Evaluation of general non-reflecting boundary conditions for industrial CFD applications
NASA Astrophysics Data System (ADS)
Basara, Branislav; Frolov, Sergei; Lidskii, Boris; Posvyanskii, Vladimir
2007-11-01
The importance of having proper boundary conditions for the calculation domain is a known issue in Computational Fluid Dynamics (CFD). In many situations, it is very difficult to define a correct boundary condition. The flow may enter and leave the computational domain at the same time and at the same boundary. In such circumstances, it is important that numerical implementation of boundary conditions enforces certain physical constraints leading to correct results which then ensures a better convergence rate. The aim of this paper is to evaluate recently proposed non-reflecting boundary conditions (Frolov et al., 2001, Advances in Chemical Propulsion) on industrial CFD applications. Derivation of the local non-reflecting boundary conditions at the open boundary is based on finding the solution of linearized Euler equations vanishing at infinity for both incompressible and compressible formulations. This is implemented into the in-house CFD package AVL FIRE and some numerical details will be presented as well. The key applications in this paper are from automotive industry, e.g. an external car aerodynamics, an intake port, etc. The results will show benefits of using effective non-reflecting boundary conditions.
Michael E. Ursic; Christopher I. Thornton; Amanda L. Cox; Steven R. Abt
2012-01-01
Fluvial systems respond to changes in boundary conditions in order to sustain the flow and sediment supplied to the system. Local channel responses are typically difficult to predict due to possible affects from upstream, downstream, or local boundary conditions that cause changes in channel or planform geometry. Changes to the system can threaten riverside...
Evolving a Puncture Black Hole with Fixed Mesh Refinement
NASA Technical Reports Server (NTRS)
Imbiriba, Breno; Baker, John; Choi, Dae-II; Centrella, Joan; Fiske. David R.; Brown, J. David; vanMeter, James R.; Olson, Kevin
2004-01-01
We present a detailed study of the effects of mesh refinement boundaries on the convergence and stability of simulations of black hole spacetimes. We find no technical problems. In our applications of this technique to the evolution of puncture initial data, we demonstrate that it is possible to simulaneously maintain second order convergence near the puncture and extend the outer boundary beyond 100M, thereby approaching the asymptotically flat region in which boundary condition problems are less difficult.
Consistency and convergence for numerical radiation conditions
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
The problem of imposing radiation conditions at artificial boundaries for the numerical simulation of wave propagation is considered. Emphasis is on the behavior and analysis of the error which results from the restriction of the domain. The theory of error estimation is briefly outlined for boundary conditions. Use is made of the asymptotic analysis of propagating wave groups to derive and analyze boundary operators. For dissipative problems this leads to local, accurate conditions, but falls short in the hyperbolic case. A numerical experiment on the solution of the wave equation with cylindrical symmetry is described. A unified presentation of a number of conditions which have been proposed in the literature is given and the time dependence of the error which results from their use is displayed. The results are in qualitative agreement with theoretical considerations. It was found, however, that for this model problem it is particularly difficult to force the error to decay rapidly in time.
Franke, O. Lehn; Reilly, Thomas E.
1987-01-01
The most critical and difficult aspect of defining a groundwater system or problem for conceptual analysis or numerical simulation is the selection of boundary conditions . This report demonstrates the effects of different boundary conditions on the steady-state response of otherwise similar ground-water systems to a pumping stress. Three series of numerical experiments illustrate the behavior of three hypothetical groundwater systems that are rectangular sand prisms with the same dimensions but with different combinations of constant-head, specified-head, no-flow, and constant-flux boundary conditions. In the first series of numerical experiments, the heads and flows in all three systems are identical, as are the hydraulic conductivity and system geometry . However, when the systems are subjected to an equal stress by a pumping well in the third series, each differs significantly in its response . The highest heads (smallest drawdowns) and flows occur in the systems most constrained by constant- or specified-head boundaries. These and other observations described herein are important in steady-state calibration, which is an integral part of simulating many ground-water systems. Because the effects of boundary conditions on model response often become evident only when the system is stressed, a close match between the potential distribution in the model and that in the unstressed natural system does not guarantee that the model boundary conditions correctly represent those in the natural system . In conclusion, the boundary conditions that are selected for simulation of a ground-water system are fundamentally important to groundwater systems analysis and warrant continual reevaluation and modification as investigation proceeds and new information and understanding are acquired.
NASA Astrophysics Data System (ADS)
Gao, Xinya; Wang, Yonghong; Li, Junrui; Dan, Xizuo; Wu, Sijin; Yang, Lianxiang
2017-06-01
It is difficult to measure absolute three-dimensional deformation using traditional digital speckle pattern interferometry (DSPI) when the boundary condition of an object being tested is not exactly given. In practical applications, the boundary condition cannot always be specifically provided, limiting the use of DSPI in real-world applications. To tackle this problem, a DSPI system that is integrated by the spatial carrier method and a color camera has been established. Four phase maps are obtained simultaneously by spatial carrier color-digital speckle pattern interferometry using four speckle interferometers with different illumination directions. One out-of-plane and two in-plane absolute deformations can be acquired simultaneously without knowing the boundary conditions using the absolute deformation extraction algorithm based on four phase maps. Finally, the system is proved by experimental results through measurement of the deformation of a flat aluminum plate with a groove.
Parameter Estimation for a Pulsating Turbulent Buoyant Jet Using Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Christopher, Jason; Wimer, Nicholas; Lapointe, Caelan; Hayden, Torrey; Grooms, Ian; Rieker, Greg; Hamlington, Peter
2017-11-01
Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other ``truth'' data to be used for the prediction of unknown parameters, such as flow properties and boundary conditions, in numerical simulations of real-world engineering systems. Here we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a direct numerical simulation (DNS) with known boundary conditions and problem parameters, while the ABC procedure utilizes lower fidelity large eddy simulations. Using spatially-sparse statistics from the 2D buoyant jet DNS, we show that the ABC method provides accurate predictions of true jet inflow parameters. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for predicting flow information, such as boundary conditions, that can be difficult to determine experimentally.
A study on pseudo interface wave technique for CRDM weld defects in nuclear power plants
NASA Astrophysics Data System (ADS)
Lee, Jaesun; Park, Junpil; Cho, Younho; Huh, Hyung; Park, Keun-Bae; Kim, Dong-Ok
2015-03-01
The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundary conditions and the experimental result shows a possibility of the defect detection on J-groove weld.
NASA Astrophysics Data System (ADS)
De Filippis, Giovanna; Foglia, Laura; Giudici, Mauro; Mehl, Steffen; Margiotta, Stefano; Negri, Sergio L.
2017-11-01
The evaluation of the accuracy or reasonableness of numerical models of groundwater flow is a complex task, due to the uncertainties in hydrodynamic properties and boundary conditions and the scarcity of good-quality field data. To assess model reliability, different calibration techniques are joined to evaluate the effects of different kinds of boundary conditions on the groundwater flow in a coastal multi-layered aquifer in southern Italy. In particular, both direct and indirect approaches for inverse modeling were joined through the calibration of one of the most uncertain parameters, namely the hydraulic conductivity of the karst deep hydrostratigraphic unit. The methodology proposed here, and applied to a real case study, confirmed that the selection of boundary conditions is among the most critical and difficult aspects of the characterization of a groundwater system for conceptual analysis or numerical simulation. The practical tests conducted in this study show that incorrect specification of boundary conditions prevents an acceptable match between the model response to the hydraulic stresses and the behavior of the natural system. Such effects have a negative impact on the applicability of numerical modeling to simulate groundwater dynamics in complex hydrogeological situations. This is particularly important for management of the aquifer system investigated in this work, which represents the only available freshwater resource of the study area, and is threatened by overexploitation and saltwater intrusion.
NASA Astrophysics Data System (ADS)
Muldoon, Gail; Jackson, Charles S.; Young, Duncan A.; Quartini, Enrica; Cavitte, Marie G. P.; Blankenship, Donald D.
2017-04-01
Information about the extent and dynamics of the West Antarctic Ice Sheet during past glaciations is preserved inside ice sheets themselves. Ice cores are capable of retrieving information about glacial history, but they are spatially sparse. Ice-penetrating radar, on the other hand, has been used to map large areas of the West Antarctic Ice Sheet and can be correlated to ice core chronologies. Englacial isochronous layers observed in ice-penetrating radar are the result of variations in ice composition, fabric, temperature and other factors. The shape of these isochronous surfaces is expected to encode information about past and present boundary conditions and ice dynamics. Dipping of englacial layers, for example, may reveal the presence of rapid ice flow through paleo ice streams or high geothermal heat flux. These layers therefore present a useful testbed for hypotheses about paleo ice sheet conditions. However, hypothesis testing requires careful consideration of the sensitivity of layer shape to the competing forces of ice sheet boundary conditions and ice dynamics over time. Controlled sensitivity tests are best completed using models, however ice sheet models generally do not have the capability of simulating layers in the presence of realistic boundary conditions. As such, modeling 3D englacial layers for comparison to observations is difficult and requires determination of a 3D ice velocity field. We present a method of post-processing simulated 3D ice sheet velocities into englacial isochronous layers using an advection scheme. We then test the sensitivity of layer geometry to uncertain boundary conditions, including heterogeneous subglacial geothermal flux and bedrock topography. By identifying areas of the ice sheet strongly influenced by boundary conditions, it may be possible to isolate the signature of paleo ice dynamics in the West Antarctic ice sheet.
Analysis of the electromagnetic scattering from an inlet geometry with lossy walls
NASA Technical Reports Server (NTRS)
Myung, N. H.; Pathak, P. H.; Chunang, C. D.
1985-01-01
One of the primary goals is to develop an approximate but sufficiently accurate analysis for the problem of electromagnetic (EM) plane wave scattering by an open ended, perfectly-conducting, semi-infinite hollow circular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a simple termination inside. The less difficult but useful problem of the EM scattering by a two-dimensional (2-D), semi-infinite parallel plate waveguide with an impedance boundary condition on the inner walls was chosen initially for analysis. The impedance boundary condition in this problem serves to model a thin layer of lossy dielectric/ferrite coating on the otherwise perfectly-conducting interior waveguide walls. An approximate but efficient and accurate ray solution was obtained recently. That solution is presently being extended to the case of a moderately thick dielectric/ferrite coating on the walls so as to be valid for situations where the impedance boundary condition may not remain sufficiently accurate.
NASA Astrophysics Data System (ADS)
Li, Huicong; Wang, Xuefeng; Wu, Yanxia
2014-11-01
We consider the logistic diffusion equation on a bounded domain, which has two components with a thin coating surrounding a body. The diffusion tensor is isotropic on the body, and anisotropic on the coating. The size of the diffusion tensor on these components may be very different; within the coating, the diffusion rates in the normal and tangent directions may be in different scales. We find effective boundary conditions (EBCs) that are approximately satisfied by the solution of the diffusion equation on the boundary of the body. We also prove that the lifespan of each EBC, which measures how long the EBC remains effective, is infinite. The EBCs enable us to see clearly the effect of the coating and ease the difficult task of solving the PDE in a thin region with a small diffusion tensor. The motivation of the mathematics includes a nature reserve surrounded by a buffer zone.
Three-Dimensional Velocity Field De-Noising using Modal Projection
NASA Astrophysics Data System (ADS)
Frank, Sarah; Ameli, Siavash; Szeri, Andrew; Shadden, Shawn
2017-11-01
PCMRI and Doppler ultrasound are common modalities for imaging velocity fields inside the body (e.g. blood, air, etc) and PCMRI is increasingly being used for other fluid mechanics applications where optical imaging is difficult. This type of imaging is typically applied to internal flows, which are strongly influenced by domain geometry. While these technologies are evolving, it remains that measured data is noisy and boundary layers are poorly resolved. We have developed a boundary modal analysis method to de-noise 3D velocity fields such that the resulting field is divergence-free and satisfies no-slip/no-penetration boundary conditions. First, two sets of divergence-free modes are computed based on domain geometry. The first set accounts for flow through ``truncation boundaries'', and the second set of modes has no-slip/no-penetration conditions imposed on all boundaries. The modes are calculated by minimizing the velocity gradient throughout the domain while enforcing a divergence-free condition. The measured velocity field is then projected onto these modes using a least squares algorithm. This method is demonstrated on CFD simulations with artificial noise. Different degrees of noise and different numbers of modes are tested to reveal the capabilities of the approach. American Heart Association Award 17PRE33660202.
Additional Boundary Condition for List-Method Directed Forgetting: The Effect of Presentation Format
ERIC Educational Resources Information Center
Hupbach, Almut; Sahakyan, Lili
2014-01-01
The attempt to forget some recently encoded information renders this information difficult to recall in a subsequent memory test. "Forget" instructions are only effective when followed by learning of new material. In the present study, we asked whether the new material needs to match the format of the to-be-forgotten information for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buurma, Christopher; Sen, Fatih G.; Paulauskas, Tadas
2015-01-01
Grain boundaries (GB) in poly-CdTe solar cells play an important role in species diffusion, segregation, defect formation, and carrier recombination. While the creation of specific high-symmetry interfaces can be straight forward, the creation of general GB structures in many material systems is difficult if periodic boundary conditions are to be enforced. Here we describe a novel algorithm and implementation to generate initial general GB structures for CdTe in an automated way, and we investigate some of these structures using density functional theory (DFT). Example structures include those with bi-crystals already fabricated for comparison, and those planning to be investigated inmore » the future.« less
NASA Astrophysics Data System (ADS)
Li, Y.; Epifanio, C.
2017-12-01
In numerical prediction models, the interaction between the Earth's surface and the atmosphere is typically accounted for in terms of surface layer parameterizations, whose main job is to specify turbulent fluxes of heat, moisture and momentum across the lower boundary of the model domain. In the case of a domain with complex geometry, implementing the flux conditions (particularly the tensor stress condition) at the boundary can be somewhat subtle, and there has been a notable history of confusion in the CFD community over how to formulate and impose such conditions generally. In the atmospheric case, modelers have largely been able to avoid these complications, at least until recently, by assuming that the terrain resolved at typical model resolutions is fairly gentle, in the sense of having relatively shallow slopes. This in turn allows the flux conditions to be imposed as if the lower boundary were essentially flat. Unfortunately, while this flat-boundary assumption is acceptable for coarse resolutions, as grids become more refined and the geometry of the resolved terrain becomes more complex, the appproach is less justified. With this in mind, the goal of our present study is to explore the implementation and usage of the full, unapproximated version of the turbulent flux/stress conditions in atmospheric models, thus taking full account of the complex geometry of the resolved terrain. We propose to implement the conditions using a semi-idealized model developed by Epifanio (2007), in which the discretized boundary conditions are reduced to a large, sparse-matrix problem. The emphasis will be on fluxes of momentum, as the tensor nature of this flux makes the associated stress condition more difficult to impose, although the flux conditions for heat and moisture will be considered as well. With the resulotion of 90 meters, some of the results show that the typical differences between flat-boundary cases and full/stress cases are on the order of 10%, with extreme cases reaching as high as 30% based on typical disturbance wind speeds. And this difference dropping by a factor of six between grid spacings of 90 meters and 240 meters. It would thus appear that the need to apply the full stress condition is limited to relatively high-resolution modeling, with grid spacings on the order of 250 meters or less.
A simple homogeneous model for regular and irregular metallic wire media samples
NASA Astrophysics Data System (ADS)
Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.
2018-02-01
To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.
Generalised summation-by-parts operators and variable coefficients
NASA Astrophysics Data System (ADS)
Ranocha, Hendrik
2018-06-01
High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finite difference and the discontinuous Galerkin spectral element framework. However, if generalised SBP operators are used, the treatment of the boundaries becomes more difficult since some properties of the continuous level are no longer mimicked discretely - interpolating the product of two functions will in general result in a value different from the product of the interpolations. Thus, desired properties such as conservation and stability are more difficult to obtain. Here, new formulations are proposed, allowing the creation of discretisations using general SBP operators that are both conservative and stable. Thus, several shortcomings that might be attributed to generalised SBP operators are overcome (cf. Nordström and Ruggiu (2017) [38] and Manzanero et al. (2017) [39]).
Stoller, Marco; Ochando-Pulido, Javier Miguel; Field, Robert
2017-07-14
In the last decades, membrane processes have gained a significant share of the market for wastewater purification. Although the product (i.e., purified water) is not of high added value, these processes are feasible both technically and from an economic point of view, provided the flux is relatively high and that membrane fouling is strongly inhibited. By controlling membrane fouling, the membrane may work for years without service, thus dramatically reducing operating costs and the need for membrane substitution. There is tension between operating at high permeate fluxes, which enhances fouling but reduces capital costs, and operating at lower fluxes which increases capital costs. Operating batch membrane processes leads to increased difficulties, since the feed fed to the membrane changes as a function of the recovery value. This paper is concerned with the operation of such a process. Membrane process designers should therefore avoid membrane fouling by operating membranes away from the permeate flux point where severe fouling is triggered. The design and operation of membrane purification plants is a difficult task, and the precision to properly describe the evolution of the fouling phenomenon as a function of the operating conditions is a key to success. Many reported works have reported on the control of fouling by operating below the boundary flux. On the other hand, only a few works have successfully sought to exploit super-boundary operating conditions; most super-boundary operations are reported to have led to process failures. In this work, both sub- and super-boundary operating conditions for a batch nanofiltration membrane process used for olive mill wastewater treatment were investigated. A model to identify a priori the point of transition from a sub-boundary to a super-boundary operation during a batch operation was developed, and this will provide membrane designers with a helpful tool to carefully avoid process failures.
Theoretical study of the incompressible Navier-Stokes equations by the least-squares method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Loh, Ching Y.; Povinelli, Louis A.
1994-01-01
Usually the theoretical analysis of the Navier-Stokes equations is conducted via the Galerkin method which leads to difficult saddle-point problems. This paper demonstrates that the least-squares method is a useful alternative tool for the theoretical study of partial differential equations since it leads to minimization problems which can often be treated by an elementary technique. The principal part of the Navier-Stokes equations in the first-order velocity-pressure-vorticity formulation consists of two div-curl systems, so the three-dimensional div-curl system is thoroughly studied at first. By introducing a dummy variable and by using the least-squares method, this paper shows that the div-curl system is properly determined and elliptic, and has a unique solution. The same technique then is employed to prove that the Stokes equations are properly determined and elliptic, and that four boundary conditions on a fixed boundary are required for three-dimensional problems. This paper also shows that under four combinations of non-standard boundary conditions the solution of the Stokes equations is unique. This paper emphasizes the application of the least-squares method and the div-curl method to derive a high-order version of differential equations and additional boundary conditions. In this paper, an elementary method (integration by parts) is used to prove Friedrichs' inequalities related to the div and curl operators which play an essential role in the analysis.
A complex-lamellar description of boundary layer transition
NASA Astrophysics Data System (ADS)
Kolla, Maureen Louise
Flow transition is important, in both practical and phenomenological terms. However, there is currently no method for identifying the spatial locations associated with transition, such as the start and end of intermittency. The concept of flow stability and experimental correlations have been used, however, flow stability only identifies the location where disturbances begin to grow in the laminar flow and experimental correlations can only give approximations as measuring the start and end of intermittency is difficult. Therefore, the focus of this work is to construct a method to identify the start and end of intermittency, for a natural boundary layer transition and a separated flow transition. We obtain these locations by deriving a complex-lamellar description of the velocity field that exists between a fully laminar and fully turbulent boundary condition. Mathematically, this complex-lamellar decomposition, which is constructed from the classical Darwin-Lighthill-Hawthorne drift function and the transport of enstrophy, describes the flow that exists between the fully laminar Pohlhausen equations and Prandtl's fully turbulent one seventh power law. We approximate the difference in enstrophy density between the boundary conditions using a power series. The slope of the power series is scaled by using the shape of the universal intermittency distribution within the intermittency region. We solve the complex-lamellar decomposition of the velocity field along with the slope of the difference in enstrophy density function to determine the location of the laminar and turbulent boundary conditions. Then from the difference in enstrophy density function we calculate the start and end of intermittency. We perform this calculation on a natural boundary layer transition over a flat plate for zero pressure gradient flow and for separated shear flow over a separation bubble. We compare these results to existing experimental results and verify the accuracy of our transition model.
Effect of Blowing on Boundary Layer of Scarf Inlet
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Clark, Lorenzo R.
2004-01-01
When aircraft operate in stationary or low speed conditions, airflow into the engine accelerates around the inlet lip and pockets of turbulence that cause noise and vibration can be ingested. This problem has been encountered with engines equipped with the scarf inlet, both in full scale and in model tests, where the noise produced during the static test makes it difficult to assess the noise reduction performance of the scarf inlet. NASA Langley researchers have implemented boundary layer control in an attempt to reduce the influence of the flow nonuniformity in a 12-in. diameter model of a high bypass fan engine mounted in an anechoic chamber. Static pressures and boundary layer profiles were measured in the inlet and far field acoustic measurements were made to assess the effectiveness of the blowing treatment. The blowing system was found to lack the authority to overcome the inlet distortions. Methods to improve the implementation of boundary layer control to reduce inlet distortion are discussed.
Importance of inlet boundary conditions for numerical simulation of combustor flows
NASA Technical Reports Server (NTRS)
Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.
1983-01-01
Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.
NASA Astrophysics Data System (ADS)
Park, Min-Gu; Lee, Chang-Hoon; Moon, Joonoh; Park, Jun Young; Lee, Tae-Ho; Kang, Namhyun; Chan Kim, Hyoung
2017-03-01
The influence of microstructural changes caused by aging condition on tensile and Charpy impact properties was investigated for reduced activation ferritic-martensitic (RAFM) 9Cr-1WVTa steels having single martensite and a mixed microstructure of martensite and ferrite. For the mixed microstructure of martensite and ferrite, the Charpy impact properties deteriorated in both as-normalized and tempered conditions due to the ferrite and the accompanying M23C6 carbides at the ferrite grain boundaries which act as path and initiation sites for cleavage cracks, respectively. However, aging at 550 °C for 20-100 h recovered gradually the Charpy impact toughness without any distinct drop in strength, as a result of the spheroidization of the coarse M23C6 carbides at the ferrite grain boundaries, which makes crack initiation more difficult.
Model of heap formation in vibrated gravitational suspensions.
Ebata, Hiroyuki; Sano, Masaki
2015-11-01
In vertically vibrated dense suspensions, several localized structures have been discovered, such as heaps, stable holes, expanding holes, and replicating holes. Because an inclined free fluid surface is difficult to maintain because of gravitational pressure, the mechanism of those structures is not understood intuitively. In this paper, as a candidate for the driving mechanism, we focus on the boundary condition on a solid wall: the slip-nonslip switching boundary condition in synchronization with vertical vibration. By applying the lubrication approximation, we derived the time evolution equation of the fluid thickness from the Oldroyd-B fluid model. In our model we show that the initially flat fluid layer becomes unstable in a subcritical manner, and heaps and convectional flow appear. The obtained results are consistent with those observed experimentally. We also find that heaps climb a slope when the bottom is slightly inclined. We show that viscoelasticity enhances heap formation and climbing of a heap on the slope.
NASA Astrophysics Data System (ADS)
Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc
2018-05-01
The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.
Skin-friction measurements by laser interferometry
NASA Technical Reports Server (NTRS)
Kim, K.-S.; Settles, G. S.
1989-01-01
The measurement of skin friction in rapidly distorted compressible flows is difficult, and very few reliable techniques are available. A recent development, the laser interferometer skin friction (LISF) meter, promises to be useful for this purpose. This technique interferometrically measures the time rate of thinning of an oil film applied to an aerodynamic surface. Under the proper conditions the wall shear stress may thus be found directly, without reference to flow properties. The applicability of the LISF meter to supersonic boundary layers is examined experimentally. Its accuracy and repeatability are assessed, and conditions required for its successful application are considered.
Evaporation from soils subjected to natural boundary conditions at the land-atmospheric interface
NASA Astrophysics Data System (ADS)
Smits, K.; Illngasekare, T.; Ngo, V.; Cihan, A.
2012-04-01
Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions at the land surface. This becomes critical in developing models that couples land to the atmosphere. Because it is difficult to measure evaporation from soil, with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for the soil surface boundary conditions to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory by Smits et al. [2011] that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. The model did not implement fitting parameters such as a vapor enhancement factor that is commonly introduced into the vapor diffusion coefficient as an arbitrary multiplication factor. In order to experimentally test the numerical formulations/code, we performed a two-dimensional physical model experiment under varying boundary conditions using test sand for which the hydraulic and thermal properties were well characterized. Precision data under well-controlled transient heat and wind boundary conditions was generated and results from numerical simulations were compared with experimental data. Results demonstrate that the boundary condition approaches varied in their ability to capture stage 1- and stage 2- evaporation. Results also demonstrated the importance of properly characterizing soil thermal properties and accounting for dry soil conditions. The contribution of film flow to hydraulic conductivity for the layer above the drying front is dominant compared to that of capillary flow, demonstrating the importance of including film flow in modeling efforts for dry soils, especially for fine grained soils. Comparisons of different formulations of the surface boundary condition validate the need for joint evaluation of heat and mass transfer for better modeling accuracy. This knowledge is applicable to many current hydrologic and environmental problems to include climate modeling and the simulation of contaminant transport and volatilization in the shallow subsurface. Smits, K. M., A. Cihan, T. Sakaki, and T. H. Illangasekare (2011). Evaporation from soils under thermal boundary conditions: Experimental and modeling investigation to compare equilibrium- and nonequilibrium-based approaches, Water Resour. Res., 47, W05540, doi:10.1029/2010WR009533.
The numerical calculation of laminar boundary-layer separation
NASA Technical Reports Server (NTRS)
Klineberg, J. M.; Steger, J. L.
1974-01-01
Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaesun, E-mail: jaesun@pusan.ac.kr, E-mail: jpp@pusan.ac.kr; Park, Junpil, E-mail: jaesun@pusan.ac.kr, E-mail: jpp@pusan.ac.kr; Cho, Younho, E-mail: mechcyh@pusan.ac.kr
The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundarymore » conditions and the experimental result shows a possibility of the defect detection on J-groove weld.« less
NASA Astrophysics Data System (ADS)
Jiao, J.; Trautz, A.; Zhang, Y.; Illangasekera, T.
2017-12-01
Subsurface flow and transport characterization under data-sparse condition is addressed by a new and computationally efficient inverse theory that simultaneously estimates parameters, state variables, and boundary conditions. Uncertainty in static data can be accounted for while parameter structure can be complex due to process uncertainty. The approach has been successfully extended to inverting transient and unsaturated flows as well as contaminant source identification under unknown initial and boundary conditions. In one example, by sampling numerical experiments simulating two-dimensional steady-state flow in which tracer migrates, a sequential inversion scheme first estimates the flow field and permeability structure before the evolution of tracer plume and dispersivities are jointly estimated. Compared to traditional inversion techniques, the theory does not use forward simulations to assess model-data misfits, thus the knowledge of the difficult-to-determine site boundary condition is not required. To test the general applicability of the theory, data generated during high-precision intermediate-scale experiments (i.e., a scale intermediary to the field and column scales) in large synthetic aquifers can be used. The design of such experiments is not trivial as laboratory conditions have to be selected to mimic natural systems in order to provide useful data, thus requiring a variety of sensors and data collection strategies. This paper presents the design of such an experiment in a synthetic, multi-layered aquifer with dimensions of 242.7 x 119.3 x 7.7 cm3. Different experimental scenarios that will generate data to validate the theory are presented.
On Complex Water Conflicts: Role of Enabling Conditions for Pragmatic Resolution
NASA Astrophysics Data System (ADS)
Islam, S.; Choudhury, E.
2016-12-01
Many of our current and emerging water problems are interconnected and cross boundaries, domains, scales, and sectors. These boundary crossing water problems are neither static nor linear; but often are interconnected nonlinearly with other problems and feedback. The solution space for these complex problems - involving interdependent variables, processes, actors, and institutions - can't be pre-stated. We need to recognize the disconnect among values, interests, and tools as well as problems, policies, and politics. Scientific and technological solutions are desired for efficiency and reliability, but need to be politically feasible and actionable. Governing and managing complex water problems require difficult tradeoffs in exploring and sharing benefits and burdens through carefully crafted negotiation processes. The crafting of such negotiation process, we argue, constitutes a pragmatic approach to negotiation - one that is based on the identification of enabling conditions - as opposed to mechanistic casual explanations, and rooted in contextual conditions to specify and ensure the principles of equity and sustainability. We will use two case studies to demonstrate the efficacy of the proposed principled pragmatic approcah to address complex water problems.
Boundary crossing and brokering between disciplines in pre-service mathematics teacher education
NASA Astrophysics Data System (ADS)
Goos, Merrilyn; Bennison, Anne
2017-12-01
In many countries, pre-service teacher education programs are structured so that mathematics content is taught in the university's mathematics department and mathematics pedagogy in the education department. Such program structures make it difficult to authentically interweave content with pedagogy in ways that acknowledge the roles of both mathematicians and mathematics educators in preparing future teachers. This article reports on a project that deliberately fostered collaboration between mathematicians and mathematics educators in six Australian universities in order to investigate the potential for learning at the boundaries between the two disciplinary communities. Data sources included two rounds of interviews with mathematicians and mathematics educators and annual reports prepared by each participating university over the three years of the project. The study identified interdisciplinary boundary practices that led to integration of content and pedagogy through new courses co-developed and co-taught by mathematicians and mathematics educators, and new approaches to building communities of pre-service teachers. It also developed an evidence-based classification of conditions that enable or hinder sustained collaboration across disciplinary boundaries, together with an empirical grounding for Akkerman and Bakker's conceptualisation of transformation as a mechanism for learning at the boundary between communities. The study additionally highlighted the ambiguous nature of boundaries and implications for brokers who work there to connect disciplinary paradigms.
Applications of a hand-held GPS receiver in South American rain forests
NASA Technical Reports Server (NTRS)
Baksh, Michael
1991-01-01
A hand-held Global Positioning System receiver was used to determine the precise locations of villages, houses, gardens, and other cultural and environmental features in poorly mapped South American rain forests. The Magellan NAV 1000 unit profides extremely accurate latitude and longitude information, but determination of altitude is problematical. Overall, the receiver effectively allows anthropologists to obtain essential locational data useful for categorizing land uses, mapping tribal boundaries, and other applications in regions where environmental conditions are harsh and/or accessibility is difficult.
Efficient characterisation of large deviations using population dynamics
NASA Astrophysics Data System (ADS)
Brewer, Tobias; Clark, Stephen R.; Bradford, Russell; Jack, Robert L.
2018-05-01
We consider population dynamics as implemented by the cloning algorithm for analysis of large deviations of time-averaged quantities. We use the simple symmetric exclusion process with periodic boundary conditions as a prototypical example and investigate the convergence of the results with respect to the algorithmic parameters, focussing on the dynamical phase transition between homogeneous and inhomogeneous states, where convergence is relatively difficult to achieve. We discuss how the performance of the algorithm can be optimised, and how it can be efficiently exploited on parallel computing platforms.
NASA Astrophysics Data System (ADS)
Bouffard, M.
2016-12-01
Convection in the Earth's outer core is driven by the combination of two buoyancy sources: a thermal source directly related to the Earth's secular cooling, the release of latent heat and possibly the heat generated by radioactive decay, and a compositional source due to the crystallization of the growing inner core which releases light elements into the liquid outer core. The dynamics of fusion/crystallization being dependent on the heat flux distribution, the thermochemical boundary conditions are coupled at the inner core boundary which may affect the dynamo in various ways, particularly if heterogeneous conditions are imposed at one boundary. In addition, the thermal and compositional molecular diffusivities differ by three orders of magnitude. This can produce significant differences in the convective dynamics compared to pure thermal or compositional convection due to the potential occurence of double-diffusive phenomena. Traditionally, temperature and composition have been combined into one single variable called codensity under the assumption that turbulence mixes all physical properties at an "eddy-diffusion" rate. This description does not allow for a proper treatment of the thermochemical coupling and is certainly incorrect within stratified layers in which double-diffusive phenomena can be expected. For a more general and rigorous approach, two distinct transport equations should therefore be solved for temperature and composition. However, the weak compositional diffusivity is technically difficult to handle in current geodynamo codes and requires the use of a semi-Lagrangian description to minimize numerical diffusion. We implemented a "particle-in-cell" method into a geodynamo code to properly describe the compositional field. The code is suitable for High Parallel Computing architectures and was successfully tested on two benchmarks. Following the work by Aubert et al. (2008) we use this new tool to perform dynamo simulations including thermochemical coupling at the inner core boundary as well as exploration of the infinite Lewis number limit to study the effect of a heterogeneous core mantle boundary heat flow on the inner core growth.
Initial results from divertor heat-flux instrumentation on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Labombard, B.; Brunner, D.; Payne, J.; Reinke, M.; Terry, J. L.; Hughes, J. W.; Lipschultz, B.; Whyte, D.
2009-11-01
Physics-based plasma transport models that can accurately simulate the heat-flux power widths observed in the tokamak boundary are lacking at the present time. Yet this quantity is of fundamental importance for ITER and most critically important for DEMO, a reactor similar to ITER but with ˜4 times the power exhaust. In order to improve our understanding, C-Mod, DIII-D and NSTX will aim experiments in FY10 towards characterizing the divertor ``footprint'' and its connection to conditions ``upstream'' in the boundary and core plasmas [2]. Standard IR-based heat-flux measurements are particularly difficult in C-Mod, due to its vertical-oriented divertor targets. To overcome this, a suite of embedded heat-flux sensor probes (tile thermocouples, calorimeters, surface thermocouples) combined with IR thermography was installed during the FY09 opening, along with a new divertor bolometer system. This paper will report on initial experiments aimed at unfolding the heat-flux dependencies on plasma operating conditions. [2] a proposed US DoE Joint Facilities Milestone.
Dynamic behaviour of thin composite plates for different boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprintu, Iuliana, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com; Rotaru, Constantin, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com
2014-12-10
In the context of composite materials technology, which is increasingly present in industry, this article covers a topic of great interest and theoretical and practical importance. Given the complex design of fiber-reinforced materials and their heterogeneous nature, mathematical modeling of the mechanical response under different external stresses is very difficult to address in the absence of simplifying assumptions. In most structural applications, composite structures can be idealized as beams, plates, or shells. The analysis is reduced from a three-dimensional elasticity problem to a oneor two-dimensional problem, based on certain simplifying assumptions that can be made because the structure is thin.more » This paper aims to validate a mathematical model illustrating how thin rectangular orthotropic plates respond to the actual load. Thus, from the theory of thin plates, new analytical solutions are proposed corresponding to orthotropic rectangular plates having different boundary conditions. The proposed analytical solutions are considered both for solving equation orthotropic rectangular plates and for modal analysis.« less
A numerical strategy for modelling rotating stall in core compressors
NASA Astrophysics Data System (ADS)
Vahdati, M.
2007-03-01
The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary conditions downstream. Such an approach is representative of modelling an engine.Using a 3D viscous time-accurate flow representation, the front bladerows of a core compressor were modelled in a whole-annulus fashion whereas the rest of bladerows are modelled in a single-passage fashion. The rotating stall behaviour at two different compressor operating points was studied by considering two different variable-vane scheduling conditions for which experimental data were available. Using a model with nine whole-assembly models, the unsteady-flow calculations were conducted on 32-CPUs of a parallel cluster, typical run times being around 3-4 weeks for a grid with about 60 million points. The simulations were conducted over several engine rotations. As observed on the actual development engine, there was no rotating stall for the first scheduling condition while mal-scheduling of the stator vanes created a 12-band rotating stall which excited the 1st flap mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
A program code generator for multiphysics biological simulation using markup languages.
Amano, Akira; Kawabata, Masanari; Yamashita, Yoshiharu; Rusty Punzalan, Florencio; Shimayoshi, Takao; Kuwabara, Hiroaki; Kunieda, Yoshitoshi
2012-01-01
To cope with the complexity of the biological function simulation models, model representation with description language is becoming popular. However, simulation software itself becomes complex in these environment, thus, it is difficult to modify the simulation conditions, target computation resources or calculation methods. In the complex biological function simulation software, there are 1) model equations, 2) boundary conditions and 3) calculation schemes. Use of description model file is useful for first point and partly second point, however, third point is difficult to handle for various calculation schemes which is required for simulation models constructed from two or more elementary models. We introduce a simulation software generation system which use description language based description of coupling calculation scheme together with cell model description file. By using this software, we can easily generate biological simulation code with variety of coupling calculation schemes. To show the efficiency of our system, example of coupling calculation scheme with three elementary models are shown.
NASA Astrophysics Data System (ADS)
Lee, Sungho; Kim, Tae-Hoon; Kang, Jonghyuk; Yang, Cheol-Woong
2016-12-01
As the feature size of devices continues to decrease, transmission electron microscopy (TEM) is becoming indispensable for measuring the critical dimension (CD) of structures. Semiconductors consist primarily of silicon-based materials such as silicon, silicon dioxide, and silicon nitride, and the electrons transmitted through a plan-view TEM sample provide diverse information about various overlapped silicon-based materials. This information is exceedingly complex, which makes it difficult to clarify the boundary to be measured. Therefore, we propose a simple measurement method using energy-filtered TEM (EF-TEM). A precise and effective measurement condition was obtained by determining the maximum value of the integrated area ratio of the electron energy loss spectrum at the boundary to be measured. This method employs an adjustable slit allowing only electrons with a certain energy range to pass. EF-TEM imaging showed a sharp transition at the boundary when the energy-filter’s passband centre was set at 90 eV, with a slit width of 40 eV. This was the optimum condition for the CD measurement of silicon-based materials involving silicon nitride. Electron energy loss spectroscopy (EELS) and EF-TEM images were used to verify this method, which makes it possible to measure the transistor gate length in a dynamic random access memory manufactured using 35 nm process technology. This method can be adapted to measure the CD of other non-silicon-based materials using the EELS area ratio of the boundary materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raskin, Cody; Owen, J. Michael
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less
Raskin, Cody; Owen, J. Michael
2016-03-24
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raskin, Cody; Owen, J. Michael
2016-04-01
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantlemore » boundaries.« less
CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.
2010-04-01
Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.
Influence of Slippery Pacemaker Leads on Lead-Induced Venous Occlusion
NASA Astrophysics Data System (ADS)
Yang, Weiguang; Bhatia, Sagar; Obenauf, Dayna; Resse, Max; Esmaily-Moghadam, Mahdi; Feinstein, Jeffrey; Pak, On Shun
2016-11-01
The use of medical devices such as pacemakers and implantable cardiac defibrillators have become commonplace to treat arrhythmias. Pacing leads with electrodes are used to send electrical pulses to the heart to treat either abnormally slow heart rates, or abnormal rhythms. Lead induced vessel occlusion, which is commonly seen after placement of pacemaker or ICD leads, may result in lead malfunction and/or SVC syndrome, and makes lead extraction difficult. The association between the anatomic locations at risk for thrombosis and regions of venous stasis have been reported previously. The computational studies reveal obvious flow stasis in the proximity of the leads, due to the no-slip boundary condition imposed on the lead surface. With the advent of recent technologies capable of creating slippery surfaces that can repel complex fluids including blood, we explore computationally how local flow structures may be altered in the regions around the leads when the no-slip boundary condition on the lead surface is relaxed using various slip lengths. The findings evaluate the possibility of mitigating risks of lead-induced thrombosis and occlusion by implementing novel surface conditions (i.e. theoretical coatings) on the leads.
The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Tweed, J.; Farassat, F.
1999-01-01
The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.
Estimation of Blood Flow Rates in Large Microvascular Networks
Fry, Brendan C.; Lee, Jack; Smith, Nicolas P.; Secomb, Timothy W.
