains scarce. In some cases information about taxa (e.g. acanthocephalans) is completely missing. Additionally, available data revealed different and occasionally contrasting patterns, depending on the parasite's taxonomic position and its degree of development, which is most probably determined by its feeding strategy (absorption of nutrients through the tegument versus active feeding) and its localization in the host. Using stable isotope analysis of carbon and nitrogen we provided first data on the trophic position of an acanthocephalan species with respect to its fish host. Barbels (Barbus barbus) infected only with adult acanthocephalans Pomphorhynchus laevis as well as fish co-infected with the larval (L4) nematodes Eustrongylides sp. from host body cavity were investigated in order to determine the factors shaping host-parasite trophic interactions. Fish were collected in different seasons, to study also potential isotopic shifts over time, whereas barbels with single infection were obtained in summer and co-infected ones in autumn. Acanthocephalans as absorptive feeders showed lower isotope discrimination values of δ 15 N than the fish host. Results obtained for the acanthocephalans were in line with other parasitic taxa (e.g. cestodes), which exhibit a similar feeding strategy. We assumed that they feed mainly on metabolites, which were reprocessed by the host and are therefore isotopically lighter. In contrast, the nematodes were enriched in the heavier isotope δ 15 N with respect to their host and the acanthocephalans, respectively. As active feeders they feed on tissues and blood in the body cavity of the host and thus showed isotope discrimination patterns resembling those of predators. We also observed seasonal differences in the isotope signatures of fish tissues and acanthocephalans, which were attributed to changes in food composition of the host and to seasonality in the transmission and development of acanthocephalans. This study provided first data on trophic interaction between an acanthocephalan species and its associated host, which support the tendency already described for other taxa with similar nutrition strategy (e.g. cestodes). Actively feeding taxa such as larval Eustrongylides sp., appear to act like predators as it can be seen from their isotope discrimination values. However, future research on additional host-parasite systems and especially on acanthocephalans is needed in order to corroborate these conclusions.
Trasviña-Carrillo, L D; Hernández-Herrera, A; Torres-Rojas, Y E; Galván-Magaña, F; Sánchez-González, A; Aguíñiga-García, S
2018-04-26
The jumbo squid Dosidicus gigas is a fishery resource of considerable economic and ecological importance in the Mexican Pacific. Studies on its habitat preferences are needed to understand recent fluctuations in the species' abundance and availability. Stable isotope analysis allows us to infer ecological aspects such as spatial distribution and trophic preferences. We used an isotope ratio mass spectrometer, automated for carbonate analysis, and coupled to an elemental analyzer, to determine the isotopic composition of statoliths (δ 18 O and δ 13 C values) and beaks (δ 13 C and δ 15 N values) from 219 individuals caught over two fishing seasons (2007 and 2009) off the coast of Santa Rosalía, in the central Gulf of California. We used these isotopic ratios to assess variation in spatial and trophic preferences by sex, size, and fishing season. In the 2009 group, we observed significant differences in statolith δ 13 C values and beak δ 13 C and δ 15 N values between males and females. Between size groups, we observed significant differences in statolith δ 18 O and δ 13 C values in 2007 and in beak δ 13 C and δ 15 N values during both seasons. Both seasons were characterized by high overlap in δ 18 O and δ 13 C values between sexes and in 2009 between size groups. We observed low trophic overlap between sexes in 2009 and between size groups during both seasons. The isotopic ratios from statoliths and beaks indicate that D. gigas has changed its spatial and trophic preferences, a shift that is probably related to changes in the species diet. This intraspecific variation in preferences could be related to characteristics such as size, which may influence squid distribution preferences. This article is protected by copyright. All rights reserved.
Does 'you are what you eat' apply to mangrove grapsid crabs?
Bui, Thi Hong Hanh; Lee, Shing Yip
2014-01-01
In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using (13)C and (15)N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ(13)C and Δδ(15)N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ(13)C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2 ± 1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon source needs to be re-assessed in the light of these data.
Does ‘You Are What You Eat’ Apply to Mangrove Grapsid Crabs?
Bui, Thi Hong Hanh; Lee, Shing Yip
2014-01-01
In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using 13C and 15N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ13C and Δδ15N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ13C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2±1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon source needs to be re-assessed in the light of these data. PMID:24551220
Welicky, Rachel; Demopoulos, Amanda W. J.; Sikkel, Paul C.
2017-01-01
The role of parasites in trophic ecology is poorly understood in marine ecosystems. Stable isotope analyses (SIA) have been widely used in studies of trophic ecology, but have rarely been applied to study the role of parasites. Considering that some parasites are associated with altered host foraging patterns, SIA can help elucidate whether parasitism influences host trophic interactions. French grunt (Haemulon flavolineatum), an abundant Caribbean coral reef fish, contributes greatly to trophic connectivity. They typically depart the reef at dusk, feed overnight in seagrass beds, and return to the reef at dawn. The large parasitic isopod Anilocra haemuli commonly infects French grunt, and infected fish are less likely to complete their diel migration, and are in poorer condition than uninfected conspecifics. Brown chromis (Chromis multilineata) are diurnally feeding planktivores and infection by Anilocra chromis does not influence host condition. To determine if Anilocra infection influences host diet and foraging locality, we conducted stable carbon and nitrogen isotope analyses on scale, muscle, heart and gill tissues of infected and uninfected French grunt and brown chromis. We determined that all French grunt had δ13C values representative of seagrass habitats, but infected French grunt were significantly enriched in 13C and 15N compared to uninfected conspecifics. This suggests that compared to uninfected conspecifics, infected French grunt forage in seagrass, but on isotopically enriched prey, and/or are in poorer condition, which can elevate δ13C and δ15N values. For brown chromis, infection did not significantly influence any δ13C and δ15N values; hence they all foraged in the same environment and on similar prey. This is the first study to use SIA to examine differences in resource use by Caribbean coral reef fishes associated with parasitism and to evaluate how closely related parasites might have host-dependent effects on host trophic ecology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azevedo-Silva, Claudio Eduardo, E-mail: ceass@biof
The present study assesses mercury biomagnification and the trophic structure of the ichthyofauna from the Puruzinho Lake, Brazilian Amazon. In addition to mercury determination, the investigation comprised the calculation of Trophic Magnification Factor (TMF) and Trophic Magnification Slope (TMS), through the measurements of stable isotopes of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in fish samples. These assessments were executed in two different scenarios, i.e., considering (1) all fish species or (2) only the resident fish (excluding the migratory species). Bottom litter, superficial sediment and seston were the sources used for generating the trophic position (TP) data used in themore » calculation of the TMF. Samples from 84 fish were analysed, comprising 13 species, which were categorized into four trophic guilds: iliophagous, planktivorous, omnivorous and piscivorous fish. The δ{sup 13}C values pointed to the separation of the ichthyofauna into two groups. One group comprised iliophagous and planktivorous species, which are linked to the food chains of phytoplankton and detritus. The other group was composed by omnivorous and piscivorous fish, which are associated to the trophic webs of phytoplankton, bottom litter, detritus, periphyton, as well as to food chains of igapó (blackwater-flooded Amazonian forests). The TP values suggest that the ichthyofauna from the Puruzinho Lake is part of a short food web, with three well-characterized trophic levels. Mercury concentrations and δ{sup 13}C values point to multiple sources for Hg input and transfer. The similarity in Hg levels and TP values between piscivorous and planktivorous fish suggests a comparable efficiency for the transfer of this metal through pelagic and littoral food chains. Regarding the two abovementioned scenarios, i.e., considering (1) the entire ichthyofauna and (2) only the resident species, the TMF values were 5.25 and 4.49, as well as the TMS values were 0.21 and 0.19, respectively. These findings confirm that Hg biomagnifies through the food web of Puruzinho Lake ichthyofauna. The migratory species did not significantly change mercury biomagnification rate in Puruzinho Lake; however, they may play a relevant role in Hg transport. The biomagnification rate (TMS value) in Puruzinho Lake was higher than the average values for its latitude, being comparable to TMS values of temperate and polar systems (marine and freshwater environments). - Highlights: • Mercury biomagnified in food web of a remote Amazonian lake. • δ{sup 13}C and δ{sup 15}N values suggest multiple Hg sources in food web with 3 trophic levels. • We found similar Hg transfer efficiencies in pelagic and littoral food chains. • Migration may influence the trophic structure assessment performed with δ{sup 15}N. • The migrating species did not significantly alter the biomagnification calculation.« less
De Trez, Carl; Ware, Carl F.
2008-01-01
Dendritic cells (DC) constitute the most potent antigen presenting cells of the immune system, playing a key role bridging innate and adaptive immune responses. Specialized DC subsets differ depending on their origin, tissue location and the influence of trophic factors, the latter remain to be fully understood. Stromal cell and myeloid-associated Lymphotoxin-β receptor (LTβR) signaling is required for the local proliferation of lymphoid tissue DC. This review focuses the LTβR signaling cascade as a crucial positive trophic signal in the homeostasis of DC subsets. The noncanonical coreceptor pathway comprised of the Immunoglobulin (Ig) superfamily member, B and T lymphocyte attenuator (BTLA) and TNFR superfamily member, Herpesvirus entry mediator (HVEM) counter regulates the trophic signaling by LTβR. Together both pathways form an integrated signaling circuit achieving homeostasis of DC subsets. PMID:18511331
The paradox of enrichment in phytoplankton by induced competitive interactions
Tubay, Jerrold M.; Ito, Hiromu; Uehara, Takashi; Kakishima, Satoshi; Morita, Satoru; Togashi, Tatsuya; Tainaka, Kei-ichi; Niraula, Mohan P.; Casareto, Beatriz E.; Suzuki, Yoshimi; Yoshimura, Jin
2013-01-01
The biodiversity loss of phytoplankton with eutrophication has been reported in many aquatic ecosystems, e.g., water pollution and red tides. This phenomenon seems similar, but different from the paradox of enrichment via trophic interactions, e.g., predator-prey systems. We here propose the paradox of enrichment by induced competitive interactions using multiple contact process (a lattice Lotka-Volterra competition model). Simulation results demonstrate how eutrophication invokes more competitions in a competitive ecosystem resulting in the loss of phytoplankton diversity in ecological time. The paradox is enhanced under local interactions, indicating that the limited dispersal of phytoplankton reduces interspecific competition greatly. Thus, the paradox of enrichment appears when eutrophication destroys an ecosystem either by elevated interspecific competition within a trophic level and/or destabilization by trophic interactions. Unless eutrophication due to human activities is ceased, the world's aquatic ecosystems will be at risk. PMID:24089056
Can upwelling signals be detected in intertidal fishes of different trophic levels?
Pulgar, J; Poblete, E; Alvarez, M; Morales, J P; Aranda, B; Aldana, M; Pulgar, V M
2013-11-01
For intertidal fishes belonging to three species, the herbivore Scartichthys viridis (Blenniidae), the omnivore Girella laevifrons (Kyphosidae) and the carnivore Graus nigra (Kyphosidae), mass and body size relationships were higher in individuals from an upwelling zone compared with those from a non-upwelling zone. RNA:DNA were higher in the herbivores and omnivores from the upwelling zone. Higher biomass and RNA:DNA in the upwelling intertidal fishes may be a consequence of an increased exposure to higher nutrient availability, suggesting that increased physiological conditioning in vertebrates from upwelling areas can be detected and measured using intertidal fishes of different trophic levels. © 2013 The Fisheries Society of the British Isles.
Lizard assemblage from a sand dune habitat from southeastern Brazil: a niche overlap analysis.
Winck, Gisele R; Hatano, Fabio; Vrcibradic, Davor; VAN Sluys, Monique; Rocha, Carlos F D
2016-01-01
Communities are structured by interactions of historical and ecological factors, which influence the use of different resources in time and space. We acquired data on time of activity, microhabitat use and diet of a lizard assemblage from a sand dune habitat in a coastal area, southeastern Brazil (Restinga de Jurubatiba). We analyzed the data of niche overlap among species in these three axes (temporal, spatial and trophic) using null models. We found a significant overlap within the trophic niche, whereas the overlap for the other axes did not differ from the expected. Based on this result, we discuss the factors acting on the structure of the local lizard community.
Ibarra Polesel, Mario Gabriel; Poi, Alicia Susana Guadalupe
2016-06-01
Fishes display diverse feeding strategies that may undergo modifications through ontogeny or seasonally with ecological implications in the food webs. Even though the significance of fishes as top predators is recognized, the diet of many of them is still scarcely known; especially in fish that inhabit shallow lakes densely vegetated. The aim of this study was to investigate the diet of Characidium rachovii and Pyrrhulina australis of different size classes (I, II and III); during winter and summer, and estimate their trophic niche breadth. The field work was carried out in two shallow lakes fed by rain (Soto and Pampin lake, Corrientes province), from July 2011 to August 2012. The stomach contents of 104 individuals of C. rachovii and 91 specimens of P. australis were examined. Accumulation curve showed that the number of analyzed stomachs was representative for both species. Twenty three food items for C. rachovii and twenty eight for P. australis were recognized in the gut contents. According to the index of relative importance (IRI), both species feed preferably on cladocerans and midges (Chironomidae), and both species showed a large overlap in their diets (85 %), according to Morisita index. However the diversity of food items and the trophic niche breadth of P. australis (1D = 8.86; B = 4.76) were higher than C. rachovii (1D = 3.37; B = 2.25). Significant differences were observed in the diet of three sizes of P. australis (χ2, p < 0.01) and between the sizes I and III of C. rachovii (χ2, p = 0.03). In both species the diversity of food items increased with increasing their size. Between seasons, the diet differences were significant for both species (χ2, p < 0.0001). The high feeding overlap indicates that both species mostly use the same resources. Notwithstanding this, both the number of food items as the diversity and breadth of the trophic niche, suggest that these species use different feeding strategies, C. rachovii showed a trend towards specialization in microcrustacean consumption; while P. australis exhibited a broader trophic spectrum, incorporating insects from littoral areas and from the terrestrial community. The loss of the trophic dominant resource, by increasing urbanization on the margin of the studied shallow lakes, could lead to increased competition, due to the wide diet overlap in both species.
A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C
Holdo, Ricardo M.; Sinclair, Anthony R. E.; Dobson, Andrew P.; Metzger, Kristine L.; Bolker, Benjamin M.; Ritchie, Mark E.; Holt, Robert D.
2009-01-01
Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching. PMID:19787022
NASA Astrophysics Data System (ADS)
Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; do Carmo Calijuri, Maria
2016-03-01
Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation ( P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050 org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.
Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; Calijuri, Maria do Carmo
2016-03-01
Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation (P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050 org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.
Alonso, David; Pinyol-Gallemí, Aleix; Alcoverro, Teresa; Arthur, Rohan
2015-05-01
Since Gleason and Clements, our understanding of community dynamics has been influenced by theories emphasising either dispersal or niche assembly as central to community structuring. Determining the relative importance of these processes in structuring real-world communities remains a challenge. We tracked reef fish community reassembly after a catastrophic coral mortality in a relatively unfished archipelago. We revisited the stochastic model underlying MacArthur and Wilson's Island Biogeography Theory, with a simple extension to account for trophic identity. Colonisation and extinction rates calculated from decadal presence-absence data based on (1) species neutrality, (2) trophic identity and (3) site-specificity were used to model post-disturbance reassembly, and compared with empirical observations. Results indicate that species neutrality holds within trophic guilds, and trophic identity significantly increases overall model performance. Strikingly, extinction rates increased clearly with trophic position, indicating that fish communities may be inherently susceptible to trophic downgrading even without targeted fishing of top predators. © 2015 John Wiley & Sons Ltd/CNRS.
Vieira, Ricardo P; Gonzalez, Alessandra M; Cardoso, Alexander M; Oliveira, Denise N; Albano, Rodolpho M; Clementino, Maysa M; Martins, Orlando B; Paranhos, Rodolfo
2008-01-01
This study is the first to apply a comparative analysis of environmental chemistry, microbiological parameters and bacterioplankton 16S rRNA clone libraries from different areas of a 50 km transect along a trophic gradient in the tropical Guanabara Bay ecosystem. Higher bacterial diversity was found in the coastal area, whereas lower richness was observed in the more polluted inner bay water. The significance of differences between clone libraries was examined with LIBSHUFF statistics. Paired reciprocal comparisons indicated that each of the libraries differs significantly from the others, and this is in agreement with direct interpretation of the phylogenetic tree. Furthermore, correspondence analyses showed that some taxa are related to specific abiotic, trophic and microbiological parameters in Guanabara Bay estuarine system.
Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.
Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E
2012-01-01
Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.
Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon
van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.
2010-01-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062
Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.
Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W
2010-10-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.
[Strengths, weaknesses, and opportunities of French research in trophic ecology].
Perga, Marie-Élodie; Danger, Michael; Dubois, Stanislas; Fritch, Clémentine; Gaucherel, Cédric; Hubas, Cedric; Jabot, Franck; Lacroix, Gérard; Lefebvre, Sébastien; Marmonier, Pierre; Bec, Alexandre
2018-05-30
The French National Institute of Ecology and Environment (INEE) aims at fostering pluridisciplinarity in Environmental Science and, for that purpose, funds ex muros research groups (GDR) on thematic topics. Trophic ecology has been identified as a scientific field in ecology that would greatly benefit from such networking activity, as being profoundly scattered. This has motivated the seeding of a GDR, entitled "GRET". The contours of the GRET's action, and its ability to fill these gaps within trophic ecology at the French national scale, will depend on the causes of this relative scattering. This study relied on a nationally broadcasted poll aiming at characterizing the field of trophic ecology in France. Amongst all the unique individuals that fulfilled the poll, over 300 belonged at least partly to the field of trophic ecology. The sample included all French public research institutes and career stages. Three main disruptions within the community of scientist in trophic ecology were identified. The first highlighted the lack of interfaces between microbial and trophic ecology. The second evidenced that research questions were strongly linked to single study fields or ecosystem type. Last, research activities are still quite restricted to the ecosystem boundaries. All three rupture points limit the conceptual and applied progression in the field of trophic ecology. Here we show that most of the disruptions within French Trophic Ecology are culturally inherited, rather than motivated by scientific reasons or justified by socio-economic stakes. Comparison with the current literature confirms that these disruptions are not necessarily typical of the French research landscape, but instead echo the general weaknesses of the international research in ecology. Thereby, communication and networking actions within and toward the community of trophic ecologists, as planned within the GRET's objectives, should contribute to fill these gaps, by reintegrating microbes within trophic concepts and setting the seeds for trans- and meta-ecosystemic research opportunities. Once the community of trophic ecologists is aware of the scientific benefit in pushing its boundaries forwards, turning words and good intentions into concrete research projects will depend on the opportunities to obtain research funding. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Kong, Xianyu; Che, Xiaowei; Su, Rongguo; Zhang, Chuansong; Yao, Qingzhen; Shi, Xiaoyong
2017-05-01
There is an urgent need to develop efficient evaluation tools that use easily measured variables to make rapid and timely eutrophication assessments, which are important for marine health management, and to implement eutrophication monitoring programs. In this study, an approach for rapidly assessing the eutrophication status of coastal waters with three easily measured parameters (turbidity, chlorophyll a and dissolved oxygen) was developed by the grid search (GS) optimized support vector machine (SVM), with trophic index TRIX classification results as the reference. With the optimized penalty parameter C =64 and the kernel parameter γ =1, the classification accuracy rates reached 89.3% for the training data, 88.3% for the cross-validation, and 88.5% for the validation dataset. Because the developed approach only used three easy-to-measure variables, its application could facilitate the rapid assessment of the eutrophication status of coastal waters, resulting in potential cost savings in marine monitoring programs and assisting in the provision of timely advice for marine management.
