Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo
1996-01-01
A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.
COPS: Large-scale nonlinearly constrained optimization problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondarenko, A.S.; Bortz, D.M.; More, J.J.
2000-02-10
The authors have started the development of COPS, a collection of large-scale nonlinearly Constrained Optimization Problems. The primary purpose of this collection is to provide difficult test cases for optimization software. Problems in the current version of the collection come from fluid dynamics, population dynamics, optimal design, and optimal control. For each problem they provide a short description of the problem, notes on the formulation of the problem, and results of computational experiments with general optimization solvers. They currently have results for DONLP2, LANCELOT, MINOS, SNOPT, and LOQO.
Multiobjective Optimization Using a Pareto Differential Evolution Approach
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.
Fast and Efficient Discrimination of Traveling Salesperson Problem Stimulus Difficulty
ERIC Educational Resources Information Center
Dry, Matthew J.; Fontaine, Elizabeth L.
2014-01-01
The Traveling Salesperson Problem (TSP) is a computationally difficult combinatorial optimization problem. In spite of its relative difficulty, human solvers are able to generate close-to-optimal solutions in a close-to-linear time frame, and it has been suggested that this is due to the visual system's inherent sensitivity to certain geometric…
Quantum Heterogeneous Computing for Satellite Positioning Optimization
NASA Astrophysics Data System (ADS)
Bass, G.; Kumar, V.; Dulny, J., III
2016-12-01
Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.
Wind Farm Turbine Type and Placement Optimization
NASA Astrophysics Data System (ADS)
Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan
2016-09-01
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Wind farm turbine type and placement optimization
Graf, Peter; Dykes, Katherine; Scott, George; ...
2016-10-03
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Gravity inversion of a fault by Particle swarm optimization (PSO).
Toushmalani, Reza
2013-01-01
Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter; Dykes, Katherine; Scott, George
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Vortex generator design for aircraft inlet distortion as a numerical optimization problem
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Levy, Ralph
1991-01-01
Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for aircraft that must operate in many different flight regimes. Takeoff, subsonic cruise, supersonic cruise, transonic maneuvering, and high altitude loiter each place different constraints on inlet design. Vortex generators, small wing like sections mounted on the inside surfaces of the inlet duct, are used to control flow separation and engine face distortion. The design of vortex generator installations in an inlet is defined as a problem addressable by numerical optimization techniques. A performance parameter is suggested to account for both inlet distortion and total pressure loss at a series of design flight conditions. The resulting optimization problem is difficult since some of the design parameters take on integer values. If numerical procedures could be used to reduce multimillion dollar development test programs to a small set of verification tests, numerical optimization could have a significant impact on both cost and elapsed time to design new aircraft.
A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1991-01-01
The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.
Exact solution of large asymmetric traveling salesman problems.
Miller, D L; Pekny, J F
1991-02-15
The traveling salesman problem is one of a class of difficult problems in combinatorial optimization that is representative of a large number of important scientific and engineering problems. A survey is given of recent applications and methods for solving large problems. In addition, an algorithm for the exact solution of the asymmetric traveling salesman problem is presented along with computational results for several classes of problems. The results show that the algorithm performs remarkably well for some classes of problems, determining an optimal solution even for problems with large numbers of cities, yet for other classes, even small problems thwart determination of a provably optimal solution.
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.
The molecular matching problem
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
1993-01-01
Molecular chemistry contains many difficult optimization problems that have begun to attract the attention of optimizers in the Operations Research community. Problems including protein folding, molecular conformation, molecular similarity, and molecular matching have been addressed. Minimum energy conformations for simple molecular structures such as water clusters, Lennard-Jones microclusters, and short polypeptides have dominated the literature to date. However, a variety of interesting problems exist and we focus here on a molecular structure matching (MSM) problem.
Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.
An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.
New Results in Astrodynamics Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.
1998-01-01
Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
Finite element solution of optimal control problems with state-control inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1992-01-01
It is demonstrated that the weak Hamiltonian finite-element formulation is amenable to the solution of optimal control problems with inequality constraints which are functions of both state and control variables. Difficult problems can be treated on account of the ease with which algebraic equations can be generated before having to specify the problem. These equations yield very accurate solutions. Owing to the sparse structure of the resulting Jacobian, computer solutions can be obtained quickly when the sparsity is exploited.
Optimal placement of excitations and sensors for verification of large dynamical systems
NASA Technical Reports Server (NTRS)
Salama, M.; Rose, T.; Garba, J.
1987-01-01
The computationally difficult problem of the optimal placement of excitations and sensors to maximize the observed measurements is studied within the framework of combinatorial optimization, and is solved numerically using a variation of the simulated annealing heuristic algorithm. Results of numerical experiments including a square plate and a 960 degrees-of-freedom Control of Flexible Structure (COFS) truss structure, are presented. Though the algorithm produces suboptimal solutions, its generality and simplicity allow the treatment of complex dynamical systems which would otherwise be difficult to handle.
Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron.
1987-06-01
Security Classification) Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron 12. PERSONAL AUTHOR(S) Thomas J. Kopf...Because of the great number of possible scheduling alternatives, it is difficult to find an optimal solution to-the scheduling problem. Additionally...changes to the original schedule make it even more difficult to find an optimal solution. The emergence of capable microcompu- ters, decision support
Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju
2004-10-01
Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.
NASA Astrophysics Data System (ADS)
Bass, Gideon; Tomlin, Casey; Kumar, Vaibhaw; Rihaczek, Pete; Dulny, Joseph, III
2018-04-01
NP-hard optimization problems scale very rapidly with problem size, becoming unsolvable with brute force methods, even with supercomputing resources. Typically, such problems have been approximated with heuristics. However, these methods still take a long time and are not guaranteed to find an optimal solution. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. Current quantum annealing (QA) devices are designed to solve difficult optimization problems, but they are limited by hardware size and qubit connectivity restrictions. We present a novel heterogeneous computing stack that combines QA and classical machine learning, allowing the use of QA on problems larger than the hardware limits of the quantum device. These results represent experiments on a real-world problem represented by the weighted k-clique problem. Through this experiment, we provide insight into the state of quantum machine learning.
Non linear predictive control of a LEGO mobile robot
NASA Astrophysics Data System (ADS)
Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.
2014-10-01
Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.
Simultaneous optimization of loading pattern and burnable poison placement for PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alim, F.; Ivanov, K.; Yilmaz, S.
2006-07-01
To solve in-core fuel management optimization problem, GARCO-PSU (Genetic Algorithm Reactor Core Optimization - Pennsylvania State Univ.) is developed. This code is applicable for all types and geometry of PWR core structures with unlimited number of fuel assembly (FA) types in the inventory. For this reason an innovative genetic algorithm is developed with modifying the classical representation of the genotype. In-core fuel management heuristic rules are introduced into GARCO. The core re-load design optimization has two parts, loading pattern (LP) optimization and burnable poison (BP) placement optimization. These parts depend on each other, but it is difficult to solve themore » combined problem due to its large size. Separating the problem into two parts provides a practical way to solve the problem. However, the result of this method does not reflect the real optimal solution. GARCO-PSU achieves to solve LP optimization and BP placement optimization simultaneously in an efficient manner. (authors)« less
Distributed Control with Collective Intelligence
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Wheeler, Kevin R.; Tumer, Kagan
1998-01-01
We consider systems of interacting reinforcement learning (RL) algorithms that do not work at cross purposes , in that their collective behavior maximizes a global utility function. We call such systems COllective INtelligences (COINs). We present the theory of designing COINs. Then we present experiments validating that theory in the context of two distributed control problems: We show that COINs perform near-optimally in a difficult variant of Arthur's bar problem [Arthur] (and in particular avoid the tragedy of the commons for that problem), and we also illustrate optimal performance in the master-slave problem.
A derived heuristics based multi-objective optimization procedure for micro-grid scheduling
NASA Astrophysics Data System (ADS)
Li, Xin; Deb, Kalyanmoy; Fang, Yanjun
2017-06-01
With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.
Exact solution for the optimal neuronal layout problem.
Chklovskii, Dmitri B
2004-10-01
Evolution perfected brain design by maximizing its functionality while minimizing costs associated with building and maintaining it. Assumption that brain functionality is specified by neuronal connectivity, implemented by costly biological wiring, leads to the following optimal design problem. For a given neuronal connectivity, find a spatial layout of neurons that minimizes the wiring cost. Unfortunately, this problem is difficult to solve because the number of possible layouts is often astronomically large. We argue that the wiring cost may scale as wire length squared, reducing the optimal layout problem to a constrained minimization of a quadratic form. For biologically plausible constraints, this problem has exact analytical solutions, which give reasonable approximations to actual layouts in the brain. These solutions make the inverse problem of inferring neuronal connectivity from neuronal layout more tractable.
NASA Technical Reports Server (NTRS)
Bless, Robert R.
1991-01-01
A time-domain finite element method is developed for optimal control problems. The theory derived is general enough to handle a large class of problems including optimal control problems that are continuous in the states and controls, problems with discontinuities in the states and/or system equations, problems with control inequality constraints, problems with state inequality constraints, or problems involving any combination of the above. The theory is developed in such a way that no numerical quadrature is necessary regardless of the degree of nonlinearity in the equations. Also, the same shape functions may be employed for every problem because all strong boundary conditions are transformed into natural or weak boundary conditions. In addition, the resulting nonlinear algebraic equations are very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution of very difficult optimization problems. The formulation is applied to launch-vehicle trajectory optimization problems, and results show that real-time optimal guidance is realizable with this method. Finally, a general problem solving environment is created for solving a large class of optimal control problems. The algorithm uses both FORTRAN and a symbolic computation program to solve problems with a minimum of user interaction. The use of symbolic computation eliminates the need for user-written subroutines which greatly reduces the setup time for solving problems.
Solving fuzzy shortest path problem by genetic algorithm
NASA Astrophysics Data System (ADS)
Syarif, A.; Muludi, K.; Adrian, R.; Gen, M.
2018-03-01
Shortest Path Problem (SPP) is known as one of well-studied fields in the area Operations Research and Mathematical Optimization. It has been applied for many engineering and management designs. The objective is usually to determine path(s) in the network with minimum total cost or traveling time. In the past, the cost value for each arc was usually assigned or estimated as a deteministic value. For some specific real world applications, however, it is often difficult to determine the cost value properly. One way of handling such uncertainty in decision making is by introducing fuzzy approach. With this situation, it will become difficult to solve the problem optimally. This paper presents the investigations on the application of Genetic Algorithm (GA) to a new SPP model in which the cost values are represented as Triangular Fuzzy Number (TFN). We adopts the concept of ranking fuzzy numbers to determine how good the solutions. Here, by giving his/her degree value, the decision maker can determine the range of objective value. This would be very valuable for decision support system in the real world applications.Simulation experiments were carried out by modifying several test problems with 10-25 nodes. It is noted that the proposed approach is capable attaining a good solution with different degree of optimism for the tested problems.
A Framework for Multifaceted Evaluation of Student Models
ERIC Educational Resources Information Center
Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter
2015-01-01
Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…
A connectionist model for diagnostic problem solving
NASA Technical Reports Server (NTRS)
Peng, Yun; Reggia, James A.
1989-01-01
A competition-based connectionist model for solving diagnostic problems is described. The problems considered are computationally difficult in that (1) multiple disorders may occur simultaneously and (2) a global optimum in the space exponential to the total number of possible disorders is sought as a solution. The diagnostic problem is treated as a nonlinear optimization problem, and global optimization criteria are decomposed into local criteria governing node activation updating in the connectionist model. Nodes representing disorders compete with each other to account for each individual manifestation, yet complement each other to account for all manifestations through parallel node interactions. When equilibrium is reached, the network settles into a locally optimal state. Three randomly generated examples of diagnostic problems, each of which has 1024 cases, were tested, and the decomposition plus competition plus resettling approach yielded very high accuracy.
Evolutionary optimization methods for accelerator design
NASA Astrophysics Data System (ADS)
Poklonskiy, Alexey A.
Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.
NASA Astrophysics Data System (ADS)
Aittokoski, Timo; Miettinen, Kaisa
2008-07-01
Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.
Generating Data Flow Programs from Nonprocedural Specifications.
1983-03-01
With the I-structures, Gajski points out, it is difficult to know ahead of time the optimal memory allocation scheme to pertition large arrays. amory...contention problems may occur for frequently accessed elements stored in the sam memory module. Gajski observes that these are the same problem which
Kim, Yoon Jae; Kim, Yoon Young
2010-10-01
This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.
AI techniques for a space application scheduling problem
NASA Technical Reports Server (NTRS)
Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.
1991-01-01
Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, M.; Klimeck, G.; Hanks, D.
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin
Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.
Exploring the quantum speed limit with computer games
NASA Astrophysics Data System (ADS)
Sørensen, Jens Jakob W. H.; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F.
2016-04-01
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. ‘Gamification’—the application of game elements in a non-game context—is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.
Exploring the quantum speed limit with computer games.
Sørensen, Jens Jakob W H; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F
2016-04-14
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.
NASA Astrophysics Data System (ADS)
Hamza, Karim; Shalaby, Mohamed
2014-09-01
This article presents a framework for simulation-based design optimization of computationally expensive problems, where economizing the generation of sample designs is highly desirable. One popular approach for such problems is efficient global optimization (EGO), where an initial set of design samples is used to construct a kriging model, which is then used to generate new 'infill' sample designs at regions of the search space where there is high expectancy of improvement. This article attempts to address one of the limitations of EGO, where generation of infill samples can become a difficult optimization problem in its own right, as well as allow the generation of multiple samples at a time in order to take advantage of parallel computing in the evaluation of the new samples. The proposed approach is tested on analytical functions, and then applied to the vehicle crashworthiness design of a full Geo Metro model undergoing frontal crash conditions.
Model-Based Optimal Experimental Design for Complex Physical Systems
2015-12-03
for public release. magnitude reduction in estimator error required to make solving the exact optimal design problem tractable. Instead of using a naive...for designing a sequence of experiments uses suboptimal approaches: batch design that has no feedback, or greedy ( myopic ) design that optimally...approved for public release. Equation 1 is difficult to solve directly, but can be expressed in an equivalent form using the principle of dynamic programming
Benchmarking optimization software with COPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, E.D.; More, J.J.
2001-01-08
The COPS test set provides a modest selection of difficult nonlinearly constrained optimization problems from applications in optimal design, fluid dynamics, parameter estimation, and optimal control. In this report we describe version 2.0 of the COPS problems. The formulation and discretization of the original problems have been streamlined and improved. We have also added new problems. The presentation of COPS follows the original report, but the description of the problems has been streamlined. For each problem we discuss the formulation of the problem and the structural data in Table 0.1 on the formulation. The aim of presenting this data ismore » to provide an approximate idea of the size and sparsity of the problem. We also include the results of computational experiments with the LANCELOT, LOQO, MINOS, and SNOPT solvers. These computational experiments differ from the original results in that we have deleted problems that were considered to be too easy. Moreover, in the current version of the computational experiments, each problem is tested with four variations. An important difference between this report and the original report is that the tables that present the computational experiments are generated automatically from the testing script. This is explained in more detail in the report.« less
Optimization of a Small Scale Linear Reluctance Accelerator
NASA Astrophysics Data System (ADS)
Barrera, Thor; Beard, Robby
2011-11-01
Reluctance accelerators are extremely promising future methods of transportation. Several problems still plague these devices, most prominently low efficiency. Variables to overcoming efficiency problems are many and difficult to correlate how they affect our accelerator. The study examined several differing variables that present potential challenges in optimizing the efficiency of reluctance accelerators. These include coil and projectile design, power supplies, switching, and the elusive gradient inductance problem. Extensive research in these areas has been performed from computational and theoretical to experimental. Findings show that these parameters share significant similarity to transformer design elements, thus general findings show current optimized parameters the research suggests as a baseline for further research and design. Demonstration of these current findings will be offered at the time of presentation.
An inverse dynamics approach to trajectory optimization for an aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
An inverse dynamics approach for trajectory optimization is proposed. This technique can be useful in many difficult trajectory optimization and control problems. The application of the approach is exemplified by ascent trajectory optimization for an aerospace plane. Both minimum-fuel and minimax types of performance indices are considered. When rocket augmentation is available for ascent, it is shown that accurate orbital insertion can be achieved through the inverse control of the rocket in the presence of disturbances.
Planning and Scheduling for Fleets of Earth Observing Satellites
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)
2001-01-01
We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.
NASA Astrophysics Data System (ADS)
Kumar, Vijay M.; Murthy, ANN; Chandrashekara, K.
2012-05-01
The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to the relevant machines are made. Such problems are not only combinatorial optimization problems, but also happen to be non-deterministic polynomial-time-hard, making it difficult to obtain satisfactory solutions using traditional optimization techniques. In this paper, an attempt has been made to address the machine loading problem with objectives of minimization of system unbalance and maximization of throughput simultaneously while satisfying the system constraints related to available machining time and tool slot designing and using a meta-hybrid heuristic technique based on genetic algorithm and particle swarm optimization. The results reported in this paper demonstrate the model efficiency and examine the performance of the system with respect to measures such as throughput and system utilization.
Numerical solution of a conspicuous consumption model with constant control delay☆
Huschto, Tony; Feichtinger, Gustav; Hartl, Richard F.; Kort, Peter M.; Sager, Sebastian; Seidl, Andrea
2011-01-01
We derive optimal pricing strategies for conspicuous consumption products in periods of recession. To that end, we formulate and investigate a two-stage economic optimal control problem that takes uncertainty of the recession period length and delay effects of the pricing strategy into account. This non-standard optimal control problem is difficult to solve analytically, and solutions depend on the variable model parameters. Therefore, we use a numerical result-driven approach. We propose a structure-exploiting direct method for optimal control to solve this challenging optimization problem. In particular, we discretize the uncertainties in the model formulation by using scenario trees and target the control delays by introduction of slack control functions. Numerical results illustrate the validity of our approach and show the impact of uncertainties and delay effects on optimal economic strategies. During the recession, delayed optimal prices are higher than the non-delayed ones. In the normal economic period, however, this effect is reversed and optimal prices with a delayed impact are smaller compared to the non-delayed case. PMID:22267871
Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin; Cheng, Runwei
Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.
Dynamic optimization case studies in DYNOPT tool
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
Dynamic programming is typically applied to optimization problems. As the analytical solutions are generally very difficult, chosen software tools are used widely. These software packages are often third-party products bound for standard simulation software tools on the market. As typical examples of such tools, TOMLAB and DYNOPT could be effectively applied for solution of problems of dynamic programming. DYNOPT will be presented in this paper due to its licensing policy (free product under GPL) and simplicity of use. DYNOPT is a set of MATLAB functions for determination of optimal control trajectory by given description of the process, the cost to be minimized, subject to equality and inequality constraints, using orthogonal collocation on finite elements method. The actual optimal control problem is solved by complete parameterization both the control and the state profile vector. It is assumed, that the optimized dynamic model may be described by a set of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). This collection of functions extends the capability of the MATLAB Optimization Tool-box. The paper will introduce use of DYNOPT in the field of dynamic optimization problems by means of case studies regarding chosen laboratory physical educational models.
Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms
NASA Technical Reports Server (NTRS)
Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan
2014-01-01
Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance
Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms
NASA Technical Reports Server (NTRS)
Colby, Mitchell; Knudson, Matthew D.; Tumer, Kagan
2014-01-01
Dynamic environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal paths through these environments. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially with the number of agents in the system. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance.
NASA Astrophysics Data System (ADS)
Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath
2018-07-01
One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.
A Scalable and Robust Multi-Agent Approach to Distributed Optimization
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are n devices, each of which has a "distortion", and the task is to find the subset of those n devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.
Lessons Learned During Solutions of Multidisciplinary Design Optimization Problems
NASA Technical Reports Server (NTRS)
Patnaik, Suna N.; Coroneos, Rula M.; Hopkins, Dale A.; Lavelle, Thomas M.
2000-01-01
Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. During solution of the multidisciplinary problems several issues were encountered. This paper lists four issues and discusses the strategies adapted for their resolution: (1) The optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. (2) Optimum solutions obtained were infeasible for aircraft and air-breathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. (3) Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. (4) The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through six problems: (1) design of an engine component, (2) synthesis of a subsonic aircraft, (3) operation optimization of a supersonic engine, (4) design of a wave-rotor-topping device, (5) profile optimization of a cantilever beam, and (6) design of a cvlindrical shell. The combined effort of designers and researchers can bring the optimization method from academia to industry.
Zhang, H H; Gao, S; Chen, W; Shi, L; D'Souza, W D; Meyer, R R
2013-03-21
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equallyspaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality.
Zhang, H H; Gao, S; Chen, W; Shi, L; D’Souza, W D; Meyer, R R
2013-01-01
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the Nested Partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are superior quality. PMID:23459411
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Duarte, Belmiro P.M.; Wong, Weng Kee; Atkinson, Anthony C.
2016-01-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization. PMID:27330230
Duarte, Belmiro P M; Wong, Weng Kee; Atkinson, Anthony C
2015-03-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization.
Solving optimization problems on computational grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, S. J.; Mathematics and Computer Science
2001-05-01
Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms havemore » become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software infrastructure need to solve these problems on computational grids. This article describes some of the results we have obtained during the first three years of the metaneos project. Our efforts have led to development of the runtime support library MW for implementing algorithms with master-worker control structure on Condor platforms. This work is discussed here, along with work on algorithms and codes for integer linear programming, the quadratic assignment problem, and stochastic linear programmming. Our experiences in the metaneos project have shown that cheap, powerful computational grids can be used to tackle large optimization problems of various types. In an industrial or commercial setting, the results demonstrate that one may not have to buy powerful computational servers to solve many of the large problems arising in areas such as scheduling, portfolio optimization, or logistics; the idle time on employee workstations (or, at worst, an investment in a modest cluster of PCs) may do the job. For the optimization research community, our results motivate further work on parallel, grid-enabled algorithms for solving very large problems of other types. The fact that very large problems can be solved cheaply allows researchers to better understand issues of 'practical' complexity and of the role of heuristics.« less
Lunar Habitat Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.
Combinatorial algorithms for design of DNA arrays.
Hannenhalli, Sridhar; Hubell, Earl; Lipshutz, Robert; Pevzner, Pavel A
2002-01-01
Optimal design of DNA arrays requires the development of algorithms with two-fold goals: reducing the effects caused by unintended illumination (border length minimization problem) and reducing the complexity of masks (mask decomposition problem). We describe algorithms that reduce the number of rectangles in mask decomposition by 20-30% as compared to a standard array design under the assumption that the arrangement of oligonucleotides on the array is fixed. This algorithm produces provably optimal solution for all studied real instances of array design. We also address the difficult problem of finding an arrangement which minimizes the border length and come up with a new idea of threading that significantly reduces the border length as compared to standard designs.
Parameter Optimization for Turbulent Reacting Flows Using Adjoints
NASA Astrophysics Data System (ADS)
Lapointe, Caelan; Hamlington, Peter E.
2017-11-01
The formulation of a new adjoint solver for topology optimization of turbulent reacting flows is presented. This solver provides novel configurations (e.g., geometries and operating conditions) based on desired system outcomes (i.e., objective functions) for complex reacting flow problems of practical interest. For many such problems, it would be desirable to know optimal values of design parameters (e.g., physical dimensions, fuel-oxidizer ratios, and inflow-outflow conditions) prior to real-world manufacture and testing, which can be expensive, time-consuming, and dangerous. However, computational optimization of these problems is made difficult by the complexity of most reacting flows, necessitating the use of gradient-based optimization techniques in order to explore a wide design space at manageable computational cost. The adjoint method is an attractive way to obtain the required gradients, because the cost of the method is determined by the dimension of the objective function rather than the size of the design space. Here, the formulation of a novel solver is outlined that enables gradient-based parameter optimization of turbulent reacting flows using the discrete adjoint method. Initial results and an outlook for future research directions are provided.
A tight upper bound for quadratic knapsack problems in grid-based wind farm layout optimization
NASA Astrophysics Data System (ADS)
Quan, Ning; Kim, Harrison M.
2018-03-01
The 0-1 quadratic knapsack problem (QKP) in wind farm layout optimization models possible turbine locations as nodes, and power loss due to wake effects between pairs of turbines as edges in a complete graph. The goal is to select up to a certain number of turbine locations such that the sum of selected node and edge coefficients is maximized. Finding the optimal solution to the QKP is difficult in general, but it is possible to obtain a tight upper bound on the QKP's optimal value which facilitates the use of heuristics to solve QKPs by giving a good estimate of the optimality gap of any feasible solution. This article applies an upper bound method that is especially well-suited to QKPs in wind farm layout optimization due to certain features of the formulation that reduce the computational complexity of calculating the upper bound. The usefulness of the upper bound was demonstrated by assessing the performance of the greedy algorithm for solving QKPs in wind farm layout optimization. The results show that the greedy algorithm produces good solutions within 4% of the optimal value for small to medium sized problems considered in this article.
Singular perturbation analysis of AOTV-related trajectory optimization problems
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Bae, Gyoung H.
1990-01-01
The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality constraint was imposed on the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate model.
A Language for Specifying Compiler Optimizations for Generic Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willcock, Jeremiah J.
2007-01-01
Compiler optimization is important to software performance, and modern processor architectures make optimization even more critical. However, many modern software applications use libraries providing high levels of abstraction. Such libraries often hinder effective optimization — the libraries are difficult to analyze using current compiler technology. For example, high-level libraries often use dynamic memory allocation and indirectly expressed control structures, such as iteratorbased loops. Programs using these libraries often cannot achieve an optimal level of performance. On the other hand, software libraries have also been recognized as potentially aiding in program optimization. One proposed implementation of library-based optimization is to allowmore » the library author, or a library user, to define custom analyses and optimizations. Only limited systems have been created to take advantage of this potential, however. One problem in creating a framework for defining new optimizations and analyses is how users are to specify them: implementing them by hand inside a compiler is difficult and prone to errors. Thus, a domain-specific language for librarybased compiler optimizations would be beneficial. Many optimization specification languages have appeared in the literature, but they tend to be either limited in power or unnecessarily difficult to use. Therefore, I have designed, implemented, and evaluated the Pavilion language for specifying program analyses and optimizations, designed for library authors and users. These analyses and optimizations can be based on the implementation of a particular library, its use in a specific program, or on the properties of a broad range of types, expressed through concepts. The new system is intended to provide a high level of expressiveness, even though the intended users are unlikely to be compiler experts.« less
Forming YBa2Cu3O7-x Superconductors On Copper Substrates
NASA Technical Reports Server (NTRS)
Mackenzie, J. Devin; Young, Stanley G.
1991-01-01
Experimental process forms layer of high-critical-temperature ceramic superconductor YBa2Cu3O7-x on surface of copper substrate. Offers possible solution to problem of finishing ceramic superconductors to required final sizes and shapes (difficult problem because these materials brittle and cannot be machined or bent). Further research necessary to evaluate superconducting qualities of surface layers and optimize process.
NASA Technical Reports Server (NTRS)
Rogers, J. L.; Barthelemy, J.-F. M.
1986-01-01
An expert system called EXADS has been developed to aid users of the Automated Design Synthesis (ADS) general purpose optimization program. ADS has approximately 100 combinations of strategy, optimizer, and one-dimensional search options from which to choose. It is difficult for a nonexpert to make this choice. This expert system aids the user in choosing the best combination of options based on the users knowledge of the problem and the expert knowledge stored in the knowledge base. The knowledge base is divided into three categories; constrained problems, unconstrained problems, and constrained problems being treated as unconstrained problems. The inference engine and rules are written in LISP, contains about 200 rules, and executes on DEC-VAX (with Franz-LISP) and IBM PC (with IQ-LISP) computers.
NASA Astrophysics Data System (ADS)
Wu, Dongjun
Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.
A novel heuristic algorithm for capacitated vehicle routing problem
NASA Astrophysics Data System (ADS)
Kır, Sena; Yazgan, Harun Reşit; Tüncel, Emre
2017-09-01
The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic algorithm based on the tabu search and adaptive large neighborhood search (ALNS) with several specifically designed operators and features to solve the capacitated vehicle routing problem (CVRP). The effectiveness of the proposed algorithm was illustrated on the benchmark problems. The algorithm provides a better performance on large-scaled instances and gained advantage in terms of CPU time. In addition, we solved a real-life CVRP using the proposed algorithm and found the encouraging results by comparison with the current situation that the company is in.
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
NASA Astrophysics Data System (ADS)
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Toomey, Bridget
Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality asmore » an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.« less
NASA Astrophysics Data System (ADS)
Umbarkar, A. J.; Balande, U. T.; Seth, P. D.
2017-06-01
The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.
Dynamically Reconfigurable Approach to Multidisciplinary Problems
NASA Technical Reports Server (NTRS)
Alexandrov, Natalie M.; Lewis, Robert Michael
2003-01-01
The complexity and autonomy of the constituent disciplines and the diversity of the disciplinary data formats make the task of integrating simulations into a multidisciplinary design optimization problem extremely time-consuming and difficult. We propose a dynamically reconfigurable approach to MDO problem formulation wherein an appropriate implementation of the disciplinary information results in basic computational components that can be combined into different MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. We believe that this structure can and should be used to formulate and solve optimization problems in the multidisciplinary context. The present work identifies the basic computational components in several MDO problem formulations and examines the dynamically reconfigurable approach in the context of a popular class of optimization methods. We show that if the disciplinary sensitivity information is implemented in a modular fashion, the transfer of sensitivity information among the formulations under study is straightforward. This enables not only experimentation with a variety of problem formations in a research environment, but also the flexible use of formulations in a production design environment.
Optimization of wide-angle seismic signal-to-noise ratios and P-wave transmission in Kenya
Jacob, A.W.B.; Vees, R.; Braile, L.W.; Criley, E.
1994-01-01
In previous refraction and wide-angle reflection experiments in the Kenya Rift there were problems with poor signal-noise ratios which made good seismic interpretation difficult. Careful planning and preparation for KRISP 90 has substantially overcome these problems and produced excellent seismic sections in a difficult environment. Noise levels were minimized by working, as far as possible, at times of the day when conditions were quiet, while source signals were optimized by using dispersed charges in water where it was available and waterfilled boreholes in most cases where it was not. Seismic coupling at optimum depth in water has been found to be more than 100 times greater than it is in a borehole in dry loosely compacted material. Allowing for the source coupling, a very marked difference has been found between the observation ranges in the rift and those on the flanks, where the observation ranges are greater. These appear to indicate a significant difference in seismic transmission through the two types of crust. ?? 1994.
Fateen, Seif-Eddeen K.; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design. PMID:24967430
Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.
Layout optimization with algebraic multigrid methods
NASA Technical Reports Server (NTRS)
Regler, Hans; Ruede, Ulrich
1993-01-01
Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.
Design optimization of steel frames using an enhanced firefly algorithm
NASA Astrophysics Data System (ADS)
Carbas, Serdar
2016-12-01
Mathematical modelling of real-world-sized steel frames under the Load and Resistance Factor Design-American Institute of Steel Construction (LRFD-AISC) steel design code provisions, where the steel profiles for the members are selected from a table of steel sections, turns out to be a discrete nonlinear programming problem. Finding the optimum design of such design optimization problems using classical optimization techniques is difficult. Metaheuristic algorithms provide an alternative way of solving such problems. The firefly algorithm (FFA) belongs to the swarm intelligence group of metaheuristics. The standard FFA has the drawback of being caught up in local optima in large-sized steel frame design problems. This study attempts to enhance the performance of the FFA by suggesting two new expressions for the attractiveness and randomness parameters of the algorithm. Two real-world-sized design examples are designed by the enhanced FFA and its performance is compared with standard FFA as well as with particle swarm and cuckoo search algorithms.
First-order convex feasibility algorithms for x-ray CT
Sidky, Emil Y.; Jørgensen, Jakob S.; Pan, Xiaochuan
2013-01-01
Purpose: Iterative image reconstruction (IIR) algorithms in computed tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times, however, it is impractical to achieve accurate solution to the optimization of interest, which complicates design of IIR algorithms. This issue is particularly acute for CT with a limited angular-range scan, which leads to poorly conditioned system matrices and difficult to solve optimization problems. In this paper, we develop IIR algorithms which solve a certain type of optimization called convex feasibility. The convex feasibility approach can provide alternatives to unconstrained optimization approaches and at the same time allow for rapidly convergent algorithms for their solution—thereby facilitating the IIR algorithm design process. Methods: An accelerated version of the Chambolle−Pock (CP) algorithm is adapted to various convex feasibility problems of potential interest to IIR in CT. One of the proposed problems is seen to be equivalent to least-squares minimization, and two other problems provide alternatives to penalized, least-squares minimization. Results: The accelerated CP algorithms are demonstrated on a simulation of circular fan-beam CT with a limited scanning arc of 144°. The CP algorithms are seen in the empirical results to converge to the solution of their respective convex feasibility problems. Conclusions: Formulation of convex feasibility problems can provide a useful alternative to unconstrained optimization when designing IIR algorithms for CT. The approach is amenable to recent methods for accelerating first-order algorithms which may be particularly useful for CT with limited angular-range scanning. The present paper demonstrates the methodology, and future work will illustrate its utility in actual CT application. PMID:23464295
NASA Technical Reports Server (NTRS)
Hargrove, A.
1982-01-01
Optimal digital control of nonlinear multivariable constrained systems was studied. The optimal controller in the form of an algorithm was improved and refined by reducing running time and storage requirements. A particularly difficult system of nine nonlinear state variable equations was chosen as a test problem for analyzing and improving the controller. Lengthy analysis, modeling, computing and optimization were accomplished. A remote interactive teletype terminal was installed. Analysis requiring computer usage of short duration was accomplished using Tuskegee's VAX 11/750 system.
The System of Simulation and Multi-objective Optimization for the Roller Kiln
NASA Astrophysics Data System (ADS)
Huang, He; Chen, Xishen; Li, Wugang; Li, Zhuoqiu
It is somewhat a difficult researching problem, to get the building parameters of the ceramic roller kiln simulation model. A system integrated of evolutionary algorithms (PSO, DE and DEPSO) and computational fluid dynamics (CFD), is proposed to solve the problem. And the temperature field uniformity and the environment disruption are studied in this paper. With the help of the efficient parallel calculation, the ceramic roller kiln temperature field uniformity and the NOx emissions field have been researched in the system at the same time. A multi-objective optimization example of the industrial roller kiln proves that the system is of excellent parameter exploration capability.
Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Contraints
NASA Technical Reports Server (NTRS)
Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren
2015-01-01
Interplanetary missions are often subject to difficult constraints, like solar phase angle upon arrival at the destination, velocity at arrival, and altitudes for flybys. Preliminary design of such missions is often conducted by solving the unconstrained problem and then filtering away solutions which do not naturally satisfy the constraints. However this can bias the search into non-advantageous regions of the solution space, so it can be better to conduct preliminary design with the full set of constraints imposed. In this work two stochastic global search methods are developed which are well suited to the constrained global interplanetary trajectory optimization problem.
Classification-Assisted Memetic Algorithms for Equality-Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Handoko, Stephanus Daniel; Kwoh, Chee Keong; Ong, Yew Soon
Regressions has successfully been incorporated into memetic algorithm (MA) to build surrogate models for the objective or constraint landscape of optimization problems. This helps to alleviate the needs for expensive fitness function evaluations by performing local refinements on the approximated landscape. Classifications can alternatively be used to assist MA on the choice of individuals that would experience refinements. Support-vector-assisted MA were recently proposed to alleviate needs for function evaluations in the inequality-constrained optimization problems by distinguishing regions of feasible solutions from those of the infeasible ones based on some past solutions such that search efforts can be focussed on some potential regions only. For problems having equality constraints, however, the feasible space would obviously be extremely small. It is thus extremely difficult for the global search component of the MA to produce feasible solutions. Hence, the classification of feasible and infeasible space would become ineffective. In this paper, a novel strategy to overcome such limitation is proposed, particularly for problems having one and only one equality constraint. The raw constraint value of an individual, instead of its feasibility class, is utilized in this work.
Optimal Control and Smoothing Techniques for Computing Minimum Fuel Orbital Transfers and Rendezvous
NASA Astrophysics Data System (ADS)
Epenoy, R.; Bertrand, R.
We investigate in this paper the computation of minimum fuel orbital transfers and rendezvous. Each problem is seen as an optimal control problem and is solved by means of shooting methods [1]. This approach corresponds to the use of Pontryagin's Maximum Principle (PMP) [2-4] and leads to the solution of a Two Point Boundary Value Problem (TPBVP). It is well known that this last one is very difficult to solve when the performance index is fuel consumption because in this case the optimal control law has a particular discontinuous structure called "bang-bang". We will show how to modify the performance index by a term depending on a small parameter in order to yield regular controls. Then, a continuation method on this parameter will lead us to the solution of the original problem. Convergence theorems will be given. Finally, numerical examples will illustrate the interest of our method. We will consider two particular problems: The GTO (Geostationary Transfer Orbit) to GEO (Geostationary Equatorial Orbit) transfer and the LEO (Low Earth Orbit) rendezvous.
A new optimized GA-RBF neural network algorithm.
Jia, Weikuan; Zhao, Dean; Shen, Tian; Su, Chunyang; Hu, Chanli; Zhao, Yuyan
2014-01-01
When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.
NASA Astrophysics Data System (ADS)
Xing, Xi; Rey-de-Castro, Roberto; Rabitz, Herschel
2014-12-01
Optimally shaped femtosecond laser pulses can often be effectively identified in adaptive feedback quantum control experiments, but elucidating the underlying control mechanism can be a difficult task requiring significant additional analysis. We introduce landscape Hessian analysis (LHA) as a practical experimental tool to aid in elucidating control mechanism insights. This technique is applied to the dissociative ionization of CH2BrI using shaped fs laser pulses for optimization of the absolute yields of ionic fragments as well as their ratios for the competing processes of breaking the C-Br and C-I bonds. The experimental results suggest that these nominally complex problems can be reduced to a low-dimensional control space with insights into the control mechanisms. While the optimal yield for some fragments is dominated by a non-resonant intensity-driven process, the optimal generation of other fragments maa difficult task requiring significant additionaly be explained by a non-resonant process coupled to few level resonant dynamics. Theoretical analysis and modeling is consistent with the experimental observations.
Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching
NASA Astrophysics Data System (ADS)
Shen, Kaiming; Yu, Wei
2018-05-01
This two-part paper develops novel methodologies for using fractional programming (FP) techniques to design and optimize communication systems. Part I of this paper proposes a new quadratic transform for FP and treats its application for continuous optimization problems. In this Part II of the paper, we study discrete problems, such as those involving user scheduling, which are considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-continuous problems normally cannot be recast as convex problems. In contrast to the common heuristic of relaxing the discrete variables, this work reformulates the original problem in an FP form amenable to distributed combinatorial optimization. The paper illustrates this methodology by tackling the important and challenging problem of uplink coordinated multi-cell user scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling, because uplink user scheduling decisions significantly affect the interference pattern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly with continuous variables such as transmit power levels and beamformers. The main idea of the proposed FP approach is to decouple the interaction among the interfering links, thereby permitting a distributed and joint optimization of the discrete and continuous variables with provable convergence. The paper shows that the well-known weighted minimum mean-square-error (WMMSE) algorithm can also be derived from a particular use of FP; but our proposed FP-based method significantly outperforms WMMSE when discrete user scheduling variables are involved, both in term of run-time efficiency and optimizing results.
Optimization applications in aircraft engine design and test
NASA Technical Reports Server (NTRS)
Pratt, T. K.
1984-01-01
Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.
Crown management and stand density
Thomas J. Dean; V. Clark Baldwin
1996-01-01
Determination of optimal stand-density continues to be a difficult problem. A trial cannot be established on every combination of soils, topography, and climate possible across the range of a widely distributed species such as loblolly pine, and continual advancements in nutrition and vegetation management, breeding, and utilization make established trials obsolete....
A simple language to script and simulate breeding schemes: the breeding scheme language
USDA-ARS?s Scientific Manuscript database
It is difficult for plant breeders to determine an optimal breeding strategy given that the problem involves many factors, such as target trait genetic architecture and breeding resource availability. There are many possible breeding schemes for each breeding program. Although simulation study may b...
A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.
Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki
2005-01-01
We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.
Quantum algorithm for energy matching in hard optimization problems
NASA Astrophysics Data System (ADS)
Baldwin, C. L.; Laumann, C. R.
2018-06-01
We consider the ability of local quantum dynamics to solve the "energy-matching" problem: given an instance of a classical optimization problem and a low-energy state, find another macroscopically distinct low-energy state. Energy matching is difficult in rugged optimization landscapes, as the given state provides little information about the distant topography. Here, we show that the introduction of quantum dynamics can provide a speedup over classical algorithms in a large class of hard optimization problems. Tunneling allows the system to explore the optimization landscape while approximately conserving the classical energy, even in the presence of large barriers. Specifically, we study energy matching in the random p -spin model of spin-glass theory. Using perturbation theory and exact diagonalization, we show that introducing a transverse field leads to three sharp dynamical phases, only one of which solves the matching problem: (1) a small-field "trapped" phase, in which tunneling is too weak for the system to escape the vicinity of the initial state; (2) a large-field "excited" phase, in which the field excites the system into high-energy states, effectively forgetting the initial energy; and (3) the intermediate "tunneling" phase, in which the system succeeds at energy matching. The rate at which distant states are found in the tunneling phase, although exponentially slow in system size, is exponentially faster than classical search algorithms.
NASA Astrophysics Data System (ADS)
Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding
2018-04-01
The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.
NASA Astrophysics Data System (ADS)
Khehra, Baljit Singh; Pharwaha, Amar Partap Singh
2017-04-01
Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.
