Sample records for difficult drilling conditions

  1. Drilling Regolith: Why Is It So Difficult?

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    2017-10-01

    The Apollo rotary percussive drill system penetrated the lunar regolith with reasonable efficiency; however, extraction of the drill core stem proved to be very difficult on all three missions. Retractable drill stem flutes may solve this problem.

  2. Constructibility Challenges for Perimeter Control Blasting and Slope Development in Shale and Other "Weak" Rocks

    NASA Astrophysics Data System (ADS)

    Scarpato, D. J.

    2016-02-01

    Slope construction in shale can present some interesting challenges for geotechnical design engineers and contractors alike. There are challenges that can be expected and designed for; however, all too frequently, such challenges manifest themselves as "surprises" in the field. Common constructibility challenges can include drill hole deviation during drilling for controlled blasting; and, excavation slope instability arising from inconsistent perimeter control drilling. Drill hole deviation results from the cumulative effects from both drilling mechanics and rock mass conditions. Once a hole has initiated the deviation trajectory, it is difficult to rectify drill steel position. Although such challenges are not necessarily unique to shale, they are often exacerbated by weak, weathered and transversely isotropic nature of bedrock conditions. All too often, the working assumption is that shale is "soft" and easily excavatable; however, this blanket assumption can prove to be costly. This paper is intended to provide design professionals and contractors with the practical considerations needed to avoid the "surprises" associated with drill hole deviation, and minimize the potential for costly claims.

  3. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    NASA Astrophysics Data System (ADS)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  4. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discussmore » results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.« less

  5. Application of drilling, coring, and sampling techniques to test holes and wells

    USGS Publications Warehouse

    Shuter, Eugene; Teasdale, Warren E.

    1989-01-01

    The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.

  6. Drilling informatics: data-driven challenges of scientific drilling

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Kyaw, Moe; Saito, Sanny

    2017-04-01

    The primary aim of scientific drilling is to precisely understand the dynamic nature of the Earth. This is the reason why we investigate the subsurface materials (rock and fluid including microbial community) existing under particular environmental conditions. This requires sample collection and analytical data production from the samples, and in-situ data measurement at boreholes. Current available data comes from cores, cuttings, mud logging, geophysical logging, and exploration geophysics, but these datasets are difficult to be integrated because of their different kinds and scales. Now we are producing more useful datasets to fill the gap between the exiting data and extracting more information from such datasets and finally integrating the information. In particular, drilling parameters are very useful datasets as geomechanical properties. We believe such approach, 'drilling informatics', would be the most appropriate to obtain the comprehensive and dynamic picture of our scientific target, such as the seismogenic fault zone and the Moho discontinuity surface. This presentation introduces our initiative and current achievements of drilling informatics.

  7. Reconnaissance report on geology of Eklutna Lake dam site and conduit route near Anchorage, Alaska

    USGS Publications Warehouse

    Bateman, A.F.

    1947-01-01

    C. A foundation exploration program is recommended that includes deepening test pit No. 1 and drill hole No. 2, and drilling 11 new holes. It is suggested that one drill hold near the center of the valley be taken to bedrock to give a complete picture of the fill materials underlying the foundation. 3. Delivery of water from the forebay of the reservoir to the powerhouse eight miles downvalley by means of a conduit is regarded as infeasible because: difficult terrain of the route will require earthwork more extensive than the volume of the dam; the route is subject to land slides, and will require expensive maintenance; it is more or less completely exposed to adverse winter conditions that may engender icing conditions; and it is easily subject to sabotage. It is recommended that the water be taken to the powerhouse through a rock tunnel.

  8. JEODI Workshop: Arctic site survey challenges

    NASA Astrophysics Data System (ADS)

    Jokat, W.; Backman, J.; Kristoffersen, Y.; Mikkelsen, N.; Thiede, J.

    2003-04-01

    In past decades the geoscientific activities in the High Arctic were rather low compared to other areas on the globe. The remoteness of the region and the difficult logistical conditions made Arctic research very expensive and the results unpredictable. In the late 80's this situation changed to the better since modern research icebreaker became available to the scientific community. These research platforms provided opportunities in terms of equipment, which was standard in other regions. Where necessary techniques were adapted allowing to conduct the experiments even in difficult ice conditions, e.g. multi-channel seismic. In the last decade the Arctic Ocean were identified to play a key role in our understanding of the Earth's climate. An urgent need for scientific deep drill holes in the central Arctic was obvious to better understand the climate evolution of the past in a regional and global sense. However, to select and prepare the drilling experiments sufficient site survey data, especially seismic data, are needed. These problems were addressed during a recent JEODI workshop in Copenhagen. The participants recommended dedicated expeditions tothe Alpha-Mendeleev Ridge, the Lomonosov Ridge and the Gakkel Ridge to provide a critical amount of geophysical data for future drilling efforts. An international expedition to the Alpha-Mendeleev Ridge was proposed as part of the International Geophysical Polar Year 2006/07 to investigate the least known oceanic ridge of the world's ocean. Besides scientific targets in the High Arctic it became obvious during the workshop that in the marginal seas and plateaux sufficient geophysical data exist to submit drilling proposals like for the Yermak Plateau, the Chukchi Plateau/Northwind Ridge and Laptew Sea continental margin. These proposals would perfectly complement the highly ranked drilling proposal on Lomonosov Ridge, which hopefully can be drilled in 2004 within the ODP/IODP programme. This presentation will provide information on the major results of this workshop as well as the planned activities in the next decade.

  9. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    PubMed Central

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  10. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important, either between a robotic drill and humans on Earth, or a human-tended drill and its visiting crew. The Mars Analog Rio Tinto Experiment (MARTE) is a current project that studies and simulates the remote science operations between an automated drill in Spain and a distant, distributed human science team. The Drilling Automation for Mars Exploration (DAME) project, by contrast: is developing and testing standalone automation at a lunar/martian impact crater analog site in Arctic Canada. The drill hardware in both projects is a hardened, evolved version of the Advanced Deep Drill (ADD) developed by Honeybee Robotics for the Mars Subsurface Program. The current ADD is capable of 20m, and the DAME project is developing diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The current drill automation architecture being developed by NASA and tested in 2004-06 at analog sites in the Arctic and Spain will add downhole diagnosis of different strata, bit wear detection, and dynamic replanning capabilities when unexpected failures or drilling conditions are discovered in conjunction with simulated mission operations and remote science planning. The most important determinant of future 1unar and martian drilling automation and staffing requirements will be the actual performance of automated prototype drilling hardware systems in field trials in simulated mission operations. It is difficult to accurately predict the level of automation and human interaction that will be needed for a lunar-deployed drill without first having extensive experience with the robotic control of prototype drill systems under realistic analog field conditions. Drill-specific failure modes and software design flaws will become most apparent at this stage. DAME will develop and test drill automation software and hardware under stressful operating conditions during several planned field campaigns. Initial results from summer 2004 tests show seven identifi distinct failure modes of the drill: cuttings-removal issues with low-power drilling into permafrost, and successful steps at executive control and initial automation.

  11. Drilling force and temperature of bone under dry and physiological drilling conditions

    NASA Astrophysics Data System (ADS)

    Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong

    2014-11-01

    Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.

  12. Study on super-long deep-hole drilling of titanium alloy.

    PubMed

    Liu, Zhanfeng; Liu, Yanshu; Han, Xiaolan; Zheng, Wencui

    2018-01-01

    In this study, the super-long deep-hole drilling of a titanium alloy was investigated. According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy's machining were also evaluated. Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.

  13. Chemical Speciation of Chromium in Drilling Muds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-02-02

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. Wemore » have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.« less

  14. Method and apparatus of assessing down-hole drilling conditions

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehl, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Fox, Joe [Spanish Fork, UT

    2007-04-24

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  15. "Push back" technique: A simple method to remove broken drill bit from the proximal femur.

    PubMed

    Chouhan, Devendra K; Sharma, Siddhartha

    2015-11-18

    Broken drill bits can be difficult to remove from the proximal femur and may necessitate additional surgical exploration or special instrumentation. We present a simple technique to remove a broken drill bit that does not require any special instrumentation and can be accomplished through the existing incision. This technique is useful for those cases where the length of the broken drill bit is greater than the diameter of the bone.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatur, I.R.; Prigul`skii, G.B.; Timokhin, I.A.

    Enamel paints MS-17 and KhV-110 are used to protect drill bits during transportation and storage. But this requires the surface to be prepared carefully, which is often difficult under production conditions. Some of the promising anticorrosion agents are film-forming inhibited petroleum compounds (FIPC) - materials derived from high-temperature petroleum products blended with corrosion inhibitors and a solvent. Such compounds are used to protect unpainted and painted surfaces; this shortens the preservation process, and generally dispenses which depreservation. Further, they can be used to protect moist, wet, greasy, and rusted surfaces, and concealed inner areas where paint is difficult to apply.more » The purpose of this work was to obtain a film-forming inhibited petroleum compound that has high protective properties, can be applied on unprepared metal surfaces, and meets the following requirements: drill bit protection time during transportation and storage at least 24 months, coat adhesion to the metal at least of force 2, drop point > 90{degrees}C, the material must be applied by pneumatic spraying, in toxicity and inflammability the compound must be of class three, and coat drying time at 60{degrees}C not more than 12 min. The anticorrosion agents are described.« less

  17. On-line depth measurement for laser-drilled holes based on the intensity of plasma emission

    NASA Astrophysics Data System (ADS)

    Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung

    2014-09-01

    The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.

  18. Effects of drilling variables on burr properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, L.K.

    1976-09-01

    An investigation utilizing 303Se stainless steel, 17-4PH stainless steel, 1018 steel, and 6061-T6 aluminum was conducted to determine the influence of drilling variables in controlling burr size to minimize burr-removal cost and improve the quality and reliability of parts for small precision mechanisms. Burr thickness can be minimized by reducing feedrate and cutting velocity, and by using drills having high helix angles. High helix angles reduce burr thickness, length, and radius, while most other variables reduce only one of these properties. Radial-lip drills minimize burrs from 303Se stainless steel when large numbers of holes are drilled; this material stretches 10more » percent before drill-breakthrough. Entrance burrs can be minimized by the use of subland drills at a greatly increased tool cost. Backup-rods used in cross-drilled holes may be difficult to remove and may scratch the hole walls.« less

  19. The Development of German Doctrine and Command And Control and Its Application to Supporting Arms, 1832 - 1945

    DTIC Science & Technology

    1991-03-01

    aspects of war.) Moral forces are difficult to grasp and impossible to quantify. 9 One cannot easily gauge forces like national and military resolve...Legion’s solution to the problem of battlefield control was to simplify it by means of standardized tactical drill coupled with a deployment that gave...conditions that will achieve the strategic goals. The operational commander must be interacting constantly with the strategic level even as he gauges his

  20. Numerical analysis of thermal drilling technique on titanium sheet metal

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Thermal drilling is a technique used in drilling of sheet metal for various applications. It involves rotating conical tool with high speed in order to drill the sheet metal and formed a hole with bush below the surface of sheet metal. This article investigates the finite element analysis of thermal drilling on Ti6Al4Valloy sheet metal. This analysis was carried out by means of DEFORM-3D simulation software to simulate the performance characteristics of thermal drilling technique. Due to the contribution of high temperature deformation in this technique, the output performances which are difficult to measure by the experimental approach, can be successfully achieved by finite element method. Therefore, the modeling and simulation of thermal drilling is an essential tool to predict the strain rate, stress distribution and temperature of the workpiece.

  1. Research on the processing technology of elongated holes based on rotary ultrasonic drilling

    NASA Astrophysics Data System (ADS)

    Tong, Yi; Chen, Jianhua; Sun, Lipeng; Yu, Xin; Wang, Xin

    2014-08-01

    The optical glass is hard, brittle and difficult to process. Based on the method of rotating ultrasonic drilling, the study of single factor on drilling elongated holes was made in optical glass. The processing equipment was DAMA ultrasonic machine, and the machining tools were electroplated with diamond. Through the detection and analysis on the processing quality and surface roughness, the process parameters (the spindle speed, amplitude, feed rate) of rotary ultrasonic drilling were researched, and the influence of processing parameters on surface roughness was obtained, which will provide reference and basis for the actual processing.

  2. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,

    1994-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.

  3. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  4. Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies.

    PubMed

    Chowdhury, M A K; Sharif Ullah, A M M; Anwar, Saqib

    2017-09-12

    Ti6Al4V alloys are difficult-to-cut materials that have extensive applications in the automotive and aerospace industry. A great deal of effort has been made to develop and improve the machining operations of Ti6Al4V alloys. This paper presents an experimental study that systematically analyzes the effects of the machining conditions (ultrasonic power, feed rate, spindle speed, and tool diameter) on the performance parameters (cutting force, tool wear, overcut error, and cylindricity error), while drilling high precision holes on the workpiece made of Ti6Al4V alloys using rotary ultrasonic machining (RUM). Numerical results were obtained by conducting experiments following the design of an experiment procedure. The effects of the machining conditions on each performance parameter have been determined by constructing a set of possibility distributions (i.e., trapezoidal fuzzy numbers) from the experimental data. A possibility distribution is a probability-distribution-neural representation of uncertainty, and is effective in quantifying the uncertainty underlying physical quantities when there is a limited number of data points which is the case here. Lastly, the optimal machining conditions have been identified using these possibility distributions.

  5. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Ramesh, M.; Gopinath, A.

    2017-05-01

    Drilling of composite materials is difficult when compared to the conventional materials because of its in-homogeneous nature. The force developed during drilling play a major role in the surface quality of the hole and minimizing the damages around the surface. This paper focuses the effect of drilling parameters on thrust force in drilling of sisal-glass fiber reinforced polymer composite laminates. The quadratic response models are developed by using response surface methodology (RSM) to predict the influence of cutting parameters on thrust force. The adequacy of the models is checked by using the analysis of variance (ANOVA). A scanning electron microscope (SEM) analysis is carried out to analyze the quality of the drilled surface. From the results, it is found that, the feed rate is the most influencing parameter followed by spindle speed and the drill diameter is the least influencing parameter on the thrust force.

  6. The experimental research on electrodischarge drilling of high aspect ratio holes in Inconel 718

    NASA Astrophysics Data System (ADS)

    Lipiec, Piotr; Machno, Magdalena; Skoczypiec, Sebastian

    2018-05-01

    In recent years the drilling operations become important area of electrodischarge machining (EDM) application. This especially concerns drilling of, small (D< 1mm), cylindrical and high-aspect ratio (L/D > 10) holes in difficult-to-cut materials (i.e. nickel or titanium alloys). Drilling of such a holes is significantly beyond mechanical drilling capabilities. Therefore electrodischarge machining is good and cost efficient alternative for such application. EDM gives possibility to drill accurate, burr free and high aspect ratio holes and is applicable to machine wide range of conductive materials, irrespective of their hardness and toughness. However it is worth to underline its main disadvantages such as: significant tool wear, low material removal rate and poor surface integrity. The last one is especially important in reliable applications in aircraft or medical industry.

  7. Effects of a drill diameter on the temperature rise in a bone during implant site preparation under clinical conditions.

    PubMed

    Bogovič, Valerija; Svete, Andrej; Bajsić, Ivan

    2016-10-01

    Heat, generated during the drilling of a dental implant site preparation, leads to a temperature rise and consequently to a thermal injury of the bone tissue surrounding the implant site, which can cause the subsequent implant failure. In this article, we present new findings related to the temperature rise during implant site drilling under real conditions on a bovine rib bone specimen. The experiments were designed with the help of a full-factorial design in randomized complete blocks, where the main effects of the drill diameter in combination with the drilling force and the drilling speed, and their interactions, on the temperature rise were determined. The temperature rise in the bone under real conditions was measured as the implant site was being prepared by a dentist using intermittent, graduated drilling and external irrigation. Results show that the drill diameter has statistically significant effect, independent of the drilling procedure used. Among the examined drilling parameters, the drill diameter has the greatest effect, where an increase in the drill diameter first causes a decrease in the temperature rise and further increase in the drill diameter causes its increase. During the continuous and one-step drilling, the temperatures of the bones were up to 40.5 °C and during the drilling under actual conditions up to 30.11 °C. © IMechE 2016.

  8. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from sevenmore » holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain.« less

  9. Drilling Polar Oceans with the European Research Icebreaker AURORA BOREALIS: the IODP Context

    NASA Astrophysics Data System (ADS)

    Lembke-Jene, Lester; Wolff-Boenisch, Bonnie; Azzolini, Roberto; Thiede, Joern; Biebow, Nicole; Eldholm, Olav; Egerton, Paul

    2010-05-01

    Polar oceans are characterized by extreme environmental conditions for humans and materials, and have remained the least accessible regions to scientists of the IODP. DSDP and ODP have for long faced specific technical and logistical problems when attempting to drill in ice-covered polar deep-sea basins. The Arctic Ocean and large areas of the high-latitude Southern Ocean remained largely un-sampled by ODP and remain one of the major scientific and technological challenges for IODP. Drilling in these regions has been discussed and anticipated for decades and the scientific rationales are reflected in the science plans of the international Nansen Arctic Drilling Program (NAD) or the Arctic Program Planning Group (APPG) of ODP/IODP, amongst others. More recently, the rationale to investigate the polar oceans in a holistic approach has been outlined by workshops, leading to strategic assessments of the scientific potential and new drilling proposals. The European Polar Board took the initiative to develop a plan for a novel and dedicated research icebreaker with technical capabilities hitherto unrealised. This research icebreaker will enable autonomous operations in the central Arctic Ocean and the Southern Ocean, even during the severest ice conditions in the deep winter, serving all marine disciplines of polar research including scientific drilling: The European Research Icebreaker and Deep-Sea Drilling Vessel AURORA BOREALIS. AURORA BOREALIS is presently planned as a multi-purpose vessel. The ship can be deployed as a research icebreaker in all polar waters during any season of the year, as it shall meet the specifications of the highest ice-class attainable (IACS Polar Code 1) for icebreakers. During the times when it is not employed for drilling, it will operate as the most technically advanced multi-disciplinary research vessel in the Arctic or polar Southern Ocean. AURORA BOREALIS will be a "European scientific flagship facility" (fully open to non-European partners), a multidisciplinary platform for studies ranging from the sub-seafloor into the atmosphere. AURORA BOREALIS was planned for her role in deep-sea drilling in consultation with engineers and technical experts familiar with the program and the operation of these vessels. All techniques currently deployed on IODP expeditions can be implemented onboard the vessel under polar weather and ice conditions, including the full range of re-entry, casing and cementing, and instrumentation options and the entire suite of downhole logging tools. Due to sufficient laboratory space, a full analytical workflow can be easily established comparable to existing permanent platforms, including clean rooms, diverse scanning and logging or incubation facilities. While the vessel is equipped with a dedicated deep-sea drilling rig, other coring and drilling techniques can be employed if needed (e.g. Rockdrill, MEBO, large diameter Kasten cores). AURORA BOREALIS is fitted to operate a CALYPSO Piston Coring System in polar waters. Future mud-return systems under consideration and testing for IODP to provide controlled borehole conditions in difficult facies are compatible with the layout of AURORA BOREALIS. The berthing capacity of 120 personnel total (scientists, technical support and crew) allows to accommodate a sufficient number of science party members offshore. The present scientific implementation documents plan for about one polar scientific drilling expedition per year in a to-be-determined configuration. As the vessel is a multi-dsiciplinary platform, operations for the entire year are not dependant on drilling operations alone. While principal access to the vessel will be based on a competitive proposal review and evaluation system, the allocation of timeslots specifically for drilling would preferably be given over to IODP handling and planning systems in a cooperative mode using the strengths and capacitites of the future program. Depending on interests and needs of the scientific communities a preferential focus in non-drilling expedition planning could be established e.g. for dedicated geophysical pre-site survey works in areas inaccessible by other vessels to secure critical data needed for later drilling expeditions. Based on ongoing expert consultations, it is safe to assume that the average costs for an Arctic or polar drilling expedition will be considerably lower than with an otherwise necessary multi-ship setup based on modelled expedition scenarios and annual operational cost calculations. Still, AURORA BOREALIS shall provide substantially enhanced scientific, operational, personnel and technical capacities offshore.

  10. Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.

    1986-01-01

    The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous factors that may be relevant to this interpretation also is presented. (Lantz-PTT)

  11. Conoco's new approach to drill site construction in difficult, remote, swamp and jungle terrain Irian Jaya, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roodriguez, F.H.

    1984-02-01

    In October 1982, Conoco Irian Jaya as operator: and partners: Pertamina, Inpex Bintuni Limited, and Moeco Irian Jaya Company, mobilized construction equipment from Singapore to the KBS ''A'' contract area in Irian Jaya, Indonesia for the purpose of constructing a base camp and drill three exploratory sites. What made this construction effort different from others previously used in Irian Jaya; was that it incorporated several new and unique features, namely: a turnkey approach to construction; that is Conoco providing complete set of specifications and conditions with contractor assuming risks for a lump sum payment; special equipment designed by contractor formore » Irian Jaya operations; an incentive to co pensate or penalize contractor for helicopter hours flown below or above a predetermined number; structural steel pile platform designs for two swamp locations (Ayot and Aum), as opposed to the more conventional corduroy timber log-plank arrangement; and drilling rig pads designed for specific heli-rig with limited extra space. All work was successfully completed within the time frame stipulated in the contract, that is five months from the time the contractor was notified to begin mobilization of equipment, materials and personnel.« less

  12. Research on high speed drilling technology and economic integration evaluation in Oilfield

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Ni, Hongjian; Cheng, Na; Song, Jingbo

    2018-01-01

    The carbonate reservoir in the oilfield mainly formed in Ordovician System and Carboniferous System. The geology here is very complicated, with high heterogeneity. It gets much more difficult to control the well deflection in Permian system so that high accident ratio could be expected. The buried depth of the reservoir is large, normally 4600-6600m deep. The temperature of the layer is higher than 132 and the pressure is greater than 62MPa. The reservoir is with a high fluid properties, mainly including thin oil, heavy oil, condensate oil, gas and so on; the ground is very hard to drill, so we can foresee low drilling speed, long drilling period and high drilling cost, which will surely restrict the employing progress of the reservoir.

  13. DAME: planetary-prototype drilling automation.

    PubMed

    Glass, B; Cannon, H; Branson, M; Hanagud, S; Paulsen, G

    2008-06-01

    We describe results from the Drilling Automation for Mars Exploration (DAME) project, including those of the summer 2006 tests from an Arctic analog site. The drill hardware is a hardened, evolved version of the Advanced Deep Drill by Honeybee Robotics. DAME has developed diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The DAME drill automation tested from 2004 through 2006 included adaptively controlled drilling operations and the downhole diagnosis of drilling faults. It also included dynamic recovery capabilities when unexpected failures or drilling conditions were discovered. DAME has developed and tested drill automation software and hardware under stressful operating conditions during its Arctic field testing campaigns at a Mars analog site.

  14. DAME: Planetary-Prototype Drilling Automation

    NASA Astrophysics Data System (ADS)

    Glass, B.; Cannon, H.; Branson, M.; Hanagud, S.; Paulsen, G.

    2008-06-01

    We describe results from the Drilling Automation for Mars Exploration (DAME) project, including those of the summer 2006 tests from an Arctic analog site. The drill hardware is a hardened, evolved version of the Advanced Deep Drill by Honeybee Robotics. DAME has developed diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The DAME drill automation tested from 2004 through 2006 included adaptively controlled drilling operations and the downhole diagnosis of drilling faults. It also included dynamic recovery capabilities when unexpected failures or drilling conditions were discovered. DAME has developed and tested drill automation software and hardware under stressful operating conditions during its Arctic field testing campaigns at a Mars analog site.

  15. In situ rock strength and far field stress in the Nankai accretionary complex: Integration of downhole data from multiple wells

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Saffer, D. M.

    2014-12-01

    Knowing the magnitude of tectonic stress and rock strength at seismically active margins is important towards understanding fault strength and failure mechanics, yet both are difficult to measure in situ. Recent work at subduction margins, including Integrated Ocean Drilling Program (IODP) Nankai Trough Subduction Zone Experiment (NanTroSEIZE) drillsites, uses the width of compressional wellbore breakouts (BO), which depends on far field stress conditions, rock strength, and borehole annular pressure (APRS), to estimate the magnitude of horizontal principal stresses (SHmax and Shmin); estimates are problematic due to uncertainty in rock strength (unconfined compressive strength/UCS- for which direct measurements are scarce) and rheology that govern stress distribution at the wellbore. We conduct a novel case study at IODP Site C0002, where a hole was drilled twice with different boundary conditions, providing an opportunity to define in situ stress and strength from field data. Site C0002 is the main deep riser borehole for NanTroSEIZE, located near the seaward edge of the Kumano Basin above the seismogenic plate boundary, ~30 km from the trench. Several boreholes were drilled at the site. During IODP Expedition 314 in 2007, Hole C0002A was drilled with a suite of logging while drilling (LWD) tools to 1401 mbsf in a riserless mode. Hole C0002F, ~70 m away, was drilled to 862 mbsf in riserless mode during Exp. 326 in 2010 and deepened to 2005 mbsf in a riser mode during Expedition 338 in 2012-2013. Increased APRS achieved by riser drilling stabilizes the borehole and suppresses BO, consistent with resistivity imaging data from Exp. 314 that document well-developed, continuous BO throughout the borehole, and data from Expedition 338 indicating few BO. We use a semi-Newtonian approach to solve for stress and UCS consistent with the observed BO width and measured APRS in the two holes over the interval from 862-2005 mbsf. Effective SHmax ranges from ~10-30 MPa and indicate a strike-slip or thrust regime. Our results indicate UCS is higher than predicted by empirical relations and a small suite of laboratory tests by as much as 20 MPa. This apparent discrepancy may indicate that the failure criterion, or assumed distribution of stresses around the wellbore in analyses of far field stress, may not be appropriate in this setting.

  16. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds.

    PubMed

    Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako

    2016-01-01

    The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: "metallic and unpleasant" and "powerful". LAeq had a strong relationship with "powerful impression", calculated sharpness was positively related to "metallic impression", and "unpleasant impression" was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a comfortable sound environment in dental clinics.

  17. Machinability of drilling T700/LT-03A carbon fiber reinforced plastic (CFRP) composite laminates using candle stick drill and multi-facet drill

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang

    2015-03-01

    Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.

  18. Hawaii Scientific Drilling Project: Objectives, Successes, Surprises and Frustrations

    NASA Astrophysics Data System (ADS)

    Depaolo, D. J.; Stolper, E.; Thomas, D. M.

    2008-12-01

    The Hawaii Scientific Drilling Project (HSDP) is a long-running project undertaken with the objective of studying a mantle plume by drilling an extended sequence of lavas from a single Hawaiian volcano. The project originated with a proposal to NSF in late 1986 with the idea of drilling to the Moho under Hilo; the target depth was estimated at 12km, commensurate with the depth reached by the drilling program then being pursued by the USSR and that proposed in the U.S. for the southern Appalachians, and in line with the aspirations of the nascent DOSECC program. Subsequently, due to limitations in funding and reorganization of the drilling program into what later became the NSF Continental Dynamics Program, HSDP was re-scoped with the objective of drilling deeply enough (ca. 4.5km) to recover most of the eruptive history of a single volcano. The project first went to a pilot stage, which resulted in coring to a depth of 1.1km in late 1993. The pilot stage was relatively inexpensive (1M including science) and productive. Funding was then obtained from NSF and ICDP in 1995 (ca. 12M) with the objective of drilling to 4.5km. Drilling was originally planned for a five-year period, in two campaigns. The first campaign, in 1999, resulted in efficient coring to a depth of 3.1km over a period of 6 months; it used about 40 percent of the funds and was also highly productive. Deepening the hole below 3.1km turned out to be both difficult and expensive, although for interesting reasons. To facilitate deeper drilling the hole needed to be reamed to a larger diameter; but when this was done the well unexpectedly started to flow. We now know that there are several deep pressurized aquifers, with varying salt content, but these hydrological phenomena were totally unanticipated. A key finding, also unanticipated, is that cold seawater circulates through the volcanic pile in volumes sufficient to refrigerate the entire section below 700m depth to temperatures about 25 degrees below a normal geothermal gradient. In early 1999 when the first drilling campaign was organized, the price of oil was 10 USD (rigs and drilling crews were available and reasonably priced); in early 2003 when hole opening was being arranged, the price of oil was 30 USD, and for the coring campaigns in 2005 and 2007 it was 50 to 70 USD. For these reasons, and because trip times were longer and deeply buried pillow basalts more difficult to drill, the remainder of the project funds (and then some) were needed to deepen the hole from 3.1 to 3.5km. Nevertheless, the project obtained a nearly continuous, and virtually unweathered, core consisting of lava flows, hyaloclastite, minor intrusives and sediment from a 3260m section of the Mauna Kea volcano, covering an age range from 200 to over 600 ka. It also recovered a 250m and a 280m section of the Mauna Loa volcano. A wealth of geological, volcanological, petrological, geochemical, geomagnetic, geodynamic, hydrological, and geobiological data have come from the core and the well, and more are coming in. The unprecedented geochemical-petrological data sets are a major success, as is the fact that geochemists can work together, but the hoped-for detailed geochronology for the core has proven difficult to obtain.

  19. Usefulness of temporal bone prototype for drilling training: A prospective study.

    PubMed

    Aussedat, C; Venail, F; Nguyen, Y; Lescanne, E; Marx, M; Bakhos, D

    2017-12-01

    Dissection of cadaveric temporal bones (TBs) is considered the gold standard for surgical training in otology. For many reasons, access to the anatomical laboratory and cadaveric TBs is difficult for some facilities. The aim of this prospective and comparative study was to evaluate the usefulness of a physical TB prototype for drilling training in residency. Prospective study. Tertiary referral centre. Thirty-four residents were included. Seventeen residents (mean age 26.7±1.6) drilled on only cadaveric TBs ("traditional" group), in the traditional training method, while seventeen residents (mean age 26.5±1.7) drilled first on a prototype and then on a cadaveric TB ("prototype" group). Drilling performance was assessed using a validated scale. Residents completed a mastoid image before and after each drilling to enable evaluation of mental representations of the mastoidectomy. No differences were observed between the groups with respect to age, drilling experience and level of residency. Regarding drilling performance, we found a significant difference across the groups, with a better score in the prototype group (P=.0007). For mental representation, the score was statistically improved (P=.0003) after drilling in both groups, suggesting that TB drilling improves the mental representation of the mastoidectomy whether prototype or cadaveric TB is used. The TB prototype improves the drilling performance and mental representation of the mastoidectomy in the young resident population. A drilling simulation with virtual or physical systems seems to be a beneficial tool to improve TB drilling. © 2017 John Wiley & Sons Ltd.

  20. Thermal drilling in planetary ices: an analytic solution with application to planetary protection problems of radioisotope power sources.

    PubMed

    Lorenz, Ralph D

    2012-08-01

    Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K.

  1. Slim hole drilling and testing strategies

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  2. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds

    PubMed Central

    Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako

    2016-01-01

    The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: “metallic and unpleasant” and “powerful”. LAeq had a strong relationship with “powerful impression”, calculated sharpness was positively related to “metallic impression”, and “unpleasant impression” was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a comfortable sound environment in dental clinics. PMID:27462903

  3. Experimental Study on the Axis Line Deflection of Ti6A14V Titanium Alloy in Gun-Drilling Process

    NASA Astrophysics Data System (ADS)

    Li, Liang; Xue, Hu; Wu, Peng

    2018-01-01

    Titanium alloy is widely used in aerospace industry, but it is also a typical difficult-to-cut material. During Deep hole drilling of the shaft parts of a certain large aircraft, there are problems of bad surface roughness, chip control and axis deviation, so experiments on gun-drilling of Ti6A14V titanium alloy were carried out to measure the axis line deflection, diameter error and surface integrity, and the reasons of these errors were analyzed. Then, the optimized process parameter was obtained during gun-drilling of Ti6A14V titanium alloy with deep hole diameter of 17mm. Finally, we finished the deep hole drilling of 860mm while the comprehensive error is smaller than 0.2mm and the surface roughness is less than 1.6μm.

  4. Prediction of penetration rate of rotary-percussive drilling using artificial neural networks - a case study / Prognozowanie postępu wiercenia przy użyciu wiertła udarowo-obrotowego przy wykorzystaniu sztucznych sieci neuronowych - studium przypadku

    NASA Astrophysics Data System (ADS)

    Aalizad, Seyed Ali; Rashidinejad, Farshad

    2012-12-01

    Penetration rate in rocks is one of the most important parameters of determination of drilling economics. Total drilling costs can be determined by predicting the penetration rate and utilized for mine planning. The factors which affect penetration rate are exceedingly numerous and certainly are not completely understood. For the prediction of penetration rate in rotary-percussive drilling, four types of rocks in Sangan mine have been chosen. Sangan is situated in Khorasan-Razavi province in Northeastern Iran. The selected parameters affect penetration rate is divided in three categories: rock properties, drilling condition and drilling pattern. The rock properties are: density, rock quality designation (RQD), uni-axial compressive strength, Brazilian tensile strength, porosity, Mohs hardness, Young modulus, P-wave velocity. Drilling condition parameters are: percussion, rotation, feed (thrust load) and flushing pressure; and parameters for drilling pattern are: blasthole diameter and length. Rock properties were determined in the laboratory, and drilling condition and drilling pattern were determined in the field. For create a correlation between penetration rate and rock properties, drilling condition and drilling pattern, artificial neural networks (ANN) were used. For this purpose, 102 blastholes were observed and drilling condition, drilling pattern and time of drilling in each blasthole were recorded. To obtain a correlation between this data and prediction of penetration rate, MATLAB software was used. To train the pattern of ANN, 77 data has been used and 25 of them found for testing the pattern. Performance of ANN models was assessed through the root mean square error (RMSE) and correlation coefficient (R2). For optimized model (14-14-10-1) RMSE and R2 is 0.1865 and 86%, respectively, and its sensitivity analysis showed that there is a strong correlation between penetration rate and RQD, rotation and blasthole diameter. High correlation coefficient and low root mean square error of these models showed that the ANN is a suitable tool for penetration rate prediction.

  5. Engineering model for ultrafast laser microprocessing

    NASA Astrophysics Data System (ADS)

    Audouard, E.; Mottay, E.

    2016-03-01

    Ultrafast laser micro-machining relies on complex laser-matter interaction processes, leading to a virtually athermal laser ablation. The development of industrial ultrafast laser applications benefits from a better understanding of these processes. To this end, a number of sophisticated scientific models have been developed, providing valuable insights in the physics of the interaction. Yet, from an engineering point of view, they are often difficult to use, and require a number of adjustable parameters. We present a simple engineering model for ultrafast laser processing, applied in various real life applications: percussion drilling, line engraving, and non normal incidence trepanning. The model requires only two global parameters. Analytical results are derived for single pulse percussion drilling or simple pass engraving. Simple assumptions allow to predict the effect of non normal incident beams to obtain key parameters for trepanning drilling. The model is compared to experimental data on stainless steel with a wide range of laser characteristics (time duration, repetition rate, pulse energy) and machining conditions (sample or beam speed). Ablation depth and volume ablation rate are modeled for pulse durations from 100 fs to 1 ps. Trepanning time of 5.4 s with a conicity of 0.15° is obtained for a hole of 900 μm depth and 100 μm diameter.

  6. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less

  7. State-of-the-art in coalbed methane drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less

  8. Laboratory Equipment for Investigation of Coring Under Mars-like Conditions

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2004-12-01

    To develop a suitable drill bit and set of operating conditions for Mars sample coring applications, it is essential to make tests under conditions that match those of the mission. The goal of the laboratory test program was to determine the drilling performance of diamond-impregnated bits under simulated Martian conditions, particularly those of low pressure and low temperature in a carbon dioxide atmosphere. For this purpose, drilling tests were performed in a vacuum chamber kept at a pressure of 5 torr. Prior to drilling, a rock, soil or a clay sample was cooled down to minus 80 degrees Celsius (Zacny et al, 2004). Thus, all Martian conditions, except the low gravity were simulated in the controlled environment. Input drilling parameters of interest included the weight on bit and rotational speed. These two independent variables were controlled from a PC station. The dependent variables included the bit reaction torque, the depth of the bit inside the drilled hole and the temperatures at various positions inside the drilled sample, in the center of the core as it was being cut and at the bit itself. These were acquired every second by a data acquisition system. Additional information such as the rate of penetration and the drill power were calculated after the test was completed. The weight of the rock and the bit prior to and after the test were measured to aid in evaluating the bit performance. In addition, the water saturation of the rock was measured prior to the test. Finally, the bit was viewed under the Scanning Electron Microscope and the Stereo Optical Microscope. The extent of the bit wear and its salient features were captured photographically. The results revealed that drilling or coring under Martian conditions in a water saturated rock is different in many respects from drilling on Earth. This is mainly because the Martian atmospheric pressure is in the vicinity of the pressure at the triple point of water. Thus ice, heated by contact with the rotating bit, sublimed and released water vapor. The volumetric expansion of ice turning into a vapor was over 150 000 times. This continuously generated volume of gas effectively cleared the freeze-dried rock cuttings from the bottom of the hole. In addition, the subliming ice provided a powerful cooling effect that kept the bit cold and preserved the core in its original state. Keeping the rock core below freezing also reduced drastically the chances of cross contamination. To keep the bit cool in near vacuum conditions where convective cooling is poor, some intermittent stops would have to be made. Under virtually the same drilling conditions, coring under Martian low temperature and pressure conditions consumed only half the power while doubling the rate of penetration as compared to drilling under Earth atmospheric conditions. However, the rate of bit wear was much higher under Martian conditions (Zacny and Cooper, 2004) References Zacny, K. A., M. C. Quayle, and G. A. Cooper (2004), Laboratory drilling under Martian conditions yields unexpected results, J. Geophys. Res., 109, E07S16, doi:10.1029/2003JE002203. Zacny, K. A., and G. A. Cooper (2004), Investigation of diamond-impregnated drill bit wear while drilling under Earth and Mars conditions, J. Geophys. Res., 109, E07S10, doi:10.1029/2003JE002204. Acknowledgments The research supported by the NASA Astrobiology, Science and Technology Instrument Development (ASTID) program.

  9. Acoustic Emission Measurements for Tool Wear Evaluation in Drilling

    NASA Astrophysics Data System (ADS)

    Gómez, Martín P.; Migliori, Julio; Ruzzante, José E.; D'Attellis, Carlos E.

    2009-03-01

    In this work, the tool condition in a drilling process of SAE 1040 steel samples was studied by means of acoustic emission. The studied drill bits were modified with artificial and real failures, such as different degrees of wear in the cutting edge and in the outer corner. Some correlation between mean power of the acoustic emission parameters and the drill bit wear condition was found.

  10. Development of Decision Analysis Specifically for Arctic Offshore Drilling Islands.

    DTIC Science & Technology

    1985-12-01

    the decision analysis method will - give tradeoffs between costs and design wave height, production and depth • :of water for an oil platform , etc...optimizing the type of platform that is best suited for a particular site has become an extremely difficult decision. Over fifty- one different types of...drilling and production platforms have been identified for the Arctic environment, with new concepts being developed - every year, Boslov et al (198j

  11. The Detection Method of Fire Abnormal Based on Directional Drilling in Complex Conditions of Mine

    NASA Astrophysics Data System (ADS)

    Huijun, Duan; Shijun, Hao; Jie, Feng

    2018-06-01

    In the light of more and more urgent hidden fire abnormal detection problem in complex conditions of mine, a method which is used directional drilling technology is put forward. The method can avoid the obstacles in mine, and complete the fire abnormal detection. This paper based on analyzing the trajectory control of directional drilling, measurement while drilling and the characteristic of open branch process, the project of the directional drilling is formulated combination with a complex condition mine, and the detection of fire abnormal is implemented. This method can provide technical support for fire prevention, which also can provide a new way for fire anomaly detection in the similar mine.

  12. New roles of LWD and wireline logging in scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Sanada, Y.; Kido, Y. N.; Moe, K.; Aoike, K.

    2014-12-01

    D/V Chikyu implemented by CDEX/JAMSTEC joined IODP from 2007. Various LWD (Logging While Drilling) and wireline logging have been carried out in many expeditions and for various purposes. Significant features of logging in Chikyu expeditions are many use of LWD than wireline logging, and riser dirlling. riser selected specific tools for each scientific target, and 3) carried out various borehole experiments. LWD has been more popular than wireline logging in Chikyu expeditions, because its advantages match theirs science targets. The advantages are followings. 1) LWD has more opportunities for measurement in unstable borehole, such as in the series of Nankai trough drilling expeditions. 2) LWD realtime data allows us to make realtime interpretation and operational decision. Realtime interpretation was required to set obsevartory at the properposition. 3) LWD before coring allows us to make a strategy of spot coring.We can design coring intervals for our interest and core length to improve core recovery.Riser drilling brings us merits for logging. One is hole stability (good hole condition) and the other is the use of large diameter tools. Controled drilling mud in riser drilling system prevent mud invasion to formation and mitigates collapse of borehole wall. They reduce the risk of tool stack and improve data quality. Large diameter of riser pipe enhances variation of tool seizes. A couple of new tools were used for new measurement and improvement of the data quality. For example, SonicScanner (trademark of Schulumberger) successfully measured compressional and share velocity in very low velocities at the soft sediment, where it has been difficult to measure them with conventional DSI tool (Exp319). The stress and pore pressure in the borehole were measured with the wireline logging tool, (Schlumberger MDT). The single probe tool enable to measure temporal formation fluid pressure. The double packer tool enable to fracture test by sealing and pumping in the borehole. These in-situ measurement and stress experiment data are very important to understand physical properties and mechanism of fault zone (Exp319).Those new technologies and tools also expand the envelope of scientific ocean drilling.

  13. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance ofmore » drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.« less

  14. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite

    PubMed Central

    Díaz-Álvarez, José; Olmedo, Alvaro; Santiuste, Carlos; Miguélez, María Henar

    2014-01-01

    Carbon Fiber Reinforced Polymer (CFRPs) composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained. PMID:28788685

  15. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  16. HDD proves effective in crossing French river

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    Gas de France is the primary transporter and distributor of natural gas in France, operating some 28,000 kilometers of gas pipelines. In 1996, Gas de France and Gas du Sud Ouest moved forward with the Artere du Midi consisting of a 375-kilometer gas pipeline, respectively in charge of 200-kilometer and a 175-kilometer sections linking the east and west grids in the southeast of France. A significant part of the Artere du Midi included a crossing of the Rhone River near Aries. The Rhone flows from north to south between the volcanic massif central and the Alps into the Mediterranean Sea.more » The crossing site is just at the entry of the Rhone delta, where the flow decelerates and erosion deposits of large granular size have occurred for millennia. Geotechnical investigations indicated that the crossing has difficult soil conditions, mostly made of coarse sand with numerous lenses of gravel and cobble. The Rhone delta, once occupied by the Romans is scenic and historic, so the construction method was very sensitive to the local public and tourist. Despite the geotechnical conditions, Gaz de France chose the horizontal directional drilling method for construction because it offers minimal environmental impact and a relatively short construction schedule. The paper discusses the horizontal directional drilling process.« less

  17. Psychosocial burden among offshore drilling platform employees.

    PubMed

    Leszczyńska, Irena; Jeżewska, Maria

    2010-01-01

    Conditions of work on offshore drilling platforms are particularly hard due to extreme environmental situations created both by nature and technological processes. Oil drilling workers employed on the open sea are potentially exposed to permanently high stress. Apart from the obvious objective factors affecting drilling platform employees, a great role in the general work-related stress level is played by the working conditions and work-related psychosocial factors, defined according to Karask's concept as demands, control, and social support. A total of 184 drill platform workers were examined using objective and subjective research methods. The level of subjective stress among drilling platform workers is lower than the level of objective stress and the stress resulting from prognoses related with specificity of work in extremely hard conditions (audit). The examinations of drilling platform workers reveal a positive role of stress in psychological adaptation, being a special case of the "work ethos" and attachment to the firm. In such investigations of work-related stress on drilling platforms, which are very specific workplaces, a multi-aspect character, sociological and economic aspects, organizational culture conditions in the firm, and a tendency to conceal ailments and the stress experienced should be taken into account. It is important to apply measures referring to at least three different types of evidence (objective demands, subjective stress, health problems reported). Otherwise, the result reflecting work-related stress may not be objective and far from the truth.

  18. An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique

    NASA Astrophysics Data System (ADS)

    Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.

    2018-05-01

    To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.

  19. Ankle Spatting Compared to Bracing or Taping during Maximal-Effort Sprint Drills

    PubMed Central

    REUTER, GRANT D; DAHL, ANGELA R; SENCHINA, DAVID S

    2011-01-01

    The purpose of this study was to compare the influences of 4 ankle conditions (no support, bracing, taping, taping + spatting; all in football cleats) during 2 maximal-effort field drills (40-yd dash and 34-yd cutting drill) on perceptions of comfort and stability and performance outcomes. Fourteen young adult males participated. Subjects’ perceptions of comfort and stability were assessed by visual analogue scales after each drill for each ankle condition. Time-to-completion and post-completion heart rate were recorded. For both drills, significant differences in comfort perception were found such that subjects perceived no support as equivocal to bracing but more comfortable than either taping or spatting + taping. Stability results differed by drill. For the dash, significant differences in stability perception were found such that subjects perceived no support as equivocal to bracing but less stable than either taping or spatting + taping. By contrast, for the cutting drill significant differences in stability perception were found such that subjects perceived their ankles as less stable during the no support condition as compared to all 3 other conditions. Generally, bracing was perceived as equivocal to all 3 other conditions for comfort and stability. There were no significant differences in time-to-completion or heart rate for any comparison. Compared to bracing or taping, spatting + taping (a) did not influence performance time in explosive/sprint-type drills, (b) was perceived as equivalent to taping alone in terms of ankle comfort and stability, and (c) was perceived as equivalent to bracing in terms of stability but not comfort. PMID:27478530

  20. Pulsed Nd:YAG laser beam drilling: A review

    NASA Astrophysics Data System (ADS)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  1. Synthesis of engineering designs of drilling facilities

    NASA Astrophysics Data System (ADS)

    Porozhsky, K.

    2018-03-01

    The article sets forth key principles of engineering of drilling equipment based on successive analysis of the goals of the production method, technologies of its implementation and conditions of mineral mining using a new approach to systematization of drilling methods. Potential advancement in the technologies and equipment of drilling is illustrated in terms of oil-well drilling.

  2. Standards in collaborative international disaster drills: a case study of two international search and rescue drills.

    PubMed

    Rokach, Ariel; Pinkert, Moshe; Nemet, Dani; Goldberg, Avishay; Bar-Dayan, Yaron

    2008-01-01

    During the last few decades, various global disasters have rendered nations helpless (such as Thailand's tsunami and earthquakes in Turkey, Pakistan, Iran, and India). A lack of knowledge and resources make it difficult to address such disasters. Preparedness for a national disaster is expensive, and in most cases, unachievable even for modern countries. International collaboration might be useful for coping with large-scale disasters. Preparedness for international collaboration includes drills. Two such drills held by the Israeli Home Front Command and other military and civilian bodies with the nations of Greece and Turkey are described in this article. The data were gathered from formal debriefings of the Israeli teams collaborating in two separate drills with Greek and Turkish teams. Preparations began four months before the drills were conducted and included three meetings between Israeli and foreign officials. The Israeli and foreign officials agreed upon the drill layout, logistics, communications, residence, real-time medicine, hardware, and equipment. The drills took place in Greece and Turkey and lasted four days. The first day included meetings between the teams and logistics preparations. The second and third days were devoted to exercises. The drills included evacuating casualties from a demolition zone and treating typical injuries such as crush syndrome. Every day ended with a formal debriefing by the teams' commanders. The fourth day included a ceremony and transportation back home. Members in both teams felt the drills improved their skills and had an important impact on creating common language that would enhance cooperation during a real disaster. A key factor in the management of large-scale disasters is coordination between countries. International drills are important to create common language within similar regulations.

  3. An approach to derive some simple empirical equations to calibrate nuclear and acoustic well logging tools.

    PubMed

    Mohammad Al Alfy, Ibrahim

    2018-01-01

    A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Modeling pellet impact drilling process

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  5. Improved Dental Implant Drill Durability and Performance Using Heat and Wear Resistant Protective Coatings.

    PubMed

    Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman

    2018-06-01

    The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  6. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC codedmore » daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.« less

  7. A new thermal model for bone drilling with applications to orthopaedic surgery.

    PubMed

    Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak

    2011-12-01

    This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.

  8. Lapland longspur mortality at an oil well drilling rig site, Laramie County, Wyoming

    USGS Publications Warehouse

    Ramirez, Pedro; Dickerson, Kimberly K.; Lindstrom, Jim; Meteyer, Carol U.; Darrah, Scott

    2015-01-01

    Two hundred fifty-one Lapland longspur (Calcarius lapponicus) carcasses were recovered around an oil well drilling rig in Laramie County, Wyoming, USA, on December 13–14, 2010, apparent victims of a winter storm and “light entrapment” from the lights on the drilling rig during foggy conditions. We found Lapland longspur carcasses distributed around the drilling rig from 33 m to 171 m. Investigators did not find evidence of bird carcasses on the drilling rig deck or equipment immediately adjacent to the drilling rig. We ruled out chemical toxins and disease as a cause of mortality. Weather conditions, the circular depositional pattern of carcasses around the drilling rig, and bird necropsy results led investigators to conclude that the Lapland longspur mortality was the result of the migrating birds entering the area illuminated by the drilling rig lights in freezing fog and the birds repeatedly circling the drilling rig until they fell to the ground in exhaustion and dying from subsequent trauma. Further research is needed to understand how to most effectively adjust lighting of onshore drilling rigs to reduce the potential for avian light entrapment. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  9. Considerations, constraints and strategies for drilling on Mars

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2006-04-01

    The effect of the environmental conditions on Mars - low temperature, low pressure, the uncertainty in the nature of the formations to be penetrated and the possibility of encountering ice - imply that a successful drilling system will have to be able to cope with a wide range of conditions. Systems using continuous drill pipe or wireline both offer attractive features and disadvantages, and the preferred choice may depend on the target depth. The drill bit will have to cope with a range of terrain, and we offer some suggestions for making a bit that will be able to drill in both hard and soft formations, and also be able to resist choking if it encounters ice or ice-bound materials. Since it will not be possible to use a liquid to remove the drilled cuttings on Mars, the cuttings removal system will probably use some form of auger, although it may be possible to use continuous or intermittent gas blasts. The sublimation of ice resulting from the heat of drilling in ice-containing formations may help in removing the cuttings, particularly as they are expected to be very fine as a result of the low power available for drilling. Drilling into ice bound soils was also found to be akin to drilling into ice-bound sandstones.

  10. Experimental system for drilling simulated lunar rock in ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Roepke, W. W.

    1975-01-01

    An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.

  11. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall be...

  12. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall be...

  13. Research and application of borehole structure optimization based on pre-drill risk assessment

    NASA Astrophysics Data System (ADS)

    Zhang, Guohui; Liu, Xinyun; Chenrong; Hugui; Yu, Wenhua; Sheng, Yanan; Guan, Zhichuan

    2017-11-01

    Borehole structure design based on pre-drill risk assessment and considering risks related to drilling operation is the pre-condition for safe and smooth drilling operation. Major risks of drilling operation include lost circulation, blowout, sidewall collapsing, sticking and failure of drilling tools etc. In the study, studying data from neighboring wells was used to calculate the profile of formation pressure with credibility in the target well, then the borehole structure design for the target well assessment by using the drilling risk assessment to predict engineering risks before drilling. Finally, the prediction results were used to optimize borehole structure design to prevent such drilling risks. The newly-developed technique provides a scientific basis for lowering probability and frequency of drilling engineering risks, and shortening time required to drill a well, which is of great significance for safe and high-efficient drilling.

  14. Drilling predation on molluscs in the northern Adriatic Sea: Spatial variability and temporal trends over the last millennia

    NASA Astrophysics Data System (ADS)

    Dengg, Markus; Wurzer, Sandra; Gallmetzer, Ivo; Haselmair, Alexandra; Zuschin, Martin

    2016-04-01

    Competition and predation are essential ecological factors influencing biodiversity. In a palaeontological context, the rate of predatory interactions between animal species is difficult to reconstruct because traces of predation are rarely incorporated into the fossil record. In the marine environment, the calcareous shells of molluscs, however, have good, long-time preservation potential, and predation in this group is often exerted by carnivorous gastropods that drill holes into mollusc shells. The prey's perforated shells remain in the sediment and can be used to study rates and intensities of predatory interactions in past marine molluscan communities. Differences in drilling frequencies along a sediment core not only reflect changes in local species richness and predation pressure, but may also mirror ecosystem changes through space and time. This makes the analysis of drilling predation an important tool when investigating the historical ecology of marine habitats. We used 1.5-m-long sediment cores from seven shelf locations spread throughout the northern Adriatic Sea basin to investigate regional and down-core variations in drilling frequencies. In total, about 54,000 bivalve and 40,000 gastropod shells were analysed to determine the following parameters: 1) overall drill frequency (DF), the proportion of shells drilled by predators; 2) edge drill frequency (EDF, only in bivalve shells), the proportion of shells with drilling traces at the shell edge; 3) multiple drill frequency (MDF), the percentage of individuals with more than one drill hole, 4) incomplete drill frequency (IDF), the percentage of shells unsuccessfully drilled; 5) prey effectiveness (PE), the proportion of individuals resisting the predator's attacks. Total drill frequency across all cores is 18% for bivalves and 13% for gastropods, but there are marked regional differences, with minima in the Po Delta (5%) and maxima in Panzano Bay (24%). Edge-drilled shells and multiple drill holes on single shells are very rare and occur on less than 1% of the investigated specimens. Also very low (< 1%) is the percentage of incomplete drill holes, except for the sampling location at the Brijuni Islands, Croatia (4%). Drilling frequencies show stronger differences between localities than along individual cores. Significant correlations exist between drilling intensities and prey species ecotype (especially for bivalves): commensals, parasitic and suspension-feeding species are more frequently drilled than other feeding types, as are infaunal species compared to species with epifaunal life habits. Despite the strong spatial variation in drilling intensities, the DF values of our samples are comparable to those typical for Cenozoic shelf environments.