2012-01-01
Objective Recent methods for imaging microvascular structures provide geometrical data on networks containing thousands of segments. Prediction of functional properties, such as solute transport, requires information on blood flow rates also, but experimental measurement of many individual flows is difficult. Here, a method is presented for estimating flow rates in a microvascular network based on incomplete information on the flows in the boundary segments that feed and drain the network. Methods With incomplete boundary data, the equations governing blood flow form an underdetermined linear system. An algorithm was developed that uses independent information about the distribution of wall shear stresses and pressures in microvessels to resolve this indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target values. Results The algorithm was tested using previously obtained experimental flow data from four microvascular networks in the rat mesentery. With two or three prescribed boundary conditions, predicted flows showed relatively small errors in most segments and fewer than 10% incorrect flow directions on average. Conclusions The proposed method can be used to estimate flow rates in microvascular networks, based on incomplete boundary data and provides a basis for deducing functional properties of microvessel networks. PMID:22506980
Experimental analysis of the boundary layer transition with zero and positive pressure gradient
NASA Technical Reports Server (NTRS)
Arnal, D.; Jullen, J. C.; Michel, R.
1980-01-01
The influence of a positive pressure gradient on the boundary layer transition is studied. The mean velocity and turbulence profiles of four cases are examined. As the intensity of the pressure gradient is increased, the Reynolds number of the transition onset and the length of the transition region are reduced. The Tollmein-Schlichting waves disturb the laminar regime; the amplification of these waves is in good agreement with the stability theory. The three dimensional deformation of the waves leads finally to the appearance of turbulence. In the case of zero pressure gradient, the properties of the turbulent spots are studied by conditional sampling of the hot-wire signal; in the case of positive pressure gradient, the turbulence appears in a progressive manner and the turbulent spots are much more difficult to characterize.
NASA Astrophysics Data System (ADS)
Price, M. G.; Davies, J. H.
2018-02-01
Knowledge of Earth's past mantle structure is inherently unknown. This lack of knowledge presents problems in many areas of Earth science, including in mantle circulation modelling (MCM). As a mathematical model of mantle convection, MCMs require boundary and initial conditions. While boundary conditions are readily available from sources such as plate reconstructions for the upper surface, and as free slip at the core-mantle boundary, the initial condition is not known. MCMs have historically `created' an initial condition using long `spin up' processes using the oldest available plate reconstruction period available. While these do yield good results when models are run to present day, it is difficult to infer with confidence results from early in a model's history. Techniques to overcome this problem are now being studied in geodynamics, such as by assimilating the known internal structure (e.g. from seismic tomography) of Earth at present day backwards in time. One such method is to use an iterative process known as the forward-adjoint method. While this is an efficient means of solving this inverse problem, it still strains all but the most cutting edge computational systems. In this study we endeavour to profile the effectiveness of this method using synthetic test cases as our known data source. We conclude that savings in terms of computational expense for forward-adjoint models can be achieved by streamlining the time-stepping of the calculation, as well as determining the most efficient method of updating initial conditions in the iterative scheme. Furthermore, we observe that in the models presented, there exists an upper limit on the time interval over which solutions will practically converge, although this limit is likely to be linked to Rayleigh number.
NASA Astrophysics Data System (ADS)
Sandvig Mariegaard, Jesper; Huiban, Méven Robin; Tornfeldt Sørensen, Jacob; Andersson, Henrik
2017-04-01
Determining the optimal domain size and associated position of open boundaries in local high-resolution downscaling ocean models is often difficult. As an important input data set for downscaling ocean modelling, the European Copernicus Marine Environment Monitoring Service (CMEMS) provides baroclinic initial and boundary conditions for local ocean models. Tidal dynamics is often neglected in CMEMS services at large scale but tides are generally crucial for coastal ocean dynamics. To address this need, tides can be superposed via Flather (1976) boundary conditions and the combined flow downscaled using unstructured mesh. The surge component is also only partially represented in selected CMEMS products and must be modelled inside the domain and modelled independently and superposed if the domain becomes too small to model the effect in the downscaling model. The tide and surge components can generally be improved by assimilating water level from tide gauge and altimetry data. An intrinsic part of the problem is to find the limitations of local scale data assimilation and the requirement for consistency between the larger scale ocean models and the local scale assimilation methodologies. This contribution investigates the impact of domain size and associated positions of open boundaries with and without data assimilation of water level. We have used the baroclinic ocean model, MIKE 3 FM, and its newly re-factored built-in data assimilation package. We consider boundary conditions of salinity, temperature, water level and depth varying currents from the Global CMEMS 1/4 degree resolution model from 2011, where in situ ADCP velocity data is available for validation. We apply data assimilation of in-situ tide gauge water levels and along track altimetry surface elevation data from selected satellites. The MIKE 3 FM data assimilation model which use the Ensemble Kalman filter have recently been parallelized with MPI allowing for much larger applications running on HPC. The success of the downscaling is to a large degree determined by the ability to realistically describe and dynamically model the errors on the open boundaries. Three different sizes of downscaling model domains in the Northern North Sea have been examined and two different strategies for modelling the uncertainties on the open Flather boundaries are investigated. The combined downscaling and local data assimilation skill is assessed and the impact on recommended domain size is compared to pure downscaling.
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.
2016-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...
2017-01-24
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
Determination Method of Bridge Rotation Angle Response Using MEMS IMU.
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-11-09
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges.
Numerical Simulations of Hypersonic Boundary Layer Transition
NASA Astrophysics Data System (ADS)
Bartkowicz, Matthew David
Numerical schemes for supersonic flows tend to use large amounts of artificial viscosity for stability. This tends to damp out the small scale structures in the flow. Recently some low-dissipation methods have been proposed which selectively eliminate the artificial viscosity in regions which do not require it. This work builds upon the low-dissipation method of Subbareddy and Candler which uses the flux vector splitting method of Steger and Warming but identifies the dissipation portion to eliminate it. Computing accurate fluxes typically relies on large grid stencils or coupled linear systems that become computationally expensive to solve. Unstructured grids allow for CFD solutions to be obtained on complex geometries, unfortunately, it then becomes difficult to create a large stencil or the coupled linear system. Accurate solutions require grids that quickly become too large to be feasible. In this thesis a method is proposed to obtain more accurate solutions using relatively local data, making it suitable for unstructured grids composed of hexahedral elements. Fluxes are reconstructed using local gradients to extend the range of data used. The method is then validated on several test problems. Simulations of boundary layer transition are then performed. An elliptic cone at Mach 8 is simulated based on an experiment at the Princeton Gasdynamics Laboratory. A simulated acoustic noise boundary condition is imposed to model the noisy conditions of the wind tunnel and the transitioning boundary layer observed. A computation of an isolated roughness element is done based on an experiment in Purdue's Mach 6 quiet wind tunnel. The mechanism for transition is identified as an instability in the upstream separation region and a comparison is made to experimental data. In the CFD a fully turbulent boundary layer is observed downstream.
Evaluation of discrete frequency sound in closed-test-section wind tunnels
NASA Technical Reports Server (NTRS)
Mosher, Marianne
1990-01-01
The principal objective of this study is to assess the adequacy of linear acoustic theory with an impedance wall boundary condition for modeling the detailed sound field of an acoustic source in a duct. This study compares measurements and calculations of a simple acoustic source in a rectangular concrete duct lined with foam on the walls and anechoic end terminations. Measuring acoustic pressure for 12 wave numbers provides variation in frequency and absorption characteristics of the duct walls. The cases in this study contain low frequencies and low wall absorptions corresponding to measurements of low-frequency helicopter noise in a lined wind tunnel. This regime is particularly difficult to measure in wind tunnels due to high levels of the reverberant field relatively close to the source. Close to the source, where the interference of wall reflections is minimal, correlation is very good. Away from the source, correlation degrades, especially for the lower frequencies. Sensitivity studies show little effect on the predicted results for changes in impedance boundary condition values, source location, measurement location, temperature, and source model for variations spanning the expected measurement error.
Ion Dynamics Model for Collisionless Radio Frequency Sheaths
NASA Technical Reports Server (NTRS)
Bose, Deepak; Govindan, T.R.; Meyyappan, M.
2000-01-01
Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.
2014-02-15
Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel Continuous Boundary Force (CBF) method is proposed for solving the Navier-Stokes equations subject to Robin boundary condition. In the CBF method, the Robin boundary condition at boundary is replaced by the homogeneous Neumann boundary condition at the boundary and a volumetric force term added to the momentum conservation equation. Smoothed Particle Hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two-dimensional and three-dimensional flows in domains bounded by flat and curved boundaries subject to variousmore » forms of the Robin boundary condition. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite element method. Taken the no-slip boundary condition as a special case of slip boundary condition, we demonstrate that the SPH-CBF method describes accurately both no-slip and slip conditions.« less
Ductile-brittle transition of thoriated chromium.
NASA Technical Reports Server (NTRS)
Wilcox, B. A.; Veigel, N. D.; Clauer, A. H.
1972-01-01
Unalloyed chromium and chromium containing approximately 3 wt % ThO2 were prepared from powder produced by a chemical vapor deposition process. When rolled to sheet and tested in tension, it was found that the thoriated material had a lower ductile-to-brittle transition temperature (DBTT) than unalloyed chromium. This ductilizing was evident both in the as-rolled condition and after the materials had been annealed for 1 hour at 1200 C. The improved ductility in thoriated chromium may be associated with several possible mechanisms: (1) particles may disperse slip, such that critical stress or strain concentrations for crack nucleation are more difficult to achieve; (2) particles may act as dislocation sources, thus providing mobile dislocations in this normally source-poor material, in a manner similar to prestraining; and (3) particles in grain boundaries may help to transmit slip across the boundaries, thus relieving stress concentrations and inhibiting crack nucleation.
Ecological relevance of current water quality assessment unit designations in impaired rivers
Layhee, Megan J.; Sepulveda, Adam; Ray, Andrew; Mladenka, Greg; Van Every, Lynn
2016-01-01
Managers often nest sections of water bodies together into assessment units (AUs) to monitor and assess water quality criteria. Ideally, AUs represent an extent of waters with similar ecological, watershed, habitat and land-use conditions and no overlapping characteristics with other waters. In the United States, AUs are typically based on political or hydrologic boundaries rather than on ecologically relevant features, so it can be difficult to detect changes in impairment status. Our goals were to evaluate if current AU designation criteria of an impaired water body in southeastern Idaho, USA that, like many U.S. waters, has three-quarters of its mainstem length divided into two AUs. We focused our evaluation in southeastern Idaho's Portneuf River, an impaired river and three-quarters of the river is divided into two AUs. We described biological and environmental conditions at multiple reaches within each AU. We used these data to (1) test if variability at the reach-scale is greater within or among AUs and, (2) to evaluate alternate AU boundaries based on multivariate analyses of reach-scale data. We found that some biological conditions had greater variability within an AU than between AUs. Multivariate analyses identified alternative, 2- and 3-group, AUs that reduced this variability. Our results suggest that the current AU designations in the mainstem Portneuf River contain ecologically distinct sections of river and that the existing AU boundaries should be reconsidered in light of the ecological conditions measured at the reach scale. Variation in biological integrity within designated AUs may complicate water quality and biological assessments, influence management decisions or affect where monitoring or mitigation resources are directed.
Inflow/Outflow Boundary Conditions with Application to FUN3D
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2011-01-01
Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.
Advances in Numerical Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.
1997-01-01
Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.
Phase separation in the six-vertex model with a variety of boundary conditions
NASA Astrophysics Data System (ADS)
Lyberg, I.; Korepin, V.; Ribeiro, G. A. P.; Viti, J.
2018-05-01
We present numerical results for the six-vertex model with a variety of boundary conditions. Adapting an algorithm for domain wall boundary conditions, proposed in the work of Allison and Reshetikhin [Ann. Inst. Fourier 55(6), 1847-1869 (2005)], we examine some modifications of these boundary conditions. To be precise, we discuss partial domain wall boundary conditions, reflecting ends, and half turn boundary conditions (domain wall boundary conditions with half turn symmetry). Dedicated to the memory of Ludwig Faddeev
Linear and nonlinear acoustic wave propagation in the atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Yu, Ping
1988-01-01
The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.
Modelling Near-Surface Metallic Clutter Without the Excruciating Pain
NASA Astrophysics Data System (ADS)
Downs, C. M.; Weiss, C. J.; Bach, J.; Williams, J. T.
2016-12-01
An ongoing problem in modeling electromagnetic (EM) interactions with the near-surface and related anthropogenic metal clutter is the large difference in length scale between the clutter dimensions and their resulting EM response. For example, observational evidence shows that cables, pipes and rail lines can have a strong influence far from where they are located, even in situations where these artefacts are volumetrically insignificant over the scale of the model. This poses a significant modeling problem for understanding geohazards in urban environments, for example, because of the very fine numerical discretization required for accurate representation of an artefact embedded in a larger computational domain. We adopt a sub-grid approximation and impose a boundary condition along grid edges to capture the vanishing fields of a perfect conductor. We work in a Cartesian system where the EM fields are solved via finite volumes in the frequency domain in terms of the Lorenz gauged magnetic vector (A) and electric scalar (Phi) potentials. The electric fied is given simply by A-grad(Phi), and set identically to zero along edges of the mesh that coincide with the center of long, slender metallic conductors. A simple extension to bulky artefacts like blocks or slabs involves endowing all such edges in their interior with the same "internal" boundary condition. In essence, we apply the "perfect electric conductor" boundary condition to select edges interior to the modeling domain. We note a few minor numerical consequences of this approach, namely: the zero-E field internal boundary condition destroys the symmetry of the finite volume coefficient matrix; and, the accuracy of the representation of the conducting artefact is restricted by the relatively coarse discretization mesh. The former is overcome with the use of preconditioned bi-conjugate gradient methods instead of the quasi-minimal-residual method. Both are matrix-free iterative solvers - thus avoiding unnecessary storage- and both exhibit generally good convergence for well-posed problems. The latter is more difficult to overcome without either modifying the mesh (potentially degrading the condition number of the coefficient matrix) or with novel mesh sub-gridding. Initial results show qualitative agreement with the expected physics.
Time-dependent boundary conditions for hyperbolic systems. II
NASA Technical Reports Server (NTRS)
Thompson, Kevin W.
1990-01-01
A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.
Time-dependent boundary conditions for hyperbolic systems. II
NASA Astrophysics Data System (ADS)
Thompson, Kevin W.
1990-08-01
A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.
General Boundary Conditions for a Majorana Single-Particle in a Box in (1 + 1) Dimensions
NASA Astrophysics Data System (ADS)
De Vincenzo, Salvatore; Sánchez, Carlet
2018-05-01
We consider the problem of a Majorana single-particle in a box in (1 + 1) dimensions. We show that the most general set of boundary conditions for the equation that models this particle is composed of two families of boundary conditions, each one with a real parameter. Within this set, we only have four confining boundary conditions—but infinite not confining boundary conditions. Our results are also valid when we include a Lorentz scalar potential in this equation. No other Lorentz potential can be added. We also show that the four confining boundary conditions for the Majorana particle are precisely the four boundary conditions that mathematically can arise from the general linear boundary condition used in the MIT bag model. Certainly, the four boundary conditions for the Majorana particle are also subject to the Majorana condition.
A theoretical analysis of steady-state photocurrents in simple silicon diodes
NASA Technical Reports Server (NTRS)
Edmonds, L.
1995-01-01
A theoretical analysis solves for the steady-state photocurrents produced by a given photo-generation rate function with negligible recombination in simple silicon diodes, consisting of a uniformly doped quasi-neutral region (called 'substrate' below) adjacent to a p-n junction depletion region (DR). Special attention is given to conditions that produce 'funneling' (a term used by the single-eventeffects community) under steady-state conditions. Funneling occurs when carriers are generated so fast that the DR becomes flooded and partially or completely collapses. Some or nearly all of the applied voltage, plus built-in potential normally across the DR, is now across the substrate. This substrate voltage drop affects substrate currents. The steady-state problem can provide some qualitative insights into the more difficult transient problem. First, it was found that funneling can be induced from a distance, i.e., from carriers generated at locations outside of the DR. Secondly, it was found that the substrate can divide into two subregions, with one controlling substrate resistance and the other characterized by ambipolar diffusion. Finally, funneling was found to be more difficult to induce in the p(sup +)/n diode than in the n(sup +)/p diode. The carrier density exceeding the doping density in the substrate and at the DR boundary is not a sufficient condition to collapse a DR.
Determination Method of Bridge Rotation Angle Response Using MEMS IMU
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-01-01
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges. PMID:27834871
A Boundary Scan Test Vehicle for Direct Chip Attach Testing
NASA Technical Reports Server (NTRS)
Parsons, Heather A.; DAgostino, Saverio; Arakaki, Genji
2000-01-01
To facilitate the new faster, better and cheaper spacecraft designs, smaller more mass efficient avionics and instruments are using higher density electronic packaging technologies such as direct chip attach (DCA). For space flight applications, these technologies need to have demonstrated reliability and reasonably well defined fabrication and assembly processes before they will be accepted as baseline designs in new missions. As electronics shrink in size, not only can repair be more difficult, but 49 probing" circuitry can be very risky and it becomes increasingly more difficult to identify the specific source of a problem. To test and monitor these new technologies, the Direct Chip Attach Task, under NASA's Electronic Parts and Packaging Program (NEPP), chose the test methodology of boundary scan testing. The boundary scan methodology was developed for interconnect integrity and functional testing at hard to access electrical nodes. With boundary scan testing, active devices are used and failures can be identified to the specific device and lead. This technology permits the incorporation of "built in test" into almost any circuit and thus gives detailed test access to the highly integrated electronic assemblies. This presentation will describe boundary scan, discuss the development of the boundary scan test vehicle for DCA and current plans for testing of direct chip attach configurations.
Searching for Hysteresis in Models of Mantle Convection with Grain-Damage
NASA Astrophysics Data System (ADS)
Lamichhane, R.; Foley, B. J.
2017-12-01
The mode of surface tectonics on terrestrial planets is determined by whether mantle convective forces are capable of forming weak zones of localized deformation in the lithosphere, which act as plate boundaries. If plate boundaries can form then a plate tectonic mode develops, and if not convection will be in the stagnant lid regime. Episodic subduction or sluggish lid convection are also possible in between the nominal plate tectonic and stagnant lid regimes. Plate boundary formation is largely a function of the state of the mantle, e.g. mantle temperature or surface temperature, and how these conditions influence both mantle convection and the mantle rheology's propensity for forming weak, localized plate boundaries. However, a planet's tectonic mode also influences whether plate boundaries can form, as the driving forces for plate boundary formation (e.g. stress and viscous dissipation) are different in a plate tectonic versus stagnant lid regime. As a result, tectonic mode can display hysteresis, where convection under otherwise identical conditions can reach different final states as a result of the initial regime of convection. Previous work has explored this effect in pseudoplastic models, finding that it is more difficult to initiate plate tectonics starting from a stagnant lid state than it is to sustain plate tectonics when already in a mobile lid regime, because convective stresses in the lithosphere are lower in a stagnant lid regime than in a plate tectonic regime. However, whether and to what extent such hysteresis is displayed when alternative rheological models for lithospheric shear localization are used is unknown. In particular, grainsize reduction is commonly hypothesized to be a primary cause of shear localization and plate boundary formation. We use new models of mantle convection with grain-size evolution to determine how the initial mode of surface tectonics influences the final convective regime reached when convection reaches statistical steady-state. Scaling analysis is performed to quantify how subduction initiation from a stagnant lid differs from sustaining subduction in a mobile lid. The implications of our results for the evolution of the mode of surface tectonics on terrestrial planets will also be discussed.
Interaction of Strong Turbulence With Free Surfaces
NASA Astrophysics Data System (ADS)
Dalrymple, Robert A.
Spray from a nozzle, spilling breakers, and “rooster tails” from speeding boats are all examples of a turbulent flow with a free surface. In many cases like these, the free surface is difficult to discern as the volume of air in the fluid can exceed that of the water.In traditional studies, the free surface is simply defined as a continuous surface separating the fluid from air. The pressure at the surface is assumed to be atmospheric pressure and the fluid comprising the surface moves with the surface. While these conditions are sufficient for non-turbulent flows, such as nonbreaking water waves, and lead to the (albeit non-linear) dynamic and kinematic free surface boundary conditions that serve to provide sufficient conditions to determine the surface, they are not valid descriptions for a bubbly free surface in a highly turbulent regime, such as the roller in front of a spilling breaker or the propeller wash behind a ship.
Estimating Soil Hydraulic Parameters using Gradient Based Approach
NASA Astrophysics Data System (ADS)
Rai, P. K.; Tripathi, S.
2017-12-01
The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.
Variational Principles for Buckling of Microtubules Modeled as Nonlocal Orthotropic Shells
2014-01-01
A variational principle for microtubules subject to a buckling load is derived by semi-inverse method. The microtubule is modeled as an orthotropic shell with the constitutive equations based on nonlocal elastic theory and the effect of filament network taken into account as an elastic surrounding. Microtubules can carry large compressive forces by virtue of the mechanical coupling between the microtubules and the surrounding elastic filament network. The equations governing the buckling of the microtubule are given by a system of three partial differential equations. The problem studied in the present work involves the derivation of the variational formulation for microtubule buckling. The Rayleigh quotient for the buckling load as well as the natural and geometric boundary conditions of the problem is obtained from this variational formulation. It is observed that the boundary conditions are coupled as a result of nonlocal formulation. It is noted that the analytic solution of the buckling problem for microtubules is usually a difficult task. The variational formulation of the problem provides the basis for a number of approximate and numerical methods of solutions and furthermore variational principles can provide physical insight into the problem. PMID:25214886
NASA Astrophysics Data System (ADS)
Sarna, Neeraj; Torrilhon, Manuel
2018-01-01
We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.
Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection
NASA Technical Reports Server (NTRS)
Karma, Alain; Trivedi, Rohit
1999-01-01
Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.
NASA Astrophysics Data System (ADS)
Francisco, R. V.; Argete, J.; Giorgi, F.; Pal, J.; Bi, X.; Gutowski, W. J.
2006-09-01
The latest version of the Abdus Salam International Centre for Theoretical Physics (ICTP) regional model RegCM is used to investigate summer monsoon precipitation over the Philippine archipelago and surrounding ocean waters, a region where regional climate models have not been applied before. The sensitivity of simulated precipitation to driving lateral boundary conditions (NCEP and ERA40 reanalyses) and ocean surface flux scheme (BATS and Zeng) is assessed for 5 monsoon seasons. The ability of the RegCM to simulate the spatial patterns and magnitude of monsoon precipitation is demonstrated, both in response to the prominent large scale circulations over the region and to the local forcing by the physiographical features of the Philippine islands. This provides encouraging indications concerning the development of a regional climate modeling system for the Philippine region. On the other hand, the model shows a substantial sensitivity to the analysis fields used for lateral boundary conditions as well as the ocean surface flux schemes. The use of ERA40 lateral boundary fields consistently yields greater precipitation amounts compared to the use of NCEP fields. Similarly, the BATS scheme consistently produces more precipitation compared to the Zeng scheme. As a result, different combinations of lateral boundary fields and surface ocean flux schemes provide a good simulation of precipitation amounts and spatial structure over the region. The response of simulated precipitation to using different forcing analysis fields is of the same order of magnitude as the response to using different surface flux parameterizations in the model. As a result it is difficult to unambiguously establish which of the model configurations is best performing.
NASA Astrophysics Data System (ADS)
Morgan, J. K.; Marone, C. J.; Guo, Y.; Anthony, J. L.; Knuth, M. W.
2004-12-01
Laboratory studies of granular shear zones have provided significant insight into fault zone processes and the mechanics of earthquakes. The micromechanisms of granular deformation are more difficult to ascertain, but have been hypothesized based on known variations in boundary conditions, particle properties and geometries, and mechanical behavior. Numerical simulations using particle dynamics methods (PDM) can offer unique views into deforming granular shear zones, revealing the precise details of granular microstructures, particle interactions, and packings, which can be correlated with macroscopic mechanical behavior. Here, we describe a collaborative program of comparative laboratory and numerical experiments of granular shear using idealized materials, i.e., glass beads, glass rods or pasta, and angular sand. Both sets of experiments are carried out under similar initial and boundary conditions in a non-fracturing stress regime. Phenomenologically, the results of the two sets of experiments are very similar. Peak friction values vary as a function of particle dimensionality (1-D vs. 2-D vs. 3-D), particle angularity, particle size and size distributions, boundary roughness, and shear zone thickness. Fluctuations in shear strength during an experiment, i.e., stick-slip events, can be correlated with distinct changes in the nature, geometries, and durability of grain bridges that support the shear zone walls. Inclined grain bridges are observed to form, and to support increasing loads, during gradual increases in assemblage strength. Collapse of an individual grain bridge leads to distinct localization of strain, generating a rapidly propagating shear surface that cuts across multiple grain bridges, accounting for the sudden drop in strength. The distribution of particle sizes within an assemblage, along with boundary roughness and its periodicity, influence the rate of formation and dissipation of grain bridges, thereby controlling friction variations during shear.
Straight velocity boundaries in the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Latt, Jonas; Chopard, Bastien; Malaspinas, Orestis; Deville, Michel; Michler, Andreas
2008-05-01
Various ways of implementing boundary conditions for the numerical solution of the Navier-Stokes equations by a lattice Boltzmann method are discussed. Five commonly adopted approaches are reviewed, analyzed, and compared, including local and nonlocal methods. The discussion is restricted to velocity Dirichlet boundary conditions, and to straight on-lattice boundaries which are aligned with the horizontal and vertical lattice directions. The boundary conditions are first inspected analytically by applying systematically the results of a multiscale analysis to boundary nodes. This procedure makes it possible to compare boundary conditions on an equal footing, although they were originally derived from very different principles. It is concluded that all five boundary conditions exhibit second-order accuracy, consistent with the accuracy of the lattice Boltzmann method. The five methods are then compared numerically for accuracy and stability through benchmarks of two-dimensional and three-dimensional flows. None of the methods is found to be throughout superior to the others. Instead, the choice of a best boundary condition depends on the flow geometry, and on the desired trade-off between accuracy and stability. From the findings of the benchmarks, the boundary conditions can be classified into two major groups. The first group comprehends boundary conditions that preserve the information streaming from the bulk into boundary nodes and complete the missing information through closure relations. Boundary conditions in this group are found to be exceptionally accurate at low Reynolds number. Boundary conditions of the second group replace all variables on boundary nodes by new values. They exhibit generally much better numerical stability and are therefore dedicated for use in high Reynolds number flows.
NASA Astrophysics Data System (ADS)
Zhi-Zhong, Tan
2016-05-01
A rectangular m × n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform (RT) method, a problem that has never been resolved before, for the Green’s function technique and the Laplacian matrix approach are inapplicable to it. To have the exact solution of resistance is important but it is difficult to obtain under the condition of arbitrary boundary. Our result is directly expressed in a single summation and mainly composed of characteristic roots, which contain both finite and infinite cases. Further, the current distribution is given explicitly as a byproduct of the method. Our framework can be effectively applied to RLC networks. As an application to the LC network, we find that our formulation leads to the occurrence of resonances at h 1 = 1 - cos ϕ i - sin ϕ i cot n ϕ i . This somewhat curious result suggests the possibility of practical applications of our formulae to resonant circuits. Project supported by the Prophase Preparatory Project of Natural Science Foundation of Nantong University, China (Grant No. 15ZY16).
Virtual boundaries: ethical considerations for use of social media in social work.
Kimball, Ericka; Kim, JaeRan
2013-04-01
In real life, we often use physical cues to help us identify our role and put the appropriate boundaries in place, but online it is more difficult to determine where our boundaries lie. This article provides and overview of various social media tools and uses along with personal and professional considerations to help in guiding the ethical use of social media tools. As the use of social media continues to grow, the importance of virtual boundaries will also rise. Therefore, proactive considerations that include policies and guidelines that encourage responsible and ethical use of social media are needed to help social workers mediate personal and professional boundaries.
Introducing the Boundary Element Method with MATLAB
ERIC Educational Resources Information Center
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
NASA Astrophysics Data System (ADS)
Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.; Gonzalez, J.
2015-12-01
The atmospheric boundary remains one of the more difficult components of the climate system to classify. One of the most important characteristics is the boundary layer height, especially in urban settings. The current study examines the boundary layer height using the the New York City Meteorological Network or NYCMetNet. NYCMetNet is a network of weather stations, which report meteorological conditions in and around New York City, as part of the Optical Remote Sensing Laboratory of The City College of New York (ORSL). Of interest to this study is the data obtained from wind profiler station LSC01. The 915 MHz wind profiler is located 30m above the ground on the roof of the Liberty Science Center in Jersey City, NJ. It is a Vaisala Wind Profiler LAP 3000 with a wavelength of ~34cm, which means that the instrument responds primarily to Bragg backscattering. Can a seasonal urban boundary layer climatology be extrapolated from the data obtained from the wind profiler? What is the timing of boundary layer evolution and collapse over Jersey City? How effective is the profiler under cloudy skies and even in light rain or snow? This study examines the entire time period covered by the wind profile (2007 to present) and selects a series of clear days and a series of cloudy days. The top of the urban boundary layer is subjectively located from each half hour time stamp of signal to noise values. The urban boundary layer heights are recorded for clear and then cloudy days. Then the days are sorted seasonally (DJF, MAM, JJA, SON). A seasonal mean is calculated for every half hour time step. Finally a time series of seasonal urban boundary layer heights is constructed, and the timing of the urban boundary layer height maximum and time evolution and collapse of the boundary layer are generalized. A comparison is made against urban boundary layer heights obtained from Modern-Era Retrospective Analysis For Research And Applications (MERRA).
Quantum "violation" of Dirichlet boundary condition
NASA Astrophysics Data System (ADS)
Park, I. Y.
2017-02-01
Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a tension between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum-corrected black hole solution of the 1PI action no longer obeys, in the naive manner one may expect, the Dirichlet boundary conditions imposed at the classical level. We attribute the 'violation' of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.
Scaling between Wind Tunnels-Results Accuracy in Two-Dimensional Testing
NASA Astrophysics Data System (ADS)
Rasuo, Bosko
The establishment of exact two-dimensional flow conditions in wind tunnels is a very difficult problem. This has been evident for wind tunnels of all types and scales. In this paper, the principal factors that influence the accuracy of two-dimensional wind tunnel test results are analyzed. The influences of the Reynolds number, Mach number and wall interference with reference to solid and flow blockage (blockage of wake) as well as the influence of side-wall boundary layer control are analyzed. Interesting results are brought to light regarding the Reynolds number effects of the test model versus the Reynolds number effects of the facility in subsonic and transonic flow.
Relative Displacement Method for Track-Structure Interaction
Ramos, Óscar Ramón; Pantaleón, Marcos J.
2014-01-01
The track-structure interaction effects are usually analysed with conventional FEM programs, where it is difficult to implement the complex track-structure connection behaviour, which is nonlinear, elastic-plastic and depends on the vertical load. The authors developed an alternative analysis method, which they call the relative displacement method. It is based on the calculation of deformation states in single DOF element models that satisfy the boundary conditions. For its solution, an iterative optimisation algorithm is used. This method can be implemented in any programming language or analysis software. A comparison with ABAQUS calculations shows a very good result correlation and compliance with the standard's specifications. PMID:24634610
A non-local computational boundary condition for duct acoustics
NASA Technical Reports Server (NTRS)
Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.
1994-01-01
A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.
Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations
NASA Technical Reports Server (NTRS)
Darmofal, David L.
1998-01-01
An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.
Stability of hyperbolic-parabolic mixed type equations with partial boundary condition
NASA Astrophysics Data System (ADS)
Zhan, Huashui; Feng, Zhaosheng
2018-06-01
In this paper, we are concerned with the hyperbolic-parabolic mixed type equations with the non-homogeneous boundary condition. If it is degenerate on the boundary, the part of the boundary whose boundary value should be imposed, is determined by the entropy condition from the convection term. If there is no convection term in the equation, we show that the stability of solutions can be proved without any boundary condition. If the equation is completely degenerate, we show that the stability of solutions can be established just based on the partial boundary condition.
Boundary Condition for Modeling Semiconductor Nanostructures
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard
2006-01-01
A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.
NASA Astrophysics Data System (ADS)
Strack, O. D. L.
2018-02-01
We present equations for new limitless analytic line elements. These elements possess a virtually unlimited number of degrees of freedom. We apply these new limitless analytic elements to head-specified boundaries and to problems with inhomogeneities in hydraulic conductivity. Applications of these new analytic elements to practical problems involving head-specified boundaries require the solution of a very large number of equations. To make the new elements useful in practice, an efficient iterative scheme is required. We present an improved version of the scheme presented by Bandilla et al. (2007), based on the application of Cauchy integrals. The limitless analytic elements are useful when modeling strings of elements, rivers for example, where local conditions are difficult to model, e.g., when a well is close to a river. The solution of such problems is facilitated by increasing the order of the elements to obtain a good solution. This makes it unnecessary to resort to dividing the element in question into many smaller elements to obtain a satisfactory solution.
NASA Astrophysics Data System (ADS)
Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.
2015-06-01
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.
A Discrete Analysis of Non-reflecting Boundary Conditions for Discontinuous Galerkin Method
NASA Technical Reports Server (NTRS)
Hu, Fang Q.; Atkins, Harold L.
2003-01-01
We present a discrete analysis of non-reflecting boundary conditions for the discontinuous Galerkin method. The boundary conditions considered in this paper include the recently proposed Perfectly Matched Layer absorbing boundary condition for the linearized Euler equation and two non-reflecting boundary conditions based on the characteristic decomposition of the flux on the boundary. The analyses for the three boundary conditions are carried out in a unifled way. In each case, eigensolutions of the discrete system are obtained and applied to compute the numerical reflection coefficients of a specified out-going wave. The dependencies of the reflections at the boundary on the out-going wave angle and frequency as well as the mesh sizes arc? studied. Comparisons with direct numerical simulation results are also presented.
Effect of Boundary Conditions on Numerically Simulated Tornado-like Vortices.
NASA Astrophysics Data System (ADS)
Smith, David R.
1987-02-01
The boundary conditions for Rotunno's numerical model which simulates tornado-like vortices are examined. In particular, the lateral boundary condition for tangential velocity and the upper boundary condition for radial and tangential velocities are considered to determine if they have any significant impact on vortex development.The choice of the lateral boundary condition did not appear to have any real effect on the development of the vortex over the range of swirl ratios studied (0.87-2.61).The upper boundary conditions attempt to simulate both the presence and absence of the flow-straightening baffle. The boundary condition corresponding to the baffle in place produced a distinct boundary layer in the u and v field and very strong upflow and downflow within the vortex core. When this condition is removed, there is both radial and tangential motion throughout the domain and a reduction of the vertical velocity. At small swirl ratio (S = 0.87) this boundary condition has a profound impact on the narrow vortex, producing changes in the pressure field that intensifies the vortex. At higher swirl ratio the vortex is apparently broad enough to better adjust to the changes of the upper boundary condition and, thus, experiences little change in the development of the vortex.
Absorbing boundary conditions for second-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Jiang, Hong; Wong, Yau Shu
1989-01-01
A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.
New Boundary Layer Facility at Andøya, 69N 16E
NASA Astrophysics Data System (ADS)
Gausa, M. A.; Reuder, J.; Blindheim, S.
2016-12-01
The present presentation introduces an inative for a new boundary layer research facility on the island of Andøya (69N,16E) in Norway. The facility will appreciate international cooperation and contributions.Most boundary layer observatories (as e.g. the Lindenberg Observatory in Germany, the Cabauw facility in the Netherlands, or the Boulder Atmospheric Observatory in the US) are located in mid latitudes. Arctic or sub-arctic stations are rare or not representative due to their location in valleys (e.g. Ny Ålesund). In addition, most of the existing sites are representative for a continental boundary layer and do not allow to observe coupling processes to the free troposphere and the upper atmosphere. The island of Andøya has a unique location at 69N. To the West, Andøya is open to the Norwegian Sea. Its orology maintains an almost undisturbed marine boundary on the foreseen location under SW and W wind weather conditions. Due to rugged mountains, other wind directions provide a more transformed PBL. The understanding of the Planetary Boundary Layer (PBL), in particular with respect to turbulence and turbulent exchange processes, is crucial for a wide range of science fields and environmental monitoring tasks: To name a few: basic atmospheric science, monitoring of pollutants, weather forecast, and climate projection. The PBL is consequently research focus for several research groups, which investigate the empirical and theoretical description of this complex height region. In particular, in high latitudes this lowermost layer of the atmosphere the understanding is poor. The following research topics of the new facility are foreseen: present climate projections show their largest bias in polar regions; this is mostly attributed to inappropriate parameterization of PBL processes in the numerical models forecasts of extreme weather events at high latitudes, e.g. of Polar lows with their potential of hazards for infrastructure and traffic, are still poor for the same reason natural aerosols and anthropogenic pollutants form and change in the PBL due to chemical and coagulation processes upward transport of energy are gravity (buoyancy) waves, which in many cases originate from the PBL precise measurements of precipitation under difficult meteorological conditions
Standing Firm on Slippery Slopes: Understanding Ethical Boundaries in Student Affairs Work
ERIC Educational Resources Information Center
Liddell, Debora; Hornak, Anne M.; Ignelzi, Michael G.
2016-01-01
Understanding ethical boundaries in student affairs work can be challenging and difficult to navigate for student affairs professionals. The purpose of this article is to examine the complexities of dual relationships and the ethical issues that may arise. As a result, the authors offer tools to (a) identify various perspectives in resolving…
ERIC Educational Resources Information Center
Smith Risser, H.; Bottoms, SueAnn
2014-01-01
The advent of social networking tools allows teachers to create online networks and share information. While some virtual networks have a formal structure and defined boundaries, many do not. These unstructured virtual networks are difficult to study because they lack defined boundaries and a formal structure governing leadership roles and the…
Sul, Bora; Oppito, Zachary; Jayasekera, Shehan; Vanger, Brian; Zeller, Amy; Morris, Michael; Ruppert, Kai; Altes, Talissa; Rakesh, Vineet; Day, Steven; Robinson, Risa; Reifman, Jaques; Wallqvist, Anders
2018-05-01
Computational models are useful for understanding respiratory physiology. Crucial to such models are the boundary conditions specifying the flow conditions at truncated airway branches (terminal flow rates). However, most studies make assumptions about these values, which are difficult to obtain in vivo. We developed a computational fluid dynamics (CFD) model of airflows for steady expiration to investigate how terminal flows affect airflow patterns in respiratory airways. First, we measured in vitro airflow patterns in a physical airway model, using particle image velocimetry (PIV). The measured and computed airflow patterns agreed well, validating our CFD model. Next, we used the lobar flow fractions from a healthy or chronic obstructive pulmonary disease (COPD) subject as constraints to derive different terminal flow rates (i.e., three healthy and one COPD) and computed the corresponding airflow patterns in the same geometry. To assess airflow sensitivity to the boundary conditions, we used the correlation coefficient of the shape similarity (R) and the root-mean-square of the velocity magnitude difference (Drms) between two velocity contours. Airflow patterns in the central airways were similar across healthy conditions (minimum R, 0.80) despite variations in terminal flow rates but markedly different for COPD (minimum R, 0.26; maximum Drms, ten times that of healthy cases). In contrast, those in the upper airway were similar for all cases. Our findings quantify how variability in terminal and lobar flows contributes to airflow patterns in respiratory airways. They highlight the importance of using lobar flow fractions to examine physiologically relevant airflow characteristics.