Jessop, Tim S.; Smissen, Peter; Scheelings, Franciscus; Dempster, Tim
2012-01-01
Humans are increasingly subsidizing and altering natural food webs via changes to nutrient cycling and productivity. Where human trophic subsidies are concentrated and persistent within natural environments, their consumption could have complex consequences for wild animals through altering habitat preferences, phenotypes and fitness attributes that influence population dynamics. Human trophic subsidies conceptually create both costs and benefits for animals that receive increased calorific and altered nutritional inputs. Here, we evaluated the effects of a common terrestrial human trophic subsidies, human food refuse, on population and phenotypic (comprising morphological and physiological health indices) parameters of a large predatory lizard (∼2 m length), the lace monitor (Varanus varius), in southern Australia by comparison with individuals not receiving human trophic subsidies. At human trophic subsidies sites, lizards were significantly more abundant and their sex ratio highly male biased compared to control sites in natural forest. Human trophic subsidies recipient lizards were significantly longer, heavier and in much greater body condition. Blood parasites were significantly lower in human trophic subsidies lizards. Collectively, our results imply that human trophic subsidized sites were especially attractive to adult male lace monitors and had large phenotypic effects. However, we cannot rule out that the male-biased aggregations of large monitors at human trophic subsidized sites could lead to reductions in reproductive fitness, through mate competition and offspring survival, and through greater exposure of eggs and juveniles to predation. These possibilities could have negative population consequences. Aggregations of these large predators may also have flow on effects to surrounding food web dynamics through elevated predation levels. Given that flux of energy and nutrients into food webs is central to the regulation of populations and their communities, we advocate further studies of human trophic subsidies be undertaken to evaluate the potentially large ecological implications of this significant human environmental alteration. PMID:22509271
NASA Astrophysics Data System (ADS)
Lira, Alex; Angelini, Ronaldo; Le Loc'h, François; Ménard, Frédéric; Lacerda, Carlos; Frédou, Thierry; Lucena Frédou, Flávia
2018-06-01
We developed an Ecopath model for the Estuary of Sirinhaém River (SIR), a small-sized system surrounded by mangroves, subject to high impact, mainly by the sugar cane and other farming industries in order to describe the food web structure and trophic interactions. In addition, we compared our findings with those of 20 available Ecopath estuarine models for tropical, subtropical and temperate regions, aiming to synthesize the knowledge on trophic dynamics and provide a comprehensive analysis of the structures and functioning of estuaries. Our model consisted of 25 compartments and its indicators were within the expected range for estuarine areas around the world. The average trophic transfer efficiency for the entire system was 11.8%, similar to the theoretical value of 10%. The Keystone Index and MTI (Mixed Trophic Impact) analysis indicated that the snook (Centropomus undecimalis and Centropomus parallelus) and jack (Caranx latus and Caranx hippos) are considered as key resources in the system, revealing their high impact in the food web. Both groups have a high ecological and commercial relevance, despite the unregulated fisheries. As result of the comparison of ecosystem model indicators in estuaries, differences in the ecosystem structure from the low latitude zones (tropical estuaries) to the high latitude zones (temperate system) were noticed. The structure of temperate and sub-tropical estuaries is based on high flows of detritus and export, while tropical systems have high biomass, respiration and consumption rates. Higher values of System Omnivory Index (SOI) and Overhead (SO) were observed in the tropical and subtropical estuaries, denoting a more complex food chain. Globally, none of the estuarine models were classified as fully mature ecosystems, although the tropical ecosystems were considered more mature than the subtropical and temperate ecosystems. This study is an important contribution to the trophic modeling of estuaries, which may also help the knowledge of the role of key ecosystem processes in SIR.
Chen, Qiqing; Hu, Xialin; Yin, Daqiang; Wang, Rui
2016-06-01
The potential uptake and trophic transfer ability of nanoparticles (NPs) in aquatic organisms have not been well understood yet. There has been an increasing awareness of the subcellular fate of NPs in organisms, but how the subcellular distribution of NPs subsequently affects the trophic transfer to predator remains to be answered. In the present study, the food chain from Scenedesmus obliquus to Daphnia magna was established to simulate the trophic transfer of fullerene aqueous suspension (nC60). The nC60 contaminated algae were separated into three fractions: cell wall (CW), cell organelle (CO), and cell membrane (CM) fractions, and we investigated the nC60 uptake amounts and trophic transfer efficiency to the predator through dietary exposure to algae or algal subcellular fractions. The nC60 distribution in CW fraction of S. obliquus was the highest, following by CO and CM fractions. nC60 uptake amounts in D. magna were found to be mainly relative to the NPs' distribution in CW fraction and daphnia uptake ability from CW fraction, whereas the nC60 trophic transfer efficiency (TE) were mainly in accordance with the transfer ability of NPs from the CO fraction. CW fed group possessed the highest uptake amount, followed by CO and CM fed groups, but the presence of humic acid (HA) significantly decreased the nC60 uptake from CW fed group. The CO fed groups acquired high TE values for nC60, while CM fed groups had low TE values. Moreover, even though CW fed group had a high TE value; it decreased significantly with the presence of HA. This study contributes to the understanding of fullerene NPs' dietary exposure to aquatic organisms, suggesting that NPs in different food forms are not necessarily equally trophically available to the predator. Copyright © 2016 Elsevier Inc. All rights reserved.
Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn.
Berger, Kim Murray; Gese, Eric M; Berger, Joel
2008-03-01
The traditional trophic cascades model is based on consumer resource interactions at each link in a food chain. However, trophic-level interactions, such as mesocarnivore release resulting from intraguild predation, may also be important mediators of cascades. From September 2001 to August 2004, we used spatial and seasonal heterogeneity in wolf distribution and abundance in the southern Greater Yellowstone Ecosystem to evaluate whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of wolves (Canis lupus), accounts for high rates of coyote predation on pronghorn (Antilocapra americana) fawns observed in some areas. Results of this ecological perturbation in wolf densities, coyote densities, and pronghorn neonatal survival at wolf-free and wolf-abundant sites support the existence of a species-level trophic cascade. That wolves precipitated a trophic cascade was evidenced by fawn survival rates that were four-fold higher at sites used by wolves. A negative correlation between coyote and wolf densities supports the hypothesis that interspecific interactions between the two species facilitated the difference in fawn survival. Whereas densities of resident coyotes were similar between wolf-free and wolf-abundant sites, the abundance of transient coyotes was significantly lower in areas used by wolves. Thus, differential effects of wolves on solitary coyotes may be an important mechanism by which wolves limit coyote densities. Our results support the hypothesis that mesopredator release of coyotes contributes to high rates of coyote predation on pronghorn fawns, and demonstrate the importance of alternative food web pathways in structuring the dynamics of terrestrial systems.
Fate and Trophic Transfer of Rare Earth Elements in Temperate Lake Food Webs.
Amyot, Marc; Clayden, Meredith G; MacMillan, Gwyneth A; Perron, Tania; Arscott-Gauvin, Alexandre
2017-06-06
Many mining projects targeting rare earth elements (REE) are in development in North America, but the background concentrations and trophic transfer of these elements in natural environments have not been well characterized. We sampled abiotic and food web components in 14 Canadian temperate lakes unaffected by mines to assess the natural ecosystem fate of REE. Individual REE and total REE concentrations (sum of individual element concentrations, ΣREE) were strongly related with each other throughout different components of lake food webs. Dissolved organic carbon and dissolved oxygen in the water column, as well as ΣREE in sediments, were identified as potential drivers of aqueous ΣREE. Log 10 of median bioaccumulation factors ranged from 1.3, 3.7, 4.0, and 4.4 L/kg (wet weight) for fish muscle, zooplankton, predatory invertebrates, and nonpredatory invertebrates, respectively. [ΣREE] in fish, benthic macroinvertebrates, and zooplankton declined as a function of their trophic position, as determined by functional feeding groups and isotopic signatures of nitrogen (δ 15 N), indicating that REE were subject to trophic dilution. Low concentrations of REE in freshwater fish muscle compared to their potential invertebrate prey suggest that fish fillet consumption is unlikely to be a significant source of REE to humans in areas unperturbed by mining activities. However, other fish predators (e.g., piscivorous birds and mammals) may accumulate REE from whole fish as they are more concentrated than muscle. Overall, this study provides key information on the baseline concentrations and trophic patterns for REE in freshwater temperate lakes in Quebec, Canada.
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.; Brumbaugh, William G.
2012-01-01
We assessed the suitability of two nonnative poeciliid fishes—western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna)—for monitoring selenium exposure in desert pupfish (Cyprinodon macularius). Our investigation was prompted by a need to avoid lethal take of an endangered species (pupfish) when sampling fish for chemical analysis. Total selenium (SeTot) concentrations in both poeciliids were highly correlated with SeTot concentrations in pupfish. However, mean SeTot concentrations varied among fish species, with higher concentrations measured in mosquitofish than in mollies and pupfish from one of three sampled agricultural drains. Moreover, regression equations describing the relationship of selenomethionine to SeTot differed between mosquitofish and pupfish, but not between mollies and pupfish. Because selenium accumulates in animals primarily through dietary exposure, we examined fish trophic relationships by measuring stable isotopes (δ13C and δ15N) and gut contents. According to δ13C measurements, the trophic pathway leading to mosquitofish was more carbon-depleted than trophic pathways leading to mollies and pupfish, suggesting that energy flow to mosquitofish originated from allochthonous sources (terrestrial vegetation, emergent macrophytes, or both), whereas energy flow to mollies and pupfish originated from autochthonous sources (filamentous algae, submerged macrophytes, or both). The δ15N measurements indicated that mosquitofish and mollies occupied similar trophic levels, whereas pupfish occupied a slightly higher trophic level. Analysis of gut contents showed that mosquitofish consumed mostly winged insects (an indication of terrestrial taxa), whereas mollies and pupfish consumed mostly organic detritus. Judging from our results, only mollies (not mosquitofish) are suitable for monitoring selenium exposure in pupfish.
Reconciling fisheries catch and ocean productivity
Stock, Charles A.; Asch, Rebecca G.; Cheung, William W. L.; Dunne, John P.; Friedland, Kevin D.; Lam, Vicky W. Y.; Sarmiento, Jorge L.; Watson, Reg A.
2017-01-01
Photosynthesis fuels marine food webs, yet differences in fish catch across globally distributed marine ecosystems far exceed differences in net primary production (NPP). We consider the hypothesis that ecosystem-level variations in pelagic and benthic energy flows from phytoplankton to fish, trophic transfer efficiencies, and fishing effort can quantitatively reconcile this contrast in an energetically consistent manner. To test this hypothesis, we enlist global fish catch data that include previously neglected contributions from small-scale fisheries, a synthesis of global fishing effort, and plankton food web energy flux estimates from a prototype high-resolution global earth system model (ESM). After removing a small number of lightly fished ecosystems, stark interregional differences in fish catch per unit area can be explained (r = 0.79) with an energy-based model that (i) considers dynamic interregional differences in benthic and pelagic energy pathways connecting phytoplankton and fish, (ii) depresses trophic transfer efficiencies in the tropics and, less critically, (iii) associates elevated trophic transfer efficiencies with benthic-predominant systems. Model catch estimates are generally within a factor of 2 of values spanning two orders of magnitude. Climate change projections show that the same macroecological patterns explaining dramatic regional catch differences in the contemporary ocean amplify catch trends, producing changes that may exceed 50% in some regions by the end of the 21st century under high-emissions scenarios. Models failing to resolve these trophodynamic patterns may significantly underestimate regional fisheries catch trends and hinder adaptation to climate change. PMID:28115722
Reconciling fisheries catch and ocean productivity.
Stock, Charles A; John, Jasmin G; Rykaczewski, Ryan R; Asch, Rebecca G; Cheung, William W L; Dunne, John P; Friedland, Kevin D; Lam, Vicky W Y; Sarmiento, Jorge L; Watson, Reg A
2017-02-21
Photosynthesis fuels marine food webs, yet differences in fish catch across globally distributed marine ecosystems far exceed differences in net primary production (NPP). We consider the hypothesis that ecosystem-level variations in pelagic and benthic energy flows from phytoplankton to fish, trophic transfer efficiencies, and fishing effort can quantitatively reconcile this contrast in an energetically consistent manner. To test this hypothesis, we enlist global fish catch data that include previously neglected contributions from small-scale fisheries, a synthesis of global fishing effort, and plankton food web energy flux estimates from a prototype high-resolution global earth system model (ESM). After removing a small number of lightly fished ecosystems, stark interregional differences in fish catch per unit area can be explained ( r = 0.79) with an energy-based model that ( i ) considers dynamic interregional differences in benthic and pelagic energy pathways connecting phytoplankton and fish, ( ii ) depresses trophic transfer efficiencies in the tropics and, less critically, ( iii ) associates elevated trophic transfer efficiencies with benthic-predominant systems. Model catch estimates are generally within a factor of 2 of values spanning two orders of magnitude. Climate change projections show that the same macroecological patterns explaining dramatic regional catch differences in the contemporary ocean amplify catch trends, producing changes that may exceed 50% in some regions by the end of the 21st century under high-emissions scenarios. Models failing to resolve these trophodynamic patterns may significantly underestimate regional fisheries catch trends and hinder adaptation to climate change.
Locke, Sean A; Bulté, Grégory; Marcogliese, David J; Forbes, Mark R
2014-05-01
Populations of invasive species tend to have fewer parasites in their introduced ranges than in their native ranges and are also thought to have fewer parasites than native prey. This 'release' from parasites has unstudied implications for native predators feeding on exotic prey. In particular, shifts from native to exotic prey should reduce levels of trophically transmitted parasites. We tested this hypothesis in native populations of pumpkinseed sunfish (Lepomis gibbosus) in Lake Opinicon, where fish stomach contents were studied intensively in the 1970s, prior to the appearance of exotic zebra mussels (Dreissena polymorpha) in the mid-1990s. Zebra mussels were common in stomachs of present-day pumpkinseeds, and stable isotopes of carbon and nitrogen confirmed their importance in long-term diets. Because historical parasite data were not available in Lake Opinicon, we also surveyed stomach contents and parasites in pumpkinseed in both Lake Opinicon and an ecologically similar, neighboring lake where zebra mussels were absent. Stomach contents of pumpkinseed in the companion lake did not differ from those of pre-invasion fish from Lake Opinicon. The companion lake, therefore, served as a surrogate "pre-invasion" reference to assess effects of zebra mussel consumption on parasites in pumpkinseed. Trophically transmitted parasites were less species-rich and abundant in Lake Opinicon, where fish fed on zebra mussels, although factors other than zebra mussel consumption may contribute to these differences. Predation on zebra mussels has clearly contributed to a novel trophic coupling between littoral and pelagic food webs in Lake Opinicon.
[Means of the formation of gonotrophic relations in blood-sucking Diptera].
Tamarina, N A
1987-01-01
Gonotrophic relations in low and higher bloodsucking Diptera are fundamentally different that results from an initial type of feeding and trophic behaviour. Trophic behaviour of low dipterous hematophages and gonotrophic harmony peculiar to them can be traced from entomophagy, that is from the predatory mode of life on account of small insects. By the type of the trophic behaviour low bloodsucking Diptera are predators with a typical moment contact with the prey. More primitive is a type of gonotrophic harmony characteristic of hunters for diffusely spread prey (incomplete blood portion provides the maturation of incomplete portion of eggs). Hunting for diffusely spread prey is characteristic of entomophages too. The appearance of gregarious ruminants facilitates the possibility of repeated contacts with prey and blood satiation threshold increases. This is a higher type of gonotrophic harmony providing a maximum realization of potential fecundity. The initial saprophagy of higher Diptera is associated with another type of trophic behaviour (long contact with food substratum) that is a prerequisite for quite a different way of evolution of host-parasite relationships in higher Diptera. This leads to more close connections with the host and excludes gonotrophic harmony. Females were the first to begin the exploitation of vertebrate animals. This is connected with the peculiarities of their behaviour during egg laying such as the stay near animals for laying eggs into fresh dung. Autogeneity, nectarophagy and aphagia are homologous phenomena which reflect the loss of an animal component of food or both components at the level of non-specialized saprophagy rather than secondary loss of bloodsucking. The scheme of gonotrophic relations is given.
Våge, Selina; Thingstad, T Frede
2015-01-01
Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales.
NASA Astrophysics Data System (ADS)
Petersen, Marcell Elo; Maar, Marie; Larsen, Janus; Møller, Eva Friis; Hansen, Per Juel
2017-05-01
The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model ERGOM was validated and applied in a local set-up of the Kattegat, Denmark, using the off-line Flexsem framework. The model scenarios were conducted by changing the forcing by ± 20% of nutrient inputs (bottom-up) and mesozooplankton mortality (top-down), and both types of forcing combined. The model results showed that cascading effects operated differently depending on the forcing type. In the single-forcing bottom-up scenarios, the cascade directions were in the same direction as the forcing. For scenarios involving top-down, there was a skipped-level-transmission in the trophic responses that was either attenuated or amplified at different trophic levels. On a seasonal scale, bottom-up forcing showed strongest response during winter-spring for DIN and Chl a concentrations, whereas top-down forcing had the highest cascade strength during summer for Chl a concentrations and microzooplankton biomass. On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient input and mesozooplankton mortality calling for the need of an integrated management of marine areas exploited by human activities.
Våge, Selina; Thingstad, T. Frede
2015-01-01
Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales. PMID:26648929
Rickwood, Carrie J; Dubé, Monique G; Weber, Lynn P; Lux, Sarah; Janz, David M
2008-01-31
The Junction Creek watershed, located in Sudbury, ON, Canada receives effluent from three metal mine wastewater treatment plants, as well as a municipal wastewater (MWW) discharge. Effects on fish have been documented within the creek (decreased egg size and increased metal body burdens). It has been difficult to identify the cause of the effects observed due to the confounded nature of the creek. The objectives of this investigation were to assess the: (1) effects of a mine effluent and municipal wastewater (CCMWW) mixture on fathead minnow (FHM; Pimephales promelas) reproduction in an on-site artificial stream and (2) importance of food (Chironomus tentans) as a source of exposure using a trophic-transfer system. Exposures to CCMWW through the water significantly decreased egg production and spawning events. Exposure through food and water using the trophic-transfer system significantly increased egg production and spawning events. Embryos produced in the trophic-transfer system showed similar hatching success but increased incidence and severity of deformities after CCMWW exposure. We concluded that effects of CCMWW on FHM were more apparent when exposed through the water. Exposure through food and water may have reduced effluent toxicity, possibly due to increased nutrients and organic matter, which may have reduced metal bioavailability. More detailed examination of metal concentrations in the sediment, water column, prey (C. tentans) and FHM tissues is recommended to better understand the toxicokinetics of potential causative compounds within the different aquatic compartments when conducting exposures through different pathways.
García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao
2016-01-01
Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298
Biomagnification of persistent organic pollutants in a deep-sea, temperate food web.