  15. Effects of size on three-cone bit performance in laboratory drilled shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, A.D.; DiBona, B.G.; Sandstrom, J.L.

    1982-09-01

    The effects of size on the performance of 3-cone bits were measured during laboratory drilling tests in shale at simulated downhole conditions. Four Reed HP-SM 3-cone bits with diameters of 6 1/2, 7 7/8, 9 1/2 and 11 inches were used to drill Mancos shale with water-based mud. The tests were conducted at constant borehole pressure, two conditions of hydraulic horsepower per square inch of bit area, three conditions of rotary speed and four conditions of weight-on-bit per inch of bit diameter. The resulting penetration rates and torques were measured. Statistical techniques were used to analyze the data.

  16. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling...) Ventilation control. To adequately control dust from drilling rock, the air current shall be so directed that...

  17. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling...) Ventilation control. To adequately control dust from drilling rock, the air current shall be so directed that...

  18. The differential effects of teaching addition through strategy instruction versus drill and practice to students with and without learning disabilities.

    PubMed

    Tournaki, Nelly

    2003-01-01

    Forty-two second-grade general education students and 42 students with learning disabilities (LD) were taught basic, one-digit addition facts (e.g., 5 + 3 = _). Students received instruction via (a) a minimum addend strategy, (b) drill and practice, or (c) control. The effectiveness of the two methods was measured through students' accuracy and latency scores on a posttest and a transfer task (e.g., 5 + 3 + 7 =_). Students with LD improved significantly only in the strategy condition, as compared to drill-and-practice and control conditions, whereas general education students improved significantly both in the strategy and the drill-and-practice conditions as compared to the control condition. However, in the transfer task, students from all groups became significantly more accurate only in the strategy condition, while all students were significantly faster than their control group peers regardless of teaching method. The implications for teachers' differential choices of methods of instruction for students with different learning characteristics are discussed.

  19. The Effect of Insertion Technique on Temperatures for Standard and Self-Drilling External Fixation Pins.

    PubMed

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2017-08-01

    No studies have assessed the effects of parameters associated with insertion temperature in modern self-drilling external fixation pins. The current study assessed how varying the presence of irrigation, insertion speed, and force impacted the insertion temperatures of 2 types of standard and self-drilling external fixation half pins. Seventy tests were conducted with 10 trials for 4 conditions on self-drilling pins, and 3 conditions for standard pins. Each test used a thermocouple inside the pin to measure temperature rise during insertion. Adding irrigation to the standard pin insertion significantly lowered the maximum temperature (P <0.001). Lowering the applied force for the standard pin did not have a significant change in temperature rise. Applying irrigation during the self-drilling pin tests dropped average rise in temperature from 151.3 ± 21.6°C to 124.1 ± 15.3°C (P = 0.005). When the self-drilling pin insertion was decreased considerably from 360 to 60 rpm, the temperature decreased significantly from 151.3 ± 21.6°C to 109.6 ± 14.0°C (P <0.001). When the force applied increased significantly, the corresponding self-drilling pin temperature increase was not significant. The standard pin had lower peak temperatures than the self-drilling pin for all conditions. Moreover, slowing down the insertion speed and adding irrigation helped mitigate the temperature increase of both pin types during insertion.

  20. Rapid Pore Cranial Drilling With External Ventricular Drainage for Treatment of Intraventricular Hemorrhage: A 36-Year Case Series

    PubMed Central

    Zhang, Wei; Wei, Lin; Li, Gang; Sun, Jinlong; Jin, Peng; Yang, Jun; Wang, Daokui; Bai, Yunan; Li, Xingang; Fei, Chang; Wang, Chengwei; Wang, Baoan; Pan, Shumao; Du, Jihai; Xie, Bo; Xu, Dongfang; Xin, Changming; Wang, Jihua; Zhang, Qinglin

    2015-01-01

    This study aimed to describe the technique details of rapid pore cranial drilling with external ventricular drainage and document its clinical outcomes by highlighting the advantages over the traditional and modified cranial drilling technique. Intraventricular hemorrhage is one of the most severe subtypes of hemorrhagic stroke with high mortality. The amount of blood in the ventricles is associated with severity of outcomes, and fast removal of the blood clot is the key to a good prognosis. Between 1977 and 2013, 3773 patients admitted for intraventricular hemorrhage underwent rapid pore cranial drilling drainage. The therapeutic effects and clinical outcomes were retrospectively analyzed. Of these patients, 1049 (27.8%) experienced complete remission, 1788 (47.4%) had improved condition, and 936 (24.8%) died. A total of 3229 (85.6%) patients gained immediate remission. One typical case was illustrated to demonstrate the efficacy of the rapid pore drilling technique. Rapid pore cranial drilling drainage in patients with intraventricular hemorrhage is fast, effective, and provides immediate relief in patients with severe conditions. It could be a better alternative to the conventional drilling approach for treatment of intraventricular hemorrhage. A randomized controlled trial for direct comparison between the rapid pore cranial drilling drainage and conventional drilling technique is in urgent need. PMID:25590642

  1. Rapid Pore Cranial Drilling With External Ventricular Drainage for Treatment of Intraventricular Hemorrhage: A 36-Year Case Series.

    PubMed

    Zhang, Wei; Wei, Lin; Li, Gang; Sun, Jinlong; Jin, Peng; Yang, Jun; Wang, Daokui; Bai, Yunan; Li, Xingang; Fei, Chang; Wang, Chengwei; Wang, Baoan; Pan, Shumao; Du, Jihai; Xie, Bo; Xu, Dongfang; Xin, Changming; Wang, Jihua; Zhang, Qinglin

    2015-06-01

    This study aimed to describe the technique details of rapid pore cranial drilling with external ventricular drainage and document its clinical outcomes by highlighting the advantages over the traditional and modified cranial drilling technique. Intraventricular hemorrhage is one of the most severe subtypes of hemorrhagic stroke with high mortality. The amount of blood in the ventricles is associated with severity of outcomes, and fast removal of the blood clot is the key to a good prognosis. Between 1977 and 2013, 3773 patients admitted for intraventricular hemorrhage underwent rapid pore cranial drilling drainage. The therapeutic effects and clinical outcomes were retrospectively analyzed. Of these patients, 1049 (27.8%) experienced complete remission, 1788 (47.4%) had improved condition, and 936 (24.8%) died. A total of 3229 (85.6%) patients gained immediate remission. One typical case was illustrated to demonstrate the efficacy of the rapid pore drilling technique. Rapid pore cranial drilling drainage in patients with intraventricular hemorrhage is fast, effective, and provides immediate relief in patients with severe conditions. It could be a better alternative to the conventional drilling approach for treatment of intraventricular hemorrhage. A randomized controlled trial for direct comparison between the rapid pore cranial drilling drainage and conventional drilling technique is in urgent need.

  2. Spectroscopic detection and analysis of atomic emissions during industrial pulsed laser-drilling of structural aerospace alloys

    NASA Astrophysics Data System (ADS)

    Bright, Robin Michael

    The ability to adequately cool internal gas-turbine engine components in next-generation commercial and military aircraft is of extreme importance to the aerospace industry as the demand for high-efficiency engines continues to push operating temperatures higher. Pulsed laser-drilling is rapidly becoming the preferred method of creating cooling holes in high temperature components due a variety of manufacturing advantages of laser-drilling over conventional hole-drilling techniques. As cooling requirements become more demanding, the impact of drilling conditions on material removal behavior and subsequent effects on hole quality becomes critical. In this work, the development of emission spectroscopy as a method to probe the laser-drilling process is presented and subsequently applied to the study of material behavior of various structural aerospace materials during drilling. Specifically, emitted photons associated with energy level transitions within excited neutral atoms in material ejected during drilling were detected and analyzed. Systematic spectroscopic studies indicated that electron energy level populations and calculated electron temperatures within ejected material are dependent on both laser pulse energy and duration. Local thermal conditions detected by the developed method were related to the characteristics of ejected material during drilling and to final hole quality. Finally, methods of utilizing the observed relationships for spectroscopic process monitoring and control were demonstrated.

  3. Condition assessment of timber bridges. 1, Evaluation of a micro-drilling resistance tool

    Treesearch

    Brian K. Brashaw; Robert J. Vatalaro; James P. Wacker; Robert J. Ross

    2005-01-01

    The research presented in this report was conducted to evaluate the accuracy and reliability of a commercially available micro-drilling resistance device, the IML RESI F300-S (Instrument Mechanic Labor, Inc., Kennesaw, Georgia), in locating deteriorated areas in timber bridge members. The device records drilling resistance as a function of drilling depth, which allows...

  4. While drilling system and method

    DOEpatents

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  5. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill atmore » the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.« less

  6. Unrecoverable bi-products of drilling titanium alloy and tantalum metal implants: a pilot study.

    PubMed

    Skowronek, Paweł; Olszewski, Paweł; Święszkowski, Wojciech; Synder, Marek; Sibiński, Marcin; Mazek, Jacek

    2018-05-01

    Trabecular metal implants with a porous architecture that allows for the incorporation of bone into the implant during healing are gaining popularity in alloplastic revision procedures. The bi-products of drilling titanium alloy (Ti) and tantalum (Ta) implants have not been previously assessed. Four holes were drilled in each of two spatially porous trabecular implants, one Ta and the other Ti alloy (Ti-6Al-7Nb), for this pilot in vitro study. The particles were flushed out with a continuous flow of saline. The particles' weight and the volume were then measured using a Radwag XA 110/2X (USA) laboratory balance. The total volume of the obtained metal fines was measured by titration using a 10 mm 3 measurement system. A cobalt carbide bit was used since the holes could not be made with a standard bone drill. Each Ti and Ta implant lost 1.26 g and 2.48 g of mass, respectively. The volume of free particles recovered after each stage was 280 mm 3 and 149 mm 3 , respectively. Approximately 0.6% of the total implant mass was not recovered after drilling (roughly 2% of the mass of the particles created by drilling), despite the use of 5 µm filters. It is technically difficult to drill holes in Ti and Ta implants using standard surgical tools. The drilling process creates a considerable amount of metal particles, which cannot be recovered despite intensive flushing. This may have an adverse influence on the bio-functionality (survival) of the endoprosthesis and present deleterious systemic consequences.

  7. KCA drilling combats freak seas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-08-01

    This article describes the unusual sea conditions experienced by the crew of the KCA Drilling Company's positioned drillship, the Polly Bristol. The drilling took place in 1,000 feet of Mediterranean waters off Spain. Solutions are described that were used to quickly combat the turbulence of the waters so the drillship could be operated safely and effectively. The odd condition KCA experienced was caused by what oceanographers refer to as internal wave trains - underwater waves surging against each other from opposite directions.

  8. Promoting response variability and stimulus generalization in martial arts training.

    PubMed Central

    Harding, Jay W; Wacker, David P; Berg, Wendy K; Rick, Gary; Lee, John F

    2004-01-01

    The effects of reinforcement and extinction on response variability and stimulus generalization in the punching and kicking techniques of 2 martial arts students were evaluated across drill and sparring conditions. During both conditions, the students were asked to demonstrate different techniques in response to an instructor's punching attack. During baseline, the students received no feedback on their responses in either condition. During the intervention phase, the students received differential reinforcement in the form of instructor feedback for each different punching or kicking technique they performed during a session of the drill condition, but no reinforcement was provided for techniques in the sparring condition. Results showed that both students increased the number of different techniques they performed when reinforcement and extinction procedures were conducted during the drill condition, and that this increase in response variability generalized to the sparring condition. PMID:15293637

  9. A proven record in changing attitudes about MWD logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, L.; Paxson, K.B.; Keyser, W.L.

    1993-07-01

    Measurement while drilling (MWD) logs for quantitative reservoir characterization were evaluated during drilling of Gulf of Mexico flexure trend projects, Kilauea (Green Canyon Blocks 6 and 50) and Tick (Garden Banks Block 189). Comparisons confirmed that MWD can be used as an accurate replacement for wireline logging when borehole size is not a limiting factor. Texaco MWD experience evolved from last resort' to primary formation evaluation logging, which resulted in rigtime and associated cost savings. Difficult wells are now drilled and evaluated with confidence, geopressure is safely monitored, conventional core interval tops are selected, and geologic interpretations and operational decisionsmore » are made before wells TD. This paper reviews the performance, accuracy, and limitations of the MWD systems and compares the results to standard geophysical well logging techniques. Four case histories are presented.« less

  10. Characteristics of crushed rocks observed in drilled cores in landslide bodies located in accretionary complexes

    NASA Astrophysics Data System (ADS)

    Wakizaka, Yasuhiko

    2013-10-01

    The recent development of high-quality boring, which uses foam surfactants, has made it possible to examine the detailed geological constitution and structure of landslide bodies. However, geological information related to landslides has not been obtained appropriately even from undisturbed high-quality drilled cores. Moreover, it has been difficult to distinguish between rocks crushed by landslide movement and the fault breccia in accretionary complexes. We examined the detailed geology of high-quality drilled cores of landslide bodies on the Shimanto Belt and the Chichibu Belt. The fault breccia near the landslide bodies was found to exhibit planar fabrics while the crushed breccias in the landslide bodies showed a random fabric. We discovered that classifying the degree of crushing and inspecting the planar fabrics of rocks are effective in the geological determination of landslide bodies.

  11. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.

    1996-10-01

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drillingmore » method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).« less

  12. Wear and performance: An experimental study on PDC bits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, O.; Azar, J.J.

    1997-07-01

    Real-time drilling data, gathered under full-scale conditions, was analyzed to determine the influence of cutter dullness on PDC-bit rate of penetration. It was found that while drilling in shale, the cutters` wearflat area was not a controlling factor on rate of penetration; however, when drilling in limestone, wearflat area significantly influenced PDC bit penetration performance. Similarly, the presence of diamond lips on PDC cutters was found to be unimportant while drilling in shale, but it greatly enhanced bit performance when drilling in limestone.

  13. Lunar drill and test apparatus

    NASA Technical Reports Server (NTRS)

    Norrington, David W.; Ardoin, Didier C.; Alexander, Stephen G.; Rowland, Philip N.; Vastakis, Frank N.; Linsey, Steven L.

    1988-01-01

    The design of an experimental lunar drill and a facility to test the drill under simulated lunar conditions is described. The drill utilizes a polycrystalline diamond compact drag bit and an auger to mechanically remove cuttings from the hole. The drill will be tested in a vacuum chamber and powered through a vacuum seal by a drive mechanism located above the chamber. A general description of the design is provided followed by a detailed description and analysis of each component. Recommendations for the further development of the design are included.

  14. Results of NanTroSEIZE Expeditions Stages 1 & 2: Deep-sea Coring Operations on-board the Deep-sea Drilling Vessel Chikyu and Development of Coring Equipment for Stage 3

    NASA Astrophysics Data System (ADS)

    Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.

    2010-12-01

    The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.

  15. PDC-bit performance under simulated borehole conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.E.; Azar, J.J.

    1993-09-01

    Laboratory drilling tests were used to investigate the effects of pressure on polycrystalline-diamond-compact (PDC) drill-bit performance. Catoosa shale core samples were drilled with PDC and roller-cone bits at up to 1,750-psi confining pressure. All tests were conducted in a controlled environment with a full-scale laboratory drilling system. Test results indicate, that under similar operating conditions, increases in confining pressure reduce PDC-bit performance as much as or more than conventional-rock-bit performance. Specific energy calculations indicate that a combination of rock strength, chip hold-down, and bit balling may have reduced performance. Quantifying the degree to which pressure reduces PDC-bit performance will helpmore » researchers interpret test results and improve bit designs and will help drilling engineers run PDC bits more effectively in the field.« less

  16. Cortical bone drilling: An experimental and numerical study.

    PubMed

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  17. 46 CFR 174.035 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.035 Definitions. (a... IA of this chapter: (1) Column stabilized unit. (2) Mobile offshore drilling unit. (3) Self-elevating... loaded or arranged for drilling, field transit, or ocean transit. (4) Severe storm condition means a...

  18. 46 CFR 174.035 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.035 Definitions. (a... IA of this chapter: (1) Column stabilized unit. (2) Mobile offshore drilling unit. (3) Self-elevating... loaded or arranged for drilling, field transit, or ocean transit. (4) Severe storm condition means a...

  19. Use of geostatistics in planning optimum drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghose S.

    1989-08-01

    Application of geostatistics in the natural resources industry is well established. In a typical process of estimation, the statistically dependent geological data are used to predict the characteristics of a deposit. The estimator used is the best linear unbiased estimator (or BLUE), and a numerical factor of confidence is also provided. The natural inhomogeneity and anisotropy of a deposit are also quantified with preciseness. Drilling is the most reliable way of obtaining data for mining and related industries. However, it is often difficult to decide what is the optimum number of drill holes necessary for evaluation. In this paper, sequentialmore » measures of percent variation at 95% confidence level of a geological variable have been used to decipher economically optimum drilling density. A coal reserve model has been used to illustrate the method and findings. Fictitious drilling data were added (within the domain of population characteristics) in stages, to obtain a point of stability, beyond which the gain was significant (diminishing marginal benefit). The final relations are established by graphically projecting and comparing two variables - cost and precision. By mapping the percent variation at each stage, the localized areas of discrepancies can be identified. These are the locations where additional drilling is needed. The system can be controlled if performed at progressive stages and the preciseness toward stability is monitored.« less

  20. Determination of drill paths for percutaneous cochlear access accounting for target positioning error

    NASA Astrophysics Data System (ADS)

    Noble, Jack H.; Warren, Frank M.; Labadie, Robert F.; Dawant, Benoit; Fitzpatrick, J. Michael

    2007-03-01

    In cochlear implant surgery an electrode array is permanently implanted to stimulate the auditory nerve and allow deaf people to hear. Current surgical techniques require wide excavation of the mastoid region of the temporal bone and one to three hours time to avoid damage to vital structures. Recently a far less invasive approach has been proposed-percutaneous cochlear access, in which a single hole is drilled from skull surface to the cochlea. The drill path is determined by attaching a fiducial system to the patient's skull and then choosing, on a pre-operative CT, an entry point and a target point. The drill is advanced to the target, the electrodes placed through the hole, and a stimulator implanted at the surface of the skull. The major challenge is the determination of a safe and effective drill path, which with high probability avoids specific vital structures-the facial nerve, the ossicles, and the external ear canal-and arrives at the basal turn of the cochlea. These four features lie within a few millimeters of each other, the drill is one millimeter in diameter, and errors in the determination of the target position are on the order of 0.5mm root-mean square. Thus, path selection is both difficult and critical to the success of the surgery. This paper presents a method for finding optimally safe and effective paths while accounting for target positioning error.

  1. Control system for high power laser drilling workover and completion unit

    DOEpatents

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  2. Evaluation of hybrid slurry resulting from the introduction of additives to mineral slurry : summary.

    DOT National Transportation Integrated Search

    2011-01-01

    High water tables in Florida make it difficult to excavate to a sufficient depth for many construction projects without water intrusion causing a collapse of earthen walls. In the case of drilled shafts, stabilization is achieved mechanically by usin...

  3. Optimization of multiple quality characteristics in bone drilling using grey relational analysis

    PubMed Central

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2014-01-01

    Purpose Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. Method In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Results Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. Conclusions The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling. PMID:25829751

  4. Optimization of multiple quality characteristics in bone drilling using grey relational analysis.

    PubMed

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2015-03-01

    Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling.

  5. Physical Conditioning through Water Exercises.

    ERIC Educational Resources Information Center

    Conrad, C. Carson

    This document describes activities in an aquatic program designed for an individual in sound health. Instructions for performing each activity are given in step-by-step outline form. The activities are arranged under the following categories: standing water drills; pool-side standing drills; gutter holding drills; bobbing (various forms);…

  6. AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)

    EPA Science Inventory

    Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...

  7. Development of preliminary load and resistance factor design of drilled shafts in Iowa : [tech transfer summary].

    DOT National Transportation Integrated Search

    2014-10-01

    Despite possessing several advantages, drilled shafts are used infrequently : in Iowa. The soil conditions in several regions of the state are ideal for : using this foundation option. The reasons for the limited use of drilled : shafts can be attrib...

  8. Finding Faults: Tohoku and other Active Megathrusts/Megasplays

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Conin, M.; Cook, B. J.; Kirkpatrick, J. D.; Remitti, F.; Chester, F.; Nakamura, Y.; Lin, W.; Saito, S.; Scientific Team, E.

    2012-12-01

    Current subduction-fault drilling procedure is to drill a logging hole, identify target faults, then core and instrument them. Seismic data may constrain faults but the additional resolution of borehole logs is necessary for efficient coring and instrumentation under difficult conditions and tight schedules. Thus, refining the methodology of identifying faults in logging data has become important, and thus comparison of log signatures of faults in different locations is worthwhile. At the C0019 (JFAST) drill site, the Tohoku megathrust was principally identified as a decollement where steep cylindrically-folded bedding abruptly flattens below the basal detachment. A similar structural contrast occurs across a megasplay fault in the NanTroSEIZE transect (Site C0004). At the Tohoku decollement, a high gamma-ray value from a pelagic clay layer, predicted as a likely decollement sediment type, strengthens the megathrust interpretation. The original identification of the pelagic clay as a decollement candidate was based on results of previous coring of an oceanic reference site. Negative density anomalies, often seen as low resistivity zones, identified a subsidiary fault in the deformed prism overlying the Tohoku megathrust. Elsewhere, at Barbados, Nankai (Moroto), and Costa Rica, negative density anomalies are associated with the decollement and other faults in hanging walls. Log-based density anomalies in fault zones provide a basis for recognizing in-situ fault zone dilation. At the Tohoku Site C0019, breakouts are present above but not below the megathrust. Changes in breakout orientation and width (stress magnitude) occur across megasplay faults at Sites C0004 and C0010 in the NantroSEIZE transect. Annular pressure anomalies are not apparent at the Tohoku megathrust, but are variably associated with faults and fracture zones drilled along the NanTroSEIZE transect. Overall, images of changes in structural features, negative density anomalies, and changes in breakout occurrence and orientation provide the most common log criteria for recognizing major thrust zones in ocean drilling holes at convergent margins. In the case of JFAST, identification of faults by logging was confirmed during subsequent coring activities, and logging data was critical for successful placement of the observatory down hole.

  9. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.

    2018-01-01

    A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.

  10. Contamination Control for Scientific Drilling Operations.

    PubMed

    Kallmeyer, J

    2017-01-01

    Drilling is an integral part of subsurface exploration. Because almost all drilling operations require the use of a drill fluid, contamination by infiltration of drill fluid into the recovered core material cannot be avoided. Because it is impossible to maintain sterile conditions during drilling the drill fluid will contain surface microbes and other contaminants. As contamination cannot be avoided, it has to be tracked to identify those parts of the drill core that were not infiltrated by the drill fluid. This is done by the addition of tracer compounds. A great variety of tracers is available, and the choice depends on many factors. This review will first explain the basic principles of drilling before presenting the most common tracers and discussing their strengths and weaknesses. The final part of this review presents a number of key questions that have to be addressed in order to find the right tracer for a particular drilling operation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. New approaches to subglacial bedrock drilling technology

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical ice core drill is designed and tested. The expected average daily production of ice drilling would be not less than 25 m/day. The lower part of the drill is adapted for coring bed-rock using special tooth diamond bit. Deep ice coring requires a drilling fluid in the borehole during operation in order to keep the hole open and to compensate the hydrostatic pressures acting to close it. At present there are no ideal low-temperature drilling fluids as all of them are environmental and health hazardous substances. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic materials, e.g. low-molecular dimethyl siloxane oils or aliphatic synthetic ester of ESTISOL™ 140 type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glaciers and subglacial bedrock.

  12. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  13. Study of temperature rises and forces on drilling bone

    NASA Astrophysics Data System (ADS)

    Srikanth Venkataraman, Ananya

    Many different approaches have been used to prepare, store and test bone samples in order to determine its physical properties. The need to establish a standard method of specimen preparation and storage prior to experimental testing, contributed greatly to the primary part of this study. When mechanized cutting tools such as saws and drills are used, heat is produced and this raises the temperature of both the tool and the material being cut. In orthopedic and dental practices, high-speed tools are often applied to bones and teeth, and heat from these operations may result in thermal necrosis [1]. Since this can have a negative impact on the outcome of an orthopedic procedure, temperatures must be kept below the threshold that results in bone necrosis. The initial set of experiments was performed to determine the conditions under which the mechanical properties of the bone changed so as to establish the most suitable testing conditions. The hardness variation of the bone samples, under different annealing treatment conditions was used as the indicating parameter for evaluation of the change in the mechanical properties. Establishing the most appropriate section of the metacarpal sample for testing, by studying the anisotropy of the bone was another determining parameter. The second step was to examine the effects of conventional drilling as well as modulation assisted drilling on the temperature rise generated in the bone during these machining processes. In addition to this, a set of experiments were performed to ascertain how lubrication affected the temperature rise during drilling. The dynamic portions of the torque and thrust traces as well as the specific energies were compared for the different drilling conditions. Modulation showed no significant effect on the mean torque, thrust, specific energies of cutting, or temperature rise. Lubrication (flooding and misting) in both the modulation and no modulation cases drastically reduced the temperature rise during cutting, as expected. In addition to this the characteristics of the chips produced by both the methods of drilling were compared. The modulation process produced more consistent chips at the lower speed (360 rpm) and as the speed was increased to 3000 rpm the chip formation was similar to the no modulation drilling condition at the same feed rates. A brief study on the histological changes due to drilling was also performed.

  14. Bone augmentation in dental implantology using press-fit bone cylinders and twin-principle diamond hollow drills: a case series.

    PubMed

    Draenert, Florian Guy; Huetzen, Dominic; Kämmerer, Peer; Wagner, Wilfried

    2011-09-01

    Bone transplants are mostly prepared with cutting drills, chisels, and rasps. These techniques are difficult for unexperienced surgeons, and the implant interface is less precise due to unstandardized preparation. Cylindrical bone transplants are a known alternative. Current techniques include fixation methods with osteosynthesis screws or the dental implant. A new bone cylinder transplant technique is presented using a twin-drill principle resulting in a customized pressfit of the transplant without fixation devices and combining this with the superior grinding properties of a diamond coating. New cylindrical diamond hollow drills are used for customized press fit bone transplants in a case series of five patients for socket reconstruction in the front and molar region of maxilla and mandibula with and without simultaneous implant placement. The technical approach was successful without intra or postoperative complications during the acute healing phase. The customized press fit completes a technological trias of bone cylinder transplant techniques adding to the assisted press fit with either osteosynthesis screws or the dental implant itself. © 2009 Wiley Periodicals, Inc.

  15. Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants

    NASA Astrophysics Data System (ADS)

    Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James

    2017-05-01

    Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.

  16. Borehole instability analysis for IODP Site C0002 of the NanTroSEIZE Project, Nankai Trough subduction zone

    NASA Astrophysics Data System (ADS)

    Wu, H.; Kido, Y. N.; Kinoshita, M.; Saito, S.

    2013-12-01

    Wellbore instability is a major challenge for the engineer evaluating borehole and formation conditions. Instability is especially important to understand in areas with high stress variations, significant structure anisotropy, or pre-existing fracture systems. Borehole (in)stability is influenced by rock strength, structural properties, and near-field principal stresses. During drilling, the borehole conditions also impact borehole integrity. Factors that we can measure in the borehole during with logging while drilling (LWD) to understand these conditions include mud weight, mud loss, ROP (Rate of Penetration), RPM (Rotation Per Minute), WOB (Weight on Bit), and TORQ (Power swivel torque value). We conducted borehole instability analysis for Site C0002 of the Nankai Trough transect based on riser and riserless drilling during IODP Expedition 338. The borehole shape, determined from LWD resistivity images, indicates that most of drilling occurred in stable environments, however, in a few instances the bottom hole assembly became stuck. We used our stress profile model to evaluate the mud weight required to drill a stable borehole for the estimated rock strength and physical properties. Based on our analysis, we interpret that borehole instability during IODP Expedition 338 may have been caused by weak bedding plane and fluid overpressure state. Future work with this model will investigate the roles of these conditions.

  17. Study of Laser Drilled Hole Quality of Yttria Stabilized Zirconia

    NASA Astrophysics Data System (ADS)

    Saini, Surendra K.; Dubey, Avanish K.; Pant, Piyush; Upadhyay, B. N.; Choubey, A.

    2017-09-01

    The Yttria Stabilized Zirconia ceramic is extensively used in aerospace, automotives, medical and microelectronics industries. These applications demand manufacturing of different macro and micro features with close tolerances in this material. To make miniature holes with accurate dimensions in advanced ceramics such as Yttria Stabilized Zirconia is very difficult due to its tailored attributes such as high toughness, hardness, strength, resistance to wear, corrosion and temperature. Due to inherent characteristics of laser drilling, researchers are working to fulfill the requirement of creation of micro holes in advanced ceramics. The present research investigates the laser drilling of 2 mm thick Yttria Stabilized Zirconia with the aim to achieve good micro holes with reduced geometrical inaccuracies and improved hole quality. The results show that multiple quality response comprising hole circularity, hole taper and recast layer thickness has been improved at optimally selected process parameters.

  18. Sphenoid "drill-out" for chronic sphenoid rhinosinusitis.

    PubMed

    Leight, W Derek; Leopold, Donald A

    2011-01-01

    Chronic sphenoid rhinosinusitis (CSR) refractory to both medical management and 1 or more sphenoidotomies is a difficult entity to treat. In contrast to the surgical hierarchy that exists for the frontal sinus, there is no systematic approach for addressing persistent disease in the sphenoid. Sphenoid marsupialization has been advocated as a method of addressing recurrent sphenoid sinusitis. We present a new technique called the sphenoid drill-out, which we place between traditional sphenoidotomy and sphenoid marsupialization in the surgical hierarchy for management of CSR. We performed a retrospective review on all patients undergoing sphenoidotomy between 2005 and 2009. We studied demographics, procedure type, diagnoses, comorbidities, efficacy, revision rate, and endoscopic outcomes using Lund-Kennedy scores. A total of 10 patients underwent sphenoid drill-out for CSR. Average follow up was 17 months. Patients had an average of 5 prior sinus surgeries with 2.6 prior sphenoidotomies. One patient required a revision drill-out procedure. The mean preoperative and postoperative Lund-Kennedy scores were 6.67 and 1.78, which was a statistically significant difference. The sphenoid drill-out procedure is safe and effective for the management of recalcitrant CSR. It should be considered as an intermediate procedure between sphenoidotomy and sphenoid marsupialization. Copyright © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  19. Reporting from the Iceland Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Urban, Karl

    2017-04-01

    Geoscience-related topics are in many cases difficult to communicate to the public: Often they include dead soil which not easily tells lively stories. And it is hard to sell those topics to editors of public media. In addition the topics might also be politically supercharged if they are resource-related with a visible environmental impact. Therefore any researcher involved might be overcautious while talking to journalists. With a grant from the EGU Science Journalist Fellowship I travelled to Iceland in autumn 2016 to report about the Iceland Deep Drilling Project (IDDP). The project which started just weeks prior to my arrival aimed to drill the deepest borehole in a volcanically active region. During earlier trials the borehole collapsed or the drill string unintentionally hit magma. If successful the IDDP promises a much higher level of geothermal energy harvested. The IDDP was therefore ideally suited to be sold to public media outlets since Iceland's volcanic legacy easily tells a lively story. But the drilling's potential environmental impact makes it a political topic in Iceland - even though geothermal energy has a positive public perception. Therefore the IDDP included some pitfalls I observed several times before while reporting about geoscience research. Those could be circumvented if researchers and journalists knew better about their expectations before any interview takes place.

  20. A feasibility investigation for modeling and optimization of temperature in bone drilling using fuzzy logic and Taguchi optimization methodology.

    PubMed

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2014-11-01

    Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.

  1. A Comparison of Two Flashcard Drill Methods Targeting Word Recognition

    ERIC Educational Resources Information Center

    Volpe, Robert J.; Mule, Christina M.; Briesch, Amy M.; Joseph, Laurice M.; Burns, Matthew K.

    2011-01-01

    Traditional drill and practice (TD) and incremental rehearsal (IR) are two flashcard drill instructional methods previously noted to improve word recognition. The current study sought to compare the effectiveness and efficiency of these two methods, as assessed by next day retention assessments, under 2 conditions (i.e., opportunities to respond…

  2. VISUAL AIDS HANDBOOK FOR FOREIGN LANGUAGE TEACHERS.

    ERIC Educational Resources Information Center

    GARIBALDI, VIRGINIA; STRASHEIM, LORRAINE A.

    TEACHERS ARE SHOWN HOW TO CONSTRUCT AND USE THEIR OWN VISUAL AIDS FOR ILLUSTRATING USEFUL BUT DIFFICULT EXPRESSIONS COMMON TO ALL LANGUAGES. SUCH SPECIFIC AIDS AS PROPS, REALIA, FLASHCARDS, CHARTS, FLANNEL AND MAGNETIC BOARDS, POCKET CHARTS, PUPPETS, DRILL CUING DEVICES, AND CULTURALLY ORIENTED VISUAL AIDS ARE DESCRIBED. LISTS OF PROFESSIONAL…

  3. Data Modeling, Development, Installation and Operation of the ACEX Offshore Drilling Information System for the Mission Specific Platform Expedition to the Lomonosov Ridge, Arctic Ocean.

    NASA Astrophysics Data System (ADS)

    Conze, R.; Krysiak, F.; Wallrabe-Adams, H.; Graham, C. C.

    2004-12-01

    During August/September 2004, the Arctic Coring Expedition (ACEX) was used to trial a new Offshore Drilling Information System (OffshoreDIS). ACEX was the first Mission Specific Platform (MSP) expedition of the Integrated Ocean Drilling Programme (IODP), funded by the European Consortium for Ocean Research Drilling (ECORD). The British Geological Survey in conjunction with the University of Bremen and the European Petrophysics Consortium were the ECORD Science Operator (ESO) for ACEX. IODP MSP expeditions have very similar data management requirements and operate in similar working environments to the lake drilling projects conducted by the International Continental Scientific Drilling Program (ICDP), for example, the GLAD800, which has very restricted space on board and operates in difficult conditions. Both organizations require data capture and management systems that are mobile, flexible and that can be deployed quickly on small- to medium-sized drilling platforms for the initial gathering of data, and that can also be deployed onshore in laboratories where the bulk of the scientific work is conducted. ESO, therefore, decided that an adapted version of the existing Drilling Information System (DIS) used by ICDP projects would satisfy its requirements. Based on the existing DIS, an OffshoreDIS has been developed for MSP expeditions. The underlying data model is compatible with IODP(JANUS), the Bremen Core Repository, WDC-MARE/PANGAEA and the LacCore in Minneapolis. According to the specific expedition platform configuration and on-board workflow requirements for the Arctic, this data model, data pumps and user interfaces were adapted for the ACEX-OffshoreDIS. On the drill ship Vidar Viking the cores were catalogued and petrophysically logged using a GeoTek Multi-Sensor Core Logger System, while further initial measurements, lithological descriptions and biostratigraphic investigations were undertaken on the Oden, which provided laboratory facilities for the expedition. Onboard samples were registered in a corresponding sample archive on both vessels. The ACEX-OffshoreDIS used a local area network covering the two ships of the three icebreaker fleet by wireless LAN between the ships and partly wired LAN on the ships. A DIS-server was installed on each ship. These were synchronized by database replication and linked to a total of 10 client systems and label printers across both ships. The ACEX-OffshoreDIS will also be used for the scientific measurement and analysis phase of the expedition during the post-field operations `shore-party' in November 2004 at the Bremen Core Repository (BCR). The data management system employed in the Arctic will be reconfigured and deployed at the BCR. In addition, an eXtended DIS (XDIS) Web interface will be available. This will allow controlled sample distribution (core curation, sub-sampling) as well as sharing of data (registration, upload and download) with other laboratories which will be undertaking additional sampling and analyses. The OffshoreDIS data management system will be of long-term benefit to both IODP and ICDP, being deployed in forthcoming MSP offshore projects, ICDP lake projects and joint IODP-ICDP projects such as the New Jersey Coastal Plain Drilling Project.

  4. Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Barshilia, Harish C.; Ghosh, Moumita; Shashidhara; Ramakrishna, Raja; Rajam, K. S.

    2010-08-01

    This work reports the performance of high speed steel drill bits coated with TiAlSiN nanocomposite coating at different Si contents (5.5-8.1 at.%) prepared using a four-cathode reactive pulsed direct current unbalanced magnetron sputtering system. The surface morphology of the as-deposited coatings was characterized using field emission scanning electron microscopy. The crystallographic structure, chemical composition and bonding structure were evaluated using X-ray diffraction, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, respectively. The corrosion behavior, mechanical properties and thermal stability of TiAlSiN nanocomposite coatings were also studied using potentiodynamic polarization, nanoindentation and Raman spectroscopy, respectively. The TiAlSiN coating thickness was approximately 2.5-2.9 μm. These coatings exhibited a maximum hardness of 38 GPa at a silicon content of approximately 6.9 at.% and were stable in air up to 850 °C. For the performance evaluation, the TiAlSiN coated drills were tested under accelerated machining conditions by drilling a 12 mm thick 304 stainless steel plate. Under dry conditions the uncoated drill bits failed after drilling 50 holes, whereas, TiAlSiN coated drill bits (Si = 5.5 at.%) drilled 714 holes before failure. Results indicated that for TiAlSiN coated drill bits the tool life increased by a factor of more than 14.

  5. Mechatronical system for testing small diameter drills

    NASA Astrophysics Data System (ADS)

    Vekteris, Vladas; Jurevichius, Mindaugas; Daktariunas, Algis

    2008-08-01

    This paper describes a technique and mechatronical system for testing drills of a small diameter at different stages of production. The goal is to realize a system for drill testing which automatically increases the load applied to a drill under testing conditions and measure the drill's breaking torsion moment and deflection angle before a break occurs. The system's apparatus part and algorithms for the control of actuators and data acquisition from sensors are explained in the article. Also, a testing technique was applied in theoretical investigations to define the stress concentrations in dangerous places of the drill. The proposed technique and system have been verified by testing the drills of a small diameter at different stages of production—after thermal, mechanical treatment, and for quality control of the finished product.

  6. Loaded Transducer Fpr Downhole Drilling Component

    DOEpatents

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  7. Loaded transducer for downhole drilling components

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  8. VSAT: opening new horizons to oil and gas explorations

    NASA Astrophysics Data System (ADS)

    Al-Dhamen, Muhammad I.

    2002-08-01

    Whether exploring in the Empty Quarter, drilling offshore in the Gulf of Mexico, or monitoring gas pipelines or oil wells in the deserts, communications is a key element to the success of oil and gas operations. Secure, efficient communications is required between remote, isolated locations and head offices to report on work status, dispatch supplies and repairs, report on-site emergencies, transfer geophysical surveys and real-time drilling data. Drilling and exploration firms have traditionally used land-based terrestrial networks that rely on radio transmissions for voice and data communications to offshore platforms and remote deep desert drilling rigs. But these systems are inefficient and have proven inflexible with today's drilling and exploration communications demands, which include high-speed data access, telephone and video conferencing. In response, numerous oil and gas exploration entities working in deep waters and remote deep deserts have all tapped into what is an ideal solution for these needs: Very Small Aperture Terminal Systems (VSAT) for broadband access services. This led to the use of Satellite Communication Systems for a wide range of applications that were difficult to achieve in the past, such as real-time applications transmission of drilling data and seismic information. This paper provides a thorough analysis of opportunities for satellite technology solutions in support of oil and gas operations. Technologies, architecture, service, networking and application developments are discussed based upon real field experience. More specifically, the report addresses: VSAT Opportunities for the Oil and Gas Operations, Corporate Satellite Business Model Findings, Satellite Market Forecasts

  9. Parameters affecting mechanical and thermal responses in bone drilling: A review.

    PubMed

    Lee, JuEun; Chavez, Craig L; Park, Joorok

    2018-04-11

    Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  11. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075.

    PubMed

    Ghasemi, Amir Hossein; Khorasani, Amir Mahyar; Gibson, Ian

    2018-01-16

    Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5-8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  12. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075

    PubMed Central

    Ghasemi, Amir Hossein; Khorasani, Amir Mahyar

    2018-01-01

    Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5–8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy. PMID:29337858

  13. Are insertion torque and early osseointegration proportional? A histologic evaluation.

    PubMed

    Campos, Felipe E B; Jimbo, Ryo; Bonfante, Estevam A; Barbosa, Darceny Z; Oliveira, Maiolino T F; Janal, Malvin N; Coelho, Paulo G

    2015-11-01

    The objective of this histologic study was to determine the effect of three drilling protocols (oversized, intermediate, and undersized) on biologic responses to a single implant type at early healing periods (2 weeks in vivo) in a beagle dog model. Ten beagle dogs were acquired and subjected to surgeries in the tibia 2 weeks before euthanasia. During surgery, each dog received three Unitite implants, 4 mm in diameter by 10 mm in length, in bone sites drilled to 3.5, 3.75, and 4.0 mm in final diameter. The insertion torque was recorded during surgery, and bone-to-implant contact (BIC), and bone area fraction occupied (BAFO) measured from the histology. Each outcome measure was compared between treatment conditions with the Wilcoxon signed-rank test. Bonferroni-corrected statistical significance was set to 95%. Insertion torque increased as an inverse function of drilling diameter, as indicated by significant differences in torque levels between each pair of conditions (P = 0.005). BIC and BAFO levels were highest and statistically similar in the recommended and undersized conditions and significantly reduced in the oversized condition (P < 0.01). Reduced drilling dimensions resulted in increased insertion torque (primary stability). While BIC and BAFO were maximized when drilling the recommended diameter hole, only the oversized hole resulted in evidence of statistically reduced integration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. An Automated, Low Mass, Low Power Drill for Acquiring Subsurface Samples of Ground Ice for Astrobiology Studies on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.

    2003-01-01

    As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.

  15. Advanced Geothermal Turbodrill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of largemore » diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.« less

  16. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.

  17. Transducer for downhole drilling components

    DOEpatents

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  18. Wood decay fungi of subalpine conifer forests

    Treesearch

    Jessie A. Glaeser; Kevin T. Smith

    2016-01-01

    One of the fundamental skills needed for hazard tree assessment is the evaluation of decay. This may be a difficult task as we usually only use external symptoms (wounds, basal swellings, decayed branch stubs), signs (mushrooms, fungal crusts or brackets) or mechanical/indirect sampling methods (drilling, electrical or sonic resistance) to estimate the amount of sound...

  19. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    PubMed

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  20. Influence of knee flexion angle and transverse drill angle on creation of femoral tunnels in double-bundle anterior cruciate ligament reconstruction using the transportal technique: Three-dimensional computed tomography simulation analysis.

    PubMed

    Choi, Chong Hyuk; Kim, Sung-Jae; Chun, Yong-Min; Kim, Sung-Hwan; Lee, Su-Keon; Eom, Nam-Kyu; Jung, Min

    2018-01-01

    The purpose of this study was to find appropriate flexion angle and transverse drill angle for optimal femoral tunnels of anteromedial (AM) bundle and posterolateral (PL) bundle in double-bundle ACL reconstruction using transportal technique. Thirty three-dimensional knee models were reconstructed. Knee flexion angles were altered from 100° to 130° at intervals of 10°. Maximum transverse drill angle (MTA), MTA minus 10° and 20° were set up. Twelve different tunnels were determined by four flexion angles and three transverse drill angles for each bundle. Tunnel length, wall breakage, inter-tunnel communication and graft-bending angle were assessed. Mean tunnel length of AM bundle was >30mm at 120° and 130° of flexion in all transverse drill angles. Mean tunnel length of PL bundle was >30mm during every condition. There were ≥1 cases of wall breakage except at 120° and 130° of flexion with MTA for AM bundle. There was no case of wall breakage for PL bundle. Considering inter-tunnel gap of >2mm without communication and obtuse graft-bending angle, 120° of flexion and MTA could be recommended as optimal condition for femoral tunnels of AM and PL bundles. Flexion angle and transverse drill angle had combined effect on femoral tunnel in double-bundle ACL reconstruction using transportal technique. Achieving flexion angle of 120° and transverse drill angle close to the medial femoral condyle could be recommended as optimal condition for femoral tunnels of AM and PL bundles to avoid insufficient tunnel length, wall breakage, inter-tunnel communication and acute graft-bending angle. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography.

    PubMed

    Alam, K; Silberschmidt, Vadim V

    2014-01-01

    Bone drilling is widely used in orthopaedics, dental and neurosurgeries for repair and fixation purposes. One of the major concerns in drilling of bone is thermal necrosis that may seriously affect healing at interfaces with fixtures and implants. Ultrasonically-assisted drilling (UAD) is recently introduced as alternative to conventional drilling (CD) to minimize invasiveness of the procedure. This paper studies temperature rise in bovine cortical bone drilled with CD and UAD techniques and their comparison using infrared thermography. A parametric investigation was carried out to evaluate effects of drilling conditions (drilling speed and feed rate) and parameters of ultrasonic vibration (frequency and amplitude) on the temperature elevation in bone. Higher levels of the drilling speed and feed rate were found responsible for generating temperatures above a thermal threshold level in both types of drilling. UAD with frequency below 20 kHz resulted in lower temperature compared to CD with the same drilling parameters. The temperatures generated in cases with vibration frequency exceeding 20 kHz were significantly higher than those in CD for the range of drilling speeds and feed rates. The amplitude of vibration was found to have no significant effect on bone temperature. UAD may be investigated further to explore its benefits over the existing CD techniques.

  2. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    PubMed

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  3. In-process and post-process measurements of drill wear for control of the drilling process

    NASA Astrophysics Data System (ADS)

    Liu, Tien-I.; Liu, George; Gao, Zhiyu

    2011-12-01

    Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.

  4. Effective Dust Control Systems on Concrete Dowel Drilling Machinery

    PubMed Central

    Echt, Alan S.; Sanderson, Wayne T.; Mead, Kenneth R.; Feng, H. Amy; Farwick, Daniel R.; Farwick, Dawn Ramsey

    2016-01-01

    Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels. PMID:27074062

  5. Application of Rosenbrock search technique to reduce the drilling cost of a well in Bai-Hassan oil field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aswad, Z.A.R.; Al-Hadad, S.M.S.

    1983-03-01

    The powerful Rosenbrock search technique, which optimizes both the search directions using the Gram-Schmidt procedure and the step size using the Fibonacci line search method, has been used to optimize the drilling program of an oil well drilled in Bai-Hassan oil field in Kirkuk, Iran, using the twodimensional drilling model of Galle and Woods. This model shows the effect of the two major controllable variables, weight on bit and rotary speed, on the drilling rate, while considering other controllable variables such as the mud properties, hydrostatic pressure, hydraulic design, and bit selection. The effect of tooth dullness on the drillingmore » rate is also considered. Increasing the weight on the drill bit with a small increase or decrease in ratary speed resulted in a significant decrease in the drilling cost for most bit runs. It was found that a 48% reduction in this cost and a 97-hour savings in the total drilling time was possible under certain conditions.« less

  6. A Compendium of Arctic Environmental Information

    DTIC Science & Technology

    1986-03-01

    warn- ing of possible future ice invasions during petroleum drill - ing operations in open-water conditions. Development of sea ice Several basic...tubes, triple beam balance snow temperature thermistor and bridge ice ttiicl^ness hand auger, electric drill with auger, tape with toggle ice...fluids, 8 quarts daily. Acidify urine by drink- ing cranberry juice, taking Vitamin C, etc. Machines All machinery in the Arctic (engines, drills

  7. Libya: a dynamic Arab oil power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, M.

    1965-06-01

    Libya has become the most dynamic oil-producing nation in the world. Less than 4 yr ago, Libya exported only peanuts, olive oil, and hides. Today, in crude-oil production Libya ranks eighth in the world, with daily production of 1.2 million bbl. Twenty-five oil companies hold concessions and have spent $1.3 billion developing reserves. Petroleum has brought new wealth to the country- an estimated $272 million in 1965. Some 2.75 million ft of hole was drilled in 1964, resulting in 97 oil fields and 4 major basins. Lost circulation has been a problem Transportation and communication are difficult in the vastmore » Libyan desert. Water-contaminated crude and high salt content have plagued production. These problems are being solved. With 45 drillings rigs active, crude production is expected to reach 2 million bpd by 1966. Most of the rigs used are trailer-mounted, unitized 8,000-12,000 ft capacity, that have been specially adapted to work in the Sahara. The drilling-completion programs are briefly described.« less

  8. Development of a novel ice-resistant semisubmersible drilling unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corona, E.N.; Schloerb, D.W.; Yashima, N.

    1983-05-01

    A multiyear program was initiated by ARCO Alaska, Inc. to assess the operational feasibility of drilling operations year-round in the ice-covered waters of the Bering, Chukchi, and Beaufort Seas. ARCO Alaska, Inc. is considering several alternative concepts for year-round drilling in the Bering Sea. One such concept, the Ice-Resistant Semisubmersible Drilling Unit, is a design concept of Mitsui Engineering and Shipbuilding Company. The design is intended to operate in broken, continuous, and ridged sea ice, and withstand severe open water sea conditions. The requirement to operate in two dissimilar environments results in a unit that is somewhat unusual when comparedmore » to typical semisubmersible drilling units.« less

  9. Rapid ice drilling with continual air transport of cuttings and cores: General concept

    NASA Astrophysics Data System (ADS)

    Wang, Rusheng; An, Liu; Cao, Pinlu; Chen, Baoyi; Sysoev, Mikhail; Fan, Dayou; Talalay, Pavel G.

    2017-12-01

    This article describes the investigation of the feasibility of rapid drilling in ice sheets and glaciers to depths of up to 600 m, with cuttings and cores continually transported by air reverse circulation. The method employs dual wall drill rods. The inner tubes provide a continuous pathway for the chips and cores from the drill bit face to the surface. To modify air reverse circulation drilling technology according to the conditions of a specific glacier, original cutter drill bits and air processing devices (air-cooled aftercoolers, air receivers, coalescing filters, desiccant dryers) should be used. The airflow velocity for conveying a 60-mm diameter and 200-mm long ice core should not be lower than 22.5 m/s, and the minimal airflow rate for continual chip and cores transport is 6.8 m3/min at 2.3-2.6 MPa. Drilling of a 600-m deep hole can be accomplished within 1.5 days in the case of 24 h drilling operations. However, to avoid sticking while drilling through ice, the drilling depth should to be limited to 540 m at a temperature of -20 °C and to 418 m at a temperature of -10 °C.

  10. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  11. Application of Nuclear Well Logging Techniques to Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Albats, P.; Groves, J.; Schweitzer, J.; Tombrello, T.

    1992-01-01

    The use of neutron and gamma ray measurements for the analysis of material composition has become well established in the last 40 years. Schlumberger has pioneered the use of this technology for logging wells drilled to produce oil and gas, and for this purpose has developed neutron generators that allow measurements to be made in deep (5000 m) boreholes under adverse conditions. We also make ruggedized neutron and gamma ray detector packages that can be used to make reliable measurements on the drill collar of a rotating drill string while the well is being drilled, where the conditions are severe. Modern nuclear methods used in logging measure rock formation parameters like bulk density and porosity, fluid composition, and element abundances by weight including hydrogen concentration. The measurements are made with high precision and accuracy. These devices (well logging sondes) share many of the design criteria required for remote sensing in space; they must be small, light, rugged, and able to perform reliably under adverse conditions. We see a role for the adaptation of this technology to lunar or planetary resource assessment missions.

  12. Performance of pile supported sign structures : [brief].

    DOT National Transportation Integrated Search

    2015-05-01

    Sign structures in Wisconsin are typically supported by drilled shaft foundations or spread : footing foundations. However, when the soil conditions are not suitable to be supported on : drilled shafts or spread footings, a group of piles could suppo...

  13. A predictive bone drilling force model for haptic rendering with experimental validation using fresh cadaveric bone.

    PubMed

    Lin, Yanping; Chen, Huajiang; Yu, Dedong; Zhang, Ying; Yuan, Wen

    2017-01-01

    Bone drilling simulators with virtual and haptic feedback provide a safe, cost-effective and repeatable alternative to traditional surgical training methods. To develop such a simulator, accurate haptic rendering based on a force model is required to feedback bone drilling forces based on user input. Current predictive bone drilling force models based on bovine bones with various drilling conditions and parameters are not representative of the bone drilling process in bone surgery. The objective of this study was to provide a bone drilling force model for haptic rendering based on calibration and validation experiments in fresh cadaveric bones with different bone densities. Using a commonly used drill bit geometry (2 mm diameter), feed rates (20-60 mm/min) and spindle speeds (4000-6000 rpm) in orthognathic surgeries, the bone drilling forces of specimens from two groups were measured and the calibration coefficients of the specific normal and frictional pressures were determined. The comparison of the predicted forces and the measured forces from validation experiments with a large range of feed rates and spindle speeds demonstrates that the proposed bone drilling forces can predict the trends and average forces well. The presented bone drilling force model can be used for haptic rendering in surgical simulators.

  14. Potential external contamination of pneumatic seed drills during sowing of dressed maize seeds.

    PubMed

    Manzone, Marco; Balsari, Paolo; Marucco, Paolo; Tamagnone, Mario

    2016-07-01

    The use of pneumatic drills in maize cultivation causes dispersion in the atmosphere of some harmful substances normally used for dressing maize seeds. Some of the dust particles may be deposited on the machine's body, becoming dangerous for the environment and for operators. The aim of the present study was to analyse the amount of dust deposited on the frame of drills during maize sowing operations. Tests were performed with different drills and in different operating conditions. Data analysis showed that a significant amount (up to 30%) of the tracer can be deposited on the drill body. When wind was not present, higher quantities of tracer were collected and the forward speed did not influence significantly the tracer deposit on the seed drills. The use of different devices designed to prevent dust dispersion was able to limit up to 95% but was not able to eliminate the external contamination of the drill. The particles present on drills could become a problem for the operator during the filling of the drill. Additionally, the environment can be contaminated if pesticide remains on the drill, generating point-source pollution when the drill is parked outside. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Preliminary Research on Possibilities of Drilling Process Robotization

    NASA Astrophysics Data System (ADS)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  16. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling

    PubMed Central

    Zhang, Chunxi; Lin, Tie

    2016-01-01

    In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method. PMID:27483270

  17. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling.