NASA Astrophysics Data System (ADS)
Chaves-González, José M.; Vega-Rodríguez, Miguel A.; Gómez-Pulido, Juan A.; Sánchez-Pérez, Juan M.
2011-08-01
This article analyses the use of a novel parallel evolutionary strategy to solve complex optimization problems. The work developed here has been focused on a relevant real-world problem from the telecommunication domain to verify the effectiveness of the approach. The problem, known as frequency assignment problem (FAP), basically consists of assigning a very small number of frequencies to a very large set of transceivers used in a cellular phone network. Real data FAP instances are very difficult to solve due to the NP-hard nature of the problem, therefore using an efficient parallel approach which makes the most of different evolutionary strategies can be considered as a good way to obtain high-quality solutions in short periods of time. Specifically, a parallel hyper-heuristic based on several meta-heuristics has been developed. After a complete experimental evaluation, results prove that the proposed approach obtains very high-quality solutions for the FAP and beats any other result published.
A General-Purpose Optimization Engine for Multi-Disciplinary Design Applications
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Berke, Laszlo
1996-01-01
A general purpose optimization tool for multidisciplinary applications, which in the literature is known as COMETBOARDS, is being developed at NASA Lewis Research Center. The modular organization of COMETBOARDS includes several analyzers and state-of-the-art optimization algorithms along with their cascading strategy. The code structure allows quick integration of new analyzers and optimizers. The COMETBOARDS code reads input information from a number of data files, formulates a design as a set of multidisciplinary nonlinear programming problems, and then solves the resulting problems. COMETBOARDS can be used to solve a large problem which can be defined through multiple disciplines, each of which can be further broken down into several subproblems. Alternatively, a small portion of a large problem can be optimized in an effort to improve an existing system. Some of the other unique features of COMETBOARDS include design variable formulation, constraint formulation, subproblem coupling strategy, global scaling technique, analysis approximation, use of either sequential or parallel computational modes, and so forth. The special features and unique strengths of COMETBOARDS assist convergence and reduce the amount of CPU time used to solve the difficult optimization problems of aerospace industries. COMETBOARDS has been successfully used to solve a number of problems, including structural design of space station components, design of nozzle components of an air-breathing engine, configuration design of subsonic and supersonic aircraft, mixed flow turbofan engines, wave rotor topped engines, and so forth. This paper introduces the COMETBOARDS design tool and its versatility, which is illustrated by citing examples from structures, aircraft design, and air-breathing propulsion engine design.
Fast optimization of binary clusters using a novel dynamic lattice searching method.
Wu, Xia; Cheng, Wen
2014-09-28
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.
An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT
NASA Technical Reports Server (NTRS)
Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian
2015-01-01
Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.
NASA Astrophysics Data System (ADS)
Xu, Jun
Topic 1. An Optimization-Based Approach for Facility Energy Management with Uncertainties. Effective energy management for facilities is becoming increasingly important in view of the rising energy costs, the government mandate on the reduction of energy consumption, and the human comfort requirements. This part of dissertation presents a daily energy management formulation and the corresponding solution methodology for HVAC systems. The problem is to minimize the energy and demand costs through the control of HVAC units while satisfying human comfort, system dynamics, load limit constraints, and other requirements. The problem is difficult in view of the fact that the system is nonlinear, time-varying, building-dependent, and uncertain; and that the direct control of a large number of HVAC components is difficult. In this work, HVAC setpoints are the control variables developed on top of a Direct Digital Control (DDC) system. A method that combines Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics is developed to predict the system dynamics and uncontrollable load, and to optimize the setpoints. Numerical testing and prototype implementation results show that our method can effectively reduce total costs, manage uncertainties, and shed the load, is computationally efficient. Furthermore, it is significantly better than existing methods. Topic 2. Power Portfolio Optimization in Deregulated Electricity Markets with Risk Management. In a deregulated electric power system, multiple markets of different time scales exist with various power supply instruments. A load serving entity (LSE) has multiple choices from these instruments to meet its load obligations. In view of the large amount of power involved, the complex market structure, risks in such volatile markets, stringent constraints to be satisfied, and the long time horizon, a power portfolio optimization problem is of critical importance but difficulty for an LSE to serve the load, maximize its profit, and manage risks. In this topic, a mid-term power portfolio optimization problem with risk management is presented. Key instruments are considered, risk terms based on semi-variances of spot market transactions are introduced, and penalties on load obligation violations are added to the objective function to improve algorithm convergence and constraint satisfaction. To overcome the inseparability of the resulting problem, a surrogate optimization framework is developed enabling a decomposition and coordination approach. Numerical testing results show that our method effectively provides decisions for various instruments to maximize profit, manage risks, and is computationally efficient.
Exact algorithms for haplotype assembly from whole-genome sequence data.
Chen, Zhi-Zhong; Deng, Fei; Wang, Lusheng
2013-08-15
Haplotypes play a crucial role in genetic analysis and have many applications such as gene disease diagnoses, association studies, ancestry inference and so forth. The development of DNA sequencing technologies makes it possible to obtain haplotypes from a set of aligned reads originated from both copies of a chromosome of a single individual. This approach is often known as haplotype assembly. Exact algorithms that can give optimal solutions to the haplotype assembly problem are highly demanded. Unfortunately, previous algorithms for this problem either fail to output optimal solutions or take too long time even executed on a PC cluster. We develop an approach to finding optimal solutions for the haplotype assembly problem under the minimum-error-correction (MEC) model. Most of the previous approaches assume that the columns in the input matrix correspond to (putative) heterozygous sites. This all-heterozygous assumption is correct for most columns, but it may be incorrect for a small number of columns. In this article, we consider the MEC model with or without the all-heterozygous assumption. In our approach, we first use new methods to decompose the input read matrix into small independent blocks and then model the problem for each block as an integer linear programming problem, which is then solved by an integer linear programming solver. We have tested our program on a single PC [a Linux (x64) desktop PC with i7-3960X CPU], using the filtered HuRef and the NA 12878 datasets (after applying some variant calling methods). With the all-heterozygous assumption, our approach can optimally solve the whole HuRef data set within a total time of 31 h (26 h for the most difficult block of the 15th chromosome and only 5 h for the other blocks). To our knowledge, this is the first time that MEC optimal solutions are completely obtained for the filtered HuRef dataset. Moreover, in the general case (without the all-heterozygous assumption), for the HuRef dataset our approach can optimally solve all the chromosomes except the most difficult block in chromosome 15 within a total time of 12 days. For both of the HuRef and NA12878 datasets, the optimal costs in the general case are sometimes much smaller than those in the all-heterozygous case. This implies that some columns in the input matrix (after applying certain variant calling methods) still correspond to false-heterozygous sites. Our program, the optimal solutions found for the HuRef dataset available at http://rnc.r.dendai.ac.jp/hapAssembly.html.
Ordinal optimization and its application to complex deterministic problems
NASA Astrophysics Data System (ADS)
Yang, Mike Shang-Yu
1998-10-01
We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.
Radar Control Optimal Resource Allocation
2015-07-13
other tunable parameters of radars [17, 18]. Such radar resource scheduling usually demands massive computation. Even myopic 14 Distribution A: Approved...reduced validity of the optimal choice of radar resource. In the non- myopic context, the computational problem becomes exponentially more difficult...computed as t? = ασ2 q + σ r √ α q (σ + r + α q) α q2 r − 1ασ q2 + q r2 . (19) We are only interested in t? > 1 and solving the inequality we obtain the
Optimization of 31P magnetic resonance spectroscopy in vivo
NASA Astrophysics Data System (ADS)
Manzhurtsev, A. V.; Akhadov, T. A.; Semenova, N. A.
2018-01-01
The main problem of magnetic resonance spectroscopy on phosphorus nuclei (31P MRS) is low signal-to-noise ratio (SNR) of spectra acquired on clinical (3T) scanners. This makes quantitative processing of spectra difficult. The optimization of method on a single-voxel model reported in current work implicates an impact of the spin-lattice (T1) relaxation on SNR, and also evaluates the effectiveness of Image Selected InVivo Spectroscopy (ISIS) pulse sequence modification for the increase of SNR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Brennan T; Jager, Yetta; March, Patrick
Reservoir releases are typically operated to maximize the efficiency of hydropower production and the value of hydropower produced. In practice, ecological considerations are limited to those required by law. We first describe reservoir optimization methods that include mandated constraints on environmental and other water uses. Next, we describe research to formulate and solve reservoir optimization problems involving both energy and environmental water needs as objectives. Evaluating ecological objectives is a challenge in these problems for several reasons. First, it is difficult to predict how biological populations will respond to flow release patterns. This problem can be circumvented by using ecologicalmore » models. Second, most optimization methods require complex ecological responses to flow to be quantified by a single metric, preferably a currency that can also represent hydropower benefits. Ecological valuation of instream flows can make optimization methods that require a single currency for the effects of flow on energy and river ecology possible. Third, holistic reservoir optimization problems are unlikely to be structured such that simple solution methods can be used, necessitating the use of flexible numerical methods. One strong advantage of optimal control is the ability to plan for the effects of climate change. We present ideas for developing holistic methods to the point where they can be used for real-time operation of reservoirs. We suggest that developing ecologically sound optimization tools should be a priority for hydropower in light of the increasing value placed on sustaining both the ecological and energy benefits of riverine ecosystems long into the future.« less
Gender and rapid alterations of hemispheric dominance during planning.
Schuepbach, Daniel; Skotchko, Tatjana; Duschek, Stefan; Theodoridou, Anastasia; Grimm, Simone; Boeker, Heinz; Seifritz, Erich
2012-01-01
Mental planning and carrying out a plan provoke specific cerebral hemodynamic responses. Gender aspects of hemispheric laterality using rapid cerebral hemodynamics have not been reported. Here, we applied functional transcranial Doppler sonography to examine lateralization of cerebral hemodynamics of the middle cerebral arteries of 28 subjects (14 women and 14 men) performing a standard planning task. There were easy and difficult problems, and mental planning without motor activity was separated from movement execution. Difficult mental planning elicited lateralization to the right hemisphere after 2 or more seconds, a feature that was not observed during movement execution. In females, there was a dominance to the left hemisphere during movement execution. Optimized problem solving yielded an increased laterality change to the right during mental planning. Gender-related hemispheric dominance appears to be condition-dependent, and change of laterality to the right may play a role in optimized performance. Results are of relevance when considering laterality from a perspective of performance enhancement of higher cognitive functions, and also of psychiatric disorders with cognitive dysfunctions and abnormal lateralization patterns such as schizophrenia. Copyright © 2012 S. Karger AG, Basel.
Identification of vehicle suspension parameters by design optimization
NASA Astrophysics Data System (ADS)
Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.
2014-05-01
The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.
Location-allocation models and new solution methodologies in telecommunication networks
NASA Astrophysics Data System (ADS)
Dinu, S.; Ciucur, V.
2016-08-01
When designing a telecommunications network topology, three types of interdependent decisions are combined: location, allocation and routing, which are expressed by the following design considerations: how many interconnection devices - consolidation points/concentrators should be used and where should they be located; how to allocate terminal nodes to concentrators; how should the voice, video or data traffic be routed and what transmission links (capacitated or not) should be built into the network. Including these three components of the decision into a single model generates a problem whose complexity makes it difficult to solve. A first method to address the overall problem is the sequential one, whereby the first step deals with the location-allocation problem and based on this solution the subsequent sub-problem (routing the network traffic) shall be solved. The issue of location and allocation in a telecommunications network, called "The capacitated concentrator location- allocation - CCLA problem" is based on one of the general location models on a network in which clients/demand nodes are the terminals and facilities are the concentrators. Like in a location model, each client node has a demand traffic, which must be served, and the facilities can serve these demands within their capacity limit. In this study, the CCLA problem is modeled as a single-source capacitated location-allocation model whose optimization objective is to determine the minimum network cost consisting of fixed costs for establishing the locations of concentrators, costs for operating concentrators and costs for allocating terminals to concentrators. The problem is known as a difficult combinatorial optimization problem for which powerful algorithms are required. Our approach proposes a Fuzzy Genetic Algorithm combined with a local search procedure to calculate the optimal values of the location and allocation variables. To confirm the efficiency of the proposed algorithm with respect to the quality of solutions, significant size test problems were considered: up to 100 terminal nodes and 50 concentrators on a 100 × 100 square grid. The performance of this hybrid intelligent algorithm was evaluated by measuring the quality of its solutions with respect to the following statistics: the standard deviation and the ratio of the best solution obtained.
Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.
Lian, Chuanqiang; Xu, Xin; Chen, Hong; He, Haibo
2016-11-01
Trajectory tracking control of wheeled mobile robots (WMRs) has been an important research topic in control theory and robotics. Although various tracking control methods with stability have been developed for WMRs, it is still difficult to design optimal or near-optimal tracking controller under uncertainties and disturbances. In this paper, a near-optimal tracking control method is presented for WMRs based on receding-horizon dual heuristic programming (RHDHP). In the proposed method, a backstepping kinematic controller is designed to generate desired velocity profiles and the receding horizon strategy is used to decompose the infinite-horizon optimal control problem into a series of finite-horizon optimal control problems. In each horizon, a closed-loop tracking control policy is successively updated using a class of approximate dynamic programming algorithms called finite-horizon dual heuristic programming (DHP). The convergence property of the proposed method is analyzed and it is shown that the tracking control system based on RHDHP is asymptotically stable by using the Lyapunov approach. Simulation results on three tracking control problems demonstrate that the proposed method has improved control performance when compared with conventional model predictive control (MPC) and DHP. It is also illustrated that the proposed method has lower computational burden than conventional MPC, which is very beneficial for real-time tracking control.
A Simple Label Switching Algorithm for Semisupervised Structural SVMs.
Balamurugan, P; Shevade, Shirish; Sundararajan, S
2015-10-01
In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.
Six-Degree-of-Freedom Trajectory Optimization Utilizing a Two-Timescale Collocation Architecture
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Conway, Bruce A.
2005-01-01
Six-degree-of-freedom (6DOF) trajectory optimization of a reentry vehicle is solved using a two-timescale collocation methodology. This class of 6DOF trajectory problems are characterized by two distinct timescales in their governing equations, where a subset of the states have high-frequency dynamics (the rotational equations of motion) while the remaining states (the translational equations of motion) vary comparatively slowly. With conventional collocation methods, the 6DOF problem size becomes extraordinarily large and difficult to solve. Utilizing the two-timescale collocation architecture, the problem size is reduced significantly. The converged solution shows a realistic landing profile and captures the appropriate high-frequency rotational dynamics. A large reduction in the overall problem size (by 55%) is attained with the two-timescale architecture as compared to the conventional single-timescale collocation method. Consequently, optimum 6DOF trajectory problems can now be solved efficiently using collocation, which was not previously possible for a system with two distinct timescales in the governing states.
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons
Jonke, Zeno; Habenschuss, Stefan; Maass, Wolfgang
2016-01-01
Network of neurons in the brain apply—unlike processors in our current generation of computer hardware—an event-based processing strategy, where short pulses (spikes) are emitted sparsely by neurons to signal the occurrence of an event at a particular point in time. Such spike-based computations promise to be substantially more power-efficient than traditional clocked processing schemes. However, it turns out to be surprisingly difficult to design networks of spiking neurons that can solve difficult computational problems on the level of single spikes, rather than rates of spikes. We present here a new method for designing networks of spiking neurons via an energy function. Furthermore, we show how the energy function of a network of stochastically firing neurons can be shaped in a transparent manner by composing the networks of simple stereotypical network motifs. We show that this design approach enables networks of spiking neurons to produce approximate solutions to difficult (NP-hard) constraint satisfaction problems from the domains of planning/optimization and verification/logical inference. The resulting networks employ noise as a computational resource. Nevertheless, the timing of spikes plays an essential role in their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines) and Gibbs sampling. PMID:27065785
NASA Astrophysics Data System (ADS)
Ushijima, Timothy T.; Yeh, William W.-G.
2013-10-01
An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.
USDA-ARS?s Scientific Manuscript database
One of the most important and least understood properties of carbohydrates is their conformational profile in solution. The study of carbohydrates in solution is a most difficult computational problem, a result of the many soft conformational variables (hydroxyl groups) inherent in the structures of...
Re-Purposing Google Maps Visualisation for Teaching Logistics Systems
ERIC Educational Resources Information Center
Cheong, France; Cheong, Christopher; Jie, Ferry
2012-01-01
Routing is the process of selecting appropriate paths and ordering waypoints in a network. It plays an important part in logistics and supply chain management as choosing the optimal route can minimise distribution costs. Routing optimisation, however, is a difficult problem to solve and computer software is often used to determine the best route.…
Solving the Traveling Salesman's Problem Using the African Buffalo Optimization.
Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam
2016-01-01
This paper proposes the African Buffalo Optimization (ABO) which is a new metaheuristic algorithm that is derived from careful observation of the African buffalos, a species of wild cows, in the African forests and savannahs. This animal displays uncommon intelligence, strategic organizational skills, and exceptional navigational ingenuity in its traversal of the African landscape in search for food. The African Buffalo Optimization builds a mathematical model from the behavior of this animal and uses the model to solve 33 benchmark symmetric Traveling Salesman's Problem and six difficult asymmetric instances from the TSPLIB. This study shows that buffalos are able to ensure excellent exploration and exploitation of the search space through regular communication, cooperation, and good memory of its previous personal exploits as well as tapping from the herd's collective exploits. The results obtained by using the ABO to solve these TSP cases were benchmarked against the results obtained by using other popular algorithms. The results obtained using the African Buffalo Optimization algorithm are very competitive.
Solving the Traveling Salesman's Problem Using the African Buffalo Optimization
Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam
2016-01-01
This paper proposes the African Buffalo Optimization (ABO) which is a new metaheuristic algorithm that is derived from careful observation of the African buffalos, a species of wild cows, in the African forests and savannahs. This animal displays uncommon intelligence, strategic organizational skills, and exceptional navigational ingenuity in its traversal of the African landscape in search for food. The African Buffalo Optimization builds a mathematical model from the behavior of this animal and uses the model to solve 33 benchmark symmetric Traveling Salesman's Problem and six difficult asymmetric instances from the TSPLIB. This study shows that buffalos are able to ensure excellent exploration and exploitation of the search space through regular communication, cooperation, and good memory of its previous personal exploits as well as tapping from the herd's collective exploits. The results obtained by using the ABO to solve these TSP cases were benchmarked against the results obtained by using other popular algorithms. The results obtained using the African Buffalo Optimization algorithm are very competitive. PMID:26880872
Laser ablation of iron-rich black films from exposed granite surfaces
NASA Astrophysics Data System (ADS)
Delgado Rodrigues, J.; Costa, D.; Mascalchi, M.; Osticioli, I.; Siano, S.
2014-10-01
Here, we investigated the potential of laser removal of iron-rich dark films from weathered granite substrates, which represents a very difficult conservation problem because of the polymineralic nature of the stone and of its complex deterioration mechanisms. As often occurs, biotite was the most critical component because of its high optical absorption, low melting temperature, and pronounced cleavage, which required a careful control of the photothermal and photomechanical effects to optimize the selective ablation of the mentioned unwanted dark film. Different pulse durations and wavelengths Nd:YAG lasers were tested and optimal irradiation conditions were determined through thorough analytical characterisations. Besides addressing a specific conservation problem, the present work provides information of general valence in laser uncovering of encrusted granite.
Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663
Ren, Kun; Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.
When more of the same is better
NASA Astrophysics Data System (ADS)
Fontanari, José F.
2016-01-01
Problem solving (e.g., drug design, traffic engineering, software development) by task forces represents a substantial portion of the economy of developed countries. Here we use an agent-based model of cooperative problem-solving systems to study the influence of diversity on the performance of a task force. We assume that agents cooperate by exchanging information on their partial success and use that information to imitate the more successful agent in the system —the model. The agents differ only in their propensities to copy the model. We find that, for easy tasks, the optimal organization is a homogeneous system composed of agents with the highest possible copy propensities. For difficult tasks, we find that diversity can prevent the system from being trapped in sub-optimal solutions. However, when the system size is adjusted to maximize the performance the homogeneous systems outperform the heterogeneous systems, i.e., for optimal performance, sameness should be preferred to diversity.
Hatt, Sarah R; Leske, David A; Wernimont, Suzanne M; Birch, Eileen E; Holmes, Jonathan M
2017-03-01
A rating scale is a critical component of patient-reported outcome instrument design, but the optimal rating scale format for pediatric use has not been investigated. We compared rating scale performance when administering potential questionnaire items to children with eye disorders and their parents. Three commonly used rating scales were evaluated: frequency (never, sometimes, often, always), severity (not at all, a little, some, a lot), and difficulty (not difficult, a little difficult, difficult, very difficult). Ten patient-derived items were formatted for each rating scale, and rating scale testing order was randomized. Both child and parent were asked to comment on any problems with, or a preference for, a particular scale. Any confusion about options or inability to answer was recorded. Twenty-one children, aged 5-17 years, with strabismus, amblyopia, or refractive error were recruited, each with one of their parents. Of the first 10 children, 4 (40%) had problems using the difficulty scale, compared with 1 (10%) using frequency, and none using severity. The difficulty scale was modified, replacing the word "difficult" with "hard." Eleven additional children (plus parents) then completed all 3 questionnaires. No children had problems using any scale. Four (36%) parents had problems using the difficulty ("hard") scale and 1 (9%) with frequency. Regarding preference, 6 (55%) of 11 children and 5 (50%) of 10 parents preferred using the frequency scale. Children and parents found the frequency scale and question format to be the most easily understood. Children and parents also expressed preference for the frequency scale, compared with the difficulty and severity scales. We recommend frequency rating scales for patient-reported outcome measures in pediatric populations.
Technical errors in planar bone scanning.
Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M
2004-09-01
Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.
NASA Astrophysics Data System (ADS)
Zhu, Jun; Zhang, David Wei; Kuo, Chinte; Wang, Qing; Wei, Fang; Zhang, Chenming; Chen, Han; He, Daquan; Hsu, Stephen D.
2017-07-01
As technology node shrinks, aggressive design rules for contact and other back end of line (BEOL) layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the major challenges for 28 nm and below technology nodes, which can lead to post-etch hotspots that are difficult to predict and eventually degrade the process window significantly. To tackle this problem, we used an advanced programmable illuminator (FlexRay) and Tachyon SMO (Source Mask Optimization) platform to make resistaware source optimization possible, and it is proved to greatly improve the imaging contrast, enhance focus and exposure latitude, and minimize resist top loss thus improving the yield.
Hartmann, Klaas; Steel, Mike
2006-08-01
The Noah's Ark Problem (NAP) is a comprehensive cost-effectiveness methodology for biodiversity conservation that was introduced by Weitzman (1998) and utilizes the phylogenetic tree containing the taxa of interest to assess biodiversity. Given a set of taxa, each of which has a particular survival probability that can be increased at some cost, the NAP seeks to allocate limited funds to conserving these taxa so that the future expected biodiversity is maximized. Finding optimal solutions using this framework is a computationally difficult problem to which a simple and efficient "greedy" algorithm has been proposed in the literature and applied to conservation problems. We show that, although algorithms of this type cannot produce optimal solutions for the general NAP, there are two restricted scenarios of the NAP for which a greedy algorithm is guaranteed to produce optimal solutions. The first scenario requires the taxa to have equal conservation cost; the second scenario requires an ultrametric tree. The NAP assumes a linear relationship between the funding allocated to conservation of a taxon and the increased survival probability of that taxon. This relationship is briefly investigated and one variation is suggested that can also be solved using a greedy algorithm.
An algorithm for the optimal collection of wet waste.
Laureri, Federica; Minciardi, Riccardo; Robba, Michela
2016-02-01
This work refers to the development of an approach for planning wet waste (food waste and other) collection at a metropolitan scale. Some specific modeling features distinguish this specific waste collection problem from the other ones. For instance, there may be significant differences as regards the values of the parameters (such as weight and volume) characterizing the various collection points. As it happens for classical waste collection planning, even in the case of wet waste, one has to deal with difficult combinatorial problems, where the determination of an optimal solution may require a very large computational effort, in the case of problem instances having a noticeable dimensionality. For this reason, in this work, a heuristic procedure for the optimal planning of wet waste is developed and applied to problem instances drawn from a real case study. The performances that can be obtained by applying such a procedure are evaluated by a comparison with those obtainable via a general-purpose mathematical programming software package, as well as those obtained by applying very simple decision rules commonly used in practice. The considered case study consists in an area corresponding to the historical center of the Municipality of Genoa. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan
2015-02-01
An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.
Neural networks for feedback feedforward nonlinear control systems.
Parisini, T; Zoppoli, R
1994-01-01
This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.
Prioritizing parts from cutting bills when gang-ripping first
R. Edward Thomas
1996-01-01
Computer optimization of gang-rip-first processing is a difficult problem when working with specific cutting bills. Interactions among board grade and size, arbor setup, and part sizes and quantities greatly complicate the decision making process. Cutting the wrong parts at any moment will mean that more board footage will be required to meet the bill. Using the ROugh...
Nice or effective? Social problem solving strategies in patients with major depressive disorder.
Thoma, Patrizia; Schmidt, Tobias; Juckel, Georg; Norra, Christine; Suchan, Boris
2015-08-30
Our study addressed distinct aspects of social problem solving in 28 hospitalized patients with Major Depressive Disorder (MDD) and 28 matched healthy controls. Three scenario-based tests assessed the ability to infer the mental states of story characters in difficult interpersonal situations, the capacity to freely generate good strategies for dealing with such situations and the ability to identify the best solutions among less optimal alternatives. Also, standard tests assessing attention, memory, executive function and trait empathy were administered. Compared to controls, MDD patients showed impaired interpretation of other peoples' sarcastic remarks but not of the mental states underlying other peoples' actions. Furthermore, MDD patients generated fewer strategies that were socially sensitive and practically effective at the same time or at least only socially sensitive. Overall, while the free generation of adequate strategies for difficult social situations was impaired, recognition of optimal solutions among alternatives was spared in MDD patients. Higher generation scores were associated with higher trait empathy and cognitive flexibility scores. We suggest that this specific pattern of impairments ought to be considered in the development of therapies addressing impaired social skills in MDD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Improving strand pairing prediction through exploring folding cooperativity
Jeong, Jieun; Berman, Piotr; Przytycka, Teresa M.
2008-01-01
The topology of β-sheets is defined by the pattern of hydrogen-bonded strand pairing. Therefore, predicting hydrogen bonded strand partners is a fundamental step towards predicting β-sheet topology. At the same time, finding the correct partners is very difficult due to long range interactions involved in strand pairing. Additionally, patterns of aminoacids observed in β-sheet formations are very general and therefore difficult to use for computational recognition of specific contacts between strands. In this work, we report a new strand pairing algorithm. To address above mentioned difficulties, our algorithm attempts to mimic elements of the folding process. Namely, in addition to ensuring that the predicted hydrogen bonded strand pairs satisfy basic global consistency constraints, it takes into account hypothetical folding pathways. Consistently with this view, introducing hydrogen bonds between a pair of strands changes the probabilities of forming hydrogen bonds between other pairs of strand. We demonstrate that this approach provides an improvement over previously proposed algorithms. We also compare the performance of this method to that of a global optimization algorithm that poses the problem as integer linear programming optimization problem and solves it using ILOG CPLEX™ package. PMID:18989036
Intelligent automated control of life support systems using proportional representations.
Wu, Annie S; Garibay, Ivan I
2004-06-01
Effective automatic control of Advanced Life Support Systems (ALSS) is a crucial component of space exploration. An ALSS is a coupled dynamical system which can be extremely sensitive and difficult to predict. As a result, such systems can be difficult to control using deliberative and deterministic methods. We investigate the performance of two machine learning algorithms, a genetic algorithm (GA) and a stochastic hill-climber (SH), on the problem of learning how to control an ALSS, and compare the impact of two different types of problem representations on the performance of both algorithms. We perform experiments on three ALSS optimization problems using five strategies with multiple variations of a proportional representation for a total of 120 experiments. Results indicate that although a proportional representation can effectively boost GA performance, it does not necessarily have the same effect on other algorithms such as SH. Results also support previous conclusions that multivector control strategies are an effective method for control of coupled dynamical systems.
Trajectory optimization for lunar soft landing with complex constraints
NASA Astrophysics Data System (ADS)
Chu, Huiping; Ma, Lin; Wang, Kexin; Shao, Zhijiang; Song, Zhengyu
2017-11-01
A unified trajectory optimization framework with initialization strategies is proposed in this paper for lunar soft landing for various missions with specific requirements. Two main missions of interest are Apollo-like Landing from low lunar orbit and Vertical Takeoff Vertical Landing (a promising mobility method) on the lunar surface. The trajectory optimization is characterized by difficulties arising from discontinuous thrust, multi-phase connections, jump of attitude angle, and obstacles avoidance. Here R-function is applied to deal with the discontinuities of thrust, checkpoint constraints are introduced to connect multiple landing phases, attitude angular rate is designed to get rid of radical changes, and safeguards are imposed to avoid collision with obstacles. The resulting dynamic problems are generally with complex constraints. The unified framework based on Gauss Pseudospectral Method (GPM) and Nonlinear Programming (NLP) solver are designed to solve the problems efficiently. Advanced initialization strategies are developed to enhance both the convergence and computation efficiency. Numerical results demonstrate the adaptability of the framework for various landing missions, and the performance of successful solution of difficult dynamic problems.
NASA Astrophysics Data System (ADS)
Deng, Lujuan; Xie, Songhe; Cui, Jiantao; Liu, Tao
2006-11-01
It is the essential goal of intelligent greenhouse environment optimal control to enhance income of cropper and energy save. There were some characteristics such as uncertainty, imprecision, nonlinear, strong coupling, bigger inertia and different time scale in greenhouse environment control system. So greenhouse environment optimal control was not easy and especially model-based optimal control method was more difficult. So the optimal control problem of plant environment in intelligent greenhouse was researched. Hierarchical greenhouse environment control system was constructed. In the first level data measuring was carried out and executive machine was controlled. Optimal setting points of climate controlled variable in greenhouse was calculated and chosen in the second level. Market analysis and planning were completed in third level. The problem of the optimal setting point was discussed in this paper. Firstly the model of plant canopy photosynthesis responses and the model of greenhouse climate model were constructed. Afterwards according to experience of the planting expert, in daytime the optimal goals were decided according to the most maximal photosynthesis rate principle. In nighttime on plant better growth conditions the optimal goals were decided by energy saving principle. Whereafter environment optimal control setting points were computed by GA. Compared the optimal result and recording data in real system, the method is reasonable and can achieve energy saving and the maximal photosynthesis rate in intelligent greenhouse
PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization
Chen, Shuangqing; Wei, Lixin; Guan, Bing
2018-01-01
Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036
NASA Astrophysics Data System (ADS)
Roy, Satadru
Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network problem consisting of 94 decision variables including 33 integer and 61 continuous type variables. This application problem is a representation of an interacting group of systems and provides key challenges to the optimization framework to solve the MINLP problem, as reflected by the presence of a moderate number of integer and continuous type design variables and expensive analysis tool. The result indicates simultaneously solving the subspaces could lead to significant improvement in the fleet-level objective of the airline when compared to the previously developed sequential subspace decomposition approach. In developing the approach to solve the MINLP/MDNLP challenge problem, several test problems provided the ability to explore performance of the framework. While solving these test problems, the framework showed that it could solve other MDNLP problems including categorically discrete variables, indicating that the framework could have broader application than the new aircraft design-fleet allocation-revenue management problem.
Liu, Chun; Kroll, Andreas
2016-01-01
Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.
Yamaguti, M.; Muller, E.E.; Piffer, A.I.; Kich, J.D.; Klein, C.S.; Kuchiishi, S.S.
2008-01-01
Since Mycoplasma hyopneumoniae isolation in appropriate media is a difficult task and impractical for daily routine diagnostics, Nested-PCR (N-PCR) techniques are currently used to improve the direct diagnostic sensitivity of Swine Enzootic Pneumonia. In a first experiment, this paper describes a N-PCR technique optimization based on three variables: different sampling sites, sample transport media, and DNA extraction methods, using eight pigs. Based on the optimization results, a second experiment was conducted for testing validity using 40 animals. In conclusion, the obtained results of the N-PCR optimization and validation allow us to recommend this test as a routine monitoring diagnostic method for Mycoplasma hyopneumoniae infection in swine herds. PMID:24031248
Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models
Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei
2014-01-01
Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189
Tuning Parameters in Heuristics by Using Design of Experiments Methods
NASA Technical Reports Server (NTRS)
Arin, Arif; Rabadi, Ghaith; Unal, Resit
2010-01-01
With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.
Optimal experimental design for placement of boreholes
NASA Astrophysics Data System (ADS)
Padalkina, Kateryna; Bücker, H. Martin; Seidler, Ralf; Rath, Volker; Marquart, Gabriele; Niederau, Jan; Herty, Michael
2014-05-01
Drilling for deep resources is an expensive endeavor. Among the many problems finding the optimal drilling location for boreholes is one of the challenging questions. We contribute to this discussion by using a simulation based assessment of possible future borehole locations. We study the problem of finding a new borehole location in a given geothermal reservoir in terms of a numerical optimization problem. In a geothermal reservoir the temporal and spatial distribution of temperature and hydraulic pressure may be simulated using the coupled differential equations for heat transport and mass and momentum conservation for Darcy flow. Within this model the permeability and thermal conductivity are dependent on the geological layers present in the subsurface model of the reservoir. In general, those values involve some uncertainty making it difficult to predict actual heat source in the ground. Within optimal experimental the question is which location and to which depth to drill the borehole in order to estimate conductivity and permeability with minimal uncertainty. We introduce a measure for computing the uncertainty based on simulations of the coupled differential equations. The measure is based on the Fisher information matrix of temperature data obtained through the simulations. We assume that the temperature data is available within the full borehole. A minimization of the measure representing the uncertainty in the unknown permeability and conductivity parameters is performed to determine the optimal borehole location. We present the theoretical framework as well as numerical results for several 2d subsurface models including up to six geological layers. Also, the effect of unknown layers on the introduced measure is studied. Finally, to obtain a more realistic estimate of optimal borehole locations, we couple the optimization to a cost model for deep drilling problems.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Habitat Design Optimization and Analysis
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Hull, Patrick V.; Tinker, Michael L.
2006-01-01
Long-duration surface missions to the Moon and Mars will require habitats for the astronauts. The materials chosen for the habitat walls play a direct role in the protection against the harsh environments found on the surface. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Advanced optimization techniques are necessary for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat design optimization tool utilizing genetic algorithms has been developed. Genetic algorithms use a "survival of the fittest" philosophy, where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multi-objective formulation of structural analysis, heat loss, radiation protection, and meteoroid protection. This paper presents the research and development of this tool.
The mGA1.0: A common LISP implementation of a messy genetic algorithm
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Kerzic, Travis
1990-01-01
Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.
Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt; Philip A. Araman
2005-01-01
This paper describes recent progress in the analysis of computed tomography (CT) images of hardwood logs. The long-term goal of the work is to develop a system that is capable of autonomous (or semiautonomous) detection of internal defects, so that log breakdown decisions can be optimized based on defect locations. The problem is difficult because wood exhibits large...
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.
Resource planning and scheduling of payload for satellite with particle swarm optimization
NASA Astrophysics Data System (ADS)
Li, Jian; Wang, Cheng
2007-11-01
The resource planning and scheduling technology of payload is a key technology to realize an automated control for earth observing satellite with limited resources on satellite, which is implemented to arrange the works states of various payloads to carry out missions by optimizing the scheme of the resources. The scheduling task is a difficult constraint optimization problem with various and mutative requests and constraints. Based on the analysis of the satellite's functions and the payload's resource constraints, a proactive planning and scheduling strategy based on the availability of consumable and replenishable resources in time-order is introduced along with dividing the planning and scheduling period to several pieces. A particle swarm optimization algorithm is proposed to address the problem with an adaptive mutation operator selection, where the swarm is divided into groups with different probabilities to employ various mutation operators viz., differential evolution, Gaussian and random mutation operators. The probabilities are adjusted adaptively by comparing the effectiveness of the groups to select a proper operator. The simulation results have shown the feasibility and effectiveness of the method.
Oniz, Yesim; Kayacan, Erdal; Kaynak, Okyay
2009-04-01
The control of an antilock braking system (ABS) is a difficult problem due to its strongly nonlinear and uncertain characteristics. To overcome this difficulty, the integration of gray-system theory and sliding-mode control is proposed in this paper. This way, the prediction capabilities of the former and the robustness of the latter are combined to regulate optimal wheel slip depending on the vehicle forward velocity. The design approach described is novel, considering that a point, rather than a line, is used as the sliding control surface. The control algorithm is derived and subsequently tested on a quarter vehicle model. Encouraged by the simulation results indicating the ability to overcome the stated difficulties with fast convergence, experimental results are carried out on a laboratory setup. The results presented indicate the potential of the approach in handling difficult real-time control problems.
Combined structures-controls optimization of lattice trusses
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1991-01-01
The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement.
A New Model for a Carpool Matching Service.
Xia, Jizhe; Curtin, Kevin M; Li, Weihong; Zhao, Yonglong
2015-01-01
Carpooling is an effective means of reducing traffic. A carpool team shares a vehicle for their commute, which reduces the number of vehicles on the road during rush hour periods. Carpooling is officially sanctioned by most governments, and is supported by the construction of high-occupancy vehicle lanes. A number of carpooling services have been designed in order to match commuters into carpool teams, but it known that the determination of optimal carpool teams is a combinatorially complex problem, and therefore technological solutions are difficult to achieve. In this paper, a model for carpool matching services is proposed, and both optimal and heuristic approaches are tested to find solutions for that model. The results show that different solution approaches are preferred over different ranges of problem instances. Most importantly, it is demonstrated that a new formulation and associated solution procedures can permit the determination of optimal carpool teams and routes. An instantiation of the model is presented (using the street network of Guangzhou city, China) to demonstrate how carpool teams can be determined.
A New Model for a Carpool Matching Service
Xia, Jizhe; Curtin, Kevin M.; Li, Weihong; Zhao, Yonglong
2015-01-01
Carpooling is an effective means of reducing traffic. A carpool team shares a vehicle for their commute, which reduces the number of vehicles on the road during rush hour periods. Carpooling is officially sanctioned by most governments, and is supported by the construction of high-occupancy vehicle lanes. A number of carpooling services have been designed in order to match commuters into carpool teams, but it known that the determination of optimal carpool teams is a combinatorially complex problem, and therefore technological solutions are difficult to achieve. In this paper, a model for carpool matching services is proposed, and both optimal and heuristic approaches are tested to find solutions for that model. The results show that different solution approaches are preferred over different ranges of problem instances. Most importantly, it is demonstrated that a new formulation and associated solution procedures can permit the determination of optimal carpool teams and routes. An instantiation of the model is presented (using the street network of Guangzhou city, China) to demonstrate how carpool teams can be determined. PMID:26125552
Game theory and extremal optimization for community detection in complex dynamic networks.
Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca
2014-01-01
The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.
Meyer, Annika; Gross, Neil; Teng, Marita
2018-01-01
Head and neck surgeons are commonly faced with surgical patients who have underlying medical problems requiring antithrombotic therapy. It is difficult to achieve a balance between minimizing the risk of thromboembolism and hemorrhage in the perioperative period. Data from randomized, controlled trials are limited, and procedure-specific bleed rates are also difficult to pinpoint. The decision is made more difficult when patients with moderate-to-high risk for thromboembolic events undergo procedures that are high risk for bleeding. This is true for many head and neck oncologic surgeries. Furthermore, although elective procedures may be delayed for optimization of antithrombotic medication, emergent procedures cannot. Head and neck surgery often represents the most challenging of all these circumstances, given the potential risk of airway compromise from bleeding after head and neck surgery. © 2017 Wiley Periodicals, Inc.
Nurse Scheduling by Cooperative GA with Effective Mutation Operator
NASA Astrophysics Data System (ADS)
Ohki, Makoto
In this paper, we propose an effective mutation operators for Cooperative Genetic Algorithm (CGA) to be applied to a practical Nurse Scheduling Problem (NSP). The nurse scheduling is a very difficult task, because NSP is a complex combinatorial optimizing problem for which many requirements must be considered. In real hospitals, the schedule changes frequently. The changes of the shift schedule yields various problems, for example, a fall in the nursing level. We describe a technique of the reoptimization of the nurse schedule in response to a change. The conventional CGA is superior in ability for local search by means of its crossover operator, but often stagnates at the unfavorable situation because it is inferior to ability for global search. When the optimization stagnates for long generation cycle, a searching point, population in this case, would be caught in a wide local minimum area. To escape such local minimum area, small change in a population should be required. Based on such consideration, we propose a mutation operator activated depending on the optimization speed. When the optimization stagnates, in other words, when the optimization speed decreases, the mutation yields small changes in the population. Then the population is able to escape from a local minimum area by means of the mutation. However, this mutation operator requires two well-defined parameters. This means that user have to consider the value of these parameters carefully. To solve this problem, we propose a periodic mutation operator which has only one parameter to define itself. This simplified mutation operator is effective over a wide range of the parameter value.
Aerodynamic Shape Optimization Using Hybridized Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2003-01-01
An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
From the physics of interacting polymers to optimizing routes on the London Underground
Yeung, Chi Ho; Saad, David; Wong, K. Y. Michael
2013-01-01
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise. PMID:23898198
From the physics of interacting polymers to optimizing routes on the London Underground.
Yeung, Chi Ho; Saad, David; Wong, K Y Michael
2013-08-20
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise.