Romero-Romero, Sonia; Herrero, Laura; Fernández, Mario; Gómara, Belén; Acuña, José Luis
2017-12-15
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were measured in a temperate, deep-sea ecosystem, the Avilés submarine Canyon (AC; Cantabrian Sea, Southern Bay of Biscay). There was an increase of contaminant concentration with the trophic level of the organisms, as calculated from stable nitrogen isotope data (δ 15 N). Such biomagnification was only significant for the pelagic food web and its magnitude was highly dependent on the type of top predators included in the analysis. The trophic magnification factor (TMF) for PCB-153 in the pelagic food web (spanning four trophic levels) was 6.2 or 2.2, depending on whether homeotherm top predators (cetaceans and seabirds) were included or not in the analysis, respectively. Since body size is significantly correlated with δ 15 N, it can be used as a proxy to estimate trophic magnification, what can potentially lead to a simple and convenient method to calculate the TMF. In spite of their lower biomagnification, deep-sea fishes showed higher concentrations than their shallower counterparts, although those differences were not significant. In summary, the AC fauna exhibits contaminant levels comparable or lower than those reported in other systems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Le Bourg, B.; Bănaru, D.; Saraux, C.; Nowaczyk, A.; Le Luherne, E.; Jadaud, A.; Bigot, J. L.; Richard, P.
2015-09-01
Increasing abundance of non-commercial sprats and decreasing biomass and landings of commercial anchovies and sardines justify the need to study the feeding ecology and trophic niche overlap of these planktivorous species in the Gulf of Lions. Their diet has been investigated on the basis of stomach content and stable isotope analyses in 2011 and 2012 according to different depths and regions in the study area. The main prey were Corycaeidae copepods, Clauso/Paracalanus, Euterpina acutifrons and Microsetella, for sprats and small copepods, such as Microsetella, Oncaea and Corycaeidae, for anchovies and sardines. This is the first time that the diet of sprats is described in the Gulf of Lions. Sprats fed on a larger size spectrum of prey and seem to be more generalist feeders compared to anchovies and sardines. Ontogenetic changes as well as spatial and temporal variations of the diet occurred in the three species. Stable isotope analysis revealed mobility of sardines and sprats among feeding areas while anchovies exhibited preferred feeding areas. Sprats showed a higher relative condition assessed by C/N ratios than sardines and anchovies. Our results showed an overlap of the trophic niches for the three species, indicating a potential trophic competition in the Gulf of Lions.
Sam Rossman,; McCabe, Elizabeth Berens; Nelio B. Barros,; Hasand Gandhi,; Peggy H. Ostrom,; Stricker, Craig A.; Randall S. Wells,
2015-01-01
This study examines resource use (diet, habitat use, and trophic level) within and among demographic groups (males, females, and juveniles) of bottlenose dolphins (Tursiops truncatus). We analyzed the δ13C and δ15N values of 15 prey species constituting 84% of the species found in stomach contents. We used these data to establish a trophic enrichment factor (TEF) to inform dietary analysis using a Bayesian isotope mixing model. We document a TEF of 0‰ and 2.0‰ for δ13C and δ15N, respectively. The dietary results showed that all demographic groups relied heavily on low trophic level seagrass-associated prey. Bayesian standard ellipse areas (SEAb) were calculated to assess diversity in resource use. The SEAb of females was nearly four times larger than that of males indicating varied resource use, likely a consequence of small home ranges and habitat specialization. Juveniles possessed an intermediate SEAb, generally feeding at a lower trophic level compared to females, potentially an effect of natal philopatry and immature foraging skills. The small SEAb of males reflects a high degree of specialization on seagrass associated prey. Patterns in resource use by the demographic groups are likely linked to differences in the relative importance of social and ecological factors.
Pálinkás, Zoltán; Kiss, József; Zalai, Mihály; Szénási, Ágnes; Dorner, Zita; North, Samuel; Woodward, Guy; Balog, Adalbert
2017-04-01
Four genetically modified (GM) maize ( Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non-GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups' number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non-GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non-GM food webs for herbivores were observed. Food webs parameterized based on 2-year in-field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non-target organisms.
NASA Astrophysics Data System (ADS)
Morgalev, S.; Morgaleva, T.; Gosteva, I.; Morgalev, Yu
2015-11-01
We assessed ecological and biological effects caused by the physical and chemical properties of nanomaterials on the basis of the laboratory researches into water test-organisms of different trophic levels. We studied the physiological functions of water organisms on adding into the environment superfine materials of various chemical nature and structural characteristics: metallic nanoparticles of nikel (nNi), argentum (nAg), platinum (nPt), aurum (nAu), binary NPs (powder of titanium dioxide - nTiO2, aluminum oxide - nAl2O3, zink oxide - nZnO, silicon nitride - nSi3N4, silicon carbide (nSiC) and carbon nanotubes (BT-50, MCD- material). We observed the dependence of developing the complex of unfavourable biological effects in water plants and entomostracans’ organisms on the physical and chemical properties of superfine materials. We determined the values of NOEC, L(E)C20 and L(E)C50 for aquatic organisms of various regular groups. We found out the most vulnerable elements of the communities’ trophic structure and the possibility of a breakdown in the water ecosystem food pyramid.
Croteau, M.-N.; Luoma, S.N.; Stewart, A.R.
2005-01-01
We conducted a study with cadmium (Cd) and copper (Cu) in the delta of San Francisco Bay, using nitrogen and carbon stable isotopes to identify trophic position and food web structure. Cadmium is progressively enriched among trophic levels in discrete epiphyte-based food webs composed of macrophyte-dwelling invertebrates (the first link being epiphytic algae) and fishes (the first link being gobies). Cadmium concentrations were biomagnified 15 times within the scope of two trophic links in both food webs. Trophic enrichment in invertebrates was twice that of fishes. No tendency toward trophic-level enrichment was observed for Cu, regardless of whether organisms were sorted by food web or treated on a taxonomic basis within discrete food webs. The greatest toxic effects of Cd are likely to occur with increasing trophic positions, where animals are ingesting Cd-rich prey (or food). In Franks Tract this occurs within discrete food chains composed of macrophyte-dwelling invertebrates or fishes inhabiting submerged aquatic vegetation. Unraveling ecosystem complexity is necessary before species most exposed and at risk can be identified. ?? 2005, by the American Society of Limnology and Oceanography, Inc.
Polybrominated Diphenyl Ethers (PBDEs) in Concepción Bay, central Chile after the 2010 Tsunami.
Pozo, Karla; Kukučka, Petr; Vaňková, Lenka; Přibylová, Petra; Klánová, Jana; Rudolph, Anny; Banguera, Yulieth; Monsalves, Javier; Contreras, Sergio; Barra, Ricardo; Ahumada, Ramón
2015-06-15
PBDEs (10 congeners) were analyzed using GC-MS in superficial sediments and organisms of the Concepción Bay after the 2010 Tsunami. From all congeners analyzed PBDE-47, -99, -100 and -209 were the most frequently detected. Concentrations (ngg(-1) d.w.) in sediments for ΣPBDE-47, -99, -100 were low (0.02-0.09). However, PBDE-209 showed significantly higher values ∼20ngg(-1) d.w. This result were ∼10 times lower than those reported in a previous study of the 2010 Tsunami. The high result might be influenced by the massive urban debris dragged by the 2010 Tsunami. In organisms, concentrations of PBDE-47, -99, -100 (∼0.4ngg(-1) d.w.) were higher than those found in sediments (∼0.04ngg(-1) d.w.). Differences in PBDE pattern were also observed between different levels of the trophic food chain (primary and secondary consumers). This is the first attempt to assess the current status of Concepción Bay after the 2010 Tsunami. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fisheries research and monitoring activities of the Lake Erie Biological Station, 2015
Bodamer Scarbro, Betsy L.; Edwards, W.H.; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, M. R.; Schoonyan, A. L.; Stewart, T. R.
2016-01-01
In 2015, the U.S. Geological Survey’s (USGS) Lake Erie Biological Station (LEBS) successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Fish Community Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and Lower Trophic Level Assessment (see Forage and Coldwater Task Group reports). In 2015, LEBS also initiated a Lake Erie Central Basin Trawling survey in response to the need for forage fish data from Management Unit 3 (as defined by the Yellow Perch Task Group). Results from these surveys contribute to Lake Erie Committee Fish Community Goals and Objectives. Our 2015 vessel operations were initiated in early April and continued into late November. During this time, crews of the R/V Muskie and R/V Bowfin deployed 121 bottom trawls covering 83.2 ha of lake-bottom and catching 105,600 fish totaling 4,065 kg during four separate trawl surveys in the western and central basins of Lake Erie. We deployed and lifted 9.5 km of gillnet, which caught an additional 805 fish, 100 (337 kg) of which were the native coldwater predators Lake Trout, Burbot, and Lake Whitefish (these data are reported in the 2016 Coldwater Task Group report). We also conducted 317 km of hydroacoustic survey transects (reported in the 2016 Forage Task Group report), collected 114 lower trophic (i.e. zooplankton and benthos) samples, and obtained 216 water quality observations (e.g., temperature profiles, and water samples). The LEBS also assisted CLC member agencies with the maintenance and expansion of GLATOS throughout all three Lake Erie sub-basins. Within the following report sections, we describe results from three trawl surveys – the spring and autumn Western Basin Forage Fish Assessment and the East Harbor Forage Fish Assessment – and the Lower Trophic Level Assessment conducted in 2015, and examine trends in the fish community structure and trophic status of Lake Erie. Results of our central basin trawl survey are reported in the 2016 Yellow Perch Task Group report.
HeLM: a macrophyte-based method for monitoring and assessment of Greek lakes.
Zervas, Dimitrios; Tsiaoussi, Vasiliki; Tsiripidis, Ioannis
2018-05-05
The Water Framework Directive (WFD) requires Member States to develop appropriate assessment methods for the classification of the ecological status of their surface waters. Mediterranean region has lagged behind in this task, so we propose here the first developed method for Greek lakes, Hellenic Lake Macrophyte (HeLM) assessment method. This method is based on two metrics, a modified trophic index and maximum colonization depth C max that quantify the degree of changes in lake macrophytic vegetation, as a response to eutrophication and general degradation pressures. The method was developed on the basis of a data set sampled from 272 monitoring transects in 16 Greek lakes. Sites from three lakes were selected as potential reference sites by using a screening process. Ecological quality ratios were calculated for each metric and for each lake, and ecological status class boundaries were defined. For the evaluation of effectiveness of the method, the correlations between individual metrics and final HeLM values and common pressure indicators, such as total phosphorus, chlorophyll a and Secchi depth, were tested and found highly significant and relatively strong. In addition, the ability of HeLM values and its individual metrics to distinguish between different macrophytic communities' structure was checked using aquatic plant life-forms and found satisfactory. The HeLM method gave a reliable assessment of the macrophytic vegetation's condition in Greek lakes and may constitute a useful tool for the classification of ecological status of other Mediterranean lakes.
Hong, Sang Hee; Shim, Won Joon; Han, Gi Myung; Ha, Sung Yong; Jang, Mi; Rani, Manviri; Hong, Sunwook; Yeo, Gwang Yeong
2014-02-01
Persistent organic pollutants (POPs) levels in resident and migratory birds collected from an urbanized coastal region of South Korea were investigated. As target species, resident birds that reside in different habitats-such as inland and coastal regions-were selected and their POP contamination status and accumulation features evaluated. Additionally, winter and summer migratory species were analysed for comparison with resident birds. Black-tailed gull and domestic pigeon were selected as the coastal and inland resident birds, respectively, and pacific loon and heron/egret were selected as the winter and summer migratory birds, respectively. The overall POP concentrations (unit: ng/g lipid) in resident birds were 14-131,000 (median: 13,400) for PCBs, 40-284,000 (11,200) for DDTs, <1.0-2850 (275) for CHLs, 23-2020 (406) for HCHs, 2-1520 (261) for HCB, <0.2-48 (5) for pentachlorobenzene (PeCB), 71-7120 (1840) for PBDEs, and <1.8-2300 (408) for HBCDs. In resident birds, the overall level of POPs was higher in seagull compared to pigeon. The stable isotope ratio of nitrogen and carbon indicates that seagull occupies a higher trophic position in the environment than pigeon. However, the POP accumulation profiles in these species differed. Pigeon tends to accumulate more recently used POPs such as PBDEs than seagull. The high-brominated BDE congeners, γ-HBCDs and γ-HCH (also called lindane) were enriched in pigeon compared to seagull, implying the widespread use of Deca-BDE, technical HBCDs, and lindane in the terrestrial environment of South Korea. The different accumulation profile of POPs in both resident species would be related to their habitat difference and trophic positions. For urban resident bird such as pigeon, an intentional intake of dust or soils during feeding is likely to be an additional route of exposure to POPs. Resident birds generally accumulated higher POPs concentrations than migratory birds, the exceptions being relatively volatile compounds such as HCB, PeCB and HCHs. © 2013.
Trophic state determination for shallow coastal lakes from Landsat imagery
NASA Technical Reports Server (NTRS)
Welby, C. W.; Witherspoon, A. M.; Holman, R. E., III
1981-01-01
A study has been carried out to develop a photo-optical technique by which Landsat imagery can be used to monitor trophic states of lakes. The proposed technique uses a single number to characterize the trophic state, and a feature within the satellite scene is used as an internal standard for comparison of the lakes in time. By use of the technique it is possible to assess in retrospect the trophic state of each individual lake.
Riascos, José M; Solís, Marco A; Pacheco, Aldo S; Ballesteros, Manuel
2017-06-28
The trophic flow of a species is considered a characteristic trait reflecting its trophic position and function in the ecosystem and its interaction with the environment. However, climate patterns are changing and we ignore how patterns of trophic flow are being affected. In the Humboldt Current ecosystem, arguably one of the most productive marine systems, El Niño-Southern Oscillation is the main source of interannual and longer-term variability. To assess the effect of this variability on trophic flow we built a 16-year series of mass-specific somatic production rate (P/B) of the Peruvian scallop ( Argopecten purpuratus ), a species belonging to a former tropical fauna that thrived in this cold ecosystem. A strong increase of the P/B ratio of this species was observed during nutrient-poor, warmer water conditions typical of El Niño, owing to the massive recruitment of fast-growing juvenile scallops. Trophic ecology theory predicts that when primary production is nutrient limited, the trophic flow of organisms occupying low trophic levels should be constrained (bottom-up control). For former tropical fauna thriving in cold, productive upwelling coastal zones, a short time of low food conditions but warm waters during El Niño could be sufficient to waken their ancestral biological features and display massive proliferations. © 2017 The Author(s).
Food web topology and parasites in the pelagic zone of a subarctic lake
Amundsen, Per-Arne; Lafferty, K.D.; Knudsen, R.; Primicerio, R.; Klemetsen, A.; Kuris, A.M.
2009-01-01
Parasites permeate trophic webs with their often complex life cycles, but few studies have included parasitism in food web analyses. Here we provide a highly resolved food web from the pelagic zone of a subarctic lake and explore how the incorporation of parasites alters the topology of the web. 2. Parasites used hosts at all trophic levels and increased both food-chain lengths and the total number of trophic levels. Their inclusion in the network analyses more than doubled the number of links and resulted in an increase in important food-web characteristics such as linkage density and connectance. 3. More than half of the parasite taxa were trophically transmitted, exploiting hosts at multiple trophic levels and thus increasing the degree of omnivory in the trophic web. 4. For trophically transmitted parasites, the number of parasite-host links exhibited a positive correlation with the linkage density of the host species, whereas no such relationship was seen for nontrophically transmitted parasites. Our findings suggest that the linkage density of free-living species affects their exposure to trophically transmitted parasites, which may be more likely to adopt highly connected species as hosts during the evolution of complex life cycles. 5. The study supports a prominent role for parasites in ecological networks and demonstrates that their incorporation may substantially alter considerations of food-web structure and functioning. ?? 2009 British Ecological Society.
Hydrology, water quality, trophic status, and aquatic plants of Fowler Lake, Wisconsin
Hughes, P.E.
1993-01-01
The low annual phosphorus input (28 pounds per square mile) to the lake from the Oconomowoc River shows the benefit of upstream lakes on the Oconomowoc River. Fourteen percent of the phosphorus input load to Fowler Lake is deposited in the lake sediments and the rest is transported through the lake by surface-water flow to downstream Lac La Belle. Dense growths of macrophytes in the lake change in composition seasonally; chara sp. (muskgrass) and Myriophyllum sp. (milfoil) are abundant in June and Najas marina and Vallesneria Americana (wild celery) are abundant in August.
Computational Approaches to Predict Indices of Cyanobacteria Toxicity.
As nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g., oligotrophic) to higher trophic states (e.g., eutrophic). These broad trophic state classifications are good predictors of ecosystem health and the potential for ecosystem serv...
Computational Approaches to Predict Indices of Cyanobacteria Toxicity
As nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classifications are good predictors of ecosystem health and the potential for ecosystem servic...
Huang, Jianke; Wang, Weiliang; Yin, Weibo; Hu, Zanmin; Li, Yuanguang
2012-01-01
Background Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear. Methodology/Principal Findings In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs) were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1%) from the forward library and 62 (21.8%) from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense. Conclusions/Significance The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds great potential for further improving its lipid and nutrient production. PMID:23209737
Mont'Alverne, R; Pereyra, P E R; Garcia, A M
2016-07-01
Stable isotopes were used to evaluate the hypothesis that fish assemblages occurring in shallow and deep areas of a large coastal lagoon are structured in partially segregated trophic modules with consumers showing contrasting reliance on benthic or pelagic food sources. The results revealed that fishes in deep areas were mainly dependent on particulate organic matter in the sediment (SOM), whereas emergent macrophytes were as important as SOM to fish consumers in shallow areas. Conceptual trophic diagrams depicting relationships among basal food sources and consumers in different regions of the lagoon highlighted the greater use of multiple basal food sources by more feeding mode functional guilds in shallow water compared with the use of predominantly benthic resources (SOM) in deep areas. The findings appear to corroborate the initial hypothesis and offer complementary perspectives in understanding the role of spatial ecology in structuring coastal ecosystem function and productivity. © 2016 The Fisheries Society of the British Isles.
Haukås, Marianne; Hylland, Ketil; Nygård, Torgeir; Berge, John Arthur; Mariussen, Espen
2010-11-01
The present study reports diastereomer-specific accumulation of HBCD from a point source in five marine species representing a typical food web in a Norwegian coastal area. Samples of mussels, polychaetes, crabs and seabird eggs were analyzed for the diastereomers α-, β- and γ-HBCD, as well as lipid content and stable isotopes of nitrogen ((15)N/(14)N) to estimate trophic level. Accumulated HBCD did not correlate well with lipid content for most of the species, thus wet-weight based concentrations were included in an assessment of biomagnification. In contrast to β- and γ-HBCD, the α-diastereomer increased significantly with trophic level, resulting in magnification factors >1 in this coastal marine ecosystem. Data for poikilotherms did not show the same positive correlation between the α-diastereomer and trophic position as homeotherms. The apparent biomagnification of the α-HBCD could be due to bioisomerization or diastereomer-specific elimination that differed between poikilotherms and homeotherms. Copyright © 2010 Elsevier B.V. All rights reserved.