    PubMed

    Zhang, Chunxi; Lin, Tie

    2016-07-28

    In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method.

  18. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    NASA Astrophysics Data System (ADS)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  19. Comparison of conventional and self-consolidating concrete for drilled shaft construction.

    DOT National Transportation Integrated Search

    2015-04-01

    Many entities currently use self-consolidating concrete (SCC), especially for drilled shaft construction. This project investigated the use of SCC : and various test methods to assess the suitability of SCC in underwater placement conditions. Eight m...

  20. [Pollution hazard for water bodies at oil production].

    PubMed

    Zholdakova, Z I; Beliaeva, N I

    2015-01-01

    In the paper there have been summarizes the concepts of the danger of the pollution ofwater bodies in oil production (the most dangerous are reagents used in the drilling, drilling waste, oil and petrochemicals, oil biodestructors. There was shown the danger of the spread of oil pollution. New indices, presenting a hazard during drilling and oil production have been substantiated The tasks aimed to the improvement of the standards and methods of the control of the water pollution by oil, as well as of the documents regulating the conditions of environmental protection during the drilling have been conceived.

  1. Experimental study on deep hole drilling of 17-4PH material

    NASA Astrophysics Data System (ADS)

    Uzhanfeng, LI; Uquantai, LI

    2018-02-01

    This paper uses 17-4PH material as the research object, according to the material characteristics of 17-4PH, designed and carried out deep hole drilling test. The purpose of the experiment is to study and discuss the three major problems of tool wear, chip shape and axial deviation of the hole in the process of deep hole drilling of 17-4PH materials. Through the deep hole drilling test of 17-4PH material, the variation of the chip shape and the deflection of the hole axis was obtained under different wear conditions.

  2. Effect of PDC bit design and confining pressure on bit-balling tendencies while drilling shale using water base mud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, P.R.; Azar, J.J.

    1996-09-01

    A good majority of all oilwell drilling occurs in shale and other clay-bearing rocks. In the light of relatively fewer studies conducted, the problem of bit-balling in PDC bits while drilling shale has been addressed with the primary intention of attempting to quantify the degree of balling, as well as to investigate the influence of bit design and confining pressures. A series of full-scale laboratory drilling tests under simulated down hole conditions were conducted utilizing seven different PDC bits in Catoosa shale. Test results have indicated that the non-dimensional parameter R{sub d} [(bit torque).(weight-on-bit)/(bit diameter)] is a good indicator ofmore » the degree of bit-balling and that it correlated well with Specific-Energy. Furthermore, test results have shown bit-profile and bit-hydraulic design to be key parameters of bit design that dictate the tendency of balling in shales under a given set of operating conditions. A bladed bit was noticed to ball less compared to a ribbed or open-faced bit. Likewise, related to bit profile, test results have indicated that the parabolic profile has a lesser tendency to ball compared to round and flat profiles. The tendency of PDC bits to ball was noticed to increase with increasing confining pressures for the set of drilling conditions used.« less

  3. Effective dust control systems on concrete dowel drilling machinery.

    PubMed

    Echt, Alan S; Sanderson, Wayne T; Mead, Kenneth R; Feng, H Amy; Farwick, Daniel R; Farwick, Dawn Ramsey

    2016-09-01

    Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels.

  4. Using polycrystalline diamond-veined drills on silicon carbide particulate-reinforced aluminium castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, C.

    1993-12-31

    Using several combinations of speeds and feeds, a series of 6.37-mm diameter holes were drilled through a 19-mm thick plate of DURALCAN F3S.20S-T6 (A359/SiC/20p-T6). Every 50th hole was drilled in a gage block to measure the following: torque, thrust, drill flank wear, hole diameter, hole roundness, and hole surface finish. Maximum tool life was attained using feed rates of 0.25 mm/revolution. Speed had little effect on tool forces or life. Under optimum conditions, PCD-veined drills can produce over 6000 diameters of through holes in this type of composite with tolerances of 0.01 mm and flank wear of only 0.1 mm.

  5. Drill System Development for the Lunar Subsurface Exploration

    NASA Astrophysics Data System (ADS)

    Zacny, Kris; Davis, Kiel; Paulsen, Gale; Roberts, Dustyn; Wilson, Jack; Hernandez, Wilson

    Reaching the cold traps at the lunar poles and directly sensing the subsurface regolith is a primary goal of lunar exploration, especially as a means of prospecting for future In Situ Resource Utilization efforts. As part of the development of a lunar drill capable of reaching a depth of two meters or more, Honeybee Robotics has built a laboratory drill system with a total linear stroke of 1 meter, capability to produce as much as 45 N-m of torque at a rotational speed of 200 rpm, and a capability of delivering maximum downforce of 1000 N. Since this is a test-bed, the motors were purposely chosen to be relative large to provide ample power to the drill system (the Apollo drill was a 500 Watt drill, i.e. not small in current standards). In addition, the drill is capable of using three different drilling modes: rotary, rotary percussive and percussive. The frequency of percussive impact can be varied if needed while rotational speed can be held constant. An integral part of this test bed is a vacuum chamber that is currently being constructed. The drill test-bed is used for analyzing various drilling modes and testing different drill bit and auger systems under low pressure conditions and in lunar regolith simulant. The results of the tests are used to develop final lunar drill design as well as efficient drilling protocols. The drill was also designed to accommodate a downhole neutron spectrometer for measuring the amount of hydrated material in the area surrounding the borehole, as well as downhole temperature sensors, accelerometers, and electrical properties tester. The presentation will include history of lunar drilling, challenges of drilling on the Moon, a description of the drill and chamber as well as preliminary drilling test results conducted in the ice-bound lunar regolith simulant with a variety of drill bits and augers systems.

  6. The effect of an oil drilling operation on the trace metal concentrations in offshore bottom sediments of the Campos Basin oil field, SE Brazil.

    PubMed

    Rezende, C E; Lacerda, L D; Ovalle, A R C; Souza, C M M; Gobo, A A R; Santos, D O

    2002-07-01

    The concentrations of Al, Fe, Mn, Zn, Cu, Pb, Ni, Cr, Ba, V, Sn and As in offshore bottom sediments from the Bacia de Campos oil field, SE Brazil, were measured at the beginning and at 7 months after completion of the drilling operation. Concentrations of Al, Fe, Ba, Cr, Ni and Zn were significantly higher closer to the drilling site compared to stations far from the site. Average concentrations of Al, Cu, and in particular of Ni, were significantly higher at the end of the drilling operation than at the beginning. Comparison between drilling area sediments with control sediments of the continental platform, however, showed no significant difference in trace metal concentrations. Under the operation conditions of this drilling event, the results show that while changes in some trace metal concentrations do occur during drilling operations, they are not significantly large to be distinguished from natural variability of the local background concentrations.

  7. Wellbore stability in oil and gas drilling with chemical-mechanical coupling.

    PubMed

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.

  8. Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling

    PubMed Central

    Deng, Jingen

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  9. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  10. Uncertainty evaluation with increasing borehole drilling in subsurface hydrogeological explorations

    NASA Astrophysics Data System (ADS)

    Amano, K.; Ohyama, T.; Kumamoto, S.; Shimo, M.

    2016-12-01

    Quantities of drilling boreholes have been a difficult subject for field investigators in such as subsurface hydrogeological explorations. This problem becomes a bigger in heterogeneous formations or rock masses so we need to develop quantitative criteria for evaluating uncertainties during borehole investigations.To test an uncertainty reduction with increasing boreholes, we prepared a simple hydrogeological model and virtual hydraulic tests were carried out by using this model. The model consists of 125,000 elements of which hydraulic conductivities are generated randomly from the log-normal distribution in a 2-kilometer cube. Uncertainties were calculated by the difference of head distributions between the original model and the inchoate models made by virtual hydraulic test one by one.The results show the level and the variance of uncertainty are strongly correlated to the average and variance of the hydraulic conductivities. This kind of trends also could be seen in the actual field data obtained from the deep borehole investigations in Horonobe Town, northern Hokkaido, Japan. Here, a new approach using fractional bias (FB) and normalized mean square error (NMSE) for evaluating uncertainty characteristics will be introduced and the possibility of use as an indicator for decision making (i.e. to stop borehole drilling or to continue borehole drilling) in field investigations will be discussed.

  11. Application of Taguchi-grey method to optimize drilling of EMS 45 steel using minimum quantity lubrication (MQL) with multiple performance characteristics

    NASA Astrophysics Data System (ADS)

    Soepangkat, Bobby O. P.; Suhardjono, Pramujati, Bambang

    2017-06-01

    Machining under minimum quantity lubrication (MQL) has drawn the attention of researchers as an alternative to the traditionally used wet and dry machining conditions with the purpose to minimize the cooling and lubricating cost, as well as to reduce cutting zone temperature, tool wear, and hole surface roughness. Drilling is one of the important operations to assemble machine components. The objective of this study was to optimize drilling parameters such as cutting feed and cutting speed, drill type and drill point angle on the thrust force, torque, hole surface roughness and tool flank wear in drilling EMS 45 tool steel using MQL. In this study, experiments were carried out as per Taguchi design of experiments while an L18 orthogonal array was used to study the influence of various combinations of drilling parameters and tool geometries on the thrust force, torque, hole surface roughness and tool flank wear. The optimum drilling parameters was determined by using grey relational grade obtained from grey relational analysis for multiple-performance characteristics. The drilling experiments were carried out by using twist drill and CNC machining center. This work is useful for optimum values selection of various drilling parameters and tool geometries that would not only minimize the thrust force and torque, but also reduce hole surface roughness and tool flank wear.

  12. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)

    2014-01-01

    A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.

  13. Geothermal observation wells, Mt. Hood, Oregon. Final report, October 4, 1977-July 9, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, W.F.; Meyer, H.J.

    1979-11-01

    Exploration drilling operations were conducted which included the deepening of an existing hole, designated as Old Maid Flat No. 1, from 1850 ft (564 m) to 4002 (1220 m) on the western approaches to Mt. Hood and the drilling of three new holes ranging from 940 ft (287 m) to 1340 ft (409 m). The Clear Fork hole, located in Old Maid Flat, was drilled to 1320 ft (402 m). The Zigzag hole was drilled to 940 ft (287 m) at the southwestern base of Mt. Hood in the Zigzag River valley. The remaining hole was drilled on the Timberlinemore » Lodge grounds which is on the south flank of Mt. Hood at an elevation of about 6000 ft (1829 m) above sea level. The deepening project designated as Old Maid Flat No. 1 encountered a maximum bottom hole temperature of about 180/sup 0/F (82/sup 0/C) and is to this date the deepest exploratory hole in the Mt. Hood vicinity. No significant drilling problems were encountered. The Clear Fork and Zigzag River holes were completed without significant problems. The Timberline Lodge hole encountered severe drilling conditions, including unconsolidated formations. Two strings of tools were left in the hole from structural collapse of the hole. The hole was scheduled as a 2000 ft (610 m) test. Drilling did not proceed beyond 1350 ft (412 m) and due to junk it was unobstructed to a depth of 838 ft (255 m). Observation pipe was installed to 735 ft (224 m) due to further disintegration of the hole. The work was prematurely terminated due to weather conditions.« less

  14. Does Fostering Reasoning Strategies for Relatively Difficult Basic Combinations Promote Transfer by K-3 Students?

    ERIC Educational Resources Information Center

    Baroody, Arthur J.; Purpura, David J.; Eiland, Michael D.; Reid, Erin E.; Paliwal, Veena

    2016-01-01

    How best to promote fluency with basic sums and differences is still not entirely clear. Some advocate a direct approach--using drill to foster memorization of basic facts by rote. Others recommend an indirect approach that first involves learning reasoning strategies. The purpose of the present study was to evaluate the efficacy of 2…

  15. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.

  16. Improvement for determining the axial capacity of drilled shafts in shale in Illinois.

    DOT National Transportation Integrated Search

    2013-05-01

    In this project, Illinois-specific design procedures were developed for drilled shafts founded in weak shale. In addition, : recommendations for field and laboratory testing to characterize the in situ condition of weak shales in Illinois were : deve...

  17. Evaluation of drilled-ball bearings at DN values to three million. 1: Variable oil flow tests

    NASA Technical Reports Server (NTRS)

    Holmes, P. W.

    1932-01-01

    Two 125-mm-bore solid ball bearings and two similar drilled ball bearings were operated at speeds up to 24,000 rpm (3.0 million DN) with a 13,000 newton (3000 lb) thrust load. The oil flow rate was varied from 0.045 to 0.121 kilograms per second (6 to 16 lb/min). The solid ball bearings operated satisfactorily over the entire range of conditions. The drilled ball bearing experienced cage rub with marginal lubrication at 0.045 kilograms per second (6 lb/min). The drilled ball bearing generally ran cooler than the solid ball bearings.

  18. Estimated water requirements for gold heap-leach operations

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water necessary for conventional gold heap-leach operations. Water is required for drilling and dust suppression during mining, for agglomeration and as leachate during ore processing, to support the workforce (requires water in potable form and for sanitation), for minesite reclamation, and to compensate for water lost to evaporation and leakage. Maintaining an adequate water balance is especially critical in areas where surface and groundwater are difficult to acquire because of unfavorable climatic conditions [arid conditions and (or) a high evaporation rate]; where there is competition with other uses, such as for agriculture, industry, and use by municipalities; and where compliance with regulatory requirements may restrict water usage. Estimating the water consumption of heap-leach operations requires an understanding of the heap-leach process itself. The task is fairly complex because, although they all share some common features, each gold heap-leach operation is unique. Also, estimating the water consumption requires a synthesis of several fields of science, including chemistry, ecology, geology, hydrology, and meteorology, as well as consideration of economic factors.

  19. Modified Standard Penetration Test–based Drilled Shaft Design Method for Weak Rocks (Phase 2 Study)

    DOT National Transportation Integrated Search

    2017-12-15

    In this project, Illinois-specific design procedures were developed for drilled shafts founded in weak shale or rock. In particular, a modified standard penetration test was developed and verified to characterize the in situ condition of weak shales ...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less

  1. Development of a Tool Condition Monitoring System for Impregnated Diamond Bits in Rock Drilling Applications

    NASA Astrophysics Data System (ADS)

    Perez, Santiago; Karakus, Murat; Pellet, Frederic

    2017-05-01

    The great success and widespread use of impregnated diamond (ID) bits are due to their self-sharpening mechanism, which consists of a constant renewal of diamonds acting at the cutting face as the bit wears out. It is therefore important to keep this mechanism acting throughout the lifespan of the bit. Nonetheless, such a mechanism can be altered by the blunting of the bit that ultimately leads to a less than optimal drilling performance. For this reason, this paper aims at investigating the applicability of artificial intelligence-based techniques in order to monitor tool condition of ID bits, i.e. sharp or blunt, under laboratory conditions. Accordingly, topologically invariant tests are carried out with sharp and blunt bits conditions while recording acoustic emissions (AE) and measuring-while-drilling variables. The combined output of acoustic emission root-mean-square value (AErms), depth of cut ( d), torque (tob) and weight-on-bit (wob) is then utilized to create two approaches in order to predict the wear state condition of the bits. One approach is based on the combination of the aforementioned variables and another on the specific energy of drilling. The two different approaches are assessed for classification performance with various pattern recognition algorithms, such as simple trees, support vector machines, k-nearest neighbour, boosted trees and artificial neural networks. In general, Acceptable pattern recognition rates were obtained, although the subset composed by AErms and tob excels due to the high classification performances rates and fewer input variables.

  2. Study on Earthquake Emergency Evacuation Drill Trainer Development

    NASA Astrophysics Data System (ADS)

    ChangJiang, L.

    2016-12-01

    With the improvement of China's urbanization, to ensure people survive the earthquake needs scientific routine emergency evacuation drills. Drawing on cellular automaton, shortest path algorithm and collision avoidance, we designed a model of earthquake emergency evacuation drill for school scenes. Based on this model, we made simulation software for earthquake emergency evacuation drill. The software is able to perform the simulation of earthquake emergency evacuation drill by building spatial structural model and selecting the information of people's location grounds on actual conditions of constructions. Based on the data of simulation, we can operate drilling in the same building. RFID technology could be used here for drill data collection which read personal information and send it to the evacuation simulation software via WIFI. Then the simulation software would contrast simulative data with the information of actual evacuation process, such as evacuation time, evacuation path, congestion nodes and so on. In the end, it would provide a contrastive analysis report to report assessment result and optimum proposal. We hope the earthquake emergency evacuation drill software and trainer can provide overall process disposal concept for earthquake emergency evacuation drill in assembly occupancies. The trainer can make the earthquake emergency evacuation more orderly, efficient, reasonable and scientific to fulfill the increase in coping capacity of urban hazard.

  3. Minimization of the hole overcut and cylindricity errors during rotary ultrasonic drilling of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Nasr, M.; Anwar, S.; El-Tamimi, A.; Pervaiz, S.

    2018-04-01

    Titanium and its alloys e.g. Ti6Al4V have widespread applications in aerospace, automotive and medical industry. At the same time titanium and its alloys are regarded as difficult to machine materials due to their high strength and low thermal conductivity. Significant efforts have been dispensed to improve the accuracy of the machining processes for Ti6Al4V. The current study present the use of the rotary ultrasonic drilling (RUD) process for machining high quality holes in Ti6Al4V. The study takes into account the effects of the main RUD input parameters including spindle speed, ultrasonic power, feed rate and tool diameter on the key output responses related to the accuracy of the drilled holes including cylindricity and overcut errors. Analysis of variance (ANOVA) was employed to study the influence of the input parameters on cylindricity and overcut error. Later, regression models were developed to find the optimal set of input parameters to minimize the cylindricity and overcut errors.

  4. Learning by strategies and learning by drill--evidence from an fMRI study.

    PubMed

    Delazer, M; Ischebeck, A; Domahs, F; Zamarian, L; Koppelstaetter, F; Siedentopf, C M; Kaufmann, L; Benke, T; Felber, S

    2005-04-15

    The present fMRI study investigates, first, whether learning new arithmetic operations is reflected by changing cerebral activation patterns, and second, whether different learning methods lead to differential modifications of brain activation. In a controlled design, subjects were trained over a week on two new complex arithmetic operations, one operation trained by the application of back-up strategies, i.e., a sequence of arithmetic operations, the other by drill, i.e., by learning the association between the operands and the result. In the following fMRI session, new untrained items, items trained by strategy and items trained by drill, were assessed using an event-related design. Untrained items as compared to trained showed large bilateral parietal activations, with the focus of activation along the right intraparietal sulcus. Further foci of activation were found in both inferior frontal gyri. The reverse contrast, trained vs. untrained, showed a more focused activation pattern with activation in both angular gyri. As suggested by the specific activation patterns, newly acquired expertise was implemented in previously existing networks of arithmetic processing and memory. Comparisons between drill and strategy conditions suggest that successful retrieval was associated with different brain activation patterns reflecting the underlying learning methods. While the drill condition more strongly activated medial parietal regions extending to the left angular gyrus, the strategy condition was associated to the activation of the precuneus which may be accounted for by visual imagery in memory retrieval.

  5. Drilling, Coring and Sampling Using Piezoelectric Actuated Mechanisms: From the USDC to a Piezo-Rotary-Hammer Drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi

    2012-01-01

    NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms will be reviewed and discussed including the configurations, capabilities, and challenges.

  6. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    USGS Publications Warehouse

    Clow, Gary D.

    2015-01-01

    A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be ‘corrected’ for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid–liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal drilling effects in rock or ice for a wide variety of drilling technologies. Numerical values for the required radial GFs GR are available through the Advanced Cooperative Arctic Data and Information Service at doi:10.5065/D64F1NS6.

  7. Visual probes and methods for placing visual probes into subsurface areas

    DOEpatents

    Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.

    2004-11-23

    Visual probes and methods for placing visual probes into subsurface areas in either contaminated or non-contaminated sites are described. In one implementation, the method includes driving at least a portion of a visual probe into the ground using direct push, sonic drilling, or a combination of direct push and sonic drilling. Such is accomplished without providing an open pathway for contaminants or fugitive gases to reach the surface. According to one implementation, the invention includes an entry segment configured for insertion into the ground or through difficult materials (e.g., concrete, steel, asphalt, metals, or items associated with waste), at least one extension segment configured to selectively couple with the entry segment, at least one push rod, and a pressure cap. Additional implementations are contemplated.

  8. 43 CFR 3162.5-1 - Environmental obligations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS OPERATIONS Requirements... and conditions, and the approved drilling plan or subsequent operations plan. Before approving any Application for Permit to Drill submitted pursuant to § 3162.3-1 of this title, or other plan requiring...

  9. 43 CFR 3162.5-1 - Environmental obligations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS OPERATIONS Requirements... and conditions, and the approved drilling plan or subsequent operations plan. Before approving any Application for Permit to Drill submitted pursuant to § 3162.3-1 of this title, or other plan requiring...

  10. 43 CFR 3162.5-1 - Environmental obligations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS OPERATIONS Requirements... and conditions, and the approved drilling plan or subsequent operations plan. Before approving any Application for Permit to Drill submitted pursuant to § 3162.3-1 of this title, or other plan requiring...

  11. 43 CFR 3162.5-1 - Environmental obligations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS OPERATIONS Requirements... and conditions, and the approved drilling plan or subsequent operations plan. Before approving any Application for Permit to Drill submitted pursuant to § 3162.3-1 of this title, or other plan requiring...

  12. Drilling and geophysical logs of the tophole at an oil-and-gas well site, Central Venango County, Pennsylvania

    USGS Publications Warehouse

    Williams, John H.; Bird, Philip H.; Conger, Randall W.; Anderson, J. Alton

    2014-01-01

    Collection and integrated analysis of drilling and geophysical logs provided an efficient and effective means for characterizing the geohydrologic framework and conditions penetrated by the tophole at the selected oil-and-gas well site. The logging methods and lessons learned at this well site could be applied at other oil-and-gas drilling sites to better characterize the shallow subsurface with the overall goal of protecting freshwater aquifers during hydrocarbon development.

  13. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    PubMed

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

  14. Memory of a Nation: Effectively Using Artworks to Teach about the Assassination of President John F. Kennedy

    ERIC Educational Resources Information Center

    Eder, Elizabeth K.

    2011-01-01

    Artists today draw on a range of sources--newspapers, magazines, photographs, film, audio, and of course the Internet--to create artworks that serve as visual "texts" of a specific place and moment in time. Using artworks as sources and understanding how to decode them in the service of "drilling down" into difficult topics can create powerful…

  15. THE DETERMINATION OF MERCURY SPECIES AND MULTIPLE METALS IN COAL COMBUSTION EMISSIONS USING IODINE-BASED IMPINGERS AND DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Mercury (Hg) emissions from coal utilities are difficult to control. Hg eludes capture by most air pollution control devices (APCDs). To determine the gaseous Hg species in stack gases, U.S. EPA Method 5 type sampling is used. In this type of sampling a hole is drilled into th...

  16. Development of Next-Generation Borehole Magnetometer and Its Potential Application in Constraining the Magnetic Declination of Oman Samail Ophiolite at ICDP Drill Sites

    NASA Astrophysics Data System (ADS)

    Lee, S. M.; Parq, J. H.; Kim, H.; Moe, K.; Lee, C. S.; Kanamatsu, T.; Kim, K. J.; Bahk, K. S.

    2017-12-01

    Determining the azimuthal orientation of core samples obtained from deep drilling is extremely difficult because the core itself could have rotated during drilling operations. Several indirect methods have been devised to address this issue, but have certain limitations. Thus it is still a challenge to determine the azimuthal orientation consistently over the entire length of the hole. Provided that the recovery rate is high and thus all the other magnetic properties such as magnetization intensity and inclination are measured from the recovered cores, one possible method for ascertaining magnetic declination information is to measure the magnetic field inside the empty borehole and invert for the best fitting declination. However, there are two major problems: one is that present-day borehole magnetometers are not precise enough to resolve changes in direction of magnetization, and the other is that in most rock drilling experiments the rate of recovery is low. To overcome the first major problem which is technical, scientists from Korea and Japan jointly conducted the development for the next-generation borehole magnetometer, namely 3GBM (3rd Generation Borehole Magnetometer). The borehole magnetometer which uses fiber-optic laser gyro promises to provide accurate information on not only the magnetic field itself but also the orientation of the instrument inside the borehole. Our goal is to deploy this borehole magnetometer in the ICDP Oman Drilling Project Phase 2 drilling experiment early 2018. The site may be suitable for the investigation because, as recent Phase 1 of the Oman Samail Ophiolite drilling has demonstrated, the recovery rate was very high. Also the post-drilling measurements onboard DV Chikyu have shown that much of the recovered samples has moderate magnetization intensity on the order of 0.1 and 1 A/m. Here, we present the results of numerical simulation of magnetic field inside the borehole using finite element method to show that magnetic declination may be obtained systematically from the top to the bottom of the holes. The results will help us to fine tune the magnetometer before the actual deployment. It will also be useful in interpreting the obtained results together with resistivity images from conventional wireline logging and post-drilling paleomagnetic lab measurements results.

  17. Study of the lateral pressure of fresh concrete as related to the design of drilled shafts.

    DOT National Transportation Integrated Search

    1983-11-01

    A series of tests were conducted to determine the effect of the consistency of : concrete, as measured by the slump test, on the lateral pressure of concrete. : Testing conditions simulated the construction of drilled shafts as practiced by the : Tex...

  18. Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments

    NASA Astrophysics Data System (ADS)

    Hahn, Simon; Duda, Mandy; Stoeckhert, Ferdinand; Wittig, Volker; Bracke, Rolf

    2017-04-01

    Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments S. Hahn, M. Duda, F. Stoeckhert, V. Wittig, R. Bracke International Geothermal Centre Bochum High pressure water jet drilling technologies are widely used in the drilling industry. Especially in geothermal and hard rock applications, horizontal (radial) jet drilling is, however, confronted with several limitations like lateral length, hole size and steerability. In order to serve as a serious alternative to conventional stimulation techniques these high pressure jetting techniques are experimentally investigated to gain fundamental knowledge about the fluid-structure interaction, to enhance the rock failing process and to identify the governing drilling parameters. The experimental program is divided into three levels. In a first step jetting experiments are performed under free surface conditions while logging fluid pressures, flow speeds and extracted rock volume. All process parameters are quantified with a self-developed jet-ability index and compared to the rock properties (density, porosity, permeability, etc.). In a second step experiments will be performed under pressure-controlled conditions. A test bench is currently under construction offering the possibility to assign an in-situ stress field to the specimen while penetrating the rock sample with a high pressure water jet or a radial jet drilling device. The experimental results from levels 1 and 2 allow to identify the governing rock failure mechanisms and to correlate them with physical rock properties and limited reservoir conditions. Results of the initial tests do show a clear dependency of achievable penetration depth on the interaction of jetting and rock parameters and an individual threshold of the nozzle outlet velocity can be noticed in order to successfully penetrate different formation types. At level 3 jetting experiments will be performed at simulated reservoir conditions corresponding to 5.000 m depth (e.g. up to 1.250 bar and 180 °C) on large samples with a diameter of 25 cm and a length of up to 3m using GZB's in-situ borehole and geofluid simulator 'iBOGS'. Experiments will be documented by active and passive ultrasound measurements and high speed imaging. Acknowledgement Jetting research and work at GZB has received funding in part from the European Union's Horizon 2020 research and innovation program under grant agreement No 654662 and also from federal government GER and state of NRW.

  19. Impact of exploratory wells, offshore Florida: A biological assessment

    USGS Publications Warehouse

    Dustan, Phillip A.; Lidz, Barbara H.; Shinn, Eugene A.

    1991-01-01

    Seven offshore exploratory oil well sites were examined in an effort to determine the ecological impact of exploratory drilling on the subtropical marine ecosystems of southern Florida, including seagrass beds and coral reefs. The time since drilling ranged from 2 to 29 years; water depths varied between 5 and 70 m. The major long-term ecological impact observed at these sites ranged from the creation of "artificial-reef" conditions to the physical destruction of hardbottom habitat that had not recovered in 29 years. Long-term ecological perturbation appeared to be limited to physical destruction and the deposition of drilling debris, which provided substratum for settling organisms. Significant deposits of drill muds or cuttings were not encountered at any of the sites, and there was no evidence of ecological damage from cuttings or drill muds. The results of this study pertain only to exploratory drilling that, unlike production wells that remain in place for tens of years, is a one-time perturbation to the habitat.

  20. Bending fatigue study of nickel-titanium Gates Glidden drills.

    PubMed

    Luebke, Neill H; Brantley, William A; Alapati, Satish B; Mitchell, John C; Lausten, Leonard L; Daehn, Glenn S

    2005-07-01

    ProFile nickel-titanium Gates Glidden drills were tested in bending fatigue to simulate clinical conditions. Ten samples each in sizes #1 through #6 were placed in a device that deflected the drill head 4 mm from the axis. The drill head was placed inside a ball bearing fixture, which allowed it to run free at 4000 rpm, and the total number of revolutions was recorded until failure. Fracture surfaces were examined with a scanning electron microscope to determine the initiation site and nature of the failure process. Mean +/- SD for the number of revolutions to failure for the drill sizes were: #1: 1826.3 +/- 542.5; #2: 5395.7 +/- 2581.5; #3: 694.4 +/- 516.8; #4: 261.0 +/- 138.0; #5: 49.6 +/- 14.9; #6: 195.9 +/- 78.5. All drills failed in a ductile mode, and fracture initiation sites appeared to be coincident with machining grooves or other flaws, suggesting the need for improved manufacturing procedures.

  1. Numerical Simulation of Bottomhole Flow Field Structure in Particle Impact Drilling

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Huang, Jinsong; Li, Luopeng

    2018-01-01

    In order to quantitatively describe the flow field distribution of the PID drilling bit in the bottomhole working condition, the influence of the fluid properties (pressure and viscosity) on the flow field of the bottom hole and the erosion and wear law of the drill body are compared. The flow field model of the eight - inch semi - vertical borehole drilling bit was established by CFX software. The working state of the jet was returned from the inlet of the drill bit to the nozzle outlet and flowed out at the bottom of the nozzle. The results show that there are irregular three-dimensional motion of collision and bounce after the jetting, resulting in partial impact on the drill body and causing impact and damage to the cutting teeth. The jet of particles emitted by different nozzles interfere with each other and affect the the bottom of the impact pressure; reasonable nozzle position can effectively reduce these interference.

  2. [SUVA (Swiss Accident Insurance Fund) and silicosis. Silicosis in Switzerland. Development of technological dust control].

    PubMed

    Bachofen, G

    1983-01-01

    In Switzerland the technical measures against quartz dust started in 1948 when wet drilling was compulsoryly introduced, initially in underground mining. The miners using the first wet drilling machines had serious problems with water, and only with the introduction of carriage drilling machines in 1963 did the method fully break through. Dust caused by blasting operations and by loading of the resultant material was limited by ventilation and sprinkling of water. In 1966 the first full-face cutting machines were used, and it was necessary to install a dust chamber behind the drill from which dust could be taken to a dust arrester. The problem of dust limitation when using boom cutters at sectional areas of more than 20 sq. meters without a pilot tunnel has not been resolved. Since 1970, dust in quarries and stone-cutter workshops has been successfully combated by the use of exhaust pumps in combination with filters. The use of quartz sand to clean metal pieces (sandblast) was forbidden in 1960. Today, materials of the same value, but quartz-free, are available. In foundries, dust production can be limited by continuous automation and installation of exhaust pumps in moulding units. For more than 30 years now the technical equipment has been available for successful prevention of quartz dust emissions. However, at some plants it is still difficult to persuade the personnel to use the protective equipment.

  3. A Comparison of Speed Profiles During Training and Competition in Elite Wheelchair Rugby Players.

    PubMed

    Rhodes, James M; Mason, Barry S; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L

    2017-07-01

    To investigate the speed profiles of individual training modes in comparison with wheelchair rugby (WCR) competition across player classifications. Speed profiles of 15 international WCR players were determined using a radio-frequency-based indoor tracking system. Mean and peak speed (m/s), work:rest ratios, and the relative time spent in (%) and number of high-speed activities performed were measured across training sessions (n = 464) and international competition (n = 34). Training was classified into 1 of 4 modes: conditioning (n = 71), skill-based (n = 133), game-related (n = 151), and game-simulation drills (n = 109). Game-simulation drills were further categorized by the structured duration, which were 3-min game clock (n = 44), 8-min game clock (n = 39), and 10-min running clock (n = 26). Players were grouped by their International Wheelchair Rugby Federation classification as either low-point (≤1.5; n = 8) or high-point players (≥2.0; n = 7). Conditioning drills were shown to exceed the demands of competition, irrespective of classification (P ≤ .005; effect size [ES] = 0.6-2.0). Skill-based and game-related drills underrepresented the speed profiles of competition (P ≤ .005; ES = 0.5-1.1). Mean speed and work:rest ratios were significantly lower during 3- and 8-min game-simulation drills in relation to competition (P ≤ .039; ES = 0.5-0.7). However, no significant differences were identified between the 10-min running clock and competition. Although game-simulation drills provided the closest representation of competition, the structured duration appeared important since the 10-min running clock increased training specificity. Coaches can therefore modify the desired training response by making subtle changes to the format of game-simulation drills.

  4. Dust drift reduction effect of an air conveyor kit (dual-pipe deflector) mounted on different maize pneumatic drills.

    PubMed

    Manzone, Marco; Balsari, Paolo; Marucco, Paolo; Tamagnone, Mario

    2017-03-01

    All maize drills produce a fine dust due to the seed coating abrasions that occur inside the seeding element. The air stream generated by the fan of pneumatic drills - necessary to create a depression in the sowing element of the machine and to guarantee correct seed deposition - can blow away the solid particles detached from the seeds. In order to reduce this phenomenon, a coated maize seeds company (Syngenta®) has set up an ad hoc dual-pipe deflector kit that easily fits different pneumatic drills (also old drills). In this study, the efficiency of this kit and the influence of different drill types on the kit's performance in reducing environmental pollution were evaluated using three different pneumatic seed drill models. The research showed that a dual-pipe deflector installed on a drill in standard configuration did not change the seeder performance, and by using this kit on pneumatic drills, irrespective of their design, it is possible to reduce by up to 69% the amount of dust drift in comparison with the conventional machine set-up. The dual-pipe deflector, under the conditions employed in the present experiments, showed good performance with all types of maize pneumatic drill used. Irrespective of the seeder model on which it is mounted, it is able to obtain similar results, indicating its high operational versatility. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement

    PubMed Central

    Echt, Alan; Mead, Kenneth

    2016-01-01

    Purpose To assess the effectiveness of local exhaust ventilation to control respirable crystalline silica exposures to acceptable levels during concrete dowel drilling. Approach Personal breathing zone samples for respirable dust and crystalline silica were collected while laborers drilled holes 3.5 cm diameter by 36 cm deep in a concrete slab using a single-drill slab-riding dowel drill equipped with local exhaust ventilation. Data were collected on air flow, weather, and productivity. Results All respirable dust samples were below the 90 µg detection limit which, when combined with the largest sample volume, resulted in a minimum detectable concentration of 0.31 mg m−3. This occurred in a 32-min sample collected when 27 holes were drilled. Quartz was only detected in one air sample; 0.09 mg m−3 of quartz was found on an 8-min sample collected during a drill maintenance task. The minimum detectable concentration for quartz in personal air samples collected while drilling was performed was 0.02 mg m−3. The average number of holes drilled during each drilling sample was 23. Over the course of the 2-day study, air flow measured at the dust collector decreased from 2.2 to 1.7 m3 s−1. Conclusions The dust control performed well under the conditions of this test. The initial duct velocity with a clean filter was sufficient to prevent settling, but gradually fell below the recommended value to prevent dust from settling in the duct. The practice of raising the drill between each hole may have prevented the dust from settling in the duct. A slightly higher flow rate and an improved duct design would prevent settling without regard to the position of the drill. PMID:26826033

  6. Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement.

    PubMed

    Echt, Alan; Mead, Kenneth

    2016-05-01

    To assess the effectiveness of local exhaust ventilation to control respirable crystalline silica exposures to acceptable levels during concrete dowel drilling. Personal breathing zone samples for respirable dust and crystalline silica were collected while laborers drilled holes 3.5 cm diameter by 36 cm deep in a concrete slab using a single-drill slab-riding dowel drill equipped with local exhaust ventilation. Data were collected on air flow, weather, and productivity. All respirable dust samples were below the 90 µg detection limit which, when combined with the largest sample volume, resulted in a minimum detectable concentration of 0.31 mg m(-3). This occurred in a 32-min sample collected when 27 holes were drilled. Quartz was only detected in one air sample; 0.09 mg m(-3) of quartz was found on an 8-min sample collected during a drill maintenance task. The minimum detectable concentration for quartz in personal air samples collected while drilling was performed was 0.02 mg m(-3). The average number of holes drilled during each drilling sample was 23. Over the course of the 2-day study, air flow measured at the dust collector decreased from 2.2 to 1.7 m(3) s(-1). The dust control performed well under the conditions of this test. The initial duct velocity with a clean filter was sufficient to prevent settling, but gradually fell below the recommended value to prevent dust from settling in the duct. The practice of raising the drill between each hole may have prevented the dust from settling in the duct. A slightly higher flow rate and an improved duct design would prevent settling without regard to the position of the drill. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.

  7. Issues and Concerns in Robotic Drilling

    NASA Technical Reports Server (NTRS)

    Glass, Brian

    2003-01-01

    Exploration of the Martian subsurface will be essential in the search for life and water, given the desiccated and highly oxidized conditions on the surface. Discovery of these, at least in non-fossil form, is unlikely without drilling or other physical access to the subsurface. Hence subsurface access will be critical for both future in-situ science and Mars sample return. Drilling applications present many new challenges for diagnosis and control technology. Traditionally, diagnosis has concentrated on determining the internal state of a system, and detecting failures of system components. In the case of drilling applications, an additional challenge is to diagnose the interactions between the drill and its environment. This is necessary because particular observations of the drilling operation may be consistent with a number of possible problems, including faults in the equipment, but also changes in the material being drilled (for example, from rock to ice). The diagnosis of a particular observation may also depend on knowledge of geological formations previously encountered during drilling, and different remedial actions may be required for each diagnosis. Current 2009 Mars mission scenarios call for no more than 33 sols to be spent drilling. Yet they also call for a baseline of two 2m-deep holes in each of three target areas, for a total of six drilling operations. Using current levels of automation, it is estimated that 15-16 sols would be required to drill each hole. As a result of this, either the drilling part of the mission plan will need to be severely downscoped to no more than two holes total, or on-board automation and robotics must be increased in order to reduce the number of sols required per hole by removing ground control from the drilling control loop. This lecture will discuss salient issues and concerns of robotic drilling automation compares with other applications, and implementation constraints.

  8. Numerical modelling for quantitative environmental risk assessment for the disposal of drill cuttings and mud

    NASA Astrophysics Data System (ADS)

    Wahab, Mohd Amirul Faiz Abdul; Shaufi Sokiman, Mohamad; Parsberg Jakobsen, Kim

    2017-10-01

    To investigate the fate of drilling waste and their impacts towards surrounding environment, numerical models were generated using an environmental software; MIKE by DHI. These numerical models were used to study the transportation of suspended drill waste plumes in the water column and its deposition on seabed in South China Sea (SCS). A random disposal site with the model area of 50 km × 25 km was selected near the Madalene Shoal in SCS and the ambient currents as well as other meteorological conditions were simulated in details at the proposed location. This paper was focusing on sensitivity study of different drill waste particle characteristics on impacts towards marine receiving environment. The drilling scenarios were obtained and adapted from the oil producer well at offshore Sabah (Case 1) and data from actual exploration drilling case at Pumbaa location (PL 469) in the Norwegian Sea (Case 2). The two cases were compared to study the effect of different drilling particle characteristics and their behavior in marine receiving environment after discharged. Using the Hydrodynamic and Sediment Transport models simulated in MIKE by DHI, the variation of currents and the behavior of the drilling waste particles can be analyzed and evaluated in terms of multiple degree zones of impacts.

  9. Reliability of the Kinetics of British Army Foot Drill in Untrained Personnel.

    PubMed

    Rawcliffe, Alex J; Simpson, Richard J; Graham, Scott M; Psycharakis, Stelios G; Moir, Gavin L; Connaboy, Chris

    2017-02-01

    Rawcliffe, AJ, Simpson, RJ, Graham, SM, Psycharakis, SG, Moir, GL, and Connaboy, C. Reliability of the kinetics of British Army foot drill in untrained personnel. J Strength Cond Res 31(2): 435-444, 2017-The purpose of this study was to quantify the reliability of kinetic variables of British Army foot drill performance within untrained civilians and report the magnitude of vertical ground reaction force (vGRF) and vertical rate of force development (RFD) of foot drills. Fifteen recreational active males performed 3 testing sessions across a 1-week period, with each session separated by 24 hours. Within each testing session participants (mean ± SD; age 22.4 ± 1.7 years; height 177 ± 5.6 cm; weight 83 ± 8.7 kg) completed 10 trials of stand-at-attention (SaA), stand-at-ease (SaE), Halt, quick-march (QM) and a normal walking gait, with vGRF and vertical RFD measured on a force plate. Between-session and within-session reliability was calculated as systematic bias, coefficient of variation calculated from the typical error (CVte%), and intraclass correlation coefficient (ICC). Significant (p ≤ 0.05) between-session differences were found for the vGRF SaA and SaE, and vertical RFD SaA and SaE conditions. Significant (p ≤ 0.05) within-session differences were found for the vGRF SaA and SaE conditions. A mean vGRF CVte% ≤10% was observed across all foot drills. However, the mean vertical RFD CVte% observed was ≥10% (excluding SaE) across all foot drills. The ICC analyses indicated that the vGRF Halt, QM, SaA, and Walk condition achieved moderate to large levels of test-retest reliability, with only SaE failing to achieve an ICC value ≥0.75. The vertical RFD QM, SaE, and Walk condition achieved moderate levels of test-retest reliability, with Halt and SaA failing to achieve an ICC value ≥0.75. It was determined that a single familiarization session and using the mean of 8 trials of vGRF are required to achieve acceptable levels of reliability.

  10. Passive and semi-active heave compensator: Project design methodology and control strategies.

    PubMed

    Cuellar Sanchez, William Humberto; Linhares, Tássio Melo; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa

    2017-01-01

    Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator.

  11. Interior Department Suggests Improvements for Offshore Arctic Oil and Gas Drilling

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-03-01

    Shell's "difficulties" during its 2012 program to drill offshore oil and natural gas exploration wells in the Alaskan Arctic Ocean "have raised serious questions regarding its ability to operate safely and responsibly in the challenging and unpredictable conditions offshore Alaska," according to the report "Review of Shell's 2012 Alaska Offshore Oil and Gas Exploration Program," issued by the U.S. Department of the Interior (DOI) on 8 March. Noting the company's lack of adequate preparation for drilling in the Arctic, its failure to deploy a specialized Arctic Containment System, and the grounding of the Kulluk drilling rig near Kodiak Island last December, the report recommends that Shell develop a comprehensive and integrated plan describing its future drilling program and related operations and that it commission a third-party audit of its management systems, including its safety and environmental management systems program.

  12. Passive and semi-active heave compensator: Project design methodology and control strategies

    PubMed Central

    Cuellar Sanchez, William Humberto; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa

    2017-01-01

    Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator. PMID:28813494

  13. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You must... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  14. 78 FR 42538 - Information Collection Activities: Sulphur Operations, Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ..., section 301(a) of the Federal Oil and Gas Royalty Management Act (FOGRMA), 30 U.S.C. 1751(a), grants... requirements. The BSEE uses the information collected to ascertain the condition of drilling sites for the purpose of preventing hazards inherent in sulphur drilling and production operations and to evaluate the...

  15. 30 CFR 250.428 - What must I do in certain cementing and casing situations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.428 What must I do in... conditions encountered during drilling operations Submit those changes to the District Manager for approval...

  16. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You must... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  17. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You must... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  18. Effectiveness and Efficiency of Flashcard Drill Instructional Methods on Urban First-Graders' Word Recognition, Acquisition, Maintenance, and Generalization

    ERIC Educational Resources Information Center

    Nist, Lindsay; Joseph, Laurice M.

    2008-01-01

    This investigation built upon previous studies that compared effectiveness and efficiency among instructional methods. Instructional effectiveness and efficiency were compared among three conditions: an incremental rehearsal, a more challenging ratio of known to unknown interspersal word procedure, and a traditional drill and practice flashcard…

  19. Degradation of titanium drillpipe from corrosion and wear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferg, T.E.; Aldrich, C.S.; Craig, B.D.

    1993-06-01

    Drilling deeper than 35,000 ft is limited by the extreme hook loads of steel drillpipe and temperature constraints of aluminum drillpipe. Titanium Alloys Ti-6Al-4V and Beta C have been proposed for use in drillpipe for wells deeper than 35,000 ft because of their high strength/weight ratios, superior high-temperature corrosion resistance, and thermal stability. Their suitability in drilling environments, however, has not been evaluated. To determine the corrosion and wear characteristics of two types of titanium-alloy drillpipe under dogleg conditions, a test cell was constructed to test titanium drillpipe joints in contact with API Spec. 5CT Grade P-110 casing in differentmore » drilling muds. Titanium-alloy pipe and Grade P-110 casing wear rates were measured, and tests showed that both titanium-alloy pipes exhibited much greater wear than did steel drillpipe in water-based mud under the same conditions. Test data showed that the total wear rate of Alloys Ti-6Al-4V and Beta C in a drilling environment is a combination of mechanical wear and corrosion.« less

  20. Research on the Mechanism of In-Plane Vibration on Friction Reduction

    PubMed Central

    Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang

    2017-01-01

    A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679

  1. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael S. Bruno

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less

  2. Experimental Study on Longmaxi Shale Breaking Mechanism with Micro-PDC Bit

    NASA Astrophysics Data System (ADS)

    Wang, Teng; Xiao, Xiaohua; Zhu, Haiyan; Zhao, Jingying; Li, Yuheng; Lu, Ming

    2017-10-01

    China has abundant shale gas resource, but its geological conditions are complicated. This work sought to find the shale breaking mechanism with the polycrystalline diamond compact (PDC) bit when drilling the shale that is rich in stratification. Therefore, a laboratory-scale drilling device based on a drilling machine is developed. The influences of Longmaxi shale stratification on drilling parameters in the drilling process with micro-PDC bit are investigated. Six groups of drilling experiments with six inclination angles ( β = 0°, 15°, 30°, 45°, 60° and 90°), total thirty-six groups, are carried out. The weight on bit reaches the maximum value at β = 30° and reaches the minimum value at β = 0°. The biggest torque value is at β = 30°, and the smaller torque values are at β = 15°, β = 45° and β = 60°. When the inclination angle is between 30° and 60°, the shale fragmentation volume is larger. The inclination angle β = 0° is beneficial, and β = 15° and β = 60° are detrimental to controlling the drilling direction in the Longmaxi shale gas formation.

  3. Evaluation of Hard Coating Performance in Drilling Compacted Graphite Iron (CGI)

    NASA Astrophysics Data System (ADS)

    de Paiva, José M. F.; Amorim, Fred L.; Soares, P.; Torres, Ricardo D.

    2013-10-01

    The aim of this investigation was to compare the performance of the following commercial coatings system, TiAlN/TiN, AlCrN, and TiSiN/AlCrN, deposited in cemented carbide tools in drilling compact graphite iron (CGI). The drilling tests were conducted adopting two cutting speeds: 80 or 150 m/min. For each test condition, the tool flank wear, the machining feed force, and the circularity and the roughness of the resulting drilled hole were determined. At the cutting speed of 80 m/min, the results revealed that the tool life, in terms of flank wear, was improved for the Cr-based coatings, while the multilayered coatings presented a better performance at the cutting speed of 150 m/min. It was also found that feed force is substantially increased when drilling at a cutting speed of 150 m/min. The holes drilled with the TiSiN/AlCrN at a cutting speed of 150 m/min showed the best circularity. The drill roughness is directly influenced by the coating system wear and iron adhesion. Consequently, it was found that the lowest holes' roughness was obtained with TiSiN/AlCrN at 80 m/min.

  4. Petrophysical characterization of first ever drilled core samples from an active CO2 storage site, the German Ketzin Pilot Site - Comparison with long term experiments

    NASA Astrophysics Data System (ADS)

    Zemke, Kornelia; Liebscher, Axel

    2014-05-01

    Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. These parameters may change during and/or after the CO2 injection due to geochemical reactions in the reservoir system that are triggered by the injected CO2. Here we present petrophysical data of first ever drilled cores from a newly drilled well at the active CO2 storage site - the Ketzin pilot site in the Federal State of Brandenburg, Germany. By comparison with pre-injection baseline data from core samples recovered prior to injection, the new samples provide the unique opportunity to evaluate the impact of CO2 on pore size related properties of reservoir and cap rocks at a real injection site under in-situ reservoir conditions. After injection of 61 000 tons CO2, an additional well was drilled and new rock cores were recovered. In total 100 core samples from the reservoir and the overlaying caprock were investigated by NMR relaxation. Permeability of 20 core samples was estimated by nitrogen and porosity by helium pycnometry. The determined data are comparable between pre-injection and post-injection core samples. The lower part of the reservoir sandstone is unaffected by the injected CO2. The upper part of the reservoir sandstone shows consistently slightly lower NMR porosity and permeability values in the post-injection samples when compared to the pre-injection data. This upper sandstone part is above the fluid level and CO2 present as a free gas phase and a possible residual gas saturation of the cores distorted the NMR results. The potash-containing drilling fluid can also influence these results: NMR investigation of twin samples from inner and outer parts of the cores show a reduced fraction of larger pores for the outer core samples together with lower porosities and T2 times. The drill mud penetration depth can be controlled by the added fluorescent tracer. Due to the heterogeneous character of the Stuttgart Formation it is difficult to estimate definite CO2 induced changes from petrophysical measurements. The observed changes are only minor. Several batch experiments on Ketzin samples drilled prior injection confirm the results from investigation of the in-situ rock cores. Core samples of the pre-injection wells were exposed to CO2 and brine in autoclaves over various time periods. Samples were characterized prior to and after the experiments by NMR and Mercury Injection Porosimetry (MIP). The results are consistent with the logging data and show only minor change. Unfortunately, also in these experiments observed mineralogical and petrophysical changes were within the natural heterogeneity of the Ketzin reservoir and precluded unequivocal conclusions. However, given the only minor differences between post-injection well and pre-injection well, it is reasonable to assume that the potential dissolution-precipitation processes appear to have no severe consequences on reservoir and cap rock integrity or on the injection behaviour. This is also in line with the continuously recorded injection operation parameter. These do not point to any changes in reservoir injectivity.|

  5. Quantifying performance on an outdoor agility drill using foot-mounted inertial measurement units.

    PubMed

    Zaferiou, Antonia M; Ojeda, Lauro; Cain, Stephen M; Vitali, Rachel V; Davidson, Steven P; Stirling, Leia; Perkins, Noel C

    2017-01-01

    Running agility is required for many sports and other physical tasks that demand rapid changes in body direction. Quantifying agility skill remains a challenge because measuring rapid changes of direction and quantifying agility skill from those measurements are difficult to do in ways that replicate real task/game play situations. The objectives of this study were to define and to measure agility performance for a (five-cone) agility drill used within a military obstacle course using data harvested from two foot-mounted inertial measurement units (IMUs). Thirty-two recreational athletes ran an agility drill while wearing two IMUs secured to the tops of their athletic shoes. The recorded acceleration and angular rates yield estimates of the trajectories, velocities and accelerations of both feet as well as an estimate of the horizontal velocity of the body mass center. Four agility performance metrics were proposed and studied including: 1) agility drill time, 2) horizontal body speed, 3) foot trajectory turning radius, and 4) tangential body acceleration. Additionally, the average horizontal ground reaction during each footfall was estimated. We hypothesized that shorter agility drill performance time would be observed with small turning radii and large tangential acceleration ranges and body speeds. Kruskal-Wallis and mean rank post-hoc statistical analyses revealed that shorter agility drill performance times were observed with smaller turning radii and larger tangential acceleration ranges and body speeds, as hypothesized. Moreover, measurements revealed the strategies that distinguish high versus low performers. Relative to low performers, high performers used sharper turns, larger changes in body speed (larger tangential acceleration ranges), and shorter duration footfalls that generated larger horizontal ground reactions during the turn phases. Overall, this study advances the use of foot-mounted IMUs to quantify agility performance in contextually-relevant settings (e.g., field of play, training facilities, obstacle courses, etc.).

  6. An interactive drilling simulator for teaching and research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, G.A.; Cooper, A.G.; Bihn, G.

    1995-12-31

    An interactive program has been constructed that allows a student or engineer to simulate the drilling of an oil well, and to optimize the drilling process by comparing different drilling plans. The program operates in a very user-friendly way, with emphasis on menu and button-driven commands. The simulator may be run either as a training program, with exercises that illustrate various features of the drilling process, as a game, in which a student is set a challenge to drill a well with minimum cost or time under constraints set by an instructor, or as a simulator of a real situationmore » to investigate the merit of different drilling strategies. It has three main parts, a Lithology Editor, a Settings Editor and the simulation program itself. The Lithology Editor allows the student, instructor or engineer to build a real or imaginary sequence of rock layers, each characterized by its mineralogy, drilling and log responses. The Settings Editor allows the definition of all the operational parameters, ranging from the drilling and wear rates of particular bits in specified rocks to the costs of different procedures. The simulator itself contains an algorithm that determines rate of penetration and rate of wear of the bit as drilling continues. It also determines whether the well kicks or fractures, and assigns various other {open_quotes}accident{close_quotes} conditions. During operation, a depth vs. time curve is displayed, together with a {open_quotes}mud log{close_quotes} showing the rock layers penetrated. If desired, the well may be {open_quotes}logged{close_quotes} casings may be set and pore and fracture pressure gradients may be displayed. During drilling, the total time and cost are shown, together with cost per foot in total and for the current bit run.« less

  7. Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty.