NASA Astrophysics Data System (ADS)
Ushijima, T.; Yeh, W.
2013-12-01
An optimal experimental design algorithm is developed to select locations for a network of observation wells that provides the maximum information about unknown hydraulic conductivity in a confined, anisotropic aquifer. The design employs a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. Because that the formulated problem is non-convex and contains integer variables (necessitating a combinatorial search), for a realistically-scaled model, the problem may be difficult, if not impossible, to solve through traditional mathematical programming techniques. Genetic Algorithms (GAs) are designed to search out the global optimum; however because a GA requires a large number of calls to a groundwater model, the formulated optimization problem may still be infeasible to solve. To overcome this, Proper Orthogonal Decomposition (POD) is applied to the groundwater model to reduce its dimension. The information matrix in the full model space can then be searched without solving the full model.
Visualization for Hyper-Heuristics. Front-End Graphical User Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroenung, Lauren
Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. While such automated design has great advantages, it can often be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address thesemore » issues of usability by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics to support practitioners, as well as scientific visualization of the produced automated designs. My contributions to this project are exhibited in the user-facing portion of the developed system and the detailed scientific visualizations created from back-end data.« less
Sequential Test Strategies for Multiple Fault Isolation
NASA Technical Reports Server (NTRS)
Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.
1997-01-01
In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.
2014-04-01
surrogate model generation is difficult for high -dimensional problems, due to the curse of dimensionality. Variable screening methods have been...a variable screening model was developed for the quasi-molecular treatment of ion-atom collision [16]. In engineering, a confidence interval of...for high -level radioactive waste [18]. Moreover, the design sensitivity method can be extended to the variable screening method because vital
Reducing Labeling Effort for Structured Prediction Tasks
2005-01-01
correctly annotated for the instance to be of use to the learner. Traditional active learning addresses this problem by optimizing the order in which the...than for others. We propose a new active learning paradigm which reduces not only how many instances the annotator must label, but also how difficult...We validate this active learning framework in an interactive information extraction system, reducing the total number of annotation actions by 22%.
An improved 3D MoF method based on analytical partial derivatives
NASA Astrophysics Data System (ADS)
Chen, Xiang; Zhang, Xiong
2016-12-01
MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.
A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.
Hwang, Seong Jae; Collins, Maxwell D; Ravi, Sathya N; Ithapu, Vamsi K; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas
2015-12-01
Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.
Caporale, A; Doti, N; Monti, A; Sandomenico, A; Ruvo, M
2018-04-01
Solid-Phase Peptide Synthesis (SPPS) is a rapid and efficient methodology for the chemical synthesis of peptides and small proteins. However, the assembly of peptide sequences classified as "difficult" poses severe synthetic problems in SPPS for the occurrence of extensive aggregation of growing peptide chains which often leads to synthesis failure. In this framework, we have investigated the impact of different synthetic procedures on the yield and final purity of three well-known "difficult peptides" prepared using oxyma as additive for the coupling steps. In particular, we have comparatively investigated the use of piperidine and morpholine/DBU as deprotection reagents, the addition of DIPEA, collidine and N-methylmorpholine as bases to the coupling reagent. Moreover, the effect of different agitation modalities during the acylation reactions has been investigated. Data obtained represent a step forward in optimizing strategies for the synthesis of "difficult peptides". Copyright © 2018 Elsevier Inc. All rights reserved.
A neural network approach to job-shop scheduling.
Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E
1991-01-01
A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.
Development of Watch Schedule Using Rules Approach
NASA Astrophysics Data System (ADS)
Jurkevicius, Darius; Vasilecas, Olegas
The software for schedule creation and optimization solves a difficult, important and practical problem. The proposed solution is an online employee portal where administrator users can create and manage watch schedules and employee requests. Each employee can login with his/her own account and see his/her assignments, manage requests, etc. Employees set as administrators can perform the employee scheduling online, manage requests, etc. This scheduling software allows users not only to see the initial and optimized watch schedule in a simple and understandable form, but also to create special rules and criteria and input their business. The system using rules automatically will generate watch schedule.
Separation Potential for Multicomponent Mixtures: State-of-the Art of the Problem
NASA Astrophysics Data System (ADS)
Sulaberidze, G. A.; Borisevich, V. D.; Smirnov, A. Yu.
2017-03-01
Various approaches used in introducing a separation potential (value function) for multicomponent mixtures have been analyzed. It has been shown that all known potentials do not satisfy the Dirac-Peierls axioms for a binary mixture of uranium isotopes, which makes their practical application difficult. This is mainly due to the impossibility of constructing a "standard" cascade, whose role in the case of separation of binary mixtures is played by the ideal cascade. As a result, the only universal search method for optimal parameters of the separation cascade is their numerical optimization by the criterion of the minimum number of separation elements in it.
A model for the submarine depthkeeping team
NASA Technical Reports Server (NTRS)
Ware, J. R.; Best, J. F.; Bozzi, P. J.; Kleinman, D. W.
1981-01-01
The most difficult task the depthkeeping team must face occurs during periscope-depth operations during which they may be required to maintain a submarine several hundred feet long within a foot of ordered depth and within one-half degree of ordered pitch. The difficulty is compounded by the facts that wave generated forces are extremely high, depth and pitch signals are very noisy and submarine speed is such that overall dynamics are slow. A mathematical simulation of the depthkeeping team based on the optimal control models is described. A solution of the optimal team control problem with an output control restriction (limited display to each controller) is presented.
Genetics-based control of a mimo boiler-turbine plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.M.; Lee, K.Y.
1994-12-31
A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.
Sequential decision making in computational sustainability via adaptive submodularity
Krause, Andreas; Golovin, Daniel; Converse, Sarah J.
2015-01-01
Many problems in computational sustainability require making a sequence of decisions in complex, uncertain environments. Such problems are generally notoriously difficult. In this article, we review the recently discovered notion of adaptive submodularity, an intuitive diminishing returns condition that generalizes the classical notion of submodular set functions to sequential decision problems. Problems exhibiting the adaptive submodularity property can be efficiently and provably near-optimally solved using simple myopic policies. We illustrate this concept in several case studies of interest in computational sustainability: First, we demonstrate how it can be used to efficiently plan for resolving uncertainty in adaptive management scenarios. Secondly, we show how it applies to dynamic conservation planning for protecting endangered species, a case study carried out in collaboration with the US Geological Survey and the US Fish and Wildlife Service.
Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.
1996-01-01
Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS and its cascade strategy and illustrates the capability of the combined design tool through the optimization of a subsonic aircraft and a high-bypass-turbofan wave-rotor-topped engine.
Teaching basic science to optimize transfer.
Norman, Geoff
2009-09-01
Basic science teachers share the concern that much of what they teach is soon forgotten. Although some evidence suggests that relatively little basic science is forgotten, it may not appear so, as students commonly have difficulty using these concepts to solve or explain clinical problems: This phenomenon, using a concept learned in one context to solve a problem in a different context, is known to cognitive psychologists as transfer. The psychology literature shows that transfer is difficult; typically, even though students may know a concept, fewer than 30% will be able to use it to solve new problems. However a number of strategies to improve transfer can be adopted at the time of initial teaching of the concept, in the use of exemplars to illustrate the concept, and in practice with additional problems. In this article, we review the literature in psychology to identify practical strategies to improve transfer. Critical review of psychology literature to identify factors that enhance or impede transfer. There are a number of strategies available to teachers to facilitate transfer. These include active problem-solving at the time of initial learning, imbedding the concept in a problem context, using everyday analogies, and critically, practice with multiple dissimilar problems. Further, mixed practice, where problems illustrating different concepts are mixed together, and distributed practice, spread out over time, can result in significant and large gains. Transfer is difficult, but specific teaching strategies can enhance this skill by factors of two or three.
Social cognition and social problem solving abilities in individuals with alcohol use disorder.
Schmidt, Tobias; Roser, Patrik; Juckel, Georg; Brüne, Martin; Suchan, Boris; Thoma, Patrizia
2016-11-01
Up to now, little is known about higher order cognitive abilities like social cognition and social problem solving abilities in alcohol-dependent patients. However, impairments in these domains lead to an increased probability for relapse and are thus highly relevant in treatment contexts. This cross-sectional study assessed distinct aspects of social cognition and social problem solving in 31 hospitalized patients with alcohol use disorder (AUD) and 30 matched healthy controls (HC). Three ecologically valid scenario-based tests were used to gauge the ability to infer the mental state of story characters in complicated interpersonal situations, the capacity to select the best problem solving strategy among other less optimal alternatives, and the ability to freely generate appropriate strategies to handle difficult interpersonal conflicts. Standardized tests were used to assess executive function, attention, trait empathy, and memory, and correlations were computed between measures of executive function, attention, trait empathy, and tests of social problem solving. AUD patients generated significantly fewer socially sensitive and practically effective solutions for problematic interpersonal situations than the HC group. Furthermore, patients performed significantly worse when asked to select the best alternative among a list of presented alternatives for scenarios containing sarcastic remarks and had significantly more problems to interpret sarcastic remarks in difficult interpersonal situations. These specific patterns of impairments should be considered in treatment programs addressing impaired social skills in individuals with AUD.
Markov Tracking for Agent Coordination
NASA Technical Reports Server (NTRS)
Washington, Richard; Lau, Sonie (Technical Monitor)
1998-01-01
Partially observable Markov decision processes (POMDPs) axe an attractive representation for representing agent behavior, since they capture uncertainty in both the agent's state and its actions. However, finding an optimal policy for POMDPs in general is computationally difficult. In this paper we present Markov Tracking, a restricted problem of coordinating actions with an agent or process represented as a POMDP Because the actions coordinate with the agent rather than influence its behavior, the optimal solution to this problem can be computed locally and quickly. We also demonstrate the use of the technique on sequential POMDPs, which can be used to model a behavior that follows a linear, acyclic trajectory through a series of states. By imposing a "windowing" restriction that restricts the number of possible alternatives considered at any moment to a fixed size, a coordinating action can be calculated in constant time, making this amenable to coordination with complex agents.
Practical advantages of evolutionary computation
NASA Astrophysics Data System (ADS)
Fogel, David B.
1997-10-01
Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.
Conceptual, Methodological, and Ethical Problems in Communicating Uncertainty in Clinical Evidence
Han, Paul K. J.
2014-01-01
The communication of uncertainty in clinical evidence is an important endeavor that poses difficult conceptual, methodological, and ethical problems. Conceptual problems include logical paradoxes in the meaning of probability and “ambiguity”— second-order uncertainty arising from the lack of reliability, credibility, or adequacy of probability information. Methodological problems include questions about optimal methods for representing fundamental uncertainties and for communicating these uncertainties in clinical practice. Ethical problems include questions about whether communicating uncertainty enhances or diminishes patient autonomy and produces net benefits or harms. This article reviews the limited but growing literature on these problems and efforts to address them and identifies key areas of focus for future research. It is argued that the critical need moving forward is for greater conceptual clarity and consistent representational methods that make the meaning of various uncertainties understandable, and for clinical interventions to support patients in coping with uncertainty in decision making. PMID:23132891
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Singh, Surya Prakash
2017-11-01
The dynamic cellular facility layout problem (DCFLP) is a well-known NP-hard problem. It has been estimated that the efficient design of DCFLP reduces the manufacturing cost of products by maintaining the minimum material flow among all machines in all cells, as the material flow contributes around 10-30% of the total product cost. However, being NP hard, solving the DCFLP optimally is very difficult in reasonable time. Therefore, this article proposes a novel similarity score-based two-phase heuristic approach to solve the DCFLP optimally considering multiple products in multiple times to be manufactured in the manufacturing layout. In the first phase of the proposed heuristic, a machine-cell cluster is created based on similarity scores between machines. This is provided as an input to the second phase to minimize inter/intracell material handling costs and rearrangement costs over the entire planning period. The solution methodology of the proposed approach is demonstrated. To show the efficiency of the two-phase heuristic approach, 21 instances are generated and solved using the optimization software package LINGO. The results show that the proposed approach can optimally solve the DCFLP in reasonable time.
Power prediction in mobile communication systems using an optimal neural-network structure.
Gao, X M; Gao, X Z; Tanskanen, J A; Ovaska, S J
1997-01-01
Presents a novel neural-network-based predictor for received power level prediction in direct sequence code division multiple access (DS/CDMA) systems. The predictor consists of an adaptive linear element (Adaline) followed by a multilayer perceptron (MLP). An important but difficult problem in designing such a cascade predictor is to determine the complexity of the networks. We solve this problem by using the predictive minimum description length (PMDL) principle to select the optimal numbers of input and hidden nodes. This approach results in a predictor with both good noise attenuation and excellent generalization capability. The optimized neural networks are used for predictive filtering of very noisy Rayleigh fading signals with 1.8 GHz carrier frequency. Our results show that the optimal neural predictor can provide smoothed in-phase and quadrature signals with signal-to-noise ratio (SNR) gains of about 12 and 7 dB at the urban mobile speeds of 5 and 50 km/h, respectively. The corresponding power signal SNR gains are about 11 and 5 dB. Therefore, the neural predictor is well suitable for power control applications where ldquodelaylessrdquo noise attenuation and efficient reduction of fast fading are required.
Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method
Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...
2017-11-20
The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less
Liu, Shan; Brandeau, Margaret L; Goldhaber-Fiebert, Jeremy D
2017-03-01
How long should a patient with a treatable chronic disease wait for more effective treatments before accepting the best available treatment? We develop a framework to guide optimal treatment decisions for a deteriorating chronic disease when treatment technologies are improving over time. We formulate an optimal stopping problem using a discrete-time, finite-horizon Markov decision process. The goal is to maximize a patient's quality-adjusted life expectancy. We derive structural properties of the model and analytically solve a three-period treatment decision problem. We illustrate the model with the example of treatment for chronic hepatitis C virus (HCV). Chronic HCV affects 3-4 million Americans and has been historically difficult to treat, but increasingly effective treatments have been commercialized in the past few years. We show that the optimal treatment decision is more likely to be to accept currently available treatment-despite expectations for future treatment improvement-for patients who have high-risk history, who are older, or who have more comorbidities. Insights from this study can guide HCV treatment decisions for individual patients. More broadly, our model can guide treatment decisions for curable chronic diseases by finding the optimal treatment policy for individual patients in a heterogeneous population.
Liu, Shan; Goldhaber-Fiebert, Jeremy D.; Brandeau, Margaret L.
2015-01-01
How long should a patient with a treatable chronic disease wait for more effective treatments before accepting the best available treatment? We develop a framework to guide optimal treatment decisions for a deteriorating chronic disease when treatment technologies are improving over time. We formulate an optimal stopping problem using a discrete-time, finite-horizon Markov decision process. The goal is to maximize a patient’s quality-adjusted life expectancy. We derive structural properties of the model and analytically solve a three-period treatment decision problem. We illustrate the model with the example of treatment for chronic hepatitis C virus (HCV). Chronic HCV affects 3–4 million Americans and has been historically difficult to treat, but increasingly effective treatments have been commercialized in the past few years. We show that the optimal treatment decision is more likely to be to accept currently available treatment—despite expectations for future treatment improvement—for patients who have high-risk history, who are older, or who have more comorbidities. Insights from this study can guide HCV treatment decisions for individual patients. More broadly, our model can guide treatment decisions for curable chronic diseases by finding the optimal treatment policy for individual patients in a heterogeneous population. PMID:26188961
Overcoming Communication Restrictions in Collectives
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2004-01-01
Many large distributed system are characterized by having a large number of components (eg., agents, neurons) whose actions and interactions determine a %orld utility which rates the performance of the overall system. Such collectives are often subject to communication restrictions, making it difficult for components which try to optimize their own private utilities, to take actions that also help optimize the world utility. In this article we address that coordination problem and derive four utility functions which present different compromises between how aligned a component s private utility is with the world utility and how readily that component can determine the actions that optimize its utility. The results show that the utility functions specifically derived to operate under communication restrictions outperform both traditional methods and previous collective-based methods by up to 75%.
Joint Geophysical Inversion With Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelievre, P. G.; Bijani, R.; Farquharson, C. G.
2015-12-01
Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.
Chen, Wentao; Zhang, Weidong
2009-10-01
In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
1995-01-01
The design of a High-Speed Civil Transport (HSCT) air-breathing propulsion system for multimission, variable-cycle operations was successfully optimized through a soft coupling of the engine performance analyzer NASA Engine Performance Program (NEPP) to a multidisciplinary optimization tool COMETBOARDS that was developed at the NASA Lewis Research Center. The design optimization of this engine was cast as a nonlinear optimization problem, with engine thrust as the merit function and the bypass ratios, r-values of fans, fuel flow, and other factors as important active design variables. Constraints were specified on factors including the maximum speed of the compressors, the positive surge margins for the compressors with specified safety factors, the discharge temperature, the pressure ratios, and the mixer extreme Mach number. Solving the problem by using the most reliable optimization algorithm available in COMETBOARDS would provide feasible optimum results only for a portion of the aircraft flight regime because of the large number of mission points (defined by altitudes, Mach numbers, flow rates, and other factors), diverse constraint types, and overall poor conditioning of the design space. Only the cascade optimization strategy of COMETBOARDS, which was devised especially for difficult multidisciplinary applications, could successfully solve a number of engine design problems for their flight regimes. Furthermore, the cascade strategy converged to the same global optimum solution even when it was initiated from different design points. Multiple optimizers in a specified sequence, pseudorandom damping, and reduction of the design space distortion via a global scaling scheme are some of the key features of the cascade strategy. HSCT engine concept, optimized solution for HSCT engine concept. A COMETBOARDS solution for an HSCT engine (Mach-2.4 mixed-flow turbofan) along with its configuration is shown. The optimum thrust is normalized with respect to NEPP results. COMETBOARDS added value in the design optimization of the HSCT engine.
Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio; Ross, Kevin
2009-01-01
Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.
Terrain visualization is a difficult problem for applications requiring accurate images of large datasets at high frame rates, such as flight simulation and ground-based aircraft testing using synthetic sensor stimulation. On current graphics hardware, the problem is to maintain dynamic, view-dependent triangle meshes and texture maps that produce good images at the required frame rate. We present an algorithm for constructing triangle meshes that optimizes flexible view-dependent error metrics, produces guaranteed error bounds, achieves specified triangle counts directly, and uses frame-to-frame coherence to operate at high frame rates for thousands of triangles per frame. Our method, dubbed Real-time Optimally Adaptingmore » Meshes (ROAM), uses two priority queues to drive split and merge operations that maintain continuous triangulations built from pre-processed bintree triangles. We introduce two additional performance optimizations: incremental triangle stripping and priority-computation deferral lists. ROAM execution time is proportionate to the number of triangle changes per frame, which is typically a few percent of the output mesh size, hence ROAM performance is insensitive to the resolution and extent of the input terrain. Dynamic terrain and simple vertex morphing are supported.« less
Demonstration of decomposition and optimization in the design of experimental space systems
NASA Technical Reports Server (NTRS)
Padula, Sharon; Sandridge, Chris A.; Haftka, Raphael T.; Walsh, Joanne L.
1989-01-01
Effective design strategies for a class of systems which may be termed Experimental Space Systems (ESS) are needed. These systems, which include large space antenna and observatories, space platforms, earth satellites and deep space explorers, have special characteristics which make them particularly difficult to design. It is argued here that these same characteristics encourage the use of advanced computer-aided optimization and planning techniques. The broad goal of this research is to develop optimization strategies for the design of ESS. These strategics would account for the possibly conflicting requirements of mission life, safety, scientific payoffs, initial system cost, launch limitations and maintenance costs. The strategies must also preserve the coupling between disciplines or between subsystems. Here, the specific purpose is to describe a computer-aided planning and scheduling technique. This technique provides the designer with a way to map the flow of data between multidisciplinary analyses. The technique is important because it enables the designer to decompose the system design problem into a number of smaller subproblems. The planning and scheduling technique is demonstrated by its application to a specific preliminary design problem.
NASA Astrophysics Data System (ADS)
Kang, Fei; Li, Junjie; Ma, Zhenyue
2013-02-01
Determination of the critical slip surface with the minimum factor of safety of a slope is a difficult constrained global optimization problem. In this article, an artificial bee colony algorithm with a multi-slice adjustment method is proposed for locating the critical slip surfaces of soil slopes, and the Spencer method is employed to calculate the factor of safety. Six benchmark examples are presented to illustrate the reliability and efficiency of the proposed technique, and it is also compared with some well-known or recent algorithms for the problem. The results show that the new algorithm is promising in terms of accuracy and efficiency.
Exact parallel algorithms for some members of the traveling salesman problem family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekny, J.F.
1989-01-01
The traveling salesman problem and its many generalizations comprise one of the best known combinatorial optimization problem families. Most members of the family are NP-complete problems so that exact algorithms require an unpredictable and sometimes large computational effort. Parallel computers offer hope for providing the power required to meet these demands. A major barrier to applying parallel computers is the lack of parallel algorithms. The contributions presented in this thesis center around new exact parallel algorithms for the asymmetric traveling salesman problem (ATSP), prize collecting traveling salesman problem (PCTSP), and resource constrained traveling salesman problem (RCTSP). The RCTSP is amore » particularly difficult member of the family since finding a feasible solution is an NP-complete problem. An exact sequential algorithm is also presented for the directed hamiltonian cycle problem (DHCP). The DHCP algorithm is superior to current heuristic approaches and represents the first exact method applicable to large graphs. Computational results presented for each of the algorithms demonstrates the effectiveness of combining efficient algorithms with parallel computing methods. Performance statistics are reported for randomly generated ATSPs with 7,500 cities, PCTSPs with 200 cities, RCTSPs with 200 cities, DHCPs with 3,500 vertices, and assignment problems of size 10,000. Sequential results were collected on a Sun 4/260 engineering workstation, while parallel results were collected using a 14 and 100 processor BBN Butterfly Plus computer. The computational results represent the largest instances ever solved to optimality on any type of computer.« less
NASA Astrophysics Data System (ADS)
Li, N.; Yue, X. Y.
2018-03-01
Macroscopic root water uptake models proportional to a root density distribution function (RDDF) are most commonly used to model water uptake by plants. As the water uptake is difficult and labor intensive to measure, these models are often calibrated by inverse modeling. Most previous inversion studies assume RDDF to be constant with depth and time or dependent on only depth for simplification. However, under field conditions, this function varies with type of soil and root growth and thus changes with both depth and time. This study proposes an inverse method to calibrate both spatially and temporally varying RDDF in unsaturated water flow modeling. To overcome the difficulty imposed by the ill-posedness, the calibration is formulated as an optimization problem in the framework of the Tikhonov regularization theory, adding additional constraint to the objective function. Then the formulated nonlinear optimization problem is numerically solved with an efficient algorithm on the basis of the finite element method. The advantage of our method is that the inverse problem is translated into a Tikhonov regularization functional minimization problem and then solved based on the variational construction, which circumvents the computational complexity in calculating the sensitivity matrix involved in many derivative-based parameter estimation approaches (e.g., Levenberg-Marquardt optimization). Moreover, the proposed method features optimization of RDDF without any prior form, which is applicable to a more general root water uptake model. Numerical examples are performed to illustrate the applicability and effectiveness of the proposed method. Finally, discussions on the stability and extension of this method are presented.
Roehl, Edwin A.; Conrads, Paul
2010-01-01
This is the second of two papers that describe how data mining can aid natural-resource managers with the difficult problem of controlling the interactions between hydrologic and man-made systems. Data mining is a new science that assists scientists in converting large databases into knowledge, and is uniquely able to leverage the large amounts of real-time, multivariate data now being collected for hydrologic systems. Part 1 gives a high-level overview of data mining, and describes several applications that have addressed major water resource issues in South Carolina. This Part 2 paper describes how various data mining methods are integrated to produce predictive models for controlling surface- and groundwater hydraulics and quality. The methods include: - signal processing to remove noise and decompose complex signals into simpler components; - time series clustering that optimally groups hundreds of signals into "classes" that behave similarly for data reduction and (or) divide-and-conquer problem solving; - classification which optimally matches new data to behavioral classes; - artificial neural networks which optimally fit multivariate data to create predictive models; - model response surface visualization that greatly aids in understanding data and physical processes; and, - decision support systems that integrate data, models, and graphics into a single package that is easy to use.
Multi exposure image fusion algorithm based on YCbCr space
NASA Astrophysics Data System (ADS)
Yang, T. T.; Fang, P. Y.
2018-05-01
To solve the problem that scene details and visual effects are difficult to be optimized in high dynamic image synthesis, we proposes a multi exposure image fusion algorithm for processing low dynamic range images in YCbCr space, and weighted blending of luminance and chromatic aberration components respectively. The experimental results show that the method can retain color effect of the fused image while balancing details of the bright and dark regions of the high dynamic image.
NASA Astrophysics Data System (ADS)
Gavrishchaka, Valeriy V.; Kovbasinskaya, Maria; Monina, Maria
2008-11-01
Novelty detection is a very desirable additional feature of any practical classification or forecasting system. Novelty and rare patterns detection is the main objective in such applications as fault/abnormality discovery in complex technical and biological systems, fraud detection and risk management in financial and insurance industry. Although many interdisciplinary approaches for rare event modeling and novelty detection have been proposed, significant data incompleteness due to the nature of the problem makes it difficult to find a universal solution. Even more challenging and much less formalized problem is novelty detection in complex strategies and models where practical performance criteria are usually multi-objective and the best state-of-the-art solution is often not known due to the complexity of the task and/or proprietary nature of the application area. For example, it is much more difficult to detect a series of small insider trading or other illegal transactions mixed with valid operations and distributed over long time period according to a well-designed strategy than a single, large fraudulent transaction. Recently proposed boosting-based optimization was shown to be an effective generic tool for the discovery of stable multi-component strategies/models from the existing parsimonious base strategies/models in financial and other applications. Here we outline how the same framework can be used for novelty and fraud detection in complex strategies and models.
NASA Astrophysics Data System (ADS)
Kim, Byung Soo; Lee, Woon-Seek; Koh, Shiegheun
2012-07-01
This article considers an inbound ordering and outbound dispatching problem for a single product in a third-party warehouse, where the demands are dynamic over a discrete and finite time horizon, and moreover, each demand has a time window in which it must be satisfied. Replenishing orders are shipped in containers and the freight cost is proportional to the number of containers used. The problem is classified into two cases, i.e. non-split demand case and split demand case, and a mathematical model for each case is presented. An in-depth analysis of the models shows that they are very complicated and difficult to find optimal solutions as the problem size becomes large. Therefore, genetic algorithm (GA) based heuristic approaches are designed to solve the problems in a reasonable time. To validate and evaluate the algorithms, finally, some computational experiments are conducted.
A comparison of approaches for finding minimum identifying codes on graphs
NASA Astrophysics Data System (ADS)
Horan, Victoria; Adachi, Steve; Bak, Stanley
2016-05-01
In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using MATLAB, an adiabatic quantum optimization approach using a D-Wave quantum annealing processor, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers. Each of these methods requires the problem to be formulated in a unique manner. In this paper, we address the challenges of computing solutions to this NP-hard problem with respect to each of these methods.
Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.
Gao, Guangwei; Yang, Jian; Jing, Xiaoyuan; Huang, Pu; Hua, Juliang; Yue, Dong
2016-01-01
In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms.
NASA Astrophysics Data System (ADS)
Tamura, Yoshinobu; Yamada, Shigeru
OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.
Task-driven dictionary learning.
Mairal, Julien; Bach, Francis; Ponce, Jean
2012-04-01
Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.
A method for aircraft concept exploration using multicriteria interactive genetic algorithms
NASA Astrophysics Data System (ADS)
Buonanno, Michael Alexander
2005-08-01
The problem of aircraft concept selection has become increasingly difficult in recent years due to changes in the primary evaluation criteria of concepts. In the past, performance was often the primary discriminator, whereas modern programs have placed increased emphasis on factors such as environmental impact, economics, supportability, aesthetics, and other metrics. The revolutionary nature of the vehicles required to simultaneously meet these conflicting requirements has prompted a shift from design using historical data regression techniques for metric prediction to the use of sophisticated physics-based analysis tools that are capable of analyzing designs outside of the historical database. The use of optimization methods with these physics-based tools, however, has proven difficult because of the tendency of optimizers to exploit assumptions present in the models and drive the design towards a solution which, while promising to the computer, may be infeasible due to factors not considered by the computer codes. In addition to this difficulty, the number of discrete options available at this stage may be unmanageable due to the combinatorial nature of the concept selection problem, leading the analyst to select a sub-optimum baseline vehicle. Some extremely important concept decisions, such as the type of control surface arrangement to use, are frequently made without sufficient understanding of their impact on the important system metrics due to a lack of historical guidance, computational resources, or analysis tools. This thesis discusses the difficulties associated with revolutionary system design, and introduces several new techniques designed to remedy them. First, an interactive design method has been developed that allows the designer to provide feedback to a numerical optimization algorithm during runtime, thereby preventing the optimizer from exploiting weaknesses in the analytical model. This method can be used to account for subjective criteria, or as a crude measure of un-modeled quantitative criteria. Other contributions of the work include a modified Structured Genetic Algorithm that enables the efficient search of large combinatorial design hierarchies and an improved multi-objective optimization procedure that can effectively optimize several objectives simultaneously. A new conceptual design method has been created by drawing upon each of these new capabilities and aspects of more traditional design methods. The ability of this new technique to assist in the design of revolutionary vehicles has been demonstrated using a problem of contemporary interest: the concept exploration of a supersonic business jet. This problem was found to be a good demonstration case because of its novelty and unique requirements, and the results of this proof of concept exercise indicate that the new method is effective at providing additional insight into the relationship between a vehicle's requirements and its favorable attributes.
Low-Thrust Trajectory Optimization with Simplified SQP Algorithm
NASA Technical Reports Server (NTRS)
Parrish, Nathan L.; Scheeres, Daniel J.
2017-01-01
The problem of low-thrust trajectory optimization in highly perturbed dynamics is a stressing case for many optimization tools. Highly nonlinear dynamics and continuous thrust are each, separately, non-trivial problems in the field of optimal control, and when combined, the problem is even more difficult. This paper de-scribes a fast, robust method to design a trajectory in the CRTBP (circular restricted three body problem), beginning with no or very little knowledge of the system. The approach is inspired by the SQP (sequential quadratic programming) algorithm, in which a general nonlinear programming problem is solved via a sequence of quadratic problems. A few key simplifications make the algorithm presented fast and robust to initial guess: a quadratic cost function, neglecting the line search step when the solution is known to be far away, judicious use of end-point constraints, and mesh refinement on multiple shooting with fixed-step integration.In comparison to the traditional approach of plugging the problem into a “black-box” NLP solver, the methods shown converge even when given no knowledge of the solution at all. It was found that the only piece of information that the user needs to provide is a rough guess for the time of flight, as the transfer time guess will dictate which set of local solutions the algorithm could converge on. This robustness to initial guess is a compelling feature, as three-body orbit transfers are challenging to design with intuition alone. Of course, if a high-quality initial guess is available, the methods shown are still valid.We have shown that endpoints can be efficiently constrained to lie on 3-body repeating orbits, and that time of flight can be optimized as well. When optimizing the endpoints, we must make a trade between converging quickly on sub-optimal endpoints or converging more slowly on end-points that are arbitrarily close to optimal. It is easy for the mission design engineer to adjust this trade based on the problem at hand.The biggest limitation to the algorithm at this point is that multi-revolution transfers (greater than 2 revolutions) do not work nearly as well. This restriction comes in because the relationship between node 1 and node N becomes increasingly nonlinear as the angular distance grows. Trans-fers with more than about 1.5 complete revolutions generally require the line search to improve convergence. Future work includes: Comparison of this algorithm with other established tools; improvements to how multiple-revolution transfers are handled; parallelization of the Jacobian computation; in-creased efficiency for the line search; and optimization of many more trajectories between a variety of 3-body orbits.
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
Does finite-temperature decoding deliver better optima for noisy Hamiltonians?
NASA Astrophysics Data System (ADS)
Ochoa, Andrew J.; Nishimura, Kohji; Nishimori, Hidetoshi; Katzgraber, Helmut G.
The minimization of an Ising spin-glass Hamiltonian is an NP-hard problem. Because many problems across disciplines can be mapped onto this class of Hamiltonian, novel efficient computing techniques are highly sought after. The recent development of quantum annealing machines promises to minimize these difficult problems more efficiently. However, the inherent noise found in these analog devices makes the minimization procedure difficult. While the machine might be working correctly, it might be minimizing a different Hamiltonian due to the inherent noise. This means that, in general, the ground-state configuration that correctly minimizes a noisy Hamiltonian might not minimize the noise-less Hamiltonian. Inspired by rigorous results that the energy of the noise-less ground-state configuration is equal to the expectation value of the energy of the noisy Hamiltonian at the (nonzero) Nishimori temperature [J. Phys. Soc. Jpn., 62, 40132930 (1993)], we numerically study the decoding probability of the original noise-less ground state with noisy Hamiltonians in two space dimensions, as well as the D-Wave Inc. Chimera topology. Our results suggest that thermal fluctuations might be beneficial during the optimization process in analog quantum annealing machines.
Two-Stage Path Planning Approach for Designing Multiple Spacecraft Reconfiguration Maneuvers
NASA Technical Reports Server (NTRS)
Aoude, Georges S.; How, Jonathan P.; Garcia, Ian M.
2007-01-01
The paper presents a two-stage approach for designing optimal reconfiguration maneuvers for multiple spacecraft. These maneuvers involve well-coordinated and highly-coupled motions of the entire fleet of spacecraft while satisfying an arbitrary number of constraints. This problem is particularly difficult because of the nonlinearity of the attitude dynamics, the non-convexity of some of the constraints, and the coupling between the positions and attitudes of all spacecraft. As a result, the trajectory design must be solved as a single 6N DOF problem instead of N separate 6 DOF problems. The first stage of the solution approach quickly provides a feasible initial solution by solving a simplified version without differential constraints using a bi-directional Rapidly-exploring Random Tree (RRT) planner. A transition algorithm then augments this guess with feasible dynamics that are propagated from the beginning to the end of the trajectory. The resulting output is a feasible initial guess to the complete optimal control problem that is discretized in the second stage using a Gauss pseudospectral method (GPM) and solved using an off-the-shelf nonlinear solver. This paper also places emphasis on the importance of the initialization step in pseudospectral methods in order to decrease their computation times and enable the solution of a more complex class of problems. Several examples are presented and discussed.
Neural dynamic programming and its application to control systems
NASA Astrophysics Data System (ADS)
Seong, Chang-Yun
There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles.
Automatic blocking of nested loops
NASA Technical Reports Server (NTRS)
Schreiber, Robert; Dongarra, Jack J.
1990-01-01
Blocked algorithms have much better properties of data locality and therefore can be much more efficient than ordinary algorithms when a memory hierarchy is involved. On the other hand, they are very difficult to write and to tune for particular machines. The reorganization is considered of nested loops through the use of known program transformations in order to create blocked algorithms automatically. The program transformations used are strip mining, loop interchange, and a variant of loop skewing in which invertible linear transformations (with integer coordinates) of the loop indices are allowed. Some problems are solved concerning the optimal application of these transformations. It is shown, in a very general setting, how to choose a nearly optimal set of transformed indices. It is then shown, in one particular but rather frequently occurring situation, how to choose an optimal set of block sizes.
Guo, Liang; Zhang, Jiawen; Yin, Li; Zhao, Yangguo; Gao, Mengchun; She, Zonglian
2015-01-01
An acidification metabolite such as volatile fatty acids (VFAs) and ethanol could be used as denitrification carbon sources for solving the difficult problem of carbon source shortages and low nitrogen removal efficiency. A proper control of environmental factors could be essential for obtaining the optimal contents of VFAs and ethanol. In this study, suspended solids (SS), oxidation reduction potential (ORP) and shaking rate were chosen to investigate the interactive effects on VFAs and ethanol production with waste sludge. It was indicated that T-VFA yield could be enhanced at lower ORP and shaking rate. Changing the SS, ORP and shaking rate could influence the distribution of acetic, propionic, butyric, valeric acids and ethanol. The optimal conditions for VFAs and ethanol production used as a denitrification carbon source were predicted by analyzing response surface methodology (RSM).
Branch-pipe-routing approach for ships using improved genetic algorithm
NASA Astrophysics Data System (ADS)
Sui, Haiteng; Niu, Wentie
2016-09-01
Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.
Optimal working zone division for safe track maintenance in The Netherlands.
den Hertog, D; van Zante-de Fokkert, J I; Sjamaar, S A; Beusmans, R
2005-09-01
After a sequence of serious accidents, the safety of rail track workers became an urgent and political problem in The Netherlands. It turned out that the rail track workers had one of the most dangerous jobs. The board of the Dutch Railways decided that the Dutch railway infrastructure had to be divided into so-called working zones. Moreover, to carry out maintenance activities, that particular working zone of the railway system had to be taken out of service. An essential problem was how to divide the Dutch railway infrastructure into working zones such that all parties involved are satisfied. Since many parties with conflicting interests were involved, this problem was extremely difficult. In this paper we show the division rules we developed, and which had been implemented in The Netherlands.
Enterocutaneous fistulas: an overview.
Whelan, J F; Ivatury, R R
2011-06-01
Enterocutaneous fistulas remain a difficult management problem. The basis of management centers on the prevention and treatment of sepsis, control of fistula effluent, and fluid and nutritional support. Early surgery should be limited to abscess drainage and proximal defunctioning stoma formation. Definitive procedures for a persistent fistula are indicated in the late postoperative period, with resection of the fistula segment and reanastomosis of healthy bowel. Even more complex are the enteroatmospheric fistulas in the open abdomen. These enteric fistulas require the highest level of multidisciplinary approach for optimal outcomes.
A Model with Darwinian Dynamics on a Rugged Landscape
NASA Astrophysics Data System (ADS)
Brotto, Tommaso; Bunin, Guy; Kurchan, Jorge
2017-02-01
We discuss the population dynamics with selection and random diffusion, keeping the total population constant, in a fitness landscape associated with Constraint Satisfaction, a paradigm for difficult optimization problems. We obtain a phase diagram in terms of the size of the population and the diffusion rate, with a glass phase inside which the dynamics keeps searching for better configurations, and outside which deleterious `mutations' spoil the performance. The phase diagram is analogous to that of dense active matter in terms of temperature and drive.
Optimizing communication satellites payload configuration with exact approaches
NASA Astrophysics Data System (ADS)
Stathakis, Apostolos; Danoy, Grégoire; Bouvry, Pascal; Talbi, El-Ghazali; Morelli, Gianluigi
2015-12-01
The satellite communications market is competitive and rapidly evolving. The payload, which is in charge of applying frequency conversion and amplification to the signals received from Earth before their retransmission, is made of various components. These include reconfigurable switches that permit the re-routing of signals based on market demand or because of some hardware failure. In order to meet modern requirements, the size and the complexity of current communication payloads are increasing significantly. Consequently, the optimal payload configuration, which was previously done manually by the engineers with the use of computerized schematics, is now becoming a difficult and time consuming task. Efficient optimization techniques are therefore required to find the optimal set(s) of switch positions to optimize some operational objective(s). In order to tackle this challenging problem for the satellite industry, this work proposes two Integer Linear Programming (ILP) models. The first one is single-objective and focuses on the minimization of the length of the longest channel path, while the second one is bi-objective and additionally aims at minimizing the number of switch changes in the payload switch matrix. Experiments are conducted on a large set of instances of realistic payload sizes using the CPLEX® solver and two well-known exact multi-objective algorithms. Numerical results demonstrate the efficiency and limitations of the ILP approach on this real-world problem.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Zhiwen; Miao, Qiang; Wang, Lei
2018-03-01
A time varying filtering based empirical mode decomposition (EMD) (TVF-EMD) method was proposed recently to solve the mode mixing problem of EMD method. Compared with the classical EMD, TVF-EMD was proven to improve the frequency separation performance and be robust to noise interference. However, the decomposition parameters (i.e., bandwidth threshold and B-spline order) significantly affect the decomposition results of this method. In original TVF-EMD method, the parameter values are assigned in advance, which makes it difficult to achieve satisfactory analysis results. To solve this problem, this paper develops an optimized TVF-EMD method based on grey wolf optimizer (GWO) algorithm for fault diagnosis of rotating machinery. Firstly, a measurement index termed weighted kurtosis index is constructed by using kurtosis index and correlation coefficient. Subsequently, the optimal TVF-EMD parameters that match with the input signal can be obtained by GWO algorithm using the maximum weighted kurtosis index as objective function. Finally, fault features can be extracted by analyzing the sensitive intrinsic mode function (IMF) owning the maximum weighted kurtosis index. Simulations and comparisons highlight the performance of TVF-EMD method for signal decomposition, and meanwhile verify the fact that bandwidth threshold and B-spline order are critical to the decomposition results. Two case studies on rotating machinery fault diagnosis demonstrate the effectiveness and advantages of the proposed method.
Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems
Fonseca Guerra, Gabriel A.; Furber, Steve B.