Haukås, Marianne; Berger, Urs; Hop, Haakon; Gulliksen, Bjørn; Gabrielsen, Geir W
2007-07-01
The present study reports concentrations and biomagnification potential of per- and polyfluorinated alkyl substances (PFAS) in species from the Barents Sea food web. The examined species included sea ice amphipod (Gammarus wilkitzkii), polar cod (Boreogadus saida), black guillemot (Cepphus grylle) and glaucous gull (Larus hyperboreus). These were analyzed for PFAS, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and polybrominated diphenyl ethers (PBDEs). Perfluorooctane sulfonate (PFOS) was the predominant of the detected PFAS. Trophic levels and food web transfer of PFAS were determined using stable nitrogen isotopes (delta(15)N). No correlation was found between PFOS concentrations and trophic level within species. However, a non-linear relationship was established when the entire food web was analyzed. Biomagnification factors displayed values >1 for perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), PFOS and SigmaPFAS(7). Multivariate analyses showed that the degree of trophic transfer of PFAS is similar to that of PCB, DDT and PBDE, despite their accumulation through different pathways.
Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon
2010-11-01
Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture.
Critical assessment and ramifications of a purported marine trophic cascade
NASA Astrophysics Data System (ADS)
Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.
2016-02-01
When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.
Critical assessment and ramifications of a purported marine trophic cascade
Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.
2016-01-01
When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.
The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths
Benesh, Daniel P.; Chubb, James C.; Parker, Geoff A.
2014-01-01
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. PMID:25209937
Critical assessment and ramifications of a purported marine trophic cascade
Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.
2016-01-01
When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions. PMID:26876514
Mercury in the pelagic food web of Lake Champlain.
Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela
2012-04-01
Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.
Álvarez-Varas, Rocío; Morales-Moraga, David; González-Acuña, Daniel; Klarian, Sebastián A; Vianna, Juliana A
2018-07-01
Penguins are reliable sentinels for environmental assessments of mercury (Hg) due to their longevity, abundance, high trophic level, and relatively small foraging areas. We analyzed Hg concentrations from blood and feathers of adult Humboldt penguins (Spheniscus humboldti) and feathers of chinstrap penguins (Pygoscelis antarcticus) from different reproductive colonies with variable degrees of urbanization and industrialization along the Chilean and Antarctic coasts. We evaluated Hg concentration differences between species, sexes (Humboldt penguins), and localities. Our results showed significantly greater levels in Humboldt penguins than in chinstrap penguins and nonsignificant differences between sexes among Humboldts. Penguin Hg concentrations showed a latitudinal pattern, with greater values of the metal at lower latitudes, independent of the species. Both studied penguin species showed elevated Hg concentrations compared to their congeners, highlighting the necessity to investigate potential negative effects on their populations. Although differences between species are possibly due to variation in diet and trophic level, our results suggest an important effect of the degree of Hg pollution adjacent to foraging areas. Further research on Hg content in prey species and environmental samples, together with a larger overall sample size, and investigation on penguin's diet and trophic level are needed to elucidate Hg bioavailability in each location and the role of local Hg pollution levels. Likewise, it is important to monitor Hg and other heavy metals of ecotoxicological importance in penguin populations in vulnerable regions of Chile.
Mercury in the Pelagic Food Web of Lake Champlain
Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela
2013-01-01
Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540
López-Rodríguez, M J; Trenzado, C E; Tierno de Figueroa, J M; Sanz, A
2012-05-01
Plecoptera (Perlidae) are among the major macroinvertebrate predators in stream ecosystems and one of the insect families with lower tolerance to environmental alterations, being usually employed as bioindicators of high water ecological quality. The differences in the trophic roles of the coexisting species have been exclusively studied from their gut contents, while no data are available on the comparative digestive capacity. In the present paper, we make a comparative study of the activity of several digestive enzymes, namely proteases (at different pH), amylase, lipase, trypsin and chymotrypsin, in two species of stoneflies, Perla bipunctata and Dinocras cephalotes, which cohabit in the same stream. The study of digestive enzyme activity together with the analysis of gut contents can contribute to a better understanding of the ecology of these aquatic insects and their role in freshwater food webs. Thus, our results show that the two studied predator species inhabiting in the same stream present specializations on their feeding behaviors, facilitating their coexistence, and also differences in their capacity of use the resources. One of the main findings of this study is that D. cephalotes is able to assimilate a wider trophic resource spectrum and this could be one of the reasons why this species has a wider global distribution in all its geographical range. Copyright © 2012 Elsevier Inc. All rights reserved.
Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels
Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.
2012-01-01
Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893
Strady, Emilie; Harmelin-Vivien, Mireille; Chiffoleau, Jean François; Veron, Alain; Tronczynski, Jacek; Radakovitch, Olivier
2015-05-01
The transfer of (210)Po and (210)Pb in the food web of small pelagic fishes (from phytoplankton and zooplankton to anchovy Engraulis encrasicolus and sardine Sardina pilchardus) is investigated in the Gulf of Lion (GoL). We present original data of (210)Po and (210)Pb activity concentrations, C and N stable isotope ratios, measured (i) from different size classes of phytoplankton and zooplankton during spring and winter in different environments of the GoL, and (ii) in two fish species. Significant spatial patterns based on (210)Po, (210)Pb activity concentrations and (210)Po/(210)Pb ratios in the different plankton size classes are evidenced by hierarchical clustering, both in spring and winter. This variability, also observed for C and N stable isotopes ratios, is connected to local specific pelagic habitats and hydrodynamics. The sampling strategy suggests that (210)Po bioaccumulation in the GoL remains at a constant level from the first (dominated by phytoplankton) to the second trophic level (zooplankton), while (210)Pb bioaccumulation shows an increase in winter. Based on stable N isotope ratios and (210)Po activity concentrations measured in anchovies and sardines, we evidence (210)Po bio-magnification along the trophic food web of these two planktivorous pelagic fishes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kopp, Dorothée; Le Bris, Hervé; Grimaud, Lucille; Nérot, Caroline; Brind'Amour, Anik
2013-08-01
Coastal and estuarine systems provide nursery grounds for many marine fish species. Their productivity has been correlated with terrigeneous inputs entering the coastal-estuarine benthic food web, thereby favouring the establishment of fish juveniles. Studies in these ecosystems often describe the nursery as a single large habitat without verifying nor considering the presence of contiguous habitats. Our study aimed at identifying different habitats based on macrozoobenthic communities and morpho-sedimentary characteristics and assessing the trophic interactions between fish juveniles and their benthic preys within these habitats. It included 43 sampling sites covering 5 habitats in which we described taxonomically and quantitatively the invertebrates and fish communities with stable isotopes and gut contents. It suggested that the benthic common sole Solea solea displayed feeding plasticity at the population level, separating the juveniles (G0) from the older fish (G1) into different "feeding sub-populations". Size-based feeding plasticity was also observable in the spatial occupancy of that species in the studied bay. The demersal pouting, Trisopterus luscus, equally used the different habitats but displayed low feeding plasticity across and inside each habitat. Stable isotopes proved to be powerful tools to study the spatial distribution of trophic interactions in complex ecosystems like the bay of Vilaine and to define optimal habitats for fish that use the coastal-estuarine ecosystem as nursery grounds.
Improving the Quality and Scientific Understanding of Trophic Magnification Factors (TMFs)
This short 1000 word report presents a series of research needs for improving the measurement and understanding of trophic magnification factors (TMFs). TMFs are useful measures of trophic magnification and represent the diet-weighted average biomagnification factor (BMF) of che...
Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos
Briggs, Amy A.; Young, Hillary S.; McCauley, Douglas J.; Hathaway, Stacie A.; Dirzo, Rodolfo; Fisher, Robert N.
2012-01-01
While it is well established that ecosystem subsidies—the addition of energy, nutrients, or materials across ecosystem boundaries—can affect consumer abundance, there is less information available on how subsidy levels may affect consumer diet, body condition, trophic position, and resource partitioning among consumer species. There is also little information on whether changes in vegetation structure commonly associated with spatial variation in subsidies may play an important role in driving consumer responses to subsidies. To address these knowledge gaps, we studied changes in abundance, diet, trophic position, size, and body condition of two congeneric gecko species (Lepidodactylus spp.) that coexist in palm dominated and native (hereafter dicot dominated) forests across the Central Pacific. These forests differ trongly both in the amount of marine subsidies that they receive from seabird guano and carcasses, and in the physical structure of the habitat. Contrary to other studies, we found that subsidy level had no impact on the abundance of either gecko species; it also did not have any apparent effects on resource partitioning between species. However, it did affect body size, dietary composition, and trophic position of both species. Geckos in subsidized, dicot forests were larger, had higher body condition and more diverse diets, and occupied a much higher trophic position than geckos found in palm dominated, low subsidy level forests. Both direct variation in subsidy levels and associated changes in habitat structure appear to play a role in driving these responses. These results suggest that variation in subsidy levels may drive important behavioral responses in predators, even when their numerical response is limited. Strong changes in trophic position of consumers also suggest that subsidies may drive increasingly complex food webs, with longer overall food chain length.
Trophic interactions, ecosystem structure and function in the southern Yellow Sea
NASA Astrophysics Data System (ADS)
Lin, Qun; Jin, Xianshi; Zhang, Bo
2013-01-01
The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.
Ripple, William J; Estes, James A; Schmitz, Oswald J; Constant, Vanessa; Kaylor, Matthew J; Lenz, Adam; Motley, Jennifer L; Self, Katharine E; Taylor, David S; Wolf, Christopher
2016-11-01
Few concepts in ecology have been so influential as that of the trophic cascade. Since the 1980s, the term has been a central or major theme of more than 2000 scientific articles. Despite this importance and widespread usage, basic questions remain about what constitutes a trophic cascade. Inconsistent usage of language impedes scientific progress and the utility of scientific concepts in management and conservation. Herein, we offer a definition of trophic cascade that is designed to be both widely applicable yet explicit enough to exclude extraneous interactions. We discuss our proposed definition and its implications, and define important related terms, thereby providing a common language for scientists, policy makers, conservationists, and other stakeholders with an interest in trophic cascades. Copyright © 2016 Elsevier Ltd. All rights reserved.
Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps.
Portail, Marie; Olu, Karine; Dubois, Stanislas F; Escobar-Briones, Elva; Gelinas, Yves; Menot, Lénaick; Sarrazin, Jozée
In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the competitive pressure within communities of low fluid-flux habitats. Finally, ecosystem functioning in vents and seeps was highly similar despite environmental differences (e.g. physico-chemistry, dominant basal sources) suggesting that ecological niches are not specifically linked to the nature of fluids. This comparison of seep and vent functioning in the Guaymas basin thus provides further supports to the hypothesis of continuity among deep-sea chemosynthetic ecosystems.
NASA Astrophysics Data System (ADS)
Tarling, G. A.; Stowasser, G.; Ward, P.; Poulton, A. J.; Zhou, M.; Venables, H. J.; McGill, R. A. R.; Murphy, E. J.
2012-01-01
The biomass size structure of pelagic communities provides a system level perspective that can be instructive when considering trophic interactions. Such perspectives can become even more powerful when combined with taxonomic information and stable isotope analysis. Here we apply these approaches to the pelagic community of the Scotia Sea (Southern Ocean) and consider the structure and development of trophic interactions over different years and seasons. Samples were collected from three open-ocean cruises during the austral spring 2006, summer 2008 and autumn 2009. Three main sampling techniques were employed: sampling bottles for microplankton (0-50 m), vertically hauled fine meshed nets for mesozooplankton (0-400 m) and coarse-meshed trawls for macrozooplankton and nekton (0-1000 m). All samples were identified to the lowest practicable taxonomic level and their abundance, individual body weight and biomass (in terms of carbon) estimated. Slopes of normalised biomass spectrum versus size showed a significant but not substantial difference between cruises and were between -1.09 and -1.06. These slopes were shallower than expected for a community at equilibrium and indicated that there was an accumulation of biomass in the larger size classes (10 1-10 5 mg C ind -1). A secondary structure of biomass domes was also apparent, with the domes being 2.5-3 log 10 intervals apart in spring and summer and 2 log 10 intervals apart in autumn. The recruitment of copepod-consuming macrozooplankton, Euphausia triacantha and Themisto gaudichaudii into an additional biomass dome was responsible for the decrease in the inter-dome interval in autumn. Predator to prey mass ratios estimated from stable isotope analysis reached a minimum in autumn while the estimated trophic level of myctophid fish was highest in that season. This reflected greater amounts of internal recycling and increased numbers of trophic levels in autumn compared to earlier times of the year. The accumulation of biomass in larger size classes throughout the year in the Scotia Sea may reflect the prevalence of species that store energy and have multiyear life-cycles.
Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps
Olu, Karine; Dubois, Stanislas F.; Escobar-Briones, Elva; Gelinas, Yves; Menot, Lénaick; Sarrazin, Jozée
2016-01-01
In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the competitive pressure within communities of low fluid-flux habitats. Finally, ecosystem functioning in vents and seeps was highly similar despite environmental differences (e.g. physico-chemistry, dominant basal sources) suggesting that ecological niches are not specifically linked to the nature of fluids. This comparison of seep and vent functioning in the Guaymas basin thus provides further supports to the hypothesis of continuity among deep-sea chemosynthetic ecosystems. PMID:27683216
Cooper, W James; Westneat, Mark W
2009-01-30
Damselfishes (Perciformes, Pomacentridae) are a major component of coral reef communities, and the functional diversity of their trophic anatomy is an important constituent of the ecological morphology of these systems. Using shape analyses, biomechanical modelling, and phylogenetically based comparative methods, we examined the anatomy of damselfish feeding among all genera and trophic groups. Coordinate based shape analyses of anatomical landmarks were used to describe patterns of morphological diversity and determine positions of functional groups in a skull morphospace. These landmarks define the lever and linkage structures of the damselfish feeding system, and biomechanical analyses of this data were performed using the software program JawsModel4 in order to calculate the simple mechanical advantage (MA) employed by different skull elements during feeding, and to compute kinematic transmission coefficients (KT) that describe the efficiency with which angular motion is transferred through the complex linkages of damselfish skulls. Our results indicate that pomacentrid planktivores are significantly different from other damselfishes, that biting MA values and protrusion KT ratios are correlated with pomacentrid trophic groups more tightly than KT scores associated with maxillary rotation and gape angle, and that the MAs employed by their three biting muscles have evolved independently. Most of the biomechanical parameters examined have experienced low levels of phylogenetic constraint, which suggests that they have evolved quickly. Joint morphological and biomechanical analyses of the same anatomical data provided two reciprocally illuminating arrays of information. Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding. Our data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.
Microbial Life in Soil - Linking Biophysical Models with Observations
NASA Astrophysics Data System (ADS)
Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang
2015-04-01
Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world
Microbial Life in Soil - Linking Biophysical Models with Observations
NASA Astrophysics Data System (ADS)
Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.
2014-12-01
Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world.
Burger, Joanna; Gochfeld, Michael; Jewett, Stephen
2006-12-01
Considerable attention has been devoted to selecting bioindicator species as part of monitoring programs for exposure and effects from contaminants in the environment. Yet the rationale for selection of bioindicators is often literature-based, rather than developed with a firm site-specific base of data on contaminant levels in a diverse range of organisms at different trophic levels in the same ecosystem. We suggest that this latter step is an important phase in the environmental assessment process that is often missing. In this paper we address the problem of how to select a wide range of species representing different trophic levels that serve as a basis for selecting a few species suitable as bioindicators. We illustrate this with our assessment of radionuclides on Amchitka Island, Alaska. We propose a multi-stage process for arriving at the list of available species that includes review of literature, review by experts experienced in the area, review by interested and affected parties, selection of trophic levels or groups for analysis, arraying of possible species, and selection of species within each trophic level group for sample collection. We first had to identify all likely species, then narrow our focus to those we could collect and analyze. In all cases, review includes suggestions for possible target species with justifications. While this method increases the up-front costs of developing bioindicators for an ecosystem, it has the advantage of providing information for selection of species that will be most informative in the long run, including those that are the best bioaccumulators, thus providing the earliest warning of any potential environmental consequences. Further, the recognition that a range of stakeholder's needs and interests should be included increases the utility for public-policy makers, and the potential for continued usage to establish long-term trends.
Edwards, Mark A; Derocher, Andrew E; Hobson, Keith A; Branigan, Marsha; Nagy, John A
2011-04-01
Categorizing animal populations by diet can mask important intrapopulation variation, which is crucial to understanding a species' trophic niche width. To test hypotheses related to intrapopulation variation in foraging or the presence of diet specialization, we conducted stable isotope analysis (δ(13)C, δ(15)N) on hair and claw samples from 51 grizzly bears (Ursus arctos) collected from 2003 to 2006 in the Mackenzie Delta region of the Canadian Arctic. We examined within-population differences in the foraging patterns of males and females and the relationship between trophic position (derived from δ(15)N measurements) and individual movement. The range of δ(15)N values in hair and claw (2.0-11.0‰) suggested a wide niche width and cluster analyses indicated the presence of three foraging groups within the population, ranging from near-complete herbivory to near-complete carnivory. We found no linear relationship between home range size and trophic position when the data were continuous or when grouped by foraging behavior. However, the movement rate of females increased linearly with trophic position. We used multisource dual-isotope mixing models to determine the relative contributions of seven prey sources within each foraging group for both males and females. The mean bear dietary endpoint across all foraging groups for each sex fell toward the center of the mixing polygon, which suggested relatively well-mixed diets. The primary dietary difference across foraging groups was the proportional contribution of herbaceous foods, which decreased for both males and females from 42-76 to 0-27% and 62-81 to 0-44%, respectively. Grizzlies of the Mackenzie Delta live in extremely harsh conditions and identifying within-population diet specialization has improved our understanding of varying habitat requirements within the population.
Lorrain, Anne; Argüelles, Juan; Alegre, Ana; Bertrand, Arnaud; Munaron, Jean-Marie; Richard, Pierre; Cherel, Yves
2011-01-01
Cephalopods play a major role in marine ecosystems, but knowledge of their feeding ecology is limited. In particular, intra- and inter-individual variations in their use of resources has not been adequatly explored, although there is growing evidence that individual organisms can vary considerably in the way they use their habitats and resources. Using δ(13)C and δ(15)N values of serially sampled gladius (an archival tissue), we examined high resolution variations in the trophic niche of five large (>60 cm mantle length) jumbo squids (Dosidicus gigas) that were collected off the coast of Peru. We report the first evidence of large inter-individual differences in jumbo squid foraging strategies with no systematic increase of trophic level with size. Overall, gladius δ(13)C values indicated one or several migrations through the squid's lifetime (∼8-9 months), during which δ(15)N values also fluctuated (range: 1 to 5‰). One individual showed an unexpected terminal 4.6‰ δ(15)N decrease (more than one trophic level), thus indicating a shift from higher- to lower-trophic level prey at that time. The data illustrate the high diversity of prey types and foraging histories of this species at the individual level. The isotopic signature of gladii proved to be a powerful tool to depict high resolution and ontogenic variations in individual foraging strategies of squids, thus complementing traditional information offered by stomach content analysis and stable isotopes on metabolically active tissues. The observed differences in life history strategies highlight the high degree of plasticity of the jumbo squid and its high potential to adapt to environmental changes.