    PubMed

    Levy, Jonathan C; Everding, Nathan G; Frankle, Mark A; Keppler, Louis J

    2014-10-01

    The accuracy of reproducing a surgical plan during shoulder arthroplasty is improved by computer assistance. Intraoperative navigation, however, is challenged by increased surgical time and additional technically difficult steps. Patient-matched instrumentation has the potential to reproduce a similar degree of accuracy without the need for additional surgical steps. The purpose of this study was to examine the accuracy of patient-specific planning and a patient-specific drill guide for glenoid baseplate placement in reverse shoulder arthroplasty. A patient-specific glenoid baseplate drill guide for reverse shoulder arthroplasty was produced for 14 cadaveric shoulders based on a plan developed by a virtual preoperative 3-dimensional planning system using thin-cut computed tomography images. Using this patient-specific guide, high-volume shoulder surgeons exposed the glenoid through a deltopectoral approach and drilled the bicortical pathway defined by the guide. The trajectory of the drill path was compared with the virtual preoperative planned position using similar thin-cut computed tomography images to define accuracy. The drill pathway defined by the patient-matched guide was found to be highly accurate when compared with the preoperative surgical plan. The translational accuracy was 1.2 ± 0.7 mm. The accuracy of inferior tilt was 1.2° ± 1.2°. The accuracy of glenoid version was 2.6° ± 1.7°. The use of patient-specific glenoid baseplate guides is highly accurate in reproducing a virtual 3-dimensional preoperative plan. This technique delivers the accuracy observed using computerized navigation without any additional surgical steps or technical challenges. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Mechanical Alteration And Contamination Issues In Automated Subsurface Sample Acquisition And Handling

    NASA Astrophysics Data System (ADS)

    Glass, B. J.; Cannon, H.; Bonaccorsi, R.; Zacny, K.

    2006-12-01

    The Drilling Automation for Mars Exploration (DAME) project's purpose is to develop and field-test drilling automation and robotics technologies for projected use in missions in the 2011-15 period. DAME includes control of the drilling hardware, and state estimation of both the hardware and the lithography being drilled and the state of the hole. A sister drill was constructed for the Mars Analog Río Tinto Experiment (MARTE) project and demonstrated automated core handling and string changeout in 2005 drilling tests at Rio Tinto, Spain. DAME focused instead on the problem of drill control while actively drilling while not getting stuck. Together, the DAME and MARTE projects demonstrate a fully automated robotic drilling capability, including hands-off drilling, adjustment to different strata and downhole conditions, recovery from drilling faults (binding, choking, etc.), drill string changeouts, core acquisition and removal, and sample handling and conveyance to in-situ instruments. The 2006 top-level goal of DAME drilling in-situ tests was to verify and demonstrate a capability for hands-off automated drilling, at an Arctic Mars-analog site. There were three sets of 2006 test goals, all of which were exceeded during the July 2006 field season. The first was to demonstrate the recognition, while drilling, of at least three of the six known major fault modes for the DAME planetary-prototype drill, and to employ the correct recovery or safing procedure in response. The second set of 2006 goals was to operate for three or more hours autonomously, hands-off. And the third 2006 goal was to exceed 3m depth into the frozen breccia and permafrost with the DAME drill (it had not gone further than 2.2m previously). Five of six faults were detected and corrected, there were 43 hours of hands-off drilling (including a 4 hour sequence with no human presence nearby), and 3.2m was the total depth. And ground truth drilling used small commercial drilling equipment in parallel in order to obtain cores and ice profiles at the drilling site. In the course of DAME drilling automation testing, the drilling-induced temperature gradients and their effects on encountered subsurface permafrost and ice layers were observed while drilling in frozen impact breccia at Haughton Crater. In repeated tests of robotic core removal processing and handling in the MARTE project, including field tests, cross-contamination issues arose between successive cores and samples, and procedures and metrics were developed for minimizing the cross-contamination. The MARTE core processing cross-contamination aspects were tested by analyzing a set of pristine samples (those stratigraphically known) vs. cuttings (loose clays) or artifacts from the robotic drilling (indurated clay layers). MARTE ground truth drilling, in parallel with the automated tests, provided control information on the discontinuity/continuity of the stratigraphic record (i.e., texture, color and structure of loose and consolidated materials).

  9. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    PubMed

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  < Q max  < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r  < Q min  < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  10. Unique microbial community in drilling fluids from Chinese continental scientific drilling

    USGS Publications Warehouse

    Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.

    2006-01-01

    Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.

  11. Long-term changes in sediment barium inventories associated with drilling-related discharges in the Santa Maria Basin, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Evans, J.; Hom, W.

    1998-09-01

    Nine-year (1986--1995) records of barium (Ba) concentrations in surficial, subsurface, and suspended sediments near offshore oil and gas platforms in the Santa Maria Basin, California, USA, were analyzed to evaluate temporal trends related to drilling activities. These trends provide important information on the long-term effects of drilling discharges on geochemical conditions. Drilling during the 1986 through 1989 (phase II) monitoring period resulted in significant changes in Ba concentrations in suspended particles and surficial sediments, whereas the relatively shorter 1993 through 1994 (phase III) drilling operations resulted in only minor increases in Ba concentrations in suspended sediments. Residual excess Ba wasmore » present in some sediments within 500 m of the platforms at concentrations up to an order of magnitude above background. These elevated levels probably were associated with cuttings particles deposited near the base of the platforms. Calculated excess Ba in sediments within 500 m of the platforms represented 6 to 11% of the total Ba discharged during the two drilling periods.« less

  12. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  13. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  14. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in populated calderas (e.g., Campi Flegrei, Italy). Experiments with the live system will aid in hazard assessment and eruption forecasting for this most difficult of volcano hazard problems. We will report on an International Continental Scientific Drilling Program (ICDP) workshop held to assess feasibility and to develop a plan for KMDP.

  15. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  16. Linking otolith microchemistry and surface water contamination from natural gas mining.

    PubMed

    Keller, David H; Zelanko, Paula M; Gagnon, Joel E; Horwitz, Richard J; Galbraith, Heather S; Velinsky, David J

    2018-09-01

    Unconventional natural gas drilling and the use of hydraulic fracturing technology have expanded rapidly in North America. This expansion has raised concerns of surface water contamination by way of spills and leaks, which may be sporadic, small, and therefore difficult to detect. Here we explore the use of otolith microchemistry as a tool for monitoring surface water contamination from generated waters (GW) of unconventional natural gas drilling. We exposed Brook Trout in the laboratory to three volumetric concentrations of surrogate generated water (SGW) representing GW on day five of drilling. Transects across otolith cross-sections were analyzed for a suite of elements by LA-ICP-MS. Brook Trout exposed to a 0.01-1.0% concentration of SGW for 2, 15, and 30 days showed a significant (p < 0.05) relationship of increasing Sr and Ba concentrations in all but one treatment. Analyses indicate lesser concentrations than used in this experiment could be detectable in surface waters and provide support for the use of this technique in natural habitats. To our knowledge, this is the first demonstration of how trace elements in fish otoliths may be used to monitor for surface water contamination from GW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Lunar Polar Environmental Testing: Regolith Simulant Conditioning

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie

    2014-01-01

    As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.

  18. Positional Differences in External On-Field Load During Specific Drill Classifications Over a Professional Rugby League Preseason.

    PubMed

    Cummins, Cloe; McLean, Blake; Halaki, Mark; Orr, Rhonda

    2017-07-01

    To quantify the external training loads of positional groups in preseason training drills. Thirty-three elite rugby league players were categorized into 1 of 4 positional groups: outside backs (n = 9), adjustables (n = 9), wide-running forwards (n = 9), and hit-up forwards (n = 6). Data for 8 preseason weeks were collected using microtechnology devices. Training drills were classified based on drill focus: speed and agility, conditioning, and generic and positional skills. Total, high-speed, and very-high-speed distance decreased across the preseason in speed and agility (moderate, small, and small, respectively), conditioning (large, large, and small) and generic skills (large, large, and large). The duration of speed and generic skills also decreased (77% and 48%, respectively). This was matched by a concomitant increase in total distance (small), high-speed running (small), very-high-speed running (moderate), and 2-dimensional (2D) BodyLoad (small) demands in positional skills. In positional skills, hit-up forwards (1240 ± 386 m) completed less very-high-speed running than outside backs (2570 ± 1331 m) and adjustables (2121 ± 1163 m). Hit-up forwards (674 ± 253 AU) experienced greater 2D BodyLoad demands than outside backs (432 ± 230 AU, P = .034). In positional drills, hit-up forwards experienced greater relative 2D BodyLoad demands than outside backs (P = .015). Conversely, outside backs experienced greater relative high- (P = .007) and very-high-speed-running (P < .001) demands than hit-up forwards. Significant differences were observed in training loads between positional groups during positional skills but not in speed and agility, conditioning, and generic skills. This work also highlights the importance of different external-load parameters to adequately quantify workload across different positional groups.

  19. Formation of ore minerals in metamorphic rocks of the German continental deep drilling site (KTB)

    NASA Astrophysics Data System (ADS)

    Kontny, A.; Friedrich, G.; Behr, H. J.; de Wall, H.; Horn, E. E.; Möller, P.; Zulauf, G.

    1997-08-01

    The German Continental Deep Drilling Program (KTB) drilled a 9.1 km deep profile through amphibolite facies metamorphic rocks and reached in situ temperatures of 265°C. Each lithologic unit is characterized by typical ore mineral assemblages related to the regional metamorphic conditions. Paragneisses contain pyrrhotite + rutile + ilmenite ± graphite, metabasic units bear ilmenite + rutile + pyrrhotite ± pyrite, and additionally, the so-called variegated units yield pyrrhotite + titanite assemblages. In the latter unit, magnetite + ilmenite + rutile + titanite assemblages related to the lower amphibolite facies breakdown of ilmenite-hematite solid solution also occur locally. Retrograde hydrothermal mineralization which commenced during Upper Carboniferous times is characterized by the following geochemical conditions: (1) low saline Na-K-Mg-Cl fluids with sulfur and oxygen fugacities at the pyrite-pyrrhotite buffer and temperatures of 400-500°C, (2) fluids with CO2, CH4±N2, andpH, Eh, sulfur, and oxygen fugacity in the stability field of graphite + pyrite at temperatures of 280-350° and (3) moderate to high saline Ca-Na-Cl fluids with CH4+ N2; sulfur and oxygen fugacity are in the stability field of pyrrhotite at temperatures <300°C. The latter environment is confirmed by in situ conditions found at the bottom of the deep drilling. Monoclinic, ferrimagnetic pyrrhotite is the main carrier of magnetization which disappears below about 8.6 km, corresponding to in situ temperatures of about 250°C. Below this depth, hexagonal antiferromagnetic pyrrhotite with a Curie temperature of 260°C is the stable phase. Temperature-dependent transformation of pyrrhotite and the reaching of its Curie isotherm within the Earth crust are one of the striking results of the KTB deep drilling project.

  20. Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Haimson, B. C.; Lee, M.

    2015-12-01

    Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A

  1. A greigite-based magnetostratigraphic time frame for the Late Miocene to Recent DSDP Leg 42B cores from the Black Sea

    NASA Astrophysics Data System (ADS)

    Van Baak, Christiaan; Vasiliev, Iuliana; Palcu, Dan; Dekkers, Mark; Krijgsman, Wout

    2016-05-01

    Throughout the Late Neogene, the Black Sea experienced large paleoenvironmental changes, switching between (anoxic) marine conditions when connected to the Mediterranean Sea and (oxic) freshwater conditions at times of isolation. We create a magnetostratigraphic time frame for three sites drilled during Deep Sea Drilling Project (DSDP) Leg 42B to the Black Sea (drilled in 1975). At the time, magnetostratigraphic dating was impossible because of the presence of the little understood iron sulfide mineral greigite (in sediments a precursor to pyrite) as magnetic carrier. Our rock-magnetic results indicate that only anoxic conditions result in poor magnetic signal, likely as a result of pyrite formation in the water column rather than in the sediment. The magnetostratigraphic results indicate that Hole 379A, drilled in the basin center, has a continuous sedimentary record dating back to 1.3 Ma. Hole 380/380A is subdivided into three consistent intervals, 0-700 mbsf, 700-860 mbsf and 860-1075 mbsf. The top unit covers the Pleistocene but the magnetostratigraphy is likely compromised by the presence of mass transport deposits. The middle unit spans between 4.3 and 6.1 Ma and records continuous deposition at ~10 cm/kyr. The lower unit lacks the independent age constraints to correlate the obtained magnetostratigraphy. Hole 381 is drilled on the Bosporus slope and as a result, hiatuses are common. A correlation to the nearby Hole 380/380A is proposed, but indicates deposits cannot straightforwardly be traced across the slope. Our improved age model does not support the original interpretation based on these cores of a desiccation of the Black Sea during the Messinian salinity crisis.

  2. A study for high accuracy measurement of residual stress by deep hole drilling technique

    NASA Astrophysics Data System (ADS)

    Kitano, Houichi; Okano, Shigetaka; Mochizuki, Masahito

    2012-08-01

    The deep hole drilling technique (DHD) received much attention in recent years as a method for measuring through-thickness residual stresses. However, some accuracy problems occur when residual stress evaluation is performed by the DHD technique. One of the reasons is that the traditional DHD evaluation formula applies to the plane stress condition. The second is that the effects of the plastic deformation produced in the drilling process and the deformation produced in the trepanning process are ignored. In this study, a modified evaluation formula, which is applied to the plane strain condition, is proposed. In addition, a new procedure is proposed which can consider the effects of the deformation produced in the DHD process by investigating the effects in detail by finite element (FE) analysis. Then, the evaluation results obtained by the new procedure are compared with that obtained by traditional DHD procedure by FE analysis. As a result, the new procedure evaluates the residual stress fields better than the traditional DHD procedure when the measuring object is thick enough that the stress condition can be assumed as the plane strain condition as in the model used in this study.

  3. How to Access and Sample the Deep Subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.

    2000-01-01

    We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.

  4. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    NASA Astrophysics Data System (ADS)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  5. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    PubMed

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  6. Recovery of Benthic Megafauna from Anthropogenic Disturbance at a Hydrocarbon Drilling Well (380 m Depth in the Norwegian Sea)

    PubMed Central

    Gates, Andrew R.; Jones, Daniel O. B.

    2012-01-01

    Recovery from disturbance in deep water is poorly understood, but as anthropogenic impacts increase in deeper water it is important to quantify the process. Exploratory hydrocarbon drilling causes physical disturbance, smothering the seabed near the well. Video transects obtained by remotely operated vehicles were used to assess the change in invertebrate megafaunal density and diversity caused by drilling a well at 380 m depth in the Norwegian Sea in 2006. Transects were carried out one day before drilling commenced and 27 days, 76 days, and three years later. A background survey, further from the well, was also carried out in 2009. Porifera (45% of observations) and Cnidaria (40%) dominated the megafauna. Porifera accounted for 94% of hard-substratum organisms and cnidarians (Pennatulacea) dominated on the soft sediment (78%). Twenty seven and 76 days after drilling commenced, drill cuttings were visible, extending over 100 m from the well. In this area there were low invertebrate megafaunal densities (0.08 and 0.10 individuals m−2) in comparison to pre-drill conditions (0.21 individuals m−2). Three years later the visible extent of the cuttings had reduced, reaching 60 m from the well. Within this area the megafaunal density (0.05 individuals m−2) was lower than pre-drill and reference transects (0.23 individuals m−2). There was a significant increase in total megafaunal invertebrate densities with both distance from drilling and time since drilling although no significant interaction. Beyond the visible disturbance there were similar megafaunal densities (0.14 individuals m−2) to pre-drilling and background surveys. Species richness, Shannon-Weiner diversity and multivariate techniques showed similar patterns to density. At this site the effects of exploratory drilling on megafaunal invertebrate density and diversity seem confined to the extent of the visible cuttings pile. However, elevated Barium concentration and reduced sediment grain size suggest persistence of disturbance for three years, with unclear consequences for other components of the benthic fauna. PMID:23056177

  7. Efficiency in energy production and consumption

    NASA Astrophysics Data System (ADS)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall electricity consumption, but did cause a substantial intra-day shift in demand consistent with activity patterns that are tied to the clock rather than sunrise and sunset.

  8. Physiological and Technical Demands of No Dribble Game Drill in Young Basketball Players.

    PubMed

    Conte, Daniele; Favero, Terence G; Niederhausen, Meike; Capranica, Laura; Tessitore, Antonio

    2015-12-01

    This study assessed the physiological and technical demands of no dribble game drill (NDGD) in comparison with a regular drill (RD). Twenty-three young basketball players performed RDs and NDGDs in a random order. All basketball rules were followed for RDs, whereas dribbling was not permitted for NDGDs. The independent variable was the drill condition, and the dependent variables were percentage of maximal heart rate (%HRmax), rate of perceived exertion (RPE), Edwards training load (TL), and the following technical actions (TAs): pass (total, correct, wrong, and percent of correct passes), shot (total, scored, missed, and percent of made shots), interception, steal, turnover, and rebound. Wilcoxon signed-rank tests were applied to assess differences between NDGD and RD conditions for each dependent variable, and the level of statistical significance was set at p ≤ 0.05. Results showed higher values for %HRmax (p = 0.007), Edwards TL (p = 0.006), and RPE (p = 0.027) in NDGD compared with RD condition. Technical action analysis revealed higher values in NDGD than RD for total (p = 0.000), correct (p = 0.000), and wrong pass (p = 0.005), and interception (p = 0.001), whereas no significant differences were found for the other TAs. The main finding of this study was that NDGD condition elicited a greater physiological demand and a higher number of passes and interceptions than the RD one. Basketball coaches should consider the NDGD as a viable method to increase the physiological load of their training sessions and to teach passing skills in a game-based situation.

  9. Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam

    NASA Astrophysics Data System (ADS)

    Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.

    2017-03-01

    The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.

  10. Anthropogenic noise compromises the anti-predator behaviour of the European seabass, Dicentrarchus labrax (L.).

    PubMed

    Spiga, Ilaria; Aldred, Nicholas; Caldwell, Gary S

    2017-09-15

    Anthropogenic noise is a significant pollutant of the world's oceans, affecting behavioural and physiological traits in a range of species, including anti-predator behaviours. Using the open field test, we investigated the effects of recordings of piling and drilling noise on the anti-predator behaviour of captive juvenile European seabass in response to a visual stimulus (a predatory mimic). The impulsive nature of piling noise triggered a reflexive startle response, which contrasted the behaviour elicited by the continuous drilling noise. When presented with the predatory mimic, fish exposed to both piling and drilling noise explored the experimental arena more extensively than control fish exposed to ambient noise. Fish under drilling and piling conditions also exhibited reduced predator inspection behaviour. Piling and drilling noise induced stress as measured by ventilation rate. This study provides further evidence that the behaviour and physiology of European seabass is significantly affected by exposure to elevated noise levels. Copyright © 2017. Published by Elsevier Ltd.

  11. Unconventional oil and gas extraction and animal health.

    PubMed

    Bamberger, M; Oswald, R E

    2014-08-01

    The extraction of hydrocarbons from shale formations using horizontal drilling with high volume hydraulic fracturing (unconventional shale gas and tight oil extraction), while derived from methods that have been used for decades, is a relatively new innovation that was introduced first in the United States and has more recently spread worldwide. Although this has led to the availability of new sources of fossil fuels for domestic consumption and export, important issues have been raised concerning the safety of the process relative to public health, animal health, and our food supply. Because of the multiple toxicants used and generated, and because of the complexity of the drilling, hydraulic fracturing, and completion processes including associated infrastructure such as pipelines, compressor stations and processing plants, impacts on the health of humans and animals are difficult to assess definitively. We discuss here findings concerning the safety of unconventional oil and gas extraction from the perspectives of public health, veterinary medicine, and food safety.

  12. Applying the vantage PDMS to jack-up drilling ships

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Chen, Yuan-Ming; Cui, Tong-Kai; Wang, Zi-Shen; Gong, Li-Jiang; Yu, Xiang-Fen

    2009-09-01

    The plant design management system (PDMS) is an integrated application which includes a database and is useful when designing complex 3-D industrial projects. It could be used to simplify the most difficult part of a subsea oil extraction project—detailed pipeline design. It could also be used to integrate the design of equipment, structures, HVAC, E-ways as well as the detailed designs of other specialists. This article mainly examines the applicability of the Vantage PDMS database to pipeline projects involving jack-up drilling ships. It discusses the catalogue (CATA) of the pipeline, the spec-world (SPWL) of the pipeline, the bolt tables (BLTA) and so on. This article explains the main methods for CATA construction as well as problem in the process of construction. In this article, the authors point out matters needing attention when using the Vantage PDMS database in the design process and discuss partial solutions to these questions.

  13. Pulsed Nd:YAG laser selective ablation of surface enamel caries: II. Histology and clinical trials

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Goodis, Harold E.; White, Joel M.; Arcoria, Charles J.; Simon, James; Burkart, John; Yessik, Michael J.; Myers, Terry D.

    2000-03-01

    High intensity infrared light from the pulsed Nd:YAG dental laser is absorbed by pigmented carious enamel and not absorbed by normal enamel. Therefore, this system is capable of selective removal of surface enamel caries. Safety and efficacy of the clinical procedure was evaluated in two sets of clinical trials at three dental schools. Carious lesions were randomized to drill or laser treatment. Pulp vitality, surface condition, preparations and restorations were evaluated by blinded evaluators. In Study 1 surface caries were removed from 104 third molars scheduled for extraction. One week post-treatment teeth were extracted and the pulp was examined histologically. In Study 2 90 patients with 422 lesions on 376 teeth were randomized to laser or drill and followed for six months. There were no adverse events and both clinical and histological evaluations of pulp vitality showed no abnormalities. Caries were removed in all conditions. A significantly greater number of preparations in the drill groups vs. laser groups entered dentin (drill equals 11, laser equals 1, p less than 0.001). This indicates that the more conservative laser treatment removed the caries but not the sound enamel below the lesion.

  14. The physical state of finely dispersed soil-like systems with drilling sludge as an example

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Kol'Tsov, I. N.; Pepelov, I. L.; Kirichenko, A. V.; Sadovnikova, N. B.; Kinzhaev, R. R.

    2011-02-01

    The physical state and its dynamics were studied at the quantitative level for drilling sludge (finely dispersed waste of the oil industry). Using original methodological approaches, the main hydrophysical and technological properties of sludge samples were assessed for the first time, including the water retention curve, the specific surface, the water conductivity, the electrical conductivity, the porosity dynamics during shrinkage, the water yield, etc., which are used in the current models of water transfer and the behavior of these soil-like objects under real thermodynamic conditions. The technologically unfavorable phenomenon of the spontaneous swelling of sludge during the storage of drilling waste was theoretically explained. The water regime of the homogeneous 0.5-m thick drilling sludge layer under the free gravity outflow and permanent evaporation of water from the surface was analyzed using the HYDRUS-1D model. The high water retention capacity and the low water conductivity and water yield of sludge do not allow their drying to the three-phase state (with the entry of air) acceptable for terrestrial plants under humid climatic conditions, which explains the spontaneous transformation of sludge pits to only hydromorphic ecosystems.

  15. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2006-03-01

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7more » 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.« less

  16. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    NASA Astrophysics Data System (ADS)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  17. Performance profile of NCAA Division I men's basketball games and training sessions.

    PubMed

    Conte, D; Tessitore, A; Smiley, K; Thomas, C; Favero, T G

    2016-06-01

    This study aimed to analyse live and stoppage time phases, their ratio, and action played on half and full court in college basketball games. Differences were assessed for the entire games and between halves. Moreover, differences of the live/stoppage time ratio were analysed between games and game-based conditioning drills. Ten games as well as fifteen defensive, fourteen offensive and six scrimmage-type drills of the same division I men's college team (13 players) were analysed using time-motion analysis technique. Live and stoppage time were classified in five classes of duration: 1-20, 21-40, 41-60, 61-80, >80 seconds. Half court actions started and finished in the same half court. Full court actions were classified as transfer (TR) phases when at least 3 teammates crossed the mid-court line. TR phases were then classified in 5 classes of frequency: 1TR, 2TR, 3TR, 4TR, and >4TR. The results revealed no statistically significant differences between games or between halves for the considered parameters. The only significant difference was observed for live/stoppage time ratio between halves (p<0.001). Furthermore, a significant difference of the live/stoppage ratio was found between games and game-based drills (p<0.01). Post-hoc analysis demonstrated significant differences of scrimmage-type drills in comparison to games, and defensive and offensive drills (p<0.05), whereas no differences emerged for the other pairwise comparisons. The absence of differences between games in the analysed parameters might be important to characterize the model of performance in division I men's college games. Furthermore, these results encourage coaches to use game-based conditioning drills to replicate the LT/ST ratio documented during games.

  18. Bacterial contamination levels of autogenous bone particles collected by 3 different techniques for harvesting intraoral bone grafts.

    PubMed

    Manzano-Moreno, Francisco J; Herrera-Briones, Francisco J; Linares-Recatala, Macarena; Ocaña-Peinado, Francisco M; Reyes-Botella, Candela; Vallecillo-Capilla, Manuel F

    2015-03-01

    The aim of this study was to compare levels of bacterial contamination of autogenous bone collected when using low-speed drilling, a back-action chisel, and a bone filter. Bone tissue samples were taken from 31 patients who underwent surgical extraction of their third lower molars. Before surgical removal of the molar, bone particles were collected by a low-speed drill or a back-action chisel. Then, a stringent aspiration protocol was applied during the ostectomy to collect particulate bone by a bone filter. Processing of samples commenced immediately by incubation in an anaerobic or a CO2-rich atmosphere. The number of colony-forming units (CFUs) was determined at 48 hours of culture. No significant difference in the number of CFUs per milliliter was observed between the low-speed drilling group and the back-action chisel group in the anaerobic or CO2-rich condition (P = .34). However, significantly more micro-organisms were found in the bone filter group than in the low-speed drilling group or the back-action chisel group in the anaerobic and CO2-rich conditions (P < .001). Particulate bone harvested with low-speed drilling or a back-action chisel is safer for use as an autograft than are bone particles collected with a bone filter. These results suggest that bone obtained from low-speed drilling is safe and straightforward to harvest and could be the method of choice for collecting particulate bone. Further research is needed to lower the bacterial contamination levels of autogenous bone particles used as graft material. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Effects of a Short-Duration Stretching Drill After Pitching on Elbow and Shoulder Range of Motion in Professional Baseball Pitchers.

    PubMed

    Escamilla, Rafael F; Yamashiro, Kyle; Mikla, Tony; Collins, Jeff; Lieppman, Keith; Andrews, James R

    2017-03-01

    A glenohumeral internal rotation (IR) deficit or a total rotational motion (IR plus external rotation [ER]) deficit in the throwing shoulder compared with the nonthrowing shoulder has been shown to increase the risk of shoulder and elbow injuries. After a pitching session, both IR and total rotational motion deficits have been shown to occur naturally for an extended period of time in asymptomatic pitchers, but it is unclear how to best control these deficits between pitching sessions. Purpose/Hypothesis: The purpose of this study was to determine whether performing a short-duration stretching/calisthenics drill after pitching will result in an increase in IR, ER, total rotational motion, and elbow extension in professional baseball pitchers. It was hypothesized that these shoulder and elbow passive range of motion (PROM) measurements would all decrease after pitching but would subsequently return to prepitching values after the short-duration stretching/calisthenics drill. Controlled laboratory study. A convenience sample of 20 male professional baseball pitchers served as study participants. The following sequence of activities was performed for all participants: (1) a 5- to 10-minute dynamic warm-up consisting of running and light throwing, (2) elbow extension and IR and ER PROM measurements taken before pitching, (3) 40 full-effort pitches off the pitching mound, (4) 8 minutes of rest, (5) elbow extension and IR and ER PROM measurements taken after pitching, (6) a short-duration stretching/calisthenics drill (two-out drill), and (7) elbow extension and IR and ER PROM measurements taken after the two-out drill. A 1-way repeated-measures analysis of variance ( P < .05) was employed to assess differences in elbow extension, IR, ER, and total rotational motion in the 3 measurement conditions (prepitching, postpitching, and postdrill). To assess intrarater and interrater reliability, intraclass correlation coefficients (ICCs) were calculated, and the measurement error was calculated using the standard error of measurement (SEM). Significant differences were observed among the 3 conditions for ER ( P = .002), IR ( P = .027), and total rotational motion ( P < .001), but there was no significant difference in elbow extension ( P = .117). Bonferroni post hoc analyses revealed (1) significantly greater ER during prepitching and postdrill versus the postpitching condition (94° ± 7° [prepitching] and 94° ± 8° [postdrill] vs 88° ± 8°; P = .010 and .005, respectively), (2) significantly greater IR during prepitching and postdrill versus the postpitching condition (36° ± 10° [prepitching] and 35° ± 9° [postdrill] vs 30° ± 10°; P = .034 and .043, respectively), and (3) significantly greater total rotational motion during prepitching and postdrill versus the postpitching condition (129° ± 13° [prepitching] and 129° ± 13° [postdrill] vs 119° ± 13°; P = .034 and .004, respectively). There were no significant differences in ER, IR, or total rotational motion between the prepitching and postdrill conditions ( P > .999 for all). The intrarater reliability (ICC 3,1 ) was 0.91 for ER (SEM, 1.3°) and 0.90 for IR (SEM, 1.9°), and the interrater reliability (ICC 2,1 ) was 0.81 for ER (SEM, 3.3°) and 0.77 for IR (SEM, 4.3°). After a 40-pitch bullpen session, IR and ER PROM as well as total rotational motion were significantly lower than prepitching values; however, these deficits were restored back to their prepitching levels after the players performed the two-out drill, which may increase pitching performance and decrease the risk of shoulder and elbow injuries. More research is needed to test these hypotheses and assess the clinical efficacy of the two-out drill. The findings from the current study will assist clinicians better understand the positive effects of performing a short duration stretching/calisthenics drill on shoulder internal and external rotation range of motion between innings while pitching during a baseball game.

  20. Potential for thermal damage to the blood–brain barrier during craniotomy: implications for intracortical recording microelectrodes

    NASA Astrophysics Data System (ADS)

    Shoffstall, Andrew J.; Paiz, Jen E.; Miller, David M.; Rial, Griffin M.; Willis, Mitchell T.; Menendez, Dhariyat M.; Hostler, Stephen R.; Capadona, Jeffrey R.

    2018-06-01

    Objective. Our objective was to determine how readily disruption of the blood–brain barrier (BBB) occurred as a result of bone drilling during a craniotomy to implant microelectrodes in rat cortex. While the phenomenon of heat production during bone drilling is well known, practices to evade damage to the underlying brain tissue are inconsistently practiced and reported in the literature. Approach. We conducted a review of the intracortical microelectrode literature to summarize typical approaches to mitigate drill heating during rodent craniotomies. Post mortem skull-surface and transient brain-surface temperatures were experimentally recorded using an infrared camera and thermocouple, respectively. A number of drilling conditions were tested, including varying drill speed and continuous versus intermittent contact. In vivo BBB permeability was assayed 1 h after the craniotomy procedure using Evans blue dye. Main results. Of the reviewed papers that mentioned methods to mitigate thermal damage during craniotomy, saline irrigation was the most frequently cited (in six of seven papers). In post mortem tissues, we observed increases in skull-surface temperature ranging from  +3 °C to  +21 °C, dependent on drill speed. In vivo, pulsed-drilling (2 s-on/2 s-off) and slow-drilling speeds (1000 r.p.m.) were the most effective methods we studied to mitigate heating effects from drilling, while inconclusive results were obtained with saline irrigation. Significance. Neuroinflammation, initiated by damage to the BBB and perpetuated by the foreign body response, is thought to play a key role in premature failure of intracortical recording microelectrodes. This study demonstrates the extreme sensitivity of the BBB to overheating caused by bone drilling. To avoid damage to the BBB, the authors recommend that craniotomies be drilled with slow speeds and/or with intermittent drilling with complete removal of the drill from the skull during ‘off’ periods. While saline alone was ineffective at preventing overheating, its use is still recommended to remove bone dust from the surgical site and to augment other cooling methods.

  1. Optimisation of the geometry of the drill bit and process parameters for cutting hybrid composite/metal structures in new aircrafts

    NASA Astrophysics Data System (ADS)

    Isbilir, Ozden

    Owing to their desirable strength-to-weight characteristics, carbon fibre reinforced polymer composites have been favourite materials for structural applications in different industries such as aerospace, transport, sports and energy. They provide a weight reduction in whole structure and consequently decrease fuel consumption. The use of lightweight materials such as titanium and its alloys in modern aircrafts has also increased significantly in the last couple of decades. Titanium and its alloys offer high strength/weight ratio, high compressive and tensile strength at high temperatures, low density, excellent corrosion resistance, exceptional erosion resistance, superior fatigue resistance and relatively low modulus of elasticity. Although composite/metal hybrid structures are increasingly used in airframes nowadays, number of studies regarding drilling of composite/metal stacks is very limited. During drilling of multilayer materials different problems may arise due to very different attributes of these materials. Machining conditions of drilling such structures play an important role on tool wear, quality of holes and cost of machining.. The research work in this thesis is aimed to investigate drilling of CFRP/Ti6Al4V hybrid structure and to optimize process parameters and drill geometry. The research work consist complete experimental study including drilling tests, in-situ and post measurements and related analysis; and finite element analysis including fully 3-D finite element models. The experimental investigations focused on drilling outputs such as thrust force, torque, delamination, burr formation, surface roughness and tool wear. An algorithm was developed to analyse drilling induced delamination quantitatively based on the images. In the numerical analysis, novel 3-D finite element models of drilling of CFRP, Ti6Al4V and CFRP/Ti6Al4V hybrid structure were developed with the use of 3-D complex drill geometries. A user defined subroutine was developed to model material and failure behaviour of CFRP. The effects of process parameters on drilling outputs have been investigated and compared with the experimental results. The influences of drill bit geometries have been simulated in this study..

  2. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)

    PubMed Central

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

  3. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331).

    PubMed

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.

  4. The Effects of Bit Wear on Respirable Silica Dust, Noise and Productivity: A Hammer Drill Bench Study.

    PubMed

    Carty, Paul; Cooper, Michael R; Barr, Alan; Neitzel, Richard L; Balmes, John; Rempel, David

    2017-07-01

    Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between trials. When comparing results for the sharp (0 cm) versus dull bit (1560 cm), the mean respirable silica increased from 0.41 to 0.74 mg m-3 in sampler 1 (P = 0.012) and from 0.41 to 0.89 mg m-3 in sampler 2 (P = 0.024); levels above the NIOSH recommended exposure limit of 0.05 mg m-3. Likewise, mean noise levels increased from 112.8 to 114.4 dBA (P < 0.00001). Drilling productivity declined with increasing wear from 10.16 to 7.76 mm s-1 (P < 0.00001). Increasing bit wear was associated with increasing respirable silica dust and noise and reduced drilling productivity. The levels of dust and noise produced by these experimental conditions would require dust capture, hearing protection, and possibly respiratory protection. The findings support the adoption of a bit replacement program by construction contractors. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. Using DSDP/ODP/IODP core photographs and digital images in the classroom

    NASA Astrophysics Data System (ADS)

    Pereira, Hélder; Berenguer, Jean-Luc

    2017-04-01

    Since the late 1960's, several scientific ocean drilling programmes have been uncovering the history of the Earth hidden beneath the seafloor. The adventure began in 1968 with the Deep Sea Drilling Project (DSDP) and its special drill ship, the Glomar Challenger. The next stage was the Ocean Drilling Program (ODP) launched in 1985 with a new drill ship, the JOIDES Resolution. The exploration of the ocean seafloor continued, between 2003 and 2013, through the Integrated Ocean Drilling Program (IODP). During that time, in addition to the JOIDES Resolution, operated by the US, the scientists had at their service the Chikyu, operated by Japan, and Mission-Specific-Platforms, funded and implemented by the European Consortium for Ocean Research Drilling. Currently, scientific ocean drilling continues through the collaboration of scientists from 25 nations within the International Ocean Discovery Program (IODP). Over the last 50 years, the scientific ocean drilling expeditions conducted by these programmes have drilled and cored more than 3500 holes. The numerous sediment and rock samples recovered from the ocean floor have provided important insight on the active biological, chemical, and geological processes that have shaped the Earth over millions of years. During an expedition, once the 9.5-meter long cores arrive from the seafloor, the technicians label and cut them into 1.5-meter sections. Next, the shipboard scientists perform several analysis using non-destructive methods. Afterward, the technicians split the cores into two halves, the "working half", which scientists sample and use aboard the drilling platform, and the "archive half", which is kept in untouched condition after being visually described and photographed with a digital imaging system. The shipboard photographer also takes several close-up pictures of the archive-half core sections. This work presents some examples of how teachers can use DSDP/ODP/IODP core photographs and digital images, available through the Janus and LIMS online databases, to develop inquiry-based learning activities for secondary level students.

  6. Examination of the relationship between project management critical success factors and project success of oil and gas drilling projects

    NASA Astrophysics Data System (ADS)

    Alagba, Tonye J.

    Oil and gas drilling projects are the primary means by which oil companies recover large volumes of commercially available hydrocarbons from deep reservoirs. These types of projects are complex in nature, involving management of multiple stakeholder interfaces, multidisciplinary personnel, complex contractor relationships, and turbulent environmental and market conditions, necessitating the application of proven project management best practices and critical success factors (CSFs) to achieve success. Although there is some practitioner oriented literature on project management CSFs for drilling projects, none of these is based on empirical evidence, from research. In addition, the literature has reported alarming rates of oil and gas drilling project failure, which is attributable not to technical factors, but to failure of project management. The aim of this quantitative correlational study therefore, was to discover an empirically verified list of project management CSFs, which consistent application leads to successful implementation of oil and gas drilling projects. The study collected survey data online, from a random sample of 127 oil and gas drilling personnel who were members of LinkedIn's online community "Drilling Supervisors, Managers, and Engineers". The results of the study indicated that 10 project management factors are individually related to project success of oil and gas drilling projects. These 10 CSFs are namely; Project mission, Top management support, Project schedule/plan, Client consultation, Personnel, Technical tasks, Client acceptance, Monitoring and feedback, Communication, and Troubleshooting. In addition, the study found that the relationships between the 10 CSFs and drilling project success is unaffected by participant and project demographics---role of project personnel, and project location. The significance of these findings are both practical, and theoretical. Practically, application of an empirically verified CSFs list to oil and gas drilling projects could help oil companies improve the performance of future drilling projects. Theoretically, the study's findings may help to bridge a gap in the project management CSFs literature, and add to the general project management body of knowledge.

  7. Stability of GNSS Monumentation: Analysis of Co-Located Monuments in the UNAVCO Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Blume, F.; Herring, T.; Mattioli, G. S.; Feaux, K.; Walls, C. P.; Austin, K. E.; Dittmann, S. T.

    2017-12-01

    Geodetic-quality permanent GNSS stations have used a number of different monument styles for the purpose of ensuring that the motions of the GNSS antenna reflect those of the Earth's crust while minimizing non-tectonic motions near the surface. Monuments range from simple masts mounted on buildings or drilled into bedrock, costing a few hundred dollars to machine-drilled-braced monuments in soil costing tens of thousands. The stability of an individual monument will depend on its design, the construction techniques used to install it, and the local surface geology where it is installed. Previous studies have separately investigated pairs of identical monuments at a single site, monument type performance using global statistical analysis, and multiple monument styles at a single site, yet the stability of different monument types in similar geologic conditions has not been adequately determined. To better characterize the stability of various monument styles in diverse geologic conditions UNAVCO constructed two additional monuments at five existing PBO stations in 2013. Deep drilled-braced, short drilled-braced, and single mast type monuments were installed at sites with bedrock at the surface; deep drilled-braced, short driven-braced and pillar type monuments were installed at sites with alluvium or soil at the surface. The sites include a variety of geographic, hydrologic, and geologic conditions. Data collected from the PBO Multi-Monument Experiment have been analyzed using a variety of methods. Each site is characterized using quality-control parameters such as multipath, signal-to-noise and previously determined seasonal variations. High-precision processing by PBO Analysis Centers with GAMIT and GIPSY use regional and global schemes and yield time-series with millimeter-level that determine noise content, overall site stability relative to other PBO sites and differential motions between the individual monuments. Sub-millimeter results from single-frequency short-baseline processing efforts show further details of monument performance. Results show that while local site characteristics may dominate time-series stability, braced monuments outperform pillars in sediments, and an inexpensive mast installed in bedrock can be as stable as an expensive drilled-braced monument.

  8. Scale Model Simulation of Enhanced Geothermal Reservoir Creation

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Frash, L.; Hampton, J.

    2012-12-01

    Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm diameter may be drilled into the sample while at reservoir conditions. This allows for simulation of borehole damage as well as injector-producer schemes. Dual 70 MPa syringe pumps set to flow rates between 10 nL/min and 60 mL/min injecting into a partially cased borehole allow for fully contained fracturing treatments. A six sensor acoustic emission (AE) array is used for geometric fracture location estimation during intercept borehole drilling operations. Hydraulic sensors and a thermocouple array allow for additional monitoring and data collection as relevant to computer model validation as well as field test comparisons. The results from preliminary tests inside and outside of the cell demonstrate the functionality of the equipment while also providing some novel data on the propagation and flow characteristics of hydraulic fractures themselves.

  9. Hydrogeologic Prospection With Vlf (very Low Frequency) In A Low Potential Hard Rock Aquifer Near Beja (south Portugal)

    NASA Astrophysics Data System (ADS)

    Duque, J.

    The use of geophysics prospection in hydrogeology is widely used as a way to find groundwater under difficult hydrogeologic potential rocks. The porphyric rocks lay- ered in the northern part of Beja city, are the most unproductive regional aquifer. Usu- ally this aquifer has an upper layer of 5 to 15 meters deep of weathered rock and a second layer build by fractures rock till 30 metres deep. Above this deep the probabil- ity to find groundwater is extremely low. For instance it is a very superficial aquifer that usually accomplish the topographic surface. The water use is essential for human purposes and here are used mainly for human and cattle supply. In order verify the goodness of a geophysic method and at the same time to supply a large farm called Herdade da Apariça, it was performed the geophysical method of Very Low Frequency (VLF-EM) with ABEM (WADI) equipment, in three areas previously defined by inter- pretation of aerial photography, as zones that have relative hydrogeological potential. It was performed a total of 5 profiles with 1970 m. The geophysic prospecting and hydrogeologic research allowed to drill 5 boreholes, being 4 extraction wells and 1 piezometric well. The productivity of the abstraction wells are between 2,000 L/h and 10,000 L/h, which is a very good yield when compared with the other yield values get from wells inside this aquifer. VLF proved in this conditions to be an essential tool to increment the tax success of drilling wells.

  10. Lomonosov Ridge, Arctic Ocean: New MCS Data for the Definition of Targets for Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Y.; Coakley, B.; Hall, J. K.

    2001-12-01

    The 1500 km long and 50-150 km wide Lomonosov Ridge rises more than 3000 m above the adjacent abyssal plains, separating the Mesozoic-aged Amerasian basin from the Cenozoic-Recent Eurasian basin. Multichannel seismic reflection data collected from icebreakers on four cruises together with swath bathymetry and high resolution chirp sonar data collected by nuclear submarines across the central ridge show a cap of hemipelagic drape (c. 450 m thick) on top of normal faulted and peneplained sedimentary sequences, the remnants of the Mesozoic Barents margin, which pre-dates the opening of the Eurasian Basin. A new multichannel seismic survey to augment the site survey data base for ODP proposal 533 was carried out on the Lomonosov Ridge under difficult ice conditions in late July 2001 from the Swedish icebreaker Oden. The primary objectives of ODP Proposal 533 are to obtain continuous paleoceanographic records for most of the Cenozoic from the hemipelagic sequence and to sample the underlying passive margin sequence below the regional unconformity, which would provide the first direct constraints on the early tectonic history of the ridge. Of particular interest is the extent of mass wasting along the ridge perimeter. This regional unconformity offers an opportunity for implementing a strategy of offset shallow drill holes to obtain a complete hemi-pelagic section as well as to penetrate the regional unconformity. The new data, which will, in conjunction with the existing MCS data base, provide the first 3-D control on the passive margin structures and overlying unconformity, will be presented.

  11. Comparison of drilling reports and detailed geophysical analysis of ground-water production in bedrock wells

    USGS Publications Warehouse

    Paillet, Frederick; Duncanson, Russell

    1994-01-01

    The most extensive data base for fractured bedrock aquifers consists of drilling reports maintained by various state agencies. We investigated the accuracy and reliability of such reports by comparing a representative set of reports for nine wells drilled by conventional air percussion methods in granite with a suite of geophysical logs for the same wells designed to identify the depths of fractures intersecting the well bore which may have produced water during aquifer tests. Production estimates reported by the driller ranged from less than 1 to almost 10 gallons per minute. The moderate drawdowns maintained during subsequent production tests were associated with approximately the same flows as those measured when boreholes were dewatered during air percussion drilling. We believe the estimates of production during drilling and drawdown tests were similar because partial fracture zone dewatering during drilling prevented larger inflows otherwise expected from the steeper drawdowns during drilling. The fractures and fracture zones indicated on the drilling report and the amounts of water produced by these fractures during drilling generally agree with those identified from the geophysical log analysis. Most water production occurred from two fractured and weathered zones which are separated by an interval of unweathered granite. The fractures identified in the drilling reports show various depth discrepancies in comparison to the geophysical logs, which are subject to much better depth control. However, the depths of the fractures associated with water production on the drilling report are comparable to the depths of the fractures shown to be the source of water inflow in the geophysical log analysis. Other differences in the relative contribution of flow from fracture zones may by attributed to the differences between the hydraulic conditions during drilling, which represent large, prolonged drawdowns, and pumping tests, which consisted of smaller drawdowns maintained over shorter periods. We conclude that drilling reports filed by experienced well drillers contain useful information about the depth, thickness, degree of weathering, and production capacity of fracture zones supplying typical domestic water wells. The accuracy of this information could be improved if relatively simple and inexpensive geophysical well logs such as gamma, caliper, and normal resistivity logs were routinely run in conjunction with bedrock drilling projects.

  12. From frugivore to folivore: Altitudinal variations in the diet and feeding ecology of the Bioko Island drill (Mandrillus leucophaeus poensis).

    PubMed

    Owens, Jacob R; Honarvar, Shaya; Nessel, Mark; Hearn, Gail W

    2015-12-01

    Variation in the quality and availability of food resources can greatly influence the ecology, behavior, and conservation of wild primates. We studied the influence of altitudinal differences in resource availability on diet in wild drill monkeys (Mandrillus leucophaeus poensis) on Bioko Island, Equatorial Guinea. We compared fecal samples (n = 234) collected across three consecutive dry seasons for drills living in lowland (0-300 m asl) forest with nearby (18 km distance) drills living in montane forest (500-1000 m asl) in the Gran Caldera Southern Highlands Scientific Reserve. Lowland forest drills had a frugivorous diet very similar to that reported from studies on nearby mainland drills (M. l. leucophaeus) and mandrills (M. sphinx), with fruits comprising 90% of their dried fecal samples. However drills living in montane forest had a more folivorous diet, with herbaceous pith, leaves and fungi comprising 74% of their dried fecal samples and fruit becoming a minor component (24%). Furthermore, a dietary preference index indicated that the differences in the proportion of fruit and fibrous vegetation in the diets of lowland compared to montane drills was not simply a result of relative availability. Montane drills were actively consuming a higher mass of the available fruits and fibrous vegetation, a condition reflected in the greater mass of their fresh feces. Our results demonstrate the unexpected flexibility and complexity of dietary choices of this endangered species in two adjacent habitat types, a comparison of considerable importance for many other limited-range species faced with habitat loss and climate change. © 2015 Wiley Periodicals, Inc.

  13. Outokumpu Deep Drill Hole: Window to the Precambrian bedrock

    NASA Astrophysics Data System (ADS)

    Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo

    2017-04-01

    Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.

  14. Probing the Architecture of the Weathering Zone in a Tropical System in the Rio Icacos Watershed (Puerto Rico) With Drilling and Ground Penetrating Radar (GPR)

    NASA Astrophysics Data System (ADS)

    Orlando, J.; Comas, X.; Mount, G. J.; Brantley, S. L.

    2012-12-01

    Weathering processes in rapidly eroding systems such as humid tropical environments are complex and not well understood. The interface between weathered material (regolith) and non-weathered material (bedrock) is particularly important in these systems as it influences water infiltration and groundwater flow paths and movement. Furthermore, the spatial distribution of this interface is highly heterogeneous and difficult to image with conventional techniques such as direct coring and drilling. In this work we present results from a preliminary geophysical study in the Luquillo Critical Zone Observatory (LCZO) located in the rain forest in the Luquillo Mountains of northeastern Puerto Rico. The Luquillo Mountains are composed of volcaniclastic rocks which have been uplifted and metamorphosed by the Tertiary Rio Blanco quartz diorite intrusion. The Rio Blanco quartz diorite weathers spheroidally, creating corestones of relatively unweathered material that are surrounded by weathered rinds. A number of boreholes were drilled near the top of the Rio Icacos watershed, where the corestones are thought to be in the primary stages of formation, to constrain the regolith/bedrock interface and to provide an understanding of the depth to which corestones form. The depth of the water table was also a target goal in the project. Drilling reveals that corestones are forming in place, separated by fractures, even to depths of 10s of meters below ground surface. One borehole was drilled to a depth of about 25 meters and intersected up to 7 bedrock blocks (inferred to be incipient corestones) and the water table was measured at about 15 meters. Ground Penetrating Radar surveys were conducted in the same location to determine if GPR images variable thicknesses of saprolite overlying corestones. GPR common offset measurements and common midpoint surveys with 50, 100, and 200 MHz antenna frequencies were combined with borehole drillings in order to constrain geophysical results. We will compare drilling observations to GPR data to understand: 1) the lateral extent of the regolith-bedrock interface; 2) distribution of rindlets or spheroidal fracturing around corestones; and 3) presence and extent of corestones. This work has implications for understanding the rate of weathering advance and changes in permeability across rapidly eroding watersheds.

  15. Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.

  16. Challenges of using electrical resistivity method to locate karst conduits-A field case in the Inner Bluegrass Region, Kentucky

    USGS Publications Warehouse

    Zhu, J.; Currens, J.C.; Dinger, J.S.

    2011-01-01

    Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.

  17. Paleomagnetism of the Oman Ophiolite: New Results from Oman Drilling Project Cores

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Till, J. L.; Koornneef, L.; Usui, Y.; Kim, H.; Morris, A.

    2017-12-01

    The Oman Drilling Project drilled holes at four sites in a transect through the southern massifs of the Samail ophiolite, and recovered 1500 m of igneous and metamorphic rocks. We focus on three sites from the oceanic crustal section including lower layered gabbros (GT1A), the mid-crustal layered to foliated gabbro transition (GT2A), and the shallower transition from sheeted dikes to varitextured gabbros (GT3A). Detailed core descriptions, analyses, and paleomagnetic measurements, were made on D/V Chikyu from July to September 2017 to utilize the core laboratory facilities similar to IODP expeditions. Shipboard measurements included anisotropy of magnetic susceptibility (AMS) and alternating field and thermal demagnetization of 597 discrete samples. Sample demagnetization behavior is varied from each of the cores, with some revealing multiple components of magnetization, and others yielding nearly univectorial data. The interpretation of results from the lower crustal cores is complicated by the pervasive presence of secondary magnetite. In almost all samples, a stable component was resolved (interpreted as a characteristic remanent magnetization) after removal of a lower-coercivity or lower unblocking-temperature component. The inclinations of the stable components in the core reference frame are very consistent in Hole GT1A. However, a transition from negative to positive inclinations in GT2A suggests some structural complexity, possibly as a result of intense late faulting activity. Both abrupt and gradual transitions between multiple zones of negative and positive inclinations occur in Hole GT3A. Interpretation and direct comparison of remanence between drill sites is difficult as recovered core pieces currently remain azimuthally unoriented, and GT2A was drilled at a plunge of 60°, whereas GT1A and GT3A were both drilled vertically. Work is ongoing to use borehole imagery to reorient the core pieces and paleomagnetic data into a geographic in situ reference frame. We will present an overview of preliminary AMS and remanence data that will be used in the future to 1) document deformational histories, 2) characterize magmatic flow directions at different structural levels, and 3) identify the magnetic mineralogy of remanence carriers throughout the oceanic crustal section.

  18. Dynamic Blowout Risk Analysis Using Loss Functions.

    PubMed

    Abimbola, Majeed; Khan, Faisal

    2018-02-01

    Most risk analysis approaches are static; failing to capture evolving conditions. Blowout, the most feared accident during a drilling operation, is a complex and dynamic event. The traditional risk analysis methods are useful in the early design stage of drilling operation while falling short during evolving operational decision making. A new dynamic risk analysis approach is presented to capture evolving situations through dynamic probability and consequence models. The dynamic consequence models, the focus of this study, are developed in terms of loss functions. These models are subsequently integrated with the probability to estimate operational risk, providing a real-time risk analysis. The real-time evolving situation is considered dependent on the changing bottom-hole pressure as drilling progresses. The application of the methodology and models are demonstrated with a case study of an offshore drilling operation evolving to a blowout. © 2017 Society for Risk Analysis.

  19. Seismic and chronostratigraphic results from SHALDRIL II, northwestern Weddell Sea

    USGS Publications Warehouse

    Anderson, J.B.; Wellner, J.; Wise, S.; Bohaty, S.; Manley, P.; Smith, T.; Weaver, F.; Kulhanek, D.