2017-01-01
Constraint satisfaction problems (CSP) are at the core of numerous scientific and technological applications. However, CSPs belong to the NP-complete complexity class, for which the existence (or not) of efficient algorithms remains a major unsolved question in computational complexity theory. In the face of this fundamental difficulty heuristics and approximation methods are used to approach instances of NP (e.g., decision and hard optimization problems). The human brain efficiently handles CSPs both in perception and behavior using spiking neural networks (SNNs), and recent studies have demonstrated that the noise embedded within an SNN can be used as a computational resource to solve CSPs. Here, we provide a software framework for the implementation of such noisy neural solvers on the SpiNNaker massively parallel neuromorphic hardware, further demonstrating their potential to implement a stochastic search that solves instances of P and NP problems expressed as CSPs. This facilitates the exploration of new optimization strategies and the understanding of the computational abilities of SNNs. We demonstrate the basic principles of the framework by solving difficult instances of the Sudoku puzzle and of the map color problem, and explore its application to spin glasses. The solver works as a stochastic dynamical system, which is attracted by the configuration that solves the CSP. The noise allows an optimal exploration of the space of configurations, looking for the satisfiability of all the constraints; if applied discontinuously, it can also force the system to leap to a new random configuration effectively causing a restart. PMID:29311791
A Sarsa(λ)-based control model for real-time traffic light coordination.
Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.
A Comparative Study of Interferometric Regridding Algorithms
NASA Technical Reports Server (NTRS)
Hensley, Scott; Safaeinili, Ali
1999-01-01
THe paper discusses regridding options: (1) The problem of interpolating data that is not sampled on a uniform grid, that is noisy, and contains gaps is a difficult problem. (2) Several interpolation algorithms have been implemented: (a) Nearest neighbor - Fast and easy but shows some artifacts in shaded relief images. (b) Simplical interpolator - uses plane going through three points containing point where interpolation is required. Reasonably fast and accurate. (c) Convolutional - uses a windowed Gaussian approximating the optimal prolate spheroidal weighting function for a specified bandwidth. (d) First or second order surface fitting - Uses the height data centered in a box about a given point and does a weighted least squares surface fit.
Mathematical theory of a relaxed design problem in structural optimization
NASA Technical Reports Server (NTRS)
Kikuchi, Noboru; Suzuki, Katsuyuki
1990-01-01
Various attempts have been made to construct a rigorous mathematical theory of optimization for size, shape, and topology (i.e. layout) of an elastic structure. If these are represented by a finite number of parametric functions, as Armand described, it is possible to construct an existence theory of the optimum design using compactness argument in a finite dimensional design space or a closed admissible set of a finite dimensional design space. However, if the admissible design set is a subset of non-reflexive Banach space such as L(sup infinity)(Omega), construction of the existence theory of the optimum design becomes suddenly difficult and requires to extend (i.e. generalize) the design problem to much more wider class of design that is compatible to mechanics of structures in the sense of variational principle. Starting from the study by Cheng and Olhoff, Lurie, Cherkaev, and Fedorov introduced a new concept of convergence of design variables in a generalized sense and construct the 'G-Closure' theory of an extended (relaxed) optimum design problem. A similar attempt, but independent in large extent, can also be found in Kohn and Strang in which the shape and topology optimization problem is relaxed to allow to use of perforated composites rather than restricting it to usual solid structures. An identical idea is also stated in Murat and Tartar using the notion of the homogenization theory. That is, introducing possibility of micro-scale perforation together with the theory of homogenization, the optimum design problem is relaxed to construct its mathematical theory. It is also noted that this type of relaxed design problem is perfectly matched to the variational principle in structural mechanics.
Automatically Generated Algorithms for the Vertex Coloring Problem
Contreras Bolton, Carlos; Gatica, Gustavo; Parada, Víctor
2013-01-01
The vertex coloring problem is a classical problem in combinatorial optimization that consists of assigning a color to each vertex of a graph such that no adjacent vertices share the same color, minimizing the number of colors used. Despite the various practical applications that exist for this problem, its NP-hardness still represents a computational challenge. Some of the best computational results obtained for this problem are consequences of hybridizing the various known heuristics. Automatically revising the space constituted by combining these techniques to find the most adequate combination has received less attention. In this paper, we propose exploring the heuristics space for the vertex coloring problem using evolutionary algorithms. We automatically generate three new algorithms by combining elementary heuristics. To evaluate the new algorithms, a computational experiment was performed that allowed comparing them numerically with existing heuristics. The obtained algorithms present an average 29.97% relative error, while four other heuristics selected from the literature present a 59.73% error, considering 29 of the more difficult instances in the DIMACS benchmark. PMID:23516506
Resource-aware taxon selection for maximizing phylogenetic diversity.
Pardi, Fabio; Goldman, Nick
2007-06-01
Phylogenetic diversity (PD) is a useful metric for selecting taxa in a range of biological applications, for example, bioconservation and genomics, where the selection is usually constrained by the limited availability of resources. We formalize taxon selection as a conceptually simple optimization problem, aiming to maximize PD subject to resource constraints. This allows us to take into account the different amounts of resources required by the different taxa. Although this is a computationally difficult problem, we present a dynamic programming algorithm that solves it in pseudo-polynomial time. Our algorithm can also solve many instances of the Noah's Ark Problem, a more realistic formulation of taxon selection for biodiversity conservation that allows for taxon-specific extinction risks. These instances extend the set of problems for which solutions are available beyond previously known greedy-tractable cases. Finally, we discuss the relevance of our results to real-life scenarios.
Data parallel sorting for particle simulation
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1992-01-01
Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.
Sparse Covariance Matrix Estimation by DCA-Based Algorithms.
Phan, Duy Nhat; Le Thi, Hoai An; Dinh, Tao Pham
2017-11-01
This letter proposes a novel approach using the [Formula: see text]-norm regularization for the sparse covariance matrix estimation (SCME) problem. The objective function of SCME problem is composed of a nonconvex part and the [Formula: see text] term, which is discontinuous and difficult to tackle. Appropriate DC (difference of convex functions) approximations of [Formula: see text]-norm are used that result in approximation SCME problems that are still nonconvex. DC programming and DCA (DC algorithm), powerful tools in nonconvex programming framework, are investigated. Two DC formulations are proposed and corresponding DCA schemes developed. Two applications of the SCME problem that are considered are classification via sparse quadratic discriminant analysis and portfolio optimization. A careful empirical experiment is performed through simulated and real data sets to study the performance of the proposed algorithms. Numerical results showed their efficiency and their superiority compared with seven state-of-the-art methods.
Visualization for Hyper-Heuristics: Back-End Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Luke
Modern society is faced with increasingly complex problems, many of which can be formulated as generate-and-test optimization problems. Yet, general-purpose optimization algorithms may sometimes require too much computational time. In these instances, hyperheuristics may be used. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario, finding the solution significantly faster than its predecessor. However, it may be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address these issues by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics and an easy-to-understand scientific visualizationmore » for the produced solutions. To support the development of this GUI, my portion of the research involved developing algorithms that would allow for parsing of the data produced by the hyper-heuristics. This data would then be sent to the front-end, where it would be displayed to the end user.« less
Multi Sensor Fusion Using Fitness Adaptive Differential Evolution
NASA Astrophysics Data System (ADS)
Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam
The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).
NASA Astrophysics Data System (ADS)
Alemany, Kristina
Electric propulsion has recently become a viable technology for spacecraft, enabling shorter flight times, fewer required planetary gravity assists, larger payloads, and/or smaller launch vehicles. With the maturation of this technology, however, comes a new set of challenges in the area of trajectory design. Because low-thrust trajectory optimization has historically required long run-times and significant user-manipulation, mission design has relied on expert-based knowledge for selecting departure and arrival dates, times of flight, and/or target bodies and gravitational swing-bys. These choices are generally based on known configurations that have worked well in previous analyses or simply on trial and error. At the conceptual design level, however, the ability to explore the full extent of the design space is imperative to locating the best solutions in terms of mass and/or flight times. Beginning in 2005, the Global Trajectory Optimization Competition posed a series of difficult mission design problems, all requiring low-thrust propulsion and visiting one or more asteroids. These problems all had large ranges on the continuous variables---launch date, time of flight, and asteroid stay times (when applicable)---as well as being characterized by millions or even billions of possible asteroid sequences. Even with recent advances in low-thrust trajectory optimization, full enumeration of these problems was not possible within the stringent time limits of the competition. This investigation develops a systematic methodology for determining a broad suite of good solutions to the combinatorial, low-thrust, asteroid tour problem. The target application is for conceptual design, where broad exploration of the design space is critical, with the goal being to rapidly identify a reasonable number of promising solutions for future analysis. The proposed methodology has two steps. The first step applies a three-level heuristic sequence developed from the physics of the problem, which allows for efficient pruning of the design space. The second phase applies a global optimization scheme to locate a broad suite of good solutions to the reduced problem. The global optimization scheme developed combines a novel branch-and-bound algorithm with a genetic algorithm and an industry-standard low-thrust trajectory optimization program to solve for the following design variables: asteroid sequence, launch date, times of flight, and asteroid stay times. The methodology is developed based on a small sample problem, which is enumerated and solved so that all possible discretized solutions are known. The methodology is then validated by applying it to a larger intermediate sample problem, which also has a known solution. Next, the methodology is applied to several larger combinatorial asteroid rendezvous problems, using previously identified good solutions as validation benchmarks. These problems include the 2nd and 3rd Global Trajectory Optimization Competition problems. The methodology is shown to be capable of achieving a reduction in the number of asteroid sequences of 6-7 orders of magnitude, in terms of the number of sequences that require low-thrust optimization as compared to the number of sequences in the original problem. More than 70% of the previously known good solutions are identified, along with several new solutions that were not previously reported by any of the competitors. Overall, the methodology developed in this investigation provides an organized search technique for the low-thrust mission design of asteroid rendezvous problems.
About the use of vector optimization for company's contractors selection
NASA Astrophysics Data System (ADS)
Medvedeva, M. A.; Medvedev, M. A.
2017-07-01
For effective functioning of an enterprise it is necessary to make a right choice of partners: suppliers of raw material, buyers of finished products, and others with which the company interacts in the course of their business. However, the presence on the market of big amount of enterprises makes the choice of the most appropriate among them very difficult and requires the ability to objectively assess of the possible partners, based on multilateral analysis of their activities. This analysis can be carried out based on the solution of multiobjective problem of mathematical programming by using the methods of vector optimization. The present work addresses the theoretical foundations of such approach and also describes an algorithm realizing proposed method on practical example.
Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B
2014-01-01
Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.
Towards Robust Designs Via Multiple-Objective Optimization Methods
NASA Technical Reports Server (NTRS)
Man Mohan, Rai
2006-01-01
Fabricating and operating complex systems involves dealing with uncertainty in the relevant variables. In the case of aircraft, flow conditions are subject to change during operation. Efficiency and engine noise may be different from the expected values because of manufacturing tolerances and normal wear and tear. Engine components may have a shorter life than expected because of manufacturing tolerances. In spite of the important effect of operating- and manufacturing-uncertainty on the performance and expected life of the component or system, traditional aerodynamic shape optimization has focused on obtaining the best design given a set of deterministic flow conditions. Clearly it is important to both maintain near-optimal performance levels at off-design operating conditions, and, ensure that performance does not degrade appreciably when the component shape differs from the optimal shape due to manufacturing tolerances and normal wear and tear. These requirements naturally lead to the idea of robust optimal design wherein the concept of robustness to various perturbations is built into the design optimization procedure. The basic ideas involved in robust optimal design will be included in this lecture. The imposition of the additional requirement of robustness results in a multiple-objective optimization problem requiring appropriate solution procedures. Typically the costs associated with multiple-objective optimization are substantial. Therefore efficient multiple-objective optimization procedures are crucial to the rapid deployment of the principles of robust design in industry. Hence the companion set of lecture notes (Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks ) deals with methodology for solving multiple-objective Optimization problems efficiently, reliably and with little user intervention. Applications of the methodologies presented in the companion lecture to robust design will be included here. The evolutionary method (DE) is first used to solve a relatively difficult problem in extended surface heat transfer wherein optimal fin geometries are obtained for different safe operating base temperatures. The objective of maximizing the safe operating base temperature range is in direct conflict with the objective of maximizing fin heat transfer. This problem is a good example of achieving robustness in the context of changing operating conditions. The evolutionary method is then used to design a turbine airfoil; the two objectives being reduced sensitivity of the pressure distribution to small changes in the airfoil shape and the maximization of the trailing edge wedge angle with the consequent increase in airfoil thickness and strength. This is a relevant example of achieving robustness to manufacturing tolerances and wear and tear in the presence of other objectives.
Optimal four-impulse rendezvous between coplanar elliptical orbits
NASA Astrophysics Data System (ADS)
Wang, JianXia; Baoyin, HeXi; Li, JunFeng; Sun, FuChun
2011-04-01
Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solution. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital rendezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vector theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large eccentricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentricity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution. If the initial values are taken randomly, it is difficult to converge to the optimal solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trędak, Przemysław, E-mail: przemyslaw.tredak@fuw.edu.pl; Rudnicki, Witold R.; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, ul. Pawińskiego 5a, 02-106 Warsaw
The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPUmore » to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.« less
Variability-aware double-patterning layout optimization for analog circuits
NASA Astrophysics Data System (ADS)
Li, Yongfu; Perez, Valerio; Tripathi, Vikas; Lee, Zhao Chuan; Tseng, I.-Lun; Ong, Jonathan Yoong Seang
2018-03-01
The semiconductor industry has adopted multi-patterning techniques to manage the delay in the extreme ultraviolet lithography technology. During the design process of double-patterning lithography layout masks, two polygons are assigned to different masks if their spacing is less than the minimum printable spacing. With these additional design constraints, it is very difficult to find experienced layout-design engineers who have a good understanding of the circuit to manually optimize the mask layers in order to minimize color-induced circuit variations. In this work, we investigate the impact of double-patterning lithography on analog circuits and provide quantitative analysis for our designers to select the optimal mask to minimize the circuit's mismatch. To overcome the problem and improve the turn-around time, we proposed our smart "anchoring" placement technique to optimize mask decomposition for analog circuits. We have developed a software prototype that is capable of providing anchoring markers in the layout, allowing industry standard tools to perform automated color decomposition process.
NASA Astrophysics Data System (ADS)
Luk, K. C.; Ball, J. E.; Sharma, A.
2000-01-01
Artificial neural networks (ANNs), which emulate the parallel distributed processing of the human nervous system, have proven to be very successful in dealing with complicated problems, such as function approximation and pattern recognition. Due to their powerful capability and functionality, ANNs provide an alternative approach for many engineering problems that are difficult to solve by conventional approaches. Rainfall forecasting has been a difficult subject in hydrology due to the complexity of the physical processes involved and the variability of rainfall in space and time. In this study, ANNs were adopted to forecast short-term rainfall for an urban catchment. The ANNs were trained to recognise historical rainfall patterns as recorded from a number of gauges in the study catchment for reproduction of relevant patterns for new rainstorm events. The primary objective of this paper is to investigate the effect of temporal and spatial information on short-term rainfall forecasting. To achieve this aim, a comparison test on the forecast accuracy was made among the ANNs configured with different orders of lag and different numbers of spatial inputs. In developing the ANNs with alternative configurations, the ANNs were trained to an optimal level to achieve good generalisation of data. It was found in this study that the ANNs provided the most accurate predictions when an optimum number of spatial inputs was included into the network, and that the network with lower lag consistently produced better performance.
Scheduling optimization of design stream line for production research and development projects
NASA Astrophysics Data System (ADS)
Liu, Qinming; Geng, Xiuli; Dong, Ming; Lv, Wenyuan; Ye, Chunming
2017-05-01
In a development project, efficient design stream line scheduling is difficult and important owing to large design imprecision and the differences in the skills and skill levels of employees. The relative skill levels of employees are denoted as fuzzy numbers. Multiple execution modes are generated by scheduling different employees for design tasks. An optimization model of a design stream line scheduling problem is proposed with the constraints of multiple executive modes, multi-skilled employees and precedence. The model considers the parallel design of multiple projects, different skills of employees, flexible multi-skilled employees and resource constraints. The objective function is to minimize the duration and tardiness of the project. Moreover, a two-dimensional particle swarm algorithm is used to find the optimal solution. To illustrate the validity of the proposed method, a case is examined in this article, and the results support the feasibility and effectiveness of the proposed model and algorithm.
HOMER: The hybrid optimization model for electric renewable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilienthal, P.; Flowers, L.; Rossmann, C.
1995-12-31
Hybrid renewable systems are often more cost-effective than grid extensions or isolated diesel generators for providing power to remote villages. There are a wide variety of hybrid systems being developed for village applications that have differing combinations of wind, photovoltaics, batteries, and diesel generators. Due to variations in loads and resources determining the most appropriate combination of these components for a particular village is a difficult modelling task. To address this design problem the National Renewable Energy Laboratory has developed the Hybrid Optimization Model for Electric Renewables (HOMER). Existing models are either too detailed for screening analysis or too simplemore » for reliable estimation of performance. HOMER is a design optimization model that determines the configuration, dispatch, and load management strategy that minimizes life-cycle costs for a particular site and application. This paper describes the HOMER methodology and presents representative results.« less
NASA Astrophysics Data System (ADS)
Wang, J.; Cai, X.
2007-12-01
A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.
A new class of problems in the calculus of variations
NASA Astrophysics Data System (ADS)
Ekeland, Ivar; Long, Yiming; Zhou, Qinglong
2013-11-01
This paper investigates an infinite-horizon problem in the one-dimensional calculus of variations, arising from the Ramsey model of endogeneous economic growth. Following Chichilnisky, we introduce an additional term, which models concern for the well-being of future generations. We show that there are no optimal solutions, but that there are equilibrium strateges, i.e. Nash equilibria of the leader-follower game between successive generations. To solve the problem, we approximate the Chichilnisky criterion by a biexponential criterion, we characterize its equilibria by a pair of coupled differential equations of HJB type, and we go to the limit. We find all the equilibrium strategies for the Chichilnisky criterion. The mathematical analysis is difficult because one has to solve an implicit differential equation in the sense of Thom. Our analysis extends earlier work by Ekeland and Lazrak.
3D reconstruction of highly fragmented bone fractures
NASA Astrophysics Data System (ADS)
Willis, Andrew; Anderson, Donald; Thomas, Thad; Brown, Thomas; Marsh, J. Lawrence
2007-03-01
A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treatment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid alignment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses two new problems unique to the reconstruction of fractured bones: (1) non-stationary noise inherent in surfaces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a fragment may correspond to many other fragments.
Optimal routing of IP packets to multi-homed servers
NASA Astrophysics Data System (ADS)
Swartz, K. L.
1992-08-01
Multi-homing, or direct attachment to multiple networks, offers both performance and availability benefits for important servers on busy networks. Exploiting these benefits to their fullest requires a modicum of routing knowledge in the clients. Careful policy control must also be reflected in the routing used within the network to make best use of specialized and often scarce resources. While relatively straightforward in theory, this problem becomes much more difficult to solve in a real network containing often intractable implementations from a variety of vendors. This paper presents an analysis of the problem and proposes a useful solution for a typical campus network. Application of this solution at the Stanford Linear Accelerator Center is studied and the problems and pitfalls encountered are discussed, as are the workarounds used to make the system work in the real world.
Automated trajectory planning for multiple-flyby interplanetary missions
NASA Astrophysics Data System (ADS)
Englander, Jacob
Many space mission planning problems may be formulated as hybrid optimal control problems (HOCP), i.e. problems that include both real-valued variables and categorical variables. In interplanetary trajectory design problems the categorical variables will typically specify the sequence of planets at which to perform flybys, and the real-valued variables will represent the launch date, ight times between planets, magnitudes and directions of thrust, flyby altitudes, etc. The contribution of this work is a framework for the autonomous optimization of multiple-flyby interplanetary trajectories. The trajectory design problem is converted into a HOCP with two nested loops: an "outer-loop" that finds the sequence of flybys and an "inner-loop" that optimizes the trajectory for each candidate yby sequence. The problem of choosing a sequence of flybys is posed as an integer programming problem and solved using a genetic algorithm (GA). This is an especially difficult problem to solve because GAs normally operate on a fixed-length set of decision variables. Since in interplanetary trajectory design the number of flyby maneuvers is not known a priori, it was necessary to devise a method of parameterizing the problem such that the GA can evolve a variable-length sequence of flybys. A novel "null gene" transcription was developed to meet this need. Then, for each candidate sequence of flybys, a trajectory must be found that visits each of the flyby targets and arrives at the final destination while optimizing some cost metric, such as minimizing ▵v or maximizing the final mass of the spacecraft. Three different classes of trajectory are described in this work, each of which requireda different physical model and optimization method. The choice of a trajectory model and optimization method is especially challenging because of the nature of the hybrid optimal control problem. Because the trajectory optimization problem is generated in real time by the outer-loop, the inner-loop optimization algorithm cannot require any a priori information and must always return a solution. In addition, the upper and lower bounds on each decision variable cannot be chosen a priori by the user because the user has no way to know what problem will be solved. Instead a method of choosing upper and lower bounds via a set of simple rules was developed and used for all three types of trajectory optimization problem. Many optimization algorithms were tested and discarded until suitable algorithms were found for each type of trajectory. The first class of trajectories use chemical propulsion and may only apply a ▵v at the periapse of each flyby. These Multiple Gravity Assist (MGA) trajectories are optimized using a cooperative algorithm of Differential Evolution (DE) and Particle Swarm Optimization (PSO). The second class of trajectories, known as Multiple Gravity Assist with one Deep Space Maneuver (MGA-DSM), also use chemical propulsion but instead of maneuvering at the periapse of each flyby as in the MGA case a maneuver is applied at a free point along each planet-to-planet arc, i.e. there is one maneuver for each pair of flybys. MGA-DSM trajectories are parameterized by more variables than MGA trajectories, and so the cooperative algorithm of DE and PSO that was used to optimize MGA trajectories was found to be less effective when applied to MGA-DSM. Instead, either PSO or DE alone were found to be more effective. The third class of trajectories addressed in this work are those using continuousthrust propulsion. Continuous-thrust trajectory optimization problems are more challenging than impulsive-thrust problems because the control variables are a continuous time series rather than a small set of parameters and because the spacecraft does not follow a conic section trajectory, leading to a large number of nonlinear constraints that must be satisfied to ensure that the spacecraft obeys the equations of motion. Many models and optimization algorithms were applied including direct transcription with nonlinear programming (DTNLP), the inverse-polynomial shapebased method, and feasible region analysis. However the only physical model and optimization method that proved reliable enough were the Sims-Flanagan transcription coupled with a nonlinear programming solver and the monotonic basin hopping (MBH) global search heuristic. The methods developed here are demonstrated to optimize a set of example trajectories, including a recreation of the Cassini mission, a Galileo-like mission, and conceptual continuous-thrust missions to Jupiter, Mercury, and Uranus.
Uncertainty reasoning in expert systems
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik
1993-01-01
Intelligent control is a very successful way to transform the expert's knowledge of the type 'if the velocity is big and the distance from the object is small, hit the brakes and decelerate as fast as possible' into an actual control. To apply this transformation, one must choose appropriate methods for reasoning with uncertainty, i.e., one must: (1) choose the representation for words like 'small', 'big'; (2) choose operations corresponding to 'and' and 'or'; (3) choose a method that transforms the resulting uncertain control recommendations into a precise control strategy. The wrong choice can drastically affect the quality of the resulting control, so the problem of choosing the right procedure is very important. From a mathematical viewpoint these choice problems correspond to non-linear optimization and are therefore extremely difficult. In this project, a new mathematical formalism (based on group theory) is developed that allows us to solve the problem of optimal choice and thus: (1) explain why the existing choices are really the best (in some situations); (2) explain a rather mysterious fact that fuzzy control (i.e., control based on the experts' knowledge) is often better than the control by these same experts; and (3) give choice recommendations for the cases when traditional choices do not work.
Patient safety and the problem of many hands
Dixon-Woods, Mary; Pronovost, Peter
2016-01-01
Summary Healthcare worldwide is faced with a crisis of patient safety: every day, everywhere, patients are injured during the course of their care. Notwithstanding occasional successes in relation to specific harms, safety as a system characteristic has remained elusive. We propose that one neglected reason why the safety problem has proved so stubborn is that healthcare suffers from a pathology known in the public administration literature as the problem of many hands. It is a problem that arises in contexts where multiple actors – organizations, individuals, groups – each contribute to effects seen at system level, but it remains difficult to hold any single actor responsible for these effects. Efforts by individual actors, including local quality improvement projects, may have the paradoxical effect of undermining system safety. Many challenges cannot be resolved by individual organisations, since they require whole-sector coordination and action. We call for recognition of the problem of many hands and for attention to be given to how it might most optimally be addressed in a healthcare context. PMID:26912578
Optimization of lattice surgery is NP-hard
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon J.
2017-09-01
The traditional method for computation in either the surface code or in the Raussendorf model is the creation of holes or "defects" within the encoded lattice of qubits that are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work, we focus on the lattice surgery representation, which realizes transversal logic operations without destroying the intrinsic 2D nearest-neighbor properties of the braid-based surface code and achieves universality without defects and braid-based logic. For both techniques there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult and the classical complexity associated with this problem has yet to be determined. In the context of lattice-surgery-based logic, we can introduce an optimality condition, which corresponds to a circuit with the lowest resource requirements in terms of physical qubits and computational time, and prove that the complexity of optimizing a quantum circuit in the lattice surgery model is NP-hard.
Optimization of topological quantum algorithms using Lattice Surgery is hard
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon
The traditional method for computation in the surface code or the Raussendorf model is the creation of holes or ''defects'' within the encoded lattice of qubits which are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work we turn attention to the Lattice Surgery representation, which realizes encoded logic operations without destroying the intrinsic 2D nearest-neighbor interactions sufficient for braided based logic and achieves universality without using defects for encoding information. In both braided and lattice surgery logic there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult to define and the classical complexity associated with this problem has yet to be determined. In the context of lattice surgery based logic, we can introduce an optimality condition, which corresponds to a circuit with lowest amount of physical qubit requirements, and prove that the complexity of optimizing the geometric (lattice surgery) representation of a quantum circuit is NP-hard.
Automation of reverse engineering process in aircraft modeling and related optimization problems
NASA Technical Reports Server (NTRS)
Li, W.; Swetits, J.
1994-01-01
During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for quadratic programming problems.
SU-E-T-395: Multi-GPU-Based VMAT Treatment Plan Optimization Using a Column-Generation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z; Shi, F; Jia, X
Purpose: GPU has been employed to speed up VMAT optimizations from hours to minutes. However, its limited memory capacity makes it difficult to handle cases with a huge dose-deposition-coefficient (DDC) matrix, e.g. those with a large target size, multiple arcs, small beam angle intervals and/or small beamlet size. We propose multi-GPU-based VMAT optimization to solve this memory issue to make GPU-based VMAT more practical for clinical use. Methods: Our column-generation-based method generates apertures sequentially by iteratively searching for an optimal feasible aperture (referred as pricing problem, PP) and optimizing aperture intensities (referred as master problem, MP). The PP requires accessmore » to the large DDC matrix, which is implemented on a multi-GPU system. Each GPU stores a DDC sub-matrix corresponding to one fraction of beam angles and is only responsible for calculation related to those angles. Broadcast and parallel reduction schemes are adopted for inter-GPU data transfer. MP is a relatively small-scale problem and is implemented on one GPU. One headand- neck cancer case was used for test. Three different strategies for VMAT optimization on single GPU were also implemented for comparison: (S1) truncating DDC matrix to ignore its small value entries for optimization; (S2) transferring DDC matrix part by part to GPU during optimizations whenever needed; (S3) moving DDC matrix related calculation onto CPU. Results: Our multi-GPU-based implementation reaches a good plan within 1 minute. Although S1 was 10 seconds faster than our method, the obtained plan quality is worse. Both S2 and S3 handle the full DDC matrix and hence yield the same plan as in our method. However, the computation time is longer, namely 4 minutes and 30 minutes, respectively. Conclusion: Our multi-GPU-based VMAT optimization can effectively solve the limited memory issue with good plan quality and high efficiency, making GPUbased ultra-fast VMAT planning practical for real clinical use.« less
NASA Astrophysics Data System (ADS)
Chen, Xiaoguang; Liang, Lin; Liu, Fei; Xu, Guanghua; Luo, Ailing; Zhang, Sicong
2012-05-01
Nowadays, Motor Current Signature Analysis (MCSA) is widely used in the fault diagnosis and condition monitoring of machine tools. However, although the current signal has lower SNR (Signal Noise Ratio), it is difficult to identify the feature frequencies of machine tools from complex current spectrum that the feature frequencies are often dense and overlapping by traditional signal processing method such as FFT transformation. With the study in the Motor Current Signature Analysis (MCSA), it is found that the entropy is of importance for frequency identification, which is associated with the probability distribution of any random variable. Therefore, it plays an important role in the signal processing. In order to solve the problem that the feature frequencies are difficult to be identified, an entropy optimization technique based on motor current signal is presented in this paper for extracting the typical feature frequencies of machine tools which can effectively suppress the disturbances. Some simulated current signals were made by MATLAB, and a current signal was obtained from a complex gearbox of an iron works made in Luxembourg. In diagnosis the MCSA is combined with entropy optimization. Both simulated and experimental results show that this technique is efficient, accurate and reliable enough to extract the feature frequencies of current signal, which provides a new strategy for the fault diagnosis and the condition monitoring of machine tools.
Simulating variable source problems via post processing of individual particle tallies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.
2000-10-20
Monte Carlo is an extremely powerful method of simulating complex, three dimensional environments without excessive problem simplification. However, it is often time consuming to simulate models in which the source can be highly varied. Similarly difficult are optimization studies involving sources in which many input parameters are variable, such as particle energy, angle, and spatial distribution. Such studies are often approached using brute force methods or intelligent guesswork. One field in which these problems are often encountered is accelerator-driven Boron Neutron Capture Therapy (BNCT) for the treatment of cancers. Solving the reverse problem of determining the best neutron source formore » optimal BNCT treatment can be accomplished by separating the time-consuming particle-tracking process of a full Monte Carlo simulation from the calculation of the source weighting factors which is typically performed at the beginning of a Monte Carlo simulation. By post-processing these weighting factors on a recorded file of individual particle tally information, the effect of changing source variables can be realized in a matter of seconds, instead of requiring hours or days for additional complete simulations. By intelligent source biasing, any number of different source distributions can be calculated quickly from a single Monte Carlo simulation. The source description can be treated as variable and the effect of changing multiple interdependent source variables on the problem's solution can be determined. Though the focus of this study is on BNCT applications, this procedure may be applicable to any problem that involves a variable source.« less
Field-Based Optimal Placement of Antennas for Body-Worn Wireless Sensors
Januszkiewicz, Łukasz; Di Barba, Paolo; Hausman, Sławomir
2016-01-01
We investigate a case of automated energy-budget-aware optimization of the physical position of nodes (sensors) in a Wireless Body Area Network (WBAN). This problem has not been presented in the literature yet, as opposed to antenna and routing optimization, which are relatively well-addressed. In our research, which was inspired by a safety-critical application for firefighters, the sensor network consists of three nodes located on the human body. The nodes communicate over a radio link operating in the 2.4 GHz or 5.8 GHz ISM frequency band. Two sensors have a fixed location: one on the head (earlobe pulse oximetry) and one on the arm (with accelerometers, temperature and humidity sensors, and a GPS receiver), while the position of the third sensor can be adjusted within a predefined region on the wearer’s chest. The path loss between each node pair strongly depends on the location of the nodes and is difficult to predict without performing a full-wave electromagnetic simulation. Our optimization scheme employs evolutionary computing. The novelty of our approach lies not only in the formulation of the problem but also in linking a fully automated optimization procedure with an electromagnetic simulator and a simplified human body model. This combination turns out to be a computationally effective solution, which, depending on the initial placement, has a potential to improve performance of our example sensor network setup by up to about 20 dB with respect to the path loss between selected nodes. PMID:27196911
Optimisation multi-objectif des systemes energetiques
NASA Astrophysics Data System (ADS)
Dipama, Jean
The increasing demand of energy and the environmental concerns related to greenhouse gas emissions lead to more and more private or public utilities to turn to nuclear energy as an alternative for the future. Nuclear power plants are then called to experience large expansion in the coming years. Improved technologies will then be put in place to support the development of these plants. This thesis considers the optimization of the thermodynamic cycle of the secondary loop of Gentilly-2 nuclear power plant in terms of output power and thermal efficiency. In this thesis, investigations are carried out to determine the optimal operating conditions of steam power cycles by the judicious use of the combination of steam extraction at the different stages of the turbines. Whether it is the case of superheating or regeneration, we are confronted in all cases to an optimization problem involving two conflicting objectives, as increasing the efficiency imply the decrease of mechanical work and vice versa. Solving this kind of problem does not lead to unique solution, but to a set of solutions that are tradeoffs between the conflicting objectives. To search all of these solutions, called Pareto optimal solutions, the use of an appropriate optimization algorithm is required. Before starting the optimization of the secondary loop, we developed a thermodynamic model of the secondary loop which includes models for the main thermal components (e.g., turbine, moisture separator-superheater, condenser, feedwater heater and deaerator). This model is used to calculate the thermodynamic state of the steam and water at the different points of the installation. The thermodynamic model has been developed with Matlab and validated by comparing its predictions with the operating data provided by the engineers of the power plant. The optimizer developed in VBA (Visual Basic for Applications) uses an optimization algorithm based on the principle of genetic algorithms, a stochastic optimization method which is very robust and widely used to solve problems usually difficult to handle by traditional methods. Genetic algorithms (GAs) have been used in previous research and proved to be efficient in optimizing heat exchangers networks (HEN) (Dipama et al., 2008). So, HEN have been synthesized to recover the maximum heat in an industrial process. The optimization problem formulated in the context of this work consists of a single objective, namely the maximization of energy recovery. The optimization algorithm developed in this thesis extends the ability of GAs by taking into account several objectives simultaneously. This algorithm provides an innovation in the method of finding optimal solutions, by using a technique which consist of partitioning the solutions space in the form of parallel grids called "watching corridors". These corridors permit to specify areas (the observation corridors) in which the most promising feasible solutions are found and used to guide the search towards optimal solutions. A measure of the progress of the search is incorporated into the optimization algorithm to make it self-adaptive through the use of appropriate genetic operators at each stage of optimization process. The proposed method allows a fast convergence and ensure a diversity of solutions. Moreover, this method gives the algorithm the ability to overcome difficulties associated with optimizing problems with complex Pareto front landscapes (e.g., discontinuity, disjunction, etc.). The multi-objective optimization algorithm has been first validated using numerical test problems found in the literature as well as energy systems optimization problems. Finally, the proposed optimization algorithm has been applied for the optimization of the secondary loop of Gentilly-2 nuclear power plant, and a set of solutions have been found which permit to make the power plant operate in optimal conditions. (Abstract shortened by UMI.)
Rapid indirect trajectory optimization on highly parallel computing architectures
NASA Astrophysics Data System (ADS)
Antony, Thomas
Trajectory optimization is a field which can benefit greatly from the advantages offered by parallel computing. The current state-of-the-art in trajectory optimization focuses on the use of direct optimization methods, such as the pseudo-spectral method. These methods are favored due to their ease of implementation and large convergence regions while indirect methods have largely been ignored in the literature in the past decade except for specific applications in astrodynamics. It has been shown that the shortcomings conventionally associated with indirect methods can be overcome by the use of a continuation method in which complex trajectory solutions are obtained by solving a sequence of progressively difficult optimization problems. High performance computing hardware is trending towards more parallel architectures as opposed to powerful single-core processors. Graphics Processing Units (GPU), which were originally developed for 3D graphics rendering have gained popularity in the past decade as high-performance, programmable parallel processors. The Compute Unified Device Architecture (CUDA) framework, a parallel computing architecture and programming model developed by NVIDIA, is one of the most widely used platforms in GPU computing. GPUs have been applied to a wide range of fields that require the solution of complex, computationally demanding problems. A GPU-accelerated indirect trajectory optimization methodology which uses the multiple shooting method and continuation is developed using the CUDA platform. The various algorithmic optimizations used to exploit the parallelism inherent in the indirect shooting method are described. The resulting rapid optimal control framework enables the construction of high quality optimal trajectories that satisfy problem-specific constraints and fully satisfy the necessary conditions of optimality. The benefits of the framework are highlighted by construction of maximum terminal velocity trajectories for a hypothetical long range weapon system. The techniques used to construct an initial guess from an analytic near-ballistic trajectory and the methods used to formulate the necessary conditions of optimality in a manner that is transparent to the designer are discussed. Various hypothetical mission scenarios that enforce different combinations of initial, terminal, interior point and path constraints demonstrate the rapid construction of complex trajectories without requiring any a-priori insight into the structure of the solutions. Trajectory problems of this kind were previously considered impractical to solve using indirect methods. The performance of the GPU-accelerated solver is found to be 2x--4x faster than MATLAB's bvp4c, even while running on GPU hardware that is five years behind the state-of-the-art.
A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination
Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183
Bordelon, B M; Hobday, K A; Hunter, J G
1992-01-01
An unsolved problem of laparoscopic cholecystectomy is the optimal method of removing the gallbladder with thick walls and a large stone burden. Proposed solutions include fascial dilatation, stone crushing, and ultrasonic, high-speed rotary, or laser lithotripsy. Our observation was that extension of the fascial incision to remove the impacted gallbladder was time efficient and did not increase postoperative pain. We reviewed the narcotic requirements of 107 consecutive patients undergoing laparoscopic cholecystectomy. Fifty-two patients required extension of the umbilical incision, and 55 patients did not have their fascial incision enlarged. Parenteral meperidine use was 39.5 +/- 63.6 mg in the patients requiring fascial incision extension and 66.3 +/- 79.2 mg in those not requiring fascial incision extension (mean +/- standard deviation). Oral narcotic requirements were 1.1 +/- 1.5 doses vs 1.3 +/- 1.7 doses in patients with and without incision extension, respectively. The wide range of narcotic use in both groups makes these apparent differences not statistically significant. We conclude that protracted attempts at stone crushing or expensive stone fragmentation devices are unnecessary for the extraction of a difficult gallbladder during laparoscopic cholecystectomy.
Optimization of the resources management in fighting wildfires.
Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J Manuel
2002-09-01
Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.
Towards a hierarchical optimization modeling framework for ...
Background:Bilevel optimization has been recognized as a 2-player Stackelberg game where players are represented as leaders and followers and each pursue their own set of objectives. Hierarchical optimization problems, which are a generalization of bilevel, are especially difficult because the optimization is nested, meaning that the objectives of one level depend on solutions to the other levels. We introduce a hierarchical optimization framework for spatially targeting multiobjective green infrastructure (GI) incentive policies under uncertainties related to policy budget, compliance, and GI effectiveness. We demonstrate the utility of the framework using a hypothetical urban watershed, where the levels are characterized by multiple levels of policy makers (e.g., local, regional, national) and policy followers (e.g., landowners, communities), and objectives include minimization of policy cost, implementation cost, and risk; reduction of combined sewer overflow (CSO) events; and improvement in environmental benefits such as reduced nutrient run-off and water availability. Conclusions: While computationally expensive, this hierarchical optimization framework explicitly simulates the interaction between multiple levels of policy makers (e.g., local, regional, national) and policy followers (e.g., landowners, communities) and is especially useful for constructing and evaluating environmental and ecological policy. Using the framework with a hypothetical urba
Optimization of the Resources Management in Fighting Wildfires
NASA Astrophysics Data System (ADS)
Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J. Manuel
2002-09-01
Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.
Optimized optical clearing method for imaging central nervous system
NASA Astrophysics Data System (ADS)
Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan
2015-03-01
The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.
NASA Technical Reports Server (NTRS)
Olds, John Robert; Walberg, Gerald D.
1993-01-01
Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are determined for the vehicle. A summary and evaluation of the various parametric MDO methods employed in the research are included. Recommendations for additional research are provided.
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station’s density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles. PMID:26575845
Multicasting for all-optical multifiber networks
NASA Astrophysics Data System (ADS)
Kã¶Ksal, Fatih; Ersoy, Cem
2007-02-01
All-optical wavelength-routed WDM WANs can support the high bandwidth and the long session duration requirements of the application scenarios such as interactive distance learning or on-line diagnosis of patients simultaneously in different hospitals. However, multifiber and limited sparse light splitting and wavelength conversion capabilities of switches result in a difficult optimization problem. We attack this problem using a layered graph model. The problem is defined as a k-edge-disjoint degree-constrained Steiner tree problem for routing and fiber and wavelength assignment of k multicasts. A mixed integer linear programming formulation for the problem is given, and a solution using CPLEX is provided. However, the complexity of the problem grows quickly with respect to the number of edges in the layered graph, which depends on the number of nodes, fibers, wavelengths, and multicast sessions. Hence, we propose two heuristics layered all-optical multicast algorithm [(LAMA) and conservative fiber and wavelength assignment (C-FWA)] to compare with CPLEX, existing work, and unicasting. Extensive computational experiments show that LAMA's performance is very close to CPLEX, and it is significantly better than existing work and C-FWA for nearly all metrics, since LAMA jointly optimizes routing and fiber-wavelength assignment phases compared with the other candidates, which attack the problem by decomposing two phases. Experiments also show that important metrics (e.g., session and group blocking probability, transmitter wavelength, and fiber conversion resources) are adversely affected by the separation of two phases. Finally, the fiber-wavelength assignment strategy of C-FWA (Ex-Fit) uses wavelength and fiber conversion resources more effectively than the First Fit.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505
NASA Astrophysics Data System (ADS)
Bednar, Earl; Drager, Steven L.
2007-04-01
Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.