Fermionic edge states and new physics
NASA Astrophysics Data System (ADS)
Govindarajan, T. R.; Tibrewala, Rakesh
2015-08-01
We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.
NASA Astrophysics Data System (ADS)
Wang, Yuan; Wu, Rongsheng
2001-12-01
Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers.
NASA Astrophysics Data System (ADS)
Gry, Cecile
2017-08-01
Two phases of the interstellar medium, the Warm Neutral Medium (WNM) and the Hot Ionized Medium (HIM) occupy most the volume of space in the plane of our Galaxy. Because the boundaries between these phases are important sources of energy loss for the hot gas, they are supposed to play an important role in the thermal structure and evolution of the ISM and of galaxies.Many theorists have created descriptions of the nature of such boundaries and have derived two fundamental concepts: (1) a conductive interface and (2) a turbulent mixing layer.We have yet to observe in detail either kind of boundary. This is achieved by using UV absorption lines of moderately high ionization stages of heavy elements. Yet, over most lines of sight the diagnostics are blurred out by the superposition of different regions with vastly different physical conditions, making them difficult to interpret. To characterize the nature of the physical processes at a boundary one must observe along a sight line that penetrates just one such region. The simplest configuration is the outer boundary of the Local Cloud, the WNM ((T 7000 K) that surrounds the Sun and which is embedded in a very low density, soft X-ray emitting hot medium ( 10^6 K) that fills a cavity ( 200 pc in diameter) called the Local Bubble.We propose to observe an ideal target: a nearby, bright B9V star (i.e. hot enough to provide a high-SNR continuum, but not enough to contaminate it with absorptions from circumstellar high-ionization species), located in a direction where the relative orientation of the magnetic field and the cloud boundary does not quench thermal conduction and thus favors a full extent of the interface.
Some observations on boundary conditions for numerical conservation laws
NASA Technical Reports Server (NTRS)
Kamowitz, David
1988-01-01
Four choices of outflow boundary conditions are considered for numerical conservation laws. All four methods are stable for linear problems, for which examples are presented where either a boundary layer forms or the numerical scheme, together with the boundary condition, is unstable due to the formation of a reflected shock. A simple heuristic argument is presented for determining the suitability of the boundary condition.
NASA Astrophysics Data System (ADS)
Brown-Dymkoski, Eric; Kasimov, Nurlybek; Vasilyev, Oleg V.
2014-04-01
In order to introduce solid obstacles into flows, several different methods are used, including volume penalization methods which prescribe appropriate boundary conditions by applying local forcing to the constitutive equations. One well known method is Brinkman penalization, which models solid obstacles as porous media. While it has been adapted for compressible, incompressible, viscous and inviscid flows, it is limited in the types of boundary conditions that it imposes, as are most volume penalization methods. Typically, approaches are limited to Dirichlet boundary conditions. In this paper, Brinkman penalization is extended for generalized Neumann and Robin boundary conditions by introducing hyperbolic penalization terms with characteristics pointing inward on solid obstacles. This Characteristic-Based Volume Penalization (CBVP) method is a comprehensive approach to conditions on immersed boundaries, providing for homogeneous and inhomogeneous Dirichlet, Neumann, and Robin boundary conditions on hyperbolic and parabolic equations. This CBVP method can be used to impose boundary conditions for both integrated and non-integrated variables in a systematic manner that parallels the prescription of exact boundary conditions. Furthermore, the method does not depend upon a physical model, as with porous media approach for Brinkman penalization, and is therefore flexible for various physical regimes and general evolutionary equations. Here, the method is applied to scalar diffusion and to direct numerical simulation of compressible, viscous flows. With the Navier-Stokes equations, both homogeneous and inhomogeneous Neumann boundary conditions are demonstrated through external flow around an adiabatic and heated cylinder. Theoretical and numerical examination shows that the error from penalized Neumann and Robin boundary conditions can be rigorously controlled through an a priori penalization parameter η. The error on a transient boundary is found to converge as O(η), which is more favorable than the error convergence of the already established Dirichlet boundary condition.
Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Zorumski, William E.
1996-01-01
Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.
A physical approach to the numerical treatment of boundaries in gas dynamics
NASA Technical Reports Server (NTRS)
Moretti, G.
1981-01-01
Two types of boundaries are considered: rigid walls, and artificial (open) boundaries which were arbitrarily drawn somewhere across a wider flow field. A set of partial differential equations (typically, the Euler equations) has an infinite number of solutions, each one defined by a set of initial and boundary conditions. The initial conditions remaining the same, any change in the boundary conditions will produce a new solution. To pose the problem well, a necessary and sufficient number of boundary conditions are prescribed.
On the Boussinesq-Burgers equations driven by dynamic boundary conditions
NASA Astrophysics Data System (ADS)
Zhu, Neng; Liu, Zhengrong; Zhao, Kun
2018-02-01
We study the qualitative behavior of the Boussinesq-Burgers equations on a finite interval subject to the Dirichlet type dynamic boundary conditions. Assuming H1 ×H2 initial data which are compatible with boundary conditions and utilizing energy methods, we show that under appropriate conditions on the dynamic boundary data, there exist unique global-in-time solutions to the initial-boundary value problem, and the solutions converge to the boundary data as time goes to infinity, regardless of the magnitude of the initial data.
(2,2) and (0,4) supersymmetric boundary conditions in 3d N =4 theories and type IIB branes
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Okazaki, Tadashi
2017-10-01
The half-BPS boundary conditions preserving N =(2 ,2 ) and N =(0 ,4 ) supersymmetry in 3d N =4 supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Nahm-like equations arise in the vector multiplet BPS boundary condition preserving N =(0 ,4 ) supersymmetry, and Robin-type boundary conditions appear for the hypermultiplet coupled to the vector multiplet when N =(2 ,2 ) supersymmetry is preserved. The half-BPS boundary conditions are realized in the brane configurations of type IIB string theory.
NASA Technical Reports Server (NTRS)
1982-01-01
Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.
Robust boundary treatment for open-channel flows in divergence-free incompressible SPH
NASA Astrophysics Data System (ADS)
Pahar, Gourabananda; Dhar, Anirban
2017-03-01
A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.
Time dependent inflow-outflow boundary conditions for 2D acoustic systems
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Myers, Michael K.
1989-01-01
An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.
The influence of initial conditions on dispersion and reactions
NASA Astrophysics Data System (ADS)
Wood, B. D.
2016-12-01
In various generalizations of the reaction-dispersion problem, researchers have developed frameworks in which the apparent dispersion coefficient can be negative. Such dispersion coefficients raise several difficult questions. Most importantly, the presence of a negative dispersion coefficient at the macroscale leads to a macroscale representation that illustrates an apparent decrease in entropy with increasing time; this, then, appears to be in violation of basic thermodynamic principles. In addition, the proposition of a negative dispersion coefficient leads to an inherently ill-posed mathematical transport equation. The ill-posedness of the problem arises because there is no unique initial condition that corresponds to a later-time concentration distribution (assuming that if discontinuous initial conditions are allowed). In this presentation, we explain how the phenomena of negative dispersion coefficients actually arise because the governing differential equation for early times should, when derived correctly, incorporate a term that depends upon the initial and boundary conditions. The process of reactions introduces a similar phenomena, where the structure of the initial and boundary condition influences the form of the macroscopic balance equations. When upscaling is done properly, new equations are developed that include source terms that are not present in the classical (late-time) reaction-dispersion equation. These source terms depend upon the structure of the initial condition of the reacting species, and they decrease exponentially in time (thus, they converge to the conventional equations at asymptotic times). With this formulation, the resulting dispersion tensor is always positive-semi-definite, and the reaction terms directly incorporate information about the state of mixedness of the system. This formulation avoids many of the problems that would be engendered by defining negative-definite dispersion tensors, and properly represents the effective rate of reaction at early times.
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo
2017-12-01
Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.
NASA Astrophysics Data System (ADS)
Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas
2018-05-01
In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.
Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions
NASA Astrophysics Data System (ADS)
Kuang, W.; Tangborn, A.; Jiang, W.
2011-12-01
It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.
NASA Astrophysics Data System (ADS)
Hejranfar, Kazem; Parseh, Kaveh
2017-09-01
The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.
Boundary Crossing between Higher Education and the World of Work: A Case Study in Post-1994 Rwanda
ERIC Educational Resources Information Center
Mutwarasibo, Faustin; Ruterana, Pierre Canisius; Andersson, Ingrid
2014-01-01
Workplaces abound with knowledge that is different from the knowledge students gain at universities. Crossing the boundary from a university to a workplace can, therefore, be difficult for students. To compensate for the dearth of knowledge on how these issues play out in an African context, this study investigates how knowledge and experiences…
Blurring the Boundary between High School and College: The Long View
ERIC Educational Resources Information Center
Hampel, Robert L.
2017-01-01
The dividing line between high school and college has never been entirely clear, explains a historian of American education. In fact, for most of the 19th century, it was difficult to distinguish between high schools and colleges. It wasn't until the early 1900s that high school and university officials drew firm boundaries between the two…
Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet
Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.; Quartini, Enrica
2014-01-01
Heterogeneous hydrologic, lithologic, and geologic basal boundary conditions can exert strong control on the evolution, stability, and sea level contribution of marine ice sheets. Geothermal flux is one of the most dynamically critical ice sheet boundary conditions but is extremely difficult to constrain at the scale required to understand and predict the behavior of rapidly changing glaciers. This lack of observational constraint on geothermal flux is particularly problematic for the glacier catchments of the West Antarctic Ice Sheet within the low topography of the West Antarctic Rift System where geothermal fluxes are expected to be high, heterogeneous, and possibly transient. We use airborne radar sounding data with a subglacial water routing model to estimate the distribution of basal melting and geothermal flux beneath Thwaites Glacier, West Antarctica. We show that the Thwaites Glacier catchment has a minimum average geothermal flux of ∼114 ± 10 mW/m2 with areas of high flux exceeding 200 mW/m2 consistent with hypothesized rift-associated magmatic migration and volcanism. These areas of highest geothermal flux include the westernmost tributary of Thwaites Glacier adjacent to the subaerial Mount Takahe volcano and the upper reaches of the central tributary near the West Antarctic Ice Sheet Divide ice core drilling site. PMID:24927578
NASA Astrophysics Data System (ADS)
Ratto, Luca; Satta, Francesca; Tanda, Giovanni
2018-06-01
This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).
Effect of metallurgical structure and properties on adhesion and friction behavior of cobalt alloys
NASA Technical Reports Server (NTRS)
Keller, D. V., Jr.; Shatynski, S.; Vedamanikam, P. M.
1972-01-01
The metallurgical structure and some of the mechanical properties of two cobalt alloys, cobalt-50% iron and cobalt-25% molybdenum-10% chromium, were determined under various heat treated conditions. The mechanical properties of the bcc disordered Co-50Fe alloy, which was found to be very brittle, indicated an exceedingly low fracture strength, low hardness, and very weak grain boundary strength. Ordering by suitable heat treatment only produced a more brittle material with a lower fracture strength and a slightly higher hardness value. Work hardening was found to produce a finer grain structure and a greater grain boundary strength. Tensile properties were examined. It was found that the Co-25Mo-10Cr alloy was difficult to place in the alpha Co solid solution condition, which limited the ability to use precipitation as a hardening reaction. Over two hundred adhesion cycles from zero contact load, to maximum load, to fracture were conducted between couples for each of the above alloys in an ultrahigh vacuum system which would permit the sample surfaces to be cleaned of all contaminant layers. In the Co-50Fe case, the calculated fracture stress from the adhesion tests showed values in the range of 80 to 150 k.s.i., which is about ten times greater than the values from tension tests.
NASA Technical Reports Server (NTRS)
Davis, J. E.; Medan, R. T.
1977-01-01
This segment of the POTFAN system is used to generate right hand sides (boundary conditions) of the system of equations associated with the flow field under consideration. These specified flow boundary conditions are encountered in the oblique derivative boundary value problem (boundary value problem of the third kind) and contain the Neumann boundary condition as a special case. Arbitrary angle of attack and/or sideslip and/or rotation rates may be specified, as well as an arbitrary, nonuniform external flow field and the influence of prescribed singularity distributions.
Massless rotating fermions inside a cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambruş, Victor E., E-mail: victor.ambrus@gmail.com; Winstanley, Elizabeth
2015-12-07
We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, whilemore » the spectral boundary condition is nonlocal.« less
Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Auriault, Laurent
1996-01-01
It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.
Quantum Gravitational Effects on the Boundary
NASA Astrophysics Data System (ADS)
James, F.; Park, I. Y.
2018-04-01
Quantum gravitational effects might hold the key to some of the outstanding problems in theoretical physics. We analyze the perturbative quantum effects on the boundary of a gravitational system and the Dirichlet boundary condition imposed at the classical level. Our analysis reveals that for a black hole solution, there is a contradiction between the quantum effects and the Dirichlet boundary condition: the black hole solution of the one-particle-irreducible action no longer satisfies the Dirichlet boundary condition as would be expected without going into details. The analysis also suggests that the tension between the Dirichlet boundary condition and loop effects is connected with a certain mechanism of information storage on the boundary.
NASA Astrophysics Data System (ADS)
Dappiaggi, Claudio; Ferreira, Hugo R. C.; Juárez-Aubry, Benito A.
2018-04-01
We study a real, massive Klein-Gordon field in the Poincaré fundamental domain of the (d +1 )-dimensional anti-de Sitter (AdS) spacetime, subject to a particular choice of dynamical boundary conditions of generalized Wentzell type, whereby the boundary data solves a nonhomogeneous, boundary Klein-Gordon equation, with the source term fixed by the normal derivative of the scalar field at the boundary. This naturally defines a field in the conformal boundary of the Poincaré fundamental domain of AdS. We completely solve the equations for the bulk and boundary fields and investigate the existence of bound state solutions, motivated by the analogous problem with Robin boundary conditions, which are recovered as a limiting case. Finally, we argue that both Robin and generalized Wentzell boundary conditions are distinguished in the sense that they are invariant under the action of the isometry group of the AdS conformal boundary, a condition which ensures in addition that the total flux of energy across the boundary vanishes.
Flow-Field Surveys for Rectangular Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2012-01-01
Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts.
Unsteady Pressures on a Generic Capsule Shape
NASA Technical Reports Server (NTRS)
Burnside, Nathan; Ross, James C.
2015-01-01
While developing the aerodynamic database for the Orion spacecraft, the low-speed flight regime (transonic and below) proved to be the most difficult to predict and measure accurately. The flow over the capsule heat shield in descent flight was particularly troublesome for both computational and experimental efforts due to its unsteady nature and uncertainty about the boundary layer state. The data described here were acquired as part of a study to improve the understanding of the overall flow around a generic capsule. The unsteady pressure measurements acquired on a generic capsule shape are presented along with a discussion about the effects of various flight conditions and heat-shield surface roughness on the resulting pressure fluctuations.
On-Board Entry Trajectory Planning Expanded to Sub-orbital Flight
NASA Technical Reports Server (NTRS)
Lu, Ping; Shen, Zuojun
2003-01-01
A methodology for on-board planning of sub-orbital entry trajectories is developed. The algorithm is able to generate in a time frame consistent with on-board environment a three-degree-of-freedom (3DOF) feasible entry trajectory, given the boundary conditions and vehicle modeling. This trajectory is then tracked by feedback guidance laws which issue guidance commands. The current trajectory planning algorithm complements the recently developed method for on-board 3DOF entry trajectory generation for orbital missions, and provides full-envelope autonomous adaptive entry guidance capability. The algorithm is validated and verified by extensive high fidelity simulations using a sub-orbital reusable launch vehicle model and difficult mission scenarios including failures and aborts.
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Provenza, Andrew J.; Bakhle, Milind A.; Min, James B.; Abdul-Aziz, Ali
2018-01-01
NASA's Advanced Air Transport Technology Project is investigating boundary layer ingesting propulsors for future subsonic commercial aircraft to improve aircraft efficiency, thereby reducing fuel burn. To that end, a boundary layer ingesting inlet and distortion-tolerant fan stage was designed, fabricated, and tested within the 8' x 6' Supersonic Wind Tunnel at NASA Glenn Research Center. Because of the distortion in the air flow over the fan, the blades were designed to withstand a much higher aerodynamic forcing than for a typical clean flow. The blade response for several resonance modes were measured during start-up and shutdown, as well as at near 85% design speed. Flutter in the first bending mode was also observed in the fan at the design speed, at an off-design condition, although instabilities were difficult to instigate with this fan in general. Blade vibrations were monitored through twelve laser displacement probes that were placed around the inner circumference of the casing, at the blade leading and trailing edges. These probes captured the movement of all the blades during the entire test. Results are presented for various resonance mode amplitudes, frequencies and damping, as well as flutter amplitudes and frequency. Benefits and disadvantages of laser displacement probe measurements versus strain gage measurements are discussed.
Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.
Richardson, Megan; Lambers, James V
2016-01-01
This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.
Structural acoustic control of plates with variable boundary conditions: design methodology.
Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L
2007-07-01
A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties.
Formulation and Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects
NASA Technical Reports Server (NTRS)
Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian
2018-01-01
Boundary conditions appropriate for simulating flow entering or exiting the computational domain to mimic propulsion effects have been implemented in an adaptive Cartesian simulation package. A robust iterative algorithm to control mass flow rate through an outflow boundary surface is presented, along with a formulation to explicitly specify mass flow rate through an inflow boundary surface. The boundary conditions have been applied within a mesh adaptation framework based on the method of adjoint-weighted residuals. This allows for proper adaptive mesh refinement when modeling propulsion systems. The new boundary conditions are demonstrated on several notional propulsion systems operating in flow regimes ranging from low subsonic to hypersonic. The examples show that the prescribed boundary state is more properly imposed as the mesh is refined. The mass-flowrate steering algorithm is shown to be an efficient approach in each example. To demonstrate the boundary conditions on a realistic complex aircraft geometry, two of the new boundary conditions are also applied to a modern low-boom supersonic demonstrator design with multiple flow inlets and outlets.
Introduction to boundary-layer theory. [viscous friction loss calculation for turbine blade design
NASA Technical Reports Server (NTRS)
Mcnally, W. D.
1973-01-01
The pressure ratio across a turbine provides a certain amount of ideal energy that is available to the turbine for producing work. The portion of the ideal energy that is not converted to work is considered to be a loss. One of the more important and difficult aspects of turbine design is the prediction of the losses. The primary cause of losses is the boundary layer that develops on the blade and end wall surfaces. Boundary-layer theory is used to calculate the parameters needed to estimate viscous (friction) losses.
A Novel Method for Modeling Neumann and Robin Boundary Conditions in Smoothed Particle Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina
2010-08-26
In this paper we present an improved method for handling Neumann or Robin boundary conditions in smoothed particle hydrodynamics. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to model in volumetric modeling techniques such as smoothed particle hydrodynamics (SPH). A new SPH method for diffusion type equations subject to Neumann or Robin boundary conditions is proposed. The new method is based on the continuum surface force model [1] and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method for geometrically complex boundaries.more » The paper discusses the details of the method and the criteria needed to apply the model. The model is used to simulate diffusion and surface reactions and its accuracy is demonstrated through test cases for boundary conditions describing different surface reactions.« less
The analytical solution for drug delivery system with nonhomogeneous moving boundary condition
NASA Astrophysics Data System (ADS)
Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor
2017-08-01
This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.
Kinetic mechanism of V-shaped twinning in 3C/4H-SiC heteroepitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Bin; Zhang, Yu-Ming; Jia, Ren-Xu, E-mail: rxjia@mail.xidian.edu.cn
The authors investigated the kinetic mechanism of V-shaped twinning in 3C/4H-SiC heteroepitaxy. A fourfold V-shaped twinning complex was found, and its interface was measured with high-resolution transmission electron microscopy (HRTEM). Two linear coherent boundaries and a nonlinear incoherent boundary (also called the double-position boundary) were observed. On the basis of the HRTEM results, the authors proposed an adatom migration growth model, in which the activation barrier at the coherent boundary is much lower than that at the incoherent boundary. From a kinetic perspective, adatoms are prone to migrate to the side of the boundary with the lower potential energy ifmore » they have sufficient thermal energy to overcome the activation barrier. In the case of a coherent boundary, the growth rates of the domains either side of the boundary can be balanced through the intermigration of adatoms, leading to a linear boundary. Conversely, it is difficult for adatoms to migrate across an incoherent boundary, which results in asynchronous growth rates and a nonlinear boundary.« less
Diffusive growth of a single droplet with three different boundary conditions
NASA Astrophysics Data System (ADS)
Tavassoli, Z.; Rodgers, G. J.
2000-02-01
We study a single, motionless three-dimensional droplet growing by adsorption of diffusing monomers on a 2D substrate. The diffusing monomers are adsorbed at the aggregate perimeter of the droplet with different boundary conditions. Models with both an adsorption boundary condition and a radiation boundary condition, as well as a phenomenological model, are considered and solved in a quasistatic approximation. The latter two models allow particle detachment. In the short time limit, the droplet radius grows as a power of the time with exponents of 1/4, 1/2 and 3/4 for the models with adsorption, radiation and phenomenological boundary conditions, respectively. In the long time limit a universal growth rate as $[t/\\ln(t)]^{1/3}$ is observed for the radius of the droplet for all models independent of the boundary conditions. This asymptotic behaviour was obtained by Krapivsky \\cite{krapquasi} where a similarity variable approach was used to treat the growth of a droplet with an adsorption boundary condition based on a quasistatic approximation. Another boundary condition with a constant flux of monomers at the aggregate perimeter is also examined. The results exhibit a power law growth rate with an exponent of 1/3 for all times.
A device adaptive inflow boundary condition for Wigner equations of quantum transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu
2014-02-01
In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potiron, A.; Gerometta, C.; Plun, J.M.
Simulation of casting processes is now industrially available with different softwares proposed to foundrymen. Yet, it is always difficult to provide the boundary conditions as correct as possible to represent accurately the environment of the mould. The knowledge of heat transfer coefficient used to modelize the cooling devices in permanent moulds is very important, as well as the acquisition of accurate data regarding die coatings or physical properties. After having conducted a sample survey with French foundries, the experiment conditions have been defined. Two main types of cooling device have been studied: water running in a pipe and air flowingmore » in a special shape to provide localized cooling. Some of the heat transfer coefficients have been simply calculated using Colburn`s law, others have been determined using a 1D or 2D inverse method. Auto-validation results obtained on the experimental device simulated with SIMULOR, a 3D finite volume software, are encouraging.« less
Symmetries and Boundary Conditions with a Twist
NASA Astrophysics Data System (ADS)
Zawadzki, Krissia; D'Amico, Irene; Oliveira, Luiz N.
2017-10-01
Interest in finite-size systems has risen in the last decades, due to the focus on nanotechnological applications and because they are convenient for numerical treatment that can subsequently be extrapolated to infinite lattices. Independently of the envisioned application, special attention must be given to boundary condition, which may or may not preserve the symmetry of the infinite lattice. Here, we present a detailed study of the compatibility between boundary conditions and conservation laws. The conflict between open boundary conditions and momentum conservation is well understood, but we examine other symmetries, as well: we discuss gauge invariance, inversion, spin, and particle-hole symmetry and their compatibility with open, periodic, and twisted boundary conditions. In the interest of clarity, we develop the reasoning in the framework of the one-dimensional half-filled Hubbard model, whose Hamiltonian displays a variety of symmetries. Our discussion includes analytical and numerical results. Our analytical survey shows that, as a rule, boundary conditions break one or more symmetries of the infinite-lattice Hamiltonian. The exception is twisted boundary condition with the special torsion Θ = πL/2, where L is the lattice size. Our numerical results for the ground-state energy at half-filling and the energy gap for L = 2-7 show how the breaking of symmetry affects the convergence to the L → ∞ limit. We compare the computed energies and gaps with the exact results for the infinite lattice drawn from the Bethe-Ansatz solution. The deviations are boundary-condition dependent. The special torsion yields more rapid convergence than open or periodic boundary conditions. For sizes as small as L = 7, the numerical results for twisted condition are very close to the L → ∞ limit. We also discuss the ground-state electronic density and magnetization at half filling under the three boundary conditions.
NASA Astrophysics Data System (ADS)
Smits, K. M.; Ngo, V. V.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.; kathleen m smits
2011-12-01
Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions. Because it is difficult to measure evaporation from soil,with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy and include, among others, a classical bulk aerodynamic formulation which requires knowledge of the relative humidity at the soil surface and a more non-traditional heat balance method which requires knowledge of soil temperature and soil thermal properties. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for evaporation rate estimates and to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for evaporation under dry soil conditions. This theory was used to compare estimates of evaporation based on different formulations of the bulk aerodynamic and heat balance methods. In order to experimentally validate the numerical formulations/code, we performed a series of two-dimensional physical model experiments under varying boundary conditions using test sand for which the hydraulic and thermal properties were well characterized. We developed a unique two dimensional cell apparatus equipped with a network of sensors for automated and continuous monitoring of soil moisture, soil and air temperature and relative humidity, and wind velocity. Precision data under well-controlled transient heat and wind boundary conditions was generated. Results from numerical simulations were compared with experimental data. Results demonstrate the importance of properly characterizing soil thermal properties and accounting for dry soil conditions to properly estimate evaporation. Initial comparisons of various formulations of evaporation demonstrate the need for joint evaluation of heat and mass transfer for better modeling accuracy. Detailed comparisons are still underway. This knowledge is applicable to many current hydrologic and environmental problems to include climate modeling and the simulation of contaminant transport and volatilization in the shallow subsurface.
Ou, Jao J.; Ong, Rowena E.; Miga, Michael I.
2013-01-01
Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method. PMID:21690002
Pheiffer, Thomas S; Ou, Jao J; Ong, Rowena E; Miga, Michael I
2011-09-01
Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.
Experimental verification of free-space singular boundary conditions in an invisibility cloak
NASA Astrophysics Data System (ADS)
Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile
2016-04-01
A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.
QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling
Rossman, Timothy; Kushvaha, Vinod; Dragomir-Daescu, Dan
2015-01-01
Quantitative computed tomography-based finite element models of proximal femora must be validated with cadaveric experiments before using them to assess fracture risk in osteoporotic patients. During validation it is essential to carefully assess whether the boundary condition modeling matches the experimental conditions. This study evaluated proximal femur stiffness results predicted by six different boundary condition methods on a sample of 30 cadaveric femora and compared the predictions with experimental data. The average stiffness varied by 280% among the six boundary conditions. Compared with experimental data the predictions ranged from overestimating the average stiffness by 65% to underestimating it by 41%. In addition we found that the boundary condition that distributed the load to the contact surfaces similar to the expected contact mechanics predictions had the best agreement with experimental stiffness. We concluded that boundary conditions modeling introduced large variations in proximal femora stiffness predictions. PMID:25804260
Experimental and numerical investigations on melamine wedges.
Schneider, S
2008-09-01
Melamine wedges are often used as acoustic lining material for anechoic chambers. It was proposed here to study the effects of the mounting conditions on the acoustic properties of the melamine wedges used in the large anechoic chamber at the LMA. The results of the impedance tube measurements carried out show that the mounting conditions must be taken into account when assessing the quality of an acoustic lining. As it can be difficult to simulate these mounting conditions in impedance tube experiments, a numerical method was developed, which can be used to complete the experiments or for parametric studies. By combining the finite and the boundary element method, it is possible to investigate acoustic linings with almost no restrictions as to the geometry, material behavior, or mounting conditions. The numerical method presented here was used to study the acoustic properties of the acoustic lining installed in the anechoic chamber at the LMA. Further experiments showed that the behavior of the melamine foam is anisotropic. Numerical simulations showed that this anisotropy can be used to advantage when designing an acoustic lining.
Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning.
Raya, J; Hirschinger, J
2017-08-01
Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and l-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined. Copyright © 2017 Elsevier Inc. All rights reserved.
Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning
NASA Astrophysics Data System (ADS)
Raya, J.; Hirschinger, J.
2017-08-01
Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and L-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined.
Soil, Water, Plants and Preferred Flow in All Directions: A Biosphere-2 Experiment
NASA Astrophysics Data System (ADS)
McDonnell, J.; Evaristo, J. A.; Kim, M.; Van Haren, J. L. M.; Pangle, L. A.; Harman, C. J.; Troch, P. A. A.
2016-12-01
Measuring, understanding and predicting preferential flow in the critical zone is impossibly difficult, but we must try. While past work has focused on specific features of preferential flow pathways and model parameterizations, the resultant effect of preferential flow is often difficult to detect because we do not know the boundary conditions of our flow domain. Here we take a holistic view of preferential flow at the ecosystem level. We present new results from the tropical rainforest biome at Biosphere 2. We test the null hypothesis that the ecohydrological system is well mixed and that water forming groundwater recharge and plant transpiration is from a common pool. Our specific research question is what is the nature of preferential flow and partitioning of groundwater recharge, soil water recharge, and transpiration water after rainfall events? We performed a 10-week drought experiment and then added 66 mm of labelled rainfall with 152‰ deuterium (D), distributed over four events (mean 16.5 mm per event). This was followed by a total of 87 mm of rainfall (-60‰ D) distributed over 13 events that were spaced every 2-3 days. Our results show that flow in all ecohydrological domains (soil water, groundwater recharge and plant transpiration) was preferential. With known boundary conditions, we found that groundwater recharge was 3-8 times younger ( 8 days) than transpired water (range 24-64 days). The "age" of transpired water showed strong dependence on species and was intimately linked to driving force (difference between soil matric potential and midday leaf water potential). These results suggest that preferential flow in the critical zone is one whereby transpiration is strongly species-dependent, and groundwater recharge is controlled by inherent subsurface heterogeneity. The marked difference in the ages associated with these two fluxes supports the concept of ecohydrological separation—in this case, in a `time-based' context.
Completed Beltrami-Michell Formulation in Polar Coordinates
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2005-01-01
A set of conditions had not been formulated on the boundary of an elastic continuum since the time of Saint-Venant. This limitation prevented the formulation of a direct stress calculation method in elasticity for a continuum with a displacement boundary condition. The missed condition, referred to as the boundary compatibility condition, is now formulated in polar coordinates. The augmentation of the new condition completes the Beltrami-Michell formulation in polar coordinates. The completed formulation that includes equilibrium equations and a compatibility condition in the field as well as the traction and boundary compatibility condition is derived from the stationary condition of the variational functional of the integrated force method. The new method is illustrated by solving an example of a mixed boundary value problem for mechanical as well as thermal loads.
Oblique radiation lateral open boundary conditions for a regional climate atmospheric model
NASA Astrophysics Data System (ADS)
Cabos Narvaez, William; De Frutos Redondo, Jose Antonio; Perez Sanz, Juan Ignacio; Sein, Dmitry
2013-04-01
The prescription of lateral boundary conditions in regional atmospheric models represent a very important issue for limited area models. The ill-posed nature of the open boundary conditions makes it necessary to devise schemes in order to filter spurious wave reflections at boundaries, being desirable to have one boundary condition per variable. On the other side, due to the essentially hyperbolic nature of the equations solved in state of the art atmospheric models, external data is required only for inward boundary fluxes. These circumstances make radiation lateral boundary conditions a good choice for the filtering of spurious wave reflections. Here we apply the adaptive oblique radiation modification proposed by Mikoyada and Roseti to each of the prognostic variables of the REMO regional atmospheric model and compare it to the more common normal radiation condition used in REMO. In the proposed scheme, special attention is paid to the estimation of the radiation phase speed, essential to detecting the direction of boundary fluxes. One of the differences with the classical scheme is that in case of outward propagation, the adaptive nudging imposed in the boundaries allows to minimize under and over specifications problems, adequately incorporating the external information.
Franke, O. Lehn; Reilly, Thomas E.; Bennett, Gordon D.
1987-01-01
Accurate definition of boundary and initial conditions is an essential part of conceptualizing and modeling ground-water flow systems. This report describes the properties of the seven most common boundary conditions encountered in ground-water systems and discusses major aspects of their application. It also discusses the significance and specification of initial conditions and evaluates some common errors in applying this concept to ground-water-system models. An appendix is included that discusses what the solution of a differential equation represents and how the solution relates to the boundary conditions defining the specific problem. This report considers only boundary conditions that apply to saturated ground-water systems.
Iberian plate kinematics: A jumping plate boundary between Eurasia and Africa
Srivastava, S.P.; Schouten, Hans; Roest, W.R.; Klitgord, Kim D.; Kovacs, L.C.; Verhoef, J.; Macnab, R.
1990-01-01
THE rotation of Iberia and its relation to the formation of the Pyrenees has been difficult to decipher because of the lack of detailed sea-floor spreading data, although several models have been proposed1-7. Here we use detailed aeromagnetic measurements from the sea floor offshore of the Grand Banks of Newfoundland to show that Iberia moved as part of the African plate from late Cretaceous to mid-Eocene time, with a plate boundary extending westward from the Bay of Biscay. When motion along this boundary ceased, a boundary linking extension in the King's Trough to compression along the Pyrenees came into existence. Finally, since the late Oligocene, Iberia has been part of the Eurasian plate, with the boundary between Eurasia and Africa situated along the Azores-Gibraltar fracture zone.
Stably stratified canopy flow in complex terrain
NASA Astrophysics Data System (ADS)
Xu, X.; Yi, C.; Kutter, E.
2015-07-01
Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.
An effective absorbing layer for the boundary condition in acoustic seismic wave simulation
NASA Astrophysics Data System (ADS)
Yao, Gang; da Silva, Nuno V.; Wu, Di
2018-04-01
Efficient numerical simulation of seismic wavefields generally involves truncating the Earth model in order to keep computing time and memory requirements down. Absorbing boundary conditions, therefore, are applied to remove the boundary reflections caused by this truncation, thereby allowing for accurate modeling of wavefields. In this paper, we derive an effective absorbing boundary condition for both acoustic and elastic wave simulation, through the simplification of the damping term of the split perfectly matched layer (SPML) boundary condition. This new boundary condition is accurate, cost-effective, and easily implemented, especially for high-performance computing. Stability analysis shows that this boundary condition is effectively as stable as normal (non-absorbing) wave equations for explicit time-stepping finite differences. We found that for full-waveform inversion (FWI), the strengths of the effective absorbing layer—a reduction of the computational and memory cost coupled with a simplistic implementation—significantly outweighs the limitation of incomplete absorption of outgoing waves relative to the SPML. More importantly, we demonstrate that this limitation can easily be overcome through the use of two strategies in FWI, namely variable cell size and model extension thereby fully compensating for the imperfectness of the proposed absorbing boundary condition.
The Impact of Model Uncertainty on Spatial Compensation in Active Structural Acoustic Control
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Gibbs, Gary P.; Sprofera, Joseph D.; Clark, Robert L.
2004-01-01
Turbulent boundary layer (TBL) noise is considered a primary factor in the interior noise experienced by passengers aboard commercial airliners. There have been numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a challenge since the physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions have been assumed; however, realistic panels likely display a range of varying boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of actuators and sensors required to achieve the desired control. The impact of model uncertainties, uncertain boundary conditions in particular, on the selection of actuator and sensor locations for structural acoustic control are considered herein. Results from this research effort indicate that it is possible to optimize the design of actuator and sensor location and aperture, which minimizes the impact of boundary conditions on the desired structural acoustic control.
Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Pedagogy, power and practice ethics: clinical teaching in psychiatric/mental health settings.
Ewashen, Carol; Lane, Annette
2007-09-01
Often, baccalaureate nursing students initially approach a psychiatric mental health practicum with uncertainty, and even fear. They may feel unprepared for the myriad complex practice situations encountered. In addition, memories of personal painful life events may be vicariously evoked through learning about and listening to the experiences of those diagnosed with mental disorders. When faced with such challenging situations, nursing students often seek counsel from the clinical and/or classroom faculty. Pedagogic boundaries may begin to blur in the face of student distress. For the nurse educator, several questions arise: Should a nurse educator provide counseling to students? How does one best negotiate the boundaries between 'counselor', and 'caring educator'? What are the limits of a caring and professional pedagogic relation? What different knowledges provide guidance and to what differential consequences for ethical pedagogic relationships? This paper offers a comparative analysis of three philosophical stances to examine differences in key assumptions, pedagogic positioning, relationships of power/knowledge, and consequences for professional ethical pedagogic practices. While definitive answers are difficult, the authors pose several questions for consideration in discerning how best to proceed and under what particular conditions.
The Unmanned Aerial System SUMO: an alternative measurement tool for polar boundary layer studies
NASA Astrophysics Data System (ADS)
Mayer, S.; Jonassen, M. O.; Reuder, J.
2012-04-01
Numerical weather prediction and climate models face special challenges in particular in the commonly stable conditions in the high-latitude environment. For process studies as well as for model validation purposes in-situ observations in the atmospheric boundary layer are highly required, but difficult to retrieve. We introduce a new measurement system for corresponding observations. The Small Unmanned Meteorological Observer SUMO consists of a small and light-weight auto-piloted model aircraft, equipped with a meteorological sensor package. SUMO has been operated in polar environments, among others during IPY on Spitsbergen in the year 2009 and has proven its capabilities for atmospheric measurements with high spatial and temporal resolution even at temperatures of -30 deg C. A comparison of the SUMO data with radiosondes and tethered balloons shows that SUMO can provide atmospheric profiles with comparable quality to those well-established systems. Its high data quality allowed its utilization for evaluation purposes of high-resolution model runs performed with the Weather Research and Forecasting model WRF and for the detailed investigation of an orographically modified flow during a case study.
Development and utilization of new diagnostics for dense-phase pneumatic transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louge, M.Y.; Jenkins, J.T.
Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. In particular, the authors have designed capacitance probes to measure local, time-dependent particle concentrations, and a new optical fiber probe based on laser-induced-phosphorescence to measure particle velocities. The principles for the capacitance and optical diagnostics weremore » given in the first and second quarterly reports. A final version of the optical fiber probe was designed in the previous reporting period. Because granular flows depends strongly on the nature of their interaction with a boundary, the authors have sought in the present reporting period to verify the boundary conditions recently calculated by Jenkins (J. Appl. Mech., in press (1991)) using computer simulations. 2 refs., 2 figs.« less
NASA Astrophysics Data System (ADS)
Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang
2017-11-01
We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.
NASA Astrophysics Data System (ADS)
Duynkerke, P. G.
1988-03-01
In the E - turbulence model an eddy-exchange coefficient is evaluated from the turbulent kinetic energy E and viscous dissipation . In this study we will apply the E - model to the stable and neutral atmospheric boundary layer. A discussion is given on the equation for , which terms should be included and how we have evaluated the constants. Constant cooling rate results for the stable atmospheric boundary layer are compared with a second-order closure study. For the neutral atmospheric boundary layer a comparison is made with observations, large-eddy simulations and a second-order closure study. It is shown that a small stability effect can change the neutral atmospheric boundary layer quite drastically, and therefore, it will be difficult to observe a neutral boundary layer in the atmosphere.
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.; Maccamy, R. C.
1993-01-01
We consider the solution of scattering problems for the wave equation using approximate boundary conditions at artificial boundaries. These conditions are explicitly viewed as approximations to an exact boundary condition satisfied by the solution on the unbounded domain. We study the short and long term behavior of the error. It is provided that, in two space dimensions, no local in time, constant coefficient boundary operator can lead to accurate results uniformly in time for the class of problems we consider. A variable coefficient operator is developed which attains better accuracy (uniformly in time) than is possible with constant coefficient approximations. The theory is illustrated by numerical examples. We also analyze the proposed boundary conditions using energy methods, leading to asymptotically correct error bounds.