    2007-01-01

    The 2006 SHALDRIL II cruise was conducted in the northwestern Weddell Sea, with primary drilling targets in the James Ross Basin. A site drilled along the northern edge of the James Ross Basin sampled either latest Eocene or earliest Oligocene deposits, providing a lower chronostratigraphic benchmark for our seismic stratigraphic age model. Severe sea ice conditions forced abandonment of several of the James Ross Basin sites. Three alternate sites were drilled along the southern flank of the Joinville Plateau. Seismic data from the area show a thick, southward dipping stratigraphic succession with no conspicuous gaps. Three drill sites sampled this succession and recovered Oligocene, middle Miocene, and early Pliocene strata overlain by a thin drape of Pleistocene deposits. The Pliocene-Miocene boundary appears to be represented by a disconformity within the cored interval. Otherwise, this is one of the most complete post-Eocene successions anywhere on Antarctica and its adjacent margins

  20. A systematic review on improving cognition in schizophrenia: which is the more commonly used type of training, practice or strategy learning?

    PubMed Central

    2014-01-01

    Background The purpose of this article was to conduct a review of the types of training offered to people with schizophrenia in order to help them develop strategies to cope with or compensate for neurocognitive or sociocognitive deficits. Methods We conducted a search of the literature using keywords such as “schizophrenia”, “training”, and “cognition” with the most popular databases of peer-reviewed journals. Results We reviewed 99 controlled studies in total (though nine did not have a control condition). We found that drill and practice training is used more often to retrain neurocognitive deficits while drill and strategy training is used more frequently in the context of sociocognitive remediation. Conclusions Hypotheses are suggested to better understand those results and future research is recommended to compare drill and strategy with drill and practice training for both social and neurocognitive deficits in schizophrenia. PMID:24885300

  1. Data transmission element for downhole drilling components

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  2. [Osteochondritis Dissecans in Children - Treated with Arthroscopic Drilling].

    PubMed

    Přidal, J; Šťastný, E; Trč, T; Havlas, V

    2017-01-01

    PURPOSE OF STUDY Osteochondritis dissecans (OCHD) is an increasingly diagnosed disease among adolescent patients. It is a condition affecting subchondral bone and the lining cartilage. If left untreated, it can cause destruction of cartilage of the affected joint leading to early development of arthrosis. Mostly affected joints are knees and ankles, but affected elbow and other joints have been described too. The purpose of our study is to present the patients diagnosed and treated surgically at our clinic with arthroscopic drilling in the period 2010-2015, and subsequently the clinical findings obtained at follow-up checks after the surgery. MATERIAL AND METHODS Between 2010 and 2015, a total of 34 patients (36 joints) underwent surgical treatment at our clinic. Their age ranged from 6 to 19 years at the time of surgery, 17 girls and 17 boys underwent the surgery. All the patients were treated with transarticular antegrade arthroscopic drilling. Each patient was diagnosed based on the clinical finding, radiographs, or MRI. The patients were followed after 6 weeks, thereafter 3, 6, and 12 months after the surgery. Each patient was evaluated based on the clinical findings (presence of swelling, range of motion, and pain according to VAS), and radiographs. RESULTS The preoperative VAS was 2.9 and dropped down to 1.5 at the first follow-up visit. None of the patients complained of pain at 1-year follow-up. 34 (out of 36) patients suffered joint swelling preoperatively, 6 weeks after the surgery only 9 patients presented with ongoing swelling, at 1-year follow-up no patient reported this problem. The X-ray findings showed regression in 35 of 36 patients one year after the surgery. One female patient underwent redo surgery because of an ongoing restriction of movement and X-ray finding persistence. DISCUSSION Majority of patients with OCHD can be treated conservatively. Physical activity modification and temporary immobilization are commonly used treatment methods of this condition. If conservative treatment is unsuccessful, arthroscopy should be considered. Stable lesions have a high chance of spontaneous healing without surgery. There is a variety of arthroscopic treatment methods. Mostly transarticular transchondral drilling is used to treat this condition. CONCLUSION Treatment of OCHD with arthroscopic drilling shows promising results in our cohort of patients. We recommend to use arthroscopic drilling in patients in stage I to III according to X-ray when 3 months of conservative treatment do not improve the clinical symptoms, swelling and restriction of movement. Antegrade drilling is the most frequently used treatment method in OCHD at our clinic, we consider this technique a simple and effective, with short surgical time needed. Key words: osteochondritis dissecans, treatment, arthroscopy, drilling.

  3. Sowing simulation tests of a pneumatic drill equipped with systems aimed at reducing the emission of abrasion dust from maize dressed seed.

    PubMed

    Biocca, Marcello; Conte, Elisa; Pulcini, Patrizio; Marinelli, Enzo; Pochi, Daniele

    2011-01-01

    The utilization of dressed seed for spring sowing is a widespread practice to control some pests with reduced doses of chemical products. However some insecticides employed in maize seed dressing, namely belonging to the neonicotinoid family and fipronil, have been claimed to play a role in the decline of honeybees (Apis mellifera L.). Pneumatic drills used in maize sowing are charged with contributing to the dispersion of the abrasion dust produced by dressed seeds, favoring the contamination of the honeybee habitat. Different devices similar to air deflectors have been introduced on pneumatic drills in order to reduce dust drift. During previous field tests carried out by the authors during recent years reduction of dust concentration both in the air and at soil surface has been shown as a consequence of their application. As field tests are affected by the variability of environmental parameters (namely wind speed and direction) the results are not always reliable, comparable and of a general validity. This paper refers to a sowing simulation test system in which pneumatic drills can be tested at a fixed point under controlled conditions of the main environmental parameters. In the test area, protected by external influences, artificial wind conditions are created by means of a fan. The drill, suitably placed in the test area, operates the seed distribution "sur place" by means of an electric engine connected to the drill's driving wheel. A 22.5 m long sampling area, leeward with respect to the drill position, has been identified. Along the sampling area a series of Petri dishes has been placed, with the aim of capturing the depositing dust and providing the concentration of the active ingredients (a.i.) at ground level. At the same time, three air samplers with PTFE diskette filters have been used for the detection of the a.i. The test system has been used for the test of a pneumatic drill, equipped with and without air deflectors, using maize seed dressed with four a. i. (imidacloprid, clothianidin, thiametoxam, fipronil). The results showed regularly decreasing of the concentrations as distance increased, both in the air and at ground level. Moreover, the difference determined by the adoption of the drift reducing device (air deflectors) resulted clear and it can be quantified at around 50 % of the a.i. amounts observed without deflectors. Finally, the paper proposes a data processing method that, from the values observed at fixed point, provides the theoretical a.i. concentration behavior that would occur in field, under the same conditions of wind speed and direction and working speed. The obtained results are coherent with previous field test.

  4. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...

  5. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...

  6. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...

  7. Survey of seismic conditions of drilling and blasting operations near overhead electricity power lines

    NASA Astrophysics Data System (ADS)

    Korshunov, G. I.; Afanasev, P. I.; Bulbasheva, I. A.

    2017-10-01

    The monitoring and survey results of drilling and blasting operations are specified during the development of Afanasyevsky deposit of cement raw materials for a 110 kV electricity power lines structure. Seismic explosion waves and air shock waves were registered in the course of monitoring. The dependency of peak particle velocities on the scaled distance and explosive weight by the delay time was obtained.

  8. Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Elphic, Richard C.; Forgione, Joshua; White, Bruce; McMurray, Robert; Cook, Amanda M.; Bielawski, Richard; Fritzler, Erin L.; Thompson, Sarah J.; hide

    2016-01-01

    In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method.

  9. Development of the RANCOR Rotary-Percussive Coring System for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Paulsen, Gale; Indyk, Stephen; Zacny, Kris

    2014-01-01

    A RANCOR drill was designed to fit a Mars Exploration Rover (MER) class vehicle. The low mass of 3 kg was achieved by using the same actuator for three functions: rotation, percussions, and core break-off. Initial testing of the drill exposed an unexpected behavior of an off-the-shelf sprag clutch used to couple and decouple rotary-percussive function from the core break off function. Failure of the sprag was due to the vibration induced during percussive drilling. The sprag clutch would back drive in conditions where it was expected to hold position. Although this did not affect the performance of the drill, it nevertheless reduced the quality of the cores produced. Ultimately, the sprag clutch was replaced with a custom ratchet system that allowed for some angular displacement without advancing in either direction. Replacing the sprag with the ratchet improved the collected core quality. Also, premature failure of a 300-series stainless steel percussion spring was observed. The 300-series percussion spring was ultimately replaced with a music wire spring based on performances of previously designed rotary-percussive drill systems.

  10. Beneficial Use of Drilling Waste - A Wetland Restoration Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioneer Natural Resources

    1999-07-01

    The results obtained thus far are promising with regard to the low toxicity of restored drill cuttings (particularly the Cameron substrate) with increasing levels of salinity. Water extraction, acid digestion, and interstitial water samples from the restored drill cuttings, as well as redox potential, soil pH and interstitial nitrate/ammonium concentrations, and the photosynthetic response, have been determined for the baseline fresh water condition (June-August 1998), at 9ppt (September-November 1998), at 18ppt (December-February 1998,1999), and at 27ppt (currently underway). Salinities will be brought to full-strength seawater (36ppt) on May 24, 1999. The Cameron drill cuttings are remarkably similar to dredge spoil,more » which is currently being used as a wetland creation substrate. The few elements that were extracted into the interstitial water were primarily cations (Ca, K, Mg) and were not elevated to a level that would pose a threat to wetlands productivity. Swaco drill cuttings remained high in aluminum with concomitant high pH, which likely resulted in limited plant productivity through hindered nutrient uptake.« less

  11. Professor M. M. Protod’yakonov’s Strength Coefficient f of Rocks,

    DTIC Science & Technology

    1981-11-12

    of rock strengths. Prof. A. F. Sukhanov citpd such arguments as the fact that clay is easy to drill but difficult to blast hbile granite is equally...two rocks. on the basis of theste exauFles A. F. Sukhanov concluded that the coefficients of drillability and blastability are not equal and are nct...his work (6] A. F. Sukhanov gives a consoliditcea table (32) of varicus indicas of mechanical properties of rocks. The coefficient of relative strength

  12. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite

    PubMed Central

    Alizadeh Ashrafi, Sina; Miller, Peter W.; Wandro, Kevin M.; Kim, Dave

    2016-01-01

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal. PMID:28773950

  13. Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.

    2017-12-01

    The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a flow test and eventual production of the well. The project is co-funded by the DEEPEGS project (EU H2020), HS Orka (the field operator), Statoil, the IDDP consortium, and the ICDP. Planning is underway to drill IDDP-3 at Hellisheidi.

  14. Imaging near surface mineral targets with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Dales, P.; Audet, P.; Olivier, G.

    2017-12-01

    To keep up with global metal and mineral demand, new ore-deposits have to be discovered on a regular basis. This task is becoming increasingly difficult, since easily accessible deposits have been exhausted to a large degree. The typical procedure for mineral exploration begins with geophysical surveys followed by a drilling program to investigate potential targets. Since the retrieved drill core samples are one-dimensional observations, the many holes needed to interpolate and interpret potential deposits can lead to very high costs. To reduce the amount of drilling, active seismic imaging is sometimes used as an intermediary, however the active sources (e.g. large vibrating trucks or explosive shots) are expensive and unsuitable for operation in remote or environmentally sensitive areas. In recent years, passive seismic imaging using ambient noise has emerged as a novel, low-cost and environmentally sensitive approach for exploring the sub-surface. This technique dispels with active seismic sources and instead uses ambient seismic noise such as ocean waves, traffic or minor earthquakes. Unfortunately at this point, passive surveys are not capable of reaching the required resolution to image the vast majority of the ore-bodies that are being explored. In this presentation, we will show the results of an experiment where ambient seismic noise recorded on 60 seismic stations was used to image a near-mine target. The target consists of a known ore-body that has been partially exhausted by mining efforts roughly 100 years ago. The experiment examined whether ambient seismic noise interferometry can be used to image the intact and exhausted ore deposit. A drilling campaign was also conducted near the target which offers the opportunity to compare the two methods. If the accuracy and resolution of passive seismic imaging can be improved to that of active surveys (and beyond), this method could become an inexpensive intermediary step in the exploration process and result in a large decrease in the amount of drilling required to investigate and identify high-grade ore deposits.

  15. The Iceland Deep Drilling Project 4.5 km deep well, IDDP-2, in the seawater-recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target

    NASA Astrophysics Data System (ADS)

    Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-11-01

    The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.

  16. A study of electro-osmosis as applied to drilling engineering

    NASA Astrophysics Data System (ADS)

    Hariharan, Peringandoor Raman

    In the present research project. the application of the process of electro-osmosis has been extended to a variety of rocks during the drilling operation. Electro-osmosis has been utilized extensively to examine its influence in reducing (i) bit balling, (ii) coefficient of friction between rock and metal and (iii) bit/tool wear. An attempt has been made to extend the envelope of confidence in which electro-osmosis was found to be operating satisfactorily. For all the above cases the current requirements during electro-osmosis were identified and were recorded. A novel test method providing repeatable results has been developed to study the problem of bit balling in the laboratory through the design of a special metallic bob simulating the drill bit. A numerical parameter described as the Degree-of-Balling (DOB) defined by the amount of cuttings stuck per unit volume of rock cut for the same duration of time is being proposed as a means to quantitatively describe the balling process in the laboratory. Five different types of shales (Pierre I & II, Catoosa, Mancos and Wellington) were compared and evaluated for balling characteristics and to determine the best conditions for reducing bit balling with electro-osmosis in a variety of drilling fluids including fresh water, polymer solutions and field type drilling fluids. Through the design, fabrication and performing of experiments conducted with a model Bottom Hole Assembly (BHA). the feasibility of maintaining the drill bit separately at a negative potential and causing the current to flow through the rock back into the string through a near bit stabilizer has been demonstrated. Experiments conducted with this self contained arrangement for the application of electro-osmosis have demonstrated a substantial decrease in balling and increase in the rate of penetration (ROP) while drilling with both a roller cone and PDC microbit (1-1/4" dia.) in Pierre I and Wellington shales. It is believed that the results obtained from the model BHA will aid in scaling up to a full-scale prototype BHA for possible application in the field. Experiments conducted with electro-osmosis in a simulated drill string under loaded conditions have clearly demonstrated that the coefficient of friction (mu) can be reduced at the interface of a rotating cylinder (simulating the drill-pipe) and a rock (usually a type of shale), through electro-osmosis. Studies examined the influence of many variables such as drilling fluid, rock type, and current on mu. The need for the correct estimation of mu is for reliable correlation between values obtained in the laboratory with those observed in the field. The knowledge of the coefficient of friction (mu) is an important requirement for drill string design and well trajectory planning. The use of electro-osmosis in reducing bit/tool wear through experiments in various rocks utilizing a specially designed steel bob simulating the drill bit has clearly indicated a decreased average tool wear, varying from 35% in Pierre I shale up to 57% in sandstone when used with the tool maintained at a cathodic DC potential. (Abstract shortened by UMI.)

  17. Dead Sea deep cores: A window into past climate and seismicity

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Ben-Avraham, Zvi; Goldstein, Steven L.

    2011-12-01

    The area surrounding the Dead Sea was the locus of humankind's migration out of Africa and thus has been the home of peoples since the Stone Age. For this reason, understanding the climate and tectonic history of the region provides valuable insight into archaeology and studies of human history and helps to gain a better picture of future climate and tectonic scenarios. The deposits at the bottom of the Dead Sea are a geological archive of the environmental conditions (e.g., rains, floods, dust storms, droughts) during ice ages and warm ages, as well as of seismic activity in this key region. An International Continental Scientific Drilling Program (ICDP) deep drilling project was performed in the Dead Sea between November 2010 and March 2011. The project was funded by the ICDP and agencies in Israel, Germany, Japan, Norway, Switzerland, and the United States. Drilling was conducted using the new Large Lake Drilling Facility (Figure 1), a barge with a drilling rig run by DOSECC, Inc. (Drilling, Observation and Sampling of the Earth's Continental Crust), a nonprofit corporation dedicated to advancing scientific drilling worldwide. The main purpose of the project was to recover a long, continuous core to provide a high resolution record of the paleoclimate, paleoenvironment, paleoseismicity, and paleomagnetism of the Dead Sea Basin. With this, scientists are beginning to piece together a record of the climate and seismic history of the Middle East during the past several hundred thousand years in millennial to decadal to annual time resolution.

  18. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not... royalty relief under § 203.41. If . . . Then . . . (a) Your lease has produced gas or oil from a well with... RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b...

  19. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling... has produced gas or oil from a well with a perforated interval the top of which is 18,000 feet TVD SS or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep...

  20. Drilling the Mediterranean Messinian Evaporites to Answer Key Questions Related to Massive Microbial Dolomite Formation under Hypersaline Alkaline Conditions

    NASA Astrophysics Data System (ADS)

    McKenzie, Judith A.; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2014-05-01

    Deep-sea drilling in the Mediterranean during DSSP Leg 13 in 1970 revealed the basin-wide occurrence of a Messinian evaporite formation. This spectacular discovery was pursued further during a subsequent drilling program, DSDP Leg 42A, in 1975, which was designed, in part, to obtain continuous cores to study the evolution of the salinity crisis itself (Hsü, Montadert, et al., 1978). Specifically, drilling at a water depth of 4,088 m in the Ionian Sea, DSDP Site 374: Messina Abyssal Plain, penetrated about 80 m into the uppermost part of the Messinian upper evaporite formation. The sedimentary sequence comprises dolomitic mudstone overlying dolomitic mudstone/gypsum cycles, which in turn overlie anhydrite and halite. The non-fossiliferous dolomitic mudstone is generally rich in organic carbon, with TOC values ranging from 0.9% to 5.3%, of possible marine origin with a good source rock potential. Commonly laminated dolomitic mudstones contain preserved filamentous cyanobacterial remains suggesting that conditions were conducive for microbial mat growth. The Ca-dolomite, composed of fine-grained anhedral crystals in the size range of 2-4 μm, is probably a primary precipitate. The unusual interstitial brines of the dolomitic mudstone units have very high alkalinities with a low pH of 5 to 6. The Mg concentration (2250 mmoles/l) is extremely elevated, whereas the Ca concentration is nearly zero. Finally, the drilled evaporite sedimentary sequence was interpreted as being deposited in an alkaline lake/sea ("Lago Mare"), which covered the area during the latest Messinian. Projecting forward 40 years since the DSDP Leg 42A drilling campaign, research into the factors controlling dolomite precipitation under Earth surface conditions has led to the development of new models involving the metabolism of microorganisms and associated biofilms to overcome the kinetic inhibitions associated with primary dolomite precipitation. Together with laboratory experiments, microbial dolomite precipitation has been studied extensively in rare modern environments, such as the arid coastal sabkhas of Abu Dhabi, UAE and the hypersaline coastal lagoons in Brazil. However, extrapolation of these studies of relatively limited aerial extent to interpret larger-scale, ancient dolomite formation of putative evaporitic origin remains elusive. Such ancient micritic dolomite formations with associated micro-porosity represent extremely valuable hydrocarbon reservoirs. Therefore, a comprehensive investigation of a relatively recent micritic dolomite deposit that has not experienced extensive burial depths and diagenesis is essential to extend our understanding of these important reservoir systems. Based on the limited data obtained during drilling at DSDP Site 374: Messina Abyssal Plain, the dolomitic mudstones of the uppermost Messinian evaporite complex represent an ideal candidate for such an extensive study in a "natural laboratory". Thus, to increase our understanding of the biogeochemical processes associated with ancient massive dolomite formation, we propose to document the scientific objectives to support a major new drilling campaign to study the sub-seafloor Messinian evaporite complex in the deep Mediterranean basins, using greatly enhanced drilling technology that is currently available within the new International Ocean Discovery Program (IODP). Hsü, K., Montadert, L. et al., 1978. Initial Reports of the Deep Sea Drilling Project, Volume 42, Part 1: Washington (U.S. Government Printing Office).

  1. Mud Gas Logging In A Deep Borehole: IODP Site C0002, Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Toczko, S.; Hammerschmidt, S.; Maeda, L.

    2014-12-01

    Mud logging, a tool in riser drilling, makes use of the essentially "closed-circuit" drilling mud flow between the drilling platform downhole to the bit and then back to the platform for analyses of gas from the formation in the drilling mud, cuttings from downhole, and a range of safety and operational parameters to monitor downhole drilling conditions. Scientific riser drilling, with coincident control over drilling mud, downhole pressure, and returning drilling mud analyses, has now been in use aboard the scientific riser drilling vessel Chikyu since 2009. International Ocean Discovery Program (IODP) Expedition 348, as part of the goal of reaching the plate boundary fault system near ~5000 mbsf, has now extended the deep riser hole (Hole C0002 N & P) to 3058.5 mbsf. The mud gas data discussed here are from two approximately parallel boreholes, one a kick-off from the other; 860-2329 mbsf (Hole C0002N) and 2163-3058 mbsf (Hole C0002P). An approximate overlap of 166 m between the holes allows for some slight depth comparison between the two holes. An additional 55 m overlap at the top of Hole C0002P exists where a 10-5/8-inch hole was cored, and then opened to 12-1/4-inch with logging while drilling (LWD) tools (Fig. 1). There are several fault zones revealed by LWD data, confirmed in one instance by coring. One of the defining formation characteristics of Holes C0002 N/P are the strongly dipping bedding planes, typically exceeding 60º. These fault zones and bedding planes can influence the methane/ethane concentrations found in the returning drilling mud. A focused comparison of free gas in drilling mud between one interval in Hole C0002 P, drilled first with a 10 5/8-inch coring bit and again with an 12 ¼-inch logging while drilling (LWD) bit is shown. Hole C0002N above this was cased all the way from the sea floor to the kick-off section. A fault interval (in pink) was identified from the recovered core section and from LWD resistivity and gamma. The plot of methane and ethane free gas (C1 and C2; ppmv) shows that the yield of free gas (primarily methane) was greater when the LWD bit returned to open the cored hole to a greater diameter. One possible explanation for this is the time delay between coring and LWD operations; approximately 3 days passed between the end of coring and the beginning of LWD (25-28 December 2013).

  2. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet

    PubMed Central

    Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.; Quartini, Enrica

    2014-01-01

    Heterogeneous hydrologic, lithologic, and geologic basal boundary conditions can exert strong control on the evolution, stability, and sea level contribution of marine ice sheets. Geothermal flux is one of the most dynamically critical ice sheet boundary conditions but is extremely difficult to constrain at the scale required to understand and predict the behavior of rapidly changing glaciers. This lack of observational constraint on geothermal flux is particularly problematic for the glacier catchments of the West Antarctic Ice Sheet within the low topography of the West Antarctic Rift System where geothermal fluxes are expected to be high, heterogeneous, and possibly transient. We use airborne radar sounding data with a subglacial water routing model to estimate the distribution of basal melting and geothermal flux beneath Thwaites Glacier, West Antarctica. We show that the Thwaites Glacier catchment has a minimum average geothermal flux of ∼114 ± 10 mW/m2 with areas of high flux exceeding 200 mW/m2 consistent with hypothesized rift-associated magmatic migration and volcanism. These areas of highest geothermal flux include the westernmost tributary of Thwaites Glacier adjacent to the subaerial Mount Takahe volcano and the upper reaches of the central tributary near the West Antarctic Ice Sheet Divide ice core drilling site. PMID:24927578

  3. Constraints on the Mineralogy of Gale Crater Mudstones from MSL SAM Evolved Water

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Sutter, B.; Franz, H. B.; Hogancamp, J. V. (Clark); Knudson, C. A.; Andrejkovicova, S.; Archer, P. D.; Eigenbrode, J. L.; Ming, D. W.; Mahaffy, P. R.

    2017-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analysed more than 150 micron fines from 14 sites at Gale Crater. Here we focus on the mudstone samples. Two were drilled from sites John Klein (JK) and Cumberland (CB) in the Sheepbed mudstone. Six were drilled from Murray Formation mudstone: Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP), Buckskin (BK), Oudam (OU), Marimba (MB). SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with X-ray diffraction (e.g., amorphous phases). Here we will focus on SAM H2O data and comparisons to SAM-like analyses of key reference materials.

  4. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in other holes at the M3.5 seismogenic zone. As we successfully conducted DCDA with the above-mentioned drilled core, we look forward to shedding light on spatial variations of stress in the seismogenic zones following our ICDP DSeis drilling. A M5.5 earthquake which took place near Orkney, South Africa on 5 August 2014, offers a special opportunity to compare seismically inverted spatio-temporal evolution of both the main rupture and the aftershock activity with the information directly probed by the ICDP DSeis project. Moyer et al. (2016 Seismol. Res. Lett. submitted) calls for comparing seismic source models as part of a workshop proposed to the Southern California Earthquake Center for Fall 2017. In addition, the upper edge of the M5.5 rupture is located hundreds of meters below the mining horizon, sufficiently away from anthropogenic activity. This allows geomicrobiologists to investigate deep microbiological activity fueled by H2 from seismic rupture to address questions about Earth's early life. Drilling machines are being rigged underground soon to kick off our ICDP DSeis drilling in early 2017.

  5. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less

  6. Large scale in-situ BOrehole and Geofluid Simulator (i.BOGS) for the development and testing of borehole technologies at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Duda, Mandy; Bracke, Rolf; Stöckhert, Ferdinand; Wittig, Volker

    2017-04-01

    A fundamental problem of technological applications related to the exploration and provision of geothermal energy is the inaccessibility of subsurface processes. As a result, actual reservoir properties can only be determined using (a) indirect measurement techniques such as seismic surveys, machine feedback and geophysical borehole logging, (b) laboratory experiments capable of simulating in-situ properties, but failing to preserve temporal and spatial scales, or vice versa, and (c) numerical simulations. Moreover, technological applications related to the drilling process, the completion and cementation of a wellbore or the stimulation and exploitation of the reservoir are exposed to high pressure and temperature conditions as well as corrosive environments resulting from both, rock formation and geofluid characteristics. To address fundamental and applied questions in the context of geothermal energy provision and subsurface exploration in general one of Europe's largest geoscientific laboratory infrastructures is introduced. The in-situ Borehole and Geofluid Simulator (i.BOGS) allows to simulate quasi scale-preserving processes at reservoir conditions up to depths of 5000 m and represents a large scale pressure vessel for iso-/hydrostatic and pore pressures up to 125 MPa and temperatures from -10°C to 180°C. The autoclave can either be filled with large rock core samples (25 cm in diameter, up to 3 m length) or with fluids and technical borehole devices (e.g. pumps, sensors). The pressure vessel is equipped with an ultrasound system for active transmission and passive recording of acoustic emissions, and can be complemented by additional sensors. The i.BOGS forms the basic module for the Match.BOGS finally consisting of three modules, i.e. (A) the i.BOGS, (B) the Drill.BOGS, a drilling module to be attached to the i.BOGS capable of applying realistic torques and contact forces to a drilling device that enters the i.BOGS, and (C) the Fluid.BOGS, a geofluid reactor for the composition of highly corrosive geofluids serving as synthetic groundwater / pore fluid in the i.BOGS. The i.BOGS will support scientists and engineers in developing instruments and applications such as drilling tooling and drillstrings, borehole cements and cementation procedures, geophysical tooling and sensors, or logging/measuring while drilling equipment, but will also contribute to optimized reservoir exploitation methods, for example related to stimulation techniques, pumping equipment and long-term reservoir accessibility.

  7. Wear Detection of Drill Bit by Image-based Technique

    NASA Astrophysics Data System (ADS)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  8. Optimal experimental design for placement of boreholes

    NASA Astrophysics Data System (ADS)

    Padalkina, Kateryna; Bücker, H. Martin; Seidler, Ralf; Rath, Volker; Marquart, Gabriele; Niederau, Jan; Herty, Michael

    2014-05-01

    Drilling for deep resources is an expensive endeavor. Among the many problems finding the optimal drilling location for boreholes is one of the challenging questions. We contribute to this discussion by using a simulation based assessment of possible future borehole locations. We study the problem of finding a new borehole location in a given geothermal reservoir in terms of a numerical optimization problem. In a geothermal reservoir the temporal and spatial distribution of temperature and hydraulic pressure may be simulated using the coupled differential equations for heat transport and mass and momentum conservation for Darcy flow. Within this model the permeability and thermal conductivity are dependent on the geological layers present in the subsurface model of the reservoir. In general, those values involve some uncertainty making it difficult to predict actual heat source in the ground. Within optimal experimental the question is which location and to which depth to drill the borehole in order to estimate conductivity and permeability with minimal uncertainty. We introduce a measure for computing the uncertainty based on simulations of the coupled differential equations. The measure is based on the Fisher information matrix of temperature data obtained through the simulations. We assume that the temperature data is available within the full borehole. A minimization of the measure representing the uncertainty in the unknown permeability and conductivity parameters is performed to determine the optimal borehole location. We present the theoretical framework as well as numerical results for several 2d subsurface models including up to six geological layers. Also, the effect of unknown layers on the introduced measure is studied. Finally, to obtain a more realistic estimate of optimal borehole locations, we couple the optimization to a cost model for deep drilling problems.

  9. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere.

    PubMed

    Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi

    2007-04-01

    International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.

  10. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  11. TOPSIS based parametric optimization of laser micro-drilling of TBC coated nickel based superalloy

    NASA Astrophysics Data System (ADS)

    Parthiban, K.; Duraiselvam, Muthukannan; Manivannan, R.

    2018-06-01

    The technique for order of preference by similarity ideal solution (TOPSIS) approach was used for optimizing the process parameters of laser micro-drilling of nickel superalloy C263 with Thermal Barrier Coating (TBC). Plasma spraying was used to deposit the TBC and a pico-second Nd:YAG pulsed laser was used to drill the specimens. Drilling angle, laser scan speed and number of passes were considered as input parameters. Based on the machining conditions, Taguchi L8 orthogonal array was used for conducting the experimental runs. The surface roughness and surface crack density (SCD) were considered as the output measures. The surface roughness was measured using 3D White Light Interferometer (WLI) and the crack density was measured using Scanning Electron Microscope (SEM). The optimized result achieved from this approach suggests reduced surface roughness and surface crack density. The holes drilled at an inclination angle of 45°, laser scan speed of 3 mm/s and 400 number of passes found to be optimum. From the Analysis of variance (ANOVA), inclination angle and number of passes were identified as the major influencing parameter. The optimized parameter combination exhibited a 19% improvement in surface finish and 12% reduction in SCD.

  12. Application of Formation Testing While Drilling (GeoTap) for acquiring formation pressure data from the Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real time. The GeoTap tester obtains direct pore-pressure measurements as the well is being drilled, with accuracy and precision comparable to that of wireline testers. The GeoTap service can eliminate the time, risk, and cost associated with running pipe-conveyed wireline test tools. It also measures annular and bore pressure while drilling, providing accurate, continuous, real-time hydrostatic pressure, and equivalent circulating density (ECD) information. This aids in determining and maintaining optimal mud weight, reduces formation damage, increases the rate of penetration, and increases operational safety. GeoTap benefits can be improvement of formation evaluation, real-time fluid gradients and fluid mobility (permeability/viscosity indicator), identification of fluid contact points, determination of reservoir connectivity/compartmentalization and depletion, increase safety of operation, determination of optimal mud weight and manage of ECD. We can also continuously monitor wellbore stability for assessments in order to reduce formation damage which in turns will help to increase drilling effectiveness (determine precise overbalance for maximizing ROP and continuously monitor hole-cleaning effectiveness with pressure-while-drilling, while reducing formation damage due to swab/surge). Save time and money by reducing rig down time associated with wireline testing. GeoTap Tool capable of performing more than 150 pressure tests per run and optional orientation of pressure measurement is available (top, right, bottom or left). GeoTap testing has been completed with encouraging results in many wells up to circa 3000m deep. Data has been acquired successfully both in a "Drill-Test-Drill' mode and a "Post-Drill-Test" mode. GeoTap tests have spanned wide ranges of borehole temperature, pressure, mobility as well as formation permeability and overbalance conditions. GeoTap tests in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic have proved that a logging while drilling approach can be successfully employed to acquire formation pressure data in open hole (which is also very useful for fluid gradient analysis, oil water and gas oil contacts delineation/identification).

  13. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Donnelly, Chris; Aldrich, Jack

    2012-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. Further, a large PARoD breadboard with 50.8 mm diameter bit was developed and its tests are currently underway. This paper presents the design, analysis and preliminary test results of the percussive augmenter.

  14. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    NASA Astrophysics Data System (ADS)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  15. Predation mechanisms of Rapana venosa (Gastropoda: Muricidae) in different biotopes along the Black Sea coast.

    PubMed

    Kosyan, Alisa

    2016-01-30

    Mechanisms of feeding by the invasive gastropod Rapana venosa from different biotopes of 11 sites along the Black Sea coast are discussed. Two methods--edge-drilling and suffocation--are used, but the prevailing method in a particular biotope depends on the type of bivalve prey. Drill signs were present on almost all shells of Chamelea gallina, captured by rapa whelks in field conditions, while in a field experiment, only 11% of all empty Mytilus galloprovincialis had drilling signatures. The degree of radula abrasion was also dependent on the available bivalves: it was the highest in biotopes with C. gallina and juvenile mussels, and the lowest in biotopes with large mussels. Intermediate degrees of abrasion were observed in biotopes with mixed prey: C. gallina and Anadara kagoshimensis, C. gallina and mussels, or small and large mussels. Since we observed only initial signs of drilling, simultaneous application of boring and suffocation could take place. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Development of an Ultra-Light Multipurpose Drill and Tooling for the Transportable Array in Alaska

    NASA Astrophysics Data System (ADS)

    Coyle, B. J.; Lundgren, M.; Busby, R. W.

    2014-12-01

    Over the next four years the EarthScope Transportable Array (TA) will install approximately 250 to 275 broadband seismic stations in Alaska and Western Canada. The station plans build on recent developments in posthole broadband seismometer design and call for sensors to be installed in boreholes 7 inches diameter, from 1 to 5 meters deep. These boreholes will be lined with PVC or steel casing, grouted in place. The proposed station locations are in a grid-like pattern with a nominal spacing of 85 km. Since most of these locations will only be accessible by helicopter, it was necessary to develop an ultra-light drilling system that could be transported to site in one sling load by a high performance light helicopter (i.e. AS350B2 or Bell 407) and still be able to drill the variety of ground conditions we expect to encounter. In the past year we have developed a working prototype, gasoline-hydraulic drill rig that can be configured to run auger, diamond core or DTH tools, and weighs <1,300 lbs, including tooling. We have successfully drilled over 30 boreholes with this drill, including 12 for TA installations in Alaska and 13 at the Piñon Flat Observatory for testing sensor performance and placement techniques. Our drilling solution comprises: - Hydraulic system using a variable flow pump with on-demand load sensing valves to reduce the engine size needed and to cut down on heat build-up; - Rotation head mounting system on the travelling block to enable quick change of drilling tools; - Low speed, high torque rotation head for the auger, and an anchoring system that enables us to apply up to 5,000 lbs downforce for augering in permafrost; - Custom DTH that can run on low air pressure and air flow, yet is still robust enough to drill a 7 inch hole 2.5 meters through solid rock; - One-trip casing advance drilling with the DTH, steel casing is loaded at the start of drilling and follows the drill bit down; - Grout-through bottom caps for sealing the borehole casing and cementing it in place. Our next step is to build a dedicated DTH drilling system that will be light enough to mobilize to sites in one helicopter sling, including an air compressor. This rig is currently on the drawing board and we expect to build it this winter for field testing in the spring.

  17. Inducible defenses in Olympia oysters in response to an invasive predator.

    PubMed

    Bible, Jillian M; Griffith, Kaylee R; Sanford, Eric

    2017-03-01

    The prey naiveté hypothesis suggests that native prey may be vulnerable to introduced predators because they have not evolved appropriate defenses. However, recent evidence suggests that native prey sometimes exhibit induced defenses to introduced predators, as a result of rapid evolution or other processes. We examined whether Olympia oysters (Ostrea lurida) display inducible defenses in the presence of an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea), and whether these responses vary among oyster populations from estuaries with and without this predator. We spawned oysters from six populations distributed among three estuaries in northern California, USA, and raised their offspring through two generations under common conditions to minimize effects of environmental history. We exposed second-generation oysters to cue treatments: drills eating oysters, drills eating barnacles, or control seawater. Oysters from all populations grew smaller shells when exposed to drill cues, and grew thicker and harder shells when those drills were eating oysters. Oysters exposed to drills eating other oysters were subsequently preyed upon at a slower rate. Although all oyster populations exhibited inducible defenses, oysters from the estuary with the greatest exposure to drills grew the smallest shells suggesting that oyster populations have evolved adaptive differences in the strength of their responses to predators. Our findings add to a growing body of literature that suggests that marine prey may be less likely to exhibit naiveté in the face of invasive predators than prey in communities that are more isolated from native predators, such as many freshwater and terrestrial island ecosystems.

  18. Linking downhole logging data with geology and drilling /coring operations - Example from Chicxulub Expedition 364.

    NASA Astrophysics Data System (ADS)

    Lofi, Johanna; Smith, Dave; Delahunty, Chris; Le Ber, Erwan; Mellet, Claire; Brun, Laurent; Henry, Gilles; Paris, Jehanne

    2017-04-01

    Expedition 364 was a joint IODP/ICDP mission specific platform expedition to explore the Chicxulub impact crater buried below the Yucatán continental shelf. In April and May 2016, our Expedition drilled a single borehole at Site M0077A into the crater's peak ring. It allowed recovering 303 excellent quality cores from 505.7 to 1334.7 meters below sea floor and acquiring more than 5.8 km of high resolution open hole logs. Downhole logs are rapidly collected, continuous with depth, and measured in situ; these data are classically interpreted in terms of stratigraphy, lithology, porosity, fluid content, geochemical composition and structure of the formation drilled. Downhole logs also allow assessing borehole quality (eg. shape and trajectory), and can provide assistance for decision support during drilling operations. In this work, Expedition 364 downhole logs are used to improve our understanding of the drilling/coring operation history. Differentiating between natural geological features and borehole artifacts are also critical for data quality assessment. The set of downhole geophysical tools used during Expedition 364 was constrained by the scientific objectives, drilling/coring technique, hole conditions and temperature at the drill site. Wireline logging data were acquired with slimline tools in three logging phases at intervals 0-503, 506-699 and 700-1334 mbsf. Logs were recorded either with standalone logging tools or, for the first time in IODP, with stackable slimline tools. Log data included total gamma radiation, sonic velocity, acoustic and optical borehole images, resistivity, conductivity, magnetic susceptibility, caliper and borehole fluid parameters. The majority of measurements were performed in open borehole conditions. During the drilling operations some problems were encountered directly linked to the geology of the drilled formation. For example, two zones of mud circulation losses correlate in depth with the presence of karst cavities or open faults, as evidenced from borehole wall images. Both form conduits probably open at a large scale as suggested by associated anomalies in the borehole fluid temperature profiles. When coring the basement, pieces of metal trapped outside the drill bit apparently led to an increase of the borehole tilt as well as to an enlargement of the hole, although this later remained sub-circular. In the post impact carbonates, 6-7 m long apparent cyclic oscillations in the magnetic field coupled to a spiral shape trajectory of the same wavelength suggest drilling induced artifacts and formation re-magnetization. Acknowledgements: Expedition 364 was funded by IODP with co-funding from ICDP and implemented by ECORD, with contributions and logistical support from the Yucatán state government and Universidad Nacional Autónoma de México. Drilling Services were provided by DOSECC Exploration Services. The downhole logging program was coordinated by EPC, as part of ESO. Expedition 364 Scientists: S. Gulick, J.V. Morgan, E. Chenot, G. Christeson, P. Claeys, C. Cockell, M.J. L. Coolen, L. Ferrière, C. Gebhardt, K. Goto, H. Jones, D.A. Kring, J. Lofi, X. Long, C. Lowery, C. Mellett, R. Ocampo-Torres, L. Perez-Cruz, A. Pickersgill, M. Poelchau, A. Rae, C. Rasmussen, M. Rebolledo-Vieyra, U. Riller, H. Sato, J. Smit, S. Tikoo, N. Tomioka, M. Whalen, A. Wittmann, J. Urrutia-Fucugauchi, K.E. Yamaguchi, W. Zylberman.

  19. Warpage optimisation on the moulded part with straight-drilled and conformal cooling channels using response surface methodology (RSM) and glowworm swarm optimisation (GSO)

    NASA Astrophysics Data System (ADS)

    Hazwan, M. H. M.; Shayfull, Z.; Sharif, S.; Nasir, S. M.; Zainal, N.

    2017-09-01

    In injection moulding process, quality and productivity are notably important and must be controlled for each product type produced. Quality is measured as the extent of warpage of moulded parts while productivity is measured as a duration of moulding cycle time. To control the quality, many researchers have introduced various of optimisation approaches which have been proven enhanced the quality of the moulded part produced. In order to improve the productivity of injection moulding process, some of researches have proposed the application of conformal cooling channels which have been proven reduced the duration of moulding cycle time. Therefore, this paper presents an application of alternative optimisation approach which is Response Surface Methodology (RSM) with Glowworm Swarm Optimisation (GSO) on the moulded part with straight-drilled and conformal cooling channels mould. This study examined the warpage condition of the moulded parts before and after optimisation work applied for both cooling channels. A front panel housing have been selected as a specimen and the performance of proposed optimisation approach have been analysed on the conventional straight-drilled cooling channels compared to the Milled Groove Square Shape (MGSS) conformal cooling channels by simulation analysis using Autodesk Moldflow Insight (AMI) 2013. Based on the results, melt temperature is the most significant factor contribute to the warpage condition and warpage have optimised by 39.1% after optimisation for straight-drilled cooling channels and cooling time is the most significant factor contribute to the warpage condition and warpage have optimised by 38.7% after optimisation for MGSS conformal cooling channels. In addition, the finding shows that the application of optimisation work on the conformal cooling channels offers the better quality and productivity of the moulded part produced.

  20. Simulation and Shoulder Dystocia.

    PubMed

    Shaddeau, Angela K; Deering, Shad

    2016-12-01

    Shoulder dystocia is an unpredictable obstetric emergency that requires prompt interventions to ensure optimal outcomes. Proper technique is important but difficult to train given the urgent and critical clinical situation. Simulation training for shoulder dystocia allows providers at all levels to practice technical and teamwork skills in a no-risk environment. Programs utilizing simulation training for this emergency have consistently demonstrated improved performance both during practice drills and in actual patients with significantly decreased risks of fetal injury. Given the evidence, simulation training for shoulder dystocia should be conducted at all institutions that provide delivery services.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, D.M.; Huffmyer, W.A.; Greener, J.M.

    This paper describes the geoscience and engineering aspects of the Opon Gas Field located in the Middle Magdalena Basin, Colombia. The remoteness and extreme downhole conditions make the drilling, completion, testing and geoscience interpretation of the two most recent Opon wells technically very challenging. Multiple faults, steep dips, rugged topography, a sensitive jungle environment and variable surface velocities complicate field definition. A full assessment of the commercial potential of the reservoir requires additional development drilling. Now in the early development stages, the Opon Gas Field has first production scheduled for late 1996.

  2. Production Characteristics of Oceanic Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2014-12-01

    Oceanic natural gas hydrate (NGH) accumulations form when natural gas is trapped thermodynamically within the gas hydrate stability zone (GHSZ), which extends downward from the seafloor in open ocean depths greater than about 500 metres. As water depths increase, the thickness of the GHSZ thickens, but economic NGH deposits probably occur no deeper than 1 km below the seafloor. Natural gas (mostly methane) appears to emanate mostly from deeper sources and migrates into the GHSZ. The natural gas crystallizes as NGH when the pressure - temperature conditions within the GHSZ are reached and when the chemical condition of dissolved gas concentration in pore water is high enough to favor crystallization. Although NGH can form in both primary and secondary porosity, the principal economic target appears to be turbidite sands on deep continental margins. Because these are very similar to the hosts of more deeply buried conventional gas and oil deposits, industry knows how to explore for them. Recent improvements in a seismic geotechnical approach to NGH identification and valuation have been confirmed by drilling in the northern Gulf of Mexico and allow for widespread exploration for NGH deposits to begin. NGH concentrations occur in the same semi-consolidated sediments in GHSZs worldwide. This provides for a narrow exploration window with low acoustic attenuation. These sediments present the same range of relatively easy drilling conditions and formation pressures that are only slightly greater than at the seafloor and are essentially equalized by water in wellbores. Expensive conventional drilling equipment is not required. NGH is the only hydrocarbon that is stable at its formation pressures and incapable of converting to gas without artificial stimulation. We suggest that specialized, NGH-specific drilling capability will offer opportunities for much less expensive drilling, more complex wellbore layouts that improve reservoir connectivity and in which gas-water separation can begin within the seafloor, and specialized production techniques. NGH is the only oceanic hydrocarbon deposit in which pressure can be controlled within the reservoir by balancing conversion and extraction. Oceanic NGH has a very low environmental risk, which also serves to distinguish it from other deepwater hydrocarbon deposits.

  3. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack

    2013-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10 N) which is important for operation at low gravity. This device can be made as light as 400 g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.

  4. Short-term Influence of Two Types of Drilling Fluids on Wastewater Treatment Rate and Eukaryotic Organisms of Activated Sludge in Sequencing Batch Reactors.

    PubMed

    Babko, Roman; Jaromin-Gleń, Katarzyna; Łagód, Grzegorz; Danko, Yaroslav; Kuzmina, Tatiana; Pawłowska, Małgorzata; Pawłowski, Artur

    2017-07-01

    This work presents the results of studies on the impact of spent drilling fluids cotreated with municipal wastewater on the rate of the wastewater treatment process and the structure of the community of eukaryotic organisms inhabiting an activated sludge. The studies were conducted under laboratory conditions in sequencing batch reactors. The effect of added polymer-potassium drilling fluid (DF1) and polymer drilling fluid (DF2) at dosages of 1 and 3% of wastewater volume on the rate of removal of total suspended solids, turbidity, chemical oxygen demand, and the content of total and ammonium nitrogen were analyzed, taking into account the values of these parameters measured at the end of each operating cycle. In addition to the impacts on the aforementioned physicochemical indices, the influence of drilling fluid on the biomass of various groups of eukaryotes in activated sludge was analyzed. The impact of the drilling fluid was highly dependent on its type and dosage. A noticeable slowdown in the rate of the wastewater treatment process and a negative effect on the organisms were observed after the addition of DF2. This effect intensified after an increase in fluid dose. However, no statistically significant negative changes were observed after the introduction of DF1. Conversely, the removal rate of some of the analyzed pollutant increased. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Stress magnitude and orientation in deep coalbed biosphere off Shimokita ~IODP Expedition337 drilling project

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Lin, W.; Yamada, Y.

    2015-12-01

    One of IODP expedition (Borehole C0020A) is located in the forearc basin formed by the subducting between Pacific plate and Eurasian plate off Shimokita Peninsula. This ~2.5km deep scientific drilling collected the high-resolution wire-line resistivity logging, caliper data, Dipole Sonic waveforms; geophysical properties measurements and core samples. The riser drilling operations produced one good conditions borehole even this drilling operation was applied right after 311 Tohoku earthquake. Based on the high-resolutions Formation Micro Imager (FMI) images, both breakout and tensile fractures along the borehole wall indicating the in-situ stress orientation are detected in the unwrapped resistivity images. In this research, a reasonable geomechanical model based on the breakout width and physical properties is constructed to estimate the stress magnitude profile in this borehole. Besides, the openhole leak-off test revealed the information of Shmin magnitude. In general, stress direction along the borehole is slight rotated to east with drilling to the bottom of the borehole. Geomechanical model constarined the principal stresses in Strike-slip stress regime to satisfy the occurrences of borehole enlargements and tensile fractures. Some blank zones with no borehole wall failure and vertical fractures indicated the stress anomaly might be controlled by local lithological facies. Comparing to the JFAST drilling, this site is out of Japan trench slip zone and shows almost parallel stress direcion to the trench (~90 degree apart of Shmin with Site C0019).

  6. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Tibbitts; Arnis Judzis

    2002-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2002 through March 2002. Accomplishments include the following: In accordance to Task 7.0 (D. No.2 Technical Publications) TerraTek, NETL, and the Industry Contributors successfully presented a paper detailing Phase 1 testing results at the February 2002 IADC/SPE Drilling Conference, a prestigious venue for presenting DOE and private sector drilling technology advances. The full reference is as follows: (1) IADC/SPE 74540 ''World's First Benchmarking of Drilling Mud Hammer Performance atmore » Depth Conditions'' authored by Gordon A. Tibbitts, TerraTek; Roy C. Long, US Department of Energy, Brian E. Miller, BP America, Inc.; Arnis Judzis, TerraTek; and Alan D. Black, TerraTek. Gordon Tibbitts, TerraTek, will presented the well-attended paper in February of 2002. The full text of the Mud Hammer paper was included in the last quarterly report. (2) The Phase 2 project planning meeting (Task 6) was held at ExxonMobil's Houston Greenspoint offices on February 22, 2002. In attendance were representatives from TerraTek, DOE, BP, ExxonMobil, PDVSA, Novatek, and SDS Digger Tools. (3) PDVSA has joined the advisory board to this DOE mud hammer project. PDVSA's commitment of cash and in-kind contributions were reported during the last quarter. (4) Strong Industry support remains for the DOE project. Both Andergauge and Smith Tools have expressed an interest in participating in the ''optimization'' phase of the program. The potential for increased testing with additional Industry cash support was discussed at the planning meeting in February 2002.« less

  7. Western USA groundwater drilling

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Perrone, D.

    2016-12-01

    Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.

  8. Workshop to develop deep-life continental scientific drilling projects

    DOE PAGES

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; ...

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore » a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.« less

  9. Mechanism of nanosecond laser drilling process of 4H-SiC for through substrate vias

    NASA Astrophysics Data System (ADS)

    Kim, Byunggi; Iida, Ryoichi; Doan, Duc Hong; Fushinobu, Kazuyoshi

    2017-06-01

    Role of optical parameters on nanosecond laser drilling of 4H-SiC was experimentally studied. Using ns pulsed Nd:YAG laser, parametric studies on effects of wavelength (1064 nm or 532 nm), beam profile (Gaussian or Bessel), and ambient condition (air or water) were conducted. The wavelengths which have large optical penetration depth were selected as wavefront has to propagate through materials to generate Bessel beam. The experimental results showed that carbonization of SiC surface accelerates thermal ablation of the materials with fluence under the lattice melting threshold. Especially, pattern of side lobes with small fluence was formed by irradiation of Bessel beam. The pattern disturbed penetration of wavefronts through materials. Implementation of water environment was not effective to suppress carbonization and had slight effect on improvement of drilling quality. For this reason, deep drilling with small entrance was not achieved using Bessel beam. Irradiation of 1064 nm Gaussian beam with large fluence led to formation of critical amount of re-solidified silicon due to the large optical penetration depth. Carbonization and silicon formation had a significant effect on unique fluence dependence of drilling depth. Absorption mechanism was studied as well to discuss effect of wavelength on processing characteristics.

  10. Geometry and material choices govern hard-rock drilling performance of PDC drag cutters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Jack LeRoy

    2005-06-01

    Sandia National Laboratories has partnered with industry on a multifaceted, baseline experimental study that supports the development of improved drag cutters for advanced drill bits. Different nonstandard cutter lots were produced and subjected to laboratory tests that evaluated the influence of selected design and processing parameters on cutter loads, wear, and durability pertinent to the penetration of hard rock with mechanical properties representative of formations encountered in geothermal or deep oil/gas drilling environments. The focus was on cutters incorporating ultrahard PDC (polycrystalline diamond compact) overlays (i.e., diamond tables) on tungsten-carbide substrates. Parameter variations included changes in cutter geometry, material composition,more » and processing conditions. Geometric variables were the diamond-table thickness, the cutting-edge profile, and the PDC/substrate interface configuration. Material and processing variables for the diamond table were, respectively, the diamond particle size and the sintering pressure applied during cutter fabrication. Complementary drop-impact, granite-log abrasion, linear cutting-force, and rotary-drilling tests examined the response of cutters from each lot. Substantial changes in behavior were observed from lot to lot, allowing the identification of features contributing major (factor of 10+) improvements in cutting performance for hard-rock applications. Recent field demonstrations highlight the advantages of employing enhanced cutter technology during challenging drilling operations.« less

  11. An Early Pleistocene high-resolution paleoclimate reconstruction from the West Turkana (Kenya) HSPDP drill site

    NASA Astrophysics Data System (ADS)

    Stockhecke, Mona; Beck, Catherine; Brown, Erik T.; Cohen, Andrew; Deocampo, Daniel M.; Feibel, Craig S.; Pelletier, Jon D.; Rabideaux, Nathane M.; Sier, Mark

    2016-04-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP), and the related Olorgesailie Drilling Project (ODP), recovered ~2 km of drill core since 2012. At the HSPDP West Turkana Kaitio (WTK) site a 216 m-long core that covers the Early Pleistocene time window (1.3 to 1.87 Ma) during which hominids first expanded out of Africa and marine records document reorganization of tropical climate and the development of the strong Walker circulation. WTK carries particular interest for paleoclimate and paleoenvironmental reconstructions as it is located only 2.5 km from the location of one of the most complete hominin skeletons ever recovered (Nariokotome Boy). XRF core scanning data provide a means of evaluating records of past environmental conditions continuously and at high resolution. However, the record contains complex lithologies reflecting repeated episodes of inundation and desiccation along a dynamic lake margin. Here we present a methodological approach to address the highly variable lithostratigraphy of the East African records to establish comprehensive paleoclimate timeseries. The power spectrum of the presented hydroclimate record peaks at Milankovitch cycles, qualifying HSPDP drill cores from the Turkana Basin to be used as high-resolution Early Pleistocene paleoclimate archive. Comparing these data with marine climate reconstructions sheds light into athmospheric processes and continental climate dynamics.