Issues and Strategies in Solving Multidisciplinary Optimization Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya
2013-01-01
Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. The accumulated multidisciplinary design activity is collected under a testbed entitled COMETBOARDS. Several issues were encountered during the solution of the problems. Four issues and the strategies adapted for their resolution are discussed. This is followed by a discussion on analytical methods that is limited to structural design application. An optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. Optimum solutions obtained were infeasible for aircraft and airbreathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through a set of problems: Design of an engine component, Synthesis of a subsonic aircraft, Operation optimization of a supersonic engine, Design of a wave-rotor-topping device, Profile optimization of a cantilever beam, and Design of a cylindrical shell. This chapter provides a cursory account of the issues. Cited references provide detailed discussion on the topics. Design of a structure can also be generated by traditional method and the stochastic design concept. Merits and limitations of the three methods (traditional method, optimization method and stochastic concept) are illustrated. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the merit function with constraints imposed on failure modes and an optimization algorithm is used to generate the solution. Stochastic design concept accounts for uncertainties in loads, material properties, and other parameters and solution is obtained by solving a design optimization problem for a specified reliability. Acceptable solutions can be produced by all the three methods. The variation in the weight calculated by the methods was found to be modest. Some variation was noticed in designs calculated by the methods. The variation may be attributed to structural indeterminacy. It is prudent to develop design by all three methods prior to its fabrication. The traditional design method can be improved when the simplified sensitivities of the behavior constraint is used. Such sensitivity can reduce design calculations and may have a potential to unify the traditional and optimization methods. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to mean valued design. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure. Weight can be reduced to a small value for a most failure-prone design. Probabilistic modeling of load and material properties remained a challenge.
Engagement and Arousal: Optimism’s Effects During a Brief Stressor
Nes, Lise Solberg; Segerstrom, Suzanne C.; Sephton, Sandra E.
2005-01-01
Optimism is usually associated with better psychological and physiological adjustment to stressors, but some contradictory findings exist. The purpose of this study was to investigate how optimism could result in negative immunological changes following difficult stressors. Because optimists are likely to see positive outcomes as attainable, they may invest greater effort to achieve their goals. It is proposed that such engagement would be more physiologically demanding when pursuing difficult goals. Participants (N = 54) worked on 11 difficult or insoluble anagrams. Optimism when combined with high self-awareness increased time spent working on the anagrams and skin conductance and salivary cortisol during the recovery period. The results support the notion that the increased engagement that arises from optimism may lead to short-term physiological costs. PMID:15574666
Kiranyaz, Serkan; Ince, Turker; Pulkkinen, Jenni; Gabbouj, Moncef
2010-01-01
In this paper, we address dynamic clustering in high dimensional data or feature spaces as an optimization problem where multi-dimensional particle swarm optimization (MD PSO) is used to find out the true number of clusters, while fractional global best formation (FGBF) is applied to avoid local optima. Based on these techniques we then present a novel and personalized long-term ECG classification system, which addresses the problem of labeling the beats within a long-term ECG signal, known as Holter register, recorded from an individual patient. Due to the massive amount of ECG beats in a Holter register, visual inspection is quite difficult and cumbersome, if not impossible. Therefore the proposed system helps professionals to quickly and accurately diagnose any latent heart disease by examining only the representative beats (the so called master key-beats) each of which is representing a cluster of homogeneous (similar) beats. We tested the system on a benchmark database where the beats of each Holter register have been manually labeled by cardiologists. The selection of the right master key-beats is the key factor for achieving a highly accurate classification and the proposed systematic approach produced results that were consistent with the manual labels with 99.5% average accuracy, which basically shows the efficiency of the system.
Superfast maximum-likelihood reconstruction for quantum tomography
NASA Astrophysics Data System (ADS)
Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon
2017-06-01
Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.
Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.
Nascimento, Daniel R; DePrince, A Eugene
2018-05-08
The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.
The aggregated unfitted finite element method for elliptic problems
NASA Astrophysics Data System (ADS)
Badia, Santiago; Verdugo, Francesc; Martín, Alberto F.
2018-07-01
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
Classification without labels: learning from mixed samples in high energy physics
NASA Astrophysics Data System (ADS)
Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse
2017-10-01
Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimal classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.
van Iersel, Leo; Kelk, Steven; Lekić, Nela; Scornavacca, Celine
2014-05-05
Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. Even for binary trees, exact solvers struggle to solve instances with reticulation number larger than 40-50. Here we present CycleKiller and NonbinaryCycleKiller, the first methods to produce solutions verifiably close to optimality for instances with hundreds or even thousands of reticulations. Using simulations, we demonstrate that these algorithms run quickly for large and difficult instances, producing solutions that are very close to optimality. As a spin-off from our simulations we also present TerminusEst, which is the fastest exact method currently available that can handle nonbinary trees: this is used to measure the accuracy of the NonbinaryCycleKiller algorithm. All three methods are based on extensions of previous theoretical work (SIDMA 26(4):1635-1656, TCBB 10(1):18-25, SIDMA 28(1):49-66) and are publicly available. We also apply our methods to real data.
Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem.
Contreras-Bolton, Carlos; Parada, Victor
2015-01-01
Genetic algorithms are powerful search methods inspired by Darwinian evolution. To date, they have been applied to the solution of many optimization problems because of the easy use of their properties and their robustness in finding good solutions to difficult problems. The good operation of genetic algorithms is due in part to its two main variation operators, namely, crossover and mutation operators. Typically, in the literature, we find the use of a single crossover and mutation operator. However, there are studies that have shown that using multi-operators produces synergy and that the operators are mutually complementary. Using multi-operators is not a simple task because which operators to use and how to combine them must be determined, which in itself is an optimization problem. In this paper, it is proposed that the task of exploring the different combinations of the crossover and mutation operators can be carried out by evolutionary computing. The crossover and mutation operators used are those typically used for solving the traveling salesman problem. The process of searching for good combinations was effective, yielding appropriate and synergic combinations of the crossover and mutation operators. The numerical results show that the use of the combination of operators obtained by evolutionary computing is better than the use of a single operator and the use of multi-operators combined in the standard way. The results were also better than those of the last operators reported in the literature.
Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem
2015-01-01
Genetic algorithms are powerful search methods inspired by Darwinian evolution. To date, they have been applied to the solution of many optimization problems because of the easy use of their properties and their robustness in finding good solutions to difficult problems. The good operation of genetic algorithms is due in part to its two main variation operators, namely, crossover and mutation operators. Typically, in the literature, we find the use of a single crossover and mutation operator. However, there are studies that have shown that using multi-operators produces synergy and that the operators are mutually complementary. Using multi-operators is not a simple task because which operators to use and how to combine them must be determined, which in itself is an optimization problem. In this paper, it is proposed that the task of exploring the different combinations of the crossover and mutation operators can be carried out by evolutionary computing. The crossover and mutation operators used are those typically used for solving the traveling salesman problem. The process of searching for good combinations was effective, yielding appropriate and synergic combinations of the crossover and mutation operators. The numerical results show that the use of the combination of operators obtained by evolutionary computing is better than the use of a single operator and the use of multi-operators combined in the standard way. The results were also better than those of the last operators reported in the literature. PMID:26367182
Nguyen, A; Yosinski, J; Clune, J
2016-01-01
The Achilles Heel of stochastic optimization algorithms is getting trapped on local optima. Novelty Search mitigates this problem by encouraging exploration in all interesting directions by replacing the performance objective with a reward for novel behaviors. This reward for novel behaviors has traditionally required a human-crafted, behavioral distance function. While Novelty Search is a major conceptual breakthrough and outperforms traditional stochastic optimization on certain problems, it is not clear how to apply it to challenging, high-dimensional problems where specifying a useful behavioral distance function is difficult. For example, in the space of images, how do you encourage novelty to produce hawks and heroes instead of endless pixel static? Here we propose a new algorithm, the Innovation Engine, that builds on Novelty Search by replacing the human-crafted behavioral distance with a Deep Neural Network (DNN) that can recognize interesting differences between phenotypes. The key insight is that DNNs can recognize similarities and differences between phenotypes at an abstract level, wherein novelty means interesting novelty. For example, a DNN-based novelty search in the image space does not explore in the low-level pixel space, but instead creates a pressure to create new types of images (e.g., churches, mosques, obelisks, etc.). Here, we describe the long-term vision for the Innovation Engine algorithm, which involves many technical challenges that remain to be solved. We then implement a simplified version of the algorithm that enables us to explore some of the algorithm's key motivations. Our initial results, in the domain of images, suggest that Innovation Engines could ultimately automate the production of endless streams of interesting solutions in any domain: for example, producing intelligent software, robot controllers, optimized physical components, and art.
Land use allocation model considering climate change impact
NASA Astrophysics Data System (ADS)
Lee, D. K.; Yoon, E. J.; Song, Y. I.
2017-12-01
In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"
Efficient implementation of the many-body Reactive Bond Order (REBO) potential on GPU
NASA Astrophysics Data System (ADS)
Trędak, Przemysław; Rudnicki, Witold R.; Majewski, Jacek A.
2016-09-01
The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPU to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.
Optimal de novo design of MRM experiments for rapid assay development in targeted proteomics.
Bertsch, Andreas; Jung, Stephan; Zerck, Alexandra; Pfeifer, Nico; Nahnsen, Sven; Henneges, Carsten; Nordheim, Alfred; Kohlbacher, Oliver
2010-05-07
Targeted proteomic approaches such as multiple reaction monitoring (MRM) overcome problems associated with classical shotgun mass spectrometry experiments. Developing MRM quantitation assays can be time consuming, because relevant peptide representatives of the proteins must be found and their retention time and the product ions must be determined. Given the transitions, hundreds to thousands of them can be scheduled into one experiment run. However, it is difficult to select which of the transitions should be included into a measurement. We present a novel algorithm that allows the construction of MRM assays from the sequence of the targeted proteins alone. This enables the rapid development of targeted MRM experiments without large libraries of transitions or peptide spectra. The approach relies on combinatorial optimization in combination with machine learning techniques to predict proteotypicity, retention time, and fragmentation of peptides. The resulting potential transitions are scheduled optimally by solving an integer linear program. We demonstrate that fully automated construction of MRM experiments from protein sequences alone is possible and over 80% coverage of the targeted proteins can be achieved without further optimization of the assay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1995-12-31
The objective of this research is to develop cost-effective surfactant flooding technology by using simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. In this quarter, we have continued working on Task 2 to optimizemore » surfactant flooding design and have included economic analysis to the optimization process. An economic model was developed using a spreadsheet and the discounted cash flow (DCF) method of economic analysis. The model was designed specifically for a domestic onshore surfactant flood and has been used to economically evaluate previous work that used a technical approach to optimization. The DCF model outputs common economic decision making criteria, such as net present value (NPV), internal rate of return (IRR), and payback period.« less
CNV detection method optimized for high-resolution arrayCGH by normality test.
Ahn, Jaegyoon; Yoon, Youngmi; Park, Chihyun; Park, Sanghyun
2012-04-01
High-resolution arrayCGH platform makes it possible to detect small gains and losses which previously could not be measured. However, current CNV detection tools fitted to early low-resolution data are not applicable to larger high-resolution data. When CNV detection tools are applied to high-resolution data, they suffer from high false-positives, which increases validation cost. Existing CNV detection tools also require optimal parameter values. In most cases, obtaining these values is a difficult task. This study developed a CNV detection algorithm that is optimized for high-resolution arrayCGH data. This tool operates up to 1500 times faster than existing tools on a high-resolution arrayCGH of whole human chromosomes which has 42 million probes whose average length is 50 bases, while preserving false positive/negative rates. The algorithm also uses a normality test, thereby removing the need for optimal parameters. To our knowledge, this is the first formulation for CNV detecting problems that results in a near-linear empirical overall complexity for real high-resolution data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Analysis and optimization of cyclic methods in orbit computation
NASA Technical Reports Server (NTRS)
Pierce, S.
1973-01-01
The mathematical analysis and computation of the K=3, order 4; K=4, order 6; and K=5, order 7 cyclic methods and the K=5, order 6 Cowell method and some results of optimizing the 3 backpoint cyclic multistep methods for solving ordinary differential equations are presented. Cyclic methods have the advantage over traditional methods of having higher order for a given number of backpoints while at the same time having more free parameters. After considering several error sources the primary source for the cyclic methods has been isolated. The free parameters for three backpoint methods were used to minimize the effects of some of these error sources. They now yield more accuracy with the same computing time as Cowell's method on selected problems. This work is being extended to the five backpoint methods. The analysis and optimization are more difficult here since the matrices are larger and the dimension of the optimizing space is larger. Indications are that the primary error source can be reduced. This will still leave several parameters free to minimize other sources.
Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate.
Krivov, Sergei V
2018-06-06
Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated on a long equilibrium atomistic folding simulation of HP35 protein. We have determined the optimal folding RC - the committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows linear with time as for simple diffusion. The free energy profile allowed us to obtain a direct rigorous estimate of the pre-exponential factor for the folding dynamics.
A Simulation-Optimization Model for the Management of Seawater Intrusion
NASA Astrophysics Data System (ADS)
Stanko, Z.; Nishikawa, T.
2012-12-01
Seawater intrusion is a common problem in coastal aquifers where excessive groundwater pumping can lead to chloride contamination of a freshwater resource. Simulation-optimization techniques have been developed to determine optimal management strategies while mitigating seawater intrusion. The simulation models are often density-independent groundwater-flow models that may assume a sharp interface and/or use equivalent freshwater heads. The optimization methods are often linear-programming (LP) based techniques that that require simplifications of the real-world system. However, seawater intrusion is a highly nonlinear, density-dependent flow and transport problem, which requires the use of nonlinear-programming (NLP) or global-optimization (GO) techniques. NLP approaches are difficult because of the need for gradient information; therefore, we have chosen a GO technique for this study. Specifically, we have coupled a multi-objective genetic algorithm (GA) with a density-dependent groundwater-flow and transport model to simulate and identify strategies that optimally manage seawater intrusion. GA is a heuristic approach, often chosen when seeking optimal solutions to highly complex and nonlinear problems where LP or NLP methods cannot be applied. The GA utilized in this study is the Epsilon-Nondominated Sorted Genetic Algorithm II (ɛ-NSGAII), which can approximate a pareto-optimal front between competing objectives. This algorithm has several key features: real and/or binary variable capabilities; an efficient sorting scheme; preservation and diversity of good solutions; dynamic population sizing; constraint handling; parallelizable implementation; and user controlled precision for each objective. The simulation model is SEAWAT, the USGS model that couples MODFLOW with MT3DMS for variable-density flow and transport. ɛ-NSGAII and SEAWAT were efficiently linked together through a C-Fortran interface. The simulation-optimization model was first tested by using a published density-independent flow model test case that was originally solved using a sequential LP method with the USGS's Ground-Water Management Process (GWM). For the problem formulation, the objective is to maximize net groundwater extraction, subject to head and head-gradient constraints. The decision variables are pumping rates at fixed wells and the system's state is represented with freshwater hydraulic head. The results of the proposed algorithm were similar to the published results (within 1%); discrepancies may be attributed to differences in the simulators and inherent differences between LP and GA. The GWM test case was then extended to a density-dependent flow and transport version. As formulated, the optimization problem is infeasible because of the density effects on hydraulic head. Therefore, the sum of the squared constraint violation (SSC) was used as a second objective. The result is a pareto curve showing optimal pumping rates versus the SSC. Analysis of this curve indicates that a similar net-extraction rate to the test case can be obtained with a minor violation in vertical head-gradient constraints. This study shows that a coupled ɛ-NSGAII/SEAWAT model can be used for the management of groundwater seawater intrusion. In the future, the proposed methodology will be applied to a real-world seawater intrusion and resource management problem for Santa Barbara, CA.
Wireless Sensor Networks - Node Localization for Various Industry Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derr, Kurt; Manic, Milos
Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less
Wireless Sensor Networks - Node Localization for Various Industry Problems
Derr, Kurt; Manic, Milos
2015-06-01
Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less
Situational reaction and planning
NASA Technical Reports Server (NTRS)
Yen, John; Pfluger, Nathan
1994-01-01
One problem faced in designing an autonomous mobile robot system is that there are many parameters of the system to define and optimize. While these parameters can be obtained for any given situation determining what the parameters should be in all situations is difficult. The usual solution is to give the system general parameters that work in all situations, but this does not help the robot to perform its best in a dynamic environment. Our approach is to develop a higher level situation analysis module that adjusts the parameters by analyzing the goals and history of sensor readings. By allowing the robot to change the system parameters based on its judgement of the situation, the robot will be able to better adapt to a wider set of possible situations. We use fuzzy logic in our implementation to reduce the number of basic situations the controller has to recognize. For example, a situation may be 60 percent open and 40 percent corridor, causing the optimal parameters to be somewhere between the optimal settings for the two extreme situations.
Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao
2018-05-01
The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Constrained Multi-Level Algorithm for Trajectory Optimization
NASA Astrophysics Data System (ADS)
Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi
The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in diagonalised methods, being the only single update with quadratic convergence. For a single level, the diagonalised multiplier method (DMM) is described in Ref.5. The main advantage of the two-level analogue of the DMM approach is that it avoids the inner loop optimizations required in the other methods. The scheme also introduces a gradient change measure to reduce the computational time needed to calculate the gradients. It is demonstrated that the new multi-level scheme leads to a robust procedure to handle the sensitivity of the constraints, and the multiple objectives of different trajectory phases. Ref. 1. Fahroo, F and Ross, M., " A Spectral Patching Method for Direct Trajectory Optimization" The Journal of the Astronautical Sciences, Vol.48, 2000, pp.269-286 Ref. 2. Phililps, C.A. and Drake, J.C., "Trajectory Optimization for a Missile using a Multitier Approach" Journal of Spacecraft and Rockets, Vol.37, 2000, pp.663-669 Ref. 3. Gath, P.F., and Calise, A.J., " Optimization of Launch Vehicle Ascent Trajectories with Path Constraints and Coast Arcs", Journal of Guidance, Control, and Dynamics, Vol. 24, 2001, pp.296-304 Ref. 4. Betts, J.T., " Survey of Numerical Methods for Trajectory Optimization", Journal of Guidance, Control, and Dynamics, Vol.21, 1998, pp. 193-207 Ref. 5. Adimurthy, V., " Launch Vehicle Trajectory Optimization", Acta Astronautica, Vol.15, 1987, pp.845-850.
NASA Astrophysics Data System (ADS)
Xu, Xuefang; Qiao, Zijian; Lei, Yaguo
2018-03-01
The presence of repetitive transients in vibration signals is a typical symptom of local faults of rotating machinery. Infogram was developed to extract the repetitive transients from vibration signals based on Shannon entropy. Unfortunately, the Shannon entropy is maximized for random processes and unable to quantify the repetitive transients buried in heavy random noise. In addition, the vibration signals always contain multiple intrinsic oscillatory modes due to interaction and coupling effects between machine components. Under this circumstance, high values of Shannon entropy appear in several frequency bands or high value of Shannon entropy doesn't appear in the optimal frequency band, and the infogram becomes difficult to interpret. Thus, it also becomes difficult to select the optimal frequency band for extracting the repetitive transients from the whole frequency bands. To solve these problems, multiscale fractional order entropy (MSFE) infogram is proposed in this paper. With the help of MSFE infogram, the complexity and nonlinear signatures of the vibration signals can be evaluated by quantifying spectral entropy over a range of scales in fractional domain. Moreover, the similarity tolerance of MSFE infogram is helpful for assessing the regularity of signals. A simulation and two experiments concerning a locomotive bearing and a wind turbine gear are used to validate the MSFE infogram. The results demonstrate that the MSFE infogram is more robust to the heavy noise than infogram and the high value is able to only appear in the optimal frequency band for the repetitive transient extraction.
NASA Astrophysics Data System (ADS)
Lee, Dae Young
The design of a small satellite is challenging since they are constrained by mass, volume, and power. To mitigate these constraint effects, designers adopt deployable configurations on the spacecraft that result in an interesting and difficult optimization problem. The resulting optimization problem is challenging due to the computational complexity caused by the large number of design variables and the model complexity created by the deployables. Adding to these complexities, there is a lack of integration of the design optimization systems into operational optimization, and the utility maximization of spacecraft in orbit. The developed methodology enables satellite Multidisciplinary Design Optimization (MDO) that is extendable to on-orbit operation. Optimization of on-orbit operations is possible with MDO since the model predictive controller developed in this dissertation guarantees the achievement of the on-ground design behavior in orbit. To enable the design optimization of highly constrained and complex-shaped space systems, the spherical coordinate analysis technique, called the "Attitude Sphere", is extended and merged with an additional engineering tools like OpenGL. OpenGL's graphic acceleration facilitates the accurate estimation of the shadow-degraded photovoltaic cell area. This technique is applied to the design optimization of the satellite Electric Power System (EPS) and the design result shows that the amount of photovoltaic power generation can be increased more than 9%. Based on this initial methodology, the goal of this effort is extended from Single Discipline Optimization to Multidisciplinary Optimization, which includes the design and also operation of the EPS, Attitude Determination and Control System (ADCS), and communication system. The geometry optimization satisfies the conditions of the ground development phase; however, the operation optimization may not be as successful as expected in orbit due to disturbances. To address this issue, for the ADCS operations, controllers based on Model Predictive Control that are effective for constraint handling were developed and implemented. All the suggested design and operation methodologies are applied to a mission "CADRE", which is space weather mission scheduled for operation in 2016. This application demonstrates the usefulness and capability of the methodology to enhance CADRE's capabilities, and its ability to be applied to a variety of missions.
Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation
NASA Technical Reports Server (NTRS)
Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R
2006-01-01
The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.
Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhancedmore » by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.« less
Optimal Output Trajectory Redesign for Invertible Systems
NASA Technical Reports Server (NTRS)
Devasia, S.
1996-01-01
Given a desired output trajectory, inversion-based techniques find input-state trajectories required to exactly track the output. These inversion-based techniques have been successfully applied to the endpoint tracking control of multijoint flexible manipulators and to aircraft control. The specified output trajectory uniquely determines the required input and state trajectories that are found through inversion. These input-state trajectories exactly track the desired output; however, they might not meet acceptable performance requirements. For example, during slewing maneuvers of flexible structures, the structural deformations, which depend on the required state trajectories, may be unacceptably large. Further, the required inputs might cause actuator saturation during an exact tracking maneuver, for example, in the flight control of conventional takeoff and landing aircraft. In such situations, a compromise is desired between the tracking requirement and other goals such as reduction of internal vibrations and prevention of actuator saturation; the desired output trajectory needs to redesigned. Here, we pose the trajectory redesign problem as an optimization of a general quadratic cost function and solve it in the context of linear systems. The solution is obtained as an off-line prefilter of the desired output trajectory. An advantage of our technique is that the prefilter is independent of the particular trajectory. The prefilter can therefore be precomputed, which is a major advantage over other optimization approaches. Previous works have addressed the issue of preshaping inputs to minimize residual and in-maneuver vibrations for flexible structures; Since the command preshaping is computed off-line. Further minimization of optimal quadratic cost functions has also been previously use to preshape command inputs for disturbance rejection. All of these approaches are applicable when the inputs to the system are known a priori. Typically, outputs (not inputs) are specified in tracking problems, and hence the input trajectories have to be computed. The inputs to the system are however, difficult to determine for non-minimum phase systems like flexible structures. One approach to solve this problem is to (1) choose a tracking controller (the desired output trajectory is now an input to the closed-loop system and (2) redesign this input to the closed-loop system. Thus we effectively perform output redesign. These redesigns are however, dependent on the choice of the tracking controllers. Thus the controller optimization and trajectory redesign problems become coupled; this coupled optimization is still an open problem. In contrast, we decouple the trajectory redesign problem from the choice of feedback-based tracking controller. It is noted that our approach remains valid when a particular tracking controller is chosen. In addition, the formulation of our problem not only allows for the minimization of residual vibration as in available techniques but also allows for the optimal reduction fo vibrations during the maneuver, e.g., the altitude control of flexible spacecraft. We begin by formulating the optimal output trajectory redesign problem and then solve it in the context of general linear systems. This theory is then applied to an example flexible structure, and simulation results are provided.
Barnett, Jason; Watson, Jean -Paul; Woodruff, David L.
2016-11-27
Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. Additionally, to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.
Computer image processing - The Viking experience. [digital enhancement techniques
NASA Technical Reports Server (NTRS)
Green, W. B.
1977-01-01
Computer processing of digital imagery from the Viking mission to Mars is discussed, with attention given to subjective enhancement and quantitative processing. Contrast stretching and high-pass filtering techniques of subjective enhancement are described; algorithms developed to determine optimal stretch and filtering parameters are also mentioned. In addition, geometric transformations to rectify the distortion of shapes in the field of view and to alter the apparent viewpoint of the image are considered. Perhaps the most difficult problem in quantitative processing of Viking imagery was the production of accurate color representations of Orbiter and Lander camera images.
NASA Technical Reports Server (NTRS)
Chamitoff, Gregory Errol
1992-01-01
Intelligent optimization methods are applied to the problem of real-time flight control for a class of airbreathing hypersonic vehicles (AHSV). The extreme flight conditions that will be encountered by single-stage-to-orbit vehicles, such as the National Aerospace Plane, present a tremendous challenge to the entire spectrum of aerospace technologies. Flight control for these vehicles is particularly difficult due to the combination of nonlinear dynamics, complex constraints, and parametric uncertainty. An approach that utilizes all available a priori and in-flight information to perform robust, real time, short-term trajectory planning is presented.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
Compressing Aviation Data in XML Format
NASA Technical Reports Server (NTRS)
Patel, Hemil; Lau, Derek; Kulkarni, Deepak
2003-01-01
Design, operations and maintenance activities in aviation involve analysis of variety of aviation data. This data is typically in disparate formats making it difficult to use with different software packages. Use of a self-describing and extensible standard called XML provides a solution to this interoperability problem. XML provides a standardized language for describing the contents of an information stream, performing the same kind of definitional role for Web content as a database schema performs for relational databases. XML data can be easily customized for display using Extensible Style Sheets (XSL). While self-describing nature of XML makes it easy to reuse, it also increases the size of data significantly. Therefore, transfemng a dataset in XML form can decrease throughput and increase data transfer time significantly. It also increases storage requirements significantly. A natural solution to the problem is to compress the data using suitable algorithm and transfer it in the compressed form. We found that XML-specific compressors such as Xmill and XMLPPM generally outperform traditional compressors. However, optimal use of Xmill requires of discovery of optimal options to use while running Xmill. This, in turn, depends on the nature of data used. Manual disc0ver.y of optimal setting can require an engineer to experiment for weeks. We have devised an XML compression advisory tool that can analyze sample data files and recommend what compression tool would work the best for this data and what are the optimal settings to be used with a XML compression tool.
Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R.
2017-01-01
Background We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). Conclusions These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling. PMID:28813442
Penas, David R; Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R
2017-01-01
We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.
Fine-Scale Structure Design for 3D Printing
NASA Astrophysics Data System (ADS)
Panetta, Francis Julian
Modern additive fabrication technologies can manufacture shapes whose geometric complexities far exceed what existing computational design tools can analyze or optimize. At the same time, falling costs have placed these fabrication technologies within the average consumer's reach. Especially for inexpert designers, new software tools are needed to take full advantage of 3D printing technology. This thesis develops such tools and demonstrates the exciting possibilities enabled by fine-tuning objects at the small scales achievable by 3D printing. The thesis applies two high-level ideas to invent these tools: two-scale design and worst-case analysis. The two-scale design approach addresses the problem that accurately simulating--let alone optimizing--the full-resolution geometry sent to the printer requires orders of magnitude more computational power than currently available. However, we can decompose the design problem into a small-scale problem (designing tileable structures achieving a particular deformation behavior) and a macro-scale problem (deciding where to place these structures in the larger object). This separation is particularly effective, since structures for every useful behavior can be designed once, stored in a database, then reused for many different macroscale problems. Worst-case analysis refers to determining how likely an object is to fracture by studying the worst possible scenario: the forces most efficiently breaking it. This analysis is needed when the designer has insufficient knowledge or experience to predict what forces an object will undergo, or when the design is intended for use in many different scenarios unknown a priori. The thesis begins by summarizing the physics and mathematics necessary to rigorously approach these design and analysis problems. Specifically, the second chapter introduces linear elasticity and periodic homogenization. The third chapter presents a pipeline to design microstructures achieving a wide range of effective isotropic elastic material properties on a single-material 3D printer. It also proposes a macroscale optimization algorithm placing these microstructures to achieve deformation goals under prescribed loads. The thesis then turns to worst-case analysis, first considering the macroscale problem: given a user's design, the fourth chapter aims to determine the distribution of pressures over the surface creating the highest stress at any point in the shape. Solving this problem exactly is difficult, so we introduce two heuristics: one to focus our efforts on only regions likely to concentrate stresses and another converting the pressure optimization into an efficient linear program. Finally, the fifth chapter introduces worst-case analysis at the microscopic scale, leveraging the insight that the structure of periodic homogenization enables us to solve the problem exactly and efficiently. Then we use this worst-case analysis to guide a shape optimization, designing structures with prescribed deformation behavior that experience minimal stresses in generic use.
NASA Astrophysics Data System (ADS)
Dahm, T.; Heimann, S.; Isken, M.; Vasyura-Bathke, H.; Kühn, D.; Sudhaus, H.; Kriegerowski, M.; Daout, S.; Steinberg, A.; Cesca, S.
2017-12-01
Seismic source and moment tensor waveform inversion is often ill-posed or non-unique if station coverage is poor or signals are weak. Therefore, the interpretation of moment tensors can become difficult, if not the full model space is explored, including all its trade-offs and uncertainties. This is especially true for non-double couple components of weak or shallow earthquakes, as for instance found in volcanic, geothermal or mining environments.We developed a bootstrap-based probabilistic optimization scheme (Grond), which is based on pre-calculated Greens function full waveform databases (e.g. fomosto tool, doi.org/10.5880/GFZ.2.1.2017.001). Grond is able to efficiently explore the full model space, the trade-offs and the uncertainties of source parameters. The program is highly flexible with respect to the adaption to specific problems, the design of objective functions, and the diversity of empirical datasets.It uses an integrated, robust waveform data processing based on a newly developed Python toolbox for seismology (Pyrocko, see Heimann et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.001), and allows for visual inspection of many aspects of the optimization problem. Grond has been applied to the CMT moment tensor inversion using W-phases, to nuclear explosions in Korea, to meteorite atmospheric explosions, to volcano-tectonic events during caldera collapse and to intra-plate volcanic and tectonic crustal events.Grond can be used to optimize simultaneously seismological waveforms, amplitude spectra and static displacements of geodetic data as InSAR and GPS (e.g. KITE, Isken et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.002). We present examples of Grond optimizations to demonstrate the advantage of a full exploration of source parameter uncertainties for interpretation.
Enabling Parametric Optimal Ascent Trajectory Modeling During Early Phases of Design
NASA Technical Reports Server (NTRS)
Holt, James B.; Dees, Patrick D.; Diaz, Manuel J.
2015-01-01
During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult -- in both cost and schedule -- to enact. Indeed, the current capability-based paradigm that has emerged because of the constrained economic environment calls for the infusion of knowledge acquired during later design phases into earlier design phases, i.e. bring knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture as the need for more economically viable access to space solutions are needed in today's constrained economic environment. The problem of ascent trajectory optimization is not a new one. There are several programs that are widely used in industry that allows trajectory analysts to, based on detailed vehicle and insertion orbit parameters, determine the optimal ascent trajectory. Yet, little information is known about the launch vehicle early in the design phase - information that is required of many different disciplines in order to successfully optimize the ascent trajectory. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. Additionally, when these obstacles are coupled with The Program to Optimize Simulated Trajectories [1] (POST), an industry standard program to optimize ascent trajectories that is difficult to use, it requires expert trajectory analysts to effectively optimize a vehicle's ascent trajectory. As it has been pointed out, the paradigm of trajectory optimization is still a very manual one because using modern computational resources on POST is still a challenging problem. The nuances and difficulties involved in correctly utilizing, and therefore automating, the program presents a large problem. In order to address these issues, the authors will discuss a methodology that has been developed. The methodology is two-fold: first, a set of heuristics will be introduced and discussed that were captured while working with expert analysts to replicate the current state-of-the-art; secondly, leveraging the power of modern computing to evaluate multiple trajectories simultaneously, and therefore, enable the exploration of the trajectory's design space early during the pre-conceptual and conceptual phases of design. When this methodology is coupled with design of experiments in order to train surrogate models, the authors were able to visualize the trajectory design space, enabling parametric optimal ascent trajectory information to be introduced with other pre-conceptual and conceptual design tools. The potential impact of this methodology's success would be a fully automated POST evaluation suite for the purpose of conceptual and preliminary design trade studies. This will enable engineers to characterize the ascent trajectory's sensitivity to design changes in an arbitrary number of dimensions and for finding settings for trajectory specific variables, which result in optimal performance for a "dialed-in" launch vehicle design. The effort described in this paper was developed for the Advanced Concepts Office [2] at NASA Marshall Space Flight Center
Focusing light through random photonic layers by four-element division algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin
2018-02-01
The propagation of waves in turbid media is a fundamental problem of optics with vast applications. Optical phase optimization approaches for focusing light through turbid media using phase control algorithm have been widely studied in recent years due to the rapid development of spatial light modulator. The existing approaches include element-based algorithms - stepwise sequential algorithm, continuous sequential algorithm and whole element optimization approaches - partitioning algorithm, transmission matrix approach and genetic algorithm. The advantage of element-based approaches is that the phase contribution of each element is very clear; however, because the intensity contribution of each element to the focal point is small especially for the case of large number of elements, the determination of the optimal phase for a single element would be difficult. In other words, the signal to noise ratio of the measurement is weak, leading to possibly local maximal during the optimization. As for whole element optimization approaches, all elements are employed for the optimization. Of course, signal to noise ratio during the optimization is improved. However, because more random processings are introduced into the processing, optimizations take more time to converge than the single element based approaches. Based on the advantages of both single element based approaches and whole element optimization approaches, we propose FEDA approach. Comparisons with the existing approaches show that FEDA only takes one third of measurement time to reach the optimization, which means that FEDA is promising in practical application such as for deep tissue imaging.
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongyu; Petra, Noemi; Stadler, Georg
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
Zhu, Hongyu; Petra, Noemi; Stadler, Georg; ...
2016-07-13
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar
2016-07-01
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. We show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.
A hybrid heuristic for the multiple choice multidimensional knapsack problem
NASA Astrophysics Data System (ADS)
Mansi, Raïd; Alves, Cláudio; Valério de Carvalho, J. M.; Hanafi, Saïd
2013-08-01
In this article, a new solution approach for the multiple choice multidimensional knapsack problem is described. The problem is a variant of the multidimensional knapsack problem where items are divided into classes, and exactly one item per class has to be chosen. Both problems are NP-hard. However, the multiple choice multidimensional knapsack problem appears to be more difficult to solve in part because of its choice constraints. Many real applications lead to very large scale multiple choice multidimensional knapsack problems that can hardly be addressed using exact algorithms. A new hybrid heuristic is proposed that embeds several new procedures for this problem. The approach is based on the resolution of linear programming relaxations of the problem and reduced problems that are obtained by fixing some variables of the problem. The solutions of these problems are used to update the global lower and upper bounds for the optimal solution value. A new strategy for defining the reduced problems is explored, together with a new family of cuts and a reformulation procedure that is used at each iteration to improve the performance of the heuristic. An extensive set of computational experiments is reported for benchmark instances from the literature and for a large set of hard instances generated randomly. The results show that the approach outperforms other state-of-the-art methods described so far, providing the best known solution for a significant number of benchmark instances.
Stochastic search, optimization and regression with energy applications
NASA Astrophysics Data System (ADS)
Hannah, Lauren A.
Designing clean energy systems will be an important task over the next few decades. One of the major roadblocks is a lack of mathematical tools to economically evaluate those energy systems. However, solutions to these mathematical problems are also of interest to the operations research and statistical communities in general. This thesis studies three problems that are of interest to the energy community itself or provide support for solution methods: R&D portfolio optimization, nonparametric regression and stochastic search with an observable state variable. First, we consider the one stage R&D portfolio optimization problem to avoid the sequential decision process associated with the multi-stage. The one stage problem is still difficult because of a non-convex, combinatorial decision space and a non-convex objective function. We propose a heuristic solution method that uses marginal project values---which depend on the selected portfolio---to create a linear objective function. In conjunction with the 0-1 decision space, this new problem can be solved as a knapsack linear program. This method scales well to large decision spaces. We also propose an alternate, provably convergent algorithm that does not exploit problem structure. These methods are compared on a solid oxide fuel cell R&D portfolio problem. Next, we propose Dirichlet Process mixtures of Generalized Linear Models (DPGLM), a new method of nonparametric regression that accommodates continuous and categorical inputs, and responses that can be modeled by a generalized linear model. We prove conditions for the asymptotic unbiasedness of the DP-GLM regression mean function estimate. We also give examples for when those conditions hold, including models for compactly supported continuous distributions and a model with continuous covariates and categorical response. We empirically analyze the properties of the DP-GLM and why it provides better results than existing Dirichlet process mixture regression models. We evaluate DP-GLM on several data sets, comparing it to modern methods of nonparametric regression like CART, Bayesian trees and Gaussian processes. Compared to existing techniques, the DP-GLM provides a single model (and corresponding inference algorithms) that performs well in many regression settings. Finally, we study convex stochastic search problems where a noisy objective function value is observed after a decision is made. There are many stochastic search problems whose behavior depends on an exogenous state variable which affects the shape of the objective function. Currently, there is no general purpose algorithm to solve this class of problems. We use nonparametric density estimation to take observations from the joint state-outcome distribution and use them to infer the optimal decision for a given query state. We propose two solution methods that depend on the problem characteristics: function-based and gradient-based optimization. We examine two weighting schemes, kernel-based weights and Dirichlet process-based weights, for use with the solution methods. The weights and solution methods are tested on a synthetic multi-product newsvendor problem and the hour-ahead wind commitment problem. Our results show that in some cases Dirichlet process weights offer substantial benefits over kernel based weights and more generally that nonparametric estimation methods provide good solutions to otherwise intractable problems.
The RNA World as a Model System to Study the Origin of Life.
Pressman, Abe; Blanco, Celia; Chen, Irene A
2015-10-05
Understanding how life arose is a fundamental problem of biology. Much progress has been made by adopting a synthetic and mechanistic perspective on originating life. We present a current view of the biochemistry of the origin of life, focusing on issues surrounding the emergence of an RNA World in which RNA dominated informational and functional roles. There is cause for optimism on this difficult problem: the prebiotic chemical inventory may not have been as nightmarishly complex as previously thought; the catalytic repertoire of ribozymes continues to expand, approaching the goal of self-replicating RNA; encapsulation in protocells provides evolutionary and biophysical advantages. Nevertheless, major issues remain unsolved, such as the origin of a genetic code. Attention to this field is particularly timely given the accelerating discovery and characterization of exoplanets. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lamour, B. G.; Harris, R. T.; Roberts, A. G.
2010-06-01
Power system reliability problems are very difficult to solve because the power systems are complex and geographically widely distributed and influenced by numerous unexpected events. It is therefore imperative to employ the most efficient optimization methods in solving the problems relating to reliability of the power system. This paper presents a reliability analysis and study of the power interruptions resulting from severe power outages in the Nelson Mandela Bay Municipality (NMBM), South Africa and includes an overview of the important factors influencing reliability, and methods to improve the reliability. The Blue Horizon Bay 22 kV overhead line, supplying a 6.6 kV residential sector has been selected. It has been established that 70% of the outages, recorded at the source, originate on this feeder.
Performance Analysis and Portability of the PLUM Load Balancing System
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
1998-01-01
The ability to dynamically adapt an unstructured mesh is a powerful tool for solving computational problems with evolving physical features; however, an efficient parallel implementation is rather difficult. To address this problem, we have developed PLUM, an automatic portable framework for performing adaptive numerical computations in a message-passing environment. PLUM requires that all data be globally redistributed after each mesh adaption to achieve load balance. We present an algorithm for minimizing this remapping overhead by guaranteeing an optimal processor reassignment. We also show that the data redistribution cost can be significantly reduced by applying our heuristic processor reassignment algorithm to the default mapping of the parallel partitioner. Portability is examined by comparing performance on a SP2, an Origin2000, and a T3E. Results show that PLUM can be successfully ported to different platforms without any code modifications.
NASA Astrophysics Data System (ADS)
Parekh, Ankit
Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal decomposition technique for an important biomedical signal processing problem: the detection of sleep spindles and K-complexes in human sleep electroencephalography (EEG). We propose a non-linear model for the EEG consisting of three components: (1) a transient (sparse piecewise constant) component, (2) a low-frequency component, and (3) an oscillatory component. The oscillatory component admits a sparse time-frequency representation. Using a convex objective function, we propose a fast non-linear optimization algorithm to estimate the three components in the proposed signal model. The low-frequency and oscillatory components are then used to estimate the K-complexes and sleep spindles respectively. The proposed detection method is shown to outperform several state-of-the-art automated sleep spindles detection methods.
An application of the Krylov-FSP-SSA method to parameter fitting with maximum likelihood
NASA Astrophysics Data System (ADS)
Dinh, Khanh N.; Sidje, Roger B.
2017-12-01
Monte Carlo methods such as the stochastic simulation algorithm (SSA) have traditionally been employed in gene regulation problems. However, there has been increasing interest to directly obtain the probability distribution of the molecules involved by solving the chemical master equation (CME). This requires addressing the curse of dimensionality that is inherent in most gene regulation problems. The finite state projection (FSP) seeks to address the challenge and there have been variants that further reduce the size of the projection or that accelerate the resulting matrix exponential. The Krylov-FSP-SSA variant has proved numerically efficient by combining, on one hand, the SSA to adaptively drive the FSP, and on the other hand, adaptive Krylov techniques to evaluate the matrix exponential. Here we apply this Krylov-FSP-SSA to a mutual inhibitory gene network synthetically engineered in Saccharomyces cerevisiae, in which bimodality arises. We show numerically that the approach can efficiently approximate the transient probability distribution, and this has important implications for parameter fitting, where the CME has to be solved for many different parameter sets. The fitting scheme amounts to an optimization problem of finding the parameter set so that the transient probability distributions fit the observations with maximum likelihood. We compare five optimization schemes for this difficult problem, thereby providing further insights into this approach of parameter estimation that is often applied to models in systems biology where there is a need to calibrate free parameters. Work supported by NSF grant DMS-1320849.