Lorrain, Anne; Argüelles, Juan; Alegre, Ana; Bertrand, Arnaud; Munaron, Jean-Marie; Richard, Pierre; Cherel, Yves
2011-01-01
Background Cephalopods play a major role in marine ecosystems, but knowledge of their feeding ecology is limited. In particular, intra- and inter-individual variations in their use of resources has not been adequatly explored, although there is growing evidence that individual organisms can vary considerably in the way they use their habitats and resources. Methodology/Principal Findings Using δ13C and δ15N values of serially sampled gladius (an archival tissue), we examined high resolution variations in the trophic niche of five large (>60 cm mantle length) jumbo squids (Dosidicus gigas) that were collected off the coast of Peru. We report the first evidence of large inter-individual differences in jumbo squid foraging strategies with no systematic increase of trophic level with size. Overall, gladius δ13C values indicated one or several migrations through the squid's lifetime (∼8–9 months), during which δ15N values also fluctuated (range: 1 to 5‰). One individual showed an unexpected terminal 4.6‰ δ15N decrease (more than one trophic level), thus indicating a shift from higher- to lower-trophic level prey at that time. The data illustrate the high diversity of prey types and foraging histories of this species at the individual level. Conclusions/Significance The isotopic signature of gladii proved to be a powerful tool to depict high resolution and ontogenic variations in individual foraging strategies of squids, thus complementing traditional information offered by stomach content analysis and stable isotopes on metabolically active tissues. The observed differences in life history strategies highlight the high degree of plasticity of the jumbo squid and its high potential to adapt to environmental changes. PMID:21779391
Chouvelon, Tiphaine; Brach-Papa, Christophe; Auger, Dominique; Bodin, Nathalie; Bruzac, Sandrine; Crochet, Sylvette; Degroote, Maxime; Hollanda, Stephanie J; Hubert, Clarisse; Knoery, Joël; Munschy, Catherine; Puech, Alexis; Rozuel, Emmanuelle; Thomas, Bastien; West, Wendy; Bourjea, Jérôme; Nikolic, Natacha
2017-10-15
Albacore tuna (Thunnus alalunga) is a highly commercial fish species harvested in the world's Oceans. Identifying the potential links between populations is one of the key tools that can improve the current management across fisheries areas. In addition to characterising populations' contamination state, chemical compounds can help refine foraging areas, individual flows and populations' structure, especially when combined with other intrinsic biogeochemical (trophic) markers such as carbon and nitrogen stable isotopes. This study investigated the bioaccumulation of seven selected trace metals - chromium, nickel, copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg) and lead - in the muscle of 443 albacore tunas, collected over two seasons and/or years in the western Indian Ocean (WIO: Reunion Island and Seychelles) and in the south-eastern Atlantic Ocean (SEAO: South Africa). The main factor that explained metal concentration variability was the geographic origin of fish, rather than the size and the sex of individuals, or the season/year of sampling. The elements Cu, Zn, Cd and Hg indicated a segregation of the geographic groups most clearly. For similar sized-individuals, tunas from SEAO had significantly higher concentrations in Cu, Zn and Cd, but lower Hg concentrations than those from WIO. Information inferred from the analysis of trophic markers (δ 13 C, δ 15 N) and selected persistent organic pollutants, as well as information on stomach contents, corroborated the geographical differences obtained by trace metals. It also highlighted the influence of trophic ecology on metal bioaccumulation. Finally, this study evidenced the potential of metals and chemical contaminants in general as tracers, by segregating groups of individuals using different food webs or habitats, to better understand spatial connectivity at the population scale. Limited flows of individuals between the SEAO and the WIO are suggested. Albacore as predatory fish also provided some information on environmental and food web chemical contamination in the different study areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy flow and trophic partitioning of contrasting Cold Water Coral ecosystems of the NE Atlantic.
NASA Astrophysics Data System (ADS)
Kiriakoulakis, K.; Smith, E. L.; Dempster, N. M.; Roberts, M.; Hennige, S. J.; Wolff, G. A.
2016-02-01
This study investigates the energy flow, trophic positioning and nutritional quality of suspended particulate organic matter (sPOM) that reaches cold-water coral (CWC) ecosystems from two contrasting oceanographic settings of the N. E. Atlantic using molecular (lipid) and stable isotopic analysis. Study sites are the shallow ( 150m) Mingulay Reef on the NW Scotland shelf vs the deeper ( 700m) Logachev Mounds on the eastern slope of the Rockall Bank. Cold water corals are now being realised as abundant, cosmopolitan and biodiverse hotspots of the global ocean. Recent research has shown links between high levels of surface primary productivity and sPOM flux; which when combined with hydrodynamic processes facilitates an almost continuous supply of nutrient rich sPOM to these deep-ocean ecosystems. However, little is understood regarding the exact nutritional requirements of these ecosystems. Fresh marine sPOM is usually rich in proteins and lipids; however during transport into the ocean interior its chemical composition is influenced by a variety of complex transformation, remineralisation and repackaging processes; thus altering its `freshness' and nutritional quality. The study of the bioavailable and nutritional fractions of sPOM in relation to specific oceanographic transport regimes can help further understand the processes, nutritional requirements and energy flow of these ecosystems. Isotopic ratios of carbon and nitrogen were analysed using EA-IR-MS and lipids via GC-MS. Initial results show significant differences in δ15N and δ13C values of sPOM between the two areas, indicating differences in trophic dynamics and sPOM re-working between locations. In addition lipid results highlight differences in trophic contributions to the energy flows of the two locations, yet similarities in molecular nutritional component contributions; thus supporting previous studies regarding the importance of certain lipid classes in the development of these deep and fragile ecosystems. This multi-disciplinary approach to biogeochemical analysis may also be used to detect chemosynthetic energy pathway contributions to sPOM.
Feeding behavior and trophic interaction of three shark species in the Galapagos Marine Reserve
Insuasti-Zarate, Paul; Riofrío-Lazo, Marjorie; Galván-Magaña, Felipe
2018-01-01
There is great concern about the future of sharks in Ecuador because of the lack of biological knowledge of most species that inhabit the region. This paper analyzes the feeding behavior of the pelagic thresher shark (Alopias pelagicus), the blue shark (Prionace glauca) and the silky shark (Carcharhinus falciformis) through the use of stable isotopes of carbon and nitrogen (δ13C and δ15N), with the aim of determining the degree of interaction between these species in the Galapagos Marine Reserve. No interspecific differences were found in use of oceanic vs. inshore feeding areas (δ13C: Kruskal–Wallis test, p = 0.09). The position in the hierarchy of the food web where A. pelagicus feeds differed from that of the other species (δ15N: Kruskal–Wallis test, p = 0.01). There were no significant differences in δ13C and δ15N values between males and females of the three species (Student’s t-test, p > 0.05), which suggests that both sexes have a similar feeding behavior. A specialist strategy was observed in P. glauca (trophic niche breadth TNB = 0.69), while the other species were found to be generalist (A. pelagicus TNB = 1.50 and C. falciformis TNB = 1.09). The estimated trophic level (TL) varied between the three species. C. falciformis occupied the highest trophic level (TL = 4.4), making it a quaternary predator in the region. The results of this study coincide with the identified behavior in these predators in other areas of the tropical Pacific (Colombia and Mexico), and suggest a pelagic foraging strategy with differential consumption of prey between the three species. These ecological aspects can provide timely information when implementing in conservation measures for these shark species in the Tropical Pacific and Galapagos Marine Reserve. PMID:29844971
Feeding behavior and trophic interaction of three shark species in the Galapagos Marine Reserve.
Páez-Rosas, Diego; Insuasti-Zarate, Paul; Riofrío-Lazo, Marjorie; Galván-Magaña, Felipe
2018-01-01
There is great concern about the future of sharks in Ecuador because of the lack of biological knowledge of most species that inhabit the region. This paper analyzes the feeding behavior of the pelagic thresher shark ( Alopias pelagicus ), the blue shark ( Prionace glauca ) and the silky shark ( Carcharhinus falciformis ) through the use of stable isotopes of carbon and nitrogen ( δ 13 C and δ 15 N), with the aim of determining the degree of interaction between these species in the Galapagos Marine Reserve. No interspecific differences were found in use of oceanic vs. inshore feeding areas ( δ 13 C: Kruskal-Wallis test, p = 0.09). The position in the hierarchy of the food web where A. pelagicus feeds differed from that of the other species ( δ 15 N: Kruskal-Wallis test, p = 0.01). There were no significant differences in δ 13 C and δ 15 N values between males and females of the three species (Student's t -test, p > 0.05), which suggests that both sexes have a similar feeding behavior. A specialist strategy was observed in P. glauca (trophic niche breadth TNB = 0.69), while the other species were found to be generalist ( A. pelagicus TNB = 1.50 and C. falciformis TNB = 1.09). The estimated trophic level (TL) varied between the three species. C. falciformis occupied the highest trophic level (TL = 4.4), making it a quaternary predator in the region. The results of this study coincide with the identified behavior in these predators in other areas of the tropical Pacific (Colombia and Mexico), and suggest a pelagic foraging strategy with differential consumption of prey between the three species. These ecological aspects can provide timely information when implementing in conservation measures for these shark species in the Tropical Pacific and Galapagos Marine Reserve.
Ecological consequences of manipulative parasites: chapter 9
Lafferty, Kevin D.; Kuris, A. M.
2012-01-01
Parasitic "puppet masters", with their twisted, self-serving life history strategies and impressive evolutionary takeovers of host minds, capture the imagination of listeners—even those that might not normally fi nd the topic of parasitism appealing (which includes most everyone). A favorite anecdote concerns the trematode Leucochloridium paradoxum migrating to the eyestalks of its intermediate host snail and pulsating its colored body, presumably to attract the predatory birds that are the final hosts for the worm. Identifying a parasite as “manipulative” infers that a change in host behavior or appearance is a direct consequence of the parasite’s adaptive actions that, on average, will increase the fi tness of the parasite. The list of parasites that manipulate their hosts is long and growing. Holmes and Bethel (1972) presented the earliest comprehensive review and brought the subject to mainstream ecologists. Over two decades ago, Andy Dobson (1988) listed seven cestodes, seven trematodes, ten acanthocephalans, and three nematodes that manipulated host behavior. Fifteen years later, Janice Moore (2002) filled a book with examples. The five infectious trophic strategies, typical parasites (macroparasites), pathogens, trophically transmitted parasites, parasitic castrators, and parasitoids (Kuris and Lafferty 2000; Lafferty and Kuris 2002, 2009) can modify host behavior, but the likelihood that a parasite manipulates behavior differs among strategies. The most studied infectious agents, non-trophically transmitted pathogens and macroparasites, have enormous public health, veterinary, and wildlife disease importance, yet few manipulate host behavior. The beststudied manipulative infectious agents are trophically transmitted parasites in their prey intermediate hosts. Parasitoids and parasitic castrators can also manipulate host behavior, but for different purposes and with different implications. Several studies of manipulative parasites conclude with phrases such as “may ultimately infl uence community structure” (Kiesecker and Blaustein 1999), yet few demonstrate ecological effects. Here, we consider the conditions under which manipulative parasites might have a substantial ecological effect in nature and highlight those for which evidence exists (see also Chapter 10).
Assessing element-specific patterns of bioaccumulation across New England lakes
Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y.
2012-01-01
Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3–5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would improve our capacity to identify consistent patterns of bioaccumulation and drivers of elevated trace element concentrations under naturally high levels of variability. PMID:22356871
Molecular trophic markers in marine food webs and their potential use for coral ecology.
Leal, Miguel Costa; Ferrier-Pagès, Christine
2016-10-01
Notable advances in ecological genomics have been driven by high-throughput sequencing technology and taxonomically broad sequence repositories that allow us to accurately assess species interactions with great taxonomic resolution. The use of DNA as a marker for ingested food is particularly relevant to address predator-prey interactions and disentangle complex marine food webs. DNA-based methods benefit from reductionist molecular approaches to address ecosystem scale processes, such as community structure and energy flow across trophic levels, among others. Here we review how molecular trophic markers have been used to better understand trophic interactions in the marine environment and their advantages and limitations. We focus on animal groups where research has been focused, such as marine mammals, seabirds, fishes, pelagic invertebrates and benthic invertebrates, and use case studies to illustrate how DNA-based methods unraveled food-web interactions. The potential of molecular trophic markers for disentangling the complex trophic ecology of corals is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Belle, Simon; Millet, Laurent; Verneaux, Valérie; Lami, Andrea; David, Etienne; Murgia, Laurie; Parent, Claire; Musazzi, Simona; Gauthier, Emilie; Bichet, Vincent; Magny, Michel
2016-04-01
Freshwater lakes play a key role in the global carbon cycle as sinks (organic carbon sequestration) and sources (greenhouse gas emissions). Understanding the carbon cycle response to environmental changes is becoming a crucial challenge in the context of global warming and the preponderance of human pressures. We reconstructed the long-term (1500 years) evolution of trophic functioning of the benthic food web, based on methanotrophic ancient DNA and chironomid isotope analyses). In addition, human land use is also reconstructed in three different lakes (eastern France, Jura Mountains). Our findings confirm that the benthic food web can be highly dependent on methane-derived carbon (up to 50% of the chironomid biomass) and reveal that the activation of this process can correspond to a natural functioning or be a consequence of anthropic perturbation. The studied lakes also showed a similar temporal evolution over the last century with the disappearance of the profundal aquatic insects (Chironomidae, Diptera), considered as keystone for the whole lake food web (e.g., coupling benthic-pelagic), inducing a potential collapse in the transfer of methane to top consumers. This functional state, also called the dead zone expansion, was caused by the change in human land-use occurring at the beginning of the 20th century. The strong modification of agro-pastoral practices (e.g., fertilization practices, intensive grazing, and sewage effluent) modified the influx of nutrients (by diffuse and/or point-source inputs) and induced a significant increase in the trophic status and organic matter sedimentation to reach unprecedented values. Further studies should be planned to assess dead zone expansion and, according to the regime shift theory, to provide environmental tipping points for sustainable resource management.
Choice of resolution by functional trait or taxonomy affects allometric scaling in soil food webs.
Sechi, Valentina; Brussaard, Lijbert; De Goede, Ron G M; Rutgers, Michiel; Mulder, Christian
2015-01-01
Belowground organisms often display a shift in their mass-abundance scaling relationships due to environmental factors such as soil chemistry and atmospheric deposition. Here we present new empirical data that show strong differences in allometric scaling according to whether the resolution at the local scale is based on a taxonomic or a functional classification, while only slight differences arise according to soil environmental conditions. For the first time, isometry (an inverse 1:1 proportion) is recognized in mass-abundance relationships, providing a functional signal for constant biomass distribution in soil biota regardless of discrete trophic levels. Our findings are in contrast to those from aquatic ecosystems, in that higher trophic levels in soil biota are not a direct function of increasing body mass.
Casey, Jordan M; Baird, Andrew H; Brandl, Simon J; Hoogenboom, Mia O; Rizzari, Justin R; Frisch, Ashley J; Mirbach, Christopher E; Connolly, Sean R
2017-01-01
Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia's outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR.
Trophic look at soft-bottom communities - Short-term effects of trawling cessation on benthos
NASA Astrophysics Data System (ADS)
Dannheim, Jennifer; Brey, Thomas; Schröder, Alexander; Mintenbeck, Katja; Knust, Rainer; Arntz, Wolf E.
2014-01-01
The trophic structure of the German Bight soft-bottom benthic community was evaluated for potential changes after cessation of bottom trawling. Species were collected with van-Veen grabs and beam trawls. Trophic position (i.e. nitrogen stable isotope ratios, δ15N) and energy flow (i.e. species metabolism approximated by body mass scaled abundance) of dominant species were compared in trawled areas and an area protected from fisheries for 14 months in order to detect trawling cessation effects by trophic characteristics. At the community level, energy flow was lower in the protected area, but we were unable to detect significant changes in trophic position. At the species level energy flow in the protected area was lower for predating/scavenging species but higher for interface feeders. Species trophic positions of small predators/scavengers were lower and of deposit feeders higher in the protected area. Major reasons for trophic changes after trawling cessation may be the absence of artificial and additional food sources from trawling likely to attract predators and scavengers, and the absence of physical sediment disturbance impacting settlement/survival of less mobile species and causing a gradual shift in food availability and quality. Our results provide evidence that species or community energy flow is a good indicator to detect trawling induced energy-flow alterations in the benthic system, and that in particular species trophic properties are suitable to capture subtle and short-term changes in the benthos following trawling cessation.
Bauch, Nancy J.; Malick, Matt
2003-01-01
The U.S. Geological Survey and the National Park Service conducted a water-quality investigation in Curecanti National Recreation Area in Colorado from April through December 1999. Current (as of 1999) limnological characteristics, including nutrients, phytoplankton, chlorophyll-a, trophic status, and the water quality of stream inflows and reservoir outflows, of Blue Mesa, Morrow Point, and Crystal Reservoirs were assessed, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir was conducted. The three reservoirs are in a series on the Gunnison River, with an upstream to downstream order of Blue Mesa, Morrow Point, and Crystal Reservoirs. Physical properties and water-quality samples were collected four times during 1999 from reservoir, inflow, and outflow sites in and around the recreation area. Samples were analyzed for nutrients, phytoplankton and chlorophyll-a (reservoir sites only), and suspended sediment (stream inflows only). Nutrient concentrations in the reservoirs were low; median total nitrogen and phosphorus concentrations were less than 0.4 and 0.06 milligram per liter, respectively. During water-column stratification, samples collected at depth had higher nutrient concentrations than photic-zone samples. Phytoplankton community and density were affected by water temperature, nutrients, and water residence time. Diatoms were the dominant phytoplankton throughout the year in Morrow Point and Crystal Reservoirs and during spring and early winter in Blue Mesa Reservoir. Blue-green algae were dominant in Blue Mesa Reservoir during summer and fall. Phytoplankton density was highest in Blue Mesa Reservoir and lowest in Crystal Reservoir. Longer residence times and warmer temperatures in Blue Mesa Reservoir were favorable for phytoplankton growth and development. Shorter residence times and cooler temperatures in the downstream reservoirs probably limited phytoplankton growth and development. Median chlorophyll-a concentrations were higher in Blue Mesa Reservoir than Morrow Point or Crystal Reservoirs. Blue Mesa Reservoir was mesotrophic in upstream areas and oligotrophic downstream. Both Morrow Point and Crystal Reservoirs were oligotrophic. Trophic-state index values were determined for total phosphorus, chlorophyll-a, and Secchi depth for each reservoir by the Carlson method; all values ranged between 29 and 55. Only the upstream areas in Blue Mesa Reservoir had total phosphorus and chlorophyll-a indices above 50, reflecting mesotrophic conditions. Nutrient inflows to Blue Mesa Reservoir, which were derived primarily from the Gunnison River, varied on a seasonal basis, whereas nutrient inflows to Morrow Point and Crystal Reservoirs, which were derived primarily from deep water releases from the respective upstream reservoir, were steady throughout the sampling period. Total phosphorus concentrations were elevated in many stream inflows. A comparison of current (as of 1999) and historical nutrient, chlorophyll-a, and trophic conditions in Blue Mesa Reservoir and its tributaries indicated that the trophic status in Blue Mesa Reservoir has not changed over the last 25 years, and more recent nutrient enrichment has not occurred.
The Horseshoe Crab of the Genus Limulus: Living Fossil or Stabilomorph?