  12. Generating false negatives and false positives for As and Mo concentrations in groundwater due to well installation.

    PubMed

    Wallis, Ilka; Pichler, Thomas

    2018-08-01

    Groundwater monitoring relies on the acquisition of 'representative' groundwater samples, which should reflect the ambient water quality at a given location. However, drilling of a monitoring well for sample acquisition has the potential to perturb groundwater conditions to a point that may prove to be detrimental to the monitoring objective. Following installation of 20 monitoring wells in close geographic proximity in central Florida, opposing concentration trends for As and Mo were observed. In the first year after well installation As and Mo concentrations increased in some wells by a factor of 2, while in others As and Mo concentrations decreased by a factor of up to 100. Given this relatively short period of time, a natural change in groundwater composition of such magnitude is not expected, leaving well installation itself as the likely cause for the observed concentration changes. Hence, initial concentrations were identified as 'false negatives' if concentrations increased with time or as 'false positives' if concentrations decreased. False negatives were observed if concentrations were already high, i.e., the As or Mo were present at the time of drilling. False positives were observed if concentrations were relatively lower, i.e., As or Mo were present at low concentrations of approximately 1 to 2μg/L before drilling, but then released from the aquifer matrix as a result of drilling. Generally, As and Mo were present in the aquifer matrix in either pyrite or organic matter, both of which are susceptible to dissolution if redox conditions change due to the addition of oxygen. Thus, introduction of an oxidant into an anoxic aquifer through use of an oxygen saturated drilling fluid served as the conceptual model for the trends where concentrations decreased with time. Mixing between drilling fluid and groundwater (i.e., dilution) was used as the conceptual model for scenarios where increasing trends were observed. Conceptual models were successfully tested through formulation and application of data-driven reactive transport models, using the USGS code MODFLOW in conjunction with the reactive multicomponent transport code PHT3D. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Elastic anisotropy and borehole stress estimation in the Seve Nappe Complex from the COSC-1 well, Åre, Sweden.

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn; Almquist, Bjarne; Ask, Maria; Schmitt, Douglas R.; Zappone, Alba

    2015-04-01

    The Caledonian orogeny, preserved in Scandinavia and Greenland, began with the closure of the Iapetus Ocean and culminated in the collision of Baltica and Laurentia cratons during the middle Paleozoic. The COSC scientific drilling project aims at understanding the crustal structure and composition of the Scandinavian Caledonides. The first well of the dual phase drilling program, completed in Summer of 2014, drilled through ~2.5 km of the Seve Nappe Complex near the town of Åre, Sweden. Newly acquired drill core and borehole logs provide fresh core material for physical rock property measurements and in-situ stress determination. This contribution presents preliminary data on compressional and shear wave ultrasonic velocities (Vp, Vs) determined from laboratory measurements on drill cores, together with in-situ stress orientation analysis using image logs from the first borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-1). An hydrostatically oil pressurized apparatus is used to test the ultrasonic Vp and Vs on three orthogonally cut samples of amphibolite, calcium bearing and felsic gneiss, meta-gabbro, and mylonitic schist from drill core. We measure directional anisotropy variability for each lithology using one sample cut perpendicular to the foliation and two additional plugs cut parallel to the foliation with one parallel to the lineation and the other perpendicular. Measurements are performed using the pulse transmission technique on samples subjected to hydrostatic pressure from 1-350 MPa at dry conditions. We present preliminary results relating Vp and Vs anisotropy to geologic units and degree of deformation. Additionally, we use acoustic borehole televiewer logs to estimate the horizontal stress orientation making use of well developed techniques for observed borehole breakouts (compressive failure) and drilling induced fractures (tensile failure). Preliminary observations show that very few drilling-induced tensile fractures are produced, and that borehole breakouts are episodic and suggests a NE-SW minimum horizontal stress direction

  14. 46 CFR 107.283 - Certificate of Inspection: Conditions of validity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Certificate of Inspection: Conditions of validity. 107.283 Section 107.283 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.283 Certificate of...

  15. 46 CFR 107.283 - Certificate of Inspection: Conditions of validity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Certificate of Inspection: Conditions of validity. 107.283 Section 107.283 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.283 Certificate of...

  16. 46 CFR 107.283 - Certificate of Inspection: Conditions of validity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Certificate of Inspection: Conditions of validity. 107.283 Section 107.283 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.283 Certificate of...

  17. 46 CFR 107.283 - Certificate of Inspection: Conditions of validity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Certificate of Inspection: Conditions of validity. 107.283 Section 107.283 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.283 Certificate of...

  18. 46 CFR 107.283 - Certificate of Inspection: Conditions of validity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Certificate of Inspection: Conditions of validity. 107.283 Section 107.283 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.283 Certificate of...

  19. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  20. A Search for Life in the Subsurface At Rio Tinto Spain, An Analog To Searching For Life On Mars.

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2003-12-01

    Most familiar life forms on Earth live in the surface biosphere where liquid water, sunlight, and the essential chemical elements for life are abundant. However, such environments are not found on Mars or anywhere else in the solar system. On Mars, the surface environmental conditions of pressure and temperature prevent formation of liquid water. Furthermore, conditions at the Martian surface are unfavorable to life due to intense ultraviolet radiation and strong oxidizing compounds that destroy organic compounds. However, subsurface liquid water on Mars has been predicted on theoretical grounds. The recent discovery of near surface ground ice by the Mars Odyssey mission, and the abundant evidence for recent Gully features observed by the Mars Global Surveyor mission strengthen the case for subsurface liquid water on Mars. Thus, the strategy for searching for life on Mars points to drilling to the depth of liquid water, bringing samples to the surface and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. The MARTE (Mars Astrobiology Research and Technology Experiment) project is a field experiment focused on searching for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Rio Tinto, a river in southwestern Spain while also demonstrating technology relevant to searching for a subsurface biosphere on Mars. The Tinto river is located in the Iberian Pyrite belt, one of the largest deposits of sulfide minerals in the world. The surface (river) system is an acidic extreme environment produced and maintained by microbes that metabolize sulfide minerals and produce sulfuric acid as a byproduct. Evidence suggests that the river is a surface manifestation of an underground biochemical reactor. Organisms found in the river are capable of chemoautotrophic metabolism using sulfide and ferric iron mineral substrates, suggesting these organisms could thrive in groundwater which is the source of the Rio Tinto. The MARTE project will simulate the search for subsurface life on Mars using a drilling system developed for future Mars flight to accomplish subsurface access. Augmenting the drill are robotic systems for extracting the cores from the drill head and performing analysis using a suite of instruments to understand the composition, mineralogy, presence of organics, and to search for life signatures in subsurface samples. A robotic bore-hole inspection system will characterize borehole properties in situ. A Mars drilling mission simulation including remote operation of the drilling, sample handling, and instruments and interpretation of results by a remote science team will be performed. This simulated mission will be augmented by manual methods of drilling, sample handling, and sample analysis to fully document the subsurface, prevent surface microbial contamination, identify subsurface biota, and compare what can be learned with robotically-operated instruments. The first drilling campaign in the MARTE project takes place in September 2003 and is focused on characterizing the microbiology of the subsurface at Rio Tinto using conventional drilling, sample handling and laboratory analysis techniques. Lessons learned from this "ground truth" drilling campaign will guide the development of robotic systems and instruments needed for searching for life underground on Mars.

  1. Characterization of shallow unconsolidated aquifers in West Africa using different hydrogeological data sources as a contribution to the promotion of manual drilling and low cost techniques for groundwater exploration

    NASA Astrophysics Data System (ADS)

    Fussi, Fabio; Fumagalli, Letizia; Bonomi, Tullia; Kane, Cheikh H.; Fava, Francesco; Di Mauro, Biagio; Hamidou, Barry; Niang, Magatte; Wade, Souleye; Colombo, Roberto

    2016-04-01

    Manual drilling refers to several drilling methods that rely on human energy to construct a borehole and complete a water supply (Danert, 2015). It can be an effective strategy to increase access to groundwater in low income countries , but manual drilling can be applied only where shallow geological layers are relatively soft and water table is not too deep. It is important therefore to identify those zones where shallow hydrogeological conditions are suitable, investigating the characteristics of shallow porous aquifers. Existing hydrogeological studies are generally focused in the characterization of deep fractures aquifers, more productive and able to ensure water supply for large settlements. Information concerning shallow porous aquifers are limited. This research has been carried out in two different study areas in West Africa (North-Western Senegal and Eastern Guinea). Aim of the research is the characterization of shallow aquifer using different methods and the identification of hydrogeological condition suitable for manual drilling implementation. Three different methods to estimate geometry and hydraulic properties of shallow unconsolidated aquifers have been used: The first method is based on the analysis of stratigraphic data obtained from borehole logs of the national water point database in both countries. The following steps have been implemented on the original information using the software TANGAFRIC, specifically designed for this study: a) identification of most frequent terms used for hydrogeological description in Senegal and Guinea database; b) definition of standard categories and manual codification of data; c) automatic extraction of average distribution of textural classes at different depth intervals in the unconsolidated aquifer; d) estimation of hydraulic parameters using conversion tables between texture and hydraulic conductivity available in the literature. . The second method is based on the interpretation of pump and recovery test in large diameter wells. K values obtained from these tests provide direct information on hydraulic parameters of shallow porous aquifers (while pump tests data obtained from deep mechanized boreholes, exploiting fractured aquifers, cannot be considered representative for the target shallow aquifer of manual drilling). The third method is based on the interpretation of stratigraphic logs and simplified pump test from manual drilled wells carried out since 2012 in Guinea. In this country a standard and systematic procedure to collect hydrogeological data from these wells (therefore indicating properties of shallow aquifer) has been put in place in 2011; it is considered one of the best example worldwide about technical data collection and systematization from manual drilling activities, but its development has been stopped because of the outbreak of Ebola in this country. The integration of these 3 methods allow to estimate geometry and hydraulic behavior of shallow unconsolidated aquifer, identifying those areas where manual drilling is feasible and estimating potential yield that can be extracted. In the mean time this research provides relevant indications concerning the use of data obtained from low cost open hand dug or manually drilled wells (rarely used in hydrogeological research) for groundwater exploration of shallow aquifers.

  2. Preliminary report on part of the Oat Hill quicksilver mine, Mayacmas district, Napa County, California

    USGS Publications Warehouse

    Fix, Philip Forsyth

    1955-01-01

    Oat Hill quicksilver mine, located in the Mayacmas district of northern California, and credited with having produced more than 160,000 flasks of quicksilver, was sampled cooperatively by the Buray of Mines and Geological Survey during 1944. 28 diamond drill holes totaling 8,120 feet were drilled by the Bureau of Mines in four of the six principal veins to sample virgin low-grade reserves and stope fill, and reserves in the other two veins were estimated from existing underground workings and by inferences from drill holes in nearby veins. The writer estimates a total of 10,220 flasks of quicksilver in indicated and inferred reserves totaling 320,000 tons. Indicated reserves minable under 1943 conditions are estimated at 1,960 flasks of quicksilver in 75,000 tons averaging 3.0 lbs Hg per ton. Inferred reserves minable under 1943 conditions are estimated at 4,640 flasks of quicksilver in 109,920 tons averaging about 3.2 lbs Hg per ton. Inferred reserves believed minable only under economic conditions much more favorable than even those of 1943 are estimated at 2,620 flasks of quicksilver in 135,080 tons averaging a little less than 1.5 lbs Hg per ton. About two-thirds of the indicated reserves are accessible in underground workings. All other reserves are estimated approximately without access underground. Several areas not sampled may possibly contain reserves.

  3. Reverse engineering of wörner type drilling machine structure.

    NASA Astrophysics Data System (ADS)

    Wibowo, A.; Belly, I.; llhamsyah, R.; Indrawanto; Yuwana, Y.

    2018-03-01

    A product design needs to be modified based on the conditions of production facilities and existing resource capabilities without reducing the functional aspects of the product itself. This paper describes the reverse engineering process of the main structure of the wörner type drilling machine to obtain a machine structure design that can be made by resources with limited ability by using simple processes. Some structural, functional and the work mechanism analyzes have been performed to understand the function and role of each basic components. The process of dismantling of the drilling machine and measuring each of the basic components was performed to obtain sets of the geometry and size data of each component. The geometric model of each structure components and the machine assembly were built to facilitate the simulation process and machine performance analysis that refers to ISO standard of drilling machine. The tolerance stackup analysis also performed to determine the type and value of geometrical and dimensional tolerances, which could affect the ease of the components to be manufactured and assembled

  4. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  5. Impact of Drilling Operations on Lunar Volatiles Capture: Thermal Vacuum Tests

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Paulsen, Gale; Zacny, Kris; Smith, Jim

    2015-01-01

    In Situ Resource Utilization (ISRU) enables future planetary exploration by using local resources to supply mission consumables. This idea of 'living off the land' has the potential to reduce mission cost and risk. On the moon, water has been identified as a potential resource (for life support or propellant) at the lunar poles, where it exists as ice in the subsurface. However, the depth and content of this resource has yet to be confirmed on the ground; only remote detection data exists. The upcoming Resource Prospector mission (RP) will 'ground-truth' the water using a rover, drill, and the RESOLVE science package. As the 2020 planned mission date nears, component level hardware is being tested in relevant lunar conditions (thermal vacuum). In August 2014 a series of drilling tests were performed using the Honeybee Robotics Lunar Prospecting Drill inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The drill used a unique auger design to capture and retain the lunar regolith simulant. The goal of these tests was to investigate volatiles (water) loss during drilling and sample transfer to a sample crucible in order to validate this regolith sampling method. Twelve soil samples were captured over the course of two tests at pressures of 10(exp-5) Torr and ambient temperatures between -80C to -20C. Each sample was obtained from a depth of 40 cm to 50 cm within a cryogenically frozen bed of NU-LHT-3M lunar regolith simulant doped with 5 wt% water. Upon acquisition, each sample was transferred and hermetically sealed inside a crucible. The samples were later baked out to determine water wt% and in turn volatile loss by following ASTM standard practices. Of the twelve tests, four sealed properly and lost an average of 30% of their available water during drilling and transfer. The variability in the results correlated well with ambient temperature (lower the temperature lower volatiles loss) and the trend agreed with the sublimation rates for the same temperature. Moisture retention also correlated with quantity of sample: a larger amount of material resulted in less water loss. The drilling process took an average of 10 minutes to capture and transfer each sample. The drilling power was approximately 20 Watt with a Weight on Bit of approximately 30 N. The bit temperature indicated little heat input into formation during the drilling process.

  6. Environmental Assessment for Atlantic White Cedar Restoration Project at Dare County Range, Seymour Johnson Air Force Base, North Carolina

    DTIC Science & Technology

    2014-12-23

    bond of$5,000 with ENR running to Stale of NC: conditional that n Permit to drill exploratory oil or gas well m1y well opened by drill operator shall...Native American Consultation B – U.S. Fish and Wildlife Service Endangered Species Consultation C – Greenhouse Gas Estimates D – Air Emissions...on the north by the Albemarle Sound, on the west by the Alligator River, on the east by the Croatan Sound, and on the southeast by the Pamlico Sound

  7. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    PubMed Central

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-01-01

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130

  8. Experimenting with sodar in support of emergency preparedness at Three Mile Island-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heck, W.J.

    1989-01-01

    In November 1988 at Three Mile Island Unit 1 (TMI-1), GPU Nuclear successfully completed the annual drill-for-grade that, from a modeling point of view, broke new ground for this plant. The meteorological and modeling aspects of the drill scenario were unprecedented for two reasons. First, the plume was buoyant and rose far above the height of the meteorological tower located at TMI. Second, the wind direction data from the meteorological tower were not representative of the wind direction at plume height. In the drill scenario, the buoyant plume resulted from a steam generator tube rupture where the steam ejects directlymore » into the atmosphere via safety relief valves. Plume modeling indicated that the plume would rise to 400 ft, given the scenario meteorology. Wind data from the on-site meteorological tower, however, was only available up to 150 ft. Comparisons of sodar and tower winds were made for various weather conditions. Sodar results were studied in detail during light, moderate, and high winds; various wind directions; occurrences of rain and snow; and by time of day to determine effects of diurnal meteorological conditions on sodar performance.« less

  9. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    PubMed

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  10. Anterior clinoidectomy using an extradural and intradural 2-step hybrid technique.

    PubMed

    Tayebi Meybodi, Ali; Lawton, Michael T; Yousef, Sonia; Guo, Xiaoming; González Sánchez, Jose Juan; Tabani, Halima; García, Sergio; Burkhardt, Jan-Karl; Benet, Arnau

    2018-02-23

    Anterior clinoidectomy is a difficult yet essential technique in skull base surgery. Two main techniques (extradural and intradural) with multiple modifications have been proposed to increase efficiency and avoid complications. In this study, the authors sought to develop a hybrid technique based on localization of the optic strut (OS) to combine the advantages and avoid the disadvantages of both techniques. Ten cadaveric specimens were prepared for surgical simulation. After a standard pterional craniotomy, the anterior clinoid process (ACP) was resected in 2 steps. The segment anterior to the OS was resected extradurally, while the segment posterior to the OS was resected intradurally. The proposed technique was performed in 6 clinical cases to evaluate its safety and efficiency. Anterior clinoidectomy was successfully performed in all cadaveric specimens and all 6 patients by using the proposed technique. The extradural phase enabled early decompression of the optic nerve while avoiding the adjacent internal carotid artery. The OS was drilled intradurally under direct visualization of the adjacent neurovascular structures. The described landmarks were easily identifiable and applicable in the surgically treated patients. No operative complication was encountered. A proposed 2-step hybrid technique combines the advantages of the extradural and intradural techniques while avoiding their disadvantages. This technique allows reduced intradural drilling and subarachnoid bone dust deposition. Moreover, the most critical part of the clinoidectomy-that is, drilling of the OS and removal of the body of the ACP-is left for the intradural phase, when critical neurovascular structures can be directly viewed.

  11. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated inmore » hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.« less

  12. Rehabilitation with 4 zygomatic implants with a new surgical protocol using ultrasonic technique.

    PubMed

    Mozzati, Marco; Mortellaro, Carmen; Arata, Valentina; Gallesio, Giorgia; Previgliano, Valter

    2015-05-01

    When the residual bone crest cannot allow the placement of standard implants, the treatment for complete arch rehabilitation of severely atrophic maxillae can be performed with 4 zygomatic implants (ZIs) and immediate function with predictable results in terms of aesthetics, function, and comfort for the patient. However, even if ZIs' rehabilitations showed a good success rate, this surgery is difficult and need a skillful operator. Complications in this kind of rehabilitation are not uncommon; the main difficulties can be related to the reduced surgical visibility and instrument control in a critical anatomic area. All the surgical protocols described in the literature used drilling techniques. Furthermore, the use of ultrasonic instruments in implant surgery compared with drilling instruments have shown advantages in many aspects of surgical procedures, tissues management, enhancement of control, surgical visualization, and healing. The aim of this study was to report on the preliminary experience using ultrasound technique for ZIs surgery in terms of safety and technical improvement. Ten consecutive patients with severely atrophic maxilla have been treated with 4 ZIs and immediate complete arch acrylic resin provisional prostheses. The patients were followed up from 30 to 32 months evaluating implant success, prosthetic success, and patient satisfaction with a questionnaire. No implants were lost during the study period, with a 100% implant and prosthetic success rate. Within the limitations of this preliminary study, these data indicate that ultrasonic implant site preparation for ZIs can be a good alternative to the drilling technique and an improvement for the surgeon.

  13. Pavement/sub-grade condition assessment I-65 approximate milepost 97.5 (transition from asphalt) to 102.5 (KY 313 overpass).

    DOT National Transportation Integrated Search

    2005-06-01

    In efforts to perform an assessment of both the existing pavement and the underlying subgrade conditions, the Kentucky Transportation Center employed the use of three types of equipment/infrastructure analyzers: drill truck for taking field cores; fa...

  14. Promoting Response Variability and Stimulus Generalization in Martial Arts Training

    ERIC Educational Resources Information Center

    Harding, Jay W.; Wacker, David P.; Berg, Wendy K.; Rick, Gary; Lee, John F.

    2004-01-01

    The effects of reinforcement and extinction on response variability and stimulus generalization in the punching and kicking techniques of 2 martial arts students were evaluated across drill and sparring conditions. During both conditions, the students were asked to demonstrate different techniques in response to an instructor's punching attack.…

  15. Drilling into seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines (DSeis)

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Cichowicz, Artur; Onstott, Tullis; Kieft, Tom; Boettcher, Margaret; Wiemer, Stefan; Ziegler, Martin; Janssen, Christoph; Shapiro, Serge; Gupta, Harsh; Dight, Phil

    2016-04-01

    Several times a year, mining-induced earthquakes with magnitudes equal to or larger than 2 take place only a few tens of meters away from active workings in South African gold mines at depths of up to 3.4 km. The largest event recorded in mining regions, a M5.5 earthquake, took place near Orkney, South Africa on 5 August 2014, with the upper edge of the activated fault being only some hundred meters below the nearest mine workings (3.0 km depth). This is one of the rare events for which detailed seismological data are available, both from surface and underground seismometers and strainmeters, allowing for a detailed seismological analysis and comparison with in-situ observed data. Therefore, this earthquake calls for drilling to investigate the seismogenic zones before aftershocks diminish. Such a project will have a significantly better spatial coverage (including nuclei of ruptures, strong motion sources, asperities, and rupture edges) than drilling in seismogenic zones of natural large earthquakes and will be possible with a lower risk and at much smaller costs. In seismogenic zones in a critical state of stress, it is difficult to delineate reliably the local spatial variation in both directions and magnitudes of principal stresses (3D full stress tensor) reliably. However, we have overcome this problem. We are able to numerically model stress better than before, enabling us to orient boreholes so that the chance of stress-induced damage during stress measurement is minimized, and enabling us to measure the full 3D stress tensor successively in a hole within reasonable time even when stresses are as large as those expected in seismogenic zones. Better recovery of cores with less stress-induced damage during drilling is also feasible. These will allow us to address key scientific questions in earthquake science and associated deep biosphere activities which have remained elusive. We held a 4-day workshop sponsored by ICDP and Ritsumeikan University in October/November 2015, which confirmed the great scientific value as well as technical feasibility, flexibility, and cost-effectiveness of drilling into the targets which have already been well seismologically probed. The value will be maximized if we combine outcomes from a limited number of holes drilled from 3 km depth into the M5.5 seismogenic zones (~ 4 km depth) with larger number of boreholes from mining horizons into the other targets (M~2 faults) already extensively exhumed by mining or which will be in future. We could have additional inputs during the 2015 AGU Fall Meeting period. We intend to start drilling before the M5.5 aftershocks diminish or mining around the M2.8 fault starts to alter stress considerably.

  16. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling.

    PubMed

    Yu, Huawei; Sun, Jianmeng; Wang, Jiaxin; Gardner, Robin P

    2011-09-01

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Greenhouse to Icehouse Antarctic Paleoclimate and Ice History from George V Land and Adélie Land Shelf Sediments

    NASA Astrophysics Data System (ADS)

    Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.

    2013-12-01

    Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice sheet instability in analogous future warm climates.

  18. Progress in the Mallik 2002 Data and Information System

    NASA Astrophysics Data System (ADS)

    Loewner, R.; Conze, R.; Laframboise, R. R.; Working Group, M.

    2002-12-01

    Since December 2001 scientific investigations in a gas hydrate research well program were undertaken in the Mackenzie Delta in the Canadian Arctic, supported by a new Data and Information System. The program comprised a main production well and two scientific observation wells. During the drilling period of the main Mallik well hole we were able to elaborate an information system very close in time and space to the activities and operations at the drill site and in the laboratories of the Inuvik Research Center. Due to the particular conditions and characteristics of Methane Drilling Projects, the technical realization and the structure of the data management required adapted individual solutions. On the one hand, the physical properties of the Methane and the climate in the Arctic enforced working under extreme conditions not only for the staff but also for the technical equipment. On the other hand, the sensitive data demanded security on a very high level. Considering these characteristics, a database structure has been set up successfully on a server in Inuvik, supported by our Drilling Information System (DIS). The drilling period ended in March 2002 and the scientific evaluation phase began. Until now a detailed database with all on-site gained information and data from the succeeding analyses has been made available in the ICDP information network (http://www.icdp-online.de/html/sites/mallik/index/index.html). Lithological descriptions, borehole measurements, monitoring data and an archive of all the core runs and samples are stored in the Mallik Data Warehouse. A request started from the Internet generates results dynamically which accomplish the needs of the user. The user even can generate own litho-logs which enables him/her to compare all kinds of borehole information for his/her scientific work. All these functions and sevices are covered by an highly sophisticated security management due to different defined areas of confidentiality within the Mallik Science Team.

  19. Drilling the Messinian Salinity Crisis as a Model Analogue for Dolomite Deposition at the End of Massive Salt Deposition Events

    NASA Astrophysics Data System (ADS)

    McKenzie, Judith A.; Aloisi, Giovanni; Anjos, Sylvia; Latgé, Ricardo; Matsuda, Nilo; Bontognali, Tomaso; Vasconcelos, Crisogono

    2015-04-01

    Sedimentologic and stratigraphic studies of the Lower Cretaceous sequence, deposited in the economically important Campos Basin, southeast Brazil, document the occurrence of ~20-m-thick dolomite intervals overlying the "massive salt" megasequences of the Lagoa Feia Formation. This stratigaphic succession marks the Aptian/Albian transition from extreme evaporitic conditions of the Lagoa Feia Formation to shallow marine conditions of the Macaé Formation, related to the early opening of the South Atlantic. The facies change from evaporites to dolomite is interpreted as a product of dolomitization resulting from the refuxing of hypersaline fluids from shallow embayments with intense evaporation (Latgé, 2001). Although the reflux model provides a mechanism to produce fluids with geochemical composition favorable for dolomite precipitation, it cannot account for all of the factors required to promote dolomite precipitation. In this study, we propose a different model to explain the post-evaporite deposition of massive dolomite based on the study of sequences deposited at the end Messinian Salinity Crisis, which were recovered from the deep basins of the Mediterranean Sea during DSDP/ODP drilling campaigns. At most of these deep-water sites, the cored interval contained unusual dolomite deposits overlying the uppermost evaporite sections. For example, the upper Messinian sedimentary sequence at DSDP Site 374 comprises non-fossiliferous dolomitic mudstone overlying dolomitic mudstone/gypsum cycles, which in turn overlie anhydrite and halite (Hsü, Montadert et al., 1978). We postulate that the end Messinian dolomite is a product of microbial activity under extreme hypersaline conditions. In the last 20 years, research into the factors controlling dolomite precipitation under Earth surface conditions has led to the development of new models involving the metabolism of microorganisms and associated biofilms to overcome the kinetic inhibitions associated with primary dolomite precipitation. Furthermore, based on the limited pore-water geochemical data obtained during drilling at DSDP Site 374: Messina Abyssal Plain, the dolomitic mudstones of the uppermost Messinian evaporite complex represent an ideal candidate for such an extensive study in a "natural laboratory". In fact, the data suggest that microbial diagenesis and perhaps dolomite precipitation may still be occurring. Thus, to increase our understanding of the biogeochemical processes associated with ancient massive dolomite formation, a major new drilling campaign to study the sub-seafloor Messinian evaporite complex in the deep Mediterranean basins, using greatly enhanced drilling technology currently available within the new International Ocean Discovery Program (IODP), would be timely. Hsü, K., Montadert, L. et al., 1978. Initial Reports of the Deep Sea Drilling Project, Volume 42, Part 1: Washington (U.S. Government Printing Office). Latgé, M. A. R., 2001. O Albiano no Atlântico Sul: estratigrafia, Paleoceanografia e Relações Globais. PhD thesis, Universidade Federal do Rio Grande do Sul, pp. 257.

  20. Pre-drilling prediction techniques on the high-temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang

    2018-02-01

    Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.

  1. Surface structural damage study in cortical bone due to medical drilling.

    PubMed

    Tavera R, Cesar G; De la Torre-I, Manuel H; Flores-M, Jorge M; Hernandez M, Ma Del Socorro; Mendoza-Santoyo, Fernando; Briones-R, Manuel de J; Sanchez-P, Jorge

    2017-05-01

    A bone's fracture could be produced by an excessive, repetitive, or sudden load. A regular medical practice to heal it is to fix it in two possible ways: external immobilization, using a ferule, or an internal fixation, using a prosthetic device commonly attached to the bone by means of surgical screws. The bone's volume loss due to this drilling modifies its structure either in the presence or absence of a fracture. To observe the bone's surface behavior caused by the drilling effects, a digital holographic interferometer is used to analyze the displacement surface's variations in nonfractured post-mortem porcine femoral bones. Several nondrilled post-mortem bones are compressed and compared to a set of post-mortem bones with a different number of cortical drillings. During each compression test, a series of digital interferometric holograms were recorded using a high-speed CMOS camera. The results are presented as pseudo 3D mesh displacement maps for comparisons in the physiological range of load (30 and 50 lbs) and beyond (100, 200, and 400 lbs). The high resolution of the optical phase gives a better understanding about the bone's microstructural modifications. Finally, a relationship between compression load and bone volume loss due to the drilling was observed. The results prove that digital holographic interferometry is a viable technique to study the conditions that avoid the surgical screw from loosening in medical procedures of this kind.

  2. Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano

    NASA Astrophysics Data System (ADS)

    Jackson, M. D.; Gudmundsson, M. T.; Bach, W.; Cappelletti, P.; Coleman, N. J.; Ivarsson, M.; Jónasson, K.; Jørgensen, S. L.; Marteinsson, V.; McPhie, J.; Moore, J. G.; Nielson, D.; Rhodes, J. M.; Rispoli, C.; Schiffman, P.; Stefánsson, A.; Türke, A.; Vanorio, T.; Weisenberger, T. B.; White, J. D. L.; Zierenberg, R.; Zimanowski, B.

    2015-12-01

    A new International Continental Drilling Program (ICDP) project will drill through the 50-year-old edifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963-1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions. Abstracts of research projects are posted at http://surtsey.icdp-online.org.

  3. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    NASA Astrophysics Data System (ADS)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    In spite of the critical role of the Arctic Ocean in climate evolution, our understanding of the short- and long-term paleoceanographic and paleoclimatic history through late Mesozoic-Cenozoic times, as well as its plate-tectonic evolution, remains behind that from the other world's oceans. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the Arctic Coring Expedition - ACEX (or IODP Expedition 302), the first Mission Specific Platform (MSP) expedition within IODP, a new era in Arctic research began (Backman, Moran, Mayer, McInroy et al., 2006). ACEX proved that, with an intensive ice-management strategy, successful scientific drilling in the permanently ice-covered central Arctic Ocean is possible. ACEX is certainly a milestone in Arctic Ocean research, but - of course - further drilling activities are needed in this poorly studied ocean. Furthermore, despite the success of ACEX fundamental questions related to the long- and short-term climate history of the Arctic Ocean during Mesozoic-Cenozoic times remain unanswered. This is partly due to poor core recovery during ACEX and, especially, because of a major mid-Cenozoic hiatus in this single record. Since ACEX, a series of workshops were held to develop a scientific drilling strategy for investigating the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system: - "Arctic Ocean History: From Speculation to Reality" (Bremerhaven/Germany, November 2008); - "Overcoming barriers to Arctic Ocean scientific drilling: the site survey challenge" (Copenhagen/Denmark, November 2011); - Circum-Arctic shelf/upper continental slope scientific drilling workshop on "Catching Climate Change in Progress" (San Francisco/USA, December 2011); - "Coordinated Scientific Drilling in the Beaufort Sea: Addressing Past, Present and Future Changes in Arctic Terrestrial and Marine Systems" (Kananaskis, Alberta/Canada, February 2012). During these workshops, key areas and key scientific themes as well as drilling and site-survey strategies were discussed. Major scientific themes for future Arctic drilling will include: - The Arctic Ocean during the transition from greenhouse to icehouse conditions and millennial scale climate changes; - Physical and chemical changes of the evolving Polar Ocean and Arctic gateways; - Impact of Pleistocene/Holocene warming and sea-level rise on upper continental slope and shelf gas hydrates and on shelf permafrost; - Land-ocean interactions; - Tectonic evolution and birth of the Arctic Ocean basin: Arctic ridges, sea floor spreading and global lithosphere processes. When thinking about future Arctic drilling, it should be clearly emphasized that for the precise planning of future Arctic Ocean drilling campaigns, including site selection, evaluation of proposed drill sites for safety and environmental protection, etc., comprehensive site survey data are needed first. This means that the development of a detailed site survey strategy is a major challenge for the coming years. Here, an overview of perspectives and plans for future Arctic Ocean drilling will be presented.

  4. Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.

    2005-12-01

    Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program includes fiber-optic strain, tilt, seismic and fluid-pressure recording instruments. Seismic data from the Pilot Hole array are now available in SEED format from the Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/safod/). The strain and tilt instruments are still undergoing testing and quality assurance, and these data will be available through the same web site as soon as possible. Lastly, two terabytes of unprocessed (SEG-2 format) data from a two-week deployment of an 80-level seismic array during April/May 2005 by Paulsson Geophysical Services, Inc. are now available via the IRIS data center (http://www.iris.edu/data/data.htm). Drilling parameters include real-time descriptions of drill cuttings mineralogy, drilling mud properties, and mechanical data related to the drilling process and are available via the ICDP web site. Current status reports on SAFOD drilling, borehole measurements, sampling, and monitoring instrumentation will continue to be available from the EarthScope web site (http://www.earthscope.org).

  5. A workshop model simulating fate and effect of drilling muds and cuttings on benthic communities

    USGS Publications Warehouse

    Auble, Gregor T.; Andrews, Austin K.; Hamilton, David B.; Roelle, James E.; Shoemaker, Thomas G.

    1984-01-01

    Oil and gas exploration and production at marine sites has generated concern over potential environmental impacts resulting from the discharge of spent drilling muds and cuttings. This concern has led to a broad array of publicly and privately sponsored research. This report described a cooperative modeling effort designed to focus information resulting from this research through construction of explicit equations that simulate the potential impacts of discharge drilling fluids (muds) and cuttings on marine communities. The model is the result of collaboration among more than 30 scientists. The principal cooperating organizations were the E.S. Environmental Protection Agency, the U.S. Minerals Management Service, the Offshore Operators Committee, and the Alaska Oil and Gas Association. The overall simulation model can be conceptualized as three connected submodels: Discharge and Plume Fate, Sediment Redistribution, and Benthic Community Effects. On each day of simulation, these submodels are executed in sequence, with flows of information between submodels. The Benthic Community Effects submodel can be further divided into sections that calculate mortality due to burial, mortality due to toxicity, mortality due to resuspension disturbance, and growth of the community. The model represents a series of seven discrete 1-m2 plots at specified distances along a transect in one direction away from a discharge point. It consists of coupled difference equations for which parameter values can easily be set to evaluate different conditions or to examine the sensitivity of output to various assumptions. Sets of parameter values were developed to represent four general cases or scenarios: (1) a shallow (5 m), cold environment with ice cover during a substantial fraction of the year, such as might be encountered in the Beaufort Sea, Alaska; (2) a shallow (20 m), temperate environment, such as might be encountered in the Gulf of Mexico; (3) a deeper (80 m), temperate environment, such as might be encountered in the Gulf of Mexico; and (4) a very deep (1,000 m) environment, such as might be encountered on the Atlantic slope. The focus of the modeling effort was on the connection of a reasonable representation of physical fate to the biological responses of populations, rather than on highly detailed representations of individual processes. For example, the calculations of physical fate are not as detailed as those in the recently published model of Brandsma et al. (1983). The value of the model described herein is in the broad scope of processes that are explicitly represented and linked together. The model cannot be considered to produce reliable predictions of the quantitative impacts of discharged drilling fluids and cuttings on biological populations at a particular site. Limitations of the model in predicting integrated fate and effects can be traced to three general areas: level of refinement of the algorithms used in the model; lack of understanding of the processes determining fate and effects; and parameter and data values. Despite the limitations, several qualitative conclusions concerning both potential impacts and the importance of various remaining data gaps can be drawn from the modeling effort. These include: (1) Simple, unequivocal conclusions about fate and effects across geographical regions and drilling operations are difficult, if not misleading, due to the large amount of variability in characteristics of discharged materials (e.g., oil content and toxicity), discharge conditions (e.g., duration of drilling operations), physical environments (e.g., water depth, current direction, and sediment disturbance regimes), and biological communities (e.g., intrinsic growth rates). Different combinations of these characteristics can result in substantial differences in simulated environmental fate and biological effects. For examples, simulated recovery in some high-energy environments occurs within months after the cessation of discharge operations, even at heavily impacted sites, whereas simulated recover in some low-energy environments takes years at heavily impacted sites. (3) The volume of material discharged and duration of operations in the production drilling operations simulated by the model are sufficient to produce substantial simulated biological impacts at some plots, both in terms of differences from a control plot during the period of discharge operations, and in terms of the recovery period following the perturbations. Evaluation of the significance of potential effects involves the following factors: • Definition of a specific spatial and temporal reference frame (e.g., What is the natural variation? Is 1 year to be considered a "long" or "short" time? Is 50 m to be considered a "large" or "trivial" distance? • Consideration of rare or unique resources and particularly sensitive biotic assemblages. • Consideration of the potential for long term, cumulative effects. Some of these aspects are clearly beyond the scope of this modeling efforts (e.g., the model does not simulate the long term fate of resuspended material). The model does, however, contain an internal "reference frame" by comparison to simulated behavior at a control plot. The model, in general, simulates substantial "natural" variation at the reference or control plots, both over time, due to sediment disturbance events in medium to high energy environments, and over space, due to geographically varying conditions, such as water depth and current regime.

  6. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  7. Salem limestone oil and gas production in the Keenville field, Wayne County, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, D.L.

    Oil has been produced from the Salem Limestone of Valmeyeran (middle Mississippian) age in Illinois since 1939. In 1972 the discovery of Salem oil at Zenith North field in Wayne County, Illinois, stimulated a resurgence of Salem exploration in the Illinois Basin. By the end of 1977, activity had resulted in 3 new field discoveries and 24 new pool discoveries in the Salem of Illinois. One of the most promising of these discoveries was in the Keenville field in T. 1 S., R. 5 E., Wayne County, Illinois. The discovery well was completed early in January 1977, and by themore » end of the year 40 wells had produced approximately 760,000 barrels of Salem oil. The oil is produced from a biocalcarenite (predominatly sand-sized fossils and fossil fragments), with highly variable porosity and permeability, which lies about midway between the top and bottom of the formation. No structural closure is evident on key marker beds above the Salem, but some closure is created by the tendency of the producing zone to occur increasingly lower in the section in an up-dip direction. Water-free oil production was obtained in many wells by setting pipe through the reservoir and perforating above the oil-water contact, as determined by examination of drill cuttings. The oil produced is accompanied by gas with a heating value of about 1500 Btu/ft/sup 3/. To date, most of the oil accumulations in the Salem have been found by drilling below shallower, producing zones on prominent structures. The presence of reservoirs within the Salem, such as the one at Keenville has been difficult to predict prior to drilling. The recent increase in the number of holes drilled to or through the Salem should add to our knowledge of its depositional and diagenetic history and help in further oil exploration.« less

  8. A new anchor augmentation technique with a cancellous screw in osteoporotic rotator cuff repair: an in vitro biomechanical study on sheep humerus specimens.

    PubMed

    Uruc, Vedat; Ozden, Raif; Dogramacı, Yunus; Kalacı, Aydıner; Hallaceli, Hasan; Küçükdurmaz, Fatih

    2014-01-01

    The aim of this study was to test a simple technique to augment the pullout resistance of an anchor in an over-drilled sheep humerus model. Sixty-four paired sheep humeri were harvested from 32 male sheep aged 18 months. Specimens were divided into an augmented group and non-augmented group. FASTIN RC 5-mm titanium screw anchors (DePuy Mitek, Raynham, MA) double loaded with suture material (braided polyester, nonabsorbable USP No. 2) were used in both groups. Osteoporosis was simulated by over-drilling with a 4.5-mm drill. Augmentation was performed by fixing 1 of the sutures 1.5 cm inferior to the anchor insertion site with a washer screw. This was followed by a pull-to-failure test at 50 mm/min. The ultimate load (the highest value of strength before anchor pullout) was recorded. A paired t test was used to compare the biomechanical properties of the augmented and non-augmented groups. In all specimens the failure mode was pullout of the anchor. The ultimate failure loads were statistically significantly higher in the augmented group (P < .0001). The mean pullout strength was 121.1 ± 10.17 N in the non-augmented group and 176.1 ± 10.34 N in the augmented group. The described augmentation technique, which is achieved by inferior-lateral fixation of 1 of the sutures of the double-loaded anchor to a fully threaded 6.5-mm cancellous screw with a washer, significantly increases the ultimate failure loads in the over-drilled sheep humerus model. Our technique is simple, safe, and inexpensive. It can be easily used in all osteoporotic patients and will contribute to the reduction of anchor failure. This technique might be difficult to apply arthroscopically. Cannulated smaller screws would probably be more practical for arthroscopic use. Further clinical studies are needed. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. An Overview of the Geological and Geotechnical Aspects of the New Railway Line in the Lower Inn Valley

    NASA Astrophysics Data System (ADS)

    Eder, Stefan; Poscher, Gerhard; Sedlacek, Christoph

    The new railway line in the lower Inn-valley is part of the Brenner railway axis from Munich to Verona (feeder north). The first section between the villages of Kundl and Radfeld, west of Wörgl, and the village of Baumkirchen, east of Innsbruck, will become one of the biggest infrastructure projects ever built in Austria, with a length of approx. 43 km and an underground portion of approx. 80%. The article gives an overview of the various geologic formations - hard rock sections in the valley slopes, different water-saturated gravel and sand formations in the valley floor and geotechnically difficult conditions in sediments of Quaternary terraces. It also describes the methodology of the soil reconnaissance using groundwater models for hydrogeologic estimations, core drillings for evaluating geologic models and describes the experiences gained from the five approx. 7.5 km long reconnaissance tunnels for geotechnical and hydrogeological testing. The results of the soil reconnaissance were used to plan different construction methods, such as excavation in soft rock under a jet grouting roof and compressed-air, as well as mechanised shield with fluid support.

  10. Low-cost approaches to problem-driven hydrologic research: The case of Arkavathy watershed, India.

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Ballukraya, P. N.; Jeremiah, K.; R, A.

    2014-12-01

    Groundwater depletion is a major problem in the Arkavathy Basin and it is the probable cause of declining flows in the Arkavathy River. However, investigating groundwater trends and groundwater-surface water linkages is extremely challenging in a data-scarce environment where basins are largely ungauged so there is very little historical data; often the data are missing, flawed or biased. Moreover, hard-rock aquifer data are very difficult to interpret. In the absence of reliable data, establishing a trend let alone the causal linkages is a severe challenge. We used a combination of low-cost, participatory, satellite based and conventional data collection methods to maximize spatial and temporal coverage of data. For instance, long-term groundwater trends are biased because only a few dug wells with non-representative geological conditions still have water - the vast majority of the monitoring wells drilled in the 1970s and 1980s have dried up. Instead, we relied on "barefoot hydrology" techniques. By conducting a comprehensive well census, engaging farmers in participatory groundwater monitoring and using locally available commercial borewell scanning techniques we have been able to better establish groundwater trends and spatial patterns.

  11. Stochastic modelling of basal temperatures in divide regions of the Antarctic ice sheet over the last 1.5 million years

    NASA Astrophysics Data System (ADS)

    Van Liefferinge, Brice; Pattyn, Frank; Cavitte, Marie G. P.; Young, Duncan A.; Roberts, Jason L.

    2017-04-01

    The quest for oldest ice in Antarctica has recently been launched through an EU H2020 project (Beyond EPICA - Oldest Ice) and aims at identifying suitable areas for a potential future drilling. Retrieving an ice core of such age is essential to understand the relation between orbital changes and atmospheric composition during the mid-Pliocene transition. However, sites for a potential undisturbed record of 1.5 million-year old ice in Antarctica are difficult to find and require slow-moving ice (preferably an ice divide) and basal conditions that are not disturbed by large topographic variations. Furthermore, ice should be sufficiently thick but cold basal conditions should still prevail, since basal melting would destroy the bottom layers. Therefore, ice-flow conditions and thermodynamic characteristics are crucial for identifying potential locations of undisturbed ice. Van Liefferinge and Pattyn (2013) identified suitable areas based on a pan-Antarctic simplified thermodynamic ice sheet model and demonstrated that uncertainty in geothermal conditions remain a major unknown. In order to refine these estimates, and provide uncertainties, we employ a full thermo-mechanically coupled higher-order ice sheet model (Pattyn, 2003; Pattyn et al., 2004). Initial conditions for the calculations are based on an inversion of basal slipperiness, based on observed surface topography (Pollard and DeConto, 2012; Pattyn, in prep.). Uncertainties in geothermal conditions are introduced using the convolution of two Gaussian probability density functions: (a) the reconstruction of the Antarctic ice sheet geometry and testing ice thickness variability over the last 2 million years (Pollard and DeConto, 2009) and (b) the surface temperature reconstruction over the same period (Snyder et al., 2016). The standard deviation, the skewness and the kurtosis of the whole Antarctic ice sheet are analyzed to observe likely probable melt conditions. Finally, we focus on model results in the divide area between Dome Concordia and Dome Fuji, and compare to newly acquired radar data in the region (OIA survey).

  12. Evaluation and refinement of Guadalupe Bass conservation strategies to support adaptive management

    USGS Publications Warehouse

    Grabowski, Timothy B.

    2016-01-01

    Burbot Lota lota is the sole freshwater representative of the cod-like fishes and supports subsistence, commercial, and recreational fisheries worldwide above approximately 40° N. It is a difficult species to manage effectively due to its preference for deep-water habitats and spawning activity under the ice in winter. Like other gadiform fishes, Burbot use acoustic signaling as part of their mating system, and while the acoustic repertoire of the species has been characterized under artificial conditions (i.e., net pen suspended under ice in a natural lake), there has been no work to determine whether the species is as vocal in natural spawning aggregations. Our objective was to assess the feasibility of collecting and using acoustic data to characterize the spawning activity and locations of Burbot under field conditions. We recorded audio and video of Burbot spawning aggregations through holes drilled into the ice at known spawning grounds at Moyie Lake in British Columbia, Canada. Acoustic recordings (call counts and audiograms) were analyzed using Raven Pro v 1. 4 software. Acoustic behavior was also related to video data to determine how acoustic activity correlated to any observed spawning behavior. In general, wild Burbot spawning in Moyie Lake did not vocalize as frequently as counterparts spawning under artificial conditions. Further, Burbot vocalizations were not recorded in conjunction with spawning activity. While it may be feasible to use passive acoustic monitoring to locate Burbot spawning grounds and identify periods of activity, it does not seem to hold much promise for locating and quantifying spawning activity in real time.

  13. Implementation of improved underbalanced drilling in AbuDhabi onshore field

    NASA Astrophysics Data System (ADS)

    Alhammadi, Adel Mohammed

    Abu Dhabi Company for Onshore Oil Operations (ADCO) is considering Underbalanced Drilling (UBD) as a means to develop lower permeability units in its fields. In addition to productivity and recovery gains, ADCO also expects reservoir characterization benefits from UBD. Reservoir screening studies were carried out on all of ADCO's reservoirs to determine their applicability for UBD. The primary business benefits of UBD were determined to be reservoir characterization, damage Mitigation, and rate of Penetration "ROP" Improvement. Apart from the primary benefits, some of the secondary benefits of UBD that were identified beforehand included rig performance. Since it's a trial wells, the challenge was to drill these wells safely, efficiently and of course meeting well objectives. Many operators worldwide drill these well in underbalanced mode but complete it overbalanced. In our case the plan was to drill and complete these wells in underbalanced condition. But we had to challenge most operators and come up with special and unique casing hanger design to ensure well control barriers exists while fishing the control line of the Downhole Deployment Valve "DDV". After intensive studies and planning, the hanger was designed as per our recommendations and found to be effective equipment that optimized the operational time and the cost as well. This report will provide better understanding of UBD technique in general and shade on the special designed casing hanger compared to conventional or what's most used worldwide. Even thought there were some issues while running the casing hanger prior drilling but managed to capture the learning's from each well and re-modified the hanger and come up with better deign for the future wells. Finally, the new design perform a good performance of saving the operation time and assisting the project to be done in a safe and an easy way without a major impact on the well cost. This design helped to drill and complete these wells safely with requirement to kill the wells and this ensured least reservoir damage.

  14. HPC simulations of grain-scale spallation to improve thermal spallation drilling

    NASA Astrophysics Data System (ADS)

    Walsh, S. D.; Lomov, I.; Wideman, T. W.; Potter, J.

    2012-12-01

    Thermal spallation drilling and related hard-rock hole opening techniques are transformative technologies with the potential to dramatically reduce the costs associated with EGS well drilling and improve the productivity of new and existing wells. In contrast to conventional drilling methods that employ mechanical means to penetrate rock, thermal spallation methods fragment rock into small pieces ("spalls") without contact via the rapid transmission of heat to the rock surface. State-of-the-art constitutive models of thermal spallation employ Weibull statistical failure theory to represent the relationship between rock heterogeneity and its propensity to produce spalls when heat is applied to the rock surface. These models have been successfully used to predict such factors as penetration rate, spall-size distribution and borehole radius from drilling jet velocity and applied heat flux. A properly calibrated Weibull model would permit design optimization of thermal spallation drilling under geothermal field conditions. However, although useful for predicting system response in a given context, Weibull models are by their nature empirically derived. In the past, the parameters used in these models were carefully determined from laboratory tests, and thus model applicability was limited by experimental scope. This becomes problematic, for example, if simulating spall production at depths relevant for geothermal energy production, or modeling thermal spallation drilling in new rock types. Nevertheless, with sufficient computational resources, Weibull models could be validated in the absence of experimental data by explicit small-scale simulations that fully resolve rock grains. This presentation will discuss how high-fidelity simulations can be used to inform Weibull models of thermal spallation, and what these simulations reveal about the processes driving spallation at the grain-scale - in particular, the role that inter-grain boundaries and micro-pores play in the onset and extent of spallation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Invasion of drilling mud into gas-hydrate-bearing sediments. Part I: effect of drilling mud properties

    NASA Astrophysics Data System (ADS)

    Ning, Fulong; Zhang, Keni; Wu, Nengyou; Zhang, Ling; Li, Gang; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong

    2013-06-01

    To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-hydrate-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over hydrate equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas hydrate (GMGS-1). The results show that dissociating gas may form secondary hydrates in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies hydrate dissociation compounded by the Joule-Thompson effect and the lagged effect of heat transfer in sediments. The secondary hydrate ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, fluid (mud invasion), chemical (hydrate dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of fluid and hydrates, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on hydrate stability. Therefore, perhaps well-logging distortion caused by mud invasion, hydrate dissociation and reformation should be considered for identifying and evaluating gas hydrate reservoirs. And some suitable drilling measurements need to be adopted to reduce the risk of well-logging distortion and borehole instability.

  16. The Case for Scientific Drilling of Precambrian Sedimentary Sequences: A Mission to Early Earth

    NASA Astrophysics Data System (ADS)

    Buick, R.; Anbar, A. D.; Mojzsis, S. J.; Kaufman, A. J.; Kieft, T. L.; Lyons, T. W.; Humayun, M.

    2001-12-01

    Research into the emergence and early evolution of life, particularly in relation to environmental conditions, has intensified in the past decade. The field is energized by controversy (e.g., over the history of atmospheric composition, ocean redox, climate and biochemical pathways) and by the application of new biogeochemical tools (e.g., ion probe in situ stable isotope studies; improved geochronological techniques; non-mass-dependent stable isotope effects; stable metal isotope systematics; advances in organic geochemistry/biomarkers). The past decade has also seen improved understanding of old tools (notably, S isotopes), and new perspectives on evolution and on microbial interaction with the environment borne of the genomics revolution. Recent papers demonstrate the potential for innovative research when such developments are integrated, as well as the limitations of present knowledge. The chief limiting factor is not lack of scientists or advanced techniques, but availability of fresh samples from suitable successions. Where classic Precambrian stratigraphy exists, suitable rocks are rarely exposed due to interaction with the oxidizing atmosphere, occurrence of flat-lying strata or sedimentary cover. Available drill-cores are concentrated around ore bodies, and hence are inherently altered or not environmentally representative. Stratigraphic drilling using clean diamond drilling techniques, targeted in accord with scientific priorities, could provide samples of unmatched quality across the most interesting stratigraphic intervals. Diamond drilling is a proven, inexpensive technology for accessing subsurface material. The time is ripe to use this technology to secure the materials needed for further advances. The Mission to Early Earth (MtEE) Focus Group of the NASA Astrobiology Institute is developing a case for the acquisition, curation and distribution of suitable samples, with a special focus on diamond drilling. A communal activity is envisioned, modeled after the Ocean Drilling Program but focussing on the Precambrian record. This poster will present information on MtEE, and plans for a pilot project developed as part of the Summer '01 MtEE excursion to W. Australia.

  17. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  18. Optimal Force Control of Vibro-Impact Systems for Autonomous Drilling Applications

    NASA Technical Reports Server (NTRS)

    Aldrich, Jack B.; Okon, Avi B.

    2012-01-01

    The need to maintain optimal energy efficiency is critical during the drilling operations performed on future and current planetary rover missions (see figure). Specifically, this innovation seeks to solve the following problem. Given a spring-loaded percussive drill driven by a voice-coil motor, one needs to determine the optimal input voltage waveform (periodic function) and the optimal hammering period that minimizes the dissipated energy, while ensuring that the hammer-to-rock impacts are made with sufficient (user-defined) impact velocity (or impact energy). To solve this problem, it was first observed that when voice-coil-actuated percussive drills are driven at high power, it is of paramount importance to ensure that the electrical current of the device remains in phase with the velocity of the hammer. Otherwise, negative work is performed and the drill experiences a loss of performance (i.e., reduced impact energy) and an increase in Joule heating (i.e., reduction in energy efficiency). This observation has motivated many drilling products to incorporate the standard bang-bang control approach for driving their percussive drills. However, the bang-bang control approach is significantly less efficient than the optimal energy-efficient control approach solved herein. To obtain this solution, the standard tools of classical optimal control theory were applied. It is worth noting that these tools inherently require the solution of a two-point boundary value problem (TPBVP), i.e., a system of differential equations where half the equations have unknown boundary conditions. Typically, the TPBVP is impossible to solve analytically for high-dimensional dynamic systems. However, for the case of the spring-loaded vibro-impactor, this approach yields the exact optimal control solution as the sum of four analytic functions whose coefficients are determined using a simple, easy-to-implement algorithm. Once the optimal control waveform is determined, it can be used optimally in the context of both open-loop and closed-loop control modes (using standard realtime control hardware).