Mack, Jennifer W; Ilowite, Maya; Taddei, Sarah
2017-02-15
Previous work on difficult relationships between patients and physicians has largely focused on the adult primary care setting and has typically held patients responsible for challenges. Little is known about experiences in pediatrics and more serious illness; therefore, we examined difficult relationships between parents and physicians of children with cancer. This was a cross-sectional, semistructured interview study of parents and physicians of children with cancer at the Dana-Farber Cancer Institute and Boston Children's Hospital (Boston, Mass) in longitudinal primary oncology relationships in which the parent, physician, or both considered the relationship difficult. Interviews were audiotaped, transcribed, and subjected to a content analysis. Dyadic parent and physician interviews were performed for 29 relationships. Twenty were experienced as difficult by both parents and physicians; 1 was experienced as difficult by the parent only; and 8 were experienced as difficult by the physician only. Parent experiences of difficult relationships were characterized by an impaired therapeutic alliance with physicians; physicians experienced difficult relationships as demanding. Core underlying issues included problems of connection and understanding (n = 8), confrontational parental advocacy (n = 16), mental health issues (n = 2), and structural challenges to care (n = 3). Although problems of connection and understanding often improved over time, problems of confrontational advocacy tended to solidify. Parents and physicians both experienced difficult relationships as highly distressing. Although prior conceptions of difficult relationships have held patients responsible for challenges, this study has found that difficult relationships follow several patterns. Some challenges, such as problems of connection and understanding, offer an opportunity for healing. However, confrontational advocacy appears especially refractory to repair; special consideration of these relationships and avenues for repairing them are needed. Cancer 2017;123:675-681. © 2016 American Cancer Society. © 2016 American Cancer Society.
Elements of an algorithm for optimizing a parameter-structural neural network
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2016-06-01
The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
Difficult Decisions Made Easier
NASA Technical Reports Server (NTRS)
2006-01-01
NASA missions are extremely complex and prone to sudden, catastrophic failure if equipment falters or if an unforeseen event occurs. For these reasons, NASA trains to expect the unexpected. It tests its equipment and systems in extreme conditions, and it develops risk-analysis tests to foresee any possible problems. The Space Agency recently worked with an industry partner to develop reliability analysis software capable of modeling complex, highly dynamic systems, taking into account variations in input parameters and the evolution of the system over the course of a mission. The goal of this research was multifold. It included performance and risk analyses of complex, multiphase missions, like the insertion of the Mars Reconnaissance Orbiter; reliability analyses of systems with redundant and/or repairable components; optimization analyses of system configurations with respect to cost and reliability; and sensitivity analyses to identify optimal areas for uncertainty reduction or performance enhancement.
QUASAR--scoring and ranking of sequence-structure alignments.
Birzele, Fabian; Gewehr, Jan E; Zimmer, Ralf
2005-12-15
Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.
Nakrani, Sunil; Tovey, Craig
2007-12-01
An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.
Optimal dietary patterns designed from local foods to achieve maternal nutritional goals.
Raymond, Jofrey; Kassim, Neema; Rose, Jerman W; Agaba, Morris
2018-04-04
Achieving nutritional requirements for pregnant and lactating mothers in rural households while maintaining the intake of local and culture-specific foods can be a difficult task. Deploying a linear goal programming approach can effectively generate optimal dietary patterns that incorporate local and culturally acceptable diets. The primary objective of this study was to determine whether a realistic and affordable diet that achieves nutritional goals for rural pregnant and lactating women can be formulated from locally available foods in Tanzania. A cross sectional study was conducted to assess dietary intakes of 150 pregnant and lactating women using a weighed dietary record (WDR), 24 h dietary recalls and a 7-days food record. A market survey was also carried out to estimate the cost per 100 g of edible portion of foods that are frequently consumed in the study population. Dietary survey and market data were then used to define linear programming (LP) model parameters for diet optimisation. All LP analyses were done using linear program solver to generate optimal dietary patterns. Our findings showed that optimal dietary patterns designed from locally available foods would improve dietary adequacy for 15 and 19 selected nutrients in pregnant and lactating women, respectively, but inadequacies remained for iron, zinc, folate, pantothenic acid, and vitamin E, indicating that these are problem nutrients (nutrients that did not achieve 100% of their RNIs in optimised diets) in the study population. These findings suggest that optimal use of local foods can improve dietary adequacy for rural pregnant and lactating women aged 19-50 years. However, additional cost-effective interventions are needed to ensure adequate intakes for the identified problem nutrients.
Optimality versus stability in water resource allocation.
Read, Laura; Madani, Kaveh; Inanloo, Bahareh
2014-01-15
Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an additional component to an analysis that seeks to distribute water in a negotiated process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pareto-optimal phylogenetic tree reconciliation
Libeskind-Hadas, Ran; Wu, Yi-Chieh; Bansal, Mukul S.; Kellis, Manolis
2014-01-01
Motivation: Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. Results: We address this problem by giving an efficient algorithm for computing Pareto-optimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. Availability and implementation: Our Python tools are freely available at www.cs.hmc.edu/∼hadas/xscape. Contact: mukul@engr.uconn.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24932009
Automated control of hierarchical systems using value-driven methods
NASA Technical Reports Server (NTRS)
Pugh, George E.; Burke, Thomas E.
1990-01-01
An introduction is given to the Value-driven methodology, which has been successfully applied to solve a variety of difficult decision, control, and optimization problems. Many real-world decision processes (e.g., those encountered in scheduling, allocation, and command and control) involve a hierarchy of complex planning considerations. For such problems it is virtually impossible to define a fixed set of rules that will operate satisfactorily over the full range of probable contingencies. Decision Science Applications' value-driven methodology offers a systematic way of automating the intuitive, common-sense approach used by human planners. The inherent responsiveness of value-driven systems to user-controlled priorities makes them particularly suitable for semi-automated applications in which the user must remain in command of the systems operation. Three examples of the practical application of the approach in the automation of hierarchical decision processes are discussed: the TAC Brawler air-to-air combat simulation is a four-level computerized hierarchy; the autonomous underwater vehicle mission planning system is a three-level control system; and the Space Station Freedom electrical power control and scheduling system is designed as a two-level hierarchy. The methodology is compared with rule-based systems and with other more widely-known optimization techniques.
On application of vector optimization in the problem of formation of portfolio of counterparties
NASA Astrophysics Data System (ADS)
Gorbich, A. L.; Medvedeva, M. A.; Medvedev, M. A.
2016-12-01
For the effective functioning of any enterprise it is necessary to choose the right partners: suppliers of raw material, buyers of finished products, with which the company interacts in the course of their business. However, the presence on the market of big amounts of enterprises makes the choice the most appropriate among them very difficult and requires the ability to objectively assess of the possible partners, based on multilateral analysis of their activities. This analysis can be carried out based on the solution of multiobjective problems of mathematical programming by using the methods of vector optimization. The work considers existing methods of selection of counterparties, as well as the theoretical foundations for the proposed methodology. It also describes a computer program that analyzes the raw data for contractors and allows choosing the best portfolio of suppliers of enterprise. The feature of selection of counterparties is that today's market has a large number of enterprises in similar activities. Successful choice of contractor will help to avoid unpleasant situations and financial losses, as well as to find a reliable partner in his person for the implementation of the production strategy of the company.
NASA Astrophysics Data System (ADS)
Shi, Y.; Long, Y.; Wi, X. L.
2014-04-01
When tourists visiting multiple tourist scenic spots, the travel line is usually the most effective road network according to the actual tour process, and maybe the travel line is different from planned travel line. For in the field of navigation, a proposed travel line is normally generated automatically by path planning algorithm, considering the scenic spots' positions and road networks. But when a scenic spot have a certain area and have multiple entrances or exits, the traditional described mechanism of single point coordinates is difficult to reflect these own structural features. In order to solve this problem, this paper focuses on the influence on the process of path planning caused by scenic spots' own structural features such as multiple entrances or exits, and then proposes a doubleweighted Graph Model, for the weight of both vertexes and edges of proposed Model can be selected dynamically. And then discusses the model building method, and the optimal path planning algorithm based on Dijkstra algorithm and Prim algorithm. Experimental results show that the optimal planned travel line derived from the proposed model and algorithm is more reasonable, and the travelling order and distance would be further optimized.
Optimization of cascade blade mistuning under flutter and forced response constraints
NASA Technical Reports Server (NTRS)
Murthy, D. V.; Haftka, R. T.
1984-01-01
In the development of modern turbomachinery, problems of flutter instabilities and excessive forced response of a cascade of blades that were encountered have often turned out to be extremely difficult to eliminate. The study of these instabilities and the forced response is complicated by the presence of mistuning; that is, small differences among the individual blades. The theory of mistuned cascade behavior shows that mistuning can have a beneficial effect on the stability of the rotor. This beneficial effect is produced by the coupling between the more stable and less stable flutter modes introduced by mistuning. The effect of mistuning on the forced response can be either beneficial or adverse. Kaza and Kielb have studied the effects of two types of mistuning on the flutter and forced response: alternate mistuning where alternte blades are identical and random mistuning. The objective is to investigate other patterns of mistuning which maximize the beneficial effects on the flutter and forced response of the cascade. Numerical optimization techniques are employed to obtain optimal mistuning patterns. The optimization program seeks to minimize the amount of mistuning required to satisfy constraints on flutter speed and forced response.
NASA Astrophysics Data System (ADS)
Protim Das, Partha; Gupta, P.; Das, S.; Pradhan, B. B.; Chakraborty, S.
2018-01-01
Maraging steel (MDN 300) find its application in many industries as it exhibits high hardness which are very difficult to machine material. Electro discharge machining (EDM) is an extensively popular machining process which can be used in machining of such materials. Optimization of response parameters are essential for effective machining of these materials. Past researchers have already used Taguchi for obtaining the optimal responses of EDM process for this material with responses such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) considering discharge current, pulse on time, pulse off time, arc gap, and duty cycle as process parameters. In this paper, grey relation analysis (GRA) with fuzzy logic is applied to this multi objective optimization problem to check the responses by an implementation of the derived parametric setting. It was found that the parametric setting derived by the proposed method results in better a response than those reported by the past researchers. Obtained results are also verified using the technique for order of preference by similarity to ideal solution (TOPSIS). The predicted result also shows that there is a significant improvement in comparison to the results of past researchers.
Optimal Design of Cable-Driven Manipulators Using Particle Swarm Optimization.
Bryson, Joshua T; Jin, Xin; Agrawal, Sunil K
2016-08-01
The design of cable-driven manipulators is complicated by the unidirectional nature of the cables, which results in extra actuators and limited workspaces. Furthermore, the particular arrangement of the cables and the geometry of the robot pose have a significant effect on the cable tension required to effect a desired joint torque. For a sufficiently complex robot, the identification of a satisfactory cable architecture can be difficult and can result in multiply redundant actuators and performance limitations based on workspace size and cable tensions. This work leverages previous research into the workspace analysis of cable systems combined with stochastic optimization to develop a generalized methodology for designing optimized cable routings for a given robot and desired task. A cable-driven robot leg performing a walking-gait motion is used as a motivating example to illustrate the methodology application. The components of the methodology are described, and the process is applied to the example problem. An optimal cable routing is identified, which provides the necessary controllable workspace to perform the desired task and enables the robot to perform that task with minimal cable tensions. A robot leg is constructed according to this routing and used to validate the theoretical model and to demonstrate the effectiveness of the resulting cable architecture.
Low, slow, small target recognition based on spatial vision network
NASA Astrophysics Data System (ADS)
Cheng, Zhao; Guo, Pei; Qi, Xin
2018-03-01
Traditional photoelectric monitoring is monitored using a large number of identical cameras. In order to ensure the full coverage of the monitoring area, this monitoring method uses more cameras, which leads to more monitoring and repetition areas, and higher costs, resulting in more waste. In order to reduce the monitoring cost and solve the difficult problem of finding, identifying and tracking a low altitude, slow speed and small target, this paper presents spatial vision network for low-slow-small targets recognition. Based on camera imaging principle and monitoring model, spatial vision network is modeled and optimized. Simulation experiment results demonstrate that the proposed method has good performance.
NASA Astrophysics Data System (ADS)
Chandra, Rishabh
Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.
Underestimation of Project Costs
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2015-01-01
Large projects almost always exceed their budgets. Estimating cost is difficult and estimated costs are usually too low. Three different reasons are suggested: bad luck, overoptimism, and deliberate underestimation. Project management can usually point to project difficulty and complexity, technical uncertainty, stakeholder conflicts, scope changes, unforeseen events, and other not really unpredictable bad luck. Project planning is usually over-optimistic, so the likelihood and impact of bad luck is systematically underestimated. Project plans reflect optimism and hope for success in a supposedly unique new effort rather than rational expectations based on historical data. Past project problems are claimed to be irrelevant because "This time it's different." Some bad luck is inevitable and reasonable optimism is understandable, but deliberate deception must be condemned. In a competitive environment, project planners and advocates often deliberately underestimate costs to help gain project approval and funding. Project benefits, cost savings, and probability of success are exaggerated and key risks ignored. Project advocates have incentives to distort information and conceal difficulties from project approvers. One naively suggested cure is more openness, honesty, and group adherence to shared overall goals. A more realistic alternative is threatening overrun projects with cancellation. Neither approach seems to solve the problem. A better method to avoid the delusions of over-optimism and the deceptions of biased advocacy is to base the project cost estimate on the actual costs of a large group of similar projects. Over optimism and deception can continue beyond the planning phase and into project execution. Hard milestones based on verified tests and demonstrations can provide a reality check.
The Difficult Patron in the Academic Library: Problem Issues or Problem Patrons?
ERIC Educational Resources Information Center
Simmonds Patience L.; Ingold, Jane L.
2002-01-01
Identifies difficult patron issues in academic libraries from the librarians' perspectives and offers solutions to try and prevent them from becoming problems. Topics include labeling academic library users; eliminating sources of conflict between faculty and library staff; and conflicts between students and library staff. (Author/LRW)
Flow Navigation by Smart Microswimmers via Reinforcement Learning
NASA Astrophysics Data System (ADS)
Colabrese, Simona; Gustavsson, Kristian; Celani, Antonio; Biferale, Luca
2017-04-01
Smart active particles can acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. Their goal is to learn the best way to navigate by exploiting the underlying flow whenever possible. As an example, we focus our attention on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, given the constraints enforced by fluid mechanics. By means of numerical experiments, we show that swimmers indeed learn nearly optimal strategies just by experience. A reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This Letter illustrates the potential of reinforcement learning algorithms to model adaptive behavior in complex flows and paves the way towards the engineering of smart microswimmers that solve difficult navigation problems.
SU-F-T-419: Evaluation of PlanIQ Feasibility DVH as Planning Objectives for Skull Base SBRT Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, W; Wang, H; Chi, P
2016-06-15
Purpose: PlanIQ(Sun Nuclear Corporation) can provide feasibility measures on organs-at-risk(OARs) around the target based on depth, local anatomy density and energy of radiation beam used. This study is to test and evaluate PlanIQ feasibility DVHs as optimization objectives in the treatment planning process, and to investigate the potential to use them in routine clinical cases to improve planning efficiency. Methods: Two to three arcs VMAT Treatment plans were generated in Pinnacle based on PlanIQ feasibility DVH for six skull base patients who previously treated with SBRT. The PlanIQ feasibility DVH for each OAR consists of four zones – impossible (atmore » 100% target coverage), difficult, challenging and probable. Constrains to achieve DVH in difficult zone were used to start plan optimization. Further adjustment was made to improve coverage. The plan DVHs were compared to PlanIQ feasibility DVH to assess the dose received by 0%(D0), 5%(D5), 10%(D10) and 50%(D50) of the OAR volumes. Results: A total of 90 OARs were evaluated for 6 patients (mean 15 OARs, range 11–18 OARs). We used >98% PTV coverage as planning goal since it’s difficult to achieve 100% target coverage. For the generated plans, 96.7% of the OARs achieved D0 or D5 within difficult zone or impossible zone (ipsilateral OARs 93.5%, contralateral OARs 100%), while 90% and 65.6% of the OARs achieved D10 and D50 within difficult zone, respectively. Seventeen of the contralateral and out of field OARs achieved DVHs in impossible zone. For OARs adjacent or overlapped with target volume, the D0 and D5 are challenging to be optimized into difficult zone. All plans were completed within 2–4 adjustments to improve target coverage and uniformity. Conclusion: PlanIQ feasibility tool has the potential to provide difficult but achievable initial optimization objectives and therefore reduce the planning time to obtain a well optimized plan.« less
NASA Technical Reports Server (NTRS)
Vajingortin, L. D.; Roisman, W. P.
1991-01-01
The problem of ensuring the required quality of products and/or technological processes often becomes more difficult due to the fact that there is not general theory of determining the optimal sets of value of the primary factors, i.e., of the output parameters of the parts and units comprising an object and ensuring the correspondence of the object's parameters to the quality requirements. This is the main reason for the amount of time taken to finish complex vital article. To create this theory, one has to overcome a number of difficulties and to solve the following tasks: the creation of reliable and stable mathematical models showing the influence of the primary factors on the output parameters; finding a new technique of assigning tolerances for primary factors with regard to economical, technological, and other criteria, the technique being based on the solution of the main problem; well reasoned assignment of nominal values for primary factors which serve as the basis for creating tolerances. Each of the above listed tasks is of independent importance. An attempt is made to give solutions for this problem. The above problem dealing with quality ensuring an mathematically formalized aspect is called the multiple inverse problem.
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Physical Analysis of the Biomolecules Causing Periodontitis
NASA Astrophysics Data System (ADS)
Shin, Jehun; Lee, Seong Hyeon; Kim, Chai Rin
Periodontitis caused by microorganisms that adhere to and grow on the tooth's surfaces, is an inflammatory diseases causing gum infection. The disease damages the soft tissues that surround and support the teeth and destroys the bone that supports teeth and finally causes tooth loss. An increased risk of stroke and heart attack problems are related to the periodontitis as well. Most bacteria or pathogens attach to gum surface where they form a biofilm. Bacterial cells in biofilms are well protected against antibiotics. The mechanisms of action are still unknown, and it is difficult to control pathogens with antibiotics in biofilm infections and thus the study on the antibiotics is needed. In this research, a number of natural water soluble, small-sized antibiotics molecules and their derivatives are studied. Molecular editing programs such as Gamess, Chemcraft and Avogadro, with an auto-optimization feature that determines the theoretical values of the structure's atomic properties are used to build virtually any molecule with the optimized geometry according to various force field options. The UFF (Universal Force Field) is used for optimizing most molecules.
Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.
NASA Astrophysics Data System (ADS)
Hawary, A. F.; Razak, N. A.
2018-05-01
Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.
Improved Fuzzy K-Nearest Neighbor Using Modified Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Jamaluddin; Siringoringo, Rimbun
2017-12-01
Fuzzy k-Nearest Neighbor (FkNN) is one of the most powerful classification methods. The presence of fuzzy concepts in this method successfully improves its performance on almost all classification issues. The main drawbackof FKNN is that it is difficult to determine the parameters. These parameters are the number of neighbors (k) and fuzzy strength (m). Both parameters are very sensitive. This makes it difficult to determine the values of ‘m’ and ‘k’, thus making FKNN difficult to control because no theories or guides can deduce how proper ‘m’ and ‘k’ should be. This study uses Modified Particle Swarm Optimization (MPSO) to determine the best value of ‘k’ and ‘m’. MPSO is focused on the Constriction Factor Method. Constriction Factor Method is an improvement of PSO in order to avoid local circumstances optima. The model proposed in this study was tested on the German Credit Dataset. The test of the data/The data test has been standardized by UCI Machine Learning Repository which is widely applied to classification problems. The application of MPSO to the determination of FKNN parameters is expected to increase the value of classification performance. Based on the experiments that have been done indicating that the model offered in this research results in a better classification performance compared to the Fk-NN model only. The model offered in this study has an accuracy rate of 81%, while. With using Fk-NN model, it has the accuracy of 70%. At the end is done comparison of research model superiority with 2 other classification models;such as Naive Bayes and Decision Tree. This research model has a better performance level, where Naive Bayes has accuracy 75%, and the decision tree model has 70%
Why Do Disadvantaged Filipino Children Find Word Problems in English Difficult?
ERIC Educational Resources Information Center
Bautista, Debbie; Mulligan, Joanne
2010-01-01
Young Filipino students are expected to solve mathematical word problems in English, a language that many encounter only in schools. Using individual interviews of 17 Filipino children, we investigated why word problems in English are difficult and the extent to which the language interferes with performance. Results indicate that children could…
Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback
NASA Astrophysics Data System (ADS)
Zhang, Wenle; Liu, Jianchang
2016-04-01
This article addresses the ultra-fast consensus problem of high-order discrete-time multi-agent systems based on a unified consensus framework. A novel multi-step predictive output mechanism is proposed under a directed communication topology containing a spanning tree. By predicting the outputs of a network several steps ahead and adding this information into the consensus protocol, it is shown that the asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus. The difficult problem of selecting the optimal control gain is solved well by introducing a variable called convergence step. In addition, the ultra-fast formation achievement is studied on the basis of this new consensus protocol. Finally, the ultra-fast consensus with respect to a reference model and robust consensus is discussed. Some simulations are performed to illustrate the effectiveness of the theoretical results.
NASA Technical Reports Server (NTRS)
Mandra, Salvatore
2017-01-01
We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.
Numerical modeling process of embolization arteriovenous malformation
NASA Astrophysics Data System (ADS)
Cherevko, A. A.; Gologush, T. S.; Petrenko, I. A.; Ostapenko, V. V.
2017-10-01
Cerebral arteriovenous malformation is a difficult, dangerous, and most frequently encountered vascular failure of development. It consists of vessels of very small diameter, which perform a discharge of blood from the artery to the vein. In this regard it can be adequately modeled using porous medium. Endovascular embolization of arteriovenous malformation is effective treatment of such pathologies. However, the danger of intraoperative rupture during embolization still exists. The purpose is to model this process and build an optimization algorithm for arteriovenous malformation embolization. To study the different embolization variants, the initial-boundary value problems, describing the process of embolization, were solved numerically by using a new modification of CABARET scheme. The essential moments of embolization process were modeled in our numerical experiments. This approach well reproduces the essential features of discontinuous two-phase flows, arising in the embolization problems. It can be used for further study on the process of embolization.
Numerical approach for unstructured quantum key distribution
Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert
2016-01-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739
A Method for Aircraft Concept Selection Using Multicriteria Interactive Genetic Algorithms
NASA Technical Reports Server (NTRS)
Buonanno, Michael; Mavris, Dimitri
2005-01-01
The problem of aircraft concept selection has become increasingly difficult in recent years as a result of a change from performance as the primary evaluation criteria of aircraft concepts to the current situation in which environmental effects, economics, and aesthetics must also be evaluated and considered in the earliest stages of the decision-making process. This has prompted a shift from design using historical data regression techniques for metric prediction to the use of physics-based analysis tools that are capable of analyzing designs outside of the historical database. The use of optimization methods with these physics-based tools, however, has proven difficult because of the tendency of optimizers to exploit assumptions present in the models and drive the design towards a solution which, while promising to the computer, may be infeasible due to factors not considered by the computer codes. In addition to this difficulty, the number of discrete options available at this stage may be unmanageable due to the combinatorial nature of the concept selection problem, leading the analyst to arbitrarily choose a sub-optimum baseline vehicle. These concept decisions such as the type of control surface scheme to use, though extremely important, are frequently made without sufficient understanding of their impact on the important system metrics because of a lack of computational resources or analysis tools. This paper describes a hybrid subjective/quantitative optimization method and its application to the concept selection of a Small Supersonic Transport. The method uses Genetic Algorithms to operate on a population of designs and promote improvement by varying more than sixty parameters governing the vehicle geometry, mission, and requirements. In addition to using computer codes for evaluation of quantitative criteria such as gross weight, expert input is also considered to account for criteria such as aeroelasticity or manufacturability which may be impossible or too computationally expensive to consider explicitly in the analysis. Results indicate that concepts resulting from the use of this method represent designs which are promising to both the computer and the analyst, and that a mapping between concepts and requirements that would not otherwise be apparent is revealed.
Adaptiveness in monotone pseudo-Boolean optimization and stochastic neural computation.
Grossi, Giuliano
2009-08-01
Hopfield neural network (HNN) is a nonlinear computational model successfully applied in finding near-optimal solutions of several difficult combinatorial problems. In many cases, the network energy function is obtained through a learning procedure so that its minima are states falling into a proper subspace (feasible region) of the search space. However, because of the network nonlinearity, a number of undesirable local energy minima emerge from the learning procedure, significantly effecting the network performance. In the neural model analyzed here, we combine both a penalty and a stochastic process in order to enhance the performance of a binary HNN. The penalty strategy allows us to gradually lead the search towards states representing feasible solutions, so avoiding oscillatory behaviors or asymptotically instable convergence. Presence of stochastic dynamics potentially prevents the network to fall into shallow local minima of the energy function, i.e., quite far from global optimum. Hence, for a given fixed network topology, the desired final distribution on the states can be reached by carefully modulating such process. The model uses pseudo-Boolean functions both to express problem constraints and cost function; a combination of these two functions is then interpreted as energy of the neural network. A wide variety of NP-hard problems fall in the class of problems that can be solved by the model at hand, particularly those having a monotonic quadratic pseudo-Boolean function as constraint function. That is, functions easily derived by closed algebraic expressions representing the constraint structure and easy (polynomial time) to maximize. We show the asymptotic convergence properties of this model characterizing its state space distribution at thermal equilibrium in terms of Markov chain and give evidence of its ability to find high quality solutions on benchmarks and randomly generated instances of two specific problems taken from the computational graph theory.
Fruit fly optimization based least square support vector regression for blind image restoration
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei
2014-11-01
The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and performs better. Both objective and subjective restoration performances are studied in the comparison experiments.
Death of the (traveling) salesman: primates do not show clear evidence of multi-step route planning.
Janson, Charles
2014-05-01
Several comparative studies have linked larger brain size to a fruit-eating diet in primates and other animals. The general explanation for this correlation is that fruit is a complex resource base, consisting of many discrete patches of many species, each with distinct nutritional traits, the production of which changes predictably both within and between seasons. Using this information to devise optimal spatial foraging strategies is among the most difficult problems to solve in all of mathematics, a version of the famous Traveling Salesman Problem. Several authors have suggested that primates might use their large brains and complex cognition to plan foraging strategies that approximate optimal solutions to this problem. Three empirical studies have examined how captive primates move when confronted with the simplest version of the problem: a spatial array of equally valuable goals. These studies have all concluded that the subjects remember many food source locations and show very efficient travel paths; some authors also inferred that the subjects may plan their movements based on considering combinations of three or more future goals at a time. This analysis re-examines critically the claims of planned movement sequences from the evidence presented. The efficiency of observed travel paths is largely consistent with use of the simplest of foraging rules, such as visiting the nearest unused "known" resource. Detailed movement sequences by test subjects are most consistent with a rule that mentally sums spatial information from all unused resources in a given trial into a single "gravity" measure that guides movements to one destination at a time. © 2013 Wiley Periodicals, Inc.
Kochanska, Grazyna; Kim, Sanghag
2012-01-01
Background Research has shown that interactions between young children’s temperament and the quality of care they receive predict the emergence of positive and negative socioemotional developmental outcomes. This multi-method study addresses such interactions, using observed and mother-rated measures of difficult temperament, children’s committed, self-regulated compliance and externalizing problems, and mothers’ responsiveness in a low-income sample. Methods In 186 30-month-old children, difficult temperament was observed in the laboratory (as poor effortful control and high anger proneness), and rated by mothers. Mothers’ responsiveness was observed in lengthy naturalistic interactions at 30 and 33 months. At 40 months, children’s committed compliance and externalizing behavior problems were assessed using observations and several well-established maternal report instruments. Results Parallel significant interactions between child difficult temperament and maternal responsiveness were found across both observed and mother-rated measures of temperament. For difficult children, responsiveness had a significant effect such that those children were more compliant and had fewer externalizing problems when they received responsive care, but were less compliant and had more behavior problems when they received unresponsive care. For children with easy temperaments, maternal responsiveness and developmental outcomes were unrelated. All significant interactions reflected the diathesis-stress model. There was no evidence of differential susceptibility, perhaps due to the pervasive stress present in the ecology of the studied families. Conclusions Those findings add to the growing body of evidence that for temperamentally difficult children, unresponsive parenting exacerbates risks for behavior problems, but responsive parenting can effectively buffer risks conferred by temperament. PMID:23057713
A Research Methodology for Studying What Makes Some Problems Difficult to Solve
ERIC Educational Resources Information Center
Gulacar, Ozcan; Fynewever, Herb
2010-01-01
We present a quantitative model for predicting the level of difficulty subjects will experience with specific problems. The model explicitly accounts for the number of subproblems a problem can be broken into and the difficultly of each subproblem. Although the model builds on previously published models, it is uniquely suited for blending with…
NASA Astrophysics Data System (ADS)
Govindaraju, Parithi
Determining the optimal requirements for and design variable values of new systems, which operate along with existing systems to provide a set of overarching capabilities, as a single task is challenging due to the highly interconnected effects that setting requirements on a new system's design can have on how an operator uses this newly designed system. This task of determining the requirements and the design variable values becomes even more difficult because of the presence of uncertainties in the new system design and in the operational environment. This research proposed and investigated aspects of a framework that generates optimum design requirements of new, yet-to-be-designed systems that, when operating alongside other systems, will optimize fleet-level objectives while considering the effects of various uncertainties. Specifically, this research effort addresses the issues of uncertainty in the design of the new system through reliability-based design optimization methods, and uncertainty in the operations of the fleet through descriptive sampling methods and robust optimization formulations. In this context, fleet-level performance metrics result from using the new system alongside other systems to accomplish an overarching objective or mission. This approach treats the design requirements of a new system as decision variables in an optimization problem formulation that a user in the position of making an acquisition decision could solve. This solution would indicate the best new system requirements-and an associated description of the best possible design variable variables for that new system-to optimize the fleet level performance metric(s). Using a problem motivated by recorded operations of the United States Air Force Air Mobility Command for illustration, the approach is demonstrated first for a simplified problem that only considers demand uncertainties in the service network and the proposed methodology is used to identify the optimal design requirements and optimal aircraft sizing variables of new, yet-to-be-introduced aircraft. With this new aircraft serving alongside other existing aircraft, the fleet of aircraft satisfy the desired demand for cargo transportation, while maximizing fleet productivity and minimizing fuel consumption via a multi-objective problem formulation. The approach is then extended to handle uncertainties in both the design of the new system and in the operations of the fleet. The propagation of uncertainties associated with the conceptual design of the new aircraft to the uncertainties associated with the subsequent operations of the new and existing aircraft in the fleet presents some unique challenges. A computationally tractable hybrid robust counterpart formulation efficiently handles the confluence of the two types of domain-specific uncertainties. This hybrid formulation is tested on a larger route network problem to demonstrate the scalability of the approach. Following the presentation of the results obtained, a summary discussion indicates how decision-makers might use these results to set requirements for new aircraft that meet operational needs while balancing the environmental impact of the fleet with fleet-level performance. Comparing the solutions from the uncertainty-based and deterministic formulations via a posteriori analysis demonstrates the efficacy of the robust and reliability-based optimization formulations in addressing the different domain-specific uncertainties. Results suggest that the aircraft design requirements and design description determined through the hybrid robust counterpart formulation approach differ from solutions obtained from the simplistic deterministic approach, and leads to greater fleet-level fuel savings, when subjected to real-world uncertain scenarios (more robust to uncertainty). The research, though applied to a specific air cargo application, is technically agnostic in nature and can be applied to other facets of policy and acquisition management, to explore capability trade spaces for different vehicle systems, mitigate risks, define policy and potentially generate better returns on investment. Other domains relevant to policy and acquisition decisions could utilize the problem formulation and solution approach proposed in this dissertation provided that the problem can be split into a non-linear programming problem to describe the new system sizing and the fleet operations problem can be posed as a linear/integer programming problem.
How Does Optimism Suppress Immunity? Evaluation of Three Affective Pathways
Segerstrom, Suzanne C.
2005-01-01
Studies have linked optimism to poorer immunity during difficult stressors. In the present report, when first-year law students (N = 46) relocated to attend law school, reducing conflict among curricular and extracurricular goals, optimism predicted larger delayed type hypersensitivity responses, indicating more robust in vivo cellular immunity. However, when students did not relocate, increasing goal conflict, optimism predicted smaller responses. Although this effect has been attributed to negative affect when difficult stressors violate optimistic expectancies, distress did not mediate optimism’s effects on immunity. Alternative affective mediators related to engagement – engaged affect and fatigue – likewise failed to mediate optimism’s effects, although all three types of affect independently influenced in vivo immunity. Alternative pathways include effort or self-regulatory depletion. PMID:17014284
Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Perez, Hector Eduardo
This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.
Steps Toward Optimal Competitive Scheduling
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen
2006-01-01
This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum of users preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a committee is usually in charge of deciding the priority of each mission competing for access to the DSN within a time period while scheduling. Instead, we can assume that the committee assigns a budget to each mission.This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum ofsers preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a committee is usually in charge of deciding the priority of each mission competing for access to the DSN within a time period while scheduling. Instead, we can assume that the committee assigns a budget to each mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au; Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au
The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem ofmore » optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.« less
TNA4OptFlux – a software tool for the analysis of strain optimization strategies
2013-01-01
Background Rational approaches for Metabolic Engineering (ME) deal with the identification of modifications that improve the microbes’ production capabilities of target compounds. One of the major challenges created by strain optimization algorithms used in these ME problems is the interpretation of the changes that lead to a given overproduction. Often, a single gene knockout induces changes in the fluxes of several reactions, as compared with the wild-type, and it is therefore difficult to evaluate the physiological differences of the in silico mutant. This is aggravated by the fact that genome-scale models per se are difficult to visualize, given the high number of reactions and metabolites involved. Findings We introduce a software tool, the Topological Network Analysis for OptFlux (TNA4OptFlux), a plug-in which adds to the open-source ME platform OptFlux the capability of creating and performing topological analysis over metabolic networks. One of the tool’s major advantages is the possibility of using these tools in the analysis and comparison of simulated phenotypes, namely those coming from the results of strain optimization algorithms. We illustrate the capabilities of the tool by using it to aid the interpretation of two E. coli strains designed in OptFlux for the overproduction of succinate and glycine. Conclusions Besides adding new functionalities to the OptFlux software tool regarding topological analysis, TNA4OptFlux methods greatly facilitate the interpretation of non-intuitive ME strategies by automating the comparison between perturbed and non-perturbed metabolic networks. The plug-in is available on the web site http://www.optflux.org, together with extensive documentation. PMID:23641878
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints
NASA Technical Reports Server (NTRS)
Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim
2016-01-01
The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.
OPTIMIZING GLOBAL CORONAL MAGNETIC FIELD MODELS USING IMAGE-BASED CONSTRAINTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Shaela I.; Davila, Joseph M.; Uritsky, Vadim, E-mail: shaela.i.jonesmecholsky@nasa.gov
The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field—an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of thismore » approach on two theoretical problems, and discuss opportunities for application.« less
Neurocontrol and neurobiology - New developments and connections
NASA Technical Reports Server (NTRS)
Werbos, Paul J.; Pellionisz, Andras J.
1992-01-01
At McDonnell-Douglas, controllers which combine adaptive critic networks with the use of backpropagation in real time have solved difficult control problems crucial to the feasibility of building the National Aerospace Plane (NASP) able to reach earth orbit. As details emerged, parallels to neurobiology have grown stronger and have begun to lead to empirical possibilities of importance to neuroscience. This has led to thoughts of institutional collaboration facilitating what could become a Newtonian revolution in neuroscience, with cognitive implications as well. The authors elaborate on each of these points. The topics discussed are recent progress in neurocontrol; progress in optimization and reinforcement learning; implications for neurobiology and science policy; and a new view of the brain.
Automated Optimization of Potential Parameters
Michele, Di Pierro; Ron, Elber
2013-01-01
An algorithm and software to refine parameters of empirical energy functions according to condensed phase experimental measurements are discussed. The algorithm is based on sensitivity analysis and local minimization of the differences between experiment and simulation as a function of potential parameters. It is illustrated for a toy problem of alanine dipeptide and is applied to folding of the peptide WAAAH. The helix fraction is highly sensitive to the potential parameters while the slope of the melting curve is not. The sensitivity variations make it difficult to satisfy both observations simultaneously. We conjecture that there is no set of parameters that reproduces experimental melting curves of short peptides that are modeled with the usual functional form of a force field. PMID:24015115
NASA Astrophysics Data System (ADS)
Sudibyo, Hermida, L.; Suwardi
2017-11-01
Tapioca waste water is very difficult to treat; hence many tapioca factories could not treat it well. One of method which able to overcome this problem is electrodeposition. This process has high performance when it conducted using batch recycle process and use aluminum bipolar electrode. However, the optimum operation conditions are having a significant effect in the tapioca wastewater treatment using bath recycle process. In this research, The Taguchi method was successfully applied to know the optimum condition and the interaction between parameters in electrocoagulation process. The results show that current density, conductivity, electrode distance, and pH have a significant effect on the turbidity removal of cassava starch waste water.
ERIC Educational Resources Information Center
Taber, Mary R.
2013-01-01
Mathematics can be a difficult topic both to teach and to learn. Word problems specifically can be difficult for students with disabilities because they have to conceptualize what the problem is asking for, and they must perform the correct operation accurately. Current trends in mathematics instruction stem from the National Council of Teachers…
Optimization of time-course experiments for kinetic model discrimination.
Lages, Nuno F; Cordeiro, Carlos; Sousa Silva, Marta; Ponces Freire, Ana; Ferreira, António E N
2012-01-01
Systems biology relies heavily on the construction of quantitative models of biochemical networks. These models must have predictive power to help unveiling the underlying molecular mechanisms of cellular physiology, but it is also paramount that they are consistent with the data resulting from key experiments. Often, it is possible to find several models that describe the data equally well, but provide significantly different quantitative predictions regarding particular variables of the network. In those cases, one is faced with a problem of model discrimination, the procedure of rejecting inappropriate models from a set of candidates in order to elect one as the best model to use for prediction.In this work, a method is proposed to optimize the design of enzyme kinetic assays with the goal of selecting a model among a set of candidates. We focus on models with systems of ordinary differential equations as the underlying mathematical description. The method provides a design where an extension of the Kullback-Leibler distance, computed over the time courses predicted by the models, is maximized. Given the asymmetric nature this measure, a generalized differential evolution algorithm for multi-objective optimization problems was used.The kinetics of yeast glyoxalase I (EC 4.4.1.5) was chosen as a difficult test case to evaluate the method. Although a single-substrate kinetic model is usually considered, a two-substrate mechanism has also been proposed for this enzyme. We designed an experiment capable of discriminating between the two models by optimizing the initial substrate concentrations of glyoxalase I, in the presence of the subsequent pathway enzyme, glyoxalase II (EC 3.1.2.6). This discriminatory experiment was conducted in the laboratory and the results indicate a two-substrate mechanism for the kinetics of yeast glyoxalase I.
NASA Astrophysics Data System (ADS)
Gautam, Girish Dutt; Pandey, Arun Kumar
2018-03-01
Kevlar is the most popular aramid fiber and most commonly used in different technologically advanced industries for various applications. But the precise cutting of Kevlar composite laminates is a difficult task. The conventional cutting methods face various defects such as delamination, burr formation, fiber pullout with poor surface quality and their mechanical performance is greatly affected by these defects. The laser beam machining may be an alternative of the conventional cutting processes due to its non-contact nature, requirement of low specific energy with higher production rate. But this process also faces some problems that may be minimized by operating the machine at optimum parameters levels. This research paper examines the effective utilization of the Nd:YAG laser cutting system on difficult-to-cut Kevlar-29 composite laminates. The objective of the proposed work is to find the optimum process parameters settings for getting the minimum kerf deviations at both sides. The experiments have been conducted on Kevlar-29 composite laminates having thickness 1.25 mm by using Box-Benkhen design with two center points. The experimental data have been used for the optimization by using the proposed methodology. For the optimization, Teaching learning Algorithm based approach has been employed to obtain the minimum kerf deviation at bottom and top sides. A self coded Matlab program has been developed by using the proposed methodology and this program has been used for the optimization. Finally, the confirmation tests have been performed to compare the experimental and optimum results obtained by the proposed methodology. The comparison results show that the machining performance in the laser beam cutting process has been remarkably improved through proposed approach. Finally, the influence of different laser cutting parameters such as lamp current, pulse frequency, pulse width, compressed air pressure and cutting speed on top kerf deviation and bottom kerf deviation during the Nd:YAG laser cutting of Kevlar-29 laminates have been discussed.