Błażejowski, Błażej
2014-01-01
A new horseshoe crab species, Limulus darwini, is described from the uppermost Jurassic (ca. 148 Ma) near-shore sediments of the Kcynia Formation, central Poland. The only extant species Limulus polyphemus (Linnaeus) inhabits brackish-marine, shallow water environments of the east coast of the United States. Here it is shown that there are no important morphological differences between the Kcynia Formation specimens and extant juvenile representatives of the genus Limulus. The palaeoecological setting inhabited by the new species and the trophic relationships of extant horseshoe crabs are discussed in an attempt to determine the potential range of food items ingested by these Mesozoic xiphosurans. In this paper we propose the adoption of a new term stabilomorphism, this being: an effect of a specific formula of adaptative strategy among organisms whose taxonomic status does not exceed genus-level. A high effectiveness of adaptation significantly reduces the need for differentiated phenotypic variants in response to environmental changes and provides for long-term evolutionary success. PMID:25275563
[Contamination characteristics of short-chain chlorinated paraffins in edible fish of Shanghai].
Jiang, Guo; Chen, Lai-guo; He, Qiu-sheng; Meng, Xiang-zhou; Feng, Yong-bin; Huang, Yu-mei; Tang, Cai-ming
2013-09-01
According to the local habit of eating fish, in a total of 68 samples, 8 kinds of different trophic levels of edible fish collected in Shanghai were determined in terms of concentration and distribution profile of short chain chlorinated paraffin (SCCPs) in muscles to investigate the pollution status of SCCPs in edible fish from the Yangtze River Delta region. The results indicated that the concentrations (dw) of SCCPs in edible fish were in the range of 36-801 ng x g(-1). With the increase in carbon chain length, the concentration of SCCPs decreased. In addition, lower chlorinated (Cl6-Cl8) and shorter chain (Cl10, C11) congeners were the dominant chlorine and carbon homologues groups, respectively, contributing a total relative abundance of 61.46%-82.50% to the total abundance of SCCPs. The levels of SCCPs in fish of Shanghai were in the medium level worldwide, and the distribution pattern was in line with those of the domestic and foreign studies.
The effects of urbanization on trophic interactions in a desert landscape
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods: Trophic systems can be affected through top-down (predators) and bottom-up (resources) impacts. Human activity can alter trophic systems by causing predators to avoid areas (top-down) or by providing increased resources through irrigation and decorative plants that attra...
Macrobenthic communities from estuaries throughout the northern Gulf of Mexico were studied to assess the influence of sediment contaminants and natural environmental factors on macrobenthic community trophic structure. Community trophic data were also used to evaluate whether re...
Food Webs and Multiple Biotic Interactions in Plant-Herbivore Models
USDA-ARS?s Scientific Manuscript database
Trophic relationships between plants and insects are not confined to biological interactions such as herbivory (i.e. direct consumption of one primary producer by a predator), in an ecological approach, many other interactions, trophic or even non trophic, may influence plant herbivory by insects. T...
Climate Change and Baleen Whale Trophic Cascades in Greenland
2009-09-30
DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Climate Change and Baleen Whale Trophic Cascades in Greenland...SUBTITLE Climate Change And Baleen Whale Trophic Cascades In Greenland 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Mercury levels in largemouth bass (Micropterus salmoides) from regulated and unregulated rivers.
Dharampal, Prarthana S; Findlay, Robert H
2017-03-01
Within areas of comparable atmospheric mercury deposition rates methylmercury burden in largemouth bass populations vary significantly between regulated and unregulated rivers. To investigate if trophic dynamics strongly influenced pollutant body load, we sampled largemouth bass from two adjacent rivers, one regulated and one unregulated, and applied a suite of biochemical and stable isotope assays to compare their trophic dynamics. Total mercury burden in the bass from the unregulated Sipsey River (Elrod, AL, USA) and the regulated Black Warrior River (Demopolis, AL, USA) averaged 0.87 mg kg -1 and 0.19 mg kg -1 wet weight, respectively. For both populations, age, weight, and length were positively correlated with muscle mercury concentration. Compound specific stable isotope analysis of amino acids showed the trophic position of both populations was just under four. Quantitative and isotopic analysis of neutral lipid fatty acid of Sipsey River bass indicated a greater reliance upon the detrital component of the food web compared to Demopolis Reservoir bass which fed within the autochthonous, pelagic component of the food web. Since the close proximity of the rivers makes differences in atmospheric deposition unlikely and both populations had similar trophic position, our findings indicate that food web dynamics should be included among the factors that can strongly influence mercury concentration in fish. Copyright © 2016 Elsevier Ltd. All rights reserved.
Body size–trophic position relationships among fishes of the lower Mekong basin
Montaña, Carmen G.; Winemiller, Kirk O.
2017-01-01
Body size is frequently claimed to be a major determinant of animal trophic interactions, yet few studies have explored relationships between body size and trophic interactions in rivers, especially within the tropics. We examined relationships between body size and trophic position (TP) within fish assemblages in four lowland rivers of the Lower Mekong Basin in Cambodia. Stable isotope analysis (based on δ15N) was used to estimate TP of common fish species in each river, and species were classified according to occupation of benthic versus pelagic habitats and major feeding guilds. Regression analysis yielded strong correlations between body size and TP among fishes from the Sesan and Sreprok rivers, but not those from the Mekong and Sekong rivers. The Mekong fish assemblage had higher average TP compared with those of other rivers. The relationship between body size and TP was positive and significantly correlated for piscivores and omnivores, but not for detritivores and insectivores. The body size–TP relationship did not differ between pelagic and benthic fishes. Body size significantly predicted TP within the orders Siluriformes and Perciformes, but not for Cypriniformes, the most species-rich and ecologically diverse order in the Lower Mekong River. We conclude that for species-rich, tropical fish assemblages with many detritivores and invertivores, body size would not be an appropriate surrogate for TP in food web models and other ecological applications. PMID:28280563
Hebert, Craig E.; Popp, B.N.; Fernie, K.J.; Ka'apu-Lyons, C.; Rattner, Barnett A.; Wallsgrove, N.
2016-01-01
Through laboratory and field studies, the utility of amino acid compound-specific nitrogen isotope analysis (AA-CSIA) in avian studies is investigated. Captive American kestrels (Falco sparverius) were fed an isotopically characterized diet and patterns in δ15N values of amino acids (AAs) were compared to those in their tissues (muscle and red blood cells) and food. Based upon nitrogen isotope discrimination between diet and kestrel tissues, AAs could mostly be categorized as source AAs (retaining baseline δ15N values) and trophic AAs (showing 15N enrichment). Trophic discrimination factors based upon the source (phenylalanine, Phe) and trophic (glutamic acid, Glu) AAs were 4.1 (muscle) and 5.4 (red blood cells), lower than those reported for metazoan invertebrates. In a field study involving omnivorous herring gulls (Larus argentatus smithsonianus), egg AA isotopic patterns largely retained those observed in the laying female’s tissues (muscle, red blood cells, and liver). Realistic estimates of gull trophic position were obtained using bird Glu and Phe δ15N values combined with β values (difference in Glu and Phe δ15N in primary producers) for aquatic and terrestrial food webs. Egg fatty acids were used to weight β values for proportions of aquatic and terrestrial food in gull diets. This novel approach can be applied to generalist species that feed across ecosystem boundaries.
Body size-trophic position relationships among fishes of the lower Mekong basin.
Ou, Chouly; Montaña, Carmen G; Winemiller, Kirk O
2017-01-01
Body size is frequently claimed to be a major determinant of animal trophic interactions, yet few studies have explored relationships between body size and trophic interactions in rivers, especially within the tropics. We examined relationships between body size and trophic position (TP) within fish assemblages in four lowland rivers of the Lower Mekong Basin in Cambodia. Stable isotope analysis (based on δ 15 N) was used to estimate TP of common fish species in each river, and species were classified according to occupation of benthic versus pelagic habitats and major feeding guilds. Regression analysis yielded strong correlations between body size and TP among fishes from the Sesan and Sreprok rivers, but not those from the Mekong and Sekong rivers. The Mekong fish assemblage had higher average TP compared with those of other rivers. The relationship between body size and TP was positive and significantly correlated for piscivores and omnivores, but not for detritivores and insectivores. The body size-TP relationship did not differ between pelagic and benthic fishes. Body size significantly predicted TP within the orders Siluriformes and Perciformes, but not for Cypriniformes, the most species-rich and ecologically diverse order in the Lower Mekong River. We conclude that for species-rich, tropical fish assemblages with many detritivores and invertivores, body size would not be an appropriate surrogate for TP in food web models and other ecological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, X.I.; Aboal, J.R.; Fernandez, J.A.
2008-11-15
In the present study, we determined the concentrations of Cu, Fe, Mn, and Zn in soil and several trophic compartments at a total of 16 sampling stations. The trophic compartments studied were primary producers, represented by two species of terrestrial mosses (Pseudoescleropodium purum and Hypnum cupressiforme) and oak trees (Quercus robur or Q. pyrenaica); primary consumers, represented by the wood mouse (Apodemus sylvaticus) and the yellow necked mouse (A. flavicollis); secondary consumers, represented by the shrew (Sorex granarius); and finally, detritivores, represented by slugs (Arion ater). Thirteen of the sampling stations were located in mature oak woodlands (Quercus sp.); twomore » of the sampling stations were located in the area surrounding a restored lignite mine dump, and the other in an ultrabasic area. The analytical determinations revealed a lack of significant correlations among trophic compartments, possibly caused by effective regulation of metals by organisms and/or spatial variation in availability of metals from soil or food. Furthermore, the only element that showed a clear pattern of biomagnification was Cu; as for the other elements, there was always some divergence from such a pattern. Finally, the patterns of bioaccumulation in contaminated and woodland sampling stations were very similar, although there was enrichment of the concentrations of Cu, Mn, and Zn in the mice viscera, which, except for Mn, were related to higher edaphic concentrations.« less
NASA Astrophysics Data System (ADS)
Cheriyan, Eldhose; Sreekanth, Athira; Mrudulrag, S. K.; Sujatha, C. H.
2015-10-01
The present study investigated the distribution of environmentally relevant metals and organic matter in the shelf sediments of the southeastern Arabian Sea using biogeochemical proxies for the assessment of environmental quality and trophic status. The distribution of metals in the study site followed the order: Fe>Mg>Pb>Ni>Mn>Co>Cu>Zn>Cd. High biological productivity associated with upwelling leads to significant accumulation of Cd higher than crustal abundance in the shelf region. The enrichment factor (EF) of metals demonstrate enrichment of Pb and Co which suggests the anthropogenic influence and not redox conditions. The sediment quality guidelines (SQG) in comparison with metal concentration revealed adverse effects, possibly occurring in marine benthic species. The spatial trend of metal enrichment along transects is appreciably controlled by the adsorption to fine grained sediments. The multivariate statistical analyses, such as correlations and principal component analysis (PCA) clearly indicated the control of texture, association of clay minerals in the degree of trace metal (Cd, Pb, Ni and Co) contamination from anthropogenic as well as natural sources. Low levels of Zn, preferably display scavenging by Fe/Mn metal oxides. Biochemical descriptors in sediments indicated meso-oligotrophic conditions prevailing in the summer monsoon. The ratios among various biogeochemical parameters such as total organic carbon/total nitrogen (TOC/TN<10), protein/carbohydrate (PRT/CHO<1) displayed that the organic matter deposited of marine origin which is relatively old with potentially low nutritional value. The close relationship between biochemical components and phytopigments suggest a major contribution of autochthonous phytodetritus derived organic matter. The study provides important information about sediment biogeochemistry and metal contamination from a potential fishery zone of Indian exclusive economic zone.
NASA Astrophysics Data System (ADS)
Ibragimova, A. G.; Frolova, L. A.; Subetto, D. A.; Belkina, N. A.; Potakhin, M. S.
2018-01-01
The study aims to explore the evolution of lakes of the boreal zone during the late- and postglacial time on the south-eastern periphery of the Fennoscandian crystalline shield since the last deglaciation. In order to reconstruct the past for virgin territories of the Zaonezhsky Peninsula current investigation on bottom sediments of Lake Maloye Shibrozero was conducted. Analyzes were performed using the new paleoindicator - subfossil remains of Cladocera (Cladocera, Branchiopoda). The 28 samples of bottom sediments were analyzed. It has been determined that discovered Cladocera remains belong to representatives of 6 families and 38 taxa. Species inhabiting Palaearctic zone are predominant in lake deposits; most of the identified subfossil remains are related to the pelagic species inhabiting the open part of the lake. According to the Lubarsky scale the dominant of Cladocera community is Bosmina (Eubosmina) cf. longispina. Secondary taxa are Chydorus sphaericus, Bosmina coregoni, Alonella nana, Alona guadrangularis, A. affinis, Chydorus gibbus. At a depth of 650-653 cm, a partial replacement of Bosmina (Eubosmina) cf. longispina by Bosmina coregoni takes place with a simultaneous increase in the significance of Chydorus sphaericus, which is used to be an indicator of eutrophication and increasing trophic status of the reservoir. Changes in Cladocera community could be attributed to decreasing the level of periglacial lake, as a result of which the Lake Maloye Shibrozero became a small isolated lake with the trend to trophic status increasing. Cold-water species were replaced by thermophilic ones with a further return to a cold-water fauna. In the upper layers of the column an increase of the number of phytophilous species is noted.
TYPES OF SALT MARSH EDGE AND EXPORT OF TROPHIC ENERGY FROM MARSHES TO DEEPER HABITATS
We quantified nekton and estimated trophic export at salt marshes with both erosional and depositional edges at the Goodwin Islands (York River, Virginia, USA). At depositional-edge marshes, we examined trophic flows through quantitative sampling with 1.75 m2 drop rings, and thro...
Invasive plant architecture alters trophic interactions by changing predator abundance and behavior
Dean E. Pearson
2009-01-01
As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa...
The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths.
Benesh, Daniel P; Chubb, James C; Parker, Geoff A
2014-10-22
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Du, Bowen; Haddad, Samuel P.; Luek, Andreas; Scott, W. Casan; Saari, Gavin N.; Kristofco, Lauren A.; Connors, Kristin A.; Rash, Christopher; Rasmussen, Joseph B.; Chambliss, C. Kevin; Brooks, Bryan W.
2014-01-01
Though pharmaceuticals are increasingly observed in a variety of organisms from coastal and inland aquatic systems, trophic transfer of pharmaceuticals in aquatic food webs have not been reported. In this study, bioaccumulation of select pharmaceuticals was investigated in a lower order effluent-dependent stream in central Texas, USA, using isotope dilution liquid chromatography–tandem mass spectrometry (MS). A fish plasma model, initially developed from laboratory studies, was tested to examine observed versus predicted internal dose of select pharmaceuticals. Pharmaceuticals accumulated to higher concentrations in invertebrates relative to fish; elevated concentrations of the antidepressant sertraline and its primary metabolite desmethylsertraline were observed in the Asian clam, Corbicula fluminea, and two unionid mussel species. Trophic positions were determined from stable isotopes (δ15N and δ13C) collected by isotope ratio-MS; a Bayesian mixing model was then used to estimate diet contributions towards top fish predators. Because diphenhydramine and carbamazepine were the only target compounds detected in all species examined, trophic magnification factors (TMFs) were derived to evaluate potential trophic transfer of both compounds. TMFs for diphenhydramine (0.38) and carbamazepine (1.17) indicated neither compound experienced trophic magnification, which suggests that inhalational and not dietary exposure represented the primary route of uptake by fish in this effluent-dependent stream. PMID:25313153
Predator Persistence through Variability of Resource Productivity in Tritrophic Systems.
Soudijn, Floor H; de Roos, André M
2017-12-01
The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population. With increasing variability in productivity and starvation mortality in the juvenile prey, the prey availability increases in the size range preferred by the predator. The positive effect of prey mortality on the trophic transfer efficiency depends on the biologically realistic consideration of body size-dependent and food-dependent functions for growth and reproduction in our model. Our findings show that variability may promote the trophic transfer efficiency, indicating that environmental variability may sustain species at higher trophic levels in natural ecosystems.
Yang, Jinny Wu; Wu, Wenxue; Chung, Chih-Ching; Chiang, Kuo-Ping; Gong, Gwo-Ching; Hsieh, Chih-Hao
2018-06-01
The importance of biodiversity effects on ecosystem functioning across trophic levels, especially via predatory-prey interactions, is receiving increased recognition. However, this topic has rarely been explored for marine microbes, even though microbial biodiversity contributes significantly to marine ecosystem function and energy flows. Here we examined diversity and biomass of bacteria (prey) and nanoflagellates (predators), as well as their effects on trophic transfer efficiency in the East China Sea. Specifically, we investigated: (i) predator diversity effects on prey biomass and trophic transfer efficiency (using the biomass ratio of predator/prey as a proxy), (ii) prey diversity effects on predator biomass and trophic transfer efficiency, and (iii) the relationship between predator and prey diversity. We found higher prey diversity enhanced both diversity and biomass of predators, as well as trophic transfer efficiency, which may arise from more balanced diet and/or enhanced niche complementarity owing to higher prey diversity. By contrast, no clear effect was detected for predator diversity on prey biomass and transfer efficiency. Notably, we found prey diversity effects on predator-prey interactions; whereas, we found no significant diversity effect on biomass within the same trophic level. Our findings highlight the importance of considering multi-trophic biodiversity effects on ecosystem functioning in natural ecosystems.
Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity
Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew
2015-01-01
In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188
Bianchelli, Silvia; Buschi, Emanuela; Danovaro, Roberto; Pusceddu, Antonio
2016-01-01
In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level. PMID:27708343
Bianchelli, Silvia; Buschi, Emanuela; Danovaro, Roberto; Pusceddu, Antonio
2016-10-06
In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level.
NASA Astrophysics Data System (ADS)
Bianchelli, Silvia; Buschi, Emanuela; Danovaro, Roberto; Pusceddu, Antonio
2016-10-01
In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level.
Divergent ecosystem responses within a benthic marine community to ocean acidification.
Kroeker, Kristy J; Micheli, Fiorenza; Gambi, Maria Cristina; Martz, Todd R
2011-08-30
Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO(2) vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.
Sato, Norikazu; Suzuki, Shinji; Kanai, Setsuko; Ohta, Minoru; Jimi, Atsuo; Noda, Tetsuo; Takiguchi, Souichi; Funakoshi, Akihiro; Miyasaka, Kyoko
2002-07-01
The synthetic trypsin inhibitor camostat has been used for the treatment of acute and chronic pancreatitis in Japan based on the evidences obtained from a rat experimental model. However, rats differ from other rodents and from humans in terms of lacking a gallbladder and no response of pancreatic bicarbonate secretion to cholecystokinin (CCK). In the present study, we determined whether oral administration of camostat showed a trophic effect in mice as observed in rats and whether the trophic effect, if substantial, was mediated via the CCK-A receptor, using CCK-A receptor gene targeting mice. The chow containing 0.1% camostat was fed to 8-month-old mice. Three- and seven-day treatments with camostat did not affect pancreatic wet weight in CCK-A receptor (+/-) mice. After 14-day treatment, the ratio of pancreatic wet weight/body weight was significantly lower in CCK-A receptor (-/-) than (+/+) mice. The protein and chymotrypsin contents were lower and amylase content was higher in CCK-A receptor (-/-) mice, compared to (+/+) mice. No pathological findings were observed by histological examination. Camostat has a trophic effect on the pancreas in mice and this effect is mediated via the CCK-A receptor, but is less potent than in rats.