  19. Abrasive wear of Hilong BoTN hardfacings

    NASA Astrophysics Data System (ADS)

    Fedorova, L.; Fedorov, S.; Sadovnikov, A.; Ivanova, Y.; Voronina, M.

    2018-02-01

    The spread of steels, which are used to produce locks of steel drill pipes, adversely affects their wear resistance, which, in combination with low hardness of HV 2400 ... 2800 MPa as well as of the thread of screw, results in low wear resistance and the need for their reconstruction at the pipe control shop. An efficient way of improving the quality of drill pipe jonts is to hard-face them by the outside diameter with wear-resistant materials (hardbanding). One of the companies engaged in the development of hardfacing materials and hardbanding is Hilong (China) with weld seams of the brand BoTn. According to the results of the studies the following conclusion can be made: hardfacing increases the durability of the hardware, contributing to an increase in wear resistance of locks of DP under the conditions of abrasive action of aggressive geological formations; the usage of DP without wear-resistant weld seams is impermissible, because their further operation, as part of the drill-stem, can lead to emergency consequences; application of the pipes with the hardfacing collars together with the collars without hardfacing, due to varying degree of wear of jonts in the drill-stem, is also impermissible.

  20. Tool life and cutting speed for the maximum productivity at the drilling of the stainless steel X22CrMoV12-1

    NASA Astrophysics Data System (ADS)

    Vlase, A.; Blăjină, O.; Iacob, M.; Darie, V.

    2015-11-01

    Two addressed issues in the research regarding the cutting machinability, establishing of the optimum cutting processing conditions and the optimum cutting regime, do not yet have sufficient data for solving. For this reason, in the paper it is proposed the optimization of the tool life and the cutting speed at the drilling of a certain stainless steel in terms of the maximum productivity. For this purpose, a nonlinear programming mathematical model to maximize the productivity at the drilling of the steel is developed in the paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the numerical mathematical model. Using this proposed model allows increasing the accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The results presented in this paper can be used in the production activity, in order to increase the productivity of the stainless steels machining. Also new research directions for the specialists in this interested field may come off from this paper.

  1. Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles

    NASA Astrophysics Data System (ADS)

    Bég, O. Anwar; Espinoza, D. E. Sanchez; Kadir, Ali; Shamshuddin, MD.; Sohail, Ayesha

    2018-04-01

    An experimental study of the rheology and lubricity properties of a drilling fluid is reported, motivated by applications in highly deviated and extended reach wells. Recent developments in nanofluids have identified that the judicious injection of nano-particles into working drilling fluids may resolve a number of issues including borehole instability, lost circulation, torque and drag, pipe sticking problems, bit balling and reduction in drilling speed. The aim of this article is, therefore, to evaluate the rheological characteristics and lubricity of different nano-particles in water-based mud, with the potential to reduce costs via a decrease in drag and torque during the construction of highly deviated and ERD wells. Extensive results are presented for percentage in torque variation and coefficient of friction before and after aging. Rheology is evaluated via apparent viscosity, plastic viscosity and gel strength variation before and after aging for water-based muds (WBM). Results are included for silica and titanium nano-particles at different concentrations. These properties were measured before and after aging the mud samples at 80 °C during 16 h at static conditions. The best performance was shown with titanium nano-particles at a concentration of 0.60% (w/w) before aging.

  2. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and anaylsis

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  3. The Effect of Teaching Search Strategies on Perceptual Performance.

    PubMed

    van der Gijp, Anouk; Vincken, Koen L; Boscardin, Christy; Webb, Emily M; Ten Cate, Olle Th J; Naeger, David M

    2017-06-01

    Radiology expertise is dependent on the use of efficient search strategies. The aim of this study is to investigate the effect of teaching search strategies on trainee's accuracy in detecting lung nodules at computed tomography. Two search strategies, "scanning" and "drilling," were tested with a randomized crossover design. Nineteen junior radiology residents were randomized into two groups. Both groups first completed a baseline lung nodule detection test allowing a free search strategy, followed by a test after scanning instruction and drilling instruction or vice versa. True positive (TP) and false positive (FP) scores and scroll behavior were registered. A mixed-design analysis of variance was applied to compare the three search conditions. Search strategy instruction had a significant effect on scroll behavior, F(1.3) = 54.2, P < 0.001; TP score, F(2) = 16.1, P < 0.001; and FP score, F(1.3) = 15.3, P < 0.001. Scanning instruction resulted in significantly lower TP scores than drilling instruction (M = 10.7, SD = 5.0 versus M = 16.3, SD = 5.3), t(18) = 4.78, P < 0.001; or free search (M = 15.3, SD = 4.6), t(18) = 4.44, P < 0.001. TP scores for drilling did not significantly differ from free search. FP scores for drilling (M = 7.3, SD = 5.6) were significantly lower than for free search (M = 12.5, SD = 7.8), t(18) = 4.86, P < 0.001. Teaching a drilling strategy is preferable to teaching a scanning strategy for finding lung nodules. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  4. Effect of Number of Players and Maturity on Ball-Drills Training Load in Youth Basketball

    PubMed Central

    Conte, Daniele; Favero, Terence; Niederhausen, Meike; Capranica, Laura; Tessitore, Antonio

    2017-01-01

    This study aimed to assess the basketball ball-drills workload analyzing: (1) the effect of varying the number of players involved on physiological and technical demands; (2) the temporal changes in players’ responses across bouts; and (3) the relationship of players’ workload with their maturation status and training age. Twelve young male basketball players (mean ± SD; age 13.9 ± 0.7 years; height 1.76 ± 0.06 m; body mass 65.7 ± 12.5 kg; HRmax 202 ± 8 beat·min−1) completed three bouts of 4 min interspersed by 2 min of passive recovery of two vs. two and four vs. four ball-drills. The mean percentage of HRmax (%HRmax) and ratings of perceived exertion (RPE) were collected. Technical actions (TAs) (dribbles, passes, shots, interceptions, steals, rebounds, and turnovers) were calculated through notational analysis. Players’ genitalia development (GD) and pubic hair (PH) growth were assessed using Tanner scale. Results showed a higher %HRmax (p = 0.018), RPE (p = 0.042), dribbles (p = 0.007), shots (p = 0.003), and rebounds (p = 0.006) in two vs. two compared to four vs. four condition. Furthermore, a statistical difference was found for %HRmax (p = 0.005) and number of passes (p = 0.020) between bouts. In addition, no correlation between GD, PH, and training age with %HRmax, RPE, and TAs was found. These findings suggest that variations of the number of players involved affect ball-drills workload and that ball-drills training intensity varies across bouts. Finally, ball-drills elicit an adequate training stimulus, regardless of players’ maturation status and training age. PMID:29910363

  5. Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2014-09-01

    Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.

  6. The use of drilling by the U.S. Antarctic program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, M.C.; Webb, J.W.; Hedberg, W.H.

    1994-08-01

    This report on drilling in the Antarctic has been prepared by the U.S. National Science Foundation (NSF) to assist principal investigators and others in complying with the National Environmental Policy Act (NEPA) and the Antarctic Treaty of 1961. Implementing regulations for NEPA are spelled out in 40 CFR 1500-1508. Environmental protection under the Antarctic Treaty is addressed in the Protocol on Environmental Protection to the Antarctic Treaty (hereafter referred to as the Protocol), which was adopted by 26 countries in 1991. In the United States, responsibility for compliance with these requirements rests with the NSF Office of Polar Programs (OPP),more » which manages the U.S. Antarctic Program (USAP). The USAP recognizes the potentially profound impacts that its presence and activities can have on the antarctic environment. In its extensive support of operations and research in Antarctica, the USAP uses all practical means to foster and maintain natural conditions while supporting scientific endeavors in a safe and healthful manner. Reducing human impacts on the antarctic environment is a major goal of the USAP. The USAP`s operating philosophy is based on broad yet reasonable and practical assumptions concerning environmental protection. The USAP maintains three year-round stations on the continent to support scientific research. Research and associated support operations at these stations and camps sometimes involve drilling into ice, soil, or ocean sediments. In order to comply with NEPA and the Protocol, it is necessary for principal investigators and others to assess the environmental effects of drilling. This report has been prepared to assist in this process by describing various drilling technologies currently available for use in Antarctica, generally characterizing the potential environmental impacts associated with these drilling techniques, and identifying possible mitigation measures to reduce impacts.« less

  7. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  8. Experimental analysis of drilling process in cortical bone.

    PubMed

    Wang, Wendong; Shi, Yikai; Yang, Ning; Yuan, Xiaoqing

    2014-02-01

    Bone drilling is an essential part in orthopaedics, traumatology and bone biopsy. Prediction and control of drilling forces and torque are critical to the success of operations involving bone drilling. This paper studied the drilling force, torque and drilling process with automatic and manual drill penetrating into bovine cortical bone. The tests were performed on a drilling system which is used to drill and measure forces and torque during drilling. The effects of drilling speed, feed rate and drill bit diameter on force and torque were discussed separately. The experimental results were proven to be in accordance with the mathematic expressions introduced in this paper. The automatic drilling saved drilling time by 30-60% in the tested range and created less vibration, compared to manual drilling. The deviation between maximum and average force of the automatic drilling was 5N but 25N for manual drilling. To conclude, using the automatic method has significant advantages in control drilling force, torque and drilling process in bone drilling. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress

    PubMed Central

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-01-01

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142

  10. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress.

    PubMed

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-12-08

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.

  11. Ambient changes in tracer concentrations from a multilevel monitoring system in Basalt

    USGS Publications Warehouse

    Bartholomay, Roy C.; Twining, Brian V.; Rose, Peter E.

    2014-01-01

    Starting in 2008, a 4-year tracer study was conducted to evaluate ambient changes in groundwater concentrations of a 1,3,6-naphthalene trisulfonate tracer that was added to drill water. Samples were collected under open borehole conditions and after installing a multilevel groundwater monitoring system completed with 11 discrete monitoring zones within dense and fractured basalt and sediment layers in the eastern Snake River aquifer. The study was done in cooperation with the U.S. Department of Energy to test whether ambient fracture flow conditions were sufficient to remove the effects of injected drill water prior to sample collection. Results from thief samples indicated that the tracer was present in minor concentrations 28 days after coring, but was not present 6 months after coring or 7 days after reaming the borehole. Results from sampling the multilevel monitoring system indicated that small concentrations of the tracer remained in 5 of 10 zones during some period after installation. All concentrations were several orders of magnitude lower than the initial concentrations in the drill water. The ports that had remnant concentrations of the tracer were either located near sediment layers or were located in dense basalt, which suggests limited groundwater flow near these ports. The ports completed in well-fractured and vesicular basalt had no detectable concentrations.

  12. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not more than 2000 meters are planned. The prototype must be modified and adapted to the conditions in deep boreholes with respect to pressure and temperature. This project is funded by the German Federal Environment Ministry.

  13. Softball Coaching.

    ERIC Educational Resources Information Center

    Lopiano, Donna; And Others

    1981-01-01

    A collection of articles provides current instructional information to softball players and coaches. Topics discussed in the series include practice, basic skills, defense, pitching, catching, offense, and warm-up exercises to be used in conjunction with other conditioning drills. (JN)

  14. Ground ice conditions in Salluit, Northern Quebec

    NASA Astrophysics Data System (ADS)

    Allard, M.; Fortier, R.; Calmels, F.; Gagnon, O.; L'Hérault, E.

    2011-12-01

    Salluit in Northern Québec (ca. 1300 inhabitants) faces difficult ground ice conditions for its development. The village is located in a U-shaped valley, along a fjord that was deglaciated around 8000 cal BP. The post-glacial marine limit is at the current elevation of 150 m ASL. Among the mapped surficial geology units, three contain particularly ice-rich permafrost: marine clays, till and silty colluviums. A diamond drill was used to extract 10 permafrost cores down to 23 m deep. In addition, 18 shallow cores (to 5 m deep) were extracted with a portable drill. All the frozen cores were shipped to Québec city where ground ice contents were measured and cryostructures were imaged by CT-Scanning. Water contents, grain-size and pore water salinity were measured. Refraction seismic profiles were run to measure the depth to bedrock. GPR and electrical resistivity surveys helped to map ice-rich areas. Three cone penetration tests (CPT) were run in the frozen clays to depths ranging from 8 to 21 m. Maximum clay thickness is ca. 50 m deep near the shoreline. The cone penetration tests and all the cores in clays revealed large amounts of both segregated and aggradational ice (volumetric contents up to 93% over thicknesses of one meter) to depths varying between 2.5 and 4 m, below which the ice content decreases and the salinity increases (values measured up to 42 gr/L between 4.5 and 6 m deep). Chunks of organic matter buried below the actual active layer base indicate past cryoturbations under a somewhat warmer climate, most probably associated with intense frost boil action, as widely observed today. The stony till has developed large quantities of segregation ice which can be seen in larger concentrations and as thicker lenses under boulders and in matrix rich (≥ 50% sand and silt) parts of the glacial sediment. As digging for a sewage pond was undertaken in winter 2008 by blasting, the clast-influenced cryostructure of the till could be observed in cuts and in large chunks of permafrost. Volumetric ice contents between 30 and 70% were measured in the till. In addition, low lying areas where till thickness exceeds ca 5 m contain polygons with ice wedges up to 2 m wide. Colluviums on slopes laid by sheet flow have been accumulating on two sectors of the study area, the source material being eroded clay at higher elevations; these slope sediments contain alternating layers of buried organics (C-14 date of 2300 BP at base of the sequence), silt and lenses of aggradational ice. Although the surface geophysical methods (electrical resistivity,GPR) were essential for mapping ice rich permafrost, the detailed appraisal of ground ice conditions was made truly possible by drilling and extracting intact cores. The use of the Cat-scan method proved very efficient for the precise and rapid measurement of ground ice contents and for imaging cryostructures on a large number of samples, thus providing exact information on permafrost composition and for interpreting permafrost history. The Salluit study also involves climate monitoring, thermal analysis and modeling, and intense community consultations.

  15. Use of a 90° drill and screwdriver for rib fracture stabilization.

    PubMed

    Nickerson, Terry P; Kim, Brian D; Zielinski, Martin D; Jenkins, Donald; Schiller, Henry J

    2015-03-01

    Rib fracture stabilization has become a more accepted practice although stabilization of the most cephalad ribs presents a unique challenge. We present our experience with use of a 90° drill and screwdriver to bridge these difficult rib fractures. This retrospective review included patients who underwent rib fracture stabilization from August 1, 2009, through September 30, 2012. Patients were divided into two groups: those whose procedure used the 90° device and those that did not. Data were compared using standard statistical analysis and reported as percentages and medians [interquartile ranges]. P values <0.05 were considered significant. We identified 89 patients: 29 (33%) had 90° devices used and 60 (67%) did not. There were no differences between groups in age, sex, Trauma-Related Injury Severity Score, the presence of flail chest, occurrence of pneumonia, and intensive care unit or hospital length of stay. The Injury Severity Score was higher in the 90° group (22 vs. 16; P = 0.03). The highest rib stabilized was different between the 2 groups (3 [2-5] vs. 5 [2-9]; P = 0.001), with more third rib stabilizations in the 90° group (38 vs. 20%; P = 0.04) as well as more total number of ribs fixed (5 vs. 4; P = 0.001). There was no difference in operative time between the 2 groups. The surgical reach for rib fracture stabilization has been extended with use of a 90° drill and screwdriver. High fractures under the scapula where access is technically challenging can be stabilized without prolonging operative times.

  16. Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands

    NASA Astrophysics Data System (ADS)

    Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.

    2017-12-01

    We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO­2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.

  17. Endodontic filling removal procedure: an ex vivo comparative study between two rotary techniques.

    PubMed

    Vale, Mônica Sampaio do; Moreno, Melinna dos Santos; Silva, Priscila Macêdo França da; Botelho, Thereza Cristina Farias

    2013-01-01

    In this study, we compared the ex vivo removal capacity of two endodontic rotary techniques and determined whether there was a significant quantitative difference in residual material when comparing root thirds. Forty extracted molars were used. The palatal roots were selected, and the canals were prepared using a step-back technique and filled using a lateral condensation technique with gutta-percha points and Endofill sealer. After two weeks of storage in a 0.9% saline solution at 37 ºC in an oven, the specimens were divided into 2 groups of 20, with group 1 samples subjected to Gates-Glidden drills and group 2 samples subjected to the ProTaper retreatment System. Hedstroem files and eucalyptol solvent were used in both groups to complete the removal procedure. Then, the roots thirds were radiographed and the images were submitted to the NIH ImageJ program to measure the residual filling material in mm. Each root third was related to the total area of the root canals. The data were analyzed using Student's t test. There was a statistically significant difference between the two techniques as more filling material was removed by technique 2 (ProTaper) than technique 1 (Gates-Glidden drills, p < 0.05). The apical third had a greater amount of residual filling material than the cervical and middle thirds, and the difference was statistically significant (p < 0.05). None of the selected techniques removed all filling material, and the material was most difficult to remove from the apical third. The ProTaper files removed more material than the Gates-Glidden drills.

  18. The National Football League Combine: performance differences between drafted and nondrafted players entering the 2004 and 2005 drafts.

    PubMed

    Sierer, S Patrick; Battaglini, Claudio L; Mihalik, Jason P; Shields, Edgar W; Tomasini, Nathan T

    2008-01-01

    The purpose of this study was to examine performance differences between drafted and nondrafted athletes (N = 321) during the 2004 and 2005 National Football League (NFL) Combines. We categorized players into one of 3 groups: Skill, Big skill, and Linemen. Skill players (SP) consisted of wide receivers, cornerbacks, free safeties, strong safeties, and running backs. Big skill players (BSP) included fullbacks, linebackers, tight ends, and defensive ends. Linemen (LM) consisted of centers, offensive guards, offensive tackles, and defensive tackles. We analyzed player height and mass, as well as performance on the following combine drills: 40-yard dash, 225-lb bench press test, vertical jump, broad jump, pro-agility shuttle, and the 3-cone drill. Student t-tests compared performance on each of these measures between drafted and nondrafted players. Statistical significance was found between drafted and nondrafted SP for the 40-yard dash (P < 0.001), vertical jump (P = 0.003), pro-agility shuttle (P < 0.001), and 3-cone drill (P < 0.001). Drafted and nondrafted BSP performed differently on the 40-yard dash (P = 0.002) and 3-cone drill (P = 0.005). Finally, drafted LM performed significantly better than nondrafted LM on the 40-yard dash (P = 0.016), 225-lb bench press (P = 0.003), and 3-cone drill (P = 0.005). Certified strength and conditioning specialists will be able to utilize the significant findings to help better prepare athletes as they ready themselves for the NFL Combine.

  19. Keeping Research Data from the Continental Deep Drilling Programme (KTB) Accessible and Taking First Steps Towards Digital Preservation

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Ulbricht, D.; Conze, R.

    2014-12-01

    The Continental Deep Drilling Programme (KTB) was a scientific drilling project from 1987 to 1995 near Windischeschenbach, Bavaria. The main super-deep borehole reached a depth of 9,101 meters into the Earth's continental crust. The project used the most current equipment for data capture and processing. After the end of the project key data were disseminated through the web portal of the International Continental Scientific Drilling Program (ICDP). The scientific reports were published as printed volumes. As similar projects have also experienced, it becomes increasingly difficult to maintain a data portal over a long time. Changes in software and underlying hardware make a migration of the entire system inevitable. Around 2009 the data presented on the ICDP web portal were migrated to the Scientific Drilling Database (SDDB) and published through DataCite using Digital Object Identifiers (DOI) as persistent identifiers. The SDDB portal used a relational database with a complex data model to store data and metadata. A PHP-based Content Management System with custom modifications made it possible to navigate and browse datasets using the metadata and then download datasets. The data repository software eSciDoc allows storing self-contained packages consistent with the OAIS reference model. Each package consists of binary data files and XML-metadata. Using a REST-API the packages can be stored in the eSciDoc repository and can be searched using the XML-metadata. During the last maintenance cycle of the SDDB the data and metadata were migrated into the eSciDoc repository. Discovery metadata was generated following the GCMD-DIF, ISO19115 and DataCite schemas. The eSciDoc repository allows to store an arbitrary number of XML-metadata records with each data object. In addition to descriptive metadata each data object may contain pointers to related materials, such as IGSN-metadata to link datasets to physical specimens, or identifiers of literature interpreting the data. Datasets are presented by XSLT-stylesheet transformation using the stored metadata. The presentation shows several migration cycles of data and metadata, which were driven by aging software systems. Currently the datasets reside as self-contained entities in a repository system that is ready for digital preservation.

  20. The effect of recovery duration on running speed and stroke quality during intermittent training drills in elite tennis players.

    PubMed

    Ferrauti, A; Pluim, B M; Weber, K

    2001-04-01

    The aim of this study was to assess the effect of the recovery duration in intermittent training drills on metabolism and coordination in sport games. Ten nationally ranked male tennis players (age 25.3+/-3.7 years, height 1.83+/-0.8 m, body mass 77.8+/-7.7 kg; mean +/- sx) participated in a passing-shot drill (baseline sprint with subsequent passing shot) that aimed to improve both starting speed and stroke quality (speed and precision). Time pressure for stroke preparation was individually adjusted by a ball-machine and corresponded to 80% of maximum running speed. In two trials (T10, T15) separated by 2 weeks, the players completed 30 strokes and sprints subdivided into 6 x 5 repetitions with a 1 min rest between series. The rest between each stroke-and-sprint lasted either 10 s (T10) or 15 s (T15). The sequence of both conditions was randomized between participants. Post-exercise blood lactate concentration was significantly elevated in T10 (9.04+/-3.06 vs 5.01+/-1.35 mmol x l(-1), P < 0.01). Running time for stroke preparation (1.405+/-0.044 vs 1.376+/-0.045 s, P < 0.05) and stroke speed (106+/-12 vs 114+/-8 km x h(-1), P < 0.05) were significantly decreased in T10, while stroke precision - that is, more target hits (P < 0.1) and fewer errors (P < 0.05) - tended to be higher. We conclude that running speed and stroke quality during intermittent tennis drills are highly dependent on the duration of recovery time. Optimization of training efficacy in sport games (e.g. combined improvement of conditional and technical skills) requires skilful fine-tuning of monitoring guidelines.

  1. Iberian Pyrite Belt Subsurface Life (IPBSL), a drilling project in a geochemical Mars terrestrial analogue

    NASA Astrophysics Data System (ADS)

    Amils, R.; Fernández-Remolar, D. C.; Parro, V.; Manfredi, J. A.; Timmis, K.; Oggerin, M.; Sánchez-Román, M.; López, F. J.; Fernández, J. P.; Omoregie, E.; Gómez-Ortiz, D.; Briones, C.; Gómez, F.; García, M.; Rodríguez, N.; Sanz, J. L.

    2012-09-01

    Iberian Pyrite Belt Subsurface Life (IPBSL) is a drilling project specifically designed to characterize the subsurface ecosystems operating in the Iberian Pyrite Belt (IPB), in the area of Peña de Hierro, and responsible of the extreme acidic conditions existing in the Rio Tinto basin [1]. Rio Tinto is considered a good geochemical terrestrial analogue of Mars [2, 3]. A dedicated geophysical characterization of the area selected two drilling sites (4) due to the possible existence of water with high ionic content (low resistivity). Two wells have been drilled in the selected area, BH11 and BH10, of depths of 340 and 620 meters respectively, with recovery of cores and generation of samples in anaerobic and sterile conditions. Preliminary results showed an important alteration of mineral structures associated with the presence of water, with production of expected products from the bacterial oxidation of pyrite (sulfates and ferric iron). Ion chromatography of water soluble compounds from uncontaminated samples showed the existence of putative electron donors (ferrous iron, nitrite in addition of the metal sulfides), electron acceptors (sulfate, nitrate, ferric iron) as well as variable concentration of metabolic organic acids (mainly acetate, formate, propionate and oxalate), which are strong signals of the presence of active subsurface ecosystem associated to the high sulfidic mineral content of the IPB. The system is driven by oxidants that appear to be provided by the rock matrix, only groundwater is needed to launch microbial metabolism. The geological, geomicrobiological and molecular biology analysis which are under way, should allow the characterization of this ecosystem of paramount interest in the design of an astrobiological underground Mars exploration mission in the near future.

  2. Hydrogeological Investigations in Deep Wells at the Meuse/Haute Marne Underground Research Laboratory

    NASA Astrophysics Data System (ADS)

    Delay, Jacques; Distinguin, Marc

    ANDRA (Agence Nationale pour la Gestion de Déchets Radioactifs) has developed an integrated approach to characterizing the hydrogeology of the carbonate strata that encase the Callovo-Oxfordian argillite at the Meuse/Haute-Marne Laboratory site. The argillites are difficult to characterize due to their low permeability. The barrier properties of the argillites can be inferred from the flow and chemistry properties of the encasing Oxfordian and Dogger carbonates. Andras deep hole approach uses reverse air circulation drilling, geophysical logging, flow meter logging, geochemical sampling, and analyses of the pumping responses during sampling. The data support numerical simulations that evaluate the argillites hydraulic behaviour.

  3. Late Quaternary palaeoenvironmental reconstruction from Lake Ohrid using stable isotopes

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Vogel, Hendrik; Zanchetta, Giovanni; Wagner, Bernd

    2016-04-01

    Lake Ohrid is a large, deep lake located on the Balkan Peninsula at the border between Macedonia and Albania, and is considered the oldest extant lake in Europe. An International Continental scientific Drilling Program (ICDP) deep drilling campaign was carried out in 2013 as part of the interdisciplinary Scientific Collaboration On Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. Over 1500 m of sediment were recovered from six coring locations at the main target site in the central basin, where the maximum drill depth reached 569 m below the lake floor. Initial results indicate continuous lacustrine conditions over the past >1.2 Ma (Wagner et al., 2014). Here, we present oxygen and carbon isotope data (δ18O and δ13C) from carbonate from the upper 248 m of the SCOPSCO succession, which covers the last 640 ka, spanning marine isotope stages 15-1, according to an age model based on tephra and orbital tuning (Francke et al., 2015). Modern monitoring data show Lake Ohrid to be an evaporative system, where variations in δ18O of endogenic carbonate are primarily a function of changes in water balance, and δ13C largely reflects fluctuations in the amount of soil-derived CO2 and organic matter recycling. Our results indicate a trend from wetter to drier conditions through the Holocene, which is consistent with regional and hemispheric processes related to changes in insolation and progressive aridification. Over the last 640 ka, relatively stable climate conditions are inferred before ca. 450 ka, a transition to a wetter climate between ca. 400-250 ka, and a trend to drier climate after ca. 250 ka. Higher frequency, multi-millennial-scale oscillations observed during warm stages are most likely associated with regional climate change as a function of orbital forcing. This record is one of the most extensive and highly-resolved continental isotope records available, and emphasises the potential of Lake Ohrid as a valuable archive of long-term palaeoclimate and palaeoenvironmental change in the northern Mediterranean region. Francke, A., Wagner, B., Just, J., Leicher, N., Gromig, R., Baumgarten, H., Vogel, H., Lacey, J. H., Sadori, L., Wonik, T., Leng, M. J., Zanchetta, G., Sulpizio, R., and Giaccio, B. (2015). Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania) between 640 ka and present day. Biogeosciences Discussions 12, 15111-15156. Wagner, B., Wilke, T., Krastel, S., Zanchetta, G., Sulpizio, R., Reicherter, K., Leng, M. J., Grazhdani, A., Trajanovski, S., Francke, A., Lindhorst, K., Levkov, Z., Cvetkoska, A., Reed, J. M., Zhang, X., Lacey, J. H., Wonik, T., Baumgarten, H., and Vogel, H. (2014). The SCOPSCO drilling project recovers more than 1.2 million years of history from Lake Ohrid. Scientific Drilling 17, 19-29.

  4. Lunar robotic maintenance module

    NASA Technical Reports Server (NTRS)

    Ayres, Michael L.

    1988-01-01

    A design for a robotic maintenance module that will assist a mobile 100-meter lunar drill is introduced. The design considers the following areas of interest: the atmospheric conditions, actuator systems, power supply, material selection, weight, cooling system and operation.

  5. Don't just repeat after me: retrieval practice is better than imitation for foreign vocabulary learning.

    PubMed

    Kang, Sean H K; Gollan, Tamar H; Pashler, Harold

    2013-12-01

    Second language (L2) instruction programs often ask learners to repeat aloud words spoken by a native speaker. However, recent research on retrieval practice has suggested that imitating native pronunciation might be less effective than drill instruction, wherein the learner is required to produce the L2 words from memory (and given feedback). We contrasted the effectiveness of imitation and retrieval practice drills on learning L2 spoken vocabulary. Learners viewed pictures of objects and heard their names; in the imitation condition, they heard and then repeated aloud each name, whereas in the retrieval practice condition, they tried to produce the name before hearing it. On a final test administered either immediately after training (Exp. 1) or after a 2-day delay (Exp. 2), retrieval practice produced better comprehension of the L2 words, better ability to produce the L2 words, and no loss of pronunciation quality.

  6. Mass shooting in Colorado: practice drills, disaster preparations key to successful emergency response.

    PubMed

    2012-10-01

    While EDs are accustomed to preparing for mass-casualty events, the EDs responsible for caring for the victims of the mass shooting at an Aurora, CO, movie theater on July 20, 2012, say the emotional impact of dealing with such a senseless, horrific event remains challenging. Still, the ED directors from the two hospitals who cared for the most patients that night credit established disaster-response procedures and regular practice drills with helping them to successfully manage the crisis. Within a 30-minute time period, the University of Colorado's Anschutz Medical Campus in Aurora, CO, received 23 critically ill or injured patients, one of which was deceased upon arrival.There were no additional fatalities among the remaining 22 patients. The Medical Center of Aurora received 18 patients, 13 of which where suffering from gun shot wounds; all survived. Hospital administrators say ED providers and staff have responded in different ways to the tragedy, but the emotional impact has been difficult for some. Resources, ranging from spiritual support and grief counselors to psychiatric help, have been made available to help ED personnel access the kind of help they need.

  7. Research on Formation Mechanisms of Hot Dry Rock Resources in China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Xi, Y.

    2017-12-01

    As an important geothermal resource, hot dry rock(HDR) reserves have been studied in many countries. HDR resources in China have huge capacity and have become one of the most important resources for the potential replacement of fossil fuels. However, HDR resources are difficult to develop and utilise. Technologies for use with HDR, such as high-temperature drilling, reservoir characterisation, reservoir fracturing, microseismic monitoring and high-temperature power stations, originate from the field of oil and drilling. Addressing how to take advantage of these developed technologies is a key factor in the development of HDR reserves. Based on the thermal crustal structure in China, HDR resources can be divided into four types: high radioactive heat production, sedimentary basin, modern volcano and the inner-plate active tectonic belt. The prospective regions of HDR resources are located in South Tibet, West Yunnan, the southeast coast of China, Bohai Rim, Songliao Basin and Guanzhong Basin. The related essential technologies are relatively mature, and the prospect of HDR power generation is promising. Therefore, analysing the formation mechanisms of HDR resources and promoting the transformation of technological achievements, large-scale development and the utilisation of HDR resources can be achieved in China.

  8. Theoretical simulation of the multipole seismoelectric logging while drilling

    NASA Astrophysics Data System (ADS)

    Guan, Wei; Hu, Hengshan; Zheng, Xiaobo

    2013-11-01

    Acoustic logging-while-drilling (LWD) technology has been commercially used in the petroleum industry. However it remains a rather difficult task to invert formation compressional and shear velocities from acoustic LWD signals due to the unwanted strong collar wave, which covers or interferes with signals from the formation. In this paper, seismoelectric LWD is investigated for solving that problem. The seismoelectric field is calculated by solving a modified Poisson's equation, whose source term is the electric disturbance induced electrokinetically by the travelling seismic wave. The seismic wavefield itself is obtained by solving Biot's equations for poroelastic waves. From the simulated waveforms and the semblance plots for monopole, dipole and quadrupole sources, it is found that the electric field accompanies the collar wave as well as other wave groups of the acoustic pressure, despite the fact that seismoelectric conversion occurs only in porous formations. The collar wave in the electric field, however, is significantly weakened compared with that in the acoustic pressure, in terms of its amplitude relative to the other wave groups in the full waveforms. Thus less and shallower grooves are required to damp the collar wave if the seismoelectric LWD signals are recorded for extracting formation compressional and shear velocities.

  9. Program helps quickly calculate deviated well path

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, M.P.

    1993-11-22

    A BASIC computer program quickly calculates the angle and measured depth of a simple directional well given only the true vertical depth and total displacement of the target. Many petroleum engineers and geologists need a quick, easy method to calculate the angle and measured depth necessary to reach a target in a proposed deviated well bore. Too many of the existing programs are large and require much input data. The drilling literature is full of equations and methods to calculate the course of well paths from surveys taken after a well is drilled. Very little information, however, covers how tomore » calculate well bore trajectories for proposed wells from limited data. Furthermore, many of the equations are quite complex and difficult to use. A figure lists a computer program with the equations to calculate the well bore trajectory necessary to reach a given displacement and true vertical depth (TVD) for a simple build plant. It can be run on an IBM compatible computer with MS-DOS version 5 or higher, QBasic, or any BASIC that does no require line numbers. QBasic 4.5 compiler will also run the program. The equations are based on conventional geometry and trigonometry.« less

  10. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    PubMed

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P < 0.001). Within the limitations of the study, the short drilling protocol proposed herein may represent a safe approach for implant site preparation.

  11. Advantages and limitations of remotely operated sea floor drill rigs

    NASA Astrophysics Data System (ADS)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.

  12. Drilling effect on subsurface microbial community structure in groundwater from the -250 m gallery at the Horonobe Underground Research Laboratory, Japan

    NASA Astrophysics Data System (ADS)

    Ise, K.; Amano, Y.; Sasaki, Y.; Yoshikawa, H.

    2014-12-01

    The deep geological disposal system is regarded as the most secure and practical disposal method of high-level radioactive waste in the world. In this disposal system, preservation of reducing condition is one of the key requirements, because most of radionuclides have low solubilities in such condition. However, the host rocks near the shafts and galleries would be affected by oxidization during the construction and operation period of a repository (for about 50 years). Therefore, the recovery of reducing condition after closing the repository should be verified. During the recovery processes, it is considered that microbial activities play important roles, but the mechanisms are poorly understood. In this study, we monitored the changes in microbial communities by molecular method to evaluate microbial response toward the oxygen stress. The groundwater samples were collected from a borehole of 250 m depth at the Horonobe Underground Research Laboratory, for two years immediately after drilling of a borehole without any contamination as much as possible. Immediately after drilling of the borehole, the phylotype related to Arcobacter spp. was dominated about 65 % of the total clone library. Arcobacter spp. is known as sulfide oxidizer and which can growth chemoautotrophically. Half a year later, the phylotype related to Azoarcus spp. and Pseudomonas spp. known as nitrate reducing bacteria increased, instead of the phylotype related to Arcobacter spp. One year later, in addition to nitrate reducing bacteria, phylotype related to Dethiobacterspp. known as thiosulfate reducing bacteria was dominantly detected. Two years later, most of detected clones were related to uncultured species such as candidate division WS6 and JS1 which are detected frequently in deep-sea sediments. Our results indicate that these redox sequential reactions could contribute to the recovery and maintenance of reducing conditions and provide a conceptual model for evaluating the capacity to recover reducing conditions in subsurface environments after final geological disposal and the post-closure.

  13. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ...)] Drill Pipe and Drill Collars From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of drill pipe and drill... defined the subject merchandise as steel drill pipe, and steel drill collars, whether or not conforming to...

  14. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  15. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  16. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  17. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  18. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  19. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii

    USGS Publications Warehouse

    Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.

    1995-01-01

    Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors

  20. Phantom-based evaluation method for surgical assistance devices in minimally invasive cochlear implantation

    NASA Astrophysics Data System (ADS)

    Lexow, G. Jakob; Kluge, Marcel; Majdani, Omid; Lenarz, Thomas; Rau, Thomas S.

    2017-03-01

    Several research groups have proposed individual solutions for surgical assistance devices to perform minimally invasive cochlear implantation. The main challenge is the drilling of a small bore hole from the surface of the skull to the inner ear at submillimetric accuracy. Each group tested the accuracy of their device in their respective test bench or in a small number of temporal bone specimens. This complicates the comparison of the different approaches. Thus, a simple and inexpensive phantom based evaluation method is proposed which resembles clinical conditions. The method is based on half-skull phantoms made of bone-substitute material - optionally equipped with an artificial skin replica to include skin incision within the evaluation procedure. Anatomical structures of the temporal bone derived from segmentations using clinical imaging data are registered into a computer tomographic scan of the skull phantom and used for the planning of the drill trajectory. Drilling is performed with the respective device under conditions close to the intraoperative setting. Evaluation of accuracy can either be performed through postoperative imaging or by means of added targets on the inside of the skull model. Two different targets are proposed: simple reference marks only for measuring the accuracy of the device and a target containing a scala tympani model for evaluation of the complete workflow including the insertion of the electrode carrier. Experiments using the presented method take place under reproducible conditions thus allowing the comparison of the different approaches. In addition, artificial phantoms are easier to obtain and handle than human specimens.

  1. Comparing the Effects of Unknown-Known Ratios on Word Reading Learning versus Learning Rates

    ERIC Educational Resources Information Center

    Joseph, Laurice M.; Nist, Lindsay M.

    2006-01-01

    An extension of G. L. Cates et al. (2003) investigation was conducted to determine if students' cumulative learning rates would be superior for words read under a traditional drill and practice condition (as they were for spelling in the previous study) than under interspersal conditions of varying ratios of unknown to known words. Participants…

  2. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  3. Effect of verification cores on tip capacity of drilled shafts.

    DOT National Transportation Integrated Search

    2009-02-01

    This research addressed two key issues: : 1) Will verification cores holes fill during concrete backfilling? If so, what are the mechanical properties of the : filling material? In dry conditions, verification core holes always completely fill with c...

  4. 30 CFR 77.1901 - Preshift and onshift inspections; reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... before and after blasting. (b) The surface area surrounding each slope and shaft shall be inspected by a... condition has been abated. (d) No work shall be performed in any slope or shaft, no drilling equipment shall...

  5. DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann-Cherng; Raymond, David W.; Prasad, Somuri V.

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.« less

  6. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann; Raymond, David; Prasad, Somuri

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, H.M.

    There are positive signs today that conditions may be changing for the better offshore California. The prospects for exploratory drilling and resumption of long-delayed development of existing fields have improved. Some of the favorable happenings offshore include (1) the Interior Department may actually hold the offshore S. California lease sale before the year is out; (2) the Interior Department has issued a favorable draft environmental impact statement for the Santa Barbara Channel (this will help clear the way to drilling virtually all federal leases); (3) Exxon most certainly will start development of Hondo field in the billion-barrel Santa Unit (itmore » has won a vote of confidence of Santa Barbara County citizens); and (4) the new California State Lands Commission, while much tougher than its predecessors, has gradually been approving some drilling programs on state leases. The moratorium definitely is over. While activity is increasing on existing leases along the California coast, the real push will come when--or if--Interior holds its planned S. California lease sale later this year.« less

  8. Numerical simulation of temperature at drilling micro-hole on moving CO2 laser irradiated sticking plaster

    NASA Astrophysics Data System (ADS)

    Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao

    2012-03-01

    This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.

  9. Shear Ram Verification Test Protocol (VTP) Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindley, Roy A.; Braun, Joseph C.

    A blowout preventer (BOP) is a critical component used on subsea oil and gas wells during drilling, completion, and workover operations on the U. S. outer continental shelf (OCS). The purpose of the BOP is to seal oil and gas wells, and in the case of an emergency well-control event, to prevent the uncontrolled release of hydrocarbons. One of the most important components of the BOP is the hydraulically operated blind shear ram (BSR) that shears drilling-related components, such as drill pipes, casings, tubings, and wire-related tools that may have been placed in the well. In addition to shearing thesemore » components, the BSR must form a seal to keep hydrocarbons within the well bore, even when under the highest well-fluid pressures expected. The purpose of this document is for Argonne National Laboratory (ANL) to provide an independent view, based on current regulations, and best practices for testing and confirming the operability and suitability of BSRs under realistic (or actual) well conditions.« less

  10. An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.

    2006-01-01

    This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning aerial extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.

  11. An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.

    2007-01-01

    This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning areal extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.

  12. The shale gas revolution from the viewpoint of a former industry insider.

    PubMed

    Bamberger, Michelle; Oswald, Robert

    2015-02-01

    This is an interview conducted with an oil and gas worker who was employed in the industry from 1993 to 2012. He requested that his name not be used. From 2008 to 2012, he drilled wells for a major operator in Bradford County, Pennsylvania. Bradford County is the center of the Marcellus shale gas boom in Northeastern Pennsylvania. In 2012, he formed a consulting business to assist clients who need information on the details of gas and oil drilling operations. In this interview, the worker describes the benefits and difficulties of the hard work involved in drilling unconventional gas wells in Pennsylvania. In particular, he outlines the safety procedures that were in place and how they sometimes failed, leading to workplace injuries. He provides a compelling view of the trade-offs between the economic opportunities of working on a rig and the dangers and stresses of working long hours under hazardous conditions. © 2015 SAGE Publications.

  13. The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    NASA Astrophysics Data System (ADS)

    Ciarletti, Valérie; Clifford, Stephen; Plettemeier, Dirk; Le Gall, Alice; Hervé, Yann; Dorizon, Sophie; Quantin-Nataf, Cathy; Benedix, Wolf-Stefan; Schwenzer, Susanne; Pettinelli, Elena; Heggy, Essam; Herique, Alain; Berthelier, Jean-Jacques; Kofman, Wlodek; Vago, Jorge L.; Hamran, Svein-Erik; WISDOM Team

    2017-07-01

    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples.

  14. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2002-10-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2002 through September 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments include the following: (1) Smith International agreed to participate in the DOE Mud Hammer program. (2) Smith International chromed collars for upcoming benchmark tests at TerraTek, now scheduled for 4Q 2002. (3) ConocoPhillips had a field trial of the Smith fluid hammer offshore Vietnam. The hammer functioned properly, though themore » well encountered hole conditions and reaming problems. ConocoPhillips plan another field trial as a result. (4) DOE/NETL extended the contract for the fluid hammer program to allow Novatek to ''optimize'' their much delayed tool to 2003 and to allow Smith International to add ''benchmarking'' tests in light of SDS Digger Tools' current financial inability to participate. (5) ConocoPhillips joined the Industry Advisors for the mud hammer program. (6) TerraTek acknowledges Smith International, BP America, PDVSA, and ConocoPhillips for cost-sharing the Smith benchmarking tests allowing extension of the contract to complete the optimizations.« less

  15. Isolation of chicken embryonic stem cell and preparation of chicken chimeric model.

    PubMed

    Zhang, Yani; Yang, Haiyan; Zhang, Zhentao; Shi, Qingqing; Wang, Dan; Zheng, Mengmeng; Li, Bichun; Song, Jiuzhou

    2013-03-01

    Chicken embryonic stem cells (ESCs) were separated from blastoderms at stage-X and cultured in vitro. Alkaline phosphatase activity and stage-specific embryonic antigen-1 staining was conducted to detect ESCs. Then, chicken ESCs were transfected with linearized plasmid pEGFP-N1 in order to produce chimeric chicken. Firstly, the optimal electrotransfection condition was compared; the results showed the highest transfection efficiency was obtained when the field strength and pulse duration was 280 V and 75 μs, respectively. Secondly, the hatchability of shedding methods, drilling a window at the blunt end of egg and drilling a window at the lateral shell of egg was compared, the results showed that the hatchability was the highest for drilling a window at the lateral shell of egg. Thirdly, the hatchability of microinjection (ESCs was microinjected into chick embryo cavity) was compared too, the results showed there were significant difference between the injection group transfected with ESCs and that of other two groups. In addition, five chimeric chickens were obtained in this study and EGFP gene was expressed in some organs, but only two chimeric chicken expressed EGFP gene in the gonad, indicating that the chimeric chicken could be obtained through chick embryo cavity injection by drilling a window at the lateral shell of egg.

  16. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system wasmore » designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650°C, even exceeding 3000°C, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.« less

  17. MA_MISS: Mars Multispectral Imager for Subsurface Studies

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Coradini, A.; Ammannito, E.; Boccaccini, A.; Di Iorio, T.; Battistelli, E.; Capanni, A.

    2012-04-01

    A Drilling system, coupled with an in situ analysis package, is installed on the ExoMars Pasteur Rover to perform in situ investigations up to 2m in the Mars soil. Ma_Miss (Mars Multispectral Imager for Subsurface Studies) is a spectrometer devoted to observe the lateral wall of the borehole generated by the Drilling system. The instrument is fully integrated with the Drill and shares its structure and electronics. For the first time in Mars exploration experiments the water/geochemical environment will be investigated as function of depth in the shallow subsurface. Samples from the subsurface of Martian soil are unaltered by weathering process, oxidation and erosion. Subsurface access can be the key to look for signs of present and past environmental conditions, associated to the possibility for life (water, volatiles and weathering process). The analysis of uncontaminated samples by means of instrumented Drill and in situ observations is the solution for unambiguous interpretation of the original environment that leading to the formation of rocks. Ma_Miss experiment is perfectly suited to perform multispectral imaging of the drilled layers. Ma_Miss is a miniaturized near-infrared imaging spectrometer in the range 0.4-2.2 µm with 20nm spectral sampling. The task of illuminating the borehole wall and collecting the diffused light from the illuminated spot on the target requires a transparent window on the Drill tool, which shall prevent the dust contamination of the optical and mechanical elements inside. Hardness of sapphire is the closest to diamond one, thus avoiding the risk of scratches on its surface. The Sapphire window is cylindrical, and bounded such as to realize a continuous auger profile. Ma_Miss Optical Head performs the double task of illuminating the borehole wall with a spot around 1 mm diameter and of collecting the scattered light coming from a 0.1 mm diameter spot of the target. The signal from the Optical Head to the spectrometer is transferred through the different elements of the Drill by means of fiber optics and an optical rotary joint implemented in the roto-translation group of the Drill. Ma_Miss Optical Head has been tested in the breadboard to capture the diffused light from the observed target and transfer the signal to a laboratory spectrometer for analysis. The Optical Head of Ma_Miss has been tested after integration in ExoMars Drill. The drilling experiment has been carried out in realistic media (tuff, red brick). The test shows good performance of Optical Head illumination capability and of the window cleanliness during the drilling. Illumination spot is focused at the nominal distance of 0.2 mm from the sapphire window. During the ExoMars Pasteur Rover mission, the Ma_Miss experiment will allow collecting valuable data of the drilled stratigraphic column, will document "in-situ" the nature of the samples that will be delivered to the Pasteur Laboratory and will be able to identify hydrated minerals, sedimentary materials and different kind of diagnostic materials of Martian subsurface.

  18. Characterization of interactions between sub-surface compartments and a deep sub-vertical aquifer in crystalline basement (St-Brice en Coglès, French Brittany)

    NASA Astrophysics Data System (ADS)

    Roques, C.; Bour, O.; Aquilina, L.; Longuevergne, L.; Dewandel, B.; Hochreutener, R.; Schroetter, J.; Labasque, T.; Lavenant, N.

    2012-12-01

    Hard-rock aquifers constitute in general a limited groundwater resource whose upper part is particularly sensitive to anthropogenic activities. Locally, some high production aquifers can be encountered, typically near regional tectonic discontinuities which may constitute preferential flow paths. However, this kind of aquifer, in particular their interactions with sub-surface, is often very difficult to characterize. We investigated the hydrogeological functioning of a deep vertical conductive fractured zone, focusing on the interactions between hydrologic compartments, thanks to a multidisciplinary approach and a variety of field experiments. A specific field site located in north east of French Brittany, in crystalline bedrock, was selected because of high measured yields during drilling (100 m3/h), essentially related to permeable fractures at 120 m depth and deeper. Three deep boreholes 80 to 250 deep were drilled at relatively short distances (typically 30 meters); one of them has been cored for detailed geological information. Shallower boreholes were also drilled (7 to 20 m deep) to characterize the upper weathered compartment and the hydraulic connections with the deep compartment. The system was characterized both in natural conditions and during a 9-week large scale pumping test carried out at a pumping rate of 45 m3/h. To describe the hydraulic properties and the functioning of the deep hydraulic structure, we used a multidisciplinary approach: (a) well head variations and traditional pumping test interpretations, (b) high-resolution flow loggings to identify fracture connectivity, (c) tracer tests to estimate transfer times and groundwater fluxes between main compartments and (d) multi-parameters fluid logging, geochemistry and groundwater dating to identify water origin and mixing processes between different reservoirs. The geometry of the main permeable structure has been identified combining geological information and hydraulic interpretations. It shows a clear compartmentalization of the aquifer with a strong spatial heterogeneity in permeability. Although using a packer to force the pumping to be deeper than 80 meters, a very fast reaction of the upper aquifer during pumping with clear leaky effects was observed. Heat-Pulse Flowmeter logs also show the interconnections between compartments. During the pumping, we also monitored a high decrease of groundwater ages of the water pumped. Combination of all these methods allowed the flow connections between compartments to be identified and the fluxes between the different compartments to be quantified. We show in particular how the deep groundwater resource is strongly dependent of shallower compartments. Identifying flow properties and origin of water in a deep aquifer is an important issue to optimize the management of such groundwater resources. In particular the estimation of the groundwater capacity, and also to predict groundwater quality changes are essential. This study allows quantifying fluxes between compartments both in natural and pumping conditions. Such a characterization is crucial to assess the sustainability of deep hard-rock aquifers for groundwater supply.

  19. Overpressure Prediction From Seismic Data: Implications on Drilling Safety

    NASA Astrophysics Data System (ADS)

    Osinowo, O. O.; Oladunjoye, M. A.; Olayinka, A. I.

    2007-12-01

    High rate of sediment influx into the Niger Delta via river Niger coupled with high rate of basin subsidence, very thick clayey members of Agbada and Akata Formations as well as prevailing presence of growth faults had been identified as the main factors responsible for overpressure generation and preservation in the Niger Delta basin. Analysis of porosity dependent parameters such as interval transit times and interval velocities derived from the seismic records of a field in the Western Niger Delta revealed the presence of overpressured formation at depth of 8670 feet, which is the top of the overpressured zone. The plot of interval transit times against depth gave a positive deflection from normal at the region of overpressure while interval velocity plot gave negative deflection; the ratio of this deviation in both cases is as high as 1.52. Pressure gradient in the upper, normally pressured part of the field was determined to be 0.465 psi/ft., which is within the established normal pressure gradient range in Niger Delta, while the abnormal formation pressure gradient in the overpressured region was determined to be 0.96 psi/ft., and this is also within the published abnormal pressure gradient range of 0.71 to 1.1 psi/ft. in Niger Delta. Formation fracture pressure gradients were determined from the formation pressure information to be 0.66psi/ft. in the upper part of the field and 1.2psi/ft. in the overpressured horizon. Mud weight window (MWW); mud density range necessary to prevent formation kick without initiating hydraulic fracturing was determined to be 10.2 to 12.5lbm/gal in the upper part of the field and 22.1 to 22.63lbm/gal in the overpressured horizon. MWW is indispensable for the selection of the mud pump type, capacity, pumping rate and mud densities at different formation pressure regimes. Overpressure prediction is also requisite for drilling program design, casing design as well as rig capacity choice before spudding. It is necessary to reduce well construction risk, save drilling hour as well as cut down drilling cost. If adequate predictions are not taken however, drilling hazards known as blowout may occur. Blowout, an uncontrollable flow of formation fluid into the well has made oil exploration and exploitation activities in Niger Delta, Southern Nigeria, a curse for the people rather than a blessing because considerable numbers of wells blew out during well construction activities, hence the characteristic oil spill which had degraded the environment, making fishing operation, a source of livelihood of the people difficult. Therefore the need for overpressure prediction as a guide for safe drilling, especially in unfamiliar exploration environments.

  20. A Novel Well Drill Assisted with High-Frequency Vibration Using the Bending Mode

    PubMed Central

    Qi, Xinda; Chen, Weishan; Tang, Xintian; Shi, Shengjun

    2018-01-01

    It is important for companies to increase the efficiency of drilling as well as prolong the lifetime of the drilling tool. Since some previous investigations indicated that a superposition of well drilling with an additional vibration increases the drilling efficiency, this paper introduces a novel well drill which is assisted with additional vibrations by means of piezoelectric sandwich bending vibration transducer. The proposed drill uses bending vibrations in two different directions to from an elliptical trajectory movement, which can help the drill to break the surface of hard material more efficiently and clean away the lithic fragments more easily. The proposed well drill with bending vibration transducer is designed to have a resonance frequency of the first bending vibration mode of about 1779 Hz. The motion equation of the particle on the edge of the drill bit is developed and analyzed. The vibration trajectory of the particle on the edge of the drill bit is calculated by using finite element method. A prototype of the proposed drill using bending vibrations is fabricated and tested to verify the aim of drilling efficiency increase. The feed speed of the vibration assisted drilling is tested to be about 0.296 mm/s when the excitation voltage of the transducer is 300 V, while this speed decreases to about 0.195 mm/s when no vibration is added. This comparison shows that the feed speed of the vibration assisted drilling is about 52% higher than that of the normal drilling, which means the proposed drill has a better efficiency and it is important to consider vibration superimposition in well drilling. In addition, the surface of the drill hole gained by the vibration assisted drilling is smoother than that of the normal drilling, which makes the clearance easier. PMID:29641481

  1. Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling.