Performance of Grey Wolf Optimizer on large scale problems
NASA Astrophysics Data System (ADS)
Gupta, Shubham; Deep, Kusum
2017-01-01
For solving nonlinear continuous problems of optimization numerous nature inspired optimization techniques are being proposed in literature which can be implemented to solve real life problems wherein the conventional techniques cannot be applied. Grey Wolf Optimizer is one of such technique which is gaining popularity since the last two years. The objective of this paper is to investigate the performance of Grey Wolf Optimization Algorithm on large scale optimization problems. The Algorithm is implemented on 5 common scalable problems appearing in literature namely Sphere, Rosenbrock, Rastrigin, Ackley and Griewank Functions. The dimensions of these problems are varied from 50 to 1000. The results indicate that Grey Wolf Optimizer is a powerful nature inspired Optimization Algorithm for large scale problems, except Rosenbrock which is a unimodal function.
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
NASA Astrophysics Data System (ADS)
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Foo, Brian; van der Schaar, Mihaela
2010-11-01
In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.
Optimization of waste combinations during in-vessel composting of agricultural waste.
Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh
2017-01-01
In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.
Solid oxide fuel cell simulation and design optimization with numerical adjoint techniques
NASA Astrophysics Data System (ADS)
Elliott, Louie C.
This dissertation reports on the application of numerical optimization techniques as applied to fuel cell simulation and design. Due to the "multi-physics" inherent in a fuel cell, which results in a highly coupled and non-linear behavior, an experimental program to analyze and improve the performance of fuel cells is extremely difficult. This program applies new optimization techniques with computational methods from the field of aerospace engineering to the fuel cell design problem. After an overview of fuel cell history, importance, and classification, a mathematical model of solid oxide fuel cells (SOFC) is presented. The governing equations are discretized and solved with computational fluid dynamics (CFD) techniques including unstructured meshes, non-linear solution methods, numerical derivatives with complex variables, and sensitivity analysis with adjoint methods. Following the validation of the fuel cell model in 2-D and 3-D, the results of the sensitivity analysis are presented. The sensitivity derivative for a cost function with respect to a design variable is found with three increasingly sophisticated techniques: finite difference, direct differentiation, and adjoint. A design cycle is performed using a simple optimization method to improve the value of the implemented cost function. The results from this program could improve fuel cell performance and lessen the world's dependence on fossil fuels.
Solution of the Generalized Noah's Ark Problem.
Billionnet, Alain
2013-01-01
The phylogenetic diversity (PD) of a set of species is a measure of the evolutionary distance among the species in the collection, based on a phylogenetic tree. Such a tree is composed of a root, internal nodes, and leaves that correspond to the set of taxa under study. With each edge of the tree is associated a non-negative branch length (evolutionary distance). If a particular survival probability is associated with each taxon, the PD measure becomes the expected PD measure. In the Noah's Ark Problem (NAP) introduced by Weitzman (1998), these survival probabilities can be increased at some cost. The problem is to determine how best to allocate a limited amount of resources to maximize the expected PD of the considered species. It is easy to formulate the NAP as a (difficult) nonlinear 0-1 programming problem. The aim of this article is to show that a general version of the NAP (GNAP) can be solved simply and efficiently with any set of edge weights and any set of survival probabilities by using standard mixed-integer linear programming software. The crucial point to move from a nonlinear program in binary variables to a mixed-integer linear program, is to approximate the logarithmic function by the lower envelope of a set of tangents to the curve. Solving the obtained mixed-integer linear program provides not only a near-optimal solution but also an upper bound on the value of the optimal solution. We also applied this approach to a generalization of the nature reserve problem (GNRP) that consists of selecting a set of regions to be conserved so that the expected PD of the set of species present in these regions is maximized. In this case, the survival probabilities of different taxa are not independent of each other. Computational results are presented to illustrate potentialities of the approach. Near-optimal solutions with hypothetical phylogenetic trees comprising about 4000 taxa are obtained in a few seconds or minutes of computing time for the GNAP, and in about 30 min for the GNRP. In all the cases the average guarantee varies from 0% to 1.20%.
An Early Quantum Computing Proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Stephen Russell; Alexander, Francis Joseph; Barros, Kipton Marcos
The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems,more » it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for specific applications. These are all fundamental challenges that must be overcome for the D-Wave, or similar, quantum computing technology to be broadly applicable.« less
Rapid space trajectory generation using a Fourier series shape-based approach
NASA Astrophysics Data System (ADS)
Taheri, Ehsan
With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipments. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example applications of two and three-dimensional two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers are investigated.
A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels
Xia, Xu; Chen, Zhigang; Liu, Hui; Wang, Huihui; Zeng, Feng
2016-01-01
Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs) has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP) strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks. PMID:27916917
Waste lipids to energy: how to optimize methane production from long‐chain fatty acids (LCFA)
Alves, M. Madalena; Pereira, M. Alcina; Sousa, Diana Z.; Cavaleiro, Ana J.; Picavet, Merijn; Smidt, Hauke; Stams, Alfons J. M.
2009-01-01
Summary The position of high‐rate anaerobic technology (HR‐AnWT) in the wastewater treatment and bioenergy market can be enhanced if the range of suitable substrates is expanded. Analyzing existing technologies, applications and problems, it is clear that, until now, wastewaters with high lipids content are not effectively treated by HR‐AnWT. Nevertheless, waste lipids are ideal potential substrates for biogas production, since theoretically more methane can be produced, when compared with proteins or carbohydrates. In this minireview, the classical problems of lipids methanization in anaerobic processes are discussed and new concepts to enhance lipids degradation are presented. Reactors operation, feeding strategies and prospects of technological developments for wastewater treatment are discussed. Long‐chain fatty acids (LCFA) degradation is accomplished by syntrophic communities of anaerobic bacteria and methanogenic archaea. For optimal performance these syntrophic communities need to be clustered in compact aggregates, which is often difficult to achieve with wastewaters that contain fats and lipids. Driving the methane production from lipids/LCFA at industrial scale without risk of overloading and inhibition is still a challenge that has the potential for filling a gap in the existing processes and technologies for biological methane production associated to waste and wastewater treatment. PMID:21255287
A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels.
Xia, Xu; Chen, Zhigang; Liu, Hui; Wang, Huihui; Zeng, Feng
2016-11-30
Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs) has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP) strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks.
A multi-objective optimization approach accurately resolves protein domain architectures
Bernardes, J.S.; Vieira, F.R.J.; Zaverucha, G.; Carbone, A.
2016-01-01
Motivation: Given a protein sequence and a number of potential domains matching it, what are the domain content and the most likely domain architecture for the sequence? This problem is of fundamental importance in protein annotation, constituting one of the main steps of all predictive annotation strategies. On the other hand, when potential domains are several and in conflict because of overlapping domain boundaries, finding a solution for the problem might become difficult. An accurate prediction of the domain architecture of a multi-domain protein provides important information for function prediction, comparative genomics and molecular evolution. Results: We developed DAMA (Domain Annotation by a Multi-objective Approach), a novel approach that identifies architectures through a multi-objective optimization algorithm combining scores of domain matches, previously observed multi-domain co-occurrence and domain overlapping. DAMA has been validated on a known benchmark dataset based on CATH structural domain assignments and on the set of Plasmodium falciparum proteins. When compared with existing tools on both datasets, it outperforms all of them. Availability and implementation: DAMA software is implemented in C++ and the source code can be found at http://www.lcqb.upmc.fr/DAMA. Contact: juliana.silva_bernardes@upmc.fr or alessandra.carbone@lip6.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26458889
Markov random field based automatic image alignment for electron tomography.
Amat, Fernando; Moussavi, Farshid; Comolli, Luis R; Elidan, Gal; Downing, Kenneth H; Horowitz, Mark
2008-03-01
We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.
NASA Astrophysics Data System (ADS)
Buyuk, Ersin; Karaman, Abdullah
2017-04-01
We estimated transmissivity and storage coefficient values from the single well water-level measurements positioned ahead of the mining face by using particle swarm optimization (PSO) technique. The water-level response to the advancing mining face contains an semi-analytical function that is not suitable for conventional inversion shemes because the partial derivative is difficult to calculate . Morever, the logaritmic behaviour of the model create difficulty for obtaining an initial model that may lead to a stable convergence. The PSO appears to obtain a reliable solution that produce a reasonable fit between water-level data and model function response. Optimization methods have been used to find optimum conditions consisting either minimum or maximum of a given objective function with regard to some criteria. Unlike PSO, traditional non-linear optimization methods have been used for many hydrogeologic and geophysical engineering problems. These methods indicate some difficulties such as dependencies to initial model, evolution of the partial derivatives that is required while linearizing the model and trapping at local optimum. Recently, Particle swarm optimization (PSO) became the focus of modern global optimization method that is inspired from the social behaviour of birds of swarms, and appears to be a reliable and powerful algorithms for complex engineering applications. PSO that is not dependent on an initial model, and non-derivative stochastic process appears to be capable of searching all possible solutions in the model space either around local or global optimum points.
Data mining to support simulation modeling of patient flow in hospitals.
Isken, Mark W; Rajagopalan, Balaji
2002-04-01
Spiraling health care costs in the United States are driving institutions to continually address the challenge of optimizing the use of scarce resources. One of the first steps towards optimizing resources is to utilize capacity effectively. For hospital capacity planning problems such as allocation of inpatient beds, computer simulation is often the method of choice. One of the more difficult aspects of using simulation models for such studies is the creation of a manageable set of patient types to include in the model. The objective of this paper is to demonstrate the potential of using data mining techniques, specifically clustering techniques such as K-means, to help guide the development of patient type definitions for purposes of building computer simulation or analytical models of patient flow in hospitals. Using data from a hospital in the Midwest this study brings forth several important issues that researchers need to address when applying clustering techniques in general and specifically to hospital data.
Attitude Determination Using Two Vector Measurements
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1998-01-01
Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit vector to the Sun and the Earth's magnetic field vector for coarse "sun-mag" attitude determination or unit vectors to two stars tracked by two star trackers for fine attitude determination. TRIAD, the earliest published algorithm for determining spacecraft attitude from two vector measurements, has been widely used in both ground-based and onboard attitude determination. Later attitude determination methods have been based on Wahba's optimality criterion for n arbitrarily weighted observations. The solution of Wahba's problem is somewhat difficult in the general case, but there is a simple closed-form solution in the two-observation case. This solution reduces to the TRIAD solution for certain choices of measurement weights. This paper presents and compares these algorithms as well as sub-optimal algorithms proposed by Bar-Itzhack, Harman, and Reynolds. Some new results will be presented, but the paper is primarily a review and tutorial.
An IPSO-SVM algorithm for security state prediction of mine production logistics system
NASA Astrophysics Data System (ADS)
Zhang, Yanliang; Lei, Junhui; Ma, Qiuli; Chen, Xin; Bi, Runfang
2017-06-01
A theoretical basis for the regulation of corporate security warning and resources was provided in order to reveal the laws behind the security state in mine production logistics. Considering complex mine production logistics system and the variable is difficult to acquire, a superior security status predicting model of mine production logistics system based on the improved particle swarm optimization and support vector machine (IPSO-SVM) is proposed in this paper. Firstly, through the linear adjustments of inertia weight and learning weights, the convergence speed and search accuracy are enhanced with the aim to deal with situations associated with the changeable complexity and the data acquisition difficulty. The improved particle swarm optimization (IPSO) is then introduced to resolve the problem of parameter settings in traditional support vector machines (SVM). At the same time, security status index system is built to determine the classification standards of safety status. The feasibility and effectiveness of this method is finally verified using the experimental results.
Generalized bipartite quantum state discrimination problems with sequential measurements
NASA Astrophysics Data System (ADS)
Nakahira, Kenji; Kato, Kentaro; Usuda, Tsuyoshi Sasaki
2018-02-01
We investigate an optimization problem of finding quantum sequential measurements, which forms a wide class of state discrimination problems with the restriction that only local operations and one-way classical communication are allowed. Sequential measurements from Alice to Bob on a bipartite system are considered. Using the fact that the optimization problem can be formulated as a problem with only Alice's measurement and is convex programming, we derive its dual problem and necessary and sufficient conditions for an optimal solution. Our results are applicable to various practical optimization criteria, including the Bayes criterion, the Neyman-Pearson criterion, and the minimax criterion. In the setting of the problem of finding an optimal global measurement, its dual problem and necessary and sufficient conditions for an optimal solution have been widely used to obtain analytical and numerical expressions for optimal solutions. Similarly, our results are useful to obtain analytical and numerical expressions for optimal sequential measurements. Examples in which our results can be used to obtain an analytical expression for an optimal sequential measurement are provided.
Difficult incidents and tutor interventions in problem-based learning tutorials.
Kindler, Pawel; Grant, Christopher; Kulla, Steven; Poole, Gary; Godolphin, William
2009-09-01
Tutors report difficult incidents and distressing conflicts that adversely affect learning in their problem-based learning (PBL) groups. Faculty development (training) and peer support should help them to manage this. Yet our understanding of these problems and how to deal with them often seems inadequate to help tutors. The aim of this study was to categorise difficult incidents and the interventions that skilled tutors used in response, and to determine the effectiveness of those responses. Thirty experienced and highly rated tutors in our Year 1 and 2 medical curriculum took part in semi-structured interviews to: identify and describe difficult incidents; describe how they responded, and assess the success of each response. Recorded and transcribed data were analysed thematically to develop typologies of difficult incidents and interventions and compare reported success or failure. The 94 reported difficult incidents belonged to the broad categories 'individual student' or 'group dynamics'. Tutors described 142 interventions in response to these difficult incidents, categorised as: (i) tutor intervenes during tutorial; (ii) tutor gives feedback outside tutorial, or (iii) student or group intervenes. Incidents in the 'individual student' category were addressed relatively unsuccessfully (effective < 50% of the time) by response (i), but with moderate success by response (ii) and successfully (> 75% of the time) by response (iii). None of the interventions worked well when used in response to problems related to 'group dynamics'. Overall, 59% of the difficult incidents were dealt with successfully. Dysfunctional PBL groups can be highly challenging, even for experienced and skilled tutors. Within-tutorial feedback, the treatment that tutors are most frequently advised to apply, was often not effective. Our study suggests that the collective responsibility of the group, rather than of the tutor, to deal with these difficulties should be emphasised.
A cooperative strategy for parameter estimation in large scale systems biology models.
Villaverde, Alejandro F; Egea, Jose A; Banga, Julio R
2012-06-22
Mathematical models play a key role in systems biology: they summarize the currently available knowledge in a way that allows to make experimentally verifiable predictions. Model calibration consists of finding the parameters that give the best fit to a set of experimental data, which entails minimizing a cost function that measures the goodness of this fit. Most mathematical models in systems biology present three characteristics which make this problem very difficult to solve: they are highly non-linear, they have a large number of parameters to be estimated, and the information content of the available experimental data is frequently scarce. Hence, there is a need for global optimization methods capable of solving this problem efficiently. A new approach for parameter estimation of large scale models, called Cooperative Enhanced Scatter Search (CeSS), is presented. Its key feature is the cooperation between different programs ("threads") that run in parallel in different processors. Each thread implements a state of the art metaheuristic, the enhanced Scatter Search algorithm (eSS). Cooperation, meaning information sharing between threads, modifies the systemic properties of the algorithm and allows to speed up performance. Two parameter estimation problems involving models related with the central carbon metabolism of E. coli which include different regulatory levels (metabolic and transcriptional) are used as case studies. The performance and capabilities of the method are also evaluated using benchmark problems of large-scale global optimization, with excellent results. The cooperative CeSS strategy is a general purpose technique that can be applied to any model calibration problem. Its capability has been demonstrated by calibrating two large-scale models of different characteristics, improving the performance of previously existing methods in both cases. The cooperative metaheuristic presented here can be easily extended to incorporate other global and local search solvers and specific structural information for particular classes of problems.
A cooperative strategy for parameter estimation in large scale systems biology models
2012-01-01
Background Mathematical models play a key role in systems biology: they summarize the currently available knowledge in a way that allows to make experimentally verifiable predictions. Model calibration consists of finding the parameters that give the best fit to a set of experimental data, which entails minimizing a cost function that measures the goodness of this fit. Most mathematical models in systems biology present three characteristics which make this problem very difficult to solve: they are highly non-linear, they have a large number of parameters to be estimated, and the information content of the available experimental data is frequently scarce. Hence, there is a need for global optimization methods capable of solving this problem efficiently. Results A new approach for parameter estimation of large scale models, called Cooperative Enhanced Scatter Search (CeSS), is presented. Its key feature is the cooperation between different programs (“threads”) that run in parallel in different processors. Each thread implements a state of the art metaheuristic, the enhanced Scatter Search algorithm (eSS). Cooperation, meaning information sharing between threads, modifies the systemic properties of the algorithm and allows to speed up performance. Two parameter estimation problems involving models related with the central carbon metabolism of E. coli which include different regulatory levels (metabolic and transcriptional) are used as case studies. The performance and capabilities of the method are also evaluated using benchmark problems of large-scale global optimization, with excellent results. Conclusions The cooperative CeSS strategy is a general purpose technique that can be applied to any model calibration problem. Its capability has been demonstrated by calibrating two large-scale models of different characteristics, improving the performance of previously existing methods in both cases. The cooperative metaheuristic presented here can be easily extended to incorporate other global and local search solvers and specific structural information for particular classes of problems. PMID:22727112
Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.
Lin, Lanny; Goodrich, Michael A
2014-12-01
During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.
Park, Hee-Won; In, Gyo; Kim, Jeong-Han; Cho, Byung-Goo; Han, Gyeong-Ho; Chang, Il-Moo
2013-01-01
Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field. PMID:24558312
Modeling visual problem solving as analogical reasoning.
Lovett, Andrew; Forbus, Kenneth
2017-01-01
We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Wild, Walter James
1988-12-01
External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.
Algorithms for bilevel optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.
Near-Optimal Guidance Method for Maximizing the Reachable Domain of Gliding Aircraft
NASA Astrophysics Data System (ADS)
Tsuchiya, Takeshi
This paper proposes a guidance method for gliding aircraft by using onboard computers to calculate a near-optimal trajectory in real-time, and thereby expanding the reachable domain. The results are applicable to advanced aircraft and future space transportation systems that require high safety. The calculation load of the optimal control problem that is used to maximize the reachable domain is too large for current computers to calculate in real-time. Thus the optimal control problem is divided into two problems: a gliding distance maximization problem in which the aircraft motion is limited to a vertical plane, and an optimal turning flight problem in a horizontal direction. First, the former problem is solved using a shooting method. It can be solved easily because its scale is smaller than that of the original problem, and because some of the features of the optimal solution are obtained in the first part of this paper. Next, in the latter problem, the optimal bank angle is computed from the solution of the former; this is an analytical computation, rather than an iterative computation. Finally, the reachable domain obtained from the proposed near-optimal guidance method is compared with that obtained from the original optimal control problem.
Direct Method Transcription for a Human-Class Translunar Injection Trajectory Optimization
NASA Technical Reports Server (NTRS)
Witzberger, Kevin E.; Zeiler, Tom
2012-01-01
This paper presents a new trajectory optimization software package developed in the framework of a low-to-high fidelity 3 degrees-of-freedom (DOF)/6-DOF vehicle simulation program named Mission Analysis Simulation Tool in Fortran (MASTIF) and its application to a translunar trajectory optimization problem. The functionality of the developed optimization package is implemented as a new "mode" in generalized settings to make it applicable for a general trajectory optimization problem. In doing so, a direct optimization method using collocation is employed for solving the problem. Trajectory optimization problems in MASTIF are transcribed to a constrained nonlinear programming (NLP) problem and solved with SNOPT, a commercially available NLP solver. A detailed description of the optimization software developed is provided as well as the transcription specifics for the translunar injection (TLI) problem. The analysis includes a 3-DOF trajectory TLI optimization and a 3-DOF vehicle TLI simulation using closed-loop guidance.
Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems.
DiMaio, Frank
2017-01-01
Molecular replacement (MR), a method for solving the crystallographic phase problem using phases derived from a model of the target structure, has proven extremely valuable, accounting for the vast majority of structures solved by X-ray crystallography. However, when the resolution of data is low, or the starting model is very dissimilar to the target protein, solving structures via molecular replacement may be very challenging. In recent years, protein structure prediction methodology has emerged as a powerful tool in model building and model refinement for difficult molecular replacement problems. This chapter describes some of the tools available in Rosetta for model building and model refinement specifically geared toward difficult molecular replacement cases.
Joint-layer encoder optimization for HEVC scalable extensions
NASA Astrophysics Data System (ADS)
Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong
2014-09-01
Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.
Flight style optimization in ski jumping on normal, large, and ski flying hills.
Jung, Alexander; Staat, Manfred; Müller, Wolfram
2014-02-07
In V-style ski jumping, aerodynamic forces are predominant performance factors and athletes have to solve difficult optimization problems in parts of a second in order to obtain their jump length maximum and to keep the flight stable. Here, a comprehensive set of wind tunnel data was used for optimization studies based on Pontryagin's minimum principle with both the angle of attack α and the body-ski angle β as controls. Various combinations of the constraints αmax and βmin(t) were analyzed in order to compare different optimization strategies. For the computer simulation studies, the Olympic hill profiles in Esto-Sadok, Russia (HS 106m, HS 140m), and in Harrachov, Czech Republic, host of the Ski Flying World Championships 2014 (HS 205m) were used. It is of high importance for ski jumping practice that various aerodynamic strategies, i.e. combinations of α- and β-time courses, can lead to similar jump lengths which enables athletes to win competitions using individual aerodynamic strategies. Optimization results also show that aerodynamic behavior has to be different at different hill sizes (HS). Optimized time courses of α and β using reduced drag and lift areas in order to mimic recent equipment regulations differed only in a negligible way. This indicates that optimization results presented here are not very sensitive to minor changes of the aerodynamic equipment features when similar jump length are obtained by using adequately higher in-run velocities. However, wind tunnel measurements with athletes including take-off and transition to stabilized flight, flight, and landing behavior would enable a more detailed understanding of individual flight style optimization. © 2013 Published by Elsevier Ltd.
Converging on the optimal attainment of requirements
NASA Technical Reports Server (NTRS)
Feather, M. S.; Menzies, T.
2002-01-01
Planning for the optimal attainment of requirements is an important early lifecycle activity. However, such planning is difficult when dealing with competing requirements, limited resources, and the incompleteness of information available at requirements time.
Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard
2002-01-01
The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.
Single Mothers and Their Infants: Factors Associated with Optimal Parenting.
ERIC Educational Resources Information Center
Barratt, Marguerite Stevenson; And Others
1991-01-01
Examined factors that might influence optimal early parenting by Caucasian single mothers (n=53). Results indicated optimal parenting was linked with older maternal age, fewer maternal psychological symptoms, and less difficult infant temperament. Recommends particular needs of single mother should be considered when formulating public policy.…
VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data
Daunizeau, Jean; Adam, Vincent; Rigoux, Lionel
2014-01-01
This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization. PMID:24465198
Improving multivariate Horner schemes with Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.
2013-11-01
Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Composite resin reinforcement of flared canals using light-transmitting plastic posts.
Lui, J L
1994-05-01
Composite resins have been advocated as a reinforcing build-up material for badly damaged endodontically treated teeth with flared canals. However, the control of an autocuring composite resin is difficult because it polymerizes rapidly within the root canal. While the light-curing composite resins are more user friendly, their polymerization can be a problem deep in the root canal. Light-transmitting plastic posts allow the transmission of light into the root canal and enable intraradicular composite resin reconstitution and reinforcement of weakened roots. At the same time, the light-transmitting plastic post forms an optimal post canal in the rehabilitated root and can accurately fit a matching retentive final post. These light-transmitting posts are a useful addition to the dental armamentarium.
Optimal recombination in genetic algorithms for flowshop scheduling problems
NASA Astrophysics Data System (ADS)
Kovalenko, Julia
2016-10-01
The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Vega, F F; Cantu-Paz, E; Lopez, J I
The population size of genetic algorithms (GAs) affects the quality of the solutions and the time required to find them. While progress has been made in estimating the population sizes required to reach a desired solution quality for certain problems, in practice the sizing of populations is still usually performed by trial and error. These trials might lead to find a population that is large enough to reach a satisfactory solution, but there may still be opportunities to optimize the computational cost by reducing the size of the population. This paper presents a technique called plague that periodically removes amore » number of individuals from the population as the GA executes. Recently, the usefulness of the plague has been demonstrated for genetic programming. The objective of this paper is to extend the study of plagues to genetic algorithms. We experiment with deceptive trap functions, a tunable difficult problem for GAs, and the experiments show that plagues can save computational time while maintaining solution quality and reliability.« less
Clinical relevance of cannabis tolerance and dependence.
Jones, R T; Benowitz, N L; Herning, R I
1981-01-01
Psychoactive drugs are often widely used before tolerance and dependence is fully appreciated. Tolerance to cannabis-induced cardiovascular and autonomic changes, decreased intraocular pressure, sleep and sleep EEG, mood and behavioral changes is acquired and, to a great degree, lost rapidly with optimal conditions. Mechanisms appear more functional than metabolic. Acquisition rate depends on dose and dose schedule. Dependence, manifested by withdrawal symptoms after as little as 7 days of THC administration, is characterized by irritability, restlessness, insomnia, anorexia, nausea, sweating, salivation, increased body temperature, altered sleep and waking EEG, tremor, and weight loss. Mild and transient in the 120 subjects studied, the syndrome was similar to sedative drug withdrawal. Tolerance to drug side effects can be useful. Tolerance to therapeutic effects or target symptoms poses problems. Clinical significance of dependence is difficult to assess since drug-seeking behavior has many determinants. Cannabis-induced super sensitivity should be considered wherever chronic drug administration is anticipated in conditions like epilepsy, glaucoma or chronic pain. Cannabis pharmacology suggests ways of minimizing tolerance and dependence problems.
Blind compressed sensing image reconstruction based on alternating direction method
NASA Astrophysics Data System (ADS)
Liu, Qinan; Guo, Shuxu
2018-04-01
In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.
Searching for patterns in remote sensing image databases using neural networks
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1995-01-01
We have investigated a method, based on a successful neural network multispectral image classification system, of searching for single patterns in remote sensing databases. While defining the pattern to search for and the feature to be used for that search (spectral, spatial, temporal, etc.) is challenging, a more difficult task is selecting competing patterns to train against the desired pattern. Schemes for competing pattern selection, including random selection and human interpreted selection, are discussed in the context of an example detection of dense urban areas in Landsat Thematic Mapper imagery. When applying the search to multiple images, a simple normalization method can alleviate the problem of inconsistent image calibration. Another potential problem, that of highly compressed data, was found to have a minimal effect on the ability to detect the desired pattern. The neural network algorithm has been implemented using the PVM (Parallel Virtual Machine) library and nearly-optimal speedups have been obtained that help alleviate the long process of searching through imagery.
Urban Mathematics Teacher Retention
ERIC Educational Resources Information Center
Hamdan, Kamal
2010-01-01
Mathematics teachers are both more difficult to attract and more difficult to retain than social sciences teachers. This fact is not unique to the United States; it is reported as being a problem in Europe as well (Howson, 2002). In the United States, however, the problem is particularly preoccupying. Because of the chronic teacher shortages and…
Baccalaureate Student Perceptions of Challenging Family Problems: Building Bridges to Acceptance
ERIC Educational Resources Information Center
Floyd, Melissa; Gruber, Kenneth J.
2011-01-01
This study explored the attitudes of 147 undergraduate social work majors to working with difficult families. Students indicated which problems (from a list of 42, including hot topics such as homosexuality, transgender issues, abortion, and substance abuse) they believed they would find most difficult to work with and provided information…
Finite dimensional approximation of a class of constrained nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Hou, L. S.
1994-01-01
An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.
LDRD Final Report: Global Optimization for Engineering Science Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
HART,WILLIAM E.
1999-12-01
For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.
Hybrid intelligent optimization methods for engineering problems
NASA Astrophysics Data System (ADS)
Pehlivanoglu, Yasin Volkan
The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.
A computational framework to empower probabilistic protein design
Fromer, Menachem; Yanover, Chen
2008-01-01
Motivation: The task of engineering a protein to perform a target biological function is known as protein design. A commonly used paradigm casts this functional design problem as a structural one, assuming a fixed backbone. In probabilistic protein design, positional amino acid probabilities are used to create a random library of sequences to be simultaneously screened for biological activity. Clearly, certain choices of probability distributions will be more successful in yielding functional sequences. However, since the number of sequences is exponential in protein length, computational optimization of the distribution is difficult. Results: In this paper, we develop a computational framework for probabilistic protein design following the structural paradigm. We formulate the distribution of sequences for a structure using the Boltzmann distribution over their free energies. The corresponding probabilistic graphical model is constructed, and we apply belief propagation (BP) to calculate marginal amino acid probabilities. We test this method on a large structural dataset and demonstrate the superiority of BP over previous methods. Nevertheless, since the results obtained by BP are far from optimal, we thoroughly assess the paradigm using high-quality experimental data. We demonstrate that, for small scale sub-problems, BP attains identical results to those produced by exact inference on the paradigmatic model. However, quantitative analysis shows that the distributions predicted significantly differ from the experimental data. These findings, along with the excellent performance we observed using BP on the smaller problems, suggest potential shortcomings of the paradigm. We conclude with a discussion of how it may be improved in the future. Contact: fromer@cs.huji.ac.il PMID:18586717
NASA Astrophysics Data System (ADS)
Zheng, Y.; Wu, B.; Wu, X.
2015-12-01
Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real-world situations, since they can dramatically reduce the computational cost of using IHMs in an iterative model evaluation process. In addition, our studies generated insights into the human-nature water conflicts in the specific study area and suggested potential solutions to address them.
Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft
NASA Technical Reports Server (NTRS)
Patrick, Nicholas J. M.; Sheridan, Thomas B.
1996-01-01
Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance vary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are: (1) determining what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major u.s. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort-topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with different airspace design and air traffic management policies. A decision aid is proposed which would combine the pilot's notion of optimality with the GA-based optimization, provide the pilot with a number of alternative pareto-optimal trajectories, and allow him to consider unmodelled attributes and constraints in choosing among them. A solution to the problem of displaying alternatives in a multi-attribute decision space is also presented.
Machine Learning to Discover and Optimize Materials
NASA Astrophysics Data System (ADS)
Rosenbrock, Conrad Waldhar
For centuries, scientists have dreamed of creating materials by design. Rather than discovery by accident, bespoke materials could be tailored to fulfill specific technological needs. Quantum theory and computational methods are essentially equal to the task, and computational power is the new bottleneck. Machine learning has the potential to solve that problem by approximating material behavior at multiple length scales. A full end-to-end solution must allow us to approximate the quantum mechanics, microstructure and engineering tasks well enough to be predictive in the real world. In this dissertation, I present algorithms and methodology to address some of these problems at various length scales. In the realm of enumeration, systems with many degrees of freedom such as high-entropy alloys may contain prohibitively many unique possibilities so that enumerating all of them would exhaust available compute memory. One possible way to address this problem is to know in advance how many possibilities there are so that the user can reduce their search space by restricting the occupation of certain lattice sites. Although tools to calculate this number were available, none performed well for very large systems and none could easily be integrated into low-level languages for use in existing scientific codes. I present an algorithm to solve these problems. Testing the robustness of machine-learned models is an essential component in any materials discovery or optimization application. While it is customary to perform a small number of system-specific tests to validate an approach, this may be insufficient in many cases. In particular, for Cluster Expansion models, the expansion may not converge quickly enough to be useful and reliable. Although the method has been used for decades, a rigorous investigation across many systems to determine when CE "breaks" was still lacking. This dissertation includes this investigation along with heuristics that use only a small training database to predict whether a model is worth pursuing in detail. To be useful, computational materials discovery must lead to experimental validation. However, experiments are difficult due to sample purity, environmental effects and a host of other considerations. In many cases, it is difficult to connect theory to experiment because computation is deterministic. By combining advanced group theory with machine learning, we created a new tool that bridges the gap between experiment and theory so that experimental and computed phase diagrams can be harmonized. Grain boundaries in real materials control many important material properties such as corrosion, thermal conductivity, and creep. Because of their high dimensionality, learning the underlying physics to optimizing grain boundaries is extremely complex. By leveraging a mathematically rigorous representation for local atomic environments, machine learning becomes a powerful tool to approximate properties for grain boundaries. But it also goes beyond predicting properties by highlighting those atomic environments that are most important for influencing the boundary properties. This provides an immense dimensionality reduction that empowers grain boundary scientists to know where to look for deeper physical insights.
Toward an optimal online checkpoint solution under a two-level HPC checkpoint model
Di, Sheng; Robert, Yves; Vivien, Frederic; ...
2016-03-29
The traditional single-level checkpointing method suffers from significant overhead on large-scale platforms. Hence, multilevel checkpointing protocols have been studied extensively in recent years. The multilevel checkpoint approach allows different levels of checkpoints to be set (each with different checkpoint overheads and recovery abilities), in order to further improve the fault tolerance performance of extreme-scale HPC applications. How to optimize the checkpoint intervals for each level, however, is an extremely difficult problem. In this paper, we construct an easy-to-use two-level checkpoint model. Checkpoint level 1 deals with errors with low checkpoint/recovery overheads such as transient memory errors, while checkpoint level 2more » deals with hardware crashes such as node failures. Compared with previous optimization work, our new optimal checkpoint solution offers two improvements: (1) it is an online solution without requiring knowledge of the job length in advance, and (2) it shows that periodic patterns are optimal and determines the best pattern. We evaluate the proposed solution and compare it with the most up-to-date related approaches on an extreme-scale simulation testbed constructed based on a real HPC application execution. Simulation results show that our proposed solution outperforms other optimized solutions and can improve the performance significantly in some cases. Specifically, with the new solution the wall-clock time can be reduced by up to 25.3% over that of other state-of-the-art approaches. Lastly, a brute-force comparison with all possible patterns shows that our solution is always within 1% of the best pattern in the experiments.« less
NASA Astrophysics Data System (ADS)
Steckiewicz, Adam; Butrylo, Boguslaw
2017-08-01
In this paper we discussed the results of a multi-criteria optimization scheme as well as numerical calculations of periodic conductive structures with selected geometry. Thin printed structures embedded on a flexible dielectric substrate may be applied as simple, cheap, passive low-pass filters with an adjustable cutoff frequency in low (up to 1 MHz) radio frequency range. The analysis of an electromagnetic phenomena in presented structures was realized on the basis of a three-dimensional numerical model of three proposed geometries of periodic elements. The finite element method (FEM) was used to obtain a solution of an electromagnetic harmonic field. Equivalent lumped electrical parameters of printed cells obtained in such manner determine the shape of an amplitude transmission characteristic of a low-pass filter. A nonlinear influence of a printed cell geometry on equivalent parameters of cells electric model, makes it difficult to find the desired optimal solution. Therefore an optimization problem of optimal cell geometry estimation with regard to an approximation of the determined amplitude transmission characteristic with an adjusted cutoff frequency, was obtained by the particle swarm optimization (PSO) algorithm. A dynamically suitable inertia factor was also introduced into the algorithm to improve a convergence to a global extremity of a multimodal objective function. Numerical results as well as PSO simulation results were characterized in terms of approximation accuracy of predefined amplitude characteristics in a pass-band, stop-band and cutoff frequency. Three geometries of varying degrees of complexity were considered and their use in signal processing systems was evaluated.
Research on NC laser combined cutting optimization model of sheet metal parts
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.
Groundwater Pollution Source Identification using Linked ANN-Optimization Model
NASA Astrophysics Data System (ADS)
Ayaz, Md; Srivastava, Rajesh; Jain, Ashu
2014-05-01
Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration values. The main advantage of the proposed model is that it requires only upper half of the breakthrough curve and is capable of predicting source parameters when the lag time is not known. Linking of ANN model with proposed optimization model reduces the dimensionality of the decision variables of the optimization model by one and hence complexity of optimization model is reduced. The results show that our proposed linked ANN-Optimization model is able to predict the source parameters for the error-free data accurately. The proposed model was run several times to obtain the mean, standard deviation and interval estimate of the predicted parameters for observations with random measurement errors. It was observed that mean values as predicted by the model were quite close to the exact values. An increasing trend was observed in the standard deviation of the predicted values with increasing level of measurement error. The model appears to be robust and may be efficiently utilized to solve the inverse pollution source identification problem.
Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer
NASA Astrophysics Data System (ADS)
Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre
2014-07-01
We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.
An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.
Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur
2017-01-01
Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.
NASA Astrophysics Data System (ADS)
Masuda, Kazuaki; Aiyoshi, Eitaro
We propose a method for solving optimal price decision problems for simultaneous multi-article auctions. An auction problem, originally formulated as a combinatorial problem, determines both every seller's whether or not to sell his/her article and every buyer's which article(s) to buy, so that the total utility of buyers and sellers will be maximized. Due to the duality theory, we transform it equivalently into a dual problem in which Lagrange multipliers are interpreted as articles' transaction price. As the dual problem is a continuous optimization problem with respect to the multipliers (i.e., the transaction prices), we propose a numerical method to solve it by applying heuristic global search methods. In this paper, Particle Swarm Optimization (PSO) is used to solve the dual problem, and experimental results are presented to show the validity of the proposed method.
Acoustic and elastic waveform inversion best practices
NASA Astrophysics Data System (ADS)
Modrak, Ryan T.
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence, one or two test cases are not enough to reliably inform such decisions. We identify best practices instead using two global, one regional and four near-surface acoustic test problems. To obtain meaningful quantitative comparisons, we carry out hundreds acoustic inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that L-BFGS provides computational savings over nonlinear conjugate gradient methods in a wide variety of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization, and total variation regularization are effective in different contexts. Besides these issues, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details have a strong effect on computational cost, regardless of the chosen material parameterization or nonlinear optimization algorithm. Building on the acoustic inversion results, we carry out elastic experiments with four test problems, three objective functions, and four material parameterizations. The choice of parameterization for isotropic elastic media is found to be more complicated than previous studies suggests, with "wavespeed-like'' parameters performing well with phase-based objective functions and Lame parameters performing well with amplitude-based objective functions. Reliability and efficiency can be even harder to achieve in transversely isotropic elastic inversions because rotation angle parameters describing fast-axis direction are difficult to recover. Using Voigt or Chen-Tromp parameters avoids the need to include rotation angles explicitly and provides an effective strategy for anisotropic inversion. The need for flexible and portable workflow management tools for seismic inversion also poses a major challenge. In a final chapter, the software used to the carry out the above experiments is described and instructions for reproducing experimental results are given.
Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.
Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859
Assessment of optimal strategies in a two-patch dengue transmission model with seasonality.
Kim, Jung Eun; Lee, Hyojung; Lee, Chang Hyeong; Lee, Sunmi
2017-01-01
Emerging and re-emerging dengue fever has posed serious problems to public health officials in many tropical and subtropical countries. Continuous traveling in seasonally varying areas makes it more difficult to control the spread of dengue fever. In this work, we consider a two-patch dengue model that can capture the movement of host individuals between and within patches using a residence-time matrix. A previous two-patch dengue model without seasonality is extended by adding host demographics and seasonal forcing in the transmission rates. We investigate the effects of human movement and seasonality on the two-patch dengue transmission dynamics. Motivated by the recent Peruvian dengue data in jungle/rural areas and coast/urban areas, our model mimics the seasonal patterns of dengue outbreaks in two patches. The roles of seasonality and residence-time configurations are highlighted in terms of the seasonal reproduction number and cumulative incidence. Moreover, optimal control theory is employed to identify and evaluate patch-specific control measures aimed at reducing dengue prevalence in the presence of seasonality. Our findings demonstrate that optimal patch-specific control strategies are sensitive to seasonality and residence-time scenarios. Targeting only the jungle (or endemic) is as effective as controlling both patches under weak coupling or symmetric mobility. However, focusing on intervention for the city (or high density areas) turns out to be optimal when two patches are strongly coupled with asymmetric mobility.
Techniques for shuttle trajectory optimization
NASA Technical Reports Server (NTRS)
Edge, E. R.; Shieh, C. J.; Powers, W. F.
1973-01-01
The application of recently developed function-space Davidon-type techniques to the shuttle ascent trajectory optimization problem is discussed along with an investigation of the recently developed PRAXIS algorithm for parameter optimization. At the outset of this analysis, the major deficiency of the function-space algorithms was their potential storage problems. Since most previous analyses of the methods were with relatively low-dimension problems, no storage problems were encountered. However, in shuttle trajectory optimization, storage is a problem, and this problem was handled efficiently. Topics discussed include: the shuttle ascent model and the development of the particular optimization equations; the function-space algorithms; the operation of the algorithm and typical simulations; variable final-time problem considerations; and a modification of Powell's algorithm.
On l(1): Optimal decentralized performance
NASA Technical Reports Server (NTRS)
Sourlas, Dennis; Manousiouthakis, Vasilios
1993-01-01
In this paper, the Manousiouthakis parametrization of all decentralized stabilizing controllers is employed in mathematically formulating the l(sup 1) optimal decentralized controller synthesis problem. The resulting optimization problem is infinite dimensional and therefore not directly amenable to computations. It is shown that finite dimensional optimization problems that have value arbitrarily close to the infinite dimensional one can be constructed. Based on this result, an algorithm that solves the l(sup 1) decentralized performance problems is presented. A global optimization approach to the solution of the infinite dimensional approximating problems is also discussed.
Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems
NASA Technical Reports Server (NTRS)
Balling, R. J.; Wilkinson, C. A.
1997-01-01
A class of synthetic problems for testing multidisciplinary design optimization (MDO) approaches is presented. These test problems are easy to reproduce because all functions are given as closed-form mathematical expressions. They are constructed in such a way that the optimal value of all variables and the objective is unity. The test problems involve three disciplines and allow the user to specify the number of design variables, state variables, coupling functions, design constraints, controlling design constraints, and the strength of coupling. Several MDO approaches were executed on two sample synthetic test problems. These approaches included single-level optimization approaches, collaborative optimization approaches, and concurrent subspace optimization approaches. Execution results are presented, and the robustness and efficiency of these approaches an evaluated for these sample problems.