Aguilar-Chama, Ana; Guevara, Roger
2012-01-01
Heterogeneous distribution of resources in most plant populations results in a mosaic of plant physiological responses tending to maximize plant fitness. This includes plant responses to trophic interactions such as herbivory and mycorrhizal symbiosis which are concurrent in most plants. We explored fitness costs of 50% manual defoliation and mycorrhizal inoculation in Datura stramonium at different light availability and soil fertility environments in a greenhouse experiment. Overall, we showed that non-inoculated and mycorrhiza-inoculated plants did not suffer from 50% manual defoliation in all the tested combinations of light availability and soil fertility treatments, while soil nutrients and light availability predominately affected plant responses to the mycorrhizal inoculation. Fifty percent defoliation had a direct negative effect on reproductive traits whereas mycorrhiza-inoculated plants produced larger flowers than non-inoculated plants when light was not a limiting factor. Although D. stramonium is a facultative selfing species, other investigations had shown clear advantages of cross-pollination in this species; therefore, the effects of mycorrhizal inoculation on flower size observed in this study open new lines of inquiry for our understanding of plant responses to trophic interactions. Also in this study, we detected shifts in the limiting resources affecting plant responses to trophic interactions.
Llewellyn, Chris; LaPeyre, Megan K.
2010-01-01
This study sought to examine ecological equivalence of created marshes of different ages using traditional structural measures of equivalence, and tested a relatively novel approach using stable isotopes as a measure of functional equivalence. We compared soil properties, vegetation, nekton communities, and δ13C and δ15N isotope values of blue crab muscle and hepatopancreas tissue and primary producers at created (5-24 years old) and paired reference marshes in SW Louisiana. Paired contrasts indicated that created and reference marshes supported equivalent plant and nekton communities, but differed in soil characteristics. Stable isotope indicators examining blue crab food web support found that the older marshes (8 years+) were characterized by comparable trophic diversity and breadth compared to their reference marshes. Interpretation of results for the youngest site was confounded by the fact that the paired reference, which represented the desired end goal of restoration, contained a greater diversity of basal resources. Stable isotope techniques may give coastal managers an additional tool to assess functional equivalency of created marshes, as measured by trophic support, but may be limited to comparisons of marshes with similar vegetative communities and basal resources, or require the development of robust standardization techniques.
Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity.
Thompson, Patrick L; Davies, T Jonathan; Gonzalez, Andrew
2015-01-01
In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.
Burger, J; Gaines, K F; Boring, C S; Stephens, W L; Snodgrass, J; Gochfeld, M
2001-10-01
Levels of contaminants in fish are of considerable interest because of potential effects on the fish themselves, as well as on other organisms that consume them. In this article we compare the mercury levels in muscle tissue of 11 fish species from the Savannah River, as well as selenium levels because of its known protective effect against mercury toxicity. We sampled fish from three stretches of the river: upstream, along, and downstream the Department of Energy's Savannah River Site, a former nuclear material production facility. We test the null hypothesis that there were no differences in mercury and selenium levels in fish tissue as a function of species, trophic level, and location along the river. There were significant interspecific differences in mercury levels, with bowfin (Amia calva) having the highest levels, followed by largemouth bass (Micropterus salmoides) and pickerel (Esox niger). Sunfish (Lepomis spp.) had the lowest levels of mercury. As expected, these differences generally reflected trophic levels. There were few significant locational differences in mercury levels, and existing differences were not great, presumably reflecting local movements of fish between the sites examined. Selenium and mercury concentrations were positively correlated only for bass, perch (Perca flavescens), and red-breasted sunfish (Lepomis auritus). Mercury levels were positively correlated with body mass of the fish for all species except American eel (Anguilla rostrata) and bluegill sunfish (L. macrochirus). The mercury and selenium levels in fish tissue from the Savannah River are similar to or lower than those reported in many other studies, and in most cases pose little risk to the fish themselves or to other aquatic consumers, although levels in bowfin and bass are sufficiently high to pose a potential threat to high-level consumers. Copyright 2001 Academic Press.
Divergence of feeding channels within the soil food web determined by ecosystem type.
Crotty, Felicity V; Blackshaw, Rod P; Adl, Sina M; Inger, Richard; Murray, Philip J
2014-01-01
Understanding trophic linkages within the soil food web (SFW) is hampered by its opacity, diversity, and limited niche adaptation. We need to expand our insight between the feeding guilds of fauna and not just count biodiversity. The soil fauna drive nutrient cycling and play a pivotal, but little understood role within both the carbon (C) and nitrogen (N) cycles that may be ecosystem dependent. Here, we define the structure of the SFW in two habitats (grassland and woodland) on the same soil type and test the hypothesis that land management would alter the SFW in these habitats. To do this, we census the community structure and use stable isotope analysis to establish the pathway of C and N through each trophic level within the ecosystems. Stable isotope ratios of C and N from all invertebrates were used as a proxy for trophic niche, and community-wide metrics were obtained. Our empirically derived C/N ratios differed from those previously reported, diverging from model predictions of global C and N cycling, which was unexpected. An assessment of the relative response of the different functional groups to the change from agricultural grassland to woodland was performed. This showed that abundance of herbivores, microbivores, and micropredators were stimulated, while omnivores and macropredators were inhibited in the grassland. Differences between stable isotope ratios and community-wide metrics, highlighted habitats with similar taxa had different SFWs, using different basal resources, either driven by root or litter derived resources. Overall, we conclude that plant type can act as a top-down driver of community functioning and that differing land management can impact on the whole SFW.
Modeling of nitrogen transformation in an integrated multi-trophic aquaculture (IMTA)
NASA Astrophysics Data System (ADS)
Silfiana; Widowati; Putro, S. P.; Udjiani, T.
2018-03-01
The dynamic model of nitrogen transformation in IMTA (Integrated Multi-Trophic Aquaculture) is purposed. IMTA is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in IMTA consisting of ammonia (NH3), Nitrite (NO2) and Nitrate (NO3). Nitrogen transformation of several processes, nitrification, assimilation, and volatilization. Numerical simulations are performed by providing initial parameters and values based on a review of previous research. The numerical results show that the rate of change in nitrogen concentration in IMTA decrease and reaches stable at different times.
Selenium bioaccumulation and hazards in a fish community affected by coal fly ash effluent
Besser, John M.; Giesy, John P.; Brown, Russell W.; Buell, Julie M.; Dawson, G. A.
1996-01-01
Bioaccumulation of selenium (Se) in the fish community of Pigeon River/Pigeon Lake, which receives inputs of Se from a coal fly ash disposal facility, was studied to assess potential hazards of Se to fish, wildlife, and humans. Se concentrations in fish from sites receiving seepage and effluents from fly ash disposal ponds were significantly greater than those in fish from upstream, where Se concentrations were near background concentrations. Se concentrations differed among fish species, and interspecific variation was greatest at the most contaminated locations. Differences in Se bioaccumulation among fish species were not consistently associated with differences in trophic status. Although Se concentrations in northern pike were consistently less than those in likely prey species, large yellow perch contained Se concentrations as great as those in spottail shiners, their likely prey. Se bioaccumulation may have been influenced by differences in habitat preferences, as limnetic species generally contained greater Se concentrations than benthic species. Se concentrations in fish from the lower Pigeon River and Pigeon Lake did not exceed lowest observable adverse effect concentrations (LOAECs) for Se in tissues of fish species, but exceeded LOAECs for dietary Se exposure of sensitive species of birds and mammals. Human consumption of moderate quantities of fish from the areas studied should not result in excessive Se intake.
Lepère, Cécile; Domaizon, Isabelle; Taïb, Najwa; Mangot, Jean-François; Bronner, Gisèle; Boucher, Delphine; Debroas, Didier
2013-07-01
Understanding the spatial distribution of aquatic microbial diversity and the underlying mechanisms causing differences in community composition is a challenging and central goal for ecologists. Recent insights into protistan diversity and ecology are increasing the debate over their spatial distribution. In this study, we investigate the importance of spatial and environmental factors in shaping the small protists community structure in lakes. We analyzed small protists community composition (beta-diversity) and richness (alpha-diversity) at regional scale by different molecular methods targeting the gene coding for 18S rRNA gene (T-RFLP and 454 pyrosequencing). Our results show a distance-decay pattern for rare and dominant taxa and the spatial distribution of the latter followed the prediction of the island biogeography theory. Furthermore, geographic distances between lakes seem to be the main force shaping the protists community composition in the lakes studied here. Finally, the spatial distribution of protists was discussed at the global scale (11 worldwide distributed lakes) by comparing these results with those present in the public database. UniFrac analysis showed 18S rRNA gene OTUs compositions significantly different among most of lakes, and this difference does not seem to be related to the trophic status. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Filippi, Lisa; Baba, Narumi; Inadomi, Koichi; Yanagi, Takao; Hironaka, Mantaro; Nomakuchi, Shintaro
2009-02-01
In recent years, three terrestrial bugs, Adomerus triguttulus and Sehirus cinctus (Cydnidae) and the closely related Parastrachia japonensis (Parastrachiidae), have been the focus of several fascinating studies because of the remarkable, extensive parental care they were found to display. This care includes egg and nymph guarding, production of trophic eggs, unfertilized, low cost eggs that are used as food by newly hatched nymphs, and progressive provisioning of the host seed. In this study, we have investigated yet a third related Asian cydnid, Canthophorus niveimarginatus, with regard to the possible occurrence of some or all of these complex traits in order to assess how widespread these maternal investment patterns are in this group of insects and to better understand the implications of their manifestations from an evolutionary context. Manipulative experiments were carried out in the lab to determine whether females provision nests. Observational and egg removal studies were carried out to determine whether trophic eggs are produced, and, if they are, their possible impact on nymphal success. The findings revealed that C. niveimarginatus does, in fact, progressively provision young, and this species also displays all of the other behaviors associated with extended parental care in subsocial insects. Moreover, unlike the other two related species, which place trophic eggs on the surface of the original egg mass, C. niveimarginatus produces both pre- and post-hatch trophic eggs. Nymphs deprived of access to post-hatch trophic eggs had significantly lower body weight and survival rate than those that fed on them. To our knowledge, this is the first time the production of both pre- and post-hatch trophic eggs has been demonstrated in insects outside the Hymenoptera. In this paper, we qualitatively and quantitatively demonstrate the provisioning behavior and patterns of trophic egg production in C. niveimarginatus. When and how trophic eggs are produced and delivered to young should have important correlations with the ecological and life history constraints under which a species has evolved. Thus, we also discuss the possible ecological and life history factors that favor the evolution of post-hatch trophic eggs.
Effects of elevated total dissolved solids on bivalves
A series of experiments were performed to assess the toxicity of different dominant salt recipes of excess total dissolved solids (TDS) to organisms in mesocosms. Multiple endpoints were measured across trophic levels. We report here the effects of four different TDS recipes on b...
NASA Astrophysics Data System (ADS)
Iijima, Masaya; Kubo, Tai; Kobayashi, Yoshitsugu
2018-03-01
Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.
Leal, Miguel C; Rocha, Rui J M; Anaya-Rojas, Jaime M; Cruz, Igor C S; Ferrier-Pagès, Christine
2017-06-15
Zoanthids are conspicuous and abundant members of intertidal environments, where they are exposed to large environmental fluctuations and subject to increasing loads of anthropogenic nutrients. Here we assess the trophic ecology and stoichiometric consequences of nutrient loading for symbiotic zoanthids inhabiting different intertidal habitats. More specifically, we analysed the stable isotope signature (δ 13 C and δ 15 N), elemental composition (C, N and P) and stoichiometry (C:N, C:P, N:P) of Zoanthus sociatus differently exposed to nutrification. Results suggest that autotrophy is the main feeding mode of zoanthids and that the effect water nutrient content differently affects the elemental phenotype of zoanthids depending on tidal habitat. Additionally, habitat effects on Z. sociatus P-related stoichiometric traits highlight functional differences likely associated with variation in Symbiodinium density. These findings provide an innovative approach to assess how cnidarian-dinoflagellate symbioses response to ecosystem changes in environmentally dynamic reef flats, particularly nutrient loading. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhanced leaf nitrogen status stabilizes omnivore population density.
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2017-01-01
Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g -1 . We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore-prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide "background level" control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption-resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status.
NASA Astrophysics Data System (ADS)
Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin
The North Water Polynya is an area of high biological activity that supports large numbers of higher trophic-level organisms such as seabirds and marine mammals. An overall objective of the Upper Trophic-Level Group of the International North Water Polynya Study (NOW) was to evaluate carbon and contaminant flux through these high trophic-level (TL) consumers. Crucial to an evaluation of the role of such consumers, however, was the establishment of primary trophic linkages within the North Water food web. We used δ15N values of food web components from particulate organic matter (POM) through polar bears ( Ursus maritimus) to create a trophic-level model based on the assumptions that Calanus hyperboreus occupies TL 2.0 and there is a 2.4‰ trophic enrichment in 15N between birds and their diets, and a 3.8‰ trophic enrichment for all other components. This model placed the planktivorous dovekie ( Alle alle) at TL 3.3, ringed seal ( Phoca hispida) at TL 4.5, and polar bear at TL 5.5. The copepods C. hyperboreus, Chiridius glacialis and Euchaeta glacialis formed a trophic continuum (TL 2.0-3.0) from primary herbivore through omnivore to primary carnivore. Invertebrates were generally sorted according to planktonic, benthic and epibenthic feeding groups. Seabirds formed three trophic groups, with dovekie occupying the lowest, black-legged kittiwake ( Rissa tridactyla), northern fulmar ( Fulmarus glacialis), thick-billed murre ( Uria aalge), and ivory gull ( Pagophilia eburnea) intermediate (TL 3.9-4.0), and glaucous gull ( Larus hyperboreus) the highest (TL 4.6) trophic positions. Among marine mammals, walrus ( Odobenus rosmarus) occupied the lowest (TL 3.2) and bearded seal ( Erignathus barbatus), ringed seal, beluga whale ( Delphinapterus leucas), and narwhal ( Monodon monoceros) intermediate positions (TL 4.1-4.6). In addition to arctic cod ( Boreogadus saida), we suggest that lower trophic-level prey, in particular the amphipod Themisto libellula, contribute fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.
Trophic structure of pelagic species in the northwestern Mediterranean Sea
NASA Astrophysics Data System (ADS)
Albo-Puigserver, Marta; Navarro, Joan; Coll, Marta; Layman, Craig A.; Palomera, Isabel
2016-11-01
Ecological knowledge of food web interactions within pelagic marine communities is often limited, impairing our capabilities to manage these ecologically and economically important marine fish species. Here we used stable isotope analyses to investigate trophic interactions in the pelagic ecosystem of the northwestern Mediterranean Sea during 2012 and 2013. Our results suggest that European sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, Sardinella aurita, appeared to be located at a higher trophic level than the other small pelagic fish species, although previous studies found similarity in their diets. Isotope data suggested that trophic niches of species within the genera Trachurus spp. and Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic levels than other species. Despite some intraspecific seasonal variability for some species, community trophic structure appeared relatively stable through the year. These data provide an important step for developing models of food web dynamics in the northwestern Mediterranean Sea.
Trophic factors in neurologic disease.
Stewart, S S; Appel, S H
1988-01-01
Recent studies suggest that diffusible factors released by neural targets enhance the survival, growth, and differentiation of neurons both peripherally and in the central nervous system. Evidence for such trophic factors exists for many of the neural systems involved in the degenerative neurologic diseases Alzheimer's disease, parkinsonism, and amyotrophic lateral sclerosis. It is our hypothesis that for each of these disorders there is both a primary insult and a secondary effect. The primary insult may have multiple etiologies, but the secondary effect is the result of retrograde degeneration. Such retrograde degeneration occurs because of an impairment of trophic factor function or an inadequacy of trophic effects to keep pace with the primary destructive process. Accordingly, it may be possible to exploit such trophic mechanisms to define further the pathobiology of neural degeneration and to develop specific treatments for currently incurable illnesses.
NASA Astrophysics Data System (ADS)
Bemis, B. E.; Kendall, C.
2007-12-01
The concentration of mercury in fish tissues is widely used as an indicator of the magnitude of mercury contamination in aquatic ecosystems. Eastern mosquitofish (Gambusia holbrookii) is an important sentinel species used for this purpose in the varied environments of the Florida Everglades, because mosquitofish are abundant, have a short lifespan, and migrate little. Like other freshwater fish, the primary route of mercury uptake into mosquitofish tissues is through diet as bioavailable methylmercury. Yet, it is unclear whether variations in mosquitofish mercury observed across the Everglades are due primarily to differences in bioaccumulation (i.e., trophic position) or abundance of methylmercury available to the food web base. We use isotopic methods to investigate the importance of these two controls on mosquitofish mercury at the landscape scale. As part of the USEPA REMAP project, mosquitofish and periphyton were collected during September 1996 from over one hundred sites throughout the Everglades and analyzed for mercury concentration. The USGS analyzed splits of the samples for nitrogen (d15N), carbon (d13C), and sulfur (d34S) isotopic composition, to investigate the causes of mercury variations. The d15N value of tissues is often used to estimate the relative trophic positions of organisms in a food web, and should correlate positively with tissue mercury if bioaccumulation is an important control on mosquitofish mercury concentration. The d13C value can be useful for detecting differences in food web base (e.g., algal versus detrital), and thus the entry point of contaminants. Tissue d34S potentially indicates the extent of dissimilatory sulfate reduction in sediments, a process used by sulfate-reducing bacteria (SRB) during conversion of inorganic Hg(II) to bioavailable methylmercury. Because this process increases the d34S value of remaining sulfate, which enters the food web base, mosquitofish sulfur isotopes should show positive correlations with SRB activity, methylmercury production, and mosquitofish mercury concentrations. The d15N, d13C, and d34S values of mosquitofish and periphyton are significantly correlated, indicating that a component of the bulk periphyton analyzed in this study is part of the mosquitofish food web. Mosquitofish mercury does not correlate significantly with tissue d15N or the d15N difference between mosquitofish and periphyton. Thus, differences in trophic level (and bioaccumulation) among the fish do not contribute a detectable influence on mercury variations in the samples studied. In contrast with the d15N results, mosquitofish mercury levels show significant, positive correlations with mosquitofish d34S and the d34S difference between mosquitofish and periphyton. This suggests that during the period studied, mosquitofish mercury concentrations in the Everglades were primarily influenced by the bioavailability of mercury, rather than by differences in trophic position. This study demonstrates that isotopic measurements, especially d34S, can be useful tools for determining causes of high mercury concentrations in fish populations.
Biomass changes and trophic amplification of plankton in a warmer ocean.
Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier
2014-07-01
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels. © 2014 John Wiley & Sons Ltd.
Alexander, R.B.; Smith, R.A.
2006-01-01
We estimated trends in concentrations of total phosphorus (TP) and total nitrogen (TN) and the related change in the probabilities of trophic conditions from 1975 to 1994 at 250 nationally representative riverine monitoring locations in the U.S. with drainage areas larger than about 1,000 km2. Statistically significant (p < 0.05) declines were detected in TP and TN concentrations at 44% and 37% of the monitoring sites, and significant increases were detected at 3% and 9% of the sites, respectively. We used a statistical model to assess changes in the probable trophic-state classification of the sites after adjusting for climate-related variability in nutrient concentrations. The probabilistic assessment accounts for current knowledge of the trophic response of streams to nutrient enrichment, based on a recently proposed definition of "eutrophic," "mesotrophic," and "oligotrophic" conditions in relation to total nutrient concentrations. Based on these trophic definitions, we found that the trophic state improved at 25% of the monitoring sites and worsened at fewer than 5% of the sites; about 70% of the sites were unchanged. Improvements in trophic-state related to declines in TP were more common in predominantly forested and shrub-grassland watersheds, whereas the trophic state of predominantly agricultural sites was unchanged. Despite the declines in TP concentrations at many sites, about 50% of all monitoring sites, and more than 60% of the sites in predominantly agricultural and urban watersheds, were classified as eutrophic in 1994 based on TP concentrations. Contemporaneous reductions in major nutrient sources to streams, related to wastewater treatment upgrades, phosphate detergent bans, and declines in some agricultural sources, may have contributed to the declines in riverine nutrient concentrations and associated improvements in trophic conditions. ?? 2006, by the American Society of Limnology and Oceanography, Inc.