NASA Technical Reports Server (NTRS)
Jovic, Srba; Kutler, Paul F. (Technical Monitor)
1994-01-01
Experimental results for a two-dimensional separated turbulent boundary layer behind a backward facing step for five different Reynolds numbers are reported. Results are presented in the form of tables, graphs and a floppy disk for an easy access of the data. Reynolds number based on the step height was varied by changing the reference velocity upstream of the step, U(sub o), and the step height, h. Hot-wire measurement techniques were used to measure three Reynolds stresses and four triple-velocity correlations. In addition, surface pressure and skin friction coefficients were measured. All hot-wire measurements were acquired in a measuring domain which excluded recirculating flow region due to the directional insensitivity of hot-wires. The downstream extent of the domain from the step was 51 h for the largest and I 14h for the smallest step height. This significant downstream length permitted extensive study of the flow recovery. Prediction of perturbed flows and their recovery is particularly attractive for popular turbulence models since variations of turbulence length and time scales and flow interactions in different regions are generally inadequately predicted. The data indicate that the flow in the free shear layer region behaves like the plane mixing layer up to about 2/3 of the mean reattachment length when the flow interaction with the wall commences the flow recovery to that of an ordinary turbulent boundary layer structure. These changes of the flow do not occur abruptly with the change of boundary conditions. A reattachment region represents a transitional region where the flow undergoes the most dramatic adjustments to the new boundary conditions. Large eddies, created in the upstream free-shear layer region, are being torn, recirculated, reentrained back into the main stream interacting with the incoming flow structure. It is foreseeable that it is quite difficult to describe the physics of this region in a rational and quantitative manner other than statistical. Downstream of the reattachment point the flow recovers at different rates near the wall, in the newly developing internal boundary layer, and in the outer part of the flow. It appears that Reynolds stresses do not fully recover up to the longest recovery length of 114 h.
NASA Astrophysics Data System (ADS)
Popov, Nikolay S.
2017-11-01
Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.
Boundary condition for Ginzburg-Landau theory of superconducting layers
NASA Astrophysics Data System (ADS)
Koláček, Jan; Lipavský, Pavel; Morawetz, Klaus; Brandt, Ernst Helmut
2009-05-01
Electrostatic charging changes the critical temperature of superconducting thin layers. To understand the basic mechanism, it is possible to use the Ginzburg-Landau theory with the boundary condition derived by de Gennes from the BCS theory. Here we show that a similar boundary condition can be obtained from the principle of minimum free energy. We compare the two boundary conditions and use the Budd-Vannimenus theorem as a test of approximations.
1985-08-01
REPORT SD-TR-85-37 O,-) Lfl Perfluoropolyalkylether Oil Degradation: Inference of FeF 3 Formation on Steel Surfaces I under Boundary Conditions DAVID...S. TYPE OF REPORT & PERIOD COVERED PERFLUOROPOLYALKYLETHER OIL DEGRADATION: INFERENCE OF FeF3 FORMATION ON STEELSURFACES UNDER BOUNDARY CONDITIONS 0...number) Boundary conditions Oil Degradation Perfluoropolyalkylether FeF3 Wear test Lubrication .... 440C 20. ABSTRACT (Contlnue o 0 ,systes sI . I
Exclusion Process with Slow Boundary
NASA Astrophysics Data System (ADS)
Baldasso, Rangel; Menezes, Otávio; Neumann, Adriana; Souza, Rafael R.
2017-06-01
We study the hydrodynamic and the hydrostatic behavior of the simple symmetric exclusion process with slow boundary. The term slow boundary means that particles can be born or die at the boundary sites, at a rate proportional to N^{-θ }, where θ > 0 and N is the scaling parameter. In the bulk, the particles exchange rate is equal to 1. In the hydrostatic scenario, we obtain three different linear profiles, depending on the value of the parameter θ ; in the hydrodynamic scenario, we obtain that the time evolution of the spatial density of particles, in the diffusive scaling, is given by the weak solution of the heat equation, with boundary conditions that depend on θ . If θ \\in (0,1), we get Dirichlet boundary conditions, (which is the same behavior if θ =0, see Farfán in Hydrostatics, statical and dynamical large deviations of boundary driven gradient symmetric exclusion processes, 2008); if θ =1, we get Robin boundary conditions; and, if θ \\in (1,∞), we get Neumann boundary conditions.
Slip Boundary Conditions for the Compressible Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Aoki, Kazuo; Baranger, Céline; Hattori, Masanari; Kosuge, Shingo; Martalò, Giorgio; Mathiaud, Julien; Mieussens, Luc
2017-11-01
The slip boundary conditions for the compressible Navier-Stokes equations are derived systematically from the Boltzmann equation on the basis of the Chapman-Enskog solution of the Boltzmann equation and the analysis of the Knudsen layer adjacent to the boundary. The resulting formulas of the slip boundary conditions are summarized with explicit values of the slip coefficients for hard-sphere molecules as well as the Bhatnagar-Gross-Krook model. These formulas, which can be applied to specific problems immediately, help to prevent the use of often used slip boundary conditions that are either incorrect or without theoretical basis.
Flow-Field Surveys for Rectangular Nozzles. Supplement
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2012-01-01
Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts. This supplement contains data files, charts and source code.
Surface flow visualization using indicators
NASA Technical Reports Server (NTRS)
Crowder, J. P.
1982-01-01
Surface flow visualization using indicators in the cryogenic wind tunnel which requires a fresh look at materials and procedures to accommodate the new test conditions is described. Potential liquid and gaseous indicators are identified. The particular materials illustrate the various requirements an indicator must fulfill. The indicator must respond properly to the flow phenomenon of interest and must be observable. Boundary layer transition is the most important phenomenon for which flow visualization indicators may be employed. The visibility of a particular indicator depends on utilizing various optical or chemical reactions. Gaseous indicators are more difficult to utilize, but because of their diversity may present unusual and useful opportunities. Factors to be considered in selecting an indicator include handling safety, toxicity, potential for contamination of the tunnel, and cost.
The inference of atmospheric ozone using satellite nadir measurements in the 1042/cm band
NASA Technical Reports Server (NTRS)
Russell, J. M., III; Drayson, S. R.
1973-01-01
A description and detailed analysis of a technique for inferring atmospheric ozone information from satellite nadir measurements in the 1042 cm band are presented. A method is formulated for computing the emission from the lower boundary under the satellite which circumvents the difficult analytical problems caused by the presence of atmospheric clouds and the watervapor continuum absorption. The inversion equations are expanded in terms of the eigenvectors and eigenvalues of a least-squares-solution matrix, and an analysis is performed to determine the information content of the radiance measurements. Under favorable conditions there are only two pieces of independent information available from the measurements: (1) the total ozone and (2) the altitude of the primary maximum in the ozone profile.
Boundary Conditions for Scalar (Co)Variances over Heterogeneous Surfaces
NASA Astrophysics Data System (ADS)
Machulskaya, Ekaterina; Mironov, Dmitrii
2018-05-01
The problem of boundary conditions for the variances and covariances of scalar quantities (e.g., temperature and humidity) at the underlying surface is considered. If the surface is treated as horizontally homogeneous, Monin-Obukhov similarity suggests the Neumann boundary conditions that set the surface fluxes of scalar variances and covariances to zero. Over heterogeneous surfaces, these boundary conditions are not a viable choice since the spatial variability of various surface and soil characteristics, such as the ground fluxes of heat and moisture and the surface radiation balance, is not accounted for. Boundary conditions are developed that are consistent with the tile approach used to compute scalar (and momentum) fluxes over heterogeneous surfaces. To this end, the third-order transport terms (fluxes of variances) are examined analytically using a triple decomposition of fluctuating velocity and scalars into the grid-box mean, the fluctuation of tile-mean quantity about the grid-box mean, and the sub-tile fluctuation. The effect of the proposed boundary conditions on mixing in an archetypical stably-stratified boundary layer is illustrated with a single-column numerical experiment. The proposed boundary conditions should be applied in atmospheric models that utilize turbulence parametrization schemes with transport equations for scalar variances and covariances including the third-order turbulent transport (diffusion) terms.
2017-09-01
VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS by Matthew D. Bouwense...VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS 5. FUNDING NUMBERS 6. AUTHOR...unlimited. EXPERIMENTAL VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY
Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields
NASA Astrophysics Data System (ADS)
Díaz-Marín, Homero G.
We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.
NASA Astrophysics Data System (ADS)
Cho, Minjeong; Lee, Jungil; Choi, Haecheon
2012-11-01
The mean wall shear stress boundary condition was successfully applied to turbulent channel and boundary flows using large eddy simulation without resolving near-wall region (see Lee, Cho & Choi in this book of abstracts). In the present study, we apply this boundary condition to more complex flows where flow separation and redeveloping flow exist. As a test problem, we consider flow over a backward-facing step at Reh = 22860 based on the step height. Turbulent boundary layer flow at the inlet (Reθ = 1050) is obtained using inflow generation technique by Lund et al. (1998) but with wall shear stress boundary condition. First, we prescribe the mean wall shear stress distribution obtained from DNS (Kim, 2011, Ph.D. Thesis, Stanford U.) as the boundary condition of present simulation. Here we give no-slip boundary condition at flow-reversal region. The present results are in good agreements with the flow statistics by DNS. Currently, a dynamic approach of obtaining mean wall shear stress based on the log-law is being applied to the flow having flow separation and its results will be shown in the presentation. Supported by the WCU and NRF programs.
Optimal boundary conditions for ORCA-2 model
NASA Astrophysics Data System (ADS)
Kazantsev, Eugene
2013-08-01
A 4D-Var data assimilation technique is applied to ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of boundary conditions on the solution is analyzed both within and beyond the assimilation window. It is shown that the optimal bottom and surface boundary conditions allow us to better represent the jet streams, such as Gulf Stream and Kuroshio. Analyzing the reasons of the jets reinforcement, we notice that data assimilation has a major impact on parametrization of the bottom boundary conditions for u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
Boundary streaming with Navier boundary condition.
Xie, Jin-Han; Vanneste, Jacques
2014-06-01
In microfluidic applications involving high-frequency acoustic waves over a solid boundary, the Stokes boundary-layer thickness δ is so small that some non-negligible slip may occur at the fluid-solid interface. This paper assesses the impact of this slip by revisiting the classical problem of steady acoustic streaming over a flat boundary, replacing the no-slip boundary condition with the Navier condition u|_{y=0}=L_{s}∂_{y}u|_{y=0}, where u is the velocity tangent to the boundary y=0, and the parameter L_{s} is the slip length. A general expression is obtained for the streaming velocity across the boundary layer as a function of the dimensionless parameter L_{s}/δ. The limit outside the boundary layer provides an effective slip velocity satisfied by the interior mean flow. Particularizing to traveling and standing waves shows that the boundary slip respectively increases and decreases the streaming velocity.
Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints
NASA Technical Reports Server (NTRS)
Kangro, Urve; Nicolaides, Roy
1997-01-01
The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.
Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions
NASA Technical Reports Server (NTRS)
Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.
1995-01-01
The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.
On a sparse pressure-flow rate condensation of rigid circulation models
Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.
2015-01-01
Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrier, C.; Holcman, D., E-mail: david.holcman@ens.fr; Mathematical Institute, Oxford OX2 6GG, Newton Institute
The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationallymore » greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.« less
NASA Technical Reports Server (NTRS)
Bless, Robert R.
1991-01-01
A time-domain finite element method is developed for optimal control problems. The theory derived is general enough to handle a large class of problems including optimal control problems that are continuous in the states and controls, problems with discontinuities in the states and/or system equations, problems with control inequality constraints, problems with state inequality constraints, or problems involving any combination of the above. The theory is developed in such a way that no numerical quadrature is necessary regardless of the degree of nonlinearity in the equations. Also, the same shape functions may be employed for every problem because all strong boundary conditions are transformed into natural or weak boundary conditions. In addition, the resulting nonlinear algebraic equations are very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution of very difficult optimization problems. The formulation is applied to launch-vehicle trajectory optimization problems, and results show that real-time optimal guidance is realizable with this method. Finally, a general problem solving environment is created for solving a large class of optimal control problems. The algorithm uses both FORTRAN and a symbolic computation program to solve problems with a minimum of user interaction. The use of symbolic computation eliminates the need for user-written subroutines which greatly reduces the setup time for solving problems.
NASA Astrophysics Data System (ADS)
Fu, X.; Hu, L.; Lee, K. M.; Zou, J.; Ruan, X. D.; Yang, H. Y.
2010-10-01
This paper presents a method for dry calibration of an electromagnetic flowmeter (EMF). This method, which determines the voltage induced in the EMF as conductive liquid flows through a magnetic field, numerically solves a coupled set of multiphysical equations with measured boundary conditions for the magnetic, electric, and flow fields in the measuring pipe of the flowmeter. Specifically, this paper details the formulation of dry calibration and an efficient algorithm (that adaptively minimizes the number of measurements and requires only the normal component of the magnetic flux density as boundary conditions on the pipe surface to reconstruct the magnetic field involved) for computing the sensitivity of EMF. Along with an in-depth discussion on factors that could significantly affect the final precision of a dry calibrated EMF, the effects of flow disturbance on measuring errors have been experimentally studied by installing a baffle at the inflow port of the EMF. Results of the dry calibration on an actual EMF were compared against flow-rig calibration; excellent agreements (within 0.3%) between dry calibration and flow-rig tests verify the multiphysical computation of the fields and the robustness of the method. As requiring no actual flow, the dry calibration is particularly useful for calibrating large-diameter EMFs where conventional flow-rig methods are often costly and difficult to implement.
Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.
2003-01-01
Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.
Large Eddy Simulation in a Channel with Exit Boundary Conditions
NASA Technical Reports Server (NTRS)
Cziesla, T.; Braun, H.; Biswas, G.; Mitra, N. K.
1996-01-01
The influence of the exit boundary conditions (vanishing first derivative of the velocity components and constant pressure) on the large eddy simulation of the fully developed turbulent channel flow has been investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit boundary conditions introduce some small disturbance which is mostly damped by the grid stretching. The difference between the fully developed turbulent channel flow obtained with LES with periodicity condition and the inlet and exit and the LES with fully developed flow at the inlet and the exit boundary condition is less than 10% for equidistant grids and less than 5% for the case grid stretching. The chosen boundary condition is of interest because it may be used in complex flows with backflow at exit.
NASA Astrophysics Data System (ADS)
Wouden, Alex; Cimbala, John; Lewis, Bryan
2014-11-01
While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.
Numerical Boundary Conditions for Computational Aeroacoustics Benchmark Problems
NASA Technical Reports Server (NTRS)
Tam, Chritsopher K. W.; Kurbatskii, Konstantin A.; Fang, Jun
1997-01-01
Category 1, Problems 1 and 2, Category 2, Problem 2, and Category 3, Problem 2 are solved computationally using the Dispersion-Relation-Preserving (DRP) scheme. All these problems are governed by the linearized Euler equations. The resolution requirements of the DRP scheme for maintaining low numerical dispersion and dissipation as well as accurate wave speeds in solving the linearized Euler equations are now well understood. As long as 8 or more mesh points per wavelength is employed in the numerical computation, high quality results are assured. For the first three categories of benchmark problems, therefore, the real challenge is to develop high quality numerical boundary conditions. For Category 1, Problems 1 and 2, it is the curved wall boundary conditions. For Category 2, Problem 2, it is the internal radiation boundary conditions inside the duct. For Category 3, Problem 2, they are the inflow and outflow boundary conditions upstream and downstream of the blade row. These are the foci of the present investigation. Special nonhomogeneous radiation boundary conditions that generate the incoming disturbances and at the same time allow the outgoing reflected or scattered acoustic disturbances to leave the computation domain without significant reflection are developed. Numerical results based on these boundary conditions are provided.
NASA Astrophysics Data System (ADS)
Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng
2011-07-01
Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.
A new method of imposing boundary conditions for hyperbolic equations
NASA Technical Reports Server (NTRS)
Funaro, D.; ative.
1987-01-01
A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.
SRTM Stereo Pair with Landsat Overlay: Los Angeles to San Joaquin Valley, California
2000-09-21
California topography poses challenges for road builders. Northwest of Los Angeles, deformation of Earth crust along the Pacific-North American crustal plate boundary has made transportation difficult.
Verschaeve, Joris C G
2011-06-13
By means of the continuity equation of the incompressible Navier-Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.
NASA Technical Reports Server (NTRS)
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
NASA Astrophysics Data System (ADS)
Tang, Liang; Cong, Shengyi; Ling, Xianzhang; Ju, Nengpan
2017-01-01
Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the ( y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions.
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1988-01-01
It has previously been shown that the no-slip boundary conditions leads to a singularity at a moving contact line and that this presumes some form of slip. Present considerations on the energetics of slip due to shear stress lead to a yield stress boundary condition. A model for the distortion of the liquid state near solid boundaries gives a physical basis for this boundary condition. The yield stress condition is illustrated by an analysis of a slender drop rolling down an incline. That analysis provides a formula for the frictional drag resisting the drop movement. With the present boundary condition, the length of the slip region becomes a property of the fluid flow.
Crystallization in a model glass: Influence of the boundary conditions
NASA Astrophysics Data System (ADS)
Jund, P.; Jullien, R.
1998-06-01
Using molecular dynamics calculations and the Voronoï tessellation, we study the evolution of the local structure of a soft-sphere glass vs. temperature starting from the liquid phase at different quenching rates. This study is done for different sizes and for two different boundary conditions, namely the usual cubic periodic boundary conditions and the isotropic hyperspherical boundary conditions for which the particles evolve on the surface of a hypersphere in four dimensions. Our results show that for small system sizes, crystallization can indeed be induced by the cubic boundary conditions. On the other hand, we show that finite-size effects are more pronounced on the hypersphere and that crystallization is artificially inhibited even for large system sizes.
On the symmetry of the boundary conditions of the volume potential
NASA Astrophysics Data System (ADS)
Kal'menov, Tynysbek Sh.; Arepova, Gaukhar; Suragan, Durvudkhan
2017-09-01
It is well known that the volume potential determines the mass or the charge distributed over the domain with density f. The volume potential is extensively used in function theory and embedding theorems. It is also well known that the volume potential gives a solution to an inhomogeneous equation. And it generates a linear self-adjoint operator. It is known that self-adjoint differential operators are generated by boundary conditions. In our previous papers for an arbitrary domain a boundary condition on the volume potential is given. In the past, it was not possible to prove the self-adjointness of these obtained boundary conditions. In the present paper, we prove the symmetry of boundary condition for the volume potential.
Evans, Michael S
2009-01-01
In this paper, I examine how scientific disciplines define their boundaries by defining the publics with whom they engage. The case study is an episode in the development of early American sociology. In response to the dual challenge of credibility set up by the conflict between religious Baconian science and secular positivist science, key actors engaged in specific strategies of boundary-work to create their desired "sociological public"--a hybrid form of science-public relations that appealed to hostile university scientists while excluding a supportive religious audience from participation in the production of scientific knowledge. Using this case, I offer two specific insights. First I illustrate how, in the pursuit of scientific credibility, actors engage in boundary-work to differentiate audiences, not just practitioners. Such defining of publics is constitutive of scientific disciplines in their formative stage. Second, I demonstrate how audience boundaries can be redefined through the capture of existing boundary objects. Specifically, the removal of informational content in key boundary objects creates durable boundaries that are difficult to overcome.
DREAM-3D and the importance of model inputs and boundary conditions
NASA Astrophysics Data System (ADS)
Friedel, Reiner; Tu, Weichao; Cunningham, Gregory; Jorgensen, Anders; Chen, Yue
2015-04-01
Recent work on radiation belt 3D diffusion codes such as the Los Alamos "DREAM-3D" code have demonstrated the ability of such codes to reproduce realistic magnetospheric storm events in the relativistic electron dynamics - as long as sufficient "event-oriented" boundary conditions and code inputs such as wave powers, low energy boundary conditions, background plasma densities, and last closed drift shell (outer boundary) are available. In this talk we will argue that the main limiting factor in our modeling ability is no longer our inability to represent key physical processes that govern the dynamics of the radiation belts (radial, pitch angle and energy diffusion) but rather our limitations in specifying accurate boundary conditions and code inputs. We use here DREAM-3D runs to show the sensitivity of the modeled outcomes to these boundary conditions and inputs, and also discuss alternate "proxy" approaches to obtain the required inputs from other (ground-based) sources.
Impacts of Lateral Boundary Conditions on U.S. Ozone Modeling Analyses
Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, we perform annual simulations over North America with chemical boundary conditions prepared from two global models (GEOS-CHEM and Hemispheric CMAQ). Results indicate that the impac...
NASA Astrophysics Data System (ADS)
van Horssen, Wim T.; Wang, Yandong; Cao, Guohua
2018-06-01
In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.
Finite difference time domain implementation of surface impedance boundary conditions
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.
1991-01-01
Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.
Finite difference time domain implementation of surface impedance boundary conditions
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.
1991-01-01
Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a 2-D demonstration. Extensions to 3-D should be straightforward.
Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines
NASA Astrophysics Data System (ADS)
Qian, Wei; Werner, Wendelin
2018-06-01
We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.
NASA Astrophysics Data System (ADS)
Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid
2018-06-01
This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.
Numerical implementation of isolated horizon boundary conditions
NASA Astrophysics Data System (ADS)
Jaramillo, José Luis; Ansorg, Marcus; Limousin, François
2007-01-01
We study the numerical implementation of a set of boundary conditions derived from the isolated horizon formalism, and which characterize a black hole whose horizon is in quasiequilibrium. More precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere, in the numerical resolution of the conformal thin sandwich equations. As main results, we first establish the consistency of including in the set of boundary conditions a constant surface gravity prescription, interpretable as a lapse boundary condition, and second we assess how the prescriptions presented recently by Dain et al. for guaranteeing the well-posedness of the conformal transverse traceless equations with quasiequilibrium horizon conditions extend to the conformal thin sandwich elliptic system. As a consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated with the ingoing null normal at the horizon.
Boundary transfer matrices and boundary quantum KZ equations
NASA Astrophysics Data System (ADS)
Vlaar, Bart
2015-07-01
A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.
Integral Method of Boundary Characteristics: Neumann Condition
NASA Astrophysics Data System (ADS)
Kot, V. A.
2018-05-01
A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.
NASA Astrophysics Data System (ADS)
Sherwood, Christopher R.; Long, Joseph W.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Thompson, David M.; Plant, Nathaniel G.
2014-07-01
Large geomorphic changes to barrier islands may occur during inundation, when storm surge exceeds island elevation. Inundation occurs episodically and under energetic conditions that make quantitative observations difficult. We measured water levels on both sides of a barrier island in the northern Chandeleur Islands during inundation by Hurricane Isaac. Wind patterns caused the water levels to slope from the bay side to the ocean side for much of the storm. Modeled geomorphic changes during the storm were very sensitive to the cross-island slopes imposed by water-level boundary conditions. Simulations with equal or landward sloping water levels produced the characteristic barrier island storm response of overwash deposits or displaced berms with smoother final topography. Simulations using the observed seaward sloping water levels produced cross-barrier channels and deposits of sand on the ocean side, consistent with poststorm observations. This sensitivity indicates that accurate water-level boundary conditions must be applied on both sides of a barrier to correctly represent the geomorphic response to inundation events. More broadly, the consequence of seaward transport is that it alters the relationship between storm intensity and volume of landward transport. Sand transported to the ocean side may move downdrift, or aid poststorm recovery by moving onto the beach face or closing recent breaches, but it does not contribute to island transgression or appear as an overwash deposit in the back-barrier stratigraphic record. The high vulnerability of the Chandeleur Islands allowed us to observe processes that are infrequent but may be important at other barrier islands.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
NASA Astrophysics Data System (ADS)
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-11-01
Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi-Gang Feng
2012-05-31
The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less
NASA Astrophysics Data System (ADS)
Englberger, Antonia; Dörnbrack, Andreas
2018-03-01
The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.
Self-formed meandering river created in the laboratory using an upstream migrating boundary
NASA Astrophysics Data System (ADS)
van Dijk, W. M.; van de Lageweg, W. I.; Kleinhans, M. G.
2010-12-01
Braided rivers are relatively easily formed in the laboratory, whereas self-formed meandering rivers in the lab have proven very difficult to form, indicating a lack of understanding of the necessary and sufficient conditions for meandering. Our objective is to create self-formed dynamic meandering rivers and floodplains in a laboratory. Early experiments attempted to initiate meandering with upstream inflow at a fixed angle different from the general flow direction. The resulting bends were fixed at one position, which is not the dynamic meandering observed in nature. Another important condition for meandering is to have banks stronger than the non-cohesive bed sediment, which has been attained by growing vegetation. Furthermore, finer or light-weight sediment has been used to let chute channels fill up where otherwise multi-thread channels would have evolved, which is braiding. Yet the fixed-angle inflow kept meander migration and channel belt width and complexity limited. We accomplished dynamic meandering in the laboratory by using an upstream migrating boundary, which simulates a meander migrating into the flume. Our experiments were conducted in a circulated flume of 11x6 meter, with a constant discharge and sediment feed consisting of a sediment mixture ranging from silt to fine gravel (Kleinhans et al., 2010, this conference). The downstream boundary is a lake into which the river built a branched fan delta (Van de Lageweg et al., 2010, this conference). The morphology was recorded by high-resolution (0.5 mm) line-laser scanning and digital Single Lens Reflex (SLR) camera used for channel-floodplain segmentation and particle size estimation, at an interval of 8 hours. Furthermore a large number of smaller-scale auxiliary experiments were conducted to explore meandering tendency in a large range of parameters. Initial alternate ‘forced’ bars were formed at fixed positions with low sinuosity when the upstream boundary was at one fixed position. Migration of the upstream boundary caused further erosion of the outer banks and formation of point bars in inner bends, so that sinuosity increased to about 1.25. When the upstream boundary reversed migration direction chute cut-offs formed and meander bends reformed in the opposite direction. Hence in the first meander sweep the reworked floodplain showed nodes and antinodes at a wave length in agreement with linear bar stability analysis. After 260 hours experimental time the floodplain had become much more complex, exhibiting meandering channels, point bars, chutes, abandoned and partially filled channels, and slightly cohesive floodplains similar to natural meandering gravel-bed rivers such as the Allier near Moulins (France) and the Rhine near Emmerich (Germany). The flow became even more confined to a single-thread channel when pulses of silica flour were fed during short flood events, which significantly enhanced cohesive floodplain formation. The strengthened floodplains decreased channel mobility, however. We conclude that the necessary and sufficient conditions for meandering are a dynamic upstream boundary and active floodplain formation by fines.
Evaluation of Far-Field Boundary Conditions for the Gust Response Problem
NASA Technical Reports Server (NTRS)
Scott, James R.; Kreider, Kevin L.; Heminger, John A.
2002-01-01
This paper presents a detailed situ dy of four far-field boundary conditions used in solving the single airfoil gust response problem. The boundary conditions, examined are the partial Sommerfeld radiation condition with only radial derivatives, the full Sommerfeld radiation condition with both radial and tangential derivatives, the Bayliss-Turkel condition of order one, and the Hagstrom-Hariharan condition of order one. The main objectives of the study were to determine which far-field boundary condition was most accurate, which condition was least sensitive to changes in grid. and which condition was best overall in terms of both accuracy and efficiency. Through a systematic study of the flat plate gust response problem, it was determined that the Hagstrom-Hariharan condition was most accurate, the Bayliss-Turkel condition was least sensitive to changes in grid, and Bayliss-Turkel was best in terms of both accuracy and efficiency.
Horton, G.E.; Letcher, B.H.
2008-01-01
The inability to account for the availability of individuals in the study area during capture-mark-recapture (CMR) studies and the resultant confounding of parameter estimates can make correct interpretation of CMR model parameter estimates difficult. Although important advances based on the Cormack-Jolly-Seber (CJS) model have resulted in estimators of true survival that work by unconfounding either death or recapture probability from availability for capture in the study area, these methods rely on the researcher's ability to select a method that is correctly matched to emigration patterns in the population. If incorrect assumptions regarding site fidelity (non-movement) are made, it may be difficult or impossible as well as costly to change the study design once the incorrect assumption is discovered. Subtleties in characteristics of movement (e.g. life history-dependent emigration, nomads vs territory holders) can lead to mixtures in the probability of being available for capture among members of the same population. The result of these mixtures may be only a partial unconfounding of emigration from other CMR model parameters. Biologically-based differences in individual movement can combine with constraints on study design to further complicate the problem. Because of the intricacies of movement and its interaction with other parameters in CMR models, quantification of and solutions to these problems are needed. Based on our work with stream-dwelling populations of Atlantic salmon Salmo salar, we used a simulation approach to evaluate existing CMR models under various mixtures of movement probabilities. The Barker joint data model provided unbiased estimates of true survival under all conditions tested. The CJS and robust design models provided similarly unbiased estimates of true survival but only when emigration information could be incorporated directly into individual encounter histories. For the robust design model, Markovian emigration (future availability for capture depends on an individual's current location) was a difficult emigration pattern to detect unless survival and especially recapture probability were high. Additionally, when local movement was high relative to study area boundaries and movement became more diffuse (e.g. a random walk), local movement and permanent emigration were difficult to distinguish and had consequences for correctly interpreting the survival parameter being estimated (apparent survival vs true survival). ?? 2008 The Authors.
Vortex rings impinging on permeable boundaries
NASA Astrophysics Data System (ADS)
Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen
2015-01-01
Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.
Geyser periodicity and the response of geysers to deformation
Ingebritsen, S.E.; Rojstaczer, S.A.
1996-01-01
Numerical simulations of multiphase fluid and heat transport through a porous medium define combinations of rock properties and boundary conditions which lead to geyser-like periodic discharge. Within the rather narrow range of conditions that allow geyser-like behavior, eruption frequency and discharge are highly sensitive to the intrinsic permeabilities of the geyser conduit and the surrounding rock matrix, to the relative permeability functions assumed, and to pressure gradients in the matrix. In theory, heats pipes (concomitant upward flow of steam and downward flow of liquid) can exist under similar conditions, but our simulations suggest that the periodic solution is more stable. Simulated time series of geyser discharge are chaotic, but integrated quantities such as eruption frequency and mass discharge per eruption are free of chaos. These results may explain the observed sensitivity of natural geysers to small strains such as those caused by remote earthquakes, if ground motion is sufficient to induce permeability changes. Changes in geyser behavior caused by minor preseismic deformation, periodic surface loading, and Earth tides are more difficult to explain in the context of our current model. Copyright 1996 by the American Geophysical Union.
Enhanced asymptotic symmetry algebra of (2 +1 ) -dimensional flat space
NASA Astrophysics Data System (ADS)
Detournay, Stéphane; Riegler, Max
2017-02-01
In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2 +1 ) -dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007), 10.1088/0264-9381/24/5/F01]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u ^(1 ) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.
Discrete transparent boundary conditions for the mixed KDV-BBM equation
NASA Astrophysics Data System (ADS)
Besse, Christophe; Noble, Pascal; Sanchez, David
2017-09-01
In this paper, we consider artificial boundary conditions for the linearized mixed Korteweg-de Vries (KDV) and Benjamin-Bona-Mahoney (BBM) equation which models water waves in the small amplitude, large wavelength regime. Continuous (respectively discrete) artificial boundary conditions involve non local operators in time which in turn requires to compute time convolutions and invert the Laplace transform of an analytic function (respectively the Z-transform of an holomorphic function). In this paper, we propose a new, stable and fairly general strategy to carry out this crucial step in the design of transparent boundary conditions. For large time simulations, we also introduce a methodology based on the asymptotic expansion of coefficients involved in exact direct transparent boundary conditions. We illustrate the accuracy of our methods for Gaussian and wave packets initial data.
A far-field non-reflecting boundary condition for two-dimensional wake flows
NASA Technical Reports Server (NTRS)
Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli
1995-01-01
Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.
RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds
NASA Technical Reports Server (NTRS)
Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, Graham; Long, Charles N.; Jonsson, Haflidi H.; Bucholtz, Anthony; Collins, Don R.;
2012-01-01
Small boundary-layer clouds are ubiquitous over many parts of the globe and strongly influence the Earths radiative energy balance. However, our understanding of these clouds is insufficient to solve pressing scientific problems. For example, cloud feedback represents the largest uncertainty amongst all climate feedbacks in general circulation models (GCM). Several issues complicate understanding boundary-layer clouds and simulating them in GCMs. The high spatial variability of boundary-layer clouds poses an enormous computational challenge, since their horizontal dimensions and internal variability occur at spatial scales much finer than the computational grids used in GCMs. Aerosol-cloud interactions further complicate boundary-layer cloud measurement and simulation. Additionally, aerosols influence processes such as precipitation and cloud lifetime. An added complication is that at small scales (order meters to 10s of meters) distinguishing cloud from aerosol is increasingly difficult, due to the effects of aerosol humidification, cloud fragments and photon scattering between clouds.
NASA Astrophysics Data System (ADS)
Sprofera, Joseph D.; Clark, Robert L.; Cabell, Randolph H.; Gibbs, Gary P.
2005-05-01
Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.
Improvements to Level Set, Immersed Boundary methods for Interface Tracking
NASA Astrophysics Data System (ADS)
Vogl, Chris; Leveque, Randy
2014-11-01
It is not uncommon to find oneself solving a moving boundary problem under flow in the context of some application. Of particular interest is when the moving boundary exerts a curvature-dependent force on the liquid. Such a force arises when observing a boundary that is resistant to bending or has surface tension. Numerically speaking, stable numerical computation of the curvature can be difficult as it is often described in terms of high-order derivatives of either marker particle positions or of a level set function. To address this issue, the level set method is modified to track not only the position of the boundary, but the curvature as well. The definition of the signed-distance function that is used to modify the level set method is also used to develop an interpolation-free, closest-point method. These improvements are used to simulate a bending-resistant, inextensible boundary under shear flow to highlight area and volume conservation, as well as stable curvature calculation. Funded by a NSF MSPRF grant.
Numerical implementation of isolated horizon boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaramillo, Jose Luis; Ansorg, Marcus; Limousin, Francois
2007-01-15
We study the numerical implementation of a set of boundary conditions derived from the isolated horizon formalism, and which characterize a black hole whose horizon is in quasiequilibrium. More precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere, in the numerical resolution of the conformal thin sandwich equations. As main results, we first establish the consistency of including in the set of boundary conditions a constant surface gravity prescription, interpretable as a lapse boundary condition, and second we assess how the prescriptions presented recently by Dain et al. for guaranteeing the well-posedness of the conformalmore » transverse traceless equations with quasiequilibrium horizon conditions extend to the conformal thin sandwich elliptic system. As a consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated with the ingoing null normal at the horizon.« less
NASA Astrophysics Data System (ADS)
Riedel, M. R.
2007-12-01
Grain boundaries are the key for the understanding of mineral reaction kinetics. More generally, nanometer scale processes involved in breaking and establishing bonds at reaction sites determine how and at which rate bulk rock properties change in response to external tectonic forcing and possibly feed back into various geodynamic processes. A particular problem is the effects of grain-boundary energy on the kinetics of the olivine-spinel phase transformation in subducting slabs. Slab rheology is affected in many ways by this (metastable) mineral phase change. Sluggish kinetics due to metastable hindrance is likely to cause particular difficulties, because of possible strong non-linear feedback loops between strain-rate and change of creep properties during transformation. In order to get these nanoscale properties included into thermo-mechanical models, reliable kinetic data is required. The measurement of grain-boundary energies is, however, a rather difficult problem. Conventional methods of grain boundary surface tension measurement include (a) equilibrium angles at triple junction (b) rotating ball method (c) thermal groove method, and others (Gottstein & Shvindlerman, 1999). Here I suggest a new method that allows for the derivation of grain-boundary energies for an isochemical phase transformation based on experimental (in-situ) kinetic data in combination with a corresponding dynamic scaling law (Riedel and Karato, 1997). The application of this method to the olivine-spinel phase transformation in subducting slabs provides a solution to the extrapolation problem of measured kinetic data: Any kinetic phase boundary measured at the laboratory time scale can be "scaled" to the correct critical isotherm at subduction zones, under experimentelly "forbidden" conditions (Liou et al., 2000). Consequences for the metastability hypothesis that relates deep seismicity with olivine metastability are derived and discussed. References: Gottstein G, Shvindlerman LS (1999) Grain Boundary Migration in Metals, CRC Press, 385 pp., New York. Riedel MR, Karato S (1997) Grain-Size Evolution in Subducted Oceanic Lithosphere Associated with the Olivine- Spinel Transformation and Its Effects on Rheology. EPSL 148: 27-43. Liou JG, Hacker BR, Zhang RY (2000) Into the forbidden zone. Science 287, 1215-1216.
Applying the method of fundamental solutions to harmonic problems with singular boundary conditions
NASA Astrophysics Data System (ADS)
Valtchev, Svilen S.; Alves, Carlos J. S.
2017-07-01
The method of fundamental solutions (MFS) is known to produce highly accurate numerical results for elliptic boundary value problems (BVP) with smooth boundary conditions, posed in analytic domains. However, due to the analyticity of the shape functions in its approximation basis, the MFS is usually disregarded when the boundary functions possess singularities. In this work we present a modification of the classical MFS which can be applied for the numerical solution of the Laplace BVP with Dirichlet boundary conditions exhibiting jump discontinuities. In particular, a set of harmonic functions with discontinuous boundary traces is added to the MFS basis. The accuracy of the proposed method is compared with the results form the classical MFS.
Gagnier, Kristin Michod; Dickinson, Christopher A.; Intraub, Helene
2015-01-01
Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14–15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2–4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception. PMID:23547787
Michod Gagnier, Kristin; Dickinson, Christopher A; Intraub, Helene
2013-01-01
Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14-15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2-4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
Pseudo-polar drive patterns for brain electrical impedance tomography.
Shi, Xuetao; Dong, Xiuzhen; Shuai, Wanjun; You, Fusheng; Fu, Feng; Liu, Ruigang
2006-11-01
Brain electrical impedance tomography (EIT) is a difficult task as brain tissues are enclosed by the skull of high resistance and cerebrospinal fluid (CSF) of low resistance, which makes internal resistivity information more difficult to extract. In order to seek a single source drive pattern that is more suitable for brain EIT, we built a more realistic experimental setting that simulates a head with the resistivity of the scalp, skull, CSF and brain, and compared the performance of adjacent, cross, polar and pseudo-polar drive patterns in terms of the boundary voltage dynamic range, independent measurement number, total boundary voltage changes and anti-noise performance based on it. The results demonstrate that the pseudo-polar drive pattern is optimal in all the aspects except for the dynamic range. The polar and cross drive patterns come next, and the adjacent drive pattern is the worst. Therefore, the pseudo-polar drive pattern should be chosen for brain EIT.
Large-eddy simulation of a boundary layer with concave streamwise curvature
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1994-01-01
Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.
High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions
NASA Astrophysics Data System (ADS)
Villamizar, Vianey; Acosta, Sebastian; Dastrup, Blake
2017-03-01
We devise a new high order local absorbing boundary condition (ABC) for radiating problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary shape. By introducing an artificial boundary S enclosing the scatterer, the original unbounded domain Ω is decomposed into a bounded computational domain Ω- and an exterior unbounded domain Ω+. Then, we define interface conditions at the artificial boundary S, from truncated versions of the well-known Wilcox and Karp farfield expansion representations of the exact solution in the exterior region Ω+. As a result, we obtain a new local absorbing boundary condition (ABC) for a bounded problem on Ω-, which effectively accounts for the outgoing behavior of the scattered field. Contrary to the low order absorbing conditions previously defined, the error at the artificial boundary induced by this novel ABC can be easily reduced to reach any accuracy within the limits of the computational resources. We accomplish this by simply adding as many terms as needed to the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions guarantees that the order of approximation of the new ABC can be increased arbitrarily without having to enlarge the radius of the artificial boundary. We include numerical results in two and three dimensions which demonstrate the improved accuracy and simplicity of this new formulation when compared to other absorbing boundary conditions.