ERIC Educational Resources Information Center
Hill, George B.; Sweeney, Joseph B.
2015-01-01
Reaction workup can be a complex problem for those facing novel synthesis of difficult compounds for the first time. Workup problem solving by systematic thinking should be inculcated as mid-graduate-level is reached. A structured approach is proposed, building decision tree flowcharts to analyze challenges, and an exemplar flowchart is presented…
NASA Astrophysics Data System (ADS)
Grau, J. B.; Anton, J. M.; Tarquis, A. M.; Colombo, F.; de Los Rios, L.; Cisneros, J. M.
2010-04-01
Multi-criteria Decision Analysis (MCDA) is concerned with identifying the values, uncertainties and other issues relevant in a given decision, its rationality, and the resulting optimal decision. These decisions are difficult because the complexity of the system or because of determining the optimal situation or behavior. This work will illustrate how MCDA is applied in practice to a complex problem to resolve such us soil erosion and degradation. Desertification is a global problem and recently it has been studied in several forums as ONU that literally says: "Desertification has a very high incidence in the environmental and food security, socioeconomic stability and world sustained development". Desertification is the soil quality loss and one of FAO's most important preoccupations as hunger in the world is increasing. Multiple factors are involved of diverse nature related to: natural phenomena (water and wind erosion), human activities linked to soil and water management, and others not related to the former. In the whole world this problem exists, but its effects and solutions are different. It is necessary to take into account economical, environmental, cultural and sociological criteria. A multi-criteria model to select among different alternatives to prepare an integral plan to ameliorate or/and solve this problem in each area has been elaborated taking in account eight criteria and six alternatives. Six sub zones have been established following previous studies and in each one the initial matrix and weights have been defined to apply on different criteria. Three Multicriteria Decision Methods have been used for the different sub zones: ELECTRE, PROMETHEE and AHP. The results show a high level of consistency among the three different multicriteria methods despite the complexity of the system studied. The methods are described for La Estrella sub zone, indicating election of weights, Initial Matrixes, the MATHCAD8 algorithms used for PROMETHEE, and the Graph of Expert Choice showing the results of AHP. A brief schema of the actions recommended for each of the six different sub zones is reported in Conclusions, with "We can combine Autochthonous and High Value Forest" for La Estrella.
NASA Astrophysics Data System (ADS)
Grau, J. B.; Antón, J. M.; Tarquis, A. M.; Colombo, F.; de Los Ríos, L.; Cisneros, J. M.
2010-11-01
Multi-criteria Decision Analysis (MCDA) is concerned with identifying the values, uncertainties and other issues relevant in a given decision, its rationality, and the resulting optimal decision. These decisions are difficult because the complexity of the system or because of determining the optimal situation or behaviour. This work will illustrate how MCDA is applied in practice to a complex problem to resolve such us soil erosion and degradation. Desertification is a global problem and recently it has been studied in several forums as ONU that literally says: "Desertification has a very high incidence in the environmental and food security, socioeconomic stability and world sustained development". Desertification is the soil quality loss and one of FAO's most important preoccupations as hunger in the world is increasing. Multiple factors are involved of diverse nature related to: natural phenomena (water and wind erosion), human activities linked to soil and water management, and others not related to the former. In the whole world this problem exists, but its effects and solutions are different. It is necessary to take into account economical, environmental, cultural and sociological criteria. A multi-criteria model to select among different alternatives to prepare an integral plan to ameliorate or/and solve this problem in each area has been elaborated taking in account eight criteria and five alternatives. Six sub zones have been established following previous studies and in each one the initial matrix and weights have been defined to apply on different criteria. Three multicriteria decision methods have been used for the different sub zones: ELECTRE, PROMETHEE and AHP. The results show a high level of consistency among the three different multicriteria methods despite the complexity of the system studied. The methods are fully described for La Estrella sub zone, indicating election of weights, Initial Matrixes, algorithms used for PROMETHEE, and the Graph of Expert Choice showing the AHP results. A brief schema of the actions recommended for each of the six different sub zones is discussed.
Anselma, Luca; Mazzei, Alessandro; De Michieli, Franco
2017-04-01
Today, there is considerable interest in personal healthcare. The pervasiveness of technology allows to precisely track human behavior; however, when dealing with the development of an intelligent assistant exploiting data acquired through such technologies, a critical issue has to be taken into account; namely, that of supporting the user in the event of any transgression with respect to the optimal behavior. In this paper we present a reasoning framework based on Simple Temporal Problems that can be applied to a general class of problems, which we called cake&carrot problems, to support reasoning in presence of human transgression. The reasoning framework offers a number of facilities to ensure a smart management of possible "wrong behaviors" by a user to reach the goals defined by the problem. This paper describes the framework by means of the prototypical use case of diet domain. Indeed, following a healthy diet can be a difficult task for both practical and psychological reasons and dietary transgressions are hard to avoid. Therefore, the framework is tolerant to dietary transgressions and adapts the following meals to facilitate users in recovering from such transgressions. Finally, through a simulation involving a real hospital menu, we show that the framework can effectively achieve good results in a realistic scenario. Copyright © 2017 Elsevier Inc. All rights reserved.
Detecting independent and recurrent copy number aberrations using interval graphs.
Wu, Hsin-Ta; Hajirasouliha, Iman; Raphael, Benjamin J
2014-06-15
Somatic copy number aberrations SCNAS: are frequent in cancer genomes, but many of these are random, passenger events. A common strategy to distinguish functional aberrations from passengers is to identify those aberrations that are recurrent across multiple samples. However, the extensive variability in the length and position of SCNA: s makes the problem of identifying recurrent aberrations notoriously difficult. We introduce a combinatorial approach to the problem of identifying independent and recurrent SCNA: s, focusing on the key challenging of separating the overlaps in aberrations across individuals into independent events. We derive independent and recurrent SCNA: s as maximal cliques in an interval graph constructed from overlaps between aberrations. We efficiently enumerate all such cliques, and derive a dynamic programming algorithm to find an optimal selection of non-overlapping cliques, resulting in a very fast algorithm, which we call RAIG (Recurrent Aberrations from Interval Graphs). We show that RAIG outperforms other methods on simulated data and also performs well on data from three cancer types from The Cancer Genome Atlas (TCGA). In contrast to existing approaches that employ various heuristics to select independent aberrations, RAIG optimizes a well-defined objective function. We show that this allows RAIG to identify rare aberrations that are likely functional, but are obscured by overlaps with larger passenger aberrations. http://compbio.cs.brown.edu/software. © The Author 2014. Published by Oxford University Press.
Safe landing area determination for a Moon lander by reachability analysis
NASA Astrophysics Data System (ADS)
Arslantaş, Yunus Emre; Oehlschlägel, Thimo; Sagliano, Marco
2016-11-01
In the last decades developments in space technology paved the way to more challenging missions like asteroid mining, space tourism and human expansion into the Solar System. These missions result in difficult tasks such as guidance schemes for re-entry, landing on celestial bodies and implementation of large angle maneuvers for spacecraft. There is a need for a safety system to increase the robustness and success of these missions. Reachability analysis meets this requirement by obtaining the set of all achievable states for a dynamical system starting from an initial condition with given admissible control inputs of the system. This paper proposes an algorithm for the approximation of nonconvex reachable sets (RS) by using optimal control. Therefore subset of the state space is discretized by equidistant points and for each grid point a distance function is defined. This distance function acts as an objective function for a related optimal control problem (OCP). Each infinite dimensional OCP is transcribed into a finite dimensional Nonlinear Programming Problem (NLP) by using Pseudospectral Methods (PSM). Finally, the NLPs are solved using available tools resulting in approximated reachable sets with information about the states of the dynamical system at these grid points. The algorithm is applied on a generic Moon landing mission. The proposed method computes approximated reachable sets and the attainable safe landing region with information about propellant consumption and time.
Distraction during learning with hypermedia: difficult tasks help to keep task goals on track
Scheiter, Katharina; Gerjets, Peter; Heise, Elke
2014-01-01
In educational hypermedia environments, students are often confronted with potential sources of distraction arising from additional information that, albeit interesting, is unrelated to their current task goal. The paper investigates the conditions under which distraction occurs and hampers performance. Based on theories of volitional action control it was hypothesized that interesting information, especially if related to a pending goal, would interfere with task performance only when working on easy, but not on difficult tasks. In Experiment 1, 66 students learned about probability theory using worked examples and solved corresponding test problems, whose task difficulty was manipulated. As a second factor, the presence of interesting information unrelated to the primary task was varied. Results showed that students solved more easy than difficult probability problems correctly. However, the presence of interesting, but task-irrelevant information did not interfere with performance. In Experiment 2, 68 students again engaged in example-based learning and problem solving in the presence of task-irrelevant information. Problem-solving difficulty was varied as a first factor. Additionally, the presence of a pending goal related to the task-irrelevant information was manipulated. As expected, problem-solving performance declined when a pending goal was present during working on easy problems, whereas no interference was observed for difficult problems. Moreover, the presence of a pending goal reduced the time on task-relevant information and increased the time on task-irrelevant information while working on easy tasks. However, as revealed by mediation analyses these changes in overt information processing behavior did not explain the decline in problem-solving performance. As an alternative explanation it is suggested that goal conflicts resulting from pending goals claim cognitive resources, which are then no longer available for learning and problem solving. PMID:24723907
An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics
NASA Technical Reports Server (NTRS)
Baluja, Shumeet
1995-01-01
This report is a repository of the results obtained from a large scale empirical comparison of seven iterative and evolution-based optimization heuristics. Twenty-seven static optimization problems, spanning six sets of problem classes which are commonly explored in genetic algorithm literature, are examined. The problem sets include job-shop scheduling, traveling salesman, knapsack, binpacking, neural network weight optimization, and standard numerical optimization. The search spaces in these problems range from 2368 to 22040. The results indicate that using genetic algorithms for the optimization of static functions does not yield a benefit, in terms of the final answer obtained, over simpler optimization heuristics. Descriptions of the algorithms tested and the encodings of the problems are described in detail for reproducibility.
A free interactive matching program
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.-F. Ostiguy
1999-04-16
For physicists and engineers involved in the design and analysis of beamlines (transfer lines or insertions) the lattice function matching problem is central and can be time-consuming because it involves constrained nonlinear optimization. For such problems convergence can be difficult to obtain in general without expert human intervention. Over the years, powerful codes have been developed to assist beamline designers. The canonical example is MAD (Methodical Accelerator Design) developed at CERN by Christophe Iselin. MAD, through a specialized command language, allows one to solve a wide variety of problems, including matching problems. Although in principle, the MAD command interpreter canmore » be run interactively, in practice the solution of a matching problem involves a sequence of independent trial runs. Unfortunately, but perhaps not surprisingly, there still exists relatively few tools exploiting the resources offered by modern environments to assist lattice designer with this routine and repetitive task. In this paper, we describe a fully interactive lattice matching program, written in C++ and assembled using freely available software components. An important feature of the code is that the evolution of the lattice functions during the nonlinear iterative process can be graphically monitored in real time; the user can dynamically interrupt the iterations at will to introduce new variables, freeze existing ones into their current state and/or modify constraints. The program runs under both UNIX and Windows NT.« less
Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System.
Chinnadurai, Sunil; Selvaprabhu, Poongundran; Jeong, Yongchae; Jiang, Xueqin; Lee, Moon Ho
2017-09-18
In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach's algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.
Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System
Jeong, Yongchae; Jiang, Xueqin; Lee, Moon Ho
2017-01-01
In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach’s algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme. PMID:28927019
Multiobjective optimization of temporal processes.
Song, Zhe; Kusiak, Andrew
2010-06-01
This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework.
NASA Astrophysics Data System (ADS)
Tapilouw, Marisa Christina; Firman, Harry; Redjeki, Sri; Chandra, Didi Teguh
2017-05-01
Teacher training is one form of continuous professional development. Before organizing teacher training (material, time frame), a survey about teacher's need has to be done. Science teacher's perception about science learning in the classroom, the most difficult learning model, difficulties of lesson plan would be a good input for teacher training program. This survey conducted in June 2016. About 23 science teacher filled in the questionnaire. The core of questions are training participation, the most difficult science subject matter, the most difficult learning model, the difficulties of making lesson plan, knowledge of integrated science and problem based learning. Mostly, experienced teacher participated training once a year. Science training is very important to enhance professional competency and to improve the way of teaching. The difficulties of subject matter depend on teacher's education background. The physics subject matter in class VIII and IX are difficult to teach for most respondent because of many formulas and abstract. Respondents found difficulties in making lesson plan, in term of choosing the right learning model for some subject matter. Based on the result, inquiry, cooperative, practice are frequently used in science class. Integrated science is understood as a mix between Biology, Physics and Chemistry concepts. On the other hand, respondents argue that problem based learning was difficult especially in finding contextual problem. All the questionnaire result can be used as an input for teacher training program in order to enhanced teacher's competency. Difficult concepts, integrated science, teaching plan, problem based learning can be shared in teacher training.
NASA Astrophysics Data System (ADS)
Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji
2015-12-01
Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.
Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao
Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1989-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Educational Reform as a Dynamic System of Problems and Solutions: Towards an Analytic Instrument
ERIC Educational Resources Information Center
Luttenberg, Johan; Carpay, Thérèse; Veugelers, Wiel
2013-01-01
Large-scale educational reforms are difficult to realize and often fail. In the literature, the course of reform and problems associated with this are frequently discussed. The explanations and recommendations then provided are so diverse that it is difficult to gain a comprehensive overview of what factors are at play and how to take them into…
ERIC Educational Resources Information Center
Albert, Lawrence S.
If being a competent small group problem solver is difficult, it is even more difficult to impart those competencies to others. Unlike athletic coaches who are near their players during the real game, teachers of small group communication are not typically present for on-the-spot coaching when their students are doing their problem solving. That…
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
Examining problem solving in physics-intensive Ph.D. research
NASA Astrophysics Data System (ADS)
Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris
2017-12-01
Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students face and the strategies they use has implications for improving how we approach problem solving in undergraduate physics and physics education research.
FRANOPP: Framework for analysis and optimization problems user's guide
NASA Technical Reports Server (NTRS)
Riley, K. M.
1981-01-01
Framework for analysis and optimization problems (FRANOPP) is a software aid for the study and solution of design (optimization) problems which provides the driving program and plotting capability for a user generated programming system. In addition to FRANOPP, the programming system also contains the optimization code CONMIN, and two user supplied codes, one for analysis and one for output. With FRANOPP the user is provided with five options for studying a design problem. Three of the options utilize the plot capability and present an indepth study of the design problem. The study can be focused on a history of the optimization process or on the interaction of variables within the design problem.
Better than Optimal by Taking a Limit?
ERIC Educational Resources Information Center
Betounes, David
2012-01-01
Designing an optimal Norman window is a standard calculus exercise. How much more difficult (or interesting) is its generalization to deploying multiple semicircles along the head (or along head and sill, or head and jambs)? What if we use shapes beside semi-circles? As the number of copies of the shape increases and the optimal Norman windows…
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
Better Redd than Dead: Optimizing Reservoir Operations for Wild Fish Survival During Drought
NASA Astrophysics Data System (ADS)
Adams, L. E.; Lund, J. R.; Quiñones, R.
2014-12-01
Extreme droughts are difficult to predict and may incur large economic and ecological costs. Dam operations in drought usually consider minimizing economic costs. However, dam operations also offer an opportunity to increase wild fish survival under difficult conditions. Here, we develop a probabilistic optimization approach to developing reservoir release schedules to maximize fish survival in regulated rivers. A case study applies the approach to wild Fall-run Chinook Salmon below Folsom Dam on California's American River. Our results indicate that releasing more water early in the drought will, on average, save more wild fish over the long term.
Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach
NASA Technical Reports Server (NTRS)
Aguilo, Miguel A.; Warner, James E.
2017-01-01
This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.
A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints
NASA Astrophysics Data System (ADS)
Li, Jinquan; Feng, Shuang; Mi, Honghai
In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.
Pin routability and pin access analysis on standard cells for layout optimization
NASA Astrophysics Data System (ADS)
Chen, Jian; Wang, Jun; Zhu, ChengYu; Xu, Wei; Li, Shuai; Lin, Eason; Ou, Odie; Lai, Ya-Chieh; Qu, Shengrui
2018-03-01
At advanced process nodes, especially at sub-28nm technology, pin accessibility and routability of standard cells has become one of the most challenging design issues due to the limited router tracks and the increased pin density. If this issue can't be found and resolved during the cell design stage, the pin access problem will be very difficult to be fixed in implementation stage and will make the low efficiency for routing. In this paper, we will introduce a holistic approach for the pin accessibility scoring and routability analysis. For accessibility, the systematic calculator which assigns score for each pin will search the available access points, consider the surrounded router layers, basic design rule and allowed via geometry. Based on the score, the "bad" pins can be found and modified. On pin routability analysis, critical pin points (placing via on this point would lead to failed via insertion) will be searched out for either layout optimization guide or set as OBS for via insertion blocking. By using this pin routability and pin access analysis flow, we are able to improve the library quality and performance.
The Operation Method of Smarter City Based on Ecological Theory
NASA Astrophysics Data System (ADS)
Fan, C.; Fan, H. Y.
2017-10-01
As the city and urbanization’s accelerated pace has caused galloping population, the urban framework is extending with increasingly complex social problems. The urban management tends to become complicated and the governance seems more difficult to pursue. exploring the urban management’s new model has attracted local governments’ urgent attention. tcombines the guiding ideology and that management’s practices based on ecological theory, explains the Smarter city Ecology Managementmodel’s formation, makes modern urban management’s comparative analysis and further defines the aforesaid management mode’s conceptual model. Based on the smarter city system theory’s ecological carrying capacity, the author uses mathematical model to prove the coordination relationship between the smarter city Ecology Managementmode’s subsystems, demonstrates that it can improve the urban management’s overall level, emphasizes smarter city management integrity, believing that urban system’s optimization is based on each subsystem being optimized, attaching the importance to elements, structure, and balance between each subsystem and between internal elements. Through the establishment of the smarter city Ecology Managementmodel’s conceptual model and theoretical argumentation, it provides a theoretical basis and technical guidance to that model’s innovation.
XFEL diffraction: Developing processing methods to optimize data quality
Sauter, Nicholas K.
2015-01-29
Serial crystallography, using either femtosecond X-ray pulses from free-electron laser sources or short synchrotron-radiation exposures, has the potential to reveal metalloprotein structural details while minimizing damage processes. However, deriving a self-consistent set of Bragg intensities from numerous still-crystal exposures remains a difficult problem, with optimal protocols likely to be quite different from those well established for rotation photography. Here several data processing issues unique to serial crystallography are examined. It is found that the limiting resolution differs for each shot, an effect that is likely to be due to both the sample heterogeneity and pulse-to-pulse variation in experimental conditions. Shotsmore » with lower resolution limits produce lower-quality models for predicting Bragg spot positions during the integration step. Also, still shots by their nature record only partial measurements of the Bragg intensity. An approximate model that corrects to the full-spot equivalent (with the simplifying assumption that the X-rays are monochromatic) brings the distribution of intensities closer to that expected from an ideal crystal, and improves the sharpness of anomalous difference Fourier peaks indicating metal positions.« less
Lanier, Wendy E.; Bailey, Larissa L.; Muths, Erin L.
2016-01-01
Conservation of imperiled species often requires knowledge of vital rates and population dynamics. However, these can be difficult to estimate for rare species and small populations. This problem is further exacerbated when individuals are not available for detection during some surveys due to limited access, delaying surveys and creating mismatches between the breeding behavior and survey timing. Here we use simulations to explore the impacts of this issue using four hypothetical boreal toad (Anaxyrus boreas boreas) populations, representing combinations of logistical access (accessible, inaccessible) and breeding behavior (synchronous, asynchronous). We examine the bias and precision of survival and breeding probability estimates generated by survey designs that differ in effort and timing for these populations. Our findings indicate that the logistical access of a site and mismatch between the breeding behavior and survey design can greatly limit the ability to yield accurate and precise estimates of survival and breeding probabilities. Simulations similar to what we have performed can help researchers determine an optimal survey design(s) for their system before initiating sampling efforts.
NASA Technical Reports Server (NTRS)
Kuchynka, P.; Laskar, J.; Fienga, A.
2011-01-01
Mars ranging observations are available over the past 10 years with an accuracy of a few meters. Such precise measurements of the Earth-Mars distance provide valuable constraints on the masses of the asteroids perturbing both planets. Today more than 30 asteroid masses have thus been estimated from planetary ranging data (see [1] and [2]). Obtaining unbiased mass estimations is nevertheless difficult. Various systematic errors can be introduced by imperfect reduction of spacecraft tracking observations to planetary ranging data. The large number of asteroids and the limited a priori knowledge of their masses is also an obstacle for parameter selection. Fitting in a model a mass of a negligible perturber, or on the contrary omitting a significant perturber, will induce important bias in determined asteroid masses. In this communication, we investigate a simplified version of the mass determination problem. Instead of planetary ranging observations from spacecraft or radar data, we consider synthetic ranging observations generated with the INPOP [2] ephemeris for a test model containing 25000 asteroids. We then suggest a method for optimal parameter selection and estimation in this simplified framework.
An improved predictive functional control method with application to PMSM systems
NASA Astrophysics Data System (ADS)
Li, Shihua; Liu, Huixian; Fu, Wenshu
2017-01-01
In common design of prediction model-based control method, usually disturbances are not considered in the prediction model as well as the control design. For the control systems with large amplitude or strong disturbances, it is difficult to precisely predict the future outputs according to the conventional prediction model, and thus the desired optimal closed-loop performance will be degraded to some extent. To this end, an improved predictive functional control (PFC) method is developed in this paper by embedding disturbance information into the system model. Here, a composite prediction model is thus obtained by embedding the estimated value of disturbances, where disturbance observer (DOB) is employed to estimate the lumped disturbances. So the influence of disturbances on system is taken into account in optimisation procedure. Finally, considering the speed control problem for permanent magnet synchronous motor (PMSM) servo system, a control scheme based on the improved PFC method is designed to ensure an optimal closed-loop performance even in the presence of disturbances. Simulation and experimental results based on a hardware platform are provided to confirm the effectiveness of the proposed algorithm.
Optimum Design of Aerospace Structural Components Using Neural Networks
NASA Technical Reports Server (NTRS)
Berke, L.; Patnaik, S. N.; Murthy, P. L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Scheinker, Alexander; Huang, Xiaobiao; Wu, Juhao
2017-02-20
Here, we report on a beam-based experiment performed at the SPEAR3 storage ring of the Stanford Synchrotron Radiation Lightsource at the SLAC National Accelerator Laboratory, in which a model-independent extremum-seeking optimization algorithm was utilized to minimize betatron oscillations in the presence of a time-varying kicker magnetic field, by automatically tuning the pulsewidth, voltage, and delay of two other kicker magnets, and the current of two skew quadrupole magnets, simultaneously, in order to optimize injection kick matching. Adaptive tuning was performed on eight parameters simultaneously. The scheme was able to continuously maintain the match of a five-magnet lattice while the fieldmore » strength of a kicker magnet was continuously varied at a rate much higher (±6% sinusoidal voltage change over 1.5 h) than typically experienced in operation. Lastly, the ability to quickly tune or compensate for time variation of coupled components, as demonstrated here, is very important for the more general, more difficult problem of global accelerator tuning to quickly switch between various experimental setups.« less
Pareto-Optimal Multi-objective Inversion of Geophysical Data
NASA Astrophysics Data System (ADS)
Schnaidt, Sebastian; Conway, Dennis; Krieger, Lars; Heinson, Graham
2018-01-01
In the process of modelling geophysical properties, jointly inverting different data sets can greatly improve model results, provided that the data sets are compatible, i.e., sensitive to similar features. Such a joint inversion requires a relationship between the different data sets, which can either be analytic or structural. Classically, the joint problem is expressed as a scalar objective function that combines the misfit functions of multiple data sets and a joint term which accounts for the assumed connection between the data sets. This approach suffers from two major disadvantages: first, it can be difficult to assess the compatibility of the data sets and second, the aggregation of misfit terms introduces a weighting of the data sets. We present a pareto-optimal multi-objective joint inversion approach based on an existing genetic algorithm. The algorithm treats each data set as a separate objective, avoiding forced weighting and generating curves of the trade-off between the different objectives. These curves are analysed by their shape and evolution to evaluate data set compatibility. Furthermore, the statistical analysis of the generated solution population provides valuable estimates of model uncertainty.
NASA Astrophysics Data System (ADS)
Skibinski, Jakub; Caban, Piotr; Wejrzanowski, Tomasz; Kurzydlowski, Krzysztof J.
2014-10-01
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.
Parallel computation of GA search for the artery shape determinants with CFD
NASA Astrophysics Data System (ADS)
Himeno, M.; Noda, S.; Fukasaku, K.; Himeno, R.
2010-06-01
We studied which factors play important role to determine the shape of arteries at the carotid artery bifurcation by performing multi-objective optimization with computation fluid dynamics (CFD) and the genetic algorithm (GA). To perform it, the most difficult problem is how to reduce turn-around time of the GA optimization with 3D unsteady computation of blood flow. We devised two levels of parallel computation method with the following features: level 1: parallel CFD computation with appropriate number of cores; level 2: parallel jobs generated by "master", which finds quickly available job cue and dispatches jobs, to reduce turn-around time. As a result, the turn-around time of one GA trial, which would have taken 462 days with one core, was reduced to less than two days on RIKEN supercomputer system, RICC, with 8192 cores. We performed a multi-objective optimization to minimize the maximum mean WSS and to minimize the sum of circumference for four different shapes and obtained a set of trade-off solutions for each shape. In addition, we found that the carotid bulb has the feature of the minimum local mean WSS and minimum local radius. We confirmed that our method is effective for examining determinants of artery shapes.
Aquino, P L M; Fonseca, F S; Mozzer, O D; Giordano, R C; Sousa, R
2016-07-01
Clostridium novyi causes necrotic hepatitis in sheep and cattle, as well as gas gangrene. The microorganism is strictly anaerobic, fastidious, and difficult to cultivate in industrial scale. C. novyi type B produces alpha and beta toxins, with the alpha toxin being linked to the presence of specific bacteriophages. The main strategy to combat diseases caused by C. novyi is vaccination, employing vaccines produced with toxoids or with toxoids and bacterins. In order to identify culture medium components and concentrations that maximized cell density and alpha toxin production, a neuro-fuzzy algorithm was applied to predict the yields of the fermentation process for production of C. novyi type B, within a global search procedure using the simulated annealing technique. Maximizing cell density and toxin production is a multi-objective optimization problem and could be treated by a Pareto approach. Nevertheless, the approach chosen here was a step-by-step one. The optimum values obtained with this approach were validated in laboratory scale, and the results were used to reload the data matrix for re-parameterization of the neuro-fuzzy model, which was implemented for a final optimization step with regards to the alpha toxin productivity. With this methodology, a threefold increase of alpha toxin could be achieved.
Improving Data Transfer Throughput with Direct Search Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaprakash, Prasanna; Morozov, Vitali; Kettimuthu, Rajkumar
2016-01-01
Improving data transfer throughput over high-speed long-distance networks has become increasingly difficult. Numerous factors such as nondeterministic congestion, dynamics of the transfer protocol, and multiuser and multitask source and destination endpoints, as well as interactions among these factors, contribute to this difficulty. A promising approach to improving throughput consists in using parallel streams at the application layer.We formulate and solve the problem of choosing the number of such streams from a mathematical optimization perspective. We propose the use of direct search methods, a class of easy-to-implement and light-weight mathematical optimization algorithms, to improve the performance of data transfers by dynamicallymore » adapting the number of parallel streams in a manner that does not require domain expertise, instrumentation, analytical models, or historic data. We apply our method to transfers performed with the GridFTP protocol, and illustrate the effectiveness of the proposed algorithm when used within Globus, a state-of-the-art data transfer tool, on productionWAN links and servers. We show that when compared to user default settings our direct search methods can achieve up to 10x performance improvement under certain conditions. We also show that our method can overcome performance degradation due to external compute and network load on source end points, a common scenario at high performance computing facilities.« less
Huang, X N; Ren, H P
2016-05-13
Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation.
OPC and PSM design using inverse lithography: a nonlinear optimization approach
NASA Astrophysics Data System (ADS)
Poonawala, Amyn; Milanfar, Peyman
2006-03-01
We propose a novel method for the fast synthesis of low complexity model-based optical proximity correction (OPC) and phase shift masks (PSM) to improve the resolution and pattern fidelity of optical microlithography. We use the pixel-based mask representation, a continuous function formulation, and gradient based iterative optimization techniques to solve the above inverse problem. The continuous function formulation allows analytic calculation of the gradient. Pixel-based parametrization provides tremendous liberty in terms of the features possible in the synthesized masks, but also suffers the inherent disadvantage that the masks are very complex and difficult to manufacture. We therefore introduce the regularization framework; a useful tool which provides the flexibility to promote certain desirable properties in the solution. We employ the above framework to ensure that the estimated masks have only two or three (allowable) transmission values and are also comparatively simple and easy to manufacture. The results demonstrate that we are able to bring the CD on target using OPC masks. Furthermore, we were also able to boost the contrast of the aerial image using attenuated, strong, and 100% transmission phase shift masks. Our algorithm automatically (and optimally) adds assist-bars, dog-ears, serifs, anti-serifs, and other custom structures best suited for printing the desired pattern.
Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui
2017-06-01
In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.
Preliminary Design of Low-Thrust Interplanetary Missions
NASA Technical Reports Server (NTRS)
Sims, Jon A.; Flanagan, Steve N.
1997-01-01
For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.
Fast Optimization for Aircraft Descent and Approach Trajectory
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John
2017-01-01
We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.
Research on cutting path optimization of sheet metal parts based on ant colony algorithm
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.
NASA Astrophysics Data System (ADS)
Izhari, F.; Dhany, H. W.; Zarlis, M.; Sutarman
2018-03-01
A good age in optimizing aspects of development is at the age of 4-6 years, namely with psychomotor development. Psychomotor is broader, more difficult to monitor but has a meaningful value for the child's life because it directly affects his behavior and deeds. Therefore, there is a problem to predict the child's ability level based on psychomotor. This analysis uses backpropagation method analysis with artificial neural network to predict the ability of the child on the psychomotor aspect by generating predictions of the child's ability on psychomotor and testing there is a mean squared error (MSE) value at the end of the training of 0.001. There are 30% of children aged 4-6 years have a good level of psychomotor ability, excellent, less good, and good enough.
Towards Modeling False Memory With Computational Knowledge Bases.
Li, Justin; Kohanyi, Emma
2017-01-01
One challenge to creating realistic cognitive models of memory is the inability to account for the vast common-sense knowledge of human participants. Large computational knowledge bases such as WordNet and DBpedia may offer a solution to this problem but may pose other challenges. This paper explores some of these difficulties through a semantic network spreading activation model of the Deese-Roediger-McDermott false memory task. In three experiments, we show that these knowledge bases only capture a subset of human associations, while irrelevant information introduces noise and makes efficient modeling difficult. We conclude that the contents of these knowledge bases must be augmented and, more important, that the algorithms must be refined and optimized, before large knowledge bases can be widely used for cognitive modeling. Copyright © 2016 Cognitive Science Society, Inc.
Optical design of multi-multiple expander structure of laser gas analysis and measurement device
NASA Astrophysics Data System (ADS)
Fu, Xiang; Wei, Biao
2018-03-01
The installation and debugging of optical circuit structure in the application of carbon monoxide distributed laser gas analysis and measurement, there are difficult key technical problems. Based on the three-component expansion theory, multi-multiple expander structure with expansion ratio of 4, 5, 6 and 7 is adopted in the absorption chamber to enhance the adaptability of the installation environment of the gas analysis and measurement device. According to the basic theory of aberration, the optimal design of multi-multiple beam expander structure is carried out. By using image quality evaluation method, the difference of image quality under different magnifications is analyzed. The results show that the optical quality of the optical system with the expanded beam structure is the best when the expansion ratio is 5-7.
Toward Scalable Trustworthy Computing Using the Human-Physiology-Immunity Metaphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hively, Lee M; Sheldon, Frederick T
The cybersecurity landscape consists of an ad hoc patchwork of solutions. Optimal cybersecurity is difficult for various reasons: complexity, immense data and processing requirements, resource-agnostic cloud computing, practical time-space-energy constraints, inherent flaws in 'Maginot Line' defenses, and the growing number and sophistication of cyberattacks. This article defines the high-priority problems and examines the potential solution space. In that space, achieving scalable trustworthy computing and communications is possible through real-time knowledge-based decisions about cyber trust. This vision is based on the human-physiology-immunity metaphor and the human brain's ability to extract knowledge from data and information. The article outlines future steps towardmore » scalable trustworthy systems requiring a long-term commitment to solve the well-known challenges.« less
High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics
Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis
2014-07-28
The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less
NASA Astrophysics Data System (ADS)
Akhtar, Taimoor; Shoemaker, Christine
2016-04-01
Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.
Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft
NASA Technical Reports Server (NTRS)
Patrick, Nicholas J. M.; Sheridan, Thomas B.
1996-01-01
Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance x,ary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are (1) determining, what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major U.S. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with different airspace design and air traffic management policies. A decision aid is proposed which would combine the pilot's notion of optimility with the GA-based optimization, provide the pilot with a number of alternative pareto-optimal trajectories, and allow him to consider un-modelled attributes and constraints in choosing among them. A solution to the problem of displaying alternatives in a multi-attribute decision space is also presented.
Large-scale structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.
1983-01-01
Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.
Application of the gravity search algorithm to multi-reservoir operation optimization
NASA Astrophysics Data System (ADS)
Bozorg-Haddad, Omid; Janbaz, Mahdieh; Loáiciga, Hugo A.
2016-12-01
Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA's efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization problems. The GSA's solutions are compared with those of the well-known genetic algorithm (GA) in three optimization problems. The results show that the GSA's results are closer to the optimal solutions than the GA's results in minimizing the benchmark functions. The average values of the objective function equal 1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the global solution in its average-performing history, while the GA converged to 97% of the global solution of the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the GA. The results of the three optimization problems demonstrate a superior performance of the GSA for optimizing general mathematical problems and the operation of reservoir systems.
NASA Astrophysics Data System (ADS)
Santosa, B.; Siswanto, N.; Fiqihesa
2018-04-01
This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution
Software Tools to Support the Assessment of System Health
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2013-01-01
This presentation provides an overview of three software tools that were developed by the NASA Glenn Research Center to support the assessment of system health: the Propulsion Diagnostic Method Evaluation Strategy (ProDIMES), the Systematic Sensor Selection Strategy (S4), and the Extended Testability Analysis (ETA) tool. Originally developed to support specific NASA projects in aeronautics and space, these software tools are currently available to U.S. citizens through the NASA Glenn Software Catalog. The ProDiMES software tool was developed to support a uniform comparison of propulsion gas path diagnostic methods. Methods published in the open literature are typically applied to dissimilar platforms with different levels of complexity. They often address different diagnostic problems and use inconsistent metrics for evaluating performance. As a result, it is difficult to perform a one ]to ]one comparison of the various diagnostic methods. ProDIMES solves this problem by serving as a theme problem to aid in propulsion gas path diagnostic technology development and evaluation. The overall goal is to provide a tool that will serve as an industry standard, and will truly facilitate the development and evaluation of significant Engine Health Management (EHM) capabilities. ProDiMES has been developed under a collaborative project of The Technical Cooperation Program (TTCP) based on feedback provided by individuals within the aircraft engine health management community. The S4 software tool provides a framework that supports the optimal selection of sensors for health management assessments. S4 is structured to accommodate user ]defined applications, diagnostic systems, search techniques, and system requirements/constraints. One or more sensor suites that maximize this performance while meeting other user ]defined system requirements that are presumed to exist. S4 provides a systematic approach for evaluating combinations of sensors to determine the set or sets of sensors that optimally meet the performance goals and the constraints. It identifies optimal sensor suite solutions by utilizing a merit (i.e., cost) function with one of several available optimization approaches. As part of its analysis, S4 can expose fault conditions that are difficult to diagnose due to an incomplete diagnostic philosophy and/or a lack of sensors. S4 was originally developed and applied to liquid rocket engines. It was subsequently used to study the optimized selection of sensors for a simulation ]based aircraft engine diagnostic system. The ETA Tool is a software ]based analysis tool that augments the testability analysis and reporting capabilities of a commercial ]off ]the ]shelf (COTS) package. An initial diagnostic assessment is performed by the COTS software using a user ]developed, qualitative, directed ]graph model of the system being analyzed. The ETA Tool accesses system design information captured within the model and the associated testability analysis output to create a series of six reports for various system engineering needs. These reports are highlighted in the presentation. The ETA Tool was developed by NASA to support the verification of fault management requirements early in the Launch Vehicle process. Due to their early development during the design process, the TEAMS ]based diagnostic model and the ETA Tool were able to positively influence the system design by highlighting gaps in failure detection, fault isolation, and failure recovery.
Constraint Optimization Literature Review
2015-11-01
COPs. 15. SUBJECT TERMS high-performance computing, mobile ad hoc network, optimization, constraint, satisfaction 16. SECURITY CLASSIFICATION OF: 17...Optimization Problems 1 2.1 Constraint Satisfaction Problems 1 2.2 Constraint Optimization Problems 3 3. Constraint Optimization Algorithms 9 3.1...Constraint Satisfaction Algorithms 9 3.1.1 Brute-Force search 9 3.1.2 Constraint Propagation 10 3.1.3 Depth-First Search 13 3.1.4 Local Search 18
Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model
NASA Astrophysics Data System (ADS)
Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.
2007-05-01
Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem and predict the strip crown, a new customized semi-analytical modeling technique that couples the Finite Element Method (FEM) with classical solid mechanics was developed to model the deflection of the rolls and strip while under load. The technique employed offers several important advantages over traditional methods to calculate strip crown, including continuity of elastic foundations, non-iterative solution when using predetermined foundation moduli, continuous third-order displacement fields, simple stress-field determination, and a comparatively faster solution time.
Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph
NASA Astrophysics Data System (ADS)
Feng, Lv; Chunlin, Gao; Kaiyang, Ma
2017-05-01
With rapid development of computer performance and distributed technology, P2P-based resource sharing mode plays important role in Internet. P2P network users continued to increase so the high dynamic characteristics of the system determine that it is difficult to obtain the load of other nodes. Therefore, a dynamic load balance strategy based on hypergraph is proposed in this article. The scheme develops from the idea of hypergraph theory in multilevel partitioning. It adopts optimized multilevel partitioning algorithms to partition P2P network into several small areas, and assigns each area a supernode for the management and load transferring of the nodes in this area. In the case of global scheduling is difficult to be achieved, the priority of a number of small range of load balancing can be ensured first. By the node load balance in each small area the whole network can achieve relative load balance. The experiments indicate that the load distribution of network nodes in our scheme is obviously compacter. It effectively solves the unbalanced problems in P2P network, which also improve the scalability and bandwidth utilization of system.
Kozhevnikov, A A
2014-01-01
The paper describes the results of a sociological study of delivery of healthcare in the Republic of Altai to search for ways to improve its quality and to provide access to the local population. Analysis was made with regard to an interdisciplinary, comprehensive approach to considering the range of problems associated with not only the health of local residents and identifying risk factors leading to diseases, but also by determining the possibilities that could promote the minimization of causes that have a considerable impact on the occurrence of diseases and also hamper healthcare delivery in the human settlements of Gornyi Altai, which are difficult of access. The investigation has used sociological and statistical methods. It has been ascertained that the available healthcare forces and means should be today employed at the regional level, by applying the principles of necessary sufficiency in conjunction with the local population's social motivation to be involved in the activity associated with the rendering of medical services. In addition, it is necessary to systemically use mobile medical units as a significant factor for the optimization of medical care to the population living in Russia's regions which are difficult of access.
Application of a fast skyline computation algorithm for serendipitous searching problems
NASA Astrophysics Data System (ADS)
Koizumi, Kenichi; Hiraki, Kei; Inaba, Mary
2018-02-01
Skyline computation is a method of extracting interesting entries from a large population with multiple attributes. These entries, called skyline or Pareto optimal entries, are known to have extreme characteristics that cannot be found by outlier detection methods. Skyline computation is an important task for characterizing large amounts of data and selecting interesting entries with extreme features. When the population changes dynamically, the task of calculating a sequence of skyline sets is called continuous skyline computation. This task is known to be difficult to perform for the following reasons: (1) information of non-skyline entries must be stored since they may join the skyline in the future; (2) the appearance or disappearance of even a single entry can change the skyline drastically; (3) it is difficult to adopt a geometric acceleration algorithm for skyline computation tasks with high-dimensional datasets. Our new algorithm called jointed rooted-tree (JR-tree) manages entries using a rooted tree structure. JR-tree delays extend the tree to deep levels to accelerate tree construction and traversal. In this study, we presented the difficulties in extracting entries tagged with a rare label in high-dimensional space and the potential of fast skyline computation in low-latency cell identification technology.
Comparison of Optimal Design Methods in Inverse Problems
Banks, H. T.; Holm, Kathleen; Kappel, Franz
2011-01-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29]. PMID:21857762
Multiobjective optimization approach: thermal food processing.
Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R
2009-01-01
The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field.
Replica analysis for the duality of the portfolio optimization problem
NASA Astrophysics Data System (ADS)
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.