A study was conducted to determine if differential display could be used to detect differences in gene expression in the amphipod, Hyalella azteca. In a study of synthetic estrogen attenuation in different aquatic media, amphipods were exposed to 20 ng/L 17 a-ethynylestradiol in...
Nogal, Pawel; Pniewska-Siark, Barbara; Lewinski, Andrzej
2008-12-01
In patients with anorexia nervosa (AN), computer tomography (CT) scanning and/or magnetic resonance imaging (MR) are usually applied to visualise trophic changes of the brain, resulting from considerable malnutrition or general cachexia of the organism. The goal of the study was an evaluation attempt of the degree of trophic changes in the central nervous system (CNS) of girls with AN, following CT scanning of the brain, together with an analysis of selected clinical and diagnostic parameters, related to the trophic changes in question. The study involved fifty-five (55) female patients with AN. Following CT of the brain - scanning of the cortical sulci - four (4) groups of the patients were identified. The following classification of lesions was applied: Group I - width of cortical sulci < 1.5 mm - standard; Group II - the presence of cortical sulci of width < 1.5 mm and 1.5-3 mm; Group III - width of cortical sulci 1.5-3 mm; Group IV - the presence of cortical sulci of width at 1.5-3 mm and > 3 mm. We did not observe any patient with AN in whom the width of all the cortical sulci was bigger than 3 mm (Group V). In all the groups, clinical parameters, as well as routine laboratory tests and selected hormonal tests, were analysed. In the performed CT scanning of the head in patients with AN, trophic changes in the CNS (as evaluated by the width of cortical sulci) were revealed in 67.3% of the patients. Among the studied groups, statistically significant differences were found for: body weight loss (BWL), the percent of BWL (BWL%), the BWL to disease duration ratio (BWL/time) and BWL%/time, serum concentrations of potassium, calcium, glucose, total protein and urea, as well as serum concentrations of LH, E2, cortisol, FT3 and FT4. The most pronounced disturbances were observed in Group IV, while the least ones - in Group I. In CT scanning of the head, trophic changes in the CNS were observed in girls with AN, measured by the width of cortical sulci. The higher severity of trophic changes in the CNS was associated with higher BWL/time ratio, higher hypercortisolemia, more enhanced hypogonadotrophic hypogonadism, disorders in the peripheral metabolism of the thyroid hormones and with the obtained values of routine laboratory tests, indicating some tendency towards hypovolemia.
NASA Astrophysics Data System (ADS)
Zapata-Hernández, Germán; Sellanes, Javier; Mayr, Christoph; Muñoz, Práxedes
2014-12-01
Using C and N stable isotopes we analyzed different trophic aspects of the benthic fauna at two sites in the Comau fjord: one with presence of venting of chemically reducing fluids and extensive patches of bacterial mats (XH: X-Huinay), and one control site (PG: Punta Gruesa) with a typical fjord benthic habitat. Due to the widespread presence of such microbial patches in the fjord and their recognized trophic role in reducing environments, we hypothesize that these microbial communities could be contributing to the assimilated food of consumers and transferring carbon into high trophic levels in the food web. Food sources in the area included macroalgae with a wide range of δ13C values (-34.7 to -11.9‰), particulate organic matter (POM, δ13C = -20.1‰), terrestrial organic matter (TOM, δ13C = -32.3‰ to -27.9‰) and chemosynthetic filamentous bacteria (δ13C = ∼-33‰). At both sites, fauna depicted typical values indicating photosynthetic production as a main food source (>-20‰). However, at XH selected taxa reported lower δ13C values (e.g. -26.5‰ in Nacella deaurata), suggesting a partial use of chemosynthetic production. Furthermore, enhanced variability at this site in δ13C values of the polyplacophoran Chiton magnificus, the limpet Fissurella picta and the tanaid Zeuxoides sp. may also be responding to the use of a wider scope of primary food sources. Trophic position estimates suggest three trophic levels of consumers at both sites. However, low δ15N values in some grazer and suspension-feeder species suggest that these taxa could be using other sources still to be identified (e.g. bacterial films, microalgae and organic particles of small size-fractions). Furthermore, between-site comparisons of isotopic niche width measurements in some trophic guilds indicate that grazers from XH have more heterogenic trophic niches than at PG (measured as mean distance to centroid and standard deviation of nearest neighbor distance). This last could be ascribed to the utilization of a mixture of photosynthetic and chemosynthetic carbon sources. In addition, corrected standard ellipses area (SEAc) values in suspension-feeders and carnivores at both sites suggest a similar magnitude of exploitation of food sources. However, grazers from XH have a greater expansion of their isotopic niche (SEAc), probably explained by the presence of species with low δ13C and δ15N values, and directly associated to chemosynthetic carbon incorporation.
Trophic magnification of PCBs and its relationship to the octanol-water partition coefficient
Walters, D.M.; Mills, M.A.; Cade, B.S.; Burkard, L.P.
2011-01-01
We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (??15N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from ??15N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log KOW, as did the predictive power (r2) of individual TP-PCB regression models used to calculate TMFs. We developed log KOW-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of KOW on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent KOW effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by KOW) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical KOW and bioaccumulation from field studies are more generalized than previously recognized. ?? This article not subject to U.S. Copyright. Published 2011 by the American Chemical Society.
Trophic magnification of PCBs and Its relationship to the octanol-water partition coefficient.
Walters, David M; Mills, Marc A; Cade, Brian S; Burkard, Lawrence P
2011-05-01
We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (K(OW)) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (δ¹⁵N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from δ¹⁵N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log K(OW), as did the predictive power (r²) of individual TP-PCB regression models used to calculate TMFs. We developed log K(OW)-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of K(OW) on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent K(OW) effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by K(OW)) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical K(OW) and bioaccumulation from field studies are more generalized than previously recognized.
Hisano, Masumi; Hoshino, Lisa; Kamada, Shouko; Masuda, Ryuichi; Newman, Chris; Kaneko, Yayoi
2017-04-01
We compared the reliability of visual diagnostic criteria to DNA diagnostic techniques, including newly designed primers, to discriminate Japanese marten (Martes melampus) feces from those of other sympatric carnivore species. Visual criteria proved > 95% reliable for fresh, odoriferous scats in good condition. Based upon this verification, we then examined if and how Japanese marten diet differs among seasons at high elevation study site (1500-2026 m). We also considered how intra-specific competition with the Japanese red fox (Vulpes vulpes japonica) may shape marten feeding ecology. From 120 Japanese marten fecal samples, high elevation diet comprised (frequency of occurrence) 30.6-66.0% mammals, 41.0-72.2% insects and 10.6-46.2% fruits, subject to seasonal variation, with a Shannon-Weaver index value of 2.77. These findings contrast substantially to seasonal marten diet reported in adjacent lowland regions (700-900 m), particularly in terms of fruit consumption, showing the trophic adaptability of the Japanese marten. We also noted a substantial dietary overlap with the red fox (n = 26 scats) with a Shannon-Weaver index of 2.61, inferring little trophic niche mutual exclusion (trophic niche overlap: 0.95), although some specific seasonal prey selection differences were likely related to relative differences in body size between foxes and martens. This additional information on the feeding ecology of the Japanese marten enables a better assessment of the specific risks populations face in mountainous regions.
Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.
Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K
2017-03-01
Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.
The Distributed Biological Observatory (DBO)-A Change Detection Array in the Pacific Arctic Sector
NASA Astrophysics Data System (ADS)
Grebmeier, J. M.; Moore, S. E.; Cooper, L. W.; Frey, K. E.; Pickart, R. S.
2011-12-01
The Pacific sector of the Arctic Ocean is experiencing major reductions in seasonal sea ice extent and increases in sea surface temperatures. One of the key uncertainties in this region is how the marine ecosystem will respond to seasonal shifts in the timing of spring sea ice retreat and/or delays in fall sea ice formation. Variations in upper ocean water hydrography, planktonic production, pelagic-benthic coupling and sediment carbon cycling are all influenced by sea ice and temperature changes. Climate changes are likely to result in shifts in species composition and abundance, northward range expansions, and changes in lower trophic level productivity that can directly cascade and affect the life cycles of higher trophic level organisms. Several regionally critical marine sites in the Pacific Arctic sector that have very high biomass and are focused foraging points for apex predators have been re-occupied during multiple international cruises. The data documenting the importance of these ecosystem "hotspots" provide a growing marine time-series from the northern Bering Sea to Barrow Canyon at the boundary of the Chukchi and Beaufort seas. Results from these studies show spatial changes in carbon production and export to the sediments as indicated by infaunal community composition and biomass, shifts in sediment grain size on a S-to-N latitudinal gradient, and range extensions for lower trophic levels and further northward migration of higher trophic organisms, such as gray whales. There is also direct evidence of negative impacts on ice dependent species, such as walrus and polar bears. To more systematically track the broad biological response to sea ice retreat and associated environmental change, an international consortium of scientists are developing a "Distributed Biological Observatory" (DBO) that includes selected biological measurements at multiple trophic levels. The DBO currently focuses on five regional biological "hotspot" locations along a latitudinal gradient. Hydrographic transects occupied from spring to fall in 2010 and 2011 at two pilot sites in the SE Chukchi Sea and Barrow Canyon provide repeat collections of water parameters over the seasons that are unavailable from single cruises. This sampling indicates freshening and warming as Pacific seawater transits northward over the spring to fall seasons, with impacts on both plankton and benthic prey bases for larger marine mammals and seabirds. The intent of the DBO is to serve as a change detection array for the identification and consistent monitoring of biophysical responses. This network of spatially explicit DBOs is being organized through the Pacific Arctic Group (PAG), a collaborative network endorsed by the International Arctic Science Committee. Our presentation will provide new information to evaluate the status and developing trends of the marine biological system as it responds to the rapid environmental change.
USDA-ARS?s Scientific Manuscript database
This work addresses a cross-cutting issue within the field of food-web ecology—the integration of the microbiome into trophic hierarchies. The nature and degree to which microbes may reconfigure the trophic identities of carnivore and omnivore groups have remained surprisingly unresolved. This means...
USDA-ARS?s Scientific Manuscript database
Metabolic reactions within heterotrophs cause discrimination in their stable nitrogen isotopic composition of amino acids (d15NAA) compared to their diets. Ecologists have exploited this measurable inter-trophic discrimination in the d15NAA value to estimate the trophic positions of heterotrophic an...
USDA-ARS?s Scientific Manuscript database
The use of nitrogen stable isotopes for estimation of animal trophic position has become an indispensable approach in food web ecology. Compound-specific isotope analysis of amino acids is a new approach for estimating trophic position that may overcome key issues associated with nitrogen stable iso...
Validation of trophic and anthropic underwater noise as settlement trigger in blue mussels
NASA Astrophysics Data System (ADS)
Jolivet, Aurélie; Tremblay, Rejean; Olivier, Fréderic; Gervaise, Cédric; Sonier, Rémi; Genard, Bertrand; Chauvaud, Laurent
2016-09-01
Like the majority of benthic invertebrates, the blue mussel Mytilus edulis has a bentho-pelagic cycle with its larval settlement being a complex phenomenon involving numerous factors. Among these factors, underwater noise and pelagic trophic conditions have been weakly studied in previous researches. Under laboratory conditions, we tested the hypothesis that picoplankton assimilation by the pediveliger blue mussel larvae acts as a food cue that interacts with anthropic underwater sound to stimulate settlement. We used 13C-labeling microalgae to validate the assimilation of different picoplankton species in the tissues of pediveliger larvae. Our results clearly confirm our hypothesis with a significant synergic effect of these two factors. However, only the picoeukaryotes strains assimilated by larvae stimulated the settlement, whereas the non-ingested picocyanobacteria did not. Similar positive responses were observed with underwater sound characterized by low frequency vessel noises. The combination of both factors (trophic and vessel noise) drastically increased the mussel settlement by an order of 4 compared to the control (without picoplankton and noise). Settlement levels ranged from 16.5 to 67% in 67 h.
Doi, Hideyuki; Chang, Kwang-Hyeon; Nishibe, Yuichiro; Imai, Hiroyuki; Nakano, Shin-ichi
2013-01-01
The importance of analyzing the determinants of biodiversity and community composition by using multiple trophic levels is well recognized; however, relevant data are lacking. In the present study, we investigated variations in species diversity indices and community structures of the plankton taxonomic groups-zooplankton, rotifers, ciliates, and phytoplankton-under a range of local environmental factors in pond ecosystems. For each planktonic group, we estimated the species diversity index by using linear models and analyzed the community structure by using canonical correspondence analysis. We showed that the species diversity indices and community structures varied among the planktonic groups and according to local environmental factors. The observed lack of congruence among the planktonic groups may have been caused by niche competition between groups with similar trophic guilds or by weak trophic interactions. Our findings highlight the difficulty of predicting total biodiversity within a system, based upon a single taxonomic group. Thus, to conserve the biodiversity of an ecosystem, it is crucial to consider variations in species diversity indices and community structures of different taxonomic groups, under a range of local conditions.
Cipro, Caio V Z; Montone, Rosalinda C; Bustamante, Paco
2017-01-15
Mercury (Hg) can reach the environment through natural and human-related sources, threatening ecosystems all over the planet due to its well known deleterious effects. Therefore, Antarctic trophic webs, despite being relatively isolated, are not exempt of its influence. To evaluate Hg concentrations in an Antarctic ecosystem, different tissues from 2 species of invertebrates, 2 of fish, 8 of birds, 4 of pinnipeds and at least 5 of vegetation were investigated (n=176). For animals, values ranged from 0.018 to 48.7μgg -1 dw (whole Antarctic krill and Antarctic Fur Seal liver). They were generally correlated to trophic position (assessed by δ 15 N and δ 13 C) but also to cephalopods and myctophids consumption. For vegetation, values ranged from 0.014 to 0.227μgg -1 dw (Colobanthus quitensis and an unidentified lichen), with lichens presenting significantly higher values than mosses, likely due to year-round exposure and absorption of animal derived organic matter, as hypothesized by literature. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of the ``Amoco Cadiz'' oil spill on zooplankton
NASA Astrophysics Data System (ADS)
Samain, J. F.; Moal, J.; Coum, A.; Le Coz, J. R.; Daniel, J. Y.
1980-03-01
A survey of zooplankton physiology on the northern coast of Brittany (France) was carried out over a one-year period by comparing two estuarine areas, one oil-polluted area (Aber Benoit) following the oil spill by the tanker “Amoco Cadiz” and one non-oil-polluted area (Rade de Brest). A new approach to an ecological survey was made by describing trophic relationships using analysis of digestive enzyme equipment (amylase and trypsin) of zooplankton organisms, mesoplankton populations and some selected species. These measurements allowed determination of (a) groups of populations with homogeneous trophic and faunistic characteristics and (b) groups of species with homogeneous trophic characteristics. The study of the appearance of these groups over a one-year period revealed the succession of populations and their adaptation to the environment on the basis of biochemical analysis. These phenomena observed in the compared areas showed marked differences in the most polluted areas during the productive spring period. Specific treatment of the data using unusual correlations between digestive enzymes is discussed in terms of the immediate effect on the whole population and on a copepod ( Anomalocera patersoni) living in the upper 10 cm.
Interspecific comparison of radiocesium trophic transfer in two tropical fish species.
Pouil, Simon; Teyssié, Jean-Louis; Fowler, Scott W; Metian, Marc; Warnau, Michel
2018-09-01
The trophic transfer of radiocesium ( 134 Cs) was investigated in two tropical fish, the silver moony Monodactylus argenteus and the spotted scat Scatophagus argus. Juveniles of both species were exposed to dietary 134 Cs using the pulse-chase feeding methodology. The food was brine shrimp (Artemia salina) previously exposed to the dissolved radiotracer. Depuration kinetics of 134 Cs were followed for 45 d. Results showed that Cs was similarly efficiently assimilated by both species (AE > 50%). The estimated trophic transfer factors in the two species ranked from 1 to 2, suggesting that 134 Cs could be biomagnified in both omnivorous species. In complement, dissections of 7 body compartments were carried out at three different times in order to highlight 134 Cs organotropism. 134 Cs organotropism was similar in both species: more than 50% of 134 Cs was quickly distributed in the muscles and skeleton (after 3 days of depuration), which is likely related to the analogous behavior between Cs and K, an essential element for muscle contractions and bone formation. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cartes, Joan E.; Carrassón, Maite
2004-02-01
We studied in a deep-sea megafaunal community the relationship of different trophic variables to the depth ranges inhabited by and depth zonation of species, after the ordination of fish and decapod crustaceans in feeding guilds. The variables studied included trophic level of species, food sources exploited, mean weight of predators and prey, feeding intensity and dietary diversity of species. We compiled data on the diets of 18 species of fish and 14 species of decapod crustaceans distributed between 862 and 2261 m in the Catalano-Balearic Basin (Western Mediterranean). Feeding guilds were identified for fish and decapods separately and at two depth strata (862-1400 and 1400-2261 m). The zonation rates (degree of depth overlap) between species within each trophic guild differed by guild and taxon (fish and decapods). The three guilds (G1, G2 and G3) of decapod crustaceans showed quite significantly distinct overlap. G1 (plankton feeders) showed the widest overlap (1326-1381 m) and G3 (benthos feeders) the narrowest (330-476 m). Among the four guilds established for fish, G1, comprising larger predators such as sharks, showed the lowest overlap (between 194 and 382 m). Macrourids overlap ranged between 122 and 553 m, the rest of benthopelagic feeders ranged between 423 and 970 m, and G3 (benthos feeders) gave overlaps between 867 and 1067 m. Significant differences were detected between the depth overlap of most feeding guilds excluding the paired comparisons between G1/macrourids, and G2/G3. Among decapods higher zonation rates (=lower depth overlap) were identified in those guilds occupying higher trophic levels (TL), with a similar, though not as general, trend among fish. In the ordination of species in feeding guilds, TL as indicated by δ15N measurements, was significantly correlated with Dimension 1 (D1) of ordination—MDS-analysis, both in fish and decapods at 862-1400 m. However, deeper (at 1400-2261 m), D1 was not significantly correlated with TL but with the mean weight of predator and prey in fish. In general, TL was again the main explanatory variable (accumulated variances, r2, explained by multi-linear regression—MLR-models between 0.54 and 0.69) both of the zonation rates and the depth ranges occupied by megafauna (fish and decapods together) throughout all the depth range studied. Possible relationships between zonation rates /depth distributions and other biological variables (i.e. egg size, fecundity) are also discussed.
Sentis, Arnaud; Gémard, Charlène; Jaugeon, Baptiste; Boukal, David S
2017-07-01
Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities. © 2016 John Wiley & Sons Ltd.