2009-04-01
Contrast signature plots for the simple wireframe model with user-defined thermal boundary conditions and an exhaust plume ...boundary conditions but no exhaust plume ................................................................................. 25 A.3. Contrast signature...plots for the simple wireframe model with no user-defined thermal boundary conditions or exhaust plume
Edge states at phase boundaries and their stability
NASA Astrophysics Data System (ADS)
Asorey, M.; Balachandran, A. P.; Pérez-Pardo, J. M.
2016-10-01
We analyze the effects of Robin-like boundary conditions on different quantum field theories of spin 0, 1/2 and 1 on manifolds with boundaries. In particular, we show that these conditions often lead to the appearance of edge states. These states play a significant role in physical phenomena like quantum Hall effect and topological insulators. We prove in a rigorous way the existence of spectral lower bounds on the kinetic term of different Hamiltonians, even in the case of Abelian gauge fields where it is a non-elliptic differential operator. This guarantees the stability and consistency of massive field theories with masses larger than the lower bound of the kinetic term. Moreover, we find an upper bound for the deepest edge state. In the case of Abelian gauge theories, we analyze a generalization of Robin boundary conditions. For Dirac fermions, we analyze the cases of Atiyah-Patodi-Singer and chiral bag boundary conditions. The explicit dependence of the bounds on the boundary conditions and the size of the system is derived under general assumptions.
Nonreflective Conditions for Perfectly Matched Layer in Computational Aeroacoustics
NASA Astrophysics Data System (ADS)
Choung, Hanahchim; Jang, Seokjong; Lee, Soogab
2018-05-01
In computational aeroacoustics, boundary conditions such as radiation, outflow, or absorbing boundary conditions are critical issues in that they can affect the entire solution of the computation. Among these types of boundary conditions, the perfectly matched layer boundary condition, which has been widely used in computational fluid dynamics and computational aeroacoustics, is developed by augmenting the additional term in the original governing equations by an absorption function so as to stably absorb the outgoing waves. Even if the perfectly matched layer is analytically a perfectly nonreflective boundary condition, spurious waves occur at the interface, since the analysis is performed in discretized space. Hence, this study is focused on factors that affect numerical errors from perfectly matched layer to find the optimum conditions for nonreflective PML. Through a mathematical approach, a minimum width of perfectly matched layer and an optimum absorption coefficient are suggested. To validate the prediction of the analysis, numerical simulations are performed in a generalized coordinate system, as well as in a Cartesian coordinate system.
Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries
NASA Astrophysics Data System (ADS)
Morales Escalante, José A.; Gamba, Irene M.
2018-06-01
We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.
A review of direct experimental measurements of detachment
Boedo, J.; McLean, A. G.; Rudakov, D. L.; ...
2018-02-22
Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. Here, we review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson Scattering (TS) in the divertor regionmore » and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.« less
Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies
NASA Technical Reports Server (NTRS)
Norman, J. M. (Principal Investigator)
1985-01-01
The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. The model (named BIGAR) considers the angular distribution of leaves, leaf area index, the location and size of individual subcanopies such as widely spaced rows or trees, spectral and directional properties of leaves, multiple scattering, solar position and sky condition, and characteristics of the soil. The model relates canopy biophysical attributes to down-looking radiation measurements for nadir and off-nadir viewing angles. Therefore, inversion of this model, which is difficult but practical should provide surface biophysical pattern; a fundamental goal of remote sensing. Such a model also will help to evaluate atmospheric limitations to satellite remote sensing by providing a good surface boundary condition for many different kinds of canopies. Furthermore, this model can relate estimates of nadir reflectance, which is approximated by most satellites, to hemispherical reflectance, which is necessary in the energy budget of vegetated surfaces.
A review of direct experimental measurements of detachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedo, J.; McLean, A. G.; Rudakov, D. L.
Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. Here, we review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson Scattering (TS) in the divertor regionmore » and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.« less
NASA Astrophysics Data System (ADS)
Lahouij, I.; Bucholz, E. W.; Vacher, B.; Sinnott, S. B.; Martin, J. M.; Dassenoy, F.
2012-09-01
Inorganic fullerene-like (IF) nanoparticles made of metal dichalcogenides have previously been recognized to be good friction modifiers and anti-wear additives under boundary lubrication conditions. The tribological performance of these particles appears to be a result of their size, structure and morphology, along with the test conditions. However, the very small scale of the IF nanoparticles makes distinguishing the properties which affect the lubrication mechanism exceedingly difficult. In this work, a high resolution transmission electron microscope equipped with a nanoindentation holder is used to manipulate individual hollow IF-WS2 nanoparticles and to investigate their responses to compression. Additional atomistic molecular dynamics (MD) simulations of similarly structured, individual hollow IF-MoS2 nanoparticles are performed for compression studies between molybdenum surfaces on their major and minor axis diameters. MD simulations of these structures allows for characterization of the influence of structural orientation on the mechanical behavior and nano-sheet exfoliation of hollow-core IF nanoparticles. The experimental and theoretical results for these similar nanoparticles are qualitatively compared.
Lahouij, I; Bucholz, E W; Vacher, B; Sinnott, S B; Martin, J M; Dassenoy, F
2012-09-21
Inorganic fullerene-like (IF) nanoparticles made of metal dichalcogenides have previously been recognized to be good friction modifiers and anti-wear additives under boundary lubrication conditions. The tribological performance of these particles appears to be a result of their size, structure and morphology, along with the test conditions. However, the very small scale of the IF nanoparticles makes distinguishing the properties which affect the lubrication mechanism exceedingly difficult. In this work, a high resolution transmission electron microscope equipped with a nanoindentation holder is used to manipulate individual hollow IF-WS(2) nanoparticles and to investigate their responses to compression. Additional atomistic molecular dynamics (MD) simulations of similarly structured, individual hollow IF-MoS(2) nanoparticles are performed for compression studies between molybdenum surfaces on their major and minor axis diameters. MD simulations of these structures allows for characterization of the influence of structural orientation on the mechanical behavior and nano-sheet exfoliation of hollow-core IF nanoparticles. The experimental and theoretical results for these similar nanoparticles are qualitatively compared.
A review of direct experimental measurements of detachment
NASA Astrophysics Data System (ADS)
Boedo, J.; McLean, A. G.; Rudakov, D. L.; Watkins, J. G.
2018-04-01
Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. We review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson scattering in the divertor region and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
NASA Technical Reports Server (NTRS)
Nordstrom, Jan; Carpenter, Mark H.
1998-01-01
Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.
Development and Testing of DAVID: A Close-in EMP Coupling Code for Arbitrarily Shaped Objects
1975-11-07
5.OE-9 sec. (Ambient boundary condition, 0 = 0, Y - YAMAX ). 65 13 b. Approximate contours of constant Ex at T -5.8E-9 sec. (Ambient boundary...condition, 0 =0 Y -YMAX). 65 13 c. Appro<imate contours of constant Ex at T = 9.8E-9 sec. (Ambient boundary condition, 0 = 0 °, Y = YAMAX ). 66 13 d...Approximate contours of constant Ex at T 2.9E-8 sec. (Ambient boundary condition, 0% Y = YAMAX ). 66 - 14 a. Approximate contours of constant Ex at T = 9.8E-9
The PPP model of alternant cyclic polyenes with modified boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendazzoli, G.L.; Evangelisti, S.
1995-08-15
The extension of the PPP Hamiltonian for alternant cyclic polyenes to noninteger values of the pseudomomentum by imposing modified boundary conditions is discussed in detail. It is shown that a computer program for periodic boundary conditions can be easily adapted to the new boundary conditions. Full CI computations are carried out for some low-lying states of the PPP model of alternant cyclic polyenes (CH){sub N} (N even) at half-filling. The energy values obtained by using periodic (Bloch) and antiperiodic (Moebius) orbitals are used to perform energy extrapolations for N {yields} {infinity}. 38 refs., 2 figs., 5 tabs.
Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows
NASA Astrophysics Data System (ADS)
Chen, Z.; Shu, C.; Tan, D.
2018-05-01
An immersed boundary-simplified lattice Boltzmann method is developed in this paper for simulations of two-dimensional incompressible viscous flows with immersed objects. Assisted by the fractional step technique, the problem is resolved in a predictor-corrector scheme. The predictor step solves the flow field without considering immersed objects, and the corrector step imposes the effect of immersed boundaries on the velocity field. Different from the previous immersed boundary-lattice Boltzmann method which adopts the standard lattice Boltzmann method (LBM) as the flow solver in the predictor step, a recently developed simplified lattice Boltzmann method (SLBM) is applied in the present method to evaluate intermediate flow variables. Compared to the standard LBM, SLBM requires lower virtual memories, facilitates the implementation of physical boundary conditions, and shows better numerical stability. The boundary condition-enforced immersed boundary method, which accurately ensures no-slip boundary conditions, is implemented as the boundary solver in the corrector step. Four typical numerical examples are presented to demonstrate the stability, the flexibility, and the accuracy of the present method.
Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations
NASA Astrophysics Data System (ADS)
Berri, Guillermo J.; Bertossa, Germán
2018-01-01
A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.
Well-posedness of the free boundary problem in compressible elastodynamics
NASA Astrophysics Data System (ADS)
Trakhinin, Yuri
2018-02-01
We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.
Comparison of artificial absorbing boundaries for acoustic wave equation modelling
NASA Astrophysics Data System (ADS)
Gao, Yingjie; Song, Hanjie; Zhang, Jinhai; Yao, Zhenxing
2017-12-01
Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves, convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models. The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude errors as the full waveform inversion.
NASA Astrophysics Data System (ADS)
Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki
2017-04-01
The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum, but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation.
Livermore, Philip W.; Bailey, Lewis M.; Hollerbach, Rainer
2016-01-01
We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth’s core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E1/2, where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1 m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E−1/2 or E−1). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth’s core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤ 10−5. PMID:26980289
van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef
2014-07-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.
Vaezi, P.; Holland, C.; Thakur, S. C.; ...
2017-04-01
The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less
A new approach to implement absorbing boundary condition in biomolecular electrostatics.
Goni, Md Osman
2013-01-01
This paper discusses a novel approach to employ the absorbing boundary condition in conjunction with the finite-element method (FEM) in biomolecular electrostatics. The introduction of Bayliss-Turkel absorbing boundary operators in electromagnetic scattering problem has been incorporated by few researchers. However, in the area of biomolecular electrostatics, this boundary condition has not been investigated yet. The objective of this paper is twofold. First, to solve nonlinear Poisson-Boltzmann equation using Newton's method and second, to find an efficient and acceptable solution with minimum number of unknowns. In this work, a Galerkin finite-element formulation is used along with a Bayliss-Turkel absorbing boundary operator that explicitly accounts for the open field problem by mapping the Sommerfeld radiation condition from the far field to near field. While the Bayliss-Turkel condition works well when the artificial boundary is far from the scatterer, an acceptable tolerance of error can be achieved with the second order operator. Numerical results on test case with simple sphere show that the treatment is able to reach the same level of accuracy achieved by the analytical method while using a lower grid density. Bayliss-Turkel absorbing boundary condition (BTABC) combined with the FEM converges to the exact solution of scattering problems to within discretization error.
NASA Astrophysics Data System (ADS)
Boccadifuoco, Alessandro; Mariotti, Alessandro; Celi, Simona; Martini, Nicola; Salvetti, Maria Vittoria
2016-11-01
Ascending thoracic aortic aneurysms are cardiovascular diseases consisting in a dilation of the ascending thoracic aorta. Since indicating a weakness of the arterial wall, they can lead to major complications with significant mortality rate. Clinical decisions about surgery are currently based on the maximum aortic diameter, but this single index does not seem a reliable indicator of the pathological state of the aorta. Numerical simulations of the blood flow inside the aneurysm may give supplementary information by quantifying important indices that are difficult to be measured, like the wall shear stress. Our aim is to develop an efficient platform in which in-vivo measurements are used to perform the hemodynamic simulations on a patient-specific basis. In particular, we used real geometries of thoracic aorta and focused on the use of clinical information to impose accurate boundary conditions at the inlet/outlets of the computational model. Stochastic analysis was also performed, to evaluate how uncertainties in the boundary parameters affect the main hemodynamic indicators, by considering both rigid and deformable walls. Stochastic calibration of numerical parameters against clinical data is in progress and results will be possibly shown.
Structure and dynamics of Saturn's outer magnetosphere and boundary regions
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Lepping, R. P.; Ness, N. F.
1983-01-01
In 1979-1981, the three USA spacecraft Pioneer 11 and Voyagers 1 and 2 discovered and explored the magnetosphere of Saturn to the limited extent possible on flyby trajectories. Considerable variation in the locations of the bow shock (BS) and magnetopause (MP) surfaces were observed in association with variable solar wind conditions and, during the Voyager 2 encounter, possible immersion in Jupiter's distant magnetic tail. The limited number of BS and MP crossings were concentrated near the subsolar region and the dawn terminator, and that fact, together with the temporal variability, makes it difficult to assess the three dimensional shape of the sunward magnetospheric boundary. The combined BS and MP crossing positions from the three spacecraft yield an average BS-to-MP stagnation point distance ratio of 1.29 +/- 0.10. This is near the 1.33 value for the Earth's magnetosphere, implying a similar sunward shape at Saturn. Study of the structure and dynamical behavior of the outer magnetosphere, both in the sunward hemisphere and the magnetotail region using combined plasma and magnetic field data, suggest that Saturn's magnetosphere is more similar to that of Earth than that of Jupiter.
Derivation and application of a class of generalized boundary conditions
NASA Technical Reports Server (NTRS)
Senior, Thomas B. A.; Volakis, John L.
1989-01-01
Boundary conditions involving higher order derivatives are presented for simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to nonplanar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for uniform coating at least a quarter of a wavelength in thickness.
NASA Astrophysics Data System (ADS)
Liu, Tingguang; Xia, Shuang; Bai, Qin; Zhou, Bangxin; Zhang, Lefu; Lu, Yonghao; Shoji, Tetsuo
2018-01-01
The intergranular cracks and grain boundary (GB) network of a GB-engineered 316 stainless steel after stress corrosion cracking (SCC) test in high temperature high pressure water of reactor environment were investigated by two-dimensional and three-dimensional (3D) characterization in order to expose the mechanism that GB-engineering mitigates intergranular SCC. The 3D microstructure shown that the essential characteristic of the GB-engineered microstructure is formation of many large twin-boundaries as a result of multiple-twinning, which results in the formation of large grain-clusters. The large grain-clusters played a key role to the improvement of intergranular SCC resistance by GB-engineering. The main intergranular cracks propagated in a zigzag along the outer boundaries of these large grain-clusters because all inner boundaries of the grain-clusters were twin-boundaries (∑3) or twin-related boundaries (∑3n) which had much lower susceptibility to SCC than random boundaries. These large grain-clusters had tree-ring-shaped topology structure and very complex morphology. They got tangled so that difficult to be separated during SCC, resulting in some large crack-bridges retained in the crack surface.
Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions
NASA Astrophysics Data System (ADS)
Saurabh, S.; Harpalani, S.
2017-12-01
Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.
Effect of initial microstructure on the compactability of rapidly solidified Ti-rich TiAl powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, M.; Chiba, A.; Morizono, Y.
1997-12-31
Initial microstructure dependence of compactability at elevated temperature in rapidly solidified Ti-rich TiAl alloy powders produced by plasma rotating electrode process (PREP) has been investigated. There were two kinds of powders with respect to the microstructure. The first one had a surface relief of a martensitic phase, which was referred as M powder. The second one had a dendritic structure, which was referred as D powder. {alpha}{sub 2}+{gamma} microduplex and {alpha}{sub 2}/{gamma} lamellar structures were formed in M and D powders of the Ti-40 at%Al alloy by heat treatment at 1,273 K, respectively. The microduplex structure consisted of {gamma} precipitatemore » in the twin related {alpha}{sub 2} matrix with the usual orientation relationship. It was difficult to compact the D powder by hot pressing at 1,273 K under 50 MPa for 14.4 ks. On the other hand, the M powder was compacted easily by hot pressing with the same condition. The twin related {alpha}{sub 2} and {alpha}{sub 2} boundary changed to random ones and the {alpha}{sub 2} and {gamma} phases lost the usual orientation relationship in the duplex structure during the hot pressing. In other words, the low energy boundaries were changed to the high energy ones suitable for grain boundary sliding. Dislocations were scarcely observed inside of both the {alpha}{sub 2} and {gamma} crystal grains. It was concluded that the grain boundary sliding was a predominant deformation mode in the M powder during the hot pressing. D and M powders in Ti-45 and 47 at%Al alloys showed the same tendency as those in Ti-40 at%Al alloy during hot pressing.« less
NASA Astrophysics Data System (ADS)
Umezu, Kenichiro
In this paper, we consider a semilinear elliptic boundary value problem in a smooth bounded domain, having the so-called logistic nonlinearity that originates from population dynamics, with a nonlinear boundary condition. Although the logistic nonlinearity has an absorption effect in the problem, the nonlinear boundary condition is induced by the homogeneous incoming flux on the boundary. The objective of our study is to analyze the existence of a bifurcation component of positive solutions from trivial solutions and its asymptotic behavior and stability. We perform this analysis using the method developed by Lyapunov and Schmidt, based on a scaling argument.
Simulations of the 2.5D inviscid primitive equations in a limited domain
NASA Astrophysics Data System (ADS)
Chen, Qingshan; Temam, Roger; Tribbia, Joseph J.
2008-12-01
The primitive equations (PEs) of the atmosphere and the oceans without viscosity are considered. These equations are not well-posed for any set of local boundary conditions. In space dimension 2.5 a set of nonlocal boundary conditions has been proposed in Chen et al. [Q. Chen, J. Laminie, A. Rousseau, R. Temam, J. Tribbia, A 2.5D Model for the equations of the ocean and the atmosphere, Anal. Appl. 5(3) (2007) 199-229]. The present article is aimed at testing the validity of these boundary conditions with physically relevant data. The issues tested are the well-posedness in the nonlinear case and the computational efficiency of the boundary conditions for limited area models [T.T. Warner, R.A. Peterson, R.E. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction, Bull. Amer. Meteor. Soc. 78(11) (1997) 2599-2617].
Boundary Conditions for Jet Flow Computations
NASA Technical Reports Server (NTRS)
Hayder, M. E.; Turkel, E.
1994-01-01
Ongoing activities are focused on capturing the sound source in a supersonic jet through careful large eddy simulation (LES). One issue that is addressed is the effect of the boundary conditions, both inflow and outflow, on the predicted flow fluctuations, which represent the sound source. In this study, we examine the accuracy of several boundary conditions to determine their suitability for computations of time-dependent flows. Various boundary conditions are used to compute the flow field of a laminar axisymmetric jet excited at the inflow by a disturbance given by the corresponding eigenfunction of the linearized stability equations. We solve the full time dependent Navier-Stokes equations by a high order numerical scheme. For very small excitations, the computed growth of the modes closely corresponds to that predicted by the linear theory. We then vary the excitation level to see the effect of the boundary conditions in the nonlinear flow regime.
Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)
NASA Astrophysics Data System (ADS)
Frigola, Amanda; Prange, Matthias; Schulz, Michael
2018-04-01
The Middle Miocene Climate Transition was characterized by major Antarctic ice sheet expansion and global cooling during the interval ˜ 15-13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry, and vegetation. Additionally, Antarctic ice volume and geometry, sea level, and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The MMCO and MMG boundary conditions have been successfully applied to the Community Climate System Model version 3 (CCSM3) to provide evidence of their suitability for global climate modeling. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.
Iterative methods for plasma sheath calculations: Application to spherical probe
NASA Technical Reports Server (NTRS)
Parker, L. W.; Sullivan, E. C.
1973-01-01
The computer cost of a Poisson-Vlasov iteration procedure for the numerical solution of a steady-state collisionless plasma-sheath problem depends on: (1) the nature of the chosen iterative algorithm, (2) the position of the outer boundary of the grid, and (3) the nature of the boundary condition applied to simulate a condition at infinity (as in three-dimensional probe or satellite-wake problems). Two iterative algorithms, in conjunction with three types of boundary conditions, are analyzed theoretically and applied to the computation of current-voltage characteristics of a spherical electrostatic probe. The first algorithm was commonly used by physicists, and its computer costs depend primarily on the boundary conditions and are only slightly affected by the mesh interval. The second algorithm is not commonly used, and its costs depend primarily on the mesh interval and slightly on the boundary conditions.
Tweaking one-loop determinants in AdS3
NASA Astrophysics Data System (ADS)
Castro, Alejandra; Keeler, Cynthia; Szepietowski, Phillip
2017-10-01
We revisit the subject of one-loop determinants in AdS3 gravity via the quasi-normal mode method. Our goal is to evaluate a one-loop determinant with chiral boundary conditions for the metric field; chirality is achieved by imposing Dirichlet boundary conditions on certain components while others satisfy Neumann. Along the way, we give a generalization of the quasinormal mode method for stationary (non-static) thermal backgrounds, and propose a treatment for Neumann boundary conditions in this framework. We evaluate the graviton one-loop determinant on the Euclidean BTZ background with parity-violating boundary conditions (CSS), and find excellent agreement with the dual warped CFT. We also discuss a more general falloff in AdS3 that is related to two dimensional quantum gravity in lightcone gauge. The behavior of the ghost fields under both sets of boundary conditions is novel and we discuss potential interpretations.
An influence of extremal edges on boundary extension.
Hale, Ralph G; Brown, James M; McDunn, Benjamin A; Siddiqui, Aisha P
2015-08-01
Studies have shown that people consistently remember seeing more of a studied scene than was physically present (e.g., Intraub & Richardson Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187, 1989). This scene memory error, known as boundary extension, has been suggested to occur due to an observer's failure to differentiate between the contributing sources of information, including the sensory input, amodal continuation beyond the view boundaries, and contextual associations with the main objects and depicted scene locations (Intraub, 2010). Here, "scenes" made of abstract shapes on random-dot backgrounds, previously shown to elicit boundary extension (McDunn, Siddiqui, & Brown Psychonomic Bulletin & Review, 21, 370-375, 2014), were compared with versions made with extremal edges (Palmer & Ghose Psychological Science, 19, 77-84, 2008) added to their borders, in order to examine how boundary extension is influenced when amodal continuation at the borders' view boundaries is manipulated in this way. Extremal edges were expected to reduce boundary extension as compared to the same scenes without them, because extremal edge boundaries explicitly indicate an image's end (i.e., they do not continue past the view boundary). A large and a small difference (16 % and 40 %) between the close and wide-angle views shown during the experiment were tested to examine the effects of both boundary extension and normalization with and without extremal edges. Images without extremal edges elicited typical boundary extension for the 16 % size change condition, whereas the 40 % condition showed signs of normalization. With extremal edges, a reduced amount of boundary extension occurred for the 16 % condition, and only normalization was found for the 40 % condition. Our findings support and highlight the importance of amodal continuation at the view boundaries as a component of boundary extension.
Abd-Elhameed, Waleed M.; Doha, Eid H.; Bassuony, Mahmoud A.
2014-01-01
Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of the proposed algorithms, and some comparisons with some other methods are made. PMID:24616620
Off-wall boundary conditions for turbulent flows obtained from buffer-layer minimal flow units
NASA Astrophysics Data System (ADS)
Garcia-Mayoral, Ricardo; Pierce, Brian; Wallace, James
2012-11-01
There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ = 400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J . FluidMech .) . Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows. 2012 CTR Summer Program.
NASA Astrophysics Data System (ADS)
Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.
2015-12-01
Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.
Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of Neurovascular Pathology
NASA Astrophysics Data System (ADS)
Cho, Hansang; Seo, Ji Hae; Wong, Keith H. K.; Terasaki, Yasukazu; Park, Joseph; Bong, Kiwan; Arai, Ken; Lo, Eng H.; Irimia, Daniel
2015-10-01
Blood-brain barrier (BBB) pathology leads to neurovascular disorders and is an important target for therapies. However, the study of BBB pathology is difficult in the absence of models that are simple and relevant. In vivo animal models are highly relevant, however they are hampered by complex, multi-cellular interactions that are difficult to decouple. In vitro models of BBB are simpler, however they have limited functionality and relevance to disease processes. To address these limitations, we developed a 3-dimensional (3D) model of BBB on a microfluidic platform. We verified the tightness of the BBB by showing its ability to reduce the leakage of dyes and to block the transmigration of immune cells towards chemoattractants. Moreover, we verified the localization at endothelial cell boundaries of ZO-1 and VE-Cadherin, two components of tight and adherens junctions. To validate the functionality of the BBB model, we probed its disruption by neuro-inflammation mediators and ischemic conditions and measured the protective function of antioxidant and ROCK-inhibitor treatments. Overall, our 3D BBB model provides a robust platform, adequate for detailed functional studies of BBB and for the screening of BBB-targeting drugs in neurological diseases.
Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P
2015-12-01
Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.
The Impact of Model Uncertainty on Spatial Compensation in Structural Acoustic Control
NASA Technical Reports Server (NTRS)
Clark, Robert L.
2005-01-01
Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.
Air Force Academy Aeronautics Digest - Spring/Summer 1981.
1981-12-01
real fluids with friction or viscosity we know that this boundary condition is specified by requiring the velocity to be zero at the surface). This is...interest to be zero . This is the velocity surface boundary condition (VBC). For the second boundary condition far away from the body it is reasonable to...remains unchanged). Finally, the analytic solution, in terms of the surface velocity distribution at a zero -lift condition, will be presented for selected
Dambrun, Michaël
2016-11-01
Drawing on the Self-centeredness/Selflessness Happiness Model (SSHM), we hypothesized that a reduction in the salience of perceived body boundaries would lead to increase optimal emotional experience. These constructs were assessed by means of self-report measures. Participants (n=53) were randomly assigned to either the selflessness (induced by a body scan meditation) condition or the control condition. As expected, the reduction in perceived body salience was greater in the body scan meditation condition than in the control condition. The change in perceived body salience was accompanied by a change in happiness and anxiety. Participants in the body-scan meditation condition reported greater happiness and less anxiety than participants in the control condition. Happiness increased when the salience of body boundaries decreased. Mediation analyses reveal that the change in happiness was mediated by the change in perceived body boundaries, which suggests that selflessness elicits happiness via dissolution of perceived body boundaries. Copyright © 2016 Elsevier Inc. All rights reserved.
Progressive wave expansions and open boundary problems
NASA Technical Reports Server (NTRS)
Hagstrom, T.; Hariharan, S. I.
1995-01-01
In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.
NASA Astrophysics Data System (ADS)
Kim, N.; Takahashi, M.; Shigematsu, N.; Ree, J. H.; Jung, H.
2017-12-01
Intragranular recrystallization, including subgrain-rotation-recrystallization (SGR) and nucleation (and growth) of new grains along boundaries of deformation twins and bands, is an important process leading to grain-size reduction and causing rheological change depending on deformation condition. Despite of its importance, the detailed processes of intragranular recrystallization are still somewhat unclear. We deformed a limestone using triaxial testing machine at AIST of Japan at temperature of 500 700 °, strain rate of 10-4 10-5 s-1, confining pressure of 200 MPa and strain of up to 30%, to explore intragranular recrystallization processes of calcite. The limestone contains two abundant fossils, crinoid and trilobite. The crinoids are mono- or poly-crystalline. We focus on the monocrystalline crinoids with a coarser grain size ( 700 μm). The trilobites are polycrystalline and much finer-grained ( 7 μm) with initially a strong c-axis preferred orientation. At a lower temperature condition, subgrains develop both in twin and host domains of crinoids and evolve into new grains by SGR. At a higher temperature, recrystallized grains have irregular grain boundaries and bimodal grain-size distribution, implying grain-boundary migration (GBM) recrystallization. At a lower temperature, new grains nucleating and growing along twin boundaries inherit lattice orientation of twin domain, and with the nucleation site and usually a smaller grain size, they can be distinguished from new grains by SGR. At a higher temperature, however, the distinction is difficult at present due to extensive GBM. For the trilobites, there is only local GBM with no significant change in grain size, and flattening of grains reflects the bulk strain at a lower temperature. At a higher temperature, individual grains of the trilobites are equi-axed with weakened LPO, although the strain of trilobites is higher than bulk strain. These microfabrics suggest that the dominant deformation mechanism of the trilobites is diffusion creep. Although the initial LPO of the trilobites is weakened, the LPO is still preserved up to strain of 30%. This implies that even if the grain size of trilobites and matrix is similar in naturally deformed limestones, the lattice orientation map may be useful in recognizing trilobite fossils.
NASA Astrophysics Data System (ADS)
Holst, Michael; Meier, Caleb; Tsogtgerel, G.
2018-01-01
In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (Class Quantum Gravity 30:205011, 2013), and Holst et al. (Phys Rev Lett 100(16):161101, 2008, Commun Math Phys 288(2):547-613, 2009), and also on the work of Maxwell (J Hyperbolic Differ Eqs 2(2):521-546, 2005a, Commun Math Phys 253(3):561-583, 2005b, Math Res Lett 16(4):627-645, 2009) and Dain (Class Quantum Gravity 21(2):555-573, 2004), under reasonable assumptions on the data we prove existence of both near- and far-from-constant mean curvature (CMC) solutions for a class of Robin boundary conditions commonly used in the literature for modeling black holes, with a third existence result for CMC appearing as a special case. Dain and Maxwell addressed initial data engineering for space-times that evolve to contain black holes, determining solutions to the conformal formulation on an asymptotically Euclidean manifold in the CMC setting, with interior boundary conditions representing excised interior black hole regions. Holst and Tsogtgerel compiled the interior boundary results covered by Dain and Maxwell, and then developed general interior conditions to model the apparent horizon boundary conditions of Dainand Maxwell for compact manifolds with boundary, and subsequently proved existence of solutions to the Lichnerowicz equation on compact manifolds with such boundary conditions. This paper picks up where Holst and Tsogtgerel left off, addressing the general non-CMC case for compact manifolds with boundary. As in our previous articles, our focus here is again on low regularity data and on the interaction between different types of boundary conditions. While our work here serves primarily to extend the solution theory for the compact with boundary case, we also develop several technical tools that have potential for use for other cases.
LQG/LTR optimal attitude control of small flexible spacecraft using free-free boundary conditions
NASA Astrophysics Data System (ADS)
Fulton, Joseph M.
Due to the volume and power limitations of a small satellite, careful consideration must be taken while designing an attitude control system for 3-axis stabilization. Placing redundancy in the system proves difficult and utilizing power hungry, high accuracy, active actuators is not a viable option. Thus, it is customary to find dependable, passive actuators used in conjunction with small scale active control components. This document describes the application of Elastic Memory Composite materials in the construction of a flexible spacecraft appendage, such as a gravity gradient boom. Assumed modes methods are used with Finite Element Modeling information to obtain the equations of motion for the system while assuming free-free boundary conditions. A discussion is provided to illustrate how cantilever mode shapes are not always the best assumption when modeling small flexible spacecraft. A key point of interest is first resonant modes may be needed in the system design plant in spite of these modes being greater than one order of magnitude in frequency when compared to the crossover frequency of the controller. LQG/LTR optimal control techniques are implemented to compute attitude control gains while controller robustness considerations determine appropriate reduced order controllers and which flexible modes to include in the design model. Key satellite designer concerns in the areas of computer processor sizing, material uncertainty impacts on the system model, and system performance variations resulting from appendage length modifications are addressed.
Nonlinear vibration of a traveling belt with non-homogeneous boundaries
NASA Astrophysics Data System (ADS)
Ding, Hu; Lim, C. W.; Chen, Li-Qun
2018-06-01
Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.
Repulsive Casimir force in Bose–Einstein Condensate
NASA Astrophysics Data System (ADS)
Mehedi Faruk, Mir; Biswas, Shovon
2018-04-01
We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.
Improved Boundary Conditions for Cell-centered Difference Schemes
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.; Klopfer, Goetz H.; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
Cell-centered finite-volume (CCFV) schemes have certain attractive properties for the solution of the equations governing compressible fluid flow. Among others, they provide a natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfortunately, they lead to slow convergence for numerical programs utilizing them. In this report a method for investigating and improving the convergence of CCFV schemes is presented, which focuses on the effect of the numerical boundary conditions. The key to the method is the computation of the spectral radius of the iteration matrix of the entire demoralized system of equations, not just of the interior point scheme or the boundary conditions.
A comparison of time domain boundary conditions for acoustic waves in wave guides
NASA Technical Reports Server (NTRS)
Banks, H. T.; Propst, G.; Silcox, R. J.
1991-01-01
Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.
Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Arend, David J.; Wolter, John D.
2017-01-01
The test section of the 8- by 6-Foot Supersonic Wind Tunnel at NASA Glenn Research Center was modified to produce the test conditions for a boundary-layer-ingesting propulsor. A test was conducted to measure the flow properties in the modified test section before the propulsor was installed. Measured boundary layer and freestream conditions were compared to results from computational fluid dynamics simulations of the external surface for the reference vehicle. Testing showed that the desired freestream conditions and boundary layer thickness could be achieved; however, some non-uniformity of the freestream conditions, particularly the total temperature, were observed.
Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizalde, E.; Odintsov, S. D.; Institucio Catalana de Recerca i Estudis Avanccats
2009-03-15
We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robinmore » boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.« less
Anderegg, Leander D L; HilleRisLambers, Janneke
2016-03-01
Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range-limit context, helps elucidate a mechanistic understanding of range constraints. © 2015 John Wiley & Sons Ltd.
Boundary enhanced effects on the existence of quadratic solitons
NASA Astrophysics Data System (ADS)
Chen, Manna; Zhang, Ting; Li, Wenjie; Lu, Daquan; Guo, Qi; Hu, Wei
2018-05-01
We investigate, both analytically and numerically, the boundary enhanced effects exerted on the quadratic solitons consisting of fundamental waves and oscillatory second harmonics in the presence of boundary conditions. The nonlocal analogy predicts that the soliton for fundamental wave is supported by the balance between equivalent nonlinear confinement and diffraction (or dispersion). Under Snyder and Mitchell's strongly nonlocal approximation, we obtain the analytical soliton solutions both with and without the boundary conditions to show the impact of boundary conditions. We can distinguish explicitly the nonlinear confinement between the second harmonic mutual interaction and the enhanced effects caused by remote boundaries. Those boundary enhanced effects on the existence of solitons can be positive or negative, which depend on both sample size and nonlocal parameter. The piecewise existence regime of solitons can be explained analytically. The analytical soliton solutions are verified by the numerical ones and the discrepancy between them is also discussed.
Cross-boundary management between national parks and surrounding lands: A review and discussion
NASA Astrophysics Data System (ADS)
Schonewald-Cox, Christine; Buechner, Marybeth; Sauvajot, Raymond; Wilcox, Bruce A.
1992-03-01
Protecting biodiversity on public lands is difficult, requiring the management of a complex array of factors. This is especially true when the ecosystems in question are affected by, or extend onto, lands outside the boundaries of the protected area. In this article we review recent developments in the cross-boundary management of protected natural resources, such as parks, wildlife reserves, and designated wilderness areas. Five ecological and 11 anthropic techniques have been suggested for use in cross-boundary management. The categories are not mutually exclusive, but each is a distinct and representative approach, suggested by various authors from academic, managerial, and legal professions. The ecological strategies stress the collection of basic data and documentation of trends. The anthropic techniques stress the usefulness of cooperative guidelines and the need to develop a local constituency which supports park goals. However, the situation is complex and the needed strategies are often difficult to implement. Diverse park resources are influenced by events in surrounding lands. The complexity and variability of sources, the ecological systems under protection, and the uncertainty of the effects combine to produce situations for which there are no simple answers. The solution to coexistence of the park and surrounding land depends upon creative techniques and recommendations, many still forthcoming. Ecological, sociological, legal, and economic disciplines as well as the managing agency should all contribute to these recommendations. Platforms for change include legislation, institutional policies, communication, education, management techniques, and ethics.
Kosuge, Shingo
2015-07-01
The cylindrical Couette flow of a rarefied gas between a rotating inner cylinder and a stationary outer cylinder is investigated under the following two kinds of kinetic boundary conditions. One is the modified Maxwell-type boundary condition proposed by Dadzie and Méolans [J. Math. Phys. 45, 1804 (2004)] and the other is the Cercignani-Lampis condition, both of which have separate accommodation coefficients associated with the molecular velocity component normal to the boundary and with the tangential component. An asymptotic analysis of the Boltzmann equation for small Knudsen numbers and a numerical analysis of the Bhatnagar-Gross-Krook model equation for a wide range of the Knudsen number are performed to clarify the effect of each accommodation coefficient as well as of the boundary condition itself on the behavior of the gas, especially on the flow-velocity profile. As a result, the velocity-slip and temperature-jump conditions corresponding to the above kinetic boundary conditions are derived, which are necessary for the fluid-dynamic description of the problem for small Knudsen numbers. The parameter range for the onset of the velocity inversion phenomenon, which is related mainly to the decrease in the tangential momentum accommodation, is also obtained.
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1988-01-01
Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; Don, Wai-Sun
1993-01-01
The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.
School Counselors' Constructions of Student Confidentiality
ERIC Educational Resources Information Center
Trice-Black, Shannon; Riechel, Morgan E. Kiper; Shillingford, M. Ann
2013-01-01
Confidentiality in counseling relationships helps ensure trust between clients and counselors. Yet, defining and understanding the boundaries of confidentiality in school settings is often difficult, as school counselors are engaged in multiple relationships with various stakeholders. This qualitative phenomenological study explores the…
Stress-intensity factor calculations using the boundary force method
NASA Technical Reports Server (NTRS)
Tan, P. W.; Raju, I. S.; Newman, J. C., Jr.
1987-01-01
The Boundary Force Method (BFM) was formulated for the three fundamental problems of elasticity: the stress boundary value problem, the displacement boundary value problem, and the mixed boundary value problem. Because the BFM is a form of an indirect boundary element method, only the boundaries of the region of interest are modeled. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate is used as the fundamental solution. Thus, unlike other boundary element methods, here the crack face need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing a center-cracked specimen subjected to mixed boundary conditions and a three-hole cracked configuration subjected to traction boundary conditions. The results obtained are in good agreement with accepted numerical solutions. The method is then used to generate stress-intensity solutions for two common cracked configurations: an edge crack emanating from a semi-elliptical notch, and an edge crack emanating from a V-notch. The BFM is a versatile technique that can be used to obtain very accurate stress intensity factors for complex crack configurations subjected to stress, displacement, or mixed boundary conditions. The method requires a minimal amount of modeling effort.
An outflow boundary condition for aeroacoustic computations
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Hagstrom, Thomas
1995-01-01
A formulation of boundary condition for flows with small disturbances is presented. The authors test their methodology in an axisymmetric jet flow calculation, using both the Navier-Stokes and Euler equations. Solutions in the far field are assumed to be oscillatory. If the oscillatory disturbances are small, the growth of the solution variables can be predicted by linear theory. Eigenfunctions of the linear theory are used explicitly in the formulation of the boundary conditions. This guarantees correct solutions at the boundary in the limit where the predictions of linear theory are valid.
NASA Astrophysics Data System (ADS)
Smits, Kathleen M.; Ngo, Viet V.; Cihan, Abdullah; Sakaki, Toshihiro; Illangasekare, Tissa H.
2012-12-01
Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance. However, there is no agreement on the best modeling methodology to determine evaporation under different atmospheric boundary conditions. Also, there is a lack of directly measured soil evaporation data for model validation to compare these methods to establish the validity of their mathematical formulations. Thus, a need exists to systematically compare evaporation estimates using existing methods to experimental observations. The goal of this work is to test different conceptual and mathematical formulations that are used to estimate evaporation from bare soils to critically investigate various formulations and surface boundary conditions. Such a comparison required the development of a numerical model that has the ability to incorporate these boundary conditions. For this model, we modified a previously developed theory that allows nonequilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. Precision data under well-controlled transient heat and wind boundary conditions were generated, and results from numerical simulations were compared with experimental data. Results demonstrate that the approaches based on different boundary conditions varied in their ability to capture different stages of evaporation. All approaches have benefits and limitations, and no one approach can be deemed most appropriate for every scenario. Comparisons of different formulations of the surface boundary condition validate the need for further research on heat and vapor transport processes in soil for better modeling accuracy.
NASA Astrophysics Data System (ADS)
Grobbelaar-Van Dalsen, Marié
2015-02-01
In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin-Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305-1325, 2013) on the polynomial stabilization of a Mindlin-Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin-Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.
NASA Technical Reports Server (NTRS)
Funaro, Daniele; Gottlieb, David
1989-01-01
A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.
Scalar discrete nonlinear multipoint boundary value problems
NASA Astrophysics Data System (ADS)
Rodriguez, Jesus; Taylor, Padraic
2007-06-01
In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordström, Jan, E-mail: jan.nordstrom@liu.se; Wahlsten, Markus, E-mail: markus.wahlsten@liu.se
We consider a hyperbolic system with uncertainty in the boundary and initial data. Our aim is to show that different boundary conditions give different convergence rates of the variance of the solution. This means that we can with the same knowledge of data get a more or less accurate description of the uncertainty in the solution. A variety of boundary conditions are compared and both analytical and numerical estimates of the variance of the solution are presented. As an application, we study the effect of this technique on Maxwell's equations as well as on a subsonic outflow boundary for themore » Euler equations.« less
Asymptotic boundary conditions for dissipative waves: General theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains
NASA Astrophysics Data System (ADS)
Cantrell, Robert Stephen; Cosner, Chris
We study a diffusive logistic equation with nonlinear boundary conditions. The equation arises as a model for a population that grows logistically inside a patch and crosses the patch boundary at a rate that depends on the population density. Specifically, the rate at which the population crosses the boundary is assumed to decrease as the density of the population increases. The model is motivated by empirical work on the Glanville fritillary butterfly. We derive local and global bifurcation results which show that the model can have multiple equilibria and in some parameter ranges can support Allee effects. The analysis leads to eigenvalue problems with nonstandard boundary conditions.
NASA Astrophysics Data System (ADS)
Frota, Cícero Lopes; Vicente, André
2018-06-01
In this paper, we deal with the uniform stabilization to the mixed problem for a nonlinear wave equation and acoustic boundary conditions on a non-locally reacting boundary. The main purpose is to study the stability when the internal damping acts only over a subset ω of the domain Ω and the boundary damping is of the viscoelastic type.
On High-Order Radiation Boundary Conditions
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1995-01-01
In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.
A boundary condition for layer to level ocean model interaction
NASA Astrophysics Data System (ADS)
Mask, A.; O'Brien, J.; Preller, R.
2003-04-01
A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.
NASA Technical Reports Server (NTRS)
Chiavassa, G.; Liandrat, J.
1996-01-01
We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.
Evaluation of several non-reflecting computational boundary conditions for duct acoustics
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Zorumski, William E.; Hodge, Steve L.
1994-01-01
Several non-reflecting computational boundary conditions that meet certain criteria and have potential applications to duct acoustics are evaluated for their effectiveness. The same interior solution scheme, grid, and order of approximation are used to evaluate each condition. Sparse matrix solution techniques are applied to solve the matrix equation resulting from the discretization. Modal series solutions for the sound attenuation in an infinite duct are used to evaluate the accuracy of each non-reflecting boundary conditions. The evaluations are performed for sound propagation in a softwall duct, for several sources, sound frequencies, and duct lengths. It is shown that a recently developed nonlocal boundary condition leads to sound attenuation predictions considerably more accurate for short ducts. This leads to a substantial reduction in the number of grid points when compared to other non-reflecting conditions.
Boundary layer effects on liners for aircraft engines
NASA Astrophysics Data System (ADS)
Gabard, Gwénaël
2016-10-01
The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.
Conceptual and numerical modeling approach of the Guarani Aquifer System
NASA Astrophysics Data System (ADS)
Rodríguez, L.; Vives, L.; Gomez, A.
2013-01-01
In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s-1 while the observed absolute minimum discharge was 382 m3 s-1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average, pumping represented 16.2% of inflows while aquifer storage experienced a small overall increment. The model water balance indicates that the current rate of groundwater withdrawals does not exceed the rate of recharge in a regional sense.
The Convergence Problems of Eigenfunction Expansions of Elliptic Differential Operators
NASA Astrophysics Data System (ADS)
Ahmedov, Anvarjon
2018-03-01
In the present research we investigate the problems concerning the almost everywhere convergence of multiple Fourier series summed over the elliptic levels in the classes of Liouville. The sufficient conditions for the almost everywhere convergence problems, which are most difficult problems in Harmonic analysis, are obtained. The methods of approximation by multiple Fourier series summed over elliptic curves are applied to obtain suitable estimations for the maximal operator of the spectral decompositions. Obtaining of such estimations involves very complicated calculations which depends on the functional structure of the classes of functions. The main idea on the proving the almost everywhere convergence of the eigenfunction expansions in the interpolation spaces is estimation of the maximal operator of the partial sums in the boundary classes and application of the interpolation Theorem of the family of linear operators. In the present work the maximal operator of the elliptic partial sums are estimated in the interpolation classes of Liouville and the almost everywhere convergence of the multiple Fourier series by elliptic summation methods are established. The considering multiple Fourier series as an eigenfunction expansions of the differential operators helps to translate the functional properties (for example smoothness) of the Liouville classes into Fourier coefficients of the functions which being expanded into such expansions. The sufficient conditions for convergence of the multiple Fourier series of functions from Liouville classes are obtained in terms of the smoothness and dimensions. Such results are highly effective in solving the boundary problems with periodic boundary conditions occurring in the spectral theory of differential operators. The investigations of multiple Fourier series in modern methods of harmonic analysis incorporates the wide use of methods from functional analysis, mathematical physics, modern operator theory and spectral decomposition. New method for the best approximation of the square-integrable function by multiple Fourier series summed over the elliptic levels are established. Using the best approximation, the Lebesgue constant corresponding to the elliptic partial sums is estimated. The latter is applied to obtain an estimation for the maximal operator in the classes of Liouville.
NASA Astrophysics Data System (ADS)
Greiner, Nathan J.
Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
Secure Reliable Processing Systems
1984-02-21
be attainable in principle, the more difficult goal is to meet all of the above while still maintaining good performance within the framwork of a well...managing the network, the user sees a conceptually simpler storage facility, composed merely of files, without machine boundaries, replicated copies
Doing Animist Research in Academia: A Methodological Framework
ERIC Educational Resources Information Center
Barrett, M. J.
2011-01-01
Epistemologies, ontologies, and education based on colonial Eurocentric assumptions have made animism difficult to explicitly explore, acknowledge, and embody in environmental research. Boundaries between humans and the "natural world," including other animals, are continually reproduced through a culture that privileges rationality and the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yousong, E-mail: yousong.luo@rmit.edu.au
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Sea ice melting in the marginal ice zone.
Josberger, E.G.
1983-01-01
The heat and salt flux boundary conditions together with the freezing curve relationship are a necessary component of any ice- sea water thermodynamic model. A neutral two-layer oceanic planetary boundary layer model that incorporates these boundary conditions is used. The results are discussed. -from Author
Cavitation During Superplastic Forming
Campbell, John
2011-01-01
Cavitation is the opening of pores during superplastic forming, typically at grain boundary triple points or on second phase grain boundary particles during slip of grain boundaries. Theories for the initiation of cavitation are reviewed. It seems that cavitation is unlikely to occur by processes intrinsic to metals such as dislocation mechanisms or point defect condensation. It is proposed that cavitation can only occur at non-bonded interfaces such as those introduced extrinsically (i.e., from the outside) during the original casting of the metal. These defects, known as oxide bifilms, are naturally introduced during pouring of the liquid metal, and are frozen into the solid, often pushed by dendritic growth into grain boundaries where they are difficult to detect because of their extreme thinness, often measured in nanometres. Their unbonded central interface acts as a crack and can initiate cavitation. Second phase precipitates probably do not nucleate and grow on grain boundaries but grow on bifilms in the boundaries, explaining the apparent association between boundaries, second phase particles and failure initiation. Improved melting and casting techniques can provide metal with reduced or zero bifilm population for which cavitation would not be possible, promising significant improvements in superplastic behaviour. PMID:28824142
Cavitation During Superplastic Forming.
Campbell, John
2011-07-08
Cavitation is the opening of pores during superplastic forming, typically at grain boundary triple points or on second phase grain boundary particles during slip of grain boundaries. Theories for the initiation of cavitation are reviewed. It seems that cavitation is unlikely to occur by processes intrinsic to metals such as dislocation mechanisms or point defect condensation. It is proposed that cavitation can only occur at non-bonded interfaces such as those introduced extrinsically (i.e., from the outside) during the original casting of the metal. These defects, known as oxide bifilms, are naturally introduced during pouring of the liquid metal, and are frozen into the solid, often pushed by dendritic growth into grain boundaries where they are difficult to detect because of their extreme thinness, often measured in nanometres. Their unbonded central interface acts as a crack and can initiate cavitation. Second phase precipitates probably do not nucleate and grow on grain boundaries but grow on bifilms in the boundaries, explaining the apparent association between boundaries, second phase particles and failure initiation. Improved melting and casting techniques can provide metal with reduced or zero bifilm population for which cavitation would not be possible, promising significant improvements in superplastic behaviour.
First order augmentation to tensor voting for boundary inference and multiscale analysis in 3D.
Tong, Wai-Shun; Tang, Chi-Keung; Mordohai, Philippos; Medioni, Gérard
2004-05-01
Most computer vision applications require the reliable detection of boundaries. In the presence of outliers, missing data, orientation discontinuities, and occlusion, this problem is particularly challenging. We propose to address it by complementing the tensor voting framework, which was limited to second order properties, with first order representation and voting. First order voting fields and a mechanism to vote for 3D surface and volume boundaries and curve endpoints in 3D are defined. Boundary inference is also useful for a second difficult problem in grouping, namely, automatic scale selection. We propose an algorithm that automatically infers the smallest scale that can preserve the finest details. Our algorithm then proceeds with progressively larger scales to ensure continuity where it has not been achieved. Therefore, the proposed approach does not oversmooth features or delay the handling of boundaries and discontinuities until model misfit occurs. The interaction of smooth features, boundaries, and outliers is accommodated by the unified representation, making possible the perceptual organization of data in curves, surfaces, volumes, and their boundaries simultaneously. We present results on a variety of data sets to show the efficacy of the improved formalism.
Scalar Casimir densities and forces for parallel plates in cosmic string spacetime
NASA Astrophysics Data System (ADS)
Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.
2018-04-01
We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.
Microgravity Effects on Plant Boundary Layers
NASA Technical Reports Server (NTRS)
Stutte, Gary; Monje, Oscar
2005-01-01
The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.
Effective surface and boundary conditions for heterogeneous surfaces with mixed boundary conditions
NASA Astrophysics Data System (ADS)
Guo, Jianwei; Veran-Tissoires, Stéphanie; Quintard, Michel
2016-01-01
To deal with multi-scale problems involving transport from a heterogeneous and rough surface characterized by a mixed boundary condition, an effective surface theory is developed, which replaces the original surface by a homogeneous and smooth surface with specific boundary conditions. A typical example corresponds to a laminar flow over a soluble salt medium which contains insoluble material. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework, velocity and concentration at micro-scale are estimated with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the related boundary conditions. The evolution of some effective properties and the impact of surface geometry, Péclet, Schmidt and Damköhler numbers are investigated. Finally, comparisons are made between the numerical results obtained with the effective models and those from direct numerical simulations with the original rough surface, for two kinds of configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hintermueller, M., E-mail: hint@math.hu-berlin.de; Kao, C.-Y., E-mail: Ckao@claremontmckenna.edu; Laurain, A., E-mail: laurain@math.hu-berlin.de
2012-02-15
This paper focuses on the study of a linear eigenvalue problem with indefinite weight and Robin type boundary conditions. We investigate the minimization of the positive principal eigenvalue under the constraint that the absolute value of the weight is bounded and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. For rectangular domains with Neumann boundary condition, it is known that there exists a threshold value such that if the total weight is below this thresholdmore » value then the optimal favorable region is like a section of a disk at one of the four corners; otherwise, the optimal favorable region is a strip attached to the shorter side of the rectangle. Here, we investigate the same problem with mixed Robin-Neumann type boundary conditions and study how this boundary condition affects the optimal spatial arrangement.« less
Coulomb gauge ghost Dyson-Schwinger equation
NASA Astrophysics Data System (ADS)
Watson, P.; Reinhardt, H.
2010-12-01
A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum), which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until forced to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery picture of confinement is explored.
NASA Astrophysics Data System (ADS)
Reynolds, Alan P.; Ross, Simon F.
2018-05-01
We consider the holographic complexity conjectures in the context of the AdS soliton, which is the holographic dual of the ground state of a field theory on a torus with antiperiodic boundary conditions for fermions on one cycle. The complexity is a non-trivial function of the size of the circle with antiperiodic boundary conditions, which sets an IR scale in the dual geometry. We find qualitative differences between the calculations of complexity from spatial volume and action (CV and CA). In the CV calculation, the complexity for antiperiodic boundary conditions is smaller than for periodic, and decreases monotonically with increasing IR scale. In the CA calculation, the complexity for antiperiodic boundary conditions is larger than for periodic, and initially increases with increasing IR scale, eventually decreasing to zero as the IR scale becomes of order the UV cutoff. We compare these results to a simple calculation for free fermions on a lattice, where we find the complexity for antiperiodic boundary conditions is larger than for periodic.
A New Parallel Boundary Condition for Turbulence Simulations in Stellarators
NASA Astrophysics Data System (ADS)
Martin, Mike F.; Landreman, Matt; Dorland, William; Xanthopoulos, Pavlos
2017-10-01
For gyrokinetic simulations of core turbulence, the ``twist-and-shift'' parallel boundary condition (Beer et al., PoP, 1995), which involves a shift in radial wavenumber proportional to the global shear and a quantization of the simulation domain's aspect ratio, is the standard choice. But as this condition was derived under the assumption of axisymmetry, ``twist-and-shift'' as it stands is formally incorrect for turbulence simulations in stellarators. Moreover, for low-shear stellarators like W7X and HSX, the use of a global shear in the traditional boundary condition places an inflexible constraint on the aspect ratio of the domain, requiring more grid points to fully resolve its extent. Here, we present a parallel boundary condition for ``stellarator-symmetric'' simulations that relies on the local shear along a field line. This boundary condition is similar to ``twist-and-shift'', but has an added flexibility in choosing the parallel length of the domain based on local shear consideration in order to optimize certain parameters such as the aspect ratio of the simulation domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, R. B.; Carroll, R. M.; Sisman, O.
1971-02-01
A method to measure the thermal diffusivity of reactor fuels during irradiation is developed, based on a time-dependent heat diffusion equation. With this technique the temperature is measured at only one point in the fuel specimen. This method has the advantage that it is not necessary to know the heat generation (a difficult evaluation during irradiation). The theory includes realistic boundary conditions, applicable to actual experimental systems. The parameters are the time constants associated with the first two time modes in the temperature-vs-time curve resulting from a step change in heat input to the specimen. With the time constants andmore » the necessary material properties and dimensions of the specimen and specimen holder, the thermal diffusivity of the specimen can be calculated.« less
Bernhard, Stefan; Möhlenkamp, Stefan; Tilgner, Andreas
2006-06-21
The pressure drop-flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC) family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 - 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD). The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal pressure partially recovers during re-opening of the vessel in diastole. We have further calculated the wall shear stress (WSS) distributions in addition to the location and length of the flow reversal zones in dependence on the severity of the disease. The described boundary layer method can be used to simulate frictional forces and wall shear stresses in the entrance region of vessels. Earlier models are supplemented by the viscous effects in a quasi three-dimensional vessel geometry with a prescribed wall motion. The results indicate that the translesional pressure drop and the mean FFR compares favourably to clinical findings in the literature. We have further shown that the mean FFR under the assumption of Hagen-Poiseuille flow is overestimated in developing flow conditions.
Bernhard, Stefan; Möhlenkamp, Stefan; Tilgner, Andreas
2006-01-01
Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC) family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD). The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal pressure partially recovers during re-opening of the vessel in diastole. We have further calculated the wall shear stress (WSS) distributions in addition to the location and length of the flow reversal zones in dependence on the severity of the disease. Conclusion The described boundary layer method can be used to simulate frictional forces and wall shear stresses in the entrance region of vessels. Earlier models are supplemented by the viscous effects in a quasi three-dimensional vessel geometry with a prescribed wall motion. The results indicate that the translesional pressure drop and the mean FFR compares favourably to clinical findings in the literature. We have further shown that the mean FFR under the assumption of Hagen-Poiseuille flow is overestimated in developing flow conditions. PMID:16790065
Artificial Boundary Conditions for Finite Element Model Update and Damage Detection
2017-03-01
BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION by Emmanouil Damanakis March 2017 Thesis Advisor: Joshua H. Gordis...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ARTIFICIAL BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION...release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In structural engineering, a finite element model is often
1985-05-01
non- zero Dirichlet boundary conditions and/or general mixed type boundary conditions. Note that Neumann type boundary condi- tion enters the problem by...Background ................................. ................... I 1.3 General Description ..... ............ ........... . ....... ...... 2 2. ANATOMICAL...human and varions loading conditions for the definition of a generalized safety guideline of blast exposure. To model the response of a sheep torso
Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A
2014-12-01
Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.
Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology
NASA Astrophysics Data System (ADS)
Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.
2017-12-01
The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.
NASA Astrophysics Data System (ADS)
Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A.
2014-12-01
Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.
Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, performed during the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), we perform annual simulations over North America with chemical boundary con...
A stable penalty method for the compressible Navier-Stokes equations. 1: Open boundary conditions
NASA Technical Reports Server (NTRS)
Hesthaven, J. S.; Gottlieb, D.
1994-01-01
The purpose of this paper is to present asymptotically stable open boundary conditions for the numerical approximation of the compressible Navier-Stokes equations in three spatial dimensions. The treatment uses the conservation form of the Navier-Stokes equations and utilizes linearization and localization at the boundaries based on these variables. The proposed boundary conditions are applied through a penalty procedure, thus ensuring correct behavior of the scheme as the Reynolds number tends to infinity. The versatility of this method is demonstrated for the problem of a compressible flow past a circular cylinder.
Effects of Uncertainties in Electric Field Boundary Conditions for Ring Current Simulations
NASA Astrophysics Data System (ADS)
Chen, Margaret W.; O'Brien, T. Paul; Lemon, Colby L.; Guild, Timothy B.
2018-01-01
Physics-based simulation results can vary widely depending on the applied boundary conditions. As a first step toward assessing the effect of boundary conditions on ring current simulations, we analyze the uncertainty of cross-polar cap potentials (CPCP) on electric field boundary conditions applied to the Rice Convection Model-Equilibrium (RCM-E). The empirical Weimer model of CPCP is chosen as the reference model and Defense Meteorological Satellite Program CPCP measurements as the reference data. Using temporal correlations from a statistical analysis of the "errors" between the reference model and data, we construct a Monte Carlo CPCP discrete time series model that can be generalized to other model boundary conditions. RCM-E simulations using electric field boundary conditions from the reference model and from 20 randomly generated Monte Carlo discrete time series of CPCP are performed for two large storms. During the 10 August 2000 storm main phase, the proton density at 10
Boundary conditions and unitarity in AdS/CFT
NASA Astrophysics Data System (ADS)
Andrade, Tomas
This thesis investigates various issues regarding unitarity in the context of Anti-de Sitter/Conformal Field theory (AdS/CFT) dualities. When the boundary duals are conformal, unitarity implies that there are lower bounds on the dimension of primary operators. Now, the AdS/CFT dictionary relates insertions of boundary operators to different choices of boundary conditions on the gravity side. Therefore, we expect the possible choices of boundary conditions in AdS to be restricted accordingly. Our first main goal will be to identify what are the pathologies that occur in the gravitational side of the duality when the boundary operators violate the pertinent unitarity bounds. In all the studied cases, we find that such bulk theories are ill-defined as expected, although unitarity is not nec- essarily violated. As our first example we consider a Klein-Gordon field in AdS, and extend the analysis to bosonic fields of spin 1 and 2 later on, with analogous results. Interestingly, it turns our that the bulk settings are pathological even in the absence of strict conformal invariance. Secondly, we argue that introducing a geometrical cut-off in spacetime along with the appropriate modifications of the boundary conditions yields the resulting (IR) theories well-defined. By study- ing in detail a Klein-Gordon field with boundary conditions that correspond to double-trace deformations, we are able to explicitly verify this claim. Finally, we discuss future research directions which include generalizations of AdS/CFT-like dualities and potential applications for condensed matter theory.
NASA Astrophysics Data System (ADS)
Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru
2018-02-01
A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.
NASA Astrophysics Data System (ADS)
Lin, Zhi; Zhang, Qinghai
2017-09-01
We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.
Dual Identity and Prejudice: The Moderating Role of Group Boundary Permeability
Shi, Yuanyuan; Dang, Jianning; Zheng, Wenwen; Liu, Li
2017-01-01
Past work suggested that dual identity was effective to reduce prejudice. This study extended research on dual identity and prejudice by identifying a boundary condition in this relationship, that is, group permeability. In Study 1, we replicated previous studies with Chinese individuals and found that inducing dual identity (emphasizing subgroup differences and a common nation identity), compared to the control condition, decreased the urban residents’ prejudice against rural-to-urban migrants. In Study 2, we manipulated the group boundary permeability using the Hukou system reform, and found that when the group boundary was permeable, dual identity was effective in reducing prejudice against rural-to-urban migrants. However, this effect vanished in the condition where the group boundary was impermeable. These results point to the importance of inducing dual identity under specific conditions for research on decreasing prejudice. Some practical implications of the findings for urbanization and immigration are discussed. PMID:28261130
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1994-01-01
In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The effectiveness of the correction factor in providing improvements to the computed solution is demonstrated in this paper.
Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal
NASA Technical Reports Server (NTRS)
Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric
2016-01-01
Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.
NASA Technical Reports Server (NTRS)
Iyer, V.; Harris, J. E.
1987-01-01
The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaezi, P.; Holland, C.; Thakur, S. C.
The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less
Completed Beltrami-Michell Formulation for Analyzing Radially Symmetrical Bodies
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.
1994-01-01
A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data.
van Maanen, Leendert; Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of "mixtures" has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied-for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of “mixtures” has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied–for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes. PMID:27893868
Derivation and application of a class of generalized impedance boundary conditions, part 2
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Senior, T. B. A.; Jin, J.-M.
1989-01-01
Boundary conditions involving higher order derivatives are presented by simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to non-planar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for the uniform coating at least a quarter of a wavelength in thickness. Provided, though, some compromise in accuracy is acceptable, it is also shown that a third order condition may be sufficient for practical purposes when simulating uniform coatings.
Numerical Study of Outlet Boundary Conditions for Unsteady Turbulent Internal Flows Using the NCC
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Shih, Tsan-Hsing
2009-01-01
This paper presents the results of studies on the outlet boundary conditions for turbulent internal flow simulations. Several outlet boundary conditions have been investigated by applying the National Combustion Code (NCC) to the configuration of a LM6000 single injector flame tube. First of all, very large eddy simulations (VLES) have been performed using the partially resolved numerical simulation (PRNS) approach, in which both the nonlinear and linear dynamic subscale models were employed. Secondly, unsteady Reynolds averaged Navier- Stokes (URANS) simulations have also been performed for the same configuration to investigate the effects of different outlet boundary conditions in the context of URANS. Thirdly, the possible role of the initial condition is inspected by using three different initial flow fields for both the PRNS/VLES simulation and the URANS simulation. The same grid is used for all the simulations and the number of mesh element is about 0.5 million. The main purpose of this study is to examine the long-time behavior of the solution as determined by the imposed outlet boundary conditions. For a particular simulation to be considered as successful under the given initial and boundary conditions, the solution must be sustainable in a physically meaningful manner over a sufficiently long period of time. The commonly used outlet boundary condition for steady Reynolds averaged Navier-Stokes (RANS) simulation is a fixed pressure at the outlet with all the other dependent variables being extrapolated from the interior. The results of the present study suggest that this is also workable for the URANS simulation of the LM6000 injector flame tube. However, it does not work for the PRNS/VLES simulation due to the unphysical reflections of the pressure disturbances at the outlet boundary. This undesirable situation can be practically alleviated by applying a simple unsteady convection equation for the pressure disturbances at the outlet boundary. The numerical results presented in this paper suggest that this unsteady convection of pressure disturbances at the outlet works very well for all the unsteady simulations (both PRNS/VLES and URANS) of the LM6000 single injector flame tube.
Positivity and Almost Positivity of Biharmonic Green's Functions under Dirichlet Boundary Conditions
NASA Astrophysics Data System (ADS)
Grunau, Hans-Christoph; Robert, Frédéric
2010-03-01
In general, for higher order elliptic equations and boundary value problems like the biharmonic equation and the linear clamped plate boundary value problem, neither a maximum principle nor a comparison principle or—equivalently—a positivity preserving property is available. The problem is rather involved since the clamped boundary conditions prevent the boundary value problem from being reasonably written as a system of second order boundary value problems. It is shown that, on the other hand, for bounded smooth domains {Ω subsetmathbb{R}^n} , the negative part of the corresponding Green’s function is “small” when compared with its singular positive part, provided {n≥q 3} . Moreover, the biharmonic Green’s function in balls {Bsubsetmathbb{R}^n} under Dirichlet (that is, clamped) boundary conditions is known explicitly and is positive. It has been known for some time that positivity is preserved under small regular perturbations of the domain, if n = 2. In the present paper, such a stability result is proved for {n≥q 3}.
Identification of source-sink dynamics in mountain lions of the Great Basin
USDA-ARS?s Scientific Manuscript database
Understanding population boundaries and movement rates in the field for species that are cryptic and occur at low densities is often extremely difficult and logistically prohibitive; however genetic techniques may offer insights that have previously been unattainable. We analyzed thirteen microsatel...
Bridging Emotion Research: From Biology to Social Structure
ERIC Educational Resources Information Center
Rogers, Kimberly B.; Kavanagh, Liam
2010-01-01
Emotion research demonstrates that problems of theoretical interest or practical significance are not divided neatly along disciplinary boundaries. Researchers acknowledge both organic and social underpinnings of emotion, but the intersections between biological and structural processes can be difficult to negotiate. In this article, the authors…
Confronting unknown planetary boundary threats from chemical pollution.
Persson, Linn M; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; MacLeod, Matthew; McLachlan, Michael S
2013-11-19
Rockström et al. proposed a set of planetary boundaries that delimitate a "safe operating space for humanity". One of the planetary boundaries is determined by "chemical pollution", however no clear definition was provided. Here, we propose that there is no single chemical pollution planetary boundary, but rather that many planetary boundary issues governed by chemical pollution exist. We identify three conditions that must be simultaneously met for chemical pollution to pose a planetary boundary threat. We then discuss approaches to identify chemicals that could fulfill those conditions, and outline a proactive hazard identification strategy that considers long-range transport and the reversibility of chemical pollution.
Boundary Conditions for Infinite Conservation Laws
NASA Astrophysics Data System (ADS)
Rosenhaus, V.; Bruzón, M. S.; Gandarias, M. L.
2016-12-01
Regular soliton equations (KdV, sine-Gordon, NLS) are known to possess infinite sets of local conservation laws. Some other classes of nonlinear PDE possess infinite-dimensional symmetries parametrized by arbitrary functions of independent or dependent variables; among them are Zabolotskaya-Khokhlov, Kadomtsev-Petviashvili, Davey-Stewartson equations and Born-Infeld equation. Boundary conditions were shown to play an important role for the existence of local conservation laws associated with infinite-dimensional symmetries. In this paper, we analyze boundary conditions for the infinite conserved densities of regular soliton equations: KdV, potential KdV, Sine-Gordon equation, and nonlinear Schrödinger equation, and compare them with boundary conditions for the conserved densities obtained from infinite-dimensional symmetries with arbitrary functions of independent and dependent variables.
Niklasson; Datta; Dunn
2000-09-01
In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.
Simulations of QCD and QED with C* boundary conditions
NASA Astrophysics Data System (ADS)
Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario
2018-03-01
We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214
Implementation of Slater Boundary Condition into OVERFLOW
NASA Astrophysics Data System (ADS)
Duncan, Sean
Bleed is one of the primary methods of controlling the flow within a mixed compression inlet. In this work the Slater boundary condition, first applied in WindUS, is implemented in OVERFLOW. Further, a simulation using discrete holes is run in order to show the differences between use of the boundary condition and use of the bleed hole geometry. Recent tests at Wright Patterson Air Force Base seek to provide a baseline for study of mixed compression inlets. The inlet used by the Air Force Research Laboratory is simulated in the modified OVERFLOW. The results from the experiment are compared to the CFD to qualitatively assess the accuracy of the simulations. The boundary condition is shown to be robust and viable in studying bleed.
NASA Astrophysics Data System (ADS)
Chang, Chien-Chieh; Chen, Chia-Shyun
2002-06-01
A flowing partially penetrating well with infinitesimal well skin is a mixed boundary because a Cauchy condition is prescribed along the screen length and a Neumann condition of no flux is stipulated over the remaining unscreened part. An analytical approach based on the integral transform technique is developed to determine the Laplace domain solution for such a mixed boundary problem in a confined aquifer of finite thickness. First, the mixed boundary is changed into a homogeneous Neumann boundary by substituting the Cauchy condition with a Neumann condition in terms of well bore flux that varies along the screen length and is time dependent. Despite the well bore flux being unknown a priori, the modified model containing this homogeneous Neumann boundary can be solved with the Laplace and the finite Fourier cosine transforms. To determine well bore flux, screen length is discretized into a finite number of segments, to which the Cauchy condition is reinstated. This reinstatement also restores the relation between the original model and the solutions obtained. For a given time, the numerical inversion of the Laplace domain solution yields the drawdown distributions, well bore flux, and the well discharge. This analytical approach provides an alternative for dealing with the mixed boundary problems, especially when aquifer thickness is assumed to be finite.
Symmetry methods for option pricing
NASA Astrophysics Data System (ADS)
Davison, A. H.; Mamba, S.
2017-06-01
We obtain a solution of the Black-Scholes equation with a non-smooth boundary condition using symmetry methods. The Black-Scholes equation along with its boundary condition are first transformed into the one dimensional heat equation and an initial condition respectively. We then find an appropriate general symmetry generator of the heat equation using symmetries and the fundamental solution of the heat equation. The symmetry generator is chosen such that the boundary condition is left invariant; the symmetry can be used to solve the heat equation and hence the Black-Scholes equation.
NASA Astrophysics Data System (ADS)
Kharibegashvili, S. S.; Jokhadze, O. M.
2014-04-01
A mixed problem for a one-dimensional semilinear wave equation with nonlinear boundary conditions is considered. Conditions of this type occur, for example, in the description of the longitudinal oscillations of a spring fastened elastically at one end, but not in accordance with Hooke's linear law. Uniqueness and existence questions are investigated for global and blowup solutions to this problem, in particular how they depend on the nature of the nonlinearities involved in the equation and the boundary conditions. Bibliography: 14 titles.
An Improved Treatment of External Boundary for Three-Dimensional Flow Computations
NASA Technical Reports Server (NTRS)
Tsynkov, Semyon V.; Vatsa, Veer N.
1997-01-01
We present an innovative numerical approach for setting highly accurate nonlocal boundary conditions at the external computational boundaries when calculating three-dimensional compressible viscous flows over finite bodies. The approach is based on application of the difference potentials method by V. S. Ryaben'kii and extends our previous technique developed for the two-dimensional case. The new boundary conditions methodology has been successfully combined with the NASA-developed code TLNS3D and used for the analysis of wing-shaped configurations in subsonic and transonic flow regimes. As demonstrated by the computational experiments, the improved external boundary conditions allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable speedup of convergence of the multigrid iterations.
A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions
NASA Astrophysics Data System (ADS)
Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.
2014-01-01
We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.
Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.
NASA Astrophysics Data System (ADS)
Mueller, A.
2018-04-01
A new transparent artificial boundary condition for the two-dimensional (vertical) (2DV) free surface water wave propagation modelled using the meshless Radial-Basis-Function Collocation Method (RBFCM) as boundary-only solution is derived. The two-way artificial boundary condition (2wABC) works as pure incidence, pure radiation and as combined incidence/radiation BC. In this work the 2wABC is applied to harmonic linear water waves; its performance is tested against the analytical solution for wave propagation over horizontal sea bottom, standing and partially standing wave as well as wave interference of waves with different periods.
Sex Work Research: Methodological and Ethical Challenges
ERIC Educational Resources Information Center
Shaver, Frances M.
2005-01-01
The challenges involved in the design of ethical, nonexploitative research projects with sex workers or any other marginalized population are significant. First, the size and boundaries of the population are unknown, making it extremely difficult to get a representative sample. Second, because membership in hidden populations often involves…
On an Asymptotically Consistent Unsteady Interacting Boundary Layer
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2007-01-01
This paper develops the asymptotic matching of an unsteady compressible boundary layer to an inviscid flow. Of particular importance is the velocity injection or transpiration boundary condition derived by this theory. It is found that in general the transpiration will contain a slope of the displacement thickness and a time derivative of a density integral. The conditions under which the second term may be neglected, and its consistency with the established results of interacting boundary layer are discussed.
Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A
NASA Technical Reports Server (NTRS)
Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2002-01-01
The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.
NASA Astrophysics Data System (ADS)
Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.
2016-02-01
Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive models of beach erosion, coastal flooding, and alongshore transport of sediment, biota and pollutants. On highly sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and nearshore model prediction error is often dominated by uncertainty in offshore boundary conditions. Offshore islands and shoals, and coastline curvature, create complex sheltering patterns over the 250km span of southern California (SC) shoreline. Here, regional wave model skill in SC was compared for different offshore boundary conditions created using offshore buoy observations and global wave model hindcasts (National Oceanographic and Atmospheric Administration Wave Watch 3, WW3). Spectral ray-tracing methods were used to transform incident offshore swell (0.04-0.09Hz) energy at high directional resolution (1-deg). Model skill is assessed for predictions (wave height, direction, and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Model skill using buoy-derived boundary conditions is higher than with WW3-derived boundary conditions. Buoy-driven nearshore model results are similar with various assumptions about the true offshore directional distribution (maximum entropy, Bayesian direct, and 2nd derivative smoothness). Two methods combining offshore buoy observations with WW3 predictions in the offshore boundary condition did not improve nearshore skill above buoy-only methods. A case example at Oceanside harbor shows strong sensitivity of alongshore sediment transport predictions to different offshore boundary conditions. Despite this uncertainty in alongshore transport magnitude, alongshore gradients in transport (e.g. the location of model accretion and erosion zones) are determined by the local bathymetry, and are similar for all predictions.
The effect of boundary shape and minima selection on single limb stance postural stability.
Cobb, Stephen C; Joshi, Mukta N; Bazett-Jones, David M; Earl-Boehm, Jennifer E
2012-11-01
The effect of time-to-boundary minima selection and stability limit definition was investigated during eyes open and eyes closed condition single-limb stance postural stability. Anteroposterior and mediolateral time-to-boundary were computed using the mean and standard deviation (SD) of all time-to-boundary minima during a trial, and the mean and SD of only the 10 absolute time-to-boundary minima. Time-to-boundary with rectangular, trapezoidal, and multisegmented polygon defined stability limits were also calculated. Spearman's rank correlation coefficient test results revealed significant medium-large correlations between anteroposterior and mediolateral time-to-boundary scores calculated using both the mean and SD of the 10 absolute time-to-boundary minima and of all the time-to-boundary minima. Friedman test results revealed significant mediolateral time-to-boundary differences between boundary shape definitions. Follow-up Wilcoxon signed rank test results revealed significant differences between the rectangular boundary shape and both the trapezoidal and multisegmented polygon shapes during the eyes open and eyes closed conditions when both the mean and the SD of the time-to-boundary minima were used to represent postural stability. Significant differences were also revealed between the trapezoidal and multisegmented polygon definitions during the eyes open condition when the SD of the time-to-boundary minima was used to represent postural stability. Based on these findings, the overall results (i.e., stable versus unstable participants or groups) of studies computing postural stability using different minima selection can be compared. With respect to boundary shape, the trapezoid or multisegmented polygon shapes may be more appropriate than the rectangular shape as they more closely represent the anatomical shape of the stance foot.
Additional boundary conditions and surface exciton dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimbey, P.R.
1977-01-15
The surface-exciton dispersion curves in ZnO are derived from the surface impedances developed by Fuchs and Kliewer (FK) and Rimbey and Mahan (RM) including retardation. There exists a distinctive splitting between the two dispersions, the FK additional boundary conditions having longitudinal character, the RM additional boundary conditions being transverse. Surface-mode attenuation due to spatial dispersion is more pronouced in the RM formalism, although inclusion of a phenomenological damping parameter does not alter either dispersion curve. (AIP)
The triangular kagomé lattices revisited
NASA Astrophysics Data System (ADS)
Liu, Xiaoyun; Yan, Weigen
2013-11-01
The dimer problem, Ising spins and bond percolation on the triangular kagomé lattice have been studied extensively by physicists. In this paper, based on the fact the triangular kagomé lattice with toroidal boundary condition can be regarded as the line graph of 3.12.12 lattice with toroidal boundary condition, we derive the formulae of the number of spanning trees, the energy, and the Kirchhoff index of the triangular kagomé lattice with toroidal boundary condition.
NASA Astrophysics Data System (ADS)
Yu, C. W.; Hodges, B. R.; Liu, F.
2017-12-01
Development of continental-scale river network models creates challenges where the massive amount of boundary condition data encounters the sensitivity of a dynamic nu- merical model. The topographic data sets used to define the river channel characteristics may include either corrupt data or complex configurations that cause instabilities in a numerical solution of the Saint-Venant equations. For local-scale river models (e.g. HEC- RAS), modelers typically rely on past experience to make ad hoc boundary condition adjustments that ensure a stable solution - the proof of the adjustment is merely the sta- bility of the solution. To date, there do not exist any formal methodologies or automated procedures for a priori detecting/fixing boundary conditions that cause instabilities in a dynamic model. Formal methodologies for data screening and adjustment are a critical need for simulations with a large number of river reaches that draw their boundary con- dition data from a wide variety of sources. At the continental scale, we simply cannot assume that we will have access to river-channel cross-section data that has been ade- quately analyzed and processed. Herein, we argue that problematic boundary condition data for unsteady dynamic modeling can be identified through numerical modeling with the steady-state Saint-Venant equations. The fragility of numerical stability increases with the complexity of branching in river network system and instabilities (even in an unsteady solution) are typically triggered by the nonlinear advection term in Saint-Venant equations. It follows that the behavior of the simpler steady-state equations (which retain the nonlin- ear term) can be used to screen the boundary condition data for problematic regions. In this research, we propose a graph-theory based method to isolate the location of corrupted boundary condition data in a continental-scale river network and demonstrate its utility with a network of O(10^4) elements. Acknowledgement: This research is supported by the National Science Foundation un- der grant number CCF-1331610.
Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles
NASA Astrophysics Data System (ADS)
Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.
2005-02-01
The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.
Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
1998-01-01
A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.
Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen
1997-01-01
The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.
SPH for impact force and ricochet behavior of water-entry bodies
NASA Astrophysics Data System (ADS)
Omidvar, Pourya; Farghadani, Omid; Nikeghbali, Pooyan
The numerical modeling of fluid interaction with a bouncing body has many applications in scientific and engineering application. In this paper, the problem of water impact of a body on free-surface is investigated, where the fixed ghost boundary condition is added to the open source code SPHysics2D1 to rectify the oscillations in pressure distributions with the repulsive boundary condition. First, after introducing the methodology of SPH and the option of boundary conditions, the still water problem is simulated using two types of boundary conditions. It is shown that the fixed ghost boundary condition gives a better result for a hydrostatics pressure. Then, the dam-break problem, which is a bench mark test case in SPH, is simulated and compared with available data. In order to show the behavior of the hydrostatics forces on bodies, a fix/floating cylinder is placed on free surface looking carefully at the force and heaving profile. Finally, the impact of a body on free-surface is successfully simulated for different impact angles and velocities.
On two-point boundary correlations in the six-vertex model with domain wall boundary conditions
NASA Astrophysics Data System (ADS)
Colomo, F.; Pronko, A. G.
2005-05-01
The six-vertex model with domain wall boundary conditions on an N × N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N × N and (N - 1) × (N - 1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.
Propagation of Boundary-Induced Discontinuity in Stationary Radiative Transfer
NASA Astrophysics Data System (ADS)
Kawagoe, Daisuke; Chen, I.-Kun
2018-01-01
We consider the boundary value problem of the stationary transport equation in the slab domain of general dimensions. In this paper, we discuss the relation between discontinuity of the incoming boundary data and that of the solution to the stationary transport equation. We introduce two conditions posed on the boundary data so that discontinuity of the boundary data propagates along positive characteristic lines as that of the solution to the stationary transport equation. Our analysis does not depend on the celebrated velocity averaging lemma, which is different from previous works. We also introduce an example in two dimensional case which shows that piecewise continuity of the boundary data is not a sufficient condition for the main result.
Turbulent transport of large particles in the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Richter, D. H.; Chamecki, M.
2017-12-01
To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.
NASA Astrophysics Data System (ADS)
Sahasrabudhe, Harshad; Fallahi, Saeed; Nakamura, James; Povolotskyi, Michael; Novakovic, Bozidar; Rahman, Rajib; Manfra, Michael; Klimeck, Gerhard
Quantum Point Contacts (QPCs) are extensively used in semiconductor devices for charge sensing, tunneling and interference experiments. Fabry-Pérot interferometers containing 2 QPCs have applications in quantum computing, in which electrons/quasi-particles undergo interference due to back-scattering from the QPCs. Such experiments have turned out to be difficult because of the complex structure of edge states near the QPC boundary. We present realistic simulations of the edge states in QPCs based on GaAs/AlGaAs heterostructures, which can be used to predict conductance and edge state velocities. Conduction band profile is obtained by solving decoupled effective mass Schrödinger and Poisson equations self-consistently on a finite element mesh of a realistic geometry. In the integer quantum Hall regime, we obtain compressible and in-compressible regions near the edges. We then use the recursive Green`s function algorithm to solve Schrödinger equation with open boundary conditions for calculating transmission and local current density in the QPCs. Impurities are treated by inserting bumps in the potential with a Gaussian distribution. We compare observables with experiments for fitting some adjustable parameters. The authors would like to thank Purdue Research Foundation and Purdue Center for Topological Materials for their support.
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Gall, P. D.; Croom, C. C.; Manuel, G. S.; Kelliher, W. C.
1986-01-01
The visualization of laminar to turbulent boundary layer transition plays an important role in flight and wind-tunnel aerodynamic testing of aircraft wing and body surfaces. Visualization can help provide a more complete understanding of both transition location as well as transition modes; without visualization, the transition process can be very difficult to understand. In the past, the most valuable transition visualization methods for flight applications included sublimating chemicals and oil flows. Each method has advantages and limitations. In particular, sublimating chemicals are impractical to use in subsonic applications much above 20,000 feet because of the greatly reduced rates of sublimation at lower temperatures (less than -4 degrees Farenheit). Both oil flow and sublimating chemicals have the disadvantage of providing only one good data point per flight. Thus, for many important flight conditions, transition visualization has not been readily available. This paper discusses a new method for visualizing transition in flight by the use of liquid crystals. The new method overcomes the limitations of past techniques, and provides transition visualization capability throughout almost the entire altitude and speed ranges of virtually all subsonic aircraft flight envelopes. The method also has wide applicability for supersonic transition visualization in flight and for general use in wind tunnel research over wide subsonic and supersonic speed ranges.
Lehnert, O.; Miller, J.F.; Leslie, Stephen A.; Repetski, J.E.; Ethington, Raymond L.
2005-01-01
The evolution of early Palaeozoic conodont faunas shows a clear connection to sea-level changes. One way that this connection manifests itself is that thick successions of carbonates are missing beneath major sequence boundaries due to karstification and erosion. From this observation arises the question of how many taxa have been lost from different conodont lineages in these incomplete successions. Although many taxa suffered extinction due to the environmental stresses associated with falling sea-levels, some must have survived in these extreme conditions. The number of taxa missing in the early Palaeozoic tropics always will be unclear, but it will be even more difficult to evaluate the missing record in detrital successions of higher latitudes. A common pattern in the evolution of Cambrian-Ordovician conodont lineages is appearances of new species at sea-level rises and disappearances at sea-level drops. This simple picture can be complicated by intervals that consistently have no representatives of a particular lineage, even after extensive sampling of the most complete sections. Presumably the lineages survived in undocumented refugia. In this paper, we give examples of evolution in Cambrian-Ordovician shallowmarine conodont faunas and highlight problems of undiscovered or truly missing segments of lineages. ?? The Palaeontological Association.
Comparison of predicted and measured drag for a single-engine airplane
NASA Technical Reports Server (NTRS)
Ward, D. T.; Taylor, F. C.; Doo, J. T. P.
1985-01-01
Renewed interest in natural laminar flow (NLF) has rekindled designers' concerns that manufacturing deviations, (loss of surface contours or other surface imperfections) may destroy the effectiveness of NLF for an operational airplane. This paper reports on experimental research that compares predicted and measured boundary layer transition, total drag, and two-dimensional drag coefficients for three different wing surface conditions on an airplane typical of general aviation manufacturing technology. The three flight test phases included: (1) assessment of an unpainted airframe, (2) flight tests of the same airplane after painstakingly filling and sanding the wings to design contours, and (3) similar measurements after this airplane was painted. In each flight phase, transition locations were monitored using either sublimating chemicals or pigmented oil. As expected, total drag changes were difficult to measure. Two-dimensional drag coefficients were estimated using the Eppler-Somers code and measured with a wake rake in a method very similar to Jones' pitot traverse method. The net change in two-dimensional drag was approximately 20 counts between the unpainted airplane and the 'hand-smoothed' airplane for typical cruise flight conditions.
Solution of Poisson's Equation with Global, Local and Nonlocal Boundary Conditions
ERIC Educational Resources Information Center
Aliev, Nihan; Jahanshahi, Mohammad
2002-01-01
Boundary value problems (BVPs) for partial differential equations are common in mathematical physics. The differential equation is often considered in simple and symmetric regions, such as a circle, cube, cylinder, etc., with global and separable boundary conditions. In this paper and other works of the authors, a general method is used for the…
Thermal Convection in a Creeping Solid With Melting/Freezing Interfaces at Either or Both Boundaries
NASA Astrophysics Data System (ADS)
Labrosse, S.; Morison, A.; Deguen, R.; Alboussiere, T.; Tackley, P. J.; Agrusta, R.
2017-12-01
Thermal convection in the solid mantles of the Earth, other terrestrial planets and icy satellites sets in while it is still crystallising from a liquid layer (see abstract by Morison et al, this conference). The existence of an ocean (water or magma) either or both below and above the solid mantle modifies the conditions applying at the boundary since matter can flow through it by changing phase. Adapting the boundary conditions developed for the dynamics of the inner core by Deguen et al (GJI 2013) to the plane layer and the spherical shell, we solve the linear stability problem and obtain weakly non-linear solutions as well as direct numerical solutions in both geometries, with a liquid-solid phase change at either or both boundaries. The phase change boundary condition is controlled by a dimensionless number, Φ , which when small, allows easy flow through the boundary while the classical non-penetrating boundary condition is recovered for large values. If both boundaries have a phase change, the preferred wavelength of the flow is large, i.e. λ ∝Φ -1/2 in a plane layer and degree 1 in a spherical shell, and the critical Rayleigh number is of order Φ . The heat transfer efficiency, as measured by the dependence of the Nusselt number on the Rayleigh number also increases indefinitely for decreasing values of Φ . If only one boundary has a phase change condition, the critical wavelength is increased by about a factor 2 and the critical Rayleigh number is decreased by about a factor 4. The dynamics is controlled entirely by the boundary layer opposite to the phase change interface and the geometry of the flow. This model provides a natural explanation for the emergence of degree 1 convection in thin ice layers and implies a style of early mantle dynamics on Earth very different from what is classically envisioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempka, S.N.; Strickland, J.H.; Glass, M.W.
1995-04-01
formulation to satisfy velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations is presented. The tangential and normal components of the velocity boundary condition are satisfied simultaneously by creating vorticity adjacent to boundaries. The newly created vorticity is determined using a kinematical formulation which is a generalization of Helmholtz` decomposition of a vector field. Though it has not been generally recognized, these formulations resolve the over-specification issue associated with creating voracity to satisfy velocity boundary conditions. The generalized decomposition has not been widely used, apparently due to a lack of a useful physical interpretation. Anmore » analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition is discussed in detail. As an example the flow in a two-dimensional lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRA. ALEGRA`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation and the generalized decomposition, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.« less
Dynamic Characteristics of Micro-Beams Considering the Effect of Flexible Supports
Zhong, Zuo-Yang; Zhang, Wen-Ming; Meng, Guang
2013-01-01
Normally, the boundaries are assumed to allow small deflections and moments for MEMS beams with flexible supports. The non-ideal boundary conditions have a significant effect on the qualitative dynamical behavior. In this paper, by employing the principle of energy equivalence, rigorous theoretical solutions of the tangential and rotational equivalent stiffness are derived based on the Boussinesq's and Cerruti's displacement equations. The non-dimensional differential partial equation of the motion, as well as coupled boundary conditions, are solved analytically using the method of multiple time scales. The closed-form solution provides a direct insight into the relationship between the boundary conditions and vibration characteristics of the dynamic system, in which resonance frequencies increase with the nonlinear mechanical spring effect but decrease with the effect of flexible supports. The obtained results of frequencies and mode shapes are compared with the cases of ideal boundary conditions, and the differences between them are contrasted on frequency response curves. The influences of the support material property on the equivalent stiffness and resonance frequency shift are also discussed. It is demonstrated that the proposed model with the flexible supports boundary conditions has significant effect on the rigorous quantitative dynamical analysis of the MEMS beams. Moreover, the proposed analytical solutions are in good agreement with those obtained from finite element analyses.
Transport synthetic acceleration with opposing reflecting boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zika, M.R.; Adams, M.L.
2000-02-01
The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iteratingmore » on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.« less
Development of a Localized Low-Dimensional Approach to Turbulence Simulation
NASA Astrophysics Data System (ADS)
Juttijudata, Vejapong; Rempfer, Dietmar; Lumley, John
2000-11-01
Our previous study has shown that the localized low-dimensional model derived from a projection of Navier-Stokes equations onto a set of one-dimensional scalar POD modes, with boundary conditions at y^+=40, can predict wall turbulence accurately for short times while failing to give a stable long-term solution. The structures obtained from the model and later studies suggest our boundary conditions from DNS are not consistent with the solution from the localized model resulting in an injection of energy at the top boundary. In the current study, we develop low-dimensional models using one-dimensional scalar POD modes derived from an explicitly filtered DNS. This model problem has exact no-slip boundary conditions at both walls while the locality of the wall layer is still retained. Furthermore, the interaction between wall and core region is attenuated via an explicit filter which allows us to investigate the quality of the model without requiring complicated modeling of the top boundary conditions. The full-channel model gives reasonable wall turbulence structures as well as long-term turbulent statistics while still having difficulty with the prediction of the mean velocity profile farther from the wall. We also consider a localized model with modified boundary conditions in the last part of our study.
Ground state for a massive scalar field in the BTZ spacetime with Robin boundary conditions
NASA Astrophysics Data System (ADS)
Bussola, Francesco; Dappiaggi, Claudio; Ferreira, Hugo R. C.; Khavkine, Igor
2017-11-01
We consider a real, massive scalar field in Bañados-Teitelboim-Zanelli spacetime, a 2 +1 -dimensional black hole solution of Einstein's field equations with a negative cosmological constant. First, we analyze the space of classical solutions in a mode decomposition, and we characterize the collection of all admissible boundary conditions of Robin type which can be imposed at infinity. Second, we investigate whether, for a given boundary condition, there exists a ground state by constructing explicitly its two-point function. We demonstrate that for a subclass of the boundary conditions it is possible to construct a ground state that locally satisfies the Hadamard property. In all other cases, we show that bound state mode solutions exist and, therefore, such construction is not possible.
Impacts of Lateral Boundary Conditions on US Ozone ...
Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, we perform annual simulations over North America with chemical boundary conditions prepared from two global models (GEOS-CHEM and Hemispheric CMAQ). Results indicate that the impacts of different boundary conditions on ozone can be significant throughout the year. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem
NASA Technical Reports Server (NTRS)
Roy, Indranil Danda; Eversman, Walter; Meyer, H. D.
1993-01-01
Improvements have been made in the finite element model of the acoustic radiated field from a turbofan engine inlet in the presence of a mean flow. The problem of acoustic radiation from a turbofan engine inlet is difficult to model numerically because of the large domain and high frequencies involved. A numerical model with conventional finite elements in the near field and wave envelope elements in the far field has been constructed. By employing an irrotational mean flow assumption, both the mean flow and the acoustic perturbation problem have been posed in an axisymmetric formulation in terms of the velocity potential; thereby minimizing computer storage and time requirements. The finite element mesh has been altered in search of an improved solution. The mean flow problem has been reformulated with new boundary conditions to make it theoretically rigorous. The sound source at the fan face has been modeled as a combination of positive and negative propagating duct eigenfunctions. Therefore, a finite element duct eigenvalue problem has been solved on the fan face and the resulting modal matrix has been used to implement a source boundary condition on the fan face in the acoustic radiation problem. In the post processing of the solution, the acoustic pressure has been evaluated at Gauss points inside the elements and the nodal pressure values have been interpolated from them. This has significantly improved the results. The effect of the geometric position of the transition circle between conventional finite elements and wave envelope elements has been studied and it has been found that the transition can be made nearer to the inlet than previously assumed.
A CellML simulation compiler and code generator using ODE solving schemes
2012-01-01
Models written in description languages such as CellML are becoming a popular solution to the handling of complex cellular physiological models in biological function simulations. However, in order to fully simulate a model, boundary conditions and ordinary differential equation (ODE) solving schemes have to be combined with it. Though boundary conditions can be described in CellML, it is difficult to explicitly specify ODE solving schemes using existing tools. In this study, we define an ODE solving scheme description language-based on XML and propose a code generation system for biological function simulations. In the proposed system, biological simulation programs using various ODE solving schemes can be easily generated. We designed a two-stage approach where the system generates the equation set associating the physiological model variable values at a certain time t with values at t + Δt in the first stage. The second stage generates the simulation code for the model. This approach enables the flexible construction of code generation modules that can support complex sets of formulas. We evaluate the relationship between models and their calculation accuracies by simulating complex biological models using various ODE solving schemes. Using the FHN model simulation, results showed good qualitative and quantitative correspondence with the theoretical predictions. Results for the Luo-Rudy 1991 model showed that only first order precision was achieved. In addition, running the generated code in parallel on a GPU made it possible to speed up the calculation time by a factor of 50. The CellML Compiler source code is available for download at http://sourceforge.net/projects/cellmlcompiler. PMID:23083065
Hillslope-scale experiment demonstrates role of convergence during two-step saturation
Gevaert, A. I.; Teuling, A. J.; Uijlenhoet, R.; DeLong, Stephen B.; Huxman, T. E.; Pangle, L. A.; Breshears, David D.; Chorover, J.; Pelletier, John D.; Saleska, S. R.; Zeng, X.; Troch, Peter A.
2014-01-01
Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and extreme rainfall experiment on an artificial hillslope at Biosphere 2's Landscape Evolution Observatory (LEO) resulted in saturation excess overland flow and gully erosion in the convergent hillslope area. An array of 496 soil moisture sensors revealed a two-step saturation process. First, the downward movement of the wetting front brought soils to a relatively constant but still unsaturated moisture content. Second, soils were brought to saturated conditions from below in response to rising water tables. Convergent areas responded faster than upslope areas, due to contributions from lateral subsurface flow driven by the topography of the bottom boundary, which is comparable to impermeable bedrock in natural environments. This led to the formation of a groundwater ridge in the convergent area, triggering saturation excess runoff generation. This unique experiment demonstrates, at very high spatial and temporal resolution, the role of convergence on subsurface storage and flow dynamics. The results bring into question the representation of saturation excess overland flow in conceptual rainfall-runoff models and land-surface models, since flow is gravity-driven in many of these models and upper layers cannot become saturated from below. The results also provide a baseline to study the role of the co-evolution of ecological and hydrological processes in determining landscape water dynamics during future experiments in LEO.
Arctic sea ice loss and recent extreme cold winter in Eurasia
NASA Astrophysics Data System (ADS)
Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide
2014-05-01
Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic sea ice in preceding autumn to winter season. However, the tropical and/or mid-latitude sea surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of sea ice change from observational data. In this study, we examine possible linkage between the Arctic sea ice loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to sea ice reduction. We perform two sets of experiments with different realistic sea ice boundary conditions calculated by composite of observed sea ice concentration; one is reduced sea ice extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic sea ice loss. We would like to introduce more important results and mechanisms in detail in my presentation.
Optimal strategies for insects migrating in the flight boundary layer: mechanisms and consequences.
Srygley, Robert B; Dudley, Robert
2008-07-01
Directed aerial displacement requires that a volant organism's airspeed exceeds ambient wind speed. For biologically relevant altitudes, wind speed increases exponentially with increased height above the ground. Thus, dispersal of most insects is influenced by atmospheric conditions. However, insects that fly close to the Earth's surface displace within the flight boundary layer where insect airspeeds are relatively high. Over the past 17 years, we have studied boundary-layer insects by following individuals as they migrate across the Caribbean Sea and the Panama Canal. Although most migrants evade either drought or cold, nymphalid and pierid butterflies migrate across Panama near the onset of the rainy season. Dragonflies of the genus Pantala migrate in October concurrently with frontal weather systems. Migrating the furthest and thereby being the most difficult to study, the diurnal moth Urania fulgens migrates between Central and South America. Migratory butterflies and dragonflies are capable of directed movement towards a preferred compass direction in variable winds, whereas the moths drift with winds over water. Butterflies orient using both global and local cues. Consistent with optimal migration theory, butterflies and dragonflies adjust their flight speeds in ways that maximize migratory distance traveled per unit fuel, whereas the moths do not. Moreover, only butterflies adjust their flight speed in relation to endogenous fat reserves. It is likely that these insects use optic flow to gauge their speed and drift, and thus must migrate where sufficient detail in the Earth's surface is visible to them. The abilities of butterflies and dragonflies to adjust their airspeed over water indicate sophisticated control and guidance systems pertaining to migration.
Development and utilization of new diagnostics for dense-phase pneumatic transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. Because we anticipate the recent theories of rapid granular flows will bring insight to the dense pneumatic transport of particles, we have sought to substantiate these theories through computer simulations. There we have verified the theorymore » of Hanes, Jenkins Richman (1988) for the rapid, steady shear flow of identical, smooth, nearly elastics disks driven by identical, parallel, bumpy boundaries. Because granular flows depend strongly on the nature of their interaction with a boundary, we have verified the boundary conditions calculated by Jenkins (1991) for spheres interacting with a flat, frictional surface. During the previous reporting period, we began a study of the time relaxation of the second moment of velocity fluctuations for a collection of disks undergoing simple shear. In the present reporting period, we have completed this study of relaxation by comparing results of simulations with the theoretical predictions of Jenkins and Richman (1988). In addition, we have concluded a series of experiments with flour plugs in the dense-phase pneumatic setup. Finally, we have established several industrial contacts to transfer the diagnostic techniques developed under this contract. 7 refs., 11 figs.« less
NASA Technical Reports Server (NTRS)
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z; Lipford, William E; Watkins, Anthony Neal
2016-12-03
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method. PMID:27918493
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.
2014-12-01
The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil moisture effects were observed. This data provides important insight into future work of accurately modeling the exchange processes associated with evaporation under various turbulent atmospheric conditions.
Studying the Afternoon Transition of the Planetary Boundary Layer
NASA Astrophysics Data System (ADS)
Lothon, Marie; Lenschow, Donald H.
2010-07-01
The planetary boundary layer is the part of the atmosphere that interacts directly with the Earth's surface on a time scale of a few hours or less. In daytime, solar heating of the surface can generate buoyant turbulent eddies that efficiently mix the air through a depth of more than a kilometer. This convective boundary layer (CBL) is a conduit for trace gases such as water vapor and carbon dioxide that are emitted or absorbed by the surface (and surface vegetation) to be transported into or out of the layer nearest the surface. The CBL has been extensively observed and relatively successfully modeled. But the early morning transition—when the CBL emerges from the nocturnal boundary layer—and the late afternoon transition—when the CBL decays to an intermittently turbulent “residual layer” overlying a shallower, stably stratified boundary layer—are difficult to observe and model due to turbulence intermittency and anisotropy, horizontal heterogeneity, and rapid time changes. Even the definition of the boundary layer during these transitional periods is fuzzy; there is no consensus on what criteria to use and no simple scaling laws, as there are for the CBL, that apply during these transitions.
Double absorbing boundaries for finite-difference time-domain electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu
We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.
2015-12-02
layer , the non-reflecting boundary condition suggested by Poinsot and Lele is adopted.38 On the flat – plate surface, the no-penetration (v = 0) and the no...generator plate is emulated to create an oblique shock that impinges on the boundary layer causing separation. This is similar to the experimental...without SBLI and with SBLI. To calculate the steady flat – plate solution with no shock, a characteristic boundary condition according to Harris is used.39
NASA Astrophysics Data System (ADS)
Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.
2018-03-01
This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.
Unsteady-flow-field predictions for oscillating cascades
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
1991-01-01
The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory.
Effect of boundary conditions on thermal plume growth
NASA Astrophysics Data System (ADS)
Kondrashov, A.; Sboev, I.; Rybkin, K.
2016-07-01
We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.
The topological basis expression of four-qubit XXZ spin chain with twist boundary condition
NASA Astrophysics Data System (ADS)
Du, Guijiao; Xue, Kang; Zhou, Chengcheng; Sun, Chunfang; Wang, Gangcheng
2013-07-01
We investigate the XXZ model's characteristic with the twisted boundary condition and the topological basis expression. Owing to twist boundary condition, the ground state energy will changing back and forth between E_{13} and E_{15} by modulate the parameter φ . By using TLA generators, the XXZ model's Hamiltonian can be constructed. All the eigenstates can be expressed by topological basis, and the whole of eigenstates' entanglement are maximally entangle states (Q(|φ _i> )=1).
Political Acts? Toward the Recuperation of Opinion
ERIC Educational Resources Information Center
Harwood, Valerie
2010-01-01
Encouraging debate on inclusion and equity can meet with awkward silences, particularly across disciplinary boundaries. In disability studies, for example, it can be difficult to build dialogue with other disciplines; as a consequence, the different disciplinary groups within the field of education often end up working in their own "equity" silos.…
GREAT LAKES BASIN LAND-COVER DATA: ISSUES AND OPPORTUNITIES
The US Environmental Protection Agency (EPA) is developing a consistent land-cover (LC) data set for the entire 480,000 km2 Great Lakes Basin (GLB). The acquisition of consistent LC data has proven difficult both within the US and across GLB political boundaries due to disparate...
The Globalisation of Fear and the Construction of the Intercultural Imagination
ERIC Educational Resources Information Center
Bash, Leslie
2014-01-01
Intercultural education concerns the destruction of boundaries between people and their replacement by what Jurgen Habermas has called communicative action. It is a difficult task that raises various forms of existential fear: consciousness of individual mortality, communal insecurity, collective anxiety and distrust. In order to confront this…
ERIC Educational Resources Information Center
Timson, David J.
2017-01-01
Mutations can cause genetic diseases and the vast majority of these have no effective treatment. They raise some difficult questions on the boundaries of science and social science. Selective breeding to "improve" the human race (eugenics) is often regarded as a Victorian relic or Nazi fantasy. Yet, three fetuses with Down syndrome are…
High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates
NASA Technical Reports Server (NTRS)
Nordstrom, Jan; Carpenter, Mark H.
1999-01-01
Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.
Research in computational fluid dynamics and analysis of algorithms
NASA Technical Reports Server (NTRS)
Gottlieb, David
1992-01-01
Recently, higher-order compact schemes have seen increasing use in the DNS (Direct Numerical Simulations) of the Navier-Stokes equations. Although they do not have the spatial resolution of spectral methods, they offer significant increases in accuracy over conventional second order methods. They can be used on any smooth grid, and do not have an overly restrictive CFL dependence as compared with the O(N(exp -2)) CFL dependence observed in Chebyshev spectral methods on finite domains. In addition, they are generally more robust and less costly than spectral methods. The issue of the relative cost of higher-order schemes (accuracy weighted against physical and numerical cost) is a far more complex issue, depending ultimately on what features of the solution are sought and how accurately they must be resolved. In any event, the further development of the underlying stability theory of these schemes is important. The approach of devising suitable boundary clusters and then testing them with various stability techniques (such as finding the norm) is entirely the wrong approach when dealing with high-order methods. Very seldom are high-order boundary closures stable, making them difficult to isolate. An alternative approach is to begin with a norm which satisfies all the stability criteria for the hyperbolic system, and look for the boundary closure forms which will match the norm exactly. This method was used recently by Strand to isolate stable boundary closure schemes for the explicit central fourth- and sixth-order schemes. The norm used was an energy norm mimicking the norm for the differential equations. Further research should be devoted to BC for high order schemes in order to make sure that the results obtained are reliable. The compact fourth order and sixth order finite difference scheme had been incorporated into a code to simulate flow past circular cylinders. This code will serve as a verification of the full spectral codes. A detailed stability analysis by Carpenter (from the fluid Mechanics Division) and Gottlieb gave analytic conditions for stability as well as asymptotic stability. This had been incorporated in the code in form of stable boundary conditions. Effects of the cylinder rotations had been studied. The results differ from the known theoretical results. We are in the middle of analyzing the results. A detailed analysis of the effects of the heating of the cylinder on the shedding frequency had been studied using the above schemes. It has been found that the shedding frequency decreases when the wire was heated. Experimental work is being carried out to affirm this result.
Actions, topological terms and boundaries in first-order gravity: A review
NASA Astrophysics Data System (ADS)
Corichi, Alejandro; Rubalcava-García, Irais; Vukašinac, Tatjana
2016-03-01
In this review, we consider first-order gravity in four dimensions. In particular, we focus our attention in formulations where the fundamental variables are a tetrad eaI and a SO(3, 1) connection ωaIJ. We study the most general action principle compatible with diffeomorphism invariance. This implies, in particular, considering besides the standard Einstein-Hilbert-Palatini term, other terms that either do not change the equations of motion, or are topological in nature. Having a well defined action principle sometimes involves the need for additional boundary terms, whose detailed form may depend on the particular boundary conditions at hand. In this work, we consider spacetimes that include a boundary at infinity, satisfying asymptotically flat boundary conditions and/or an internal boundary satisfying isolated horizons boundary conditions. We focus on the covariant Hamiltonian formalism where the phase space Γ is given by solutions to the equations of motion. For each of the possible terms contributing to the action, we consider the well-posedness of the action, its finiteness, the contribution to the symplectic structure, and the Hamiltonian and Noether charges. For the chosen boundary conditions, standard boundary terms warrant a well posed theory. Furthermore, the boundary and topological terms do not contribute to the symplectic structure, nor the Hamiltonian conserved charges. The Noether conserved charges, on the other hand, do depend on such additional terms. The aim of this manuscript is to present a comprehensive and self-contained treatment of the subject, so the style is somewhat pedagogical. Furthermore, along the way, we point out and clarify some issues that have not been clearly understood in the literature.
Direct numerical simulation of turbulent Rayleigh-Bénard convection in a vertical thin disk
NASA Astrophysics Data System (ADS)
Xu, Wei; Wang, Yin; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger
2017-11-01
We report a direct numerical simulation (DNS) of turbulent Rayleigh-Bénard convection in a thin vertical disk with a high-order spectral element method code NEK5000. An unstructured mesh is used to adapt the turbulent flow in the thin disk and to ensure that the mesh sizes satisfy the refined Groetzbach criterion and a new criterion for thin boundary layers proposed by Shishkina et al. The DNS results for the mean and variance temperature profiles in the thermal boundary layer region are found to be in good agreement with the predictions of the new boundary layer models proposed by Shishkina et al. and Wang et al.. Furthermore, we numerically calculate the five budget terms in the boundary layer equation, which are difficult to measure in experiment. The DNS results agree well with the theoretical predictions by Wang et al. Our numerical work thus provides a strong support for the development of a common framework for understanding the effect of boundary layer fluctuations. This work was supported in part by Hong Kong Research Grants Council.
NASA Astrophysics Data System (ADS)
Tan, Zhi-Zhong
2017-03-01
We study a problem of two-point resistance in a non-regular m × n cylindrical network with a zero resistor axis and two arbitrary boundaries by means of the Recursion-Transform method. This is a new problem never solved before, the Green’s function technique and the Laplacian matrix approach are invalid in this case. A disordered network with arbitrary boundaries is a basic model in many physical systems or real world systems, however looking for the exact calculation of the resistance of a binary resistor network is important but difficult in the case of the arbitrary boundaries, the boundary is like a wall or trap which affects the behavior of finite network. In this paper we obtain a general resistance formula of a non-regular m × n cylindrical network, which is composed of a single summation. Further, the current distribution is given explicitly as a byproduct of the method. As applications, several interesting results are derived by making special cases from the general formula. Supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK20161278
Numerical Boundary Condition Procedures
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.
Experimental damage detection of wind turbine blade using thin film sensor array
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha
2017-04-01
Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.
Doha, E.H.; Abd-Elhameed, W.M.; Youssri, Y.H.
2014-01-01
Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems governed by homogeneous and nonhomogeneous boundary conditions using a dual Petrov–Galerkin method. The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The resulting linear systems from the application of our method are specially structured and they can be efficiently inverted. The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms. The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient. PMID:26425358
CFD determination of flow perturbation boundary conditions for seal rotordynamic modeling
NASA Astrophysics Data System (ADS)
Venkatesan, Ganesh
2002-09-01
A new approach has been developed and utilized to determine the flow field perturbations (i.e. disturbance due to rotor eccentricity and/or motion) upstream of and within a non-contacting seal. The results are proposed for use with bulk-flow perturbation and CFD-perturbation seal rotordynamic models, as well as in fully 3-D CFD models, to specify approximate boundary conditions for the first-order variables at the computational domain inlet. The perturbation quantities were evaluated by subtracting the numerical flow field solutions corresponding to the concentric rotor position from that for an eccentric rotor position. The disturbance pressure quantities predicted from the numerical solutions were validated by comparing with previous pressure measurements. A parametric study was performed to understand the influence of upstream chamber height, seal clearance, shaft speed, whirl speed, zeroth-order streamwise and swirl velocities, and downstream pressure on the distribution of the first-order quantities in the upstream chamber, seal inlet and seal exit regions. Radially bulk-averaged first-order quantities were evaluated in the upstream chamber, as well as at the seal inlet and exit. The results were finally presented in the form of generalized dimensionless boundary condition correlations so that they can be applied to seal rotordynamic models over a wide range of operating conditions and geometries. To examine the effect of the proposed, approximate first-order boundary conditions on the solutions of the fully 3-D CFD rotordynamic models, the first-order boundary condition correlations for the upstream chamber were used to adjust the circumferential distribution of domain inlet values. The benefit of the boundary condition expressions was assessed for two previously measured test cases, one for a gas seal and the other for a liquid seal. For the gas seal case, a significant improvement in the prediction of the cross-coupled stiffness, when including the proposed first-order inlet boundary values, was found. In the case of liquid seals the tangential impedance values obtained with boundary condition adjustments showed a very slight improvement for a range of whirl speeds over those obtained without them. The radial impedance values obtained with the new adjustments showed a significant improvement over those obtained without them.
Medhi, Amal; Shenoy, Vijay B
2012-09-05
We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.
NASA Astrophysics Data System (ADS)
Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing
2014-11-01
We report an experimental study of the influences of thermal boundary condition in turbulent thermal convection. Two configurations were examined: one was fixed heat flux at the bottom boundary and fixed temperature at the top (HC cells); the other was fixed temperature at both boundaries (CC cells). It is found that the flow strength in the CC cells is on average 9% larger than that in the HC ones, which could be understood as change in plume emission ability under different boundary conditions. It is further found, rather surprisingly, that flow reversals of the large-scale circulation occur more frequently in the CC cell, despite a stronger large-scale flow and more uniform temperature distribution over the boundaries. These findings provide new insights into turbulent thermal convection and should stimulate further studies, especially experimental ones. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK 403712.
Pressure wave propagation studies for oscillating cascades
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
1992-01-01
The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.
Single particle nonlocality, geometric phases and time-dependent boundary conditions
NASA Astrophysics Data System (ADS)
Matzkin, A.
2018-03-01
We investigate the issue of single particle nonlocality in a quantum system subjected to time-dependent boundary conditions. We discuss earlier claims according to which the quantum state of a particle remaining localized at the center of an infinite well with moving walls would be specifically modified by the change in boundary conditions due to the wall’s motion. We first prove that the evolution of an initially localized Gaussian state is not affected nonlocally by a linearly moving wall: as long as the quantum state has negligible amplitude near the wall, the boundary motion has no effect. This result is further extended to related confined time-dependent oscillators in which the boundary’s motion is known to give rise to geometric phases: for a Gaussian state remaining localized far from the boundaries, the effect of the geometric phases is washed out and the particle dynamics shows no traces of a nonlocal influence that would be induced by the moving boundaries.
Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T
2018-01-01
In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.
Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics
Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em
2011-01-01
We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548
State of Fukushima nuclear fuel debris tracked by Cs137 in cooling water.
Grambow, B; Mostafavi, M
2014-11-01
It is still difficult to assess the risk originating from the radioactivity inventory remaining in the damaged Fukushima nuclear reactors. Here we show that cooling water analyses provide a means to assess source terms for potential future releases. Until now already about 34% of the inventories of (137)Cs of three reactors has been released into water. We found that the release rate of (137)Cs has been constant for 2 years at about 1.8% of the inventory per year indicating ongoing dissolution of the fuel debris. Compared to laboratory studies on spent nuclear fuel behavior in water, (137)Cs release rates are on the higher end, caused by the strong radiation field and oxidant production by water radiolysis and by impacts of accessible grain boundaries. It is concluded that radionuclide analyses in cooling water allow tracking of the conditions of the damaged fuel and the associated risks.
NASA Astrophysics Data System (ADS)
Wilson, H. F.
2013-12-01
First-principles atomistic simulation is a vital tool for understanding the properties of materials at the high-pressure high-temperature conditions prevalent in giant planet interiors, but properties such as solubility and phase boundaries are dependent on entropy, a quantity not directly accessible in simulation. Determining entropic properties from atomistic simulations is a difficult problem typically requiring a time-consuming integration over molecular dynamics trajectories. Here I will describe recent advances in first-principles thermodynamic calculations which substantially increase the simplicity and efficiency of thermodynamic integration and make entropic properties more readily accessible. I will also describe the use of first-principles thermodynamic calculations for understanding problems including core solubility in gas giants and superionic phase changes in ice giants, as well as future prospects for combining first-principles thermodynamics with planetary-scale models to help us understand the origin and consequences of compositional inhomogeneity in giant planet interiors.
Applicability of ERTS-1 to Montana geology
NASA Technical Reports Server (NTRS)
Weidman, R. M. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Geologic maps of four test sites were compiled at 1/250,000. Band 7 prints enlarged to 1/500,000 scale are the best for the purpose, and negative prints provide a valuable supplement. More than 100 mapped lineaments represent most of the major faults of the area and a large number of suspected faults, including many of northeast trend. Under ideal conditions dip slopes may be recognized, laccoliths outlined, and axial traces drawn for narrow, plunging folds. Use of ERTS-1 imagery will greatly facilitate construction of a needed tectonic map of Montana. From ERTS-1 imagery alone, it was possible to identify up-turned undivided Paleozoic and Mesozoic strata and to map the boundaries of mountain glaciation, intermontane basins, a volcanic field, and an area of granitic rocks. It was also possible to outline clay pans associated with bentonite. However, widespread recognition of gross rock types will be difficult.
A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1988-01-01
High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.
Epistemic uncertainties and natural hazard risk assessment - Part 1: A review of the issues
NASA Astrophysics Data System (ADS)
Beven, K. J.; Aspinall, W. P.; Bates, P. D.; Borgomeo, E.; Goda, K.; Hall, J. W.; Page, T.; Phillips, J. C.; Rougier, J. T.; Simpson, M.; Stephenson, D. B.; Smith, P. J.; Wagener, T.; Watson, M.
2015-12-01
Uncertainties in natural hazard risk assessment are generally dominated by the sources arising from lack of knowledge or understanding of the processes involved. There is a lack of knowledge about frequencies, process representations, parameters, present and future boundary conditions, consequences and impacts, and the meaning of observations in evaluating simulation models. These are the epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities, even as elicited probabilities rationalized on the basis of expert judgements. This paper reviews the issues raised by trying to quantify the effects of epistemic uncertainties. Such scientific uncertainties might have significant influence on decisions that are made for risk management, so it is important to communicate the meaning of an uncertainty estimate and to provide an audit trail of the assumptions on which it is based. Some suggestions for good practice in doing so are made.
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
Clustering and pasta phases in nuclear density functional theory
Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold
2017-05-23
Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold
Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less
NASA Astrophysics Data System (ADS)
Douillet-Grellier, Thomas; Pramanik, Ranjan; Pan, Kai; Albaiz, Abdulaziz; Jones, Bruce D.; Williams, John R.
2017-10-01
This paper develops a method for imposing stress boundary conditions in smoothed particle hydrodynamics (SPH) with and without the need for dummy particles. SPH has been used for simulating phenomena in a number of fields, such as astrophysics and fluid mechanics. More recently, the method has gained traction as a technique for simulation of deformation and fracture in solids, where the meshless property of SPH can be leveraged to represent arbitrary crack paths. Despite this interest, application of boundary conditions within the SPH framework is typically limited to imposed velocity or displacement using fictitious dummy particles to compensate for the lack of particles beyond the boundary interface. While this is enough for a large variety of problems, especially in the case of fluid flow, for problems in solid mechanics there is a clear need to impose stresses upon boundaries. In addition to this, the use of dummy particles to impose a boundary condition is not always suitable or even feasibly, especially for those problems which include internal boundaries. In order to overcome these difficulties, this paper first presents an improved method for applying stress boundary conditions in SPH with dummy particles. This is then followed by a proposal of a formulation which does not require dummy particles. These techniques are then validated against analytical solutions to two common problems in rock mechanics, the Brazilian test and the penny-shaped crack problem both in 2D and 3D. This study highlights the fact that SPH offers a good level of accuracy to solve these problems and that results are reliable. This validation work serves as a foundation for addressing more complex problems involving plasticity and fracture propagation.
The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core
NASA Astrophysics Data System (ADS)
Davies, C. J.; Mound, J. E.
2017-12-01
Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.
Completed Beltrami-Michell formulation for analyzing mixed boundary value problems in elasticity
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Kaljevic, Igor; Hopkins, Dale A.; Saigal, Sunil
1995-01-01
In elasticity, the method of forces, wherein stress parameters are considered as the primary unknowns, is known as the Beltrami-Michell formulation (BMF). The existing BMF can only solve stress boundary value problems; it cannot handle the more prevalent displacement of mixed boundary value problems of elasticity. Therefore, this formulation, which has restricted application, could not become a true alternative to the Navier's displacement method, which can solve all three types of boundary value problems. The restrictions in the BMF have been alleviated by augmenting the classical formulation with a novel set of conditions identified as the boundary compatibility conditions. This new method, which completes the classical force formulation, has been termed the completed Beltrami-Michell formulation (CBMF). The CBMF can solve general elasticity problems with stress, displacement, and mixed boundary conditions in terms of stresses as the primary unknowns. The CBMF is derived from the stationary condition of the variational functional of the integrated force method. In the CBMF, stresses for kinematically stable structures can be obtained without any reference to the displacements either in the field or on the boundary. This paper presents the CBMF and its derivation from the variational functional of the integrated force method. Several examples are presented to demonstrate the applicability of the completed formulation for analyzing mixed boundary value problems under thermomechanical loads. Selected example problems include a cylindrical shell wherein membrane and bending responses are coupled, and a composite circular plate.
NASA Astrophysics Data System (ADS)
Ben Amara, Jamel; Bouzidi, Hedi
2018-01-01
In this paper, we consider a linear hybrid system which is composed by two non-homogeneous rods connected by a point mass with Dirichlet boundary conditions on the left end and a boundary control acts on the right end. We prove that this system is null controllable with Dirichlet or Neumann boundary controls. Our approach is mainly based on a detailed spectral analysis together with the moment method. In particular, we show that the associated spectral gap in both cases (Dirichlet or Neumann boundary controls) is positive without further conditions on the coefficients other than the regularities.
Superradiance in the BTZ black hole with Robin boundary conditions
NASA Astrophysics Data System (ADS)
Dappiaggi, Claudio; Ferreira, Hugo R. C.; Herdeiro, Carlos A. R.
2018-03-01
We show the existence of superradiant modes of massive scalar fields propagating in BTZ black holes when certain Robin boundary conditions, which never include the commonly considered Dirichlet boundary conditions, are imposed at spatial infinity. These superradiant modes are defined as those solutions whose energy flux across the horizon is towards the exterior region. Differently from rotating, asymptotically flat black holes, we obtain that not all modes which grow up exponentially in time are superradiant; for some of these, the growth is sourced by a bulk instability of AdS3, triggered by the scalar field with Robin boundary conditions, rather than by energy extraction from the BTZ black hole. Thus, this setup provides an example wherein Bosonic modes with low frequency are pumping energy into, rather than extracting energy from, a rotating black hole.
Localized rotating convection with no-slip boundary conditions
NASA Astrophysics Data System (ADS)
Beaume, Cédric; Kao, Hsien-Ching; Knobloch, Edgar; Bergeon, Alain
2013-12-01
Localized patches of stationary convection embedded in a background conduction state are called convectons. Multiple states of this type have recently been found in two-dimensional Boussinesq convection in a horizontal fluid layer with stress-free boundary conditions at top and bottom, and rotating about the vertical. The convectons differ in their lengths and in the strength of the self-generated shear within which they are embedded, and exhibit slanted snaking. We use homotopic continuation of the boundary conditions to show that similar structures exist in the presence of no-slip boundary conditions at the top and bottom of the layer and show that such structures exhibit standard snaking. The homotopic continuation allows us to study the transformation from slanted snaking characteristic of systems with a conserved quantity, here the zonal momentum, to standard snaking characteristic of systems with no conserved quantity.
Heat kernel for the elliptic system of linear elasticity with boundary conditions
NASA Astrophysics Data System (ADS)
Taylor, Justin; Kim, Seick; Brown, Russell
2014-10-01
We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.
Explicitly represented polygon wall boundary model for the explicit MPS method
NASA Astrophysics Data System (ADS)
Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori
2015-05-01
This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.
Changes in the lower boundary condition of water fluxes in the NOAH land surface scheme
NASA Astrophysics Data System (ADS)
Lohmann, D.; Peters-Lidard, C. D.
2002-05-01
One problem with current land surface schemes (LSS) used in weather prediction and climate models is their inabilty to reproduce streamflow in large river basins. This can be attributed to the weak representation of their upper (infiltration) and lower (baseflow) boundary conditions in their water balance / transport equations. Operational (traditional) hydrological models, which operate on the same spatial scale as a LSS, on the other hand, are able to reproduce streamflow time series. Their infiltration and baseflow equations are often empirically based and therefore have been neglected by the LSS community. It must be argued that we need to include a better representation of long time scales (as represented by groundwater and baseflow) into the current LSS to make valuable predictions of streamflow and water resources. This talk concentrates on the lower boundary condition of water fluxes within LSS. It reviews briefly previous attempts to incorporate groundwater and more realistic lower boundary conditions into LSS and summarizes the effect on the runoff (baseflow) production time scales as compared to currently used lower boundary conditions in LSS. The NOAH - LSM in the LDAS and DMIP setting is used to introduce a simplified groundwater model, based on the linearized Boussinesq equation, and the TOPMODEL. The NOAH - LSM will be coupled to a linear routing model to investigate the effects of the new lower boundary condition on the water balance (in particular, streamflow) in small to medium sized catchments in the LDAS / DMIP domain.
On the improvement of Wiener attack on RSA with small private exponent.
Wu, Mu-En; Chen, Chien-Ming; Lin, Yue-Hsun; Sun, Hung-Min
2014-01-01
RSA system is based on the hardness of the integer factorization problem (IFP). Given an RSA modulus N = pq, it is difficult to determine the prime factors p and q efficiently. One of the most famous short exponent attacks on RSA is the Wiener attack. In 1997, Verheul and van Tilborg use an exhaustive search to extend the boundary of the Wiener attack. Their result shows that the cost of exhaustive search is 2r + 8 bits when extending the Weiner's boundary r bits. In this paper, we first reduce the cost of exhaustive search from 2r + 8 bits to 2r + 2 bits. Then, we propose a method named EPF. With EPF, the cost of exhaustive search is further reduced to 2r - 6 bits when we extend Weiner's boundary r bits. It means that our result is 2(14) times faster than Verheul and van Tilborg's result. Besides, the security boundary is extended 7 bits.
On the Improvement of Wiener Attack on RSA with Small Private Exponent
Chen, Chien-Ming; Lin, Yue-Hsun
2014-01-01
RSA system is based on the hardness of the integer factorization problem (IFP). Given an RSA modulus N = pq, it is difficult to determine the prime factors p and q efficiently. One of the most famous short exponent attacks on RSA is the Wiener attack. In 1997, Verheul and van Tilborg use an exhaustive search to extend the boundary of the Wiener attack. Their result shows that the cost of exhaustive search is 2r + 8 bits when extending the Weiner's boundary r bits. In this paper, we first reduce the cost of exhaustive search from 2r + 8 bits to 2r + 2 bits. Then, we propose a method named EPF. With EPF, the cost of exhaustive search is further reduced to 2r − 6 bits when we extend Weiner's boundary r bits. It means that our result is 214 times faster than Verheul and van Tilborg's result. Besides, the security boundary is extended 7 bits. PMID:24982974
Rosenberg, Lena; Kottorp, Anders; Johansson, Karin
2017-09-08
This study explored how boundaries in relationship to community and identity were created and negotiated among lesbian, gay, bisexual, and queer (LGBQ) people within the framework of picturing LGBQ-specific elderly housing as a housing alternative in older age, by applying focus group methodology. "An island as a sparkling sanctuary" was identified as a metaphor for how symbolic resources defining the LGBQ community can be manifested in LGBQ-specific qualities of elderly housing. The boundary work underlying this manifestation included elaborations on the dilemma between exclusiveness and normality. The findings illustrate further how symbolic resources and collective identities were developed through dialectic interplay between internal and external definitions. Further, the findings show how boundary work generated shared feelings of similarity and group membership. The associated symbolic and social resources not only served to deal with difficult situations but also to manifest LGBQ identity and sense of community as a "gold medal."
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
Log corrections to entropy of three dimensional black holes with soft hair
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Perez, Alfredo; Tempo, David; Troncoso, Ricardo
2017-08-01
We calculate log corrections to the entropy of three-dimensional black holes with "soft hairy" boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z = 1 and soft hairy boundary conditions to the limiting case z → 0+. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine û (1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.
NASA Astrophysics Data System (ADS)
Avitabile, D.; Desroches, M.; Knobloch, E.; Krupa, M.
2017-11-01
A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.
Avitabile, D; Desroches, M; Knobloch, E; Krupa, M
2017-11-01
A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.
NASA Technical Reports Server (NTRS)
Volakis, John L.
1991-01-01
There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. A Fourier series expansion of the vector electric and magnetic fields is employed to reduce the dimensionality of the system, and an exact boundary condition is employed to terminate the mesh. The mesh termination boundary is chosen such that it leads to convolutional boundary operators for low O(n) memory demand. Second, rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. Ray solutions are obtained which remain valid in the transition region and reduce uniformly those in the deep lit and shadow regions. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder.
NASA Astrophysics Data System (ADS)
Lee, Chung-Shuo; Chen, Yan-Yu; Yu, Chi-Hua; Hsu, Yu-Chuan; Chen, Chuin-Shan
2017-07-01
We present a semi-analytical solution of a time-history kernel for the generalized absorbing boundary condition in molecular dynamics (MD) simulations. To facilitate the kernel derivation, the concept of virtual atoms in real space that can conform with an arbitrary boundary in an arbitrary lattice is adopted. The generalized Langevin equation is regularized using eigenvalue decomposition and, consequently, an analytical expression of an inverse Laplace transform is obtained. With construction of dynamical matrices in the virtual domain, a semi-analytical form of the time-history kernel functions for an arbitrary boundary in an arbitrary lattice can be found. The time-history kernel functions for different crystal lattices are derived to show the generality of the proposed method. Non-equilibrium MD simulations in a triangular lattice with and without the absorbing boundary condition are conducted to demonstrate the validity of the solution.
High order accurate solutions of viscous problems
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Turkel, Eli
1993-01-01
We consider a fourth order extension to MacCormack's scheme. The original extension was fourth order only for the inviscid terms but was second order for the viscous terms. We show how to modify the viscous terms so that the scheme is uniformly fourth order in the spatial derivatives. Applications are given to some boundary layer flows. In addition, for applications to shear flows the effect of the outflow boundary conditions are very important. We compare the accuracy of several of these different boundary conditions for both boundary layer and shear flows. Stretching at the outflow usually increases the oscillations in the numerical solution but the addition of a filtered sponge layer (with or without stretching) reduces such oscillations. The oscillations are generated by insufficient resolution of the shear layer. When the shear layer is sufficiently resolved then oscillations are not generated and there is less of a need for a nonreflecting boundary condition.
Qu, Zhechao; Werhahn, Olav; Ebert, Volker
2018-06-01
The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.
Electroneutral models for dynamic Poisson-Nernst-Planck systems
NASA Astrophysics Data System (ADS)
Song, Zilong; Cao, Xiulei; Huang, Huaxiong
2018-01-01
The Poisson-Nernst-Planck (PNP) system is a standard model for describing ion transport. In many applications, e.g., ions in biological tissues, the presence of thin boundary layers poses both modeling and computational challenges. In this paper, we derive simplified electroneutral (EN) models where the thin boundary layers are replaced by effective boundary conditions. There are two major advantages of EN models. First, it is much cheaper to solve them numerically. Second, EN models are easier to deal with compared to the original PNP system; therefore, it would also be easier to derive macroscopic models for cellular structures using EN models. Even though the approach used here is applicable to higher-dimensional cases, this paper mainly focuses on the one-dimensional system, including the general multi-ion case. Using systematic asymptotic analysis, we derive a variety of effective boundary conditions directly applicable to the EN system for the bulk region. This EN system can be solved directly and efficiently without computing the solution in the boundary layer. The derivation is based on matched asymptotics, and the key idea is to bring back higher-order contributions into the effective boundary conditions. For Dirichlet boundary conditions, the higher-order terms can be neglected and the classical results (continuity of electrochemical potential) are recovered. For flux boundary conditions, higher-order terms account for the accumulation of ions in boundary layer and neglecting them leads to physically incorrect solutions. To validate the EN model, numerical computations are carried out for several examples. Our results show that solving the EN model is much more efficient than the original PNP system. Implemented with the Hodgkin-Huxley model, the computational time for solving the EN model is significantly reduced without sacrificing the accuracy of the solution due to the fact that it allows for relatively large mesh and time-step sizes.
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.
1998-01-01
An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.
NASA Astrophysics Data System (ADS)
Kartashov, E. M.
1986-10-01
Analytical methods for solving boundary value problems for the heat conduction equation with heterogeneous boundary conditions on lines, on a plane, and in space are briefly reviewed. In particular, the method of dual integral equations and summator series is examined with reference to stationary processes. A table of principal solutions to dual integral equations and pair summator series is proposed which presents the known results in a systematic manner. Newly obtained results are presented in addition to the known ones.
Numerical simulation of supersonic flow using a new analytical bleed boundary condition
NASA Technical Reports Server (NTRS)
Harloff, G. J.; Smith, G. E.
1995-01-01
A new analytical bleed boundary condition is used to compute flowfields for a strong oblique shock wave/boundary layer interaction with a baseline and three bleed rates at a freestream Mach number of 2.47 with an 8 deg shock generator. The computational results are compared to experimental Pitot pressure profiles and wall static pressures through the interaction region. An algebraic turbulence model is employed for the bleed and baseline cases, and a one equation model is also used for the baseline case where the boundary layer is separated.
Evolution of the substructure of a novel 12% Cr steel under creep conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk
2016-05-15
In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less
Large eddy simulation of a boundary layer with concave streamwise curvature
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1993-01-01
One of the most exciting recent developments in the field of large eddy simulation (LES) is the dynamic subgrid-scale model. The dynamic model concept is a general procedure for evaluating model constants by sampling a band of the smallest scales actually resolved in the simulation. To date, the procedure has been used primarily in conjunction with the Smagorinsky model. The dynamic procedure has the advantage that the value of the model constant need not be specified a priori, but rather is calculated as a function of space and time as the simulation progresses. This feature makes the dynamic model especially attractive for flows in complex geometries where it is difficult or impossible to calibrate model constants. The dynamic model was highly successful in benchmark tests involving homogeneous and channel flows. Having demonstrated the potential of the dynamic model in these simple flows, the overall direction of the LES effort at CTR shifted toward an evaluation of the model in more complex situations. The current test cases are basic engineering-type flows for which Reynolds averaged approaches were unable to model the turbulence to within engineering accuracy. Flows currently under investigation include a backward-facing step, wake behind a circular cylinder, airfoil at high angles of attack, separated flow in a diffuser, and boundary layer over a concave surface. Preliminary results from the backward-facing step and cylinder wake simulations are encouraging. Progress on the LES of a boundary layer on a concave surface is discussed. Although the geometry of a concave wall is not very complex, the boundary layer that develops on its surface is difficult to model due to the presence of streamwise Taylor-Gortler vortices. These vortices arise as a result of a centrifugal instability associated with the convex curvature.
Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions
NASA Technical Reports Server (NTRS)
Wood, William A.; Erickson, David W.; Greene, Francis A.
2007-01-01
Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.
Three-dimensional piezoelectric boundary elements
NASA Astrophysics Data System (ADS)
Hill, Lisa Renee
The strong coupling between mechanical and electrical fields in piezoelectric ceramics makes them appropriate for use as actuation devices; as a result, they are an important part of the emerging technologies of smart materials and structures. These piezoceramics are very brittle and susceptible to fracture, especially under the severe loading conditions which may occur in service. A significant portion of the applications under investigation involve dynamic loading conditions. Once a crack is initiated in the piezoelectric medium, the mechanical and electrical fields can act to drive the crack growth. Failure of the actuator can result from a catastrophic fracture event or from the cumulative effects of cyclic fatigue. The presence of these cracks, or other types of material defects, alter the mechanical and electrical fields inside the body. Specifically, concentrations of stress and electric field are present near a flaw and can lead to material yielding or localized depoling, which in turn can affect the sensor/actuator performance or cause failure. Understanding these effects is critical to the success of these smart structures. The complex coupling behavior and the anisotropy of the material makes the use of numerical methods necessary for all but the simplest problems. To this end, a three-dimensional boundary element method program is developed to evaluate the effect of flaws on these piezoelectric materials. The program is based on the linear governing equations of piezoelectricity and relies on a numerically evaluated Green's function for solution. The boundary element method was selected as the evaluation tool due to its ability to model the interior domain exactly. Thus, for piezoelectric materials the coupling between mechanical and electrical fields is not approximated inside the body. Holes in infinite and finite piezoceramics are investigated, with the localized stresses and electric fields clearly developed. The accuracy of the piezoelectric boundary element method is demonstrated with two problems: a two-dimensional circular void and a three-dimensional spherical cavity, both inside infinite solids. Application of the program to a finite body with a centered, spherical void illustrates the complex nature of the mechanical and electrical coupling. Mode I fracture is also examined, combining the linear boundary element solution with the modified crack closure integral to determine strain energy release rates. Experimental research has shown that the strain, rather than the total, energy release rate is a better predictor of crack growth in piezoelectric materials. Solutions for a two-dimensional slit-like crack and for three-dimensional penny and elliptical cracks are presented. These solutions are developed using the insulated crack face electrical boundary condition. Although this boundary condition is used by most researchers, recent discussion indicates that it may not be an accurate model for the slender crack geometry. The boundary element method is used with the penny crack problem to investigate the effect of different electrical boundary conditions on the strain energy release rate. Use of a conductive crack face boundary condition, rather than an insulated one, acts to increase the strain energy release rate for the penny crack. These conductive strain energies are closer to the values determined using a permeable electrical boundary condition than to the original conductive boundary condition ones. It is shown that conclusions about structural integrity are strongly dependent on the choice of boundary conditions.
NASA Astrophysics Data System (ADS)
Guo, Wenjie; Li, Tianyun; Zhu, Xiang; Miao, Yuyue
2018-05-01
The sound-structure coupling problem of a cylindrical shell submerged in a quarter water domain is studied. A semi-analytical method based on the double wave reflection method and the Graf's addition theorem is proposed to solve the vibration and acoustic radiation of an infinite cylindrical shell excited by an axially uniform harmonic line force, in which the acoustic boundary conditions consist of a free surface and a vertical rigid surface. The influences of the complex acoustic boundary conditions on the vibration and acoustic radiation of the cylindrical shell are discussed. It is found that the complex acoustic boundary has crucial influence on the vibration of the cylindrical shell when the cylindrical shell approaches the boundary, and the influence tends to vanish when the distances between the cylindrical shell and the boundaries exceed certain values. However, the influence of the complex acoustic boundary on the far-field sound pressure of the cylindrical shell cannot be ignored. The far-field acoustic directivity of the cylindrical shell varies with the distances between the cylindrical shell and the boundaries, besides the driving frequency. The work provides more understanding on the vibration and acoustic radiation behaviors of cylindrical shells with complex acoustic boundary conditions.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Smith, G. E.; Springer, G. S.; Rimon, Y.
1983-01-01
A method is presented for formulating the boundary conditions in implicit finite-difference form needed for obtaining solutions to the compressible Navier-Stokes equations by the Beam and Warming implicit factored method. The usefulness of the method was demonstrated (a) by establishing the boundary conditions applicable to the analysis of the flow inside an axisymmetric piston-cylinder configuration and (b) by calculating velocities and mass fractions inside the cylinder for different geometries and different operating conditions. Stability, selection of time step and grid sizes, and computer time requirements are discussed in reference to the piston-cylinder problem analyzed.
Seismic Velocity and Elastic Properties of Plate Boundary Faults
NASA Astrophysics Data System (ADS)
Jeppson, Tamara N.
The elastic properties of fault zone rock at depth play a key role in rupture nucleation, propagation, and the magnitude of fault slip. Materials that lie within major plate boundary fault zones often have very different material properties than standard crustal rock values. In order to understand the mechanics of faulting at plate boundaries, we need to both measure these properties and understand how they govern the behavior of different types of faults. Mature fault zones tend to be identified in large-scale geophysical field studies as zones with low seismic velocity and/or electrical resistivity. These anomalous properties are related to two important mechanisms: (1) mechanical or diagenetic alteration of the rock materials and/or (2) pore fluid pressure and stress effects. However, in remotely-sensed and large-length-scale data it is difficult to determine which of these mechanisms are affecting the measured properties. The objective of this dissertation research is to characterize the seismic velocity and elastic properties of fault zone rocks at a range of scales, with a focus on understanding why the fault zone properties are different from those of the surrounding rock and the potential effects on earthquake rupture and fault slip. To do this I performed ultrasonic velocity experiments under elevated pressure conditions on drill core and outcrops samples from three plate boundary fault zones: the San Andreas Fault, California, USA; the Alpine Fault, South Island, New Zealand; and the Japan Trench megathrust, Japan. Additionally, I compared laboratory measurements to sonic log and large-scale seismic data to examine the scale-dependence of the measured properties. The results of this study provide the most comprehensive characterization of the seismic velocities and elastic properties of fault zone rocks currently available. My work shows that fault zone rocks at mature plate boundary faults tend to be significantly more compliant than surrounding crustal rocks and quantifies that relationship. The results of this study are particularly relevant to the interpretation of field-scale seismic datasets at major fault zones. Additionally, the results of this study provide constraints on elastic properties used in dynamic rupture models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D; Fasenfest, B; Rieben, R
2006-09-08
We are concerned with the solution of time-dependent electromagnetic eddy current problems using a finite element formulation on three-dimensional unstructured meshes. We allow for multiple conducting regions, and our goal is to develop an efficient computational method that does not require a computational mesh of the air/vacuum regions. This requires a sophisticated global boundary condition specifying the total fields on the conductor boundaries. We propose a Biot-Savart law based volume-to-surface boundary condition to meet this requirement. This Biot-Savart approach is demonstrated to be very accurate. In addition, this approach can be accelerated via a low-rank QR approximation of the discretizedmore » Biot-Savart law.« less
A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerritsma, Marc; Bochev, Pavel
Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 [3]), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 [4, Chapter 7]). Here we address this problem by proving a new non-standard stability bound for the velocity–vorticity–pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximatedmore » by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. Here, we also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft et al., 2011) and report several numerical tests, which confirm its mimetic properties.« less
The effect of inlet boundary conditions in image-based CFD modeling of aortic flow
NASA Astrophysics Data System (ADS)
Madhavan, Sudharsan; Kemmerling, Erica Cherry
2016-11-01
CFD of cardiovascular flow is a growing and useful field, but simulations are subject to a number of sources of uncertainty which must be quantified. Our work focuses on the uncertainty introduced by the selection of inlet boundary conditions in an image-based, patient-specific model of the aorta. Specifically, we examined the differences between plug flow, fully developed parabolic flow, linear shear flows, skewed parabolic flow profiles, and Womersley flow. Only the shape of the inlet velocity profile was varied-all other parameters were held constant between simulations, including the physiologically realistic inlet flow rate waveform and outlet flow resistance. We found that flow solutions with different inlet conditions did not exhibit significant differences beyond 1 . 75 inlet diameters from the aortic root. Time averaged wall shear stress (TAWSS) was also calculated. The linear shear velocity boundary condition solution exhibited the highest spatially averaged TAWSS, about 2 . 5 % higher than the fully developed parabolic velocity boundary condition, which had the lowest spatially averaged TAWSS.
A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition
Gerritsma, Marc; Bochev, Pavel
2016-03-22
Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 [3]), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 [4, Chapter 7]). Here we address this problem by proving a new non-standard stability bound for the velocity–vorticity–pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximatedmore » by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. Here, we also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft et al., 2011) and report several numerical tests, which confirm its mimetic properties.« less
Boundary-induced pattern formation from uniform temporal oscillation
NASA Astrophysics Data System (ADS)
Kohsokabe, Takahiro; Kaneko, Kunihiko
2018-04-01
Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.
Intonation Miscues and Apprehension of Text.
ERIC Educational Resources Information Center
Flippo, Rona F.
Working on the theory that intonation miscues caused by confusion over punctuation and other phrase boundaries will make the apprehension of text more difficult than necessary for young developing readers, a study reviewed the research and literature relevant to the effects of location of punctuation, phrasing, and line breaks in text and on the…
The Future Prospects of Modern Adolescents in the Life Course Perspective
ERIC Educational Resources Information Center
Bochaver, A. A.; Zhilinskaya, A. V.; Khlomov, K. D.
2017-01-01
The article examines trends in theoretical and applied concepts about the adolescent period and in particular about how adolescents develop life goals. We discuss the blurring of the boundaries of adolescence, the postponement of life decisions, and the difficult process of separating from parents as trends in modern adolescent life. Certain…
Public-Interest Values and Program Sustainability: Some Implications for Evaluation Practice
ERIC Educational Resources Information Center
Chelimsky, Eleanor
2014-01-01
Evaluating the longer-term sustainability of government programs and policies seems in many ways to go beyond the boundaries of typical evaluation practice. Not only have intervention failures over time been difficult to predict, but the question of sustainability itself tends to fall outside current evaluation thinking, timing and functions. This…
Mapping northern Atlantic coastal marshlands, Maryland-Virginia, using ERTS imagery
NASA Technical Reports Server (NTRS)
Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.
1973-01-01
The author has identified the following significant results. ERTS-1 data provides repetitive synoptic coverage for DC 00000 of wetland ecology, detection of change, and mapping or inventory of wetland boundaries and plant communities. ERTS-1 positive transparencies of Atlantic Coastal wetlands were enlarged to different scales and mapped using a variety of methods. Results of analysis indicate: (1) mapping of wetland boundaries and vegetative communities from imagery at a scale of 1:1,000,000 is impractical because small details are difficult to illustrate; (2) mapping to a scale of 1:250,000 is practical for defining land-water interface, upper wetland boundary, gross vegetative communities, and spoil disposal/dredge and fill operations; (3) 1:125,000 enlargements provide additional information on transition zones, smaller plant communities, and drainage or mosquito ditching. Overlays may be made directly from prints.
Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains
NASA Astrophysics Data System (ADS)
Han, Yi; Stoellinger, Michael; Naughton, Jonathan
2016-09-01
In this work, we present Large Eddy Simulation (LES) results of atmospheric boundary layer (ABL) flow over complex terrain with neutral stratification using the OpenFOAM-based simulator for on/offshore wind farm applications (SOWFA). The complete work flow to investigate the LES for the ABL over real complex terrain is described including meteorological-tower data analysis, mesh generation and case set-up. New boundary conditions for the lateral and top boundaries are developed and validated to allow inflow and outflow as required in complex terrain simulations. The turbulent inflow data for the terrain simulation is generated using a precursor simulation of a flat and neutral ABL. Conditionally averaged met-tower data is used to specify the conditions for the flat precursor simulation and is also used for comparison with the simulation results of the terrain LES. A qualitative analysis of the simulation results reveals boundary layer separation and recirculation downstream of a prominent ridge that runs across the simulation domain. Comparisons of mean wind speed, standard deviation and direction between the computed results and the conditionally averaged tower data show a reasonable agreement.
Boundaries, mirror symmetry, and symplectic duality in 3d N = 4 gauge theory
Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; ...
2016-10-20
We introduce several families of N = (2, 2) UV boundary conditions in 3d N=4 gauge theories and study their IR images in sigma-models to the Higgs and Coulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respectively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studyingmore » two-dimensional compactifications of 3d N = 4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality $-$ an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.« less
Stationary scalar clouds around a BTZ black hole
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.; Herdeiro, Carlos A. R.
2017-10-01
We establish the existence of stationary clouds of massive test scalar fields around BTZ black holes. These clouds are zero-modes of the superradiant instability and are possible when Robin boundary conditions (RBCs) are considered at the AdS boundary. These boundary conditions are the most general ones that ensure the AdS space is an isolated system, and include, as a particular case, the commonly considered Dirichlet or Neumann-type boundary conditions (DBCs or NBCs). We obtain an explicit, closed form, resonance condition, relating the RBCs that allow the existence of normalizable (and regular on and outside the horizon) clouds to the system's parameters. Such RBCs never include pure DBCs or NBCs. We illustrate the spatial distribution of these clouds, their energy and angular momentum density for some cases. Our results show that BTZ black holes with scalar hair can be constructed, as the non-linear realization of these clouds.
Friction-term response to boundary-condition type in flow models
Schaffranek, R.W.; Lai, C.
1996-01-01
The friction-slope term in the unsteady open-channel flow equations is examined using two numerical models based on different formulations of the governing equations and employing different solution methods. The purposes of the study are to analyze, evaluate, and demonstrate the behavior of the term in a set of controlled numerical experiments using varied types and combinations of boundary conditions. Results of numerical experiments illustrate that a given model can respond inconsistently for the identical resistance-coefficient value under different types and combinations of boundary conditions. Findings also demonstrate that two models employing different dependent variables and solution methods can respond similarly for the identical resistance-coefficient value under similar types and combinations of boundary conditions. Discussion of qualitative considerations and quantitative experimental results provides insight into the proper treatment, evaluation, and significance of the friction-slope term, thereby offering practical guidelines for model implementation and calibration.
Black hole event horizons — Teleology and predictivity
NASA Astrophysics Data System (ADS)
Bhattacharya, Swastik; Shankaranarayanan, S.
2017-11-01
General Relativity predicts the existence of black holes. Access to the complete spacetime manifold is required to describe the black hole. This feature necessitates that black hole dynamics is specified by future or teleological boundary condition. Here, we demonstrate that the statistical mechanical description of black holes, the raison d’être behind the existence of black hole thermodynamics, requires teleological boundary condition. Within the fluid-gravity paradigm — Einstein’s equations when projected on spacetime horizons resemble Navier-Stokes equation of a fluid — we show that the specific heat and the coefficient of bulk viscosity of the horizon fluid are negative only if the teleological boundary condition is taken into account. We argue that in a quantum theory of gravity, the future boundary condition plays a crucial role. We briefly discuss the possible implications of this at late stages of black hole evaporation.
The ghost propagator in Coulomb gauge
NASA Astrophysics Data System (ADS)
Watson, P.; Reinhardt, H.
2011-05-01
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Efficient Fluid Dynamic Design Optimization Using Cartesian Grids
NASA Technical Reports Server (NTRS)
Dadone, A.; Grossman, B.; Sellers, Bill (Technical Monitor)
2004-01-01
This report is subdivided in three parts. The first one reviews a new approach to the computation of inviscid flows using Cartesian grid methods. The crux of the method is the curvature-corrected symmetry technique (CCST) developed by the present authors for body-fitted grids. The method introduces ghost cells near the boundaries whose values are developed from an assumed flow-field model in vicinity of the wall consisting of a vortex flow, which satisfies the normal momentum equation and the non-penetration condition. The CCST boundary condition was shown to be substantially more accurate than traditional boundary condition approaches. This improved boundary condition is adapted to a Cartesian mesh formulation, which we call the Ghost Body-Cell Method (GBCM). In this approach, all cell centers exterior to the body are computed with fluxes at the four surrounding cell edges. There is no need for special treatment corresponding to cut cells which complicate other Cartesian mesh methods.
Li, Chenxi; Cazzolato, Ben; Zander, Anthony
2016-01-01
The classic analytical model for the sound absorption of micro perforated materials is well developed and is based on a boundary condition where the velocity of the material is assumed to be zero, which is accurate when the material vibration is negligible. This paper develops an analytical model for finite-sized circular micro perforated membranes (MPMs) by applying a boundary condition such that the velocity of air particles on the hole wall boundary is equal to the membrane vibration velocity (a zero-slip condition). The acoustic impedance of the perforation, which varies with its position, is investigated. A prediction method for the overall impedance of the holes and the combined impedance of the MPM is also provided. The experimental results for four different MPM configurations are used to validate the model and good agreement between the experimental and predicted results is achieved.
NASA Astrophysics Data System (ADS)
Su, Zhu; Jin, Guoyong; Ye, Tiangui
2016-06-01
The paper presents a unified solution for free and transient vibration analyses of a functionally graded piezoelectric curved beam with general boundary conditions within the framework of Timoshenko beam theory. The formulation is derived by means of the variational principle in conjunction with a modified Fourier series which consists of standard Fourier cosine series and supplemented functions. The mechanical and electrical properties of functionally graded piezoelectric materials (FGPMs) are assumed to vary continuously in the thickness direction and are estimated by Voigt’s rule of mixture. The convergence, accuracy and reliability of the present formulation are demonstrated by comparing the present solutions with those from the literature and finite element analysis. Numerous results for FGPM beams with different boundary conditions, geometrical parameters as well as material distributions are given. Moreover, forced vibration of the FGPM beams subjected to dynamic loads and general boundary conditions are also investigated.
Scale effect of slip boundary condition at solid–liquid interface
Nagayama, Gyoko; Matsumoto, Takenori; Fukushima, Kohei; Tsuruta, Takaharu
2017-01-01
Rapid advances in microelectromechanical systems have stimulated the development of compact devices, which require effective cooling technologies (e.g., microchannel cooling). However, the inconsistencies between experimental and classical theoretical predictions for the liquid flow in microchannel remain unclarified. Given the larger surface/volume ratio of microchannel, the surface effects increase as channel scale decreases. Here we show the scale effect of the boundary condition at the solid–liquid interface on single-phase convective heat transfer characteristics in microchannels. We demonstrate that the deviation from classical theory with a reduction in hydraulic diameters is due to the breakdown of the continuum solid–liquid boundary condition. The forced convective heat transfer characteristics of single-phase laminar flow in a parallel-plate microchannel are investigated. Using the theoretical Poiseuille and Nusselt numbers derived under the slip boundary condition at the solid–liquid interface, we estimate the slip length and thermal slip length at the interface. PMID:28256536
Toward inflation models compatible with the no-boundary proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Dong-il; Yeom, Dong-han, E-mail: dongil.j.hwang@gmail.com, E-mail: innocent.yeom@gmail.com
2014-06-01
In this paper, we investigate various inflation models in the context of the no-boundary proposal. We propose that a good inflation model should satisfy three conditions: observational constraints, plausible initial conditions, and naturalness of the model. For various inflation models, we assign the probability to each initial condition using the no-boundary proposal and define a quantitative standard, typicality, to check whether the model satisfies the observational constraints with probable initial conditions. There are three possible ways to satisfy the typicality criterion: there was pre-inflation near the high energy scale, the potential is finely tuned or the inflationary field space ismore » unbounded, or there are sufficient number of fields that contribute to inflation. The no-boundary proposal rejects some of naive inflation models, explains some of traditional doubts on inflation, and possibly, can have observational consequences.« less
NASA Astrophysics Data System (ADS)
Li, Liangliang; Huang, Yu; Chen, Goong; Huang, Tingwen
If a second order linear hyperbolic partial differential equation in one-space dimension can be factorized as a product of two first order operators and if the two first order operators commute, with one boundary condition being the van der Pol type and the other being linear, one can establish the occurrence of chaos when the parameters enter a certain regime [Chen et al., 2014]. However, if the commutativity of the two first order operators fails to hold, then the treatment in [Chen et al., 2014] no longer works and significant new challenges arise in determining nonlinear boundary conditions that engenders chaos. In this paper, we show that by incorporating a linear memory effect, a nonlinear van der Pol boundary condition can cause chaotic oscillations when the parameter enters a certain regime. Numerical simulations illustrating chaotic oscillations are also presented.
Kim, Tae K.; Pogorelov, Nikolai V.; Borovikov, Sergey N.; ...
2012-11-20
Numerical modeling of the heliosphere is a critical component of space weather forecasting. The accuracy of heliospheric models can be improved by using realistic boundary conditions and confirming the results with in situ spacecraft measurements. To accurately reproduce the solar wind (SW) plasma flow near Earth, we need realistic, time-dependent boundary conditions at a fixed distance from the Sun. We may prepare such boundary conditions using SW speed and density determined from interplanetary scintillation (IPS) observations, magnetic field derived from photospheric magnetograms, and temperature estimated from its correlation with SW speed. In conclusion, we present here the time-dependent MHD simulationmore » results obtained by using the 2011 IPS data from the Solar-Terrestrial Environment Laboratory as time-varying inner boundary conditions and compare the simulated data at Earth with OMNI data (spacecraft-interspersed, near-Earth solar wind data).« less
Minimization of vibration in elastic beams with time-variant boundary conditions
NASA Technical Reports Server (NTRS)
Amirouche, F. M. L.; Xie, Mingjun
1992-01-01
This paper presents an innovative method for minimizing the vibration of structures with time-variant boundary conditions (supports). The elastic body is modeled in two ways: (1) the first model is a letter seven type beam with a movable mass not to exceed the lower tip; (2) the second model has an arm that is a hollow beam with an inside mass with adjustable position. The complete solutions to both problems are carried out where the body is undergoing large rotation. The quasi-static procedure is used for the time-variant boundary conditions. The method developed employs partial differential equations governing the motion of the beam, including the effects of rigid-body motion, time-variant boundary conditions, and calculus of variations. The analytical solution is developed using Laplace and Fourier transforms. Examples of elastic robotic arms are given to illustrate the effectiveness of the methods developed.
Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kipp, C. R.; Bernhard, R. J.
1985-01-01
A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.
CFD Modeling of a CFB Riser Using Improved Inlet Boundary Conditions
NASA Astrophysics Data System (ADS)
Peng, B. T.; Zhang, C.; Zhu, J. X.; Qi, X. B.
2010-03-01
A computational fluid dynamics (CFD) model based on Eulerian-Eulerian approach coupled with granular kinetics theory was adopted to investigate the hydrodynamics and flow structures in a circulating fluidized bed (CFB) riser column. A new approach to specify the inlet boundary conditions was proposed in this study to simulate gas-solids flow in CFB risers more accurately. Simulation results were compared with the experimental data, and good agreement between the numerical results and experimental data was observed under different operating conditions, which indicates the effectiveness and accuracy of the CFD model with the proposed inlet boundary conditions. The results also illustrate a clear core annulus structure in the CFB riser under all operating conditions both experimentally and numerically.
Fatigue crack damage detection using subharmonic component with nonlinear boundary condition
NASA Astrophysics Data System (ADS)
Wu, Weiliang; Shen, Yanfeng; Qu, Wenzhong; Xiao, Li; Giurgiutiu, Victor
2015-03-01
In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from inherent nonlinear boundary conditions.
Fatigue crack damage detection using subharmonic component with nonlinear boundary condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weiliang, E-mail: wwl@whu.edu.cn; Qu, Wenzhong, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com; Xiao, Li, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com
In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come frommore » the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from inherent nonlinear boundary conditions.« less
NASA Astrophysics Data System (ADS)
Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.
2017-12-01
The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO variability.