    PubMed

    Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Kotev, Vladimir; Delchev, Kamen; Zagurski, Kazimir; Vitkov, Vladimir

    2013-12-01

    Many orthopaedic operations involve drilling and tapping before the insertion of screws into a bone. This drilling is usually performed manually, thus introducing many problems. These include attaining a specific drilling accuracy, preventing blood vessels from breaking, and minimizing drill oscillations that would widen the hole. Bone overheating is the most important problem. To avoid such problems and reduce the subjective factor, automated drilling is recommended. Because numerous parameters influence the drilling process, this study examined some experimental methods. These concerned the experimental identification of technical drilling parameters, including the bone resistance force and temperature in the drilling process. During the drilling process, the following parameters were monitored: time, linear velocity, angular velocity, resistance force, penetration depth, and temperature. Specific drilling effects were revealed during the experiments. The accuracy was improved at the starting point of the drilling, and the error for the entire process was less than 0.2 mm. The temperature deviations were kept within tolerable limits. The results of various experiments with different drilling velocities, drill bit diameters, and penetration depths are presented in tables, as well as the curves of the resistance force and temperature with respect to time. Real-time digital indications of the progress of the drilling process are shown. Automatic bone drilling could entirely solve the problems that usually arise during manual drilling. An experimental setup was designed to identify bone drilling parameters such as the resistance force arising from variable bone density, appropriate mechanical drilling torque, linear speed of the drill, and electromechanical characteristics of the motors, drives, and corresponding controllers. Automatic drilling guarantees greater safety for the patient. Moreover, the robot presented is user-friendly because it is simple to set robot tasks, and process data are collected in real time. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Finite Element Modeling of In-Situ Stresses near Salt Bodies

    NASA Astrophysics Data System (ADS)

    Sanz, P.; Gray, G.; Albertz, M.

    2011-12-01

    The in-situ stress field is modified around salt bodies because salt rock has no ability to sustain shear stresses. A reliable prediction of stresses near salt is important for planning safe and economic drilling programs. A better understanding of in-situ stresses before drilling can be achieved using finite element models that account for the creeping salt behavior and the elastoplastic response of the surrounding sediments. Two different geomechanical modeling techniques can be distinguished: "dynamic" modeling and "static" modeling. "Dynamic" models, also known as forward models, simulate the development of structural processes in geologic time. This technique provides the evolution of stresses and so it is used to simulate the initiation and development of structural features, such as, faults, folds, fractures, and salt diapers. The original or initial configuration and the unknown final configuration of forward models are usually significantly different therefore geometric non-linearities need to be considered. These models may be difficult to constrain when different tectonic, deposition, and erosion events, and the timing among them, needs to be accounted for. While dynamic models provide insight into the stress evolution, in many cases is very challenging, if not impossible, to forward model a configuration to its known present-day geometry; particularly in the case of salt layers that evolve into highly irregular and complex geometries. Alternatively, "static" models use the present-day geometry and present-day far-field stresses to estimate the present-day in-situ stress field inside a domain. In this case, it is appropriate to use a small deformation approach because initial and final configurations should be very similar, and more important, because the equilibrium of stresses should be stated in the present-day initial configuration. The initial stresses and the applied boundary conditions are constrained by the geologic setting and available data. This modeling technique does not predict the evolution of structural elements or stresses with time; therefore it does not provide any insight into the formation of fractures that were previously developed under a different stress condition or the development of overpressure generated by a high sedimentation rate. This work provides a validation for predicting in-situ stresses near salt using "static" models. We compare synthetic examples using both modeling techniques and show that stresses near salt predicted with "static" models are comparable to the ones generated by "dynamic" models.

  3. In-vitro analysis of forces in conventional and ultrasonically assisted drilling of bone.

    PubMed

    Alam, K; Hassan, Edris; Imran, Syed Husain; Khan, Mushtaq

    2016-05-12

    Drilling of bone is widely performed in orthopaedics for repair and reconstruction of bone. Current paper is focused on the efforts to minimize force generation during the drilling process. Ultrasonically Assisted Drilling (UAD) is a possible option to replace Conventional Drilling (CD) in bone surgical procedures. The purpose of this study was to investigate and analyze the effect of drilling parameters and ultrasonic parameters on the level of drilling thrust force in the presence of water irrigation. Drilling tests were performed on young bovine femoral bone using different parameters such as spindle speeds, feed rates, coolant flow rates, frequency and amplitudes of vibrations. The drilling force was significantly dropped with increase in drill rotation speed in both types of drilling. Increase in feed rate was more influential in raising the drilling force in CD compared to UAD. The force was significantly dropped when ultrasonic vibrations up to 10 kHz were imposed on the drill. The drill force was found to be unaffected by the range of amplitudes and the amount of water supplied to the drilling region in UAD. Low frequency vibrations with irrigation can be successfully used for safe and efficient drilling in bone.

  4. Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery.

    PubMed

    Ghasemloonia, Ahmad; Baxandall, Shalese; Zareinia, Kourosh; Lui, Justin T; Dort, Joseph C; Sutherland, Garnette R; Chan, Sonny

    2016-11-01

    Surgical training is evolving from an observership model towards a new paradigm that includes virtual-reality (VR) simulation. In otolaryngology, temporal bone dissection has become intimately linked with VR simulation as the complexity of anatomy demands a high level of surgeon aptitude and confidence. While an adequate 3D visualization of the surgical site is available in current simulators, the force feedback rendered during haptic interaction does not convey vibrations. This lack of vibration rendering limits the simulation fidelity of a surgical drill such as that used in temporal bone dissection. In order to develop an immersive simulation platform capable of haptic force and vibration feedback, the efficacy of hand controllers for rendering vibration in different drilling circumstances needs to be investigated. In this study, the vibration rendering ability of four different haptic hand controllers were analyzed and compared to find the best commercial haptic hand controller. A test-rig was developed to record vibrations encountered during temporal bone dissection and a software was written to render the recorded signals without adding hardware to the system. An accelerometer mounted on the end-effector of each device recorded the rendered vibration signals. The newly recorded vibration signal was compared with the input signal in both time and frequency domains by coherence and cross correlation analyses to quantitatively measure the fidelity of these devices in terms of rendering vibrotactile drilling feedback in different drilling conditions. This method can be used to assess the vibration rendering ability in VR simulation systems and selection of ideal haptic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Geophysical investigations in deep horizontal holes drilled ahead of tunnelling

    USGS Publications Warehouse

    Carroll, R.D.; Cunningham, M.J.

    1980-01-01

    Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.

  6. Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA).

    PubMed

    Davis, James P; Struchtemeyer, Christopher G; Elshahed, Mostafa S

    2012-11-01

    We monitored the bacterial communities in the gas-water separator and water storage tank of two newly drilled natural gas wells in the Barnett Shale in north central Texas, using a 16S rRNA gene pyrosequencing approach over a period of 6 months. Overall, the communities were composed mainly of moderately halophilic and halotolerant members of the phyla Firmicutes and Proteobacteria (classes Βeta-, Gamma-, and Epsilonproteobacteria) in both wells at all sampling times and locations. Many of the observed lineages were encountered in prior investigations of microbial communities from various fossil fluid formations and production facilities. In all of the samples, multiple H(2)S-producing lineages were encountered; belonging to the sulfate- and sulfur-reducing class Deltaproteobacteria, order Clostridiales, and phylum Synergistetes, as well as the thiosulfate-reducing order Halanaerobiales. The bacterial communities from the separator and tank samples bore little resemblance to the bacterial communities in the drilling mud and hydraulic-fracture waters that were used to drill these wells, suggesting the in situ development of the unique bacterial communities in such well components was in response to the prevalent geochemical conditions present. Conversely, comparison of the bacterial communities on temporal and spatial scales suggested the establishment of a core microbial community in each sampled location. The results provide the first overview of bacterial dynamics and colonization patterns in newly drilled, thermogenic natural gas wells and highlights patterns of spatial and temporal variability observed in bacterial communities in natural gas production facilities.

  7. Integration of Remote Sensing and other public GIS data source to identify suitable zones for groundwater exploitation by manual drilling

    NASA Astrophysics Data System (ADS)

    Fussi, Fabio; Fava, Francesco; Di Mauro, Biagio; Bonomi, Tullia; Fumagalli, Letizia; DI Leo, Margherita; Hamidou Kane, Cheik; Faye, Gayane; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto

    2015-04-01

    In several countries of the world the situation of water supply is still critical, far from the international target defined by United Nations for 2015 (Millenium Development Goals) and producing a huge impact on health and living condition of the population. Manual drilling (it means techniques to drill boreholes for water using human or animal power) is well known and practiced for centuries in many countries. In recent years, it has been considered a potential strategy to increase water access in poor countries and has raised the attention of national governments and international organizations. Manual drilling is applicable only where hydrogeological context is suitable, according to the following conditions: thick layers of unconsolidated sediments and shallow water table. Mapping of zones with suitable hydrogeological context has been carried out in several countries in Africa, but the results have evident limitations; previous methods are based on existing direct data and qualitative experience, leading to unreliable interpretation when direct data are limited. This research aims to develop a methodology to estimate shallow hydrogeological features and asses the distribution of suitable zones for manual drilling through the integration of indirect information obtained from remote sensing and other existing source of data. The research is carried out in two different study areas, in Senegal and Guinea (Western Africa), with semi-arid climate, moderate vegetation cover, unconsolidated sandy and clay deposits overlaying sedimentary and igneous rocks A set of variables have been obtained through processing of three categories of data, listed below: - geology, geomorphology, soil and land cover, obtained from existing thematic maps; - vegetation phenology, apparent thermal inertia, and soil moisture, obtained from analysis of multitemporal optical (MOD13Q1), thermal (MOD11A1), and radar (ASAR) remotely sensed data: -morphometric parameters, obtained from public digital elevation models available (ASTER GDEM and SRTM). These variables have been combined using multivariate statistical methods (e.g. regression and classification trees) in order to study their relationship with hydrogeological parameters of shallow layers (namely thickness of porous aquifer, hydraulic conductivity and depth of water table) and estimate the suitability for manual drilling. Direct hydrogeological data in selected points obtained from semiautomatic analysis of stratigraphic borehole logs have been used in the definition and validation of the model. The results obtained demonstrate the potential of the proposed methodological approach to improve the estimation of manual drilling suitability using public data, widely available worldwide. Therefore, it has considerable potential to be replicated in other countries with limited costs. Furthermore, the maps of suitable zones for manual drilling produced in this research can help the promotion of this technique in Senegal and Guinea by different national and international organizations involved in water supply programs. This research is part of a larger project financed by NERC (National Environment Research Council, UK) in the framework of the program UPGRO (Unlocking the Potential of Groundwater for the Poors), with the collaboration of different partners from Italy, Senegal and Guinea.

  8. Independent Technical Investigation of the Puna Geothermal Venture Unplanned Steam Release, June 12 and 13, 1991, Puna, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Richard; Whiting, Dick; Moore, James

    1991-07-01

    On June 24, 1991, a third-party investigation team consisting of Richard P. Thomas, Duey E. Milner, James L. Moore, and Dick Whiting began an investigation into the blowout of well KS-8, which occurred at the Puna Geothermal Venture (PGV) site on June 12, 1991, and caused the unabated release of steam for a period of 31 hours before PGV succeeded in closing in the well. The scope of the investigation was to: (a) determine the cause(s) of the incident; (b) evaluate the adequacy of PGVs drilling and blowout prevention equipment and procedures; and (c) make recommendations for any appropriate changesmore » in equipment and/or procedures. This report finds that the blowout occurred because of inadequacies in PGVs drilling plan and procedures and not as a result of unusual or unmanageable subsurface geologic or hydrologic conditions. While the geothermal resource in the area being drilled is relatively hot, the temperatures are not excessive for modem technology and methods to control. Fluid pressures encountered are also manageable if proper procedures are followed and the appropriate equipment is utilized. A previous blowout of short duration occurred on February 21, 1991, at the KS-7 injection well being drilled by PGV at a depth of approximately 1600'. This unexpected incident alerted PGV to the possibility of encountering a high temperature, fractured zone at a relatively shallow depth. The experience at KS-7 prompted PGV to refine its hydrological model; however, the drilling plan utilized for KS-8 was not changed. Not only did PGV fail to modify its drilling program following the KS-7 blowout, but they also failed to heed numerous ''red flags'' (warning signals) in the five days preceding the KS-8 blowout, which included a continuous 1-inch flow of drilling mud out of the wellbore, gains in mud volume while pulling stands, and gas entries while circulating muds bottoms up, in addition to lost circulation that had occurred earlier below the shoe of the 13-3/8-hch casing.« less

  9. Controllable magneto-rheological fluid-based dampers for drilling

    DOEpatents

    Raymond, David W [Edgewood, NM; Elsayed, Mostafa Ahmed [Youngsville, LA

    2006-05-02

    A damping apparatus and method for a drillstring comprising a bit comprising providing to the drillstring a damping mechanism comprising magnetorheological fluid and generating an electromagnetic field affecting the magnetorheological fluid in response to changing ambient conditions encountered by the bit.

  10. ICDP supported coring in IDDP-2 at Reykjanes - the DEEPEGS demonstrator in Iceland - Supercritical conditions reached below 4.6 km depth.

    NASA Astrophysics Data System (ADS)

    Ómar Friðleifsson, Guðmundur; Elders, Wilfred A.; Zierenberg, Robert; Steafánsson, Ari; Sigurðsson, Ómar; Gíslason, Þór; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-04-01

    The Iceland Deep Drilling Project (IDDP) is exploring the technical and economic feasibility of producing supercritical geothermal resources. The IDDP-2 well is located in the Reykjanes saline geothermal system in SW Iceland, on the landward extension of the Mid-Atlantic Ridge, where we are probing the analog of the root zone of a black smoker. In 2009, Phase 1 of the IDDP was unsuccessful in reaching supercritical conditions in the Krafla volcanic caldera in NE Iceland, when the IDDP-1 drill hole unexpectedly encountered 900°C rhyolite magma at only 2.1 km depth. The completed well produced superheated steam with a well head temperature of 453°C with an enthalpy and flow rate sufficient to generate 35 MWe. Drilling the IDDP-2 began by deepening an existing 2.5 km deep production well (RN-15) to 3 km depth, casing it to 2941m depth and drilling it to 4626m. Total circulation losses which were encountered below 3 km depth, could not be cured by LCM and multiple cement jobs. Accordingly, drilling continued "blind" to total depth, without return of drill cuttings. We attempted 12 core runs below 3 km depth, half of which recovered some core. The cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting formation temperatures >450°C. After a final report from the on-site science team, expected mid-year 2017, detailed petrological, petrophysical, and geochemical analyses of cores will be undertaken by the IDDP science team and collaborators and published in a special issue of a main-stream scientific journal. The drilling of the IDDP-2 was funded by the field operator HS Orka, and by Statoil, and the IDDP industry consortium. The coring was funded by ICDP and the science program of the IDDP. Deepening the RN-15 began 11th August 2016, and was completed to 4626m, 17th December 2016. A perforated liner was inserted to 4,571m and the well subsequently logged for temperature, pressure and injectivity, after 6 days partial heating-up. The injectivity index proved to be 1.7 (kg/s)/bar. Supercritical conditions were measured at the bottom, 427°C at 340 bar pressure. The T-log showed the main permeable zones to be at around 3360m, 4200m, 4370m and 4550m depth. Estimates suggest that 30% of 40 L/s injected into the well are received by the three deepest feed zones. This can possibly be enhanced by massive soft stimulation, which is a part of the DEEPEGS plan to be executed later this year. The DEEPEGS project is a demonstration project, supported by the European Commission, Horizon 2020. The goal is to demonstrate the feasibility of enhanced geothermal systems (EGS) for delivering energy from renewable resources in Europe. It is a four-year project coordinated by HS Orka, Iceland, in cooperation with partners from Iceland, France, Germany, Italy, and Norway. The project will demonstrate advanced technologies in three types of geothermal reservoirs, (i) in high enthalpy resource beneath existing hydrothermal field at Reykjanes with temperature up to 550°C, and (ii) in two very deep hydrothermal reservoirs in France with temperatures up to 220°C.

  11. In situ-measurement of ice deformation from repeated borehole logging of the EPICA Dronning Maud Land (EDML) ice core, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; Weikusat, Ilka; Kleiner, Thomas; Wilhelms, Frank; Dahl-Jensen, Dorthe; Frenzel, Andreas; Binder, Tobias; Eichler, Jan; Faria, Sergio H.; Sheldon, Simon; Panton, Christian; Kipfstuhl, Sepp; Miller, Heinrich

    2017-04-01

    The European Project for Ice Coring in Antarctica (EPICA) ice core was drilled between 2001 and 2006 at the Kohnen Station, Antarctica. During the drilling process the borehole was logged repeatedly. Repeated logging of the borehole shape is a means of directly measuring the deformation of the ice sheet not only on the surface but also with depth, and to derive shear strain rates for the lower part, which control the volume of ice transported from the inner continent towards the ocean. The logging system continuously recorded the tilt of the borehole with respect to the vertical (inclination) as well as the heading of the borehole with respect to magnetic north (azimuth) by means of a compass. This dataset provides the basis for a 3-D reconstruction of the borehole shape, which is changing over time according to the predominant deformation modes with depth. The information gained from this analysis can then be evaluated in combination with lattice preferred orientation, grain size and grain shape derived by microstructural analysis of samples from the deep ice core. Additionally, the diameter of the borehole, which was originally circular with a diameter of 10 cm, was measured. As the ice flow velocity at the position of the EDML core is relatively slow (about 0.75 m/a), the changes of borehole shape between the logs during the drilling period were very small and thus difficult to interpret. Thus, the site has been revisited in the Antarctic summer season 2016 and logged again using the same measurement system. The change of the borehole inclination during the time period of 10 years clearly reveals the transition from a pure shear dominated deformation in the upper part of the ice sheet to shear deformation at the base. We will present a detailed analysis of the borehole parameters and the deduced shear strain rates in the lower part of the ice sheet. The results are discussed with respect to ice microstructural data derived from the EDML ice core. Microstructural data directly reflect the deformation conditions, as the ice polycrystal performs the deformation which leads e.g. to characteristic lattice orientation distributions and grain size and shape appearance. Though overprinted by recrystallization (due to the hot environment for the ice) and the slow deformation, analysis of statistically significant grain numbers reveals indications typical for the changing deformation regimes with depth. Additionally we compare our results with strain rates derived from a simulation with a model for large scale ice deformation, the Parallel Ice Sheet Model (PISM).

  12. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  13. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  14. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  15. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  16. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  17. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    NASA Astrophysics Data System (ADS)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  18. Aerated drilling cutting transport analysis in geothermal well

    NASA Astrophysics Data System (ADS)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  19. Round and Oval Window Anatomic Variability: Its Implication for the Vibroplasty Technique.

    PubMed

    Mancheño, Marta; Aristegui, Miguel; Sañudo, Jose Ramon

    2017-06-01

    The objective of this study is to evaluate the anatomical variability of round and oval window regions and its relationship with their closest structures, to determine its implication on the fitting and stabilization of the middle ear implant Vibrant Soundbridge. Variations of the anatomy of round and oval window regions were assessed in a total of 85 human dissected temporal bones. Afterward, we evaluated the adaptation and subsequent stabilization of the floating mass transducer (FMT) of the Vibrant Soundbridge in 67 cases in round window (RW) and in 22 cases in oval window (OW), and the influence that the variability of the different anatomical features examined had on this stabilization. We also assessed access and surgeon's view of the RW niche through the facial recess approach. Stabilization of the FMT in the RW was achieved in 53 (79%) of the 67 cases; we found that the less favorable anatomical conditions for stabilization were: membrane smaller than 1.5 mm, presence of a high jugular bulb and a narrow or very narrow RW niche. Frequently, two or more of these conditions happened simultaneously. In seven cases (22%) access to the RW through facial recess approach did not allow positioning the FMT in place. OW stabilization succeeded in 18 (82%) of the 22 cases. Round and oval window vibroplasty are difficult surgical techniques. To place the FMT directly on the OW may be easier as we do not have to drill the niche. In both regions there are some anatomical conditions that hinder fitting the FMT and even make it impossible. Once fitted, the main problem is to achieve good stabilization of the device.

  20. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  1. Effects of bone drilling on local temperature and bone regeneration: an in vivo study.

    PubMed

    Karaca, Faruk; Aksakal, Bünyamin; Köm, Mustafa

    2014-01-01

    The aim of this study was to examine the influence of bone drilling on local bone temperature and bone regeneration and determine optimal drilling speed and pressure in an animal model. The study included 12 skeletally mature New Zealand white rabbits, weighing between 2.8 to 3.2 kg. Rabbits were divided into 2 groups and euthanized at the end of Day 21 (Group A) and Day 42 (Group B). The same drilling protocol was used in both groups. Three drill holes with different pressure (5, 10 and 20 N) were made in each rabbit tibias using 3 different rotational drill speeds (230, 370 and 570 rpm). During drilling, local temperature was recorded. Rabbit tibia underwent histopathological exam for bone regeneration. Bone temperature was affected by drilling time and depth. Lower drill speeds reduced the bone temperature and revealed better bone regeneration when compared to the drilled bones at higher drill speeds. Titanium boron nitride coating on the drill bits had no significant effects on bone temperature and structure. Bone regeneration was superior in Group B rabbits that had drilling at 230 rpm and 20 N. Our results suggested that lower drilling speed with higher pressure is necessary for better bone regeneration. The optimal drilling speed is 230 rpm and optimal drilling pressure 20 N.

  2. Western USA Groundwater Regulation and Infrastructure for Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Jasechko, S.; Nelson, R.

    2016-12-01

    More than 2/3 of US groundwater use is attributed to the western 17 states—an area with many key regions for agricultural production and unsustainable groundwater pumping. Although there is increasing acknowledgement of the importance of more intensive management, the western US remains a patchwork of diverse and imperfect governance and legal strategies. Water quantity is regulated at the state level, so obtaining the right to withdrawal groundwater ("permitting") can be vastly different from one state to the next. Much attention has been devoted to quantifying rates of groundwater depletion across the west, but little is known about the spatiotemporal patterns of groundwater drilling and permitting. While many local agencies have a plethora of knowledge about groundwater infrastructure and regulation, most of this knowledge is hearsay or locally disseminated, and it is difficult to obtain groundwater data—physical and legal—comprehensively across large regions. Here we explore and map groundwater infrastructure and permitting approaches across the western US, focusing specifically on the importance of groundwater to sustaining agriculture in key producing regions (e.g., High Plains). We analyze over four million groundwater-drilling records and relate these data to geographically defined subareas ("special permitting areas") within states that have been designated legally due to concerns about the effects of groundwater withdrawal. Our work indicates that the default set of laws and regulations within states is often of lesser importance because of the extent of and legal powers granted within special permitting areas. We also find areas with significant groundwater drilling that do not fall within special permitting areas, indicating that special permitting areas are not all-inclusive of intensive use. Our work has practical implications, highlighting the effects of regionalized laws on a resource not confined physically by jurisdictional boundaries.

  3. Quantifying the Impact of Technological Trends and Spatiotemporal Variability in Hydraulic Fracturing Water Intensity

    NASA Astrophysics Data System (ADS)

    Montgomery, J.; O'sullivan, F.

    2016-12-01

    An important metric for comparing the environmental impact of hydraulically fractured oil and gas wells to other energy technologies is the water intensity, or water usage normalized to energy production. Due to varying hydraulic fracturing practices, immense variability in short-term well performance, and uncertainty about lifetime production from wells, the water intensity of wells is difficult to predict and should be modeled statistically using field data. We analyzed public production and hydraulic fracturing data for 3497 wells drilled in the North Dakota Williston Basin between 2012 and 2015 to identify technology and sweet-spotting trends and identify their impact on well productivity and water intensity. We found that the water used per well increased by an average of 43% per year over this period while the water intensity of wells increased by 32% per year. The difference in these rates was due to a trend of increasing production rates, which we found to be associated equally with changes in technology and sweet-spotting. The prevalent role of sweet spotting means that as future drilling activity shifts into less productive areas than are presently being exploited, this will predictably increase the water intensity of new wells. Although some of the variability in well productivity and water intensity is resolvable to the influence of spatial heterogeneity and technology practices, a substantial amount of uncertainty is irreducible due to unobservable factors. This uncertainty can best be represented and updated with new information, such as initial rates of production, using a Bayesian decline curve model. We demonstrate how this approach can be used to forecast uncertainty of water intensity at different locations and points in time, making it a useful tool for a range of stakeholders, including regulatory agencies assessing the environmental impact of drilling activity within particular watersheds.

  4. A synthesis of Plio-Pleistocene leaf wax biomarker records of hydrological variation in East Africa and their relationship with hominin evolution

    NASA Astrophysics Data System (ADS)

    Lupien, R.; Russell, J. M.; Campisano, C. J.; Feibel, C. S.; Deino, A. L.; Kingston, J.; Potts, R.; Cohen, A. S.

    2017-12-01

    Climate change is thought to play a critical role in human evolution. However, the mechanisms behind this relationship are difficult to test due to a lack of long, high-quality paleoclimate records from hominin fossil locales. We improve the understanding of this relationship by examining Plio-Pleistocene lake sediment cores from East Africa that were drilled by the Hominin Sites and Paleolakes Drilling Project, an international effort to study the environment in which our hominin ancestors evolved and dispersed. We have analyzed organic geochemical signals of climate from drill cores from Ethiopia and Kenya spanning the Pliocene to recent time (from north to south: paleolake Hadar, Lake Turkana, Lake Baringo, and paleolake Koora). Specifically, we analyzed the hydrogen isotopic composition of terrestrial leaf waxes, which records changes in regional atmospheric circulation and hydrology. We reconstructed quantitative records of rainfall amount at each of the study sites, which host sediment spanning different geologic times and regions. By compiling these records, we test hominin evolutionary hypotheses as well as crucial questions about climate trend and variability. We find that there is a gradual or step-wise enrichment in δDwax, signifying a trend from a wet to dry climate, from the Pliocene to the Pleistocene, perhaps implying an influence of global temperature, ice sheet extent, and/or atmospheric greenhouse gas concentrations on East African climate. However, the shift is small relative to the amplitude of orbital-scale isotopic variations. The records indicate a strong influence of eccentricity-modulated orbital precession, and imply that local insolation effects are the likely cause of East African precipitation. Several of the intervals of high isotopic variability coincide with key hominin fossil or technological transitions, suggesting that climate variability plays a key role in hominin evolution.

  5. Exploring coral reef responses to millennial-scale climatic forcings: insights from the 1-D numerical tool pyReef-Core v1.0

    NASA Astrophysics Data System (ADS)

    Salles, Tristan; Pall, Jodie; Webster, Jody M.; Dechnik, Belinda

    2018-06-01

    Assemblages of corals characterise specific reef biozones and the environmental conditions that change spatially across a reef and with depth. Drill cores through fossil reefs record the time and depth distribution of assemblages, which captures a partial history of the vertical growth response of reefs to changing palaeoenvironmental conditions. The effects of environmental factors on reef growth are well understood on ecological timescales but are poorly constrained at centennial to geological timescales. pyReef-Core is a stratigraphic forward model designed to solve the problem of unobservable environmental processes controlling vertical reef development by simulating the physical, biological and sedimentological processes that determine vertical assemblage changes in drill cores. It models the stratigraphic development of coral reefs at centennial to millennial timescales under environmental forcing conditions including accommodation (relative sea-level upward growth), oceanic variability (flow speed, nutrients, pH and temperature), sediment input and tectonics. It also simulates competitive coral assemblage interactions using the generalised Lotka-Volterra system of equations (GLVEs) and can be used to infer the influence of environmental conditions on the zonation and vertical accretion and stratigraphic succession of coral assemblages over decadal timescales and greater. The tool can quantitatively test carbonate platform development under the influence of ecological and environmental processes and efficiently interpret vertical growth and karstification patterns observed in drill cores. We provide two realistic case studies illustrating the basic capabilities of the model and use it to reconstruct (1) the Holocene history (from 8500 years to present) of coral community responses to environmental changes and (2) the evolution of an idealised coral reef core since the last interglacial (from 140 000 years to present) under the influence of sea-level change, subsidence and karstification. We find that the model reproduces the details of the formation of existing coral reef stratigraphic sequences both in terms of assemblages succession, accretion rates and depositional thicknesses. It can be applied to estimate the impact of changing environmental conditions on growth rates and patterns under many different settings and initial conditions.

  6. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  7. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  8. 76 FR 11757 - Drill Pipe From the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... are finished drill pipe and drill collars without regard to the specific chemistry of the steel (i.e... included are unfinished drill collars (including all drill collar green tubes) and unfinished drill pipe (including drill pipe green tubes, which are tubes meeting the following description: seamless tubes with an...

  9. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  10. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  11. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  12. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  13. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  14. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  15. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  16. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  17. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  18. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  19. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  20. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    PubMed

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-11-01

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, J.A.

    During the summer of 1975, the Department of Geology and Geophysics drilled nine drill thermal gradient/heat flow holes. Total footage drilled was 2125 feet. Seven holes were drilled with a Mayhew 1000 drill using various combinations of down the hole hammer drilling, rotary drilling, and NX diamond core drilling. Three of these were heat flow holes--one in the Mineral Range, one in the Tushar Range near Beaver, Utah, and one near Monroe, Utah. Two were alteration study holes in the Roosevelt KGRA and two were temperature gradient holes, in alluvium in the Roosevelt KGRA. The average depth of the holesmore » drilled with the Mayhew 1000 drill was 247 feet. Holes ranged from 135 feet to 492 feet. Cost per foot averaged $18.53. Two holes were core drilled with a Joy 12, BX-size drill. One was to 75 feet, in perlite. This hole was abandoned. The other was to 323 feet in granite.« less

  2. Comparison of clinical outcomes between arthroscopic subchondral drilling and microfracture for osteochondral lesions of the talus.

    PubMed

    Choi, Jun-Ik; Lee, Keun-Bae

    2016-07-01

    The objectives of this study were to compare the clinical outcomes of the two common bone marrow stimulation techniques such as subchondral drilling and microfracture for symptomatic osteochondral lesions of the talus and to evaluate prognostic factors affecting the outcomes. Ninety patients (90 ankles) who underwent arthroscopic bone marrow stimulation for small- to mid-sized osteochondral lesions of the talus constituted the study cohort. The 90 ankles were divided into two groups: a drilling group (40 ankles) and a microfracture group (50 ankles). Each group was matched for age and gender, and both groups had characteristics similar to those obtained from pre-operative demographic data. The American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score and the ankle activity score (AAS) were used to compare clinical outcomes, during a mean follow-up period of 43 months. The median AOFAS scores were 66.0 points (51-80) in drilling group and 66.5 points (45-81) in microfracture group pre-operatively, and these improved to 89.4 points (77-100) and 90.1 points (69-100) at the final follow-up, respectively. The median VAS scores improved at the final follow-up compared with the pre-operative condition. The median AAS for the drilling group improved from 4.5 (1-6) pre-operatively to 6.0 (1-8) at the final follow-up, while those for the microfracture group improved from 3.0 (2-8) to 6.0 (3-9). No significant differences were observed between the two groups in terms of the AOFAS scores, VAS, and AAS. The arthroscopic subchondral drilling and microfracture techniques that were used to stimulate bone marrow showed similar clinical outcomes. The results of this study suggest that both techniques are effective and reliable in treating small- to mid-sized osteochondral lesions of the talus, regardless of which of the two techniques is used. Level III, retrospective comparative study.

  3. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  4. Impact of intraprosthetic drilling on the strength of the femoral stem in periprosthetic fractures: A finite element investigation.

    PubMed

    Brand, Stephan; Bauer, Michael; Petri, Maximilian; Schrader, Julian; Maier, Hans J; Krettek, Christian; Hassel, Thomas

    2016-07-01

    Treatment of periprosthetic femur fractures after total hip arthroplasty remains a major challenge in orthopedic surgery. Recently, a novel surgical technique using intraprosthetic screw fixation has been suggested. The purpose of this study was to evaluate the influence of drilling the femoral hip stem on integrity and strength of the implant. The hypothesis was that intraprosthetic drilling and screw fixation would not cause the load limit of the prosthesis to be exceeded and that deformation would remain within the elastic limit. A sawbone model with a conventional straight hip stem was used and a Vancouver C periprosthetic fracture was created. The fracture was fixed with a nine-hole less invasive stabilization system plate with two screws drilled and inserted through the femoral hip stem. Three different finite element models were created using ANSYS software. The models increased in complexity including joint forces and stress risers from three different dimensions. A variation of drilling positions was analyzed. Due to the complexity of the physiological conditions in the human femur, the most complex finite element model provided the most realistic results. Overall, significant changes in the stresses to the prosthesis caused by the drilling procedure were observed. While the stresses at the site of the bore hole decreased, the load increased in the surrounding stem material. This effect is more pronounced and further the holes were apart, and it was found that increasing the number of holes could counteract this. The maximum load was still found to be in the area of the prosthesis neck. No stresses above the load limit of titanium alloy were detected. All deformations of the prosthesis stem remained in the elastic range. These results may indicate a potential role for intraprosthetic screw fixation in the future treatment of periprosthetic femur fractures. © IMechE 2016.

  5. Lightweight Approaches to Natural Gas Hydrate Exploration & Production

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Lower-cost approaches to drilling and reservoir utilization are made possible by adapting both emerging and new technology to the unique, low risk NGH natural gas resource. We have focused on drilling, wellbore lining technology, and reservoir management with an emphasis on long-term sand control and adaptive mechanical stability during NGH conversion to its constituent gas and water. In addition, we suggest that there are opportunities for management of both the gas and water with respect to maintaining desired thermal conditions. Some of the unique aspects of NGH deposits allow for new, more efficient technology to be applied to development, particularly in drilling. While NGH-bearing sands are in deepwater, they are confined to depths beneath the seafloor of 1.2 kilometers or less. As a result, they will not be significantly above hydrostatic pressure, and temperatures will be less than 30 oC. Drilling will be through semi-consolidated sediment without liquid hydrocarbons. These characteristics mean that high capability drillships are not needed. What is needed is a new perspective about drilling and producing NGH. Drilling from the seafloor will resolve the high-pressure differential between a wellhead on the sea surface in a vessel and reservoir to about the hydrostatic pressure difference between the seafloor and, at most, the base of the GHSZ. Although NGH production will begin using "off-the-shelf" technology, innovation will lead to new technology that will bring down costs and increase efficiency in the same way that led to the shale breakthrough. Commercial success is possible if consideration is given to what is actually needed to produce NGH in a safe and environmentally manner. Max, M.D. 2017. Wellbore Lining for Natural Gas Hydrate. U.S. Patent Application US15644947 Max, M.D. & Johnson, A.H. 2017. E&P Cost Reduction Opportunities for Natural Gas Hydrate. OilPro. . Max, M.D. & Johnson, A.H. 2016. Exploration and Production of Oceanic Natural Gas Hydrate: Critical Factors for Commercialization. Springer International Publishing AG, 405pp.

  6. ODP Leg 210 Drills the Newfoundland Margin in the Newfoundland-Iberia Non-Volcanic Rift

    NASA Astrophysics Data System (ADS)

    Tucholke, B. E.; Sibuet, J.

    2003-12-01

    The final leg of the Ocean Drilling Project (Leg 210, July-September 2003) was devoted to studying the history of rifting and post-rift sedimentation in the Newfoundland-Iberia rift. For the first time, drilling was conducted in the Newfoundland Basin along a transect conjugate to previous drill sites on the Iberia margin (Legs 149 and 173) to obtain data on a complete `non-volcanic' rift system. The prime site during this leg (Site 1276) was drilled in the transition zone between known continental crust and known oceanic crust at chrons M3 and younger. Extensive geophysical work and deep-sea drilling have shown that this transition-zone crust on the conjugate Iberia margin is exhumed continental mantle that is strongly serpentinized in its upper part. Transition-zone crust on the Newfoundland side, however, is typically a kilometer or more shallower and has much smoother topography, and seismic refraction data suggest that the crust may be thin (about 4 km) oceanic crust. A major goal of Site 1276 was to investigate these differences by sampling basement and a strong, basinwide reflection (U) overlying basement. Site 1276 was cored from 800 to 1737 m below seafloor with excellent recovery (avg. 85%), bottoming in two alkaline diabase sills >10 m thick that are estimated to be 100-200 meters above basement. The sills have sedimentary contacts that show extensive hydrothermal metamorphism. Associated sediment structural features indicate that the sills were intruded at shallow levels within highly porous sediments. The upper sill likely is at the level of the U reflection, which correlates with lower Albian - uppermost Aptian(?) fine- to coarse-grained gravity-flow deposits. Overlying lower Albian to lower Oligocene sediments record paleoceanographic conditions similar to those on the Iberia margin and in the main North Atlantic basin, including deposition of `black shales'; however, they show an extensive component of gravity-flow deposits throughout.

  7. Chew Bahir: A Key Site within the Hominin Sites and Paleolakes Drilling Project, towards a Half Million-Year Climate Record from Southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Schaebitz, F.; Asrat, A.; Lamb, H. F.; Trauth, M. H.; Foerster, V. E.; Junginger, A.; Raub, T. D.; Gromig, R.; Viehberg, F. A.; Roberts, H. M.; Cohen, A.

    2015-12-01

    Chew Bahir, a saline mudflat today, is one of the five sites in East Africa, drilled within the framework of HSPDP (Hominin Site and Paleolakes Drilling Project). It is also one of the key sites of the Collaborative Research Centre (CRC-806) "Our way to Europe" aiming at the reconstruction of environmental conditions in the source region of modern man (H. sapiens). It is suggested that a changing environment could have triggered the mobility and dispersal of modern man. The oldest known fossils of anatomical modern humans (~195 ka BP) were found in the Omo basin, not more than 90km westwards of our drill site. The deposits in the tectonic basin of Chew Bahir in southern Ethiopia were cored in Nov. 2014 in two boreholes down to 280 m and 260 m below surface respectively. The overlapping long cores (drilled ~20 m apart from each other), were opened, scanned, described and sampled in low resolution in April 2015. The recovered sediments mostly contain green-greyish to light coloured and brown to reddish clays and silty clays, interbedded with some laminated mica-rich sand layers and occurrences of carbonate concretions and nodules, which decrease upcore. Here we will present a first set of results on the composite core, comprising mainly lithology and magnetic susceptibility (MS). Based on known sedimentation rates from pre-studies performed on short cores across the basin, we anticipate the deep drilled cores to cover at least 500 ka BP. Moreover, new insights into the role of post-depositional alteration, especially of clay minerals and zeolites, will be presented as a contribution to an improved understanding of formation processes. The results support the identification of wet and dry climate periods in the past. Those pronounced variations of moisture availability, are thought to have influenced the evolution and mobility of Homo sapiens sapiens.

  8. A cadaveric study of bone tissue temperature during pin site drilling utilizing fluoroptic thermography.

    PubMed

    Muffly, Matthew; Winegar, Corbett; Miller, Mark Carl; Altman, Gregory

    2018-05-03

    Using fluoroptic thermography, temperature was measured during pin site drilling of intact cortical human cadaver bone with a combination of one-step drilling, graduated drilling, and one-step drilling with irrigation of 5.0 mm Schanz pins. A 1440 rpm constant force drilling was used to on tibial diaphyses while a sensor probe placed 0.5 mm adjacent to the drill hole measured temperature. Four drilling techniques on each of the tibial segments were performed: 3.5mm drill bit, 5.0mm Schanz pin, 5.0 mm Schanz pin in 3.5 mm pre-drilled entry site, 5.0 mm Schanz pin utilizing irrigation. One-step drilling using a 5.0 mm Schanz pin without irrigation produced a temperature that exceeded the threshold temperature for heat-induced injury in 5 of the 8 trials. With the other three drilling techniques, only one in24 trials produced a temperature that would result in thermal injury. This difference was found to be statistically significant (p = 0.003). The use of irrigation significantly reduced the maximum bone tissue temperature in one-step drilling of a 5.0 mm Schanz pin (p = 0.02). One-step drilling with a 3.5 mm drill bit achieved maximum temperature significantly faster than graduated drilling and drilling with irrigation using a 5.0 mm Schanz pin (p <0.01). One-step drilling with a 5.0 mm Schanz pin into cortical bone can produce temperatures that can lead to heat-induced injury. Irrigation alone can reduce the temperatures sufficiently to avoid damage. Pre-drilling can increase temperatures significantly but the extent of any injury should be small.

  9. Characterizing the Inner Accretionary Prism of the Nankai Trough with 3D Seismic and Logging While Drilling at IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Boston, B.; Moore, G. F.; Jurado, M. J.; Sone, H.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    The deeper, inner parts of active accretionary prisms have been poorly studied due the lack of drilling data, low seismic image quality and typically thick overlying sediments. Our project focuses on the interior of the Nankai Trough inner accretionary prism using deep scientific drilling and a 3D seismic cube. International Ocean Discovery Program (IODP) Expedition 348 extended the existing riser hole to more than 3000 meters below seafloor (mbsf) at Site C0002. Logging while drilling (LWD) data included gamma ray, resistivity, resistivity image, and sonic logs. LWD analysis of the lower section revealed on the borehole images intense deformation characterized by steep bedding, faults and fractures. Bedding plane orientations were measured throughout, with minor gaps at heavily deformed zones disrupting the quality of the resistivity images. Bedding trends are predominantly steeply dipping (60-90°) to the NW. Interpretation of fractures and faults in the image log revealed the existence of different sets of fractures and faults and variable fracture density, remarkably high at fault zones. Gamma ray, resistivity and sonic logs indicated generally homogenous lithology interpretation along this section, consistent with the "silty-claystone" predominant lithologies described on cutting samples. Drops in sonic velocity were observed at the fault zones defined on borehole images. Seismic reflection interpretation of the deep faults in the inner prism is exceedingly difficult due to a strong seafloor multiple, high-angle bedding dips, and low frequency of the data. Structural reconstructions were employed to test whether folding of seismic horizons in the overlying forearc basin could be from an interpreted paleothrust within the inner prism. We used a trishear-based restoration to estimate fault slip on folded horizons landward of C0002. We estimate ~500 m of slip from a steeply dipping deep thrust within the last ~0.9 Ma. Folding is not found in the Kumano sediments near C0002, where normal faults and tilting dominate the modern basin deformation. Both logging and seismic are consistent in characterizing a heavily deformed inner prism. Most of this deformation must have occurred during or before formation of the overlying modern Kumano forearc basin sediments.

  10. Tool life and surface integrity aspects when drilling nickel alloy

    NASA Astrophysics Data System (ADS)

    Kannan, S.; Pervaiz, S.; Vincent, S.; Karthikeyan, R.

    2018-04-01

    Nickel based super alloys manufactured through powder metallurgy (PM) route are required to increase the operational efficiency of gas turbine engines. They are material of choice for high pressure components due to their superior high temperature strength, excellent corrosion, oxidation and creep resistance. This unique combination of mechanical and thermal properties makes them even more difficult-to-machine. In this paper, the hole making process using coated carbide inserts by drilling and plunge milling for a nickel-based powder metallurgy super alloy has been investigated. Tool life and process capability studies were conducted using optimized process parameters using high pressure coolants. The experimental trials were directed towards an assessment of the tendency for surface malformations and detrimental residual stress profiles. Residual stresses in both the radial and circumferential directions have been evaluated as a function of depth from the machined surface using the target strain gauge / center hole drilling method. Circumferential stresses near workpiece surface and at depth of 512 µm in the starting material was primarily circumferential compression which was measured to be average of –404 MPa. However, the radial stresses near workpiece surface was tensile and transformed to be compressive in nature at depth of 512 µm in the starting material (average: -87 Mpa). The magnitude and the depth below the machined surface in both radial and circumferential directions were primarily tensile in nature which increased with hole number due to a rise of temperature at the tool–workpiece interface with increasing tool wear. These profiles are of critical importance for the selection of cutting strategies to ensure avoidance/minimization of tensile residual stresses that can be detrimental to the fatigue performance of the components. These results clearly show a tendency for the circumferential stresses to be more tensile than the radial stresses. Overall the results indicate that the effect of drilling and milling parameters is most marked in terms of surface quality in the circumferential direction. Material removal rates and tool flank wear must be maintained within the control limits to maintain hole integrity.

  11. Temporal bone borehole accuracy for cochlear implantation influenced by drilling strategy: an in vitro study.

    PubMed

    Kobler, Jan-Philipp; Schoppe, Michael; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lüder A; Ortmaier, Tobias

    2014-11-01

    Minimally invasive cochlear implantation is a surgical technique which requires drilling a canal from the mastoid surface toward the basal turn of the cochlea. The choice of an appropriate drilling strategy is hypothesized to have significant influence on the achievable targeting accuracy. Therefore, a method is presented to analyze the contribution of the drilling process and drilling tool to the targeting error isolated from other error sources. The experimental setup to evaluate the borehole accuracy comprises a drill handpiece attached to a linear slide as well as a highly accurate coordinate measuring machine (CMM). Based on the specific requirements of the minimally invasive cochlear access, three drilling strategies, mainly characterized by different drill tools, are derived. The strategies are evaluated by drilling into synthetic temporal bone substitutes containing air-filled cavities to simulate mastoid cells. Deviations from the desired drill trajectories are determined based on measurements using the CMM. Using the experimental setup, a total of 144 holes were drilled for accuracy evaluation. Errors resulting from the drilling process depend on the specific geometry of the tool as well as the angle at which the drill contacts the bone surface. Furthermore, there is a risk of the drill bit deflecting due to synthetic mastoid cells. A single-flute gun drill combined with a pilot drill of the same diameter provided the best results for simulated minimally invasive cochlear implantation, based on an experimental method that may be used for testing further drilling process improvements.

  12. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    PubMed

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruchter, Jonathan S.

    In Situ Treatment of Chromate Contaminated Groundwater Jonathan S. Fruchter Pacific Northwest National Laboratory Abstract of paper published in Environmental Science and Technology, 2002 Although not as common as solvent or fuel products contamination, chromate (chromium (VI)) contamination of groundwater is relatively widespread. Chromate has a variety of industrial uses, including chrome plating, steel making, and use as a corrosion inhibitor, wood preservative, well-drilling fluid additive, biocide, and as a pigment in paints and primers. EPA has estimated that as many as 1300 sites in the United States may have groundwater contaminated with chromate. The paper discusses a number ofmore » approaches to in situ treatment of chromate contamination in groundwater aquifers. The approaches include various types of chemical treatments, biological treatments and natural attenuation. The strengths and weaknesses of each method are discussed and compared. Field examples of two types of chemical treatment, in situ redox manipulation and chemically enhanced pump and treat are presented. It is concluded that in situ methods show promise, but can be difficult to implement due to site-specific conditions and limited long-term experience with these methods. As more performance and cost data are acquired for the demonstrations that are ongoing, and continuing research increases our understanding of subsurface processes, in situ treatment methods for chromium (VI) contamination in groundwater should gain wider acceptance.« less

  15. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  16. Localized intraoperative virtual endoscopy (LIVE) for surgical guidance in 16 skull base patients.

    PubMed

    Haerle, Stephan K; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian; Gentili, Fred; Zadeh, Gelareh; Kucharczyk, Walter; Irish, Jonathan C

    2015-01-01

    Previous preclinical studies of localized intraoperative virtual endoscopy-image-guided surgery (LIVE-IGS) for skull base surgery suggest a potential clinical benefit. The first aim was to evaluate the registration accuracy of virtual endoscopy based on high-resolution magnetic resonance imaging under clinical conditions. The second aim was to implement and assess real-time proximity alerts for critical structures during skull base drilling. Patients consecutively referred for sinus and skull base surgery were enrolled in this prospective case series. Five patients were used to check registration accuracy and feasibility with the subsequent 11 patients being treated under LIVE-IGS conditions with presentation to the operating surgeon (phase 2). Sixteen skull base patients were endoscopically operated on by using image-based navigation while LIVE-IGS was tested in a clinical setting. Workload was quantitatively assessed using the validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Real-time localization of the surgical drill was accurate to ~1 to 2 mm in all cases. The use of 3-mm proximity alert zones around the carotid arteries and optic nerve found regular clinical use, as the median minimum distance between the tracked drill and these structures was 1 mm (0.2-3.1 mm) and 0.6 mm (0.2-2.5 mm), respectively. No statistical differences were found in the NASA-TLX indicators for this experienced surgical cohort. Real-time proximity alerts with virtual endoscopic guidance was sufficiently accurate under clinical conditions. Further clinical evaluation is required to evaluate the potential surgical benefits, particularly for less experienced surgeons or for teaching purposes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  17. Reliability Analysis of Drilling Operation in Open Pit Mines / Analiza niezawodności urządzeń wiertniczych wykorzystywanych w kopalniach odkrywkowych

    NASA Astrophysics Data System (ADS)

    Rahimdel, M. J.; Ataei, M.; Kakaei, R.; Hoseinie, S. H.

    2013-06-01

    Considering the high investment and operation costs, reliability analysis of mining machineries is essential to achieve a lean operation and to prevent the unwanted stoppages. In open pit mining, drilling, as the initial stage of the exploitation operations, has a significant role in the other stages. Failure of drilling machines causes total delay in blasting operation. In this paper, the reliability of drilling operation has been analyzed using the Markov method. The failure and operation data of four heavy rotary drilling machines in Sarcheshme copper mine in Iran have been used as a case study. Failure rate and repair rate of all machines have been calculated using available data. Then, 16 possible operation states have been defined and the probability of being of drilling fleet in each of the states was calculated using Markov theory. The results showed that there was 77.2% probability that all machines in fleet were in operational condition. It means that, considering 360 working days per year, drilling operation will be in a reliable condition in 277.92 days. Biorąc pod uwagę wysokość kosztów inwestycyjnych a także eksploatacyjnych, przeprowadzenie analizy niezawodności maszyn i urządzeń górniczych jest sprawą kluczową dla zapewnienia sprawnego działania i dla wyeliminowania niepożądanych przestojów. W kopalniach odkrywkowych prace wiertnicze prowadzone w początkowych etapach eksploatacji mają ogromne znaczenie również w późniejszych fazach działalności przedsięwzięcia. Awaria urządzeń wiertniczych powoduje opóźnienia przy pracach strzałowych. W pracy tej przeanalizowano niezawodność urządzeń wiertniczych w oparciu o metodę Markowa. Jako studium przypadku wykorzystano dane zebrane w trakcie eksploatacji i awarii czterech obrotowych urządzeń wiertniczych wykorzystywanych w kopalni rud miedzi Sarcheshme w Iranie. Awaryjność maszyn i zakres oraz częstość napraw obliczono na podstawie dostępnych danych. Zdefiniowano 16 możliwych stanów działania, a prawdopodobieństwa znalezienia się jednego z urządzeń wiertniczych w każdym z podanych stanów obliczono z wykorzystaniem teorii Markowa. Wyniki pokazują, że poziom prawdopodobieństwa tego, że wszystkie urządzenia wiertnicze znajdować się będą w stanie gwarantującym ich właściwe działanie wynosi 77.2%. Biorąc pod uwagę 360 dni roboczych w roku, oznacza to, że prace wiertnicze prowadzone być mogą w warunkach niezawodności przez 277.92 dni w roku.

  18. Increased traffic accident rates associated with shale gas drilling in Pennsylvania.

    PubMed

    Graham, Jove; Irving, Jennifer; Tang, Xiaoqin; Sellers, Stephen; Crisp, Joshua; Horwitz, Daniel; Muehlenbachs, Lucija; Krupnick, Alan; Carey, David

    2015-01-01

    We examined the association between shale gas drilling and motor vehicle accident rates in Pennsylvania. Using publicly available data on all reported vehicle crashes in Pennsylvania, we compared accident rates in counties with and without shale gas drilling, in periods with and without intermittent drilling (using data from 2005 to 2012). Counties with drilling were matched to non-drilling counties with similar population and traffic in the pre-drilling period. Heavily drilled counties in the north experienced 15-23% higher vehicle crash rates in 2010-2012 and 61-65% higher heavy truck crash rates in 2011-2012 than control counties. We estimated 5-23% increases in crash rates when comparing months with drilling and months without, but did not find significant effects on fatalities and major injury crashes. Heavily drilled counties in the southwest showed 45-47% higher rates of fatal and major injury crashes in 2012 than control counties, but monthly comparisons of drilling activity showed no significant differences associated with drilling. Vehicle accidents have measurably increased in conjunction with shale gas drilling. Copyright © 2014. Published by Elsevier Ltd.

  19. Study on the influence of parameters of medical drill on bone drilling temperature

    NASA Astrophysics Data System (ADS)

    XU, Xianchun; Hu, Yahui; Han, Jingwang; Yue, Lin; Jiang, Wangbiao

    2018-03-01

    During surgical interventions, the temperature generated during cortical bone drilling can affect the activity of bone material, which may lead to necrosis. In this paper, with the purpose of reducing the temperature during cortical bone drilling, the influence of the parameters of medical drill were analyzed. The finite element model of the drilling process was established based on the parametric design of the dril. The relationship between the drill bit diameter, the point angle, and the helix angle to the drilling temperature was studied by the center composite experiment. The results showed that the drilling temperature is increased with the increase of drill diameter, vertex angle and helix angle in the range of certain research.

  20. Effect of pre-drilling on intraosseous temperature during self-drilling mini-implant placement in a porcine mandible model.

    PubMed

    Gurdán, Zsuzsanna; Vajta, László; Tóth, Ákos; Lempel, Edina; Joób-Fancsaly, Árpád; Szalma, József

    2017-03-31

    This in vitro study investigated intraos seous heat production during insertion, with and without pre-drilling, of a self-drilling orthodontic mini-implant. To measure temperature changes and drilling times in pig ribs, a special testing apparatus was used to examine new and worn pre-drills at different speeds. Temperatures were measured during mini-implant placement with and without pre-drilling. The average intraosseous temperature increase during manual mini-implant insertion was similar with and without pre-drilling (11.8 ± 2.1°C vs. 11.3 ± 2.4°C, respectively; P = 0.707). During pre-drilling the mean temperature increase for new drills was 2.1°C at 100 rpm, 2.3°C at 200 rpm, and 7.6°C at 1,200 rpm. Temperature increases were significantly higher for worn drills at the same speeds (2.98°C, 3.0°C, and 12.3°C, respectively), while bone temperatures at 100 and 200 rpm were similar for new and worn drills (P = 0.345 and 0.736, respectively). Baseline bone temperature was approximated within 30 s after drilling in most specimens. Drilling time at 100 rpm was 2.1 ± 0.9 s, but was significantly shorter at 200 rpm (1.1 ± 0.2 s) and 1,200 rpm (0.1 ± 0.03 s). Pre-drilling did not decrease intraosseous temperatures. In patients for whom pre-drilling is indicated, speeds of 100 or 200 rpm are recommended, at least 30 s after pilot drilling.